
ObjectProDSP Library Reference

Paul P. Budnik Jr. Phd.

Internet: support@MTNMATH.COM

September 1994

c

 1994 Mountain Math Software

All rights reserved

`.dvi' �le created September 16, 1994

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

Math

Mountain

Software

P. O. Box 2124, Saratoga, CA 95070

Fax or voice (408) 353-3989

Published by Mountain Math Software, P. O. Box 2124, Saratoga, CA 95070.

Copyright

c

 1994 by Mountain Math Software. All rights reserved.

Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all

copies.

Permission is granted to copy and distribute modi�ed versions of this manual

under the conditions for verbatim copying, provided also that the sections

entitled \GNU General Public License" and \Licensing" are included exactly

as in the original, and provided that the entire resulting derived work is

distributed under the terms of a permission notice identical to this one, and

provided the derived work is clearly identi�ed as a derived work and not

solely the creation of either the orignal authors or the authors of the derived

work.

Permission is granted to copy and distribute translations of this manual into

another language, under the above conditions for modi�ed versions, except

that the sections entitled \GNU General Public License" and \Licensing",

and this permission notice, may be included in translations approved by

Mountain Math Software instead of in the original English. Translations of

the section entitled \GNU General Public License" must also be approved

by the Free Software Foundation which owns the copyright to that text.

Licensing

ObjectProDSP

TM

is licensed for free use and distribution under version 2

of the GNU General Public License. See Appendix A for the full text of

this license. There is absolutely no warranty for ObjectProDSP under this

license. ObjectProDSP is a trademark of Mountain Math Software.

You are free to use and distribute ObjectProDSP under the terms of version

2 of the GNU General Public License. Please note that none of the Object-

ProDSP system is licensed for use under the GNU Library General Public

License. The Gnu General Public License allows you to distribute executables

or librarys linked with or created by ObjectProDSP only if you make all the

source code used to create the librarys or executables (other than standard

librarys that are part of a compiler or operating system) freely available.

Please read the license in Appendix A for the full legal explanation of these

conditions.

Mountain Math Software plans to o�er, for a fee, a commercial version that

will allow you to distribute executables generated with ObjectProDSP under

standard commercial terms.

If you wish to extend ObjectProDSP you can distribute your code with Ob-

jectProDSP under the terms of the GNU General Public License. If you

include an appropriate copyright notice in your name for your upgrades then

no one, including Mountain Math Software, will be able to distribute your

code under any terms other than the GNU General Public License without

your permission.

If you �nd ObjectProDSP useful in a commercial environment you are asked

to consider purchasing a support contract. This is not shareware and you are

under no obligation to do so but you will gain aceess to direct support from

Mountain Math Software and you will make a contribution to the continued

success of ObjectProDSP and thus to any of your endeavors that bene�t from

it.

If you are interrested in a custom port of ObjectProDSP to directly support

your company's DSP development board or processor please contact us.

Mountain Math Software

P. O. Box 2124

Saratoga, CA 95070

Internet: support@MTNMATH.COM

Fax or voice (408) 353-3989

Documentation

� ObjectProDSP Overview and Tutorial This gives a general description

of ObjectProDSP's purpose and function. It includes several tutorial

examples. There are appendices on the DSP node and class library and

Mountain Math Software.

� ObjectProDSP User's Reference This describes the user interface and

DSP++, a C++ based language for DSP. (You do not need to known

DSP++ or C++ to use ObjectProDSP. DSP++ statements are generated

for you when you graphically enter a network or execute menu data base

commands.) This document includes a reference manual for the menu

data base. Appendixes contain a synopsis of menu data base commands

and a general index.

� ObjectProDSP Library Reference This is the document you are read-

ing. This gives a detailed description of ObjectProDSP interactive ob-

jects including DSP processing nodes.

� ObjectProDSP Developer's Reference This tells how to write DSP

processing nodes and add them to ObjectProDSP. It describes Object-

Pro++

TM

, an extended C++ language for de�ning interactive objects for

DSP or other applications. It explains how to modify the part of the

menu data base that does not come from interactive object de�nitions

in ObjectPro++. It describes how to update the ObjectProDSP manuals

to include your new nodes and objects. Information about these objects

is extracted from your de�nitions by ObjectPro++ and added to the

manuals.

ObjectProDSP and ObjectPro++ are trademarks of Mountain Math Software.

CONTENTS i

Contents

Licensing iii

Documentation v

List of tables v

1 Introduction 1

2 Overview of nodes 1

2.1 Signal nodes : 1

2.2 Add the output from multiple inputs : : : : : : : : : : 2

2.3 InputWord, OutputWord, VoiceNode and VocStrip-

Out : 2

2.4 Import ascii data : 2

2.5 Change sample size and blocking of input : : : : : : : 3

2.6 Filtering operations : : : : : : : : : : : : : : : : : : : 3

2.7 Complex FFT : 4

2.8 Conversion nodes : 4

2.9 Multiplexing, bit manipulation and related operations 5

2.10 Miscellaneous DSP processing nodes : : : : : : : : : : 6

2.11 Read and write disk �les : : : : : : : : : : : : : : : : 6

2.12 ObjectProDSP binary format data �les : : : : : : : : 7

3 DSP processing nodes 10

ii CONTENTS

3.1 Add : 10

3.2 Block : 11

3.3 CxFFT : 12

3.4 CxFir : 14

3.5 Demod : 15

3.6 Demux : 16

3.7 FindStartTail : 17

3.8 Gain : 18

3.9 GainPad : 19

3.10 Integrate : 20

3.11 Interpolate : 21

3.12 MaskWord : 21

3.13 Mux : 22

3.14 PackWord : 23

3.15 Power : 24

3.16 RealFir : 25

3.17 RepackStream : 26

3.18 SampleDelay : 27

3.19 ToInteger : 28

3.20 ToMach : 28

3.21 Truncate : 29

3.22 UnpackWord : 30

CONTENTS iii

4 Input and signal generation nodes 31

4.1 ConstantData : 31

4.2 Cos : 32

4.3 CxCos : 33

4.4 CxImp : 34

4.5 ImportData : 35

4.6 InputNode : 38

4.7 InputWord : 39

4.8 Normal : 41

4.9 Ramp : 42

4.10 ReadFloat : 43

4.11 ReadInt : 44

4.12 UniformNoise : 44

4.13 VoiceNode : 45

5 Output and data display nodes 47

5.1 AsciiFile : 47

5.2 CompareDisk : 48

5.3 EyePlot : 50

5.4 HexList : 51

5.5 Listing : 51

5.6 OutputNode : 52

5.7 OutputWord : 54

iv CONTENTS

5.8 Plot : 55

5.9 VoiceStripOut : 55

6 Base class nodes 56

6.1 DisplayNodeStr : 56

6.2 ProcessNodeStr : 59

6.3 SignalStr : 63

7 Additional ObjectProDSP objects 66

7.1 CircBufDes : 66

7.2 DataFlow : 69

7.3 Network : 71

A GNU GENERAL PUBLIC LICENSE 1

Index 11

LIST OF TABLES v

List of Tables

1 Signal generation nodes : 1

2 Disk �le packet format : 8

3 Disk �le header packets : 8

4 FileEltsHeader packet structure : : : : : : : : : : : : : : : : : 8

5 DataType codes : 9

6 Channel header : 9

7 Data packet format : 10

vi LIST OF TABLES

1

Name Signal type

ConstantData constant level

Cos real cosine

CxCos complex cosine

CxImp complex impulse or square wave

Normal Gaussian distributed noise

Ramp ramp function

UniformNoise uniformly distributed noise

Table 1: Signal generation nodes

1 Introduction

This manual describes all user accessible ObjectProDSP objects including

DSP processing nodes. Most of the text in this manual is extracted from the

extended ObjectPro++ class de�nitions.

2 Overview of nodes

This section gives a brief overview of the processing nodes. It contains the

information in the help �les for the nodes.

2.1 Signal nodes

The nodes under objects and signal generate standard test signal. They

create output data streams as a function of node parameters. They (along

with nodes that read their input from disk are the initial source of data for

a network.

Signal generation nodes are shown in Table 1 on page 1.

You can use the Add node (under objects and dsp processing) to sum 2

or more of these signal sources.

2 2. OVERVIEW OF NODES

2.2 Add the output from multiple inputs

The Add node sums inputs from any number of nodes to generate a single

output stream. All inputs and the output must have the same number of

words per sample or ElementSize. For example they must all be real or all

complex. A check for over
ow is made for each addition. At over
ow the

output is forced to the largest legal magnitude. The number of over
ows is

periodically reported. The input can be scaled by a uniform factor before

the over
ow check.

2.3 InputWord, OutputWord, VoiceNode and Voc-

StripOut

InputWord and OutputWorde read and write binary �les as consecutive bi-

nary words. The data type is selectable from most standard types. These

nodes may be used for importing or exporting binary data to other programs.

It is best to use InputNode and OutputNode for importing and exporting

data to ObjecProDSP. These preserve information about data streams such

as sample rate and timing as well as the data itself.

VoiceStripOut writes �les in a format based on the Creative voice format

of the SoundBlaster board but with no header.

VoiceNode reads Creative voice file format �les including the header

and can display the header contents. These programs were written based on

an early version of the SoundBlaster software and may not work with more

recent versions.

They nodes are under objects, disk and binary.

2.4 Import ascii data

The ImportData node (select objects, disk and ascii) is a
exible node

for importing ascii data from other programs. You can specify the format

for reading each value (using C conventions such as %d and %x). You specify

2.5 Change sample size and blocking of input 3

the number of �elds per line. You can ignore selected columns and selected

�elds. You can combine multiple �elds into a single word.

2.5 Change sample size and blocking of input

Block is under objects and dsp processing.

Block converts its input stream to an output stream with a speci�ed number

words per sample and a speci�ed number of samples per block. The sample

size and block size of the input data stream are ignored. The stream is

treated as if it were an unblocked real data stream.

Some nodes that read disk �les only generate a real data stream. If such a

node is used to read complex data Block can do the needed transformation.

If a node is used to read FFT output from another process you can use Block

to structure the data so it will be plotted correctly with one FFT window

per plot.

2.6 Filtering operations

Nodes CxFir, RlFir, Demod, Interpolate and Integrate perform vari-

ous �ltering operations in their input. They are under objects and dsp

processing.

CxFir and RlFir are standard �nite impulse response FIR �lters for real and

complex data respectively. They both support arbitrary integer resampling

of their input data streams.

DcTrap is a simple notch �lter at 0 hz.

Demod does complex demodulation by an arbitrary frequency, i. e. it multi-

plies its input by e

�i!N

where ! is an angle that translates to a demodulation

frequency and N is the sample index. Demodulation is also a built in option

in CxFir.

Interpolate uses linear interpolation to generate an output data stream

with a di�erent sample rate then its input data stream.

4 2. OVERVIEW OF NODES

Integrate does a sliding window sum of its input to generate its output. It

can produce output at any integral divisor of its input.

2.7 Complex FFT

CxFft under objects and dsp processing converts a complex input data

stream to blocked spectral output. The output of the FFT has a sample rate

just as any other data stream does but the samples are blocks of complex

data. Plot and listing nodes understand this block structure and display the

data accordingly. Plot uses the sample rate and block size to compute a

frequency axis for displaying FFT output.

2.8 Conversion nodes

Nodes ToInteger, ToMach, Truncate and Power perform conversion opera-

tions. They are under objects and dsp processing.

MachWord is the native type of an ObjectProDSP simulator. For the
oating

point version this is single precision
oating point.

ToInteger converts its MachWord input stream to 32 bit integers.

ToMach converts a 32 bit integer input data stream to type MachWord.

ToInteger and ToMach are only available on the
oating point simulator.

Truncate limits the accuracy (most signi�cant bit and number of bits) of its

input and writes the result to its output. Over
ow will optionally saturate

or truncate. This node reads and writes data of type MachWord but operates

internally on 32 bit integers.

Power computes the power of a real or complex data stream and writes this

to its output. More generally it computes the sum of the squares of each

ElementSize value in a sample. ElementSize is determined from the input

data stream.

2.9 Multiplexing, bit manipulation and related operations 5

2.9 Multiplexing, bit manipulation and related opera-

tions

Routines Mux, Demux, MaskWord, PackWord, UnpackWord, RepackStream

and GainPad perform multiplexing bit manipulation and related operations.

They are under objects and dsp processing.

Mux and Demux do multiplexing and demultiplexing. Mux combines an arbi-

trary number of input channels into a single output channel. Demux does the

inverse operation. Demux can also separate the real and imaginary compo-

nents of a single data stream into di�erent output channels. Demux can invert

this operation.

GainPad converts an real data stream to complex by padding the imaginary

part with 0. It can also apply a gain to the input.

MaskWord reads and writes a binary data stream applying a bit mask to

each input sample. Use ToInteger and ToMach to convert input and output

streams if needed.

UnpackWord unpacks a speci�ed number of words of a speci�ed number of

bits from a single physical integer input word and writes each of these as

a separate sample to an integer output data stream. PackWord does the

inverse operation. Both treat the least signi�cant bits in a word as being

�rst in sequence.

RepackStream is a more general (and less e�cient) operation than PackWord

and UnpackWord. It is its own inverse. It treats its input and output channels

as continuous streams of bits with the least signi�cant bits in a physical word

occurring �rst in the continuous sequence. It repacks the input stream with

a speci�ed input word size to an output stream with a speci�ed output word

size. These word sizes must be less than or equal the physical word size in

the stream.

6 2. OVERVIEW OF NODES

2.10 Miscellaneous DSP processing nodes

There are miscellaneous DSP nodes (under objects and dsp processing)

for creating a delay (necessary for feedback loops) �nding the start of a signal

in a data stream and applying an arbitrary gain factor.

SampleDelay copies its input to its output appending and initial string of

constant values. The length of this initial string and the value of the constant

are selectable. If you construct a feedback loop in a network you must have

a suitably long delay in the loop or the network will block.

FindStartTail copies its input to its output after throwing away a �xed

initial data segment of selectable length and/or an initial segment that meets

selectable signal level constraints.

Gain copies its input to its output applying a �xed gain to each sample.

2.11 Read and write disk �les

The disk menu under objects provides access to nodes that read and write

binary and ascii �les.

Nodes for reading and writing ascii �les

ReadInt and ReadFloat read simply formatted integer or
oating point data

with one number per line. The outputs stream of ReadFloat is a type

MachWord. The output stream of ReadInt is of type integer. You may need to

use ToFloat if you are working with a
oating point simulator. ImportData

can directly read more complexly structured ascii �les.

AsciiFile writes ascii �les for import to other processes. It optionally in-

cludes header information and optionally groups data by samples and blocks.

It can output data in hexadecimal format. Under the hexadecimal format

input is converted to 32 bit integers and hard limited with a warning if it

will over
ow 32 bits.

2.12 ObjectProDSP binary format data �les 7

Nodes for reading and writing binary �les

Nodes InputNode and OutputNode are the standard nodes for saving data

between ObjectProDSP sessions. In addition to the data itself they preserve

all the information that describes the data such as its time base and same

rate. This format of these �les is documented in the help �le for these nodes.

OutputWord and InputWord are nodes for reading and writing simple binary

data �les in a form that may be suitable for importing or exporting to other

programs.

2.12 ObjectProDSP binary format data �les

Output node OutputNode writes its input channels to a disk �le. This �le

can be read by input node InputNode. The data is written in binary exactly

as it is generated.

This �le format is convenient for saving multiple channels from a network to

a single �le. All the data in all the channels directed to this node will be

saved as a single �le. This data can then be accessed any time in the future

in the same sequence in which it was generated.

This node is also used for ObjectProDSP validation and regression testing.

See the section on validation for more information on this topic.

OutputNode

The parameters for OutputNode include a block size to determine the con-

secutive words that are written from a single channel to the disk �le. Making

this larger will improve e�ciency at the cost of more memory for bu�ers.

InputNode

InputNode reads most of the characteristics of its input data in the �le

header. This includes the number of channels. Pamameter DeltaOut con-

8 2. OVERVIEW OF NODES

Field Size in bits Contents

Type 8 Code for packet type

Size 8 Length of data �eld in bytes

Identi�er 32 Data identi�cation

Data Size�8 Packet data

Table 2: Disk �le packet format

Packet type Code Identi�er Data

FileEltsHeader 0 NONE See Table 4 on page 8

FileEltsNodeName 1 NONE Node name

FileEltsCaption 2 NONE Caption parameter

FileEltsChannelHeader 3 NONE See Table 6 on page 9

Table 3: Disk �le header packets

trols how often the node is scheduled and can in
uence e�ciency. You can

also ignore the input sample rate and force it be 1 on the base channel.

This node must be able to read its input �le at the time its constructor is

called or it cannot initialize itself properly from the input �le. Any node that

does not succeed in doing this read will be unusable later.

Field Size in bits Interpretation

DataType 32 (enum DataType) See Table 5 on page 9

NumberOfChannels 16 Input channels

BlockSize 32 Contiguous data size

Table 4: FileEltsHeader packet structure

2.12 ObjectProDSP binary format data �les 9

Name Code Size of one MachWord in bits

ArithDouble 1 64

ArithInt16 2 16

ArithInt32 3 32

ArithFloat 4 32

Table 5: DataType codes

Field name Size in bits Interpretation

NumeratorSampling 32 Samples input (ratio)

DenominatorSampling 32 Samples output (ratio)

FirstSample 64 (double) Time of �rst output

ElementSize 32 MachWords in one sample

NumberWords 32 (long) MachWords in �le

Table 6: Channel header

File format

The �les written by OutputNode and read by InputNode begin with a header

format organized in packets. A sequence of packets that gives general header

information is followed by a packet giving information for each channel. The

format of these packets is de�ned in Table 2 on page 8.

The general header information and the information for each channel is con-

tained in the sequence of packets de�ned in Table 3 on page 8.

The data in the FileEltsHeader packet is structured as shown in Table 4 on

page 8.

The codes for the DataType �eld are listed in Table 5 on page 9.

The packet for each channel header contains the data shown in Table 6 on

page 9.

This header information is followed with a series of data packets containing

10 3. DSP PROCESSING NODES

Field Size in bits Interpretation

Channel 16 Index of this channel

Word index 32 Index of �rst word

Data 8�sizeof(MachWord)�BlockSize Node input data

Table 7: Data packet format

samples from a single channel. The data from each channel is in sequential

order. The sequences of the packets from di�erent channels is determined

by the order in which the data is written and is not easy to determine. The

format of these packets is is shown in Table 7.

3 DSP processing nodes

Most of the text in this section through Section 7 on page 66 was extracted

from the ObjectPro++ input .usr �les. It duplicates the description of the

nodes available in the menu data base.

The nodes in this section have both input and output channels. They provide

some form of DSP or utility processing.

3.1 Add

Synopsis: Add sums two or more input channels.

Add sums Channels input channels into a single output channel. Each sample

is multiplied by Scale before being added to the output channel. Over
ows

are prevented by clipping. The �rst time clipping occurs a help message is

generated. A new help message is generated after every 400 clippings. Each

sample consists of ElementSize words. ElementSize is usually one for real

data streams and two for complex streams, but it can be any 16 bit positive

integer and used for any purpose.

3.2 Block 11

The parameters for Add are:

� Channels: number of input channels.

Channels speci�es the number of input channels to be added together

in a single output channel.

Channels is of type int16. The default value is 2. Channels must be

� 2 and � 32767.

� ElementSize: number of multiplexed elements in each channel.

ElementSize speci�es the sample size for each channel. The most com-

mon use of ElementSize is to set it to two for a complex data stream.

All input data streams must have the same sample size. If set to 0

ElementSize is set automatically based on its value for the �rst input

node.

This is the �rst default parameter. ElementSize is of type int16. The

default value is 0. ElementSize must be � 0 and � 32767.

� Scale: scale factor for each channel.

Scale is a scale factor applied to each channel before it is added to the

output channel. The channel addition will clip any data that would

otherwise create an over
ow and generate a help message. Only one

help messages is generated, for every 400 input samples regardless of

the number of over
ows that may occur.

This is the �rst default parameter. Scale is of type double. This

parameter can be changed interactively. The default value is 1.0. Scale

must be � -1.e100 and � 1.e100.

3.2 Block

Synopsis: Converts an input stream to a new blocking and sample size.

Block converts its input stream to an output streamwith ElementSizewords

per sample and BlockSize samples per block. The sample size and block

size of the input data stream are ignored. The stream is treated as if it were

an unblocked real data stream. On a 32 bit simulator Block can convert an

12 3. DSP PROCESSING NODES

integer or
oating point input channel to
oating point or integer output. If

over
ow occurs in converting integer to
oating point the result will saturate

and no warning message will be given. Some nodes that read disk �les only

generate a real data stream. If such a node is used to read complex data

Block can do the needed transformation. If a node is used to read FFT

output from another process you can use BlockSize to structure the data so

it will be plotted correctly with one FFT window per plot. If BlockSize is

1 the output is not blocked.

The parameters for Block are:

� ElementSize: output element size.

ElementSize is the number of words in each output sample (1 for real,

2 for complex or larger for other purposes).

ElementSize is of type int16. The default value is 2. ElementSize

must be � 1 and � 32767.

� BlockSize: output block size.

BlockSize is the number of samples in each output block. If set to 1

the output is not blocked.

This is the �rst default parameter. BlockSize is of type int16. The

default value is 1. BlockSize must be � 1 and � 32767.

� OutputArithmetic: output data: 0 - MachWord, 1 - int32, 2 -
oat.

Block can read data from any input arithmetic type. OutputArithmetic

selects the output arithmetic type. On a 32 bit simulator Block can

write output as either 32 bit
oating point or 32 bit �xed point. Choose

0 to write output in the default type of the simulator, 1 for 32 bit integers

and 2 for 32 bit
oating point.

This is the �rst default parameter. OutputArithmetic is of type int16.

The default value is 0. OutputArithmetic must be � 0 and � 2.

3.3 CxFFT

Synopsis: CxFFT computes the complex FFT of a single input channel.

CxFFT 13

CxFFT computes a series of complex FFTs of size N = 2 ^ LogSize on a

single complex input channel. A forward FFT is computed if InverseFlag

is 0 and an inverse FFT if this parameter is 1. Successive FFTs have their

�rst samples separated by by N � Overlap samples. If Overlap is 1.0 then

successive inputs are separated by a single sample.

The parameters for CxFFT are:

� LogSize: log base 2 of FFT size.

LogSize is the log base 2 of the FFT size.

LogSize is of type int16. The default value is 4. LogSize must be �

1 and � 512.

� Overlap: fractional overlap of successive FFTs.

Overlap speci�es the fractional overlap of successive FFTs. For example

Overlap = .5 and LogSize = 64 would result in each FFT being 32

samples beyond the previous FFT. Overlap= 1.0 is interpreted to mean

that successive FFTs having their inputs separated by a single sample.

This is the �rst default parameter. Overlap is of type double. The

default value is 0.0. Overlap must be � 0.0 and � 1.0.

� CenterFrequency: position of center frequency in FFT output bins.

The true center frequency of the FFT is determined by the data entering

it. CenterFrequency allows you to rotate the output bins to conform

to this. The default value of .5 corresponds to a signal with center

frequency of 0 hz in the input sample stream. This value should set to

the relative position of the center frequency of the input sample stream.

This is the �rst default parameter. CenterFrequency is of type double.

This parameter can be changed interactively. The default value is 0.5.

CenterFrequency must be � -1.0 and � 1.0.

� InverseFlag: inverse FFT
ag.

InverseFlag set to 1 selects an inverse FFT.

This is the �rst default parameter. InverseFlag is of type int16. The

default value is 0. InverseFlag must be � 0 and � 1.

14 3. DSP PROCESSING NODES

3.4 CxFir

Synopsis: CxFir is a complex symmetric (even or odd) �r �lter.

CxFir implements two parallel real symmetric FIR �lters that operate on a

complex data stream. Optional complex demodulation multiplies the input

by a complex cosine with phase increment -DemodFreq radians between each

pair of samples. Input samples can have ZeroPad 0's interpolated between

them. Output sample can be generated for every Resample input (or zero

pad) sample. The Coeff array contains half of the symmetric coe�cients.

Odd indicates if there are an even(0) or odd(1) total number of coe�cients.

The parameters for CxFir are:

� Resample: �lter resampling factor (input rate/output rate).

Resample speci�es the �lter resampling factor. This is the ratio of the

input sampling rate to the output sampling rate.

Resample is of type int16. The default value is 1. Resample must be

� 1 and � 32767.

� ZeroPad: zero padding of input.

ZeroPad speci�es the number of 0's that are added after each input

sample. If Zero padding is done the �lter must be designed as an inter-

polation �lter.

This is the �rst default parameter. ZeroPad is of type int16. The

default value is 0. ZeroPad must be � 0 and � 32767.

� DemodFreq: demodulation frequency (0 for no demodulation).

DemodFreq is the demodulation frequency in radians per sample. Input

sample N is multiplied by e^(-i � 2 � Pi � DemodFreq � N) before

the �ltering operation. If DemodFreq is 0 then the demodulation step is

skipped.

This is the �rst default parameter. DemodFreq is of type double. The

default value is 0.0. DemodFreq must be � -1.e100 and � 1.e100.

� Odd: if set the �lter length is odd.

3.5 Demod 15

Odd determines if the �lter is odd (Odd=1) or even (Odd=0).

This is the �rst default parameter. Odd is of type int16. The default

value is 0. Odd must be � 0 and � 1.

� Coeff: list of unique coe�cients.

Coeff is the list of �lter coe�cients. The �lter is symmetric and only

half (or half plus one for odd length �lters) are speci�ed. The �rst in the

list is the �rst coe�cient of the �lter. The middle coe�cient is at the

end of the list. The default values for the coe�cients de�ne a low pass

FIR �lter with a pass band of .125 times the sample rate and transition

band of .375 times the sample rate. The pass band is extremely
at

and the stop band is down over 100 db. This is an overdesigned �lter

for most practical applications but it provides a good test case. The

performance will be degraded by 16 bit integer arithmetic.

This is the �rst default parameter. Coeff is of type MachWord �. Coeff

is an array of size � 3 and � 1024. The following table contains the

default array values.

1.00018552e-04 3.70747893e-04 4.46594395e-04 -5.36969535e-04

-2.67492760e-03 -3.52687595e-03 8.25715193e-04 1.01494638e-02

1.50874056e-02 2.48008436e-03 -2.76876913e-02 -4.93498540e-02

-2.20594765e-02 7.30790837e-02 2.04010323e-01 2.99286359e-01

3.5 Demod

Synopsis: DemodFreq is a complex modulation/demodulation function.

Demod is a complex modulation or demodulation function. Its input can be

real or complex as can its output.

The parameters for Demod are:

� DataType: select real or complex data for input or output.

DataType selects complex input and complex output (0), complex input

and real output (1), real input and complex output (2) or real input and

real output (3).

16 3. DSP PROCESSING NODES

DataType is of type int16. The default value is 0. DataType must be

� 0 and � 3.

� DemodFreq: demodulation frequency (negative values for modulate).

DemodFreq is the demodulation frequency in radians/sample. Input

sample N is multiplied by e^(-i � N � 2 � Pi � DemodFreq)

DemodFreq is of type double. This parameter can be changed interac-

tively. The default value is 0.0. DemodFreq must be � -1.e100 and �

1.e100.

3.6 Demux

Synopsis: Demultiplexes 1 input channel to Channels output channels.

Demux takes one input channel and demultiplexes it onto Channels output

channels. The input channel must have samples consisting of InputElementSize

words. For example, complex data streams will generally have two words in

each sample. The output data streamwill have samples or OutputElementSize

words. InputElementSize and OutputElementSize do not a�ect the kernel

loop execution. InputSampleSize words are taken from the input and writ-

ten to the �rst output channel. The next InputSampleSize words of input

are written to the next channel. This is done for all output channels and

then begins again with the �rst output channel.

The parameters for Demux are:

� Channels: number of output channels.

Demux demultiplexes a single input channel into Channels output chan-

nels.

Channels is of type int16. The default value is 2. Channels must be

� 2 and � 32767.

� InputSampleSize: number of consecutive words demultiplexed in one

input sample.

The input channel has samples of InputSampleSize words.

3.7 FindStartTail 17

This is the �rst default parameter. InputSampleSize is of type int32.

The default value is 1. InputSampleSizemust be� 1 and� 2147483647.

� InputElementSize: element size of input channels.

The parameter does not a�ect the demultiplexing loop. The input chan-

nel must have this value for InputElementSize. If you are demultiplex-

ing an element into its component parts (such as demultiplexing complex

data to real and imaginary streams) Channels and InputElementSize

must have the same value.

This is the �rst default parameter. InputElementSize is of type

int32. The default value is 1. InputElementSize must be � 1 and

� 2147483647.

� OutputElementSize: element size of output channels.

The parameter does not a�ect the demultiplexing loop. All output

channels have this value for OutputElementSize.

This is the �rst default parameter. OutputElementSize is of type

int32. The default value is 1. OutputElementSizemust be � 1 and �

2147483647.

3.7 FindStartTail

Synopsis: discard initial input data within bounds.

FindStartTail copies its input to its output. Data is copied at the �rst

sample with value > LowerBound and < UpperBound. If the input data is

integer type on a
oating point simulator signed input is assumed. If the

data is complex then the magnitude of each component of the each sample

is checked. The �rst full sample after the test is passed is output.

The parameters for FindStartTail are:

� LowerBound: ignore initial input > LowerBound.

A sample containing an initial element > LowerBound will be ignored.

Once one element of a sample has passed both bound tests all later

18 3. DSP PROCESSING NODES

samples will be passed to the next node. If the �rst element in a sample

passes the tests then that sample will be passed.

LowerBound is of type double. The default value is 0. LowerBoundmust

be � -1.e100 and � 1.e100.

� UpperBound: ignore initial input > UpperBound.

An initial element < UpperBound will be ignored. Once one element of

a sample has passed both bound tests it and all later samples will be

passed to the next node. If the �rst element in a sample passes the tests

then that sample will be passed.

UpperBound is of type double. The default value is 0. UpperBoundmust

be � -1.e100 and � 1.e100.

� Flags: specieal options.

If bit 2 is set then the �rst bounds test is ignored. If bit 3 is set the

second test is ignored. If both bits 2 and 3 are set you can skip a �xed

number of samples by setting Skip.

This is the �rst default parameter. Flags is of type int16. The default

value is 0. Flags must be � -32767 and � 32767.

� Skip: Samples to skip before processing any data.

The �rst Skip samples are read but not written.

This is the �rst default parameter. Skip is of type int32. The default

value is 0. Skip must be � 0 and � 2147483647.

3.8 Gain

Synopsis: Gain provides a linear gain.

Gain copies its input to its output after applying a liner scale factor (Scale)

to each input sample element.

The parameter for Gain is:

� Scale: ratio of input amplitude to output amplitude.

3.9 GainPad 19

Scale speci�es the ratio of input amplitude to output amplitude. Inte-

ger over
ows are prevented by clipping. The �rst time clipping occurs a

help message is generated. A new help message is generated after every

400 clippings.

Scale is of type double. This parameter can be changed interactively.

The default value is 1.0. Scale must be � -1.e100 and � 1.e100.

3.9 GainPad

Synopsis: GainPad provides a linear gain.

GainPad copies its input to its output after applying a liner scale factor

(Scale) to each input sample element. It will convert real to complex data

by adding a 0 imaginary part to each sample. Set ElementSize to 1 for this

purpose. Otherwise ElementSize is the number of values or elements in each

sample.

The parameters for GainPad are:

� Scale: ratio of input amplitude to output amplitude.

Scale speci�es the ratio of input amplitude to output amplitude. Inte-

ger over
ows are prevented by clipping. The �rst time clipping occurs a

help message is generated. A new help message is generated after every

400 clippings.

Scale is of type double. This parameter can be changed interactively.

The default value is 1.0. Scale must be � -1.e100 and � 1.e100.

� ElementSize: number of multiplexed elements.

ElementSize speci�es the sample size. The most common use of

ElementSize is to set it to two for a complex data stream or 1 for

real data. Set it to 0 to convert real to complex data by padding the

imaginary part with 0.

This is the �rst default parameter. ElementSize is of type int16. The

default value is 1. ElementSize must be � 0 and � 32767.

20 3. DSP PROCESSING NODES

� NullOutputSample: all samples beyond NullOutputSample will be 0.

If NullOutputSample is non zero then all samples after NullOutputSample

will be zero. If NullOutputSample is 0 then the input is written to the

output continuously.

This is the �rst default parameter. NullOutputSample is of type

int32. The default value is 0. NullOutputSample must be � 0 and

� 2147483647.

3.10 Integrate

Synopsis: Integrate sums consecutive input vector.

Integrate sums IntegrationSize consecutive samples and outputs this

sum for every OutputStep input samples. In e�ect it is a Fir �lter with

all the coe�cients equal to 1. If IntegrationSize is 0 then the sum is

continuous and the output is normalized by the number of samples. The

summation is done in double
oating point. The output is scaled by Scale

before being converted to `MachWord'.

The parameters for Integrate are:

� IntegrationSize: Number of samples to sum.

IntegrationSize is the number of samples to sum.

IntegrationSize is of type int32. The default value is 1. IntegrationSize

must be � 0 and � 2147483647.

� OutputStep: number of input samples for one output.

An output is generated for every OutputStep inputs. The number of

bu�ers that must be maintained is IntegrationSize / OutputStep.

This is the �rst default parameter. OutputStep is of type int32. The

default value is 1. OutputStep must be � 1 and � 2147483647.

� Scale: output is scaled by this factor.

3.11 Interpolate 21

Scale multiplies each output sample. The intermediate arithmetic is

done in double
oating point point. Scale is applied to the �nal output

point before it is converted to MachWord.

This is the �rst default parameter. Scale is of type double. This

parameter can be changed interactively. The default value is 1.0. Scale

must be � -1.e100 and � 1.e100.

3.11 Interpolate

Synopsis: sample rate conversion with linear interpolation.

Interpolate does linear interpolation and sample rate conversion. Each

element in a sample is interpolated independently, i. e. for a complex data

stream the real and imaginary parts are interpolated independently. For

every DeltaIn input samples DeltaOut output samples are written. Output

samples that fall between input samples are computed by linear interpolation

between the two nearest neighbors.

The parameters for Interpolate are:

� DeltaIn: input samples for each DeltaOut outputs.

DeltaIn is the number of input samples for DeltaOut output samples.

DeltaIn is of type int16. The default value is 1. DeltaIn must be �

1 and � 32767.

� DeltaOut: output samples for each DeltaIn inputs.

DeltaOut is the number of output samples generated from DeltaIn

input samples.

DeltaOut is of type int16. The default value is 1. DeltaOut must be

� 1 and � 32767.

3.12 MaskWord

Synopsis: applies a mask to a binary data stream.

22 3. DSP PROCESSING NODES

MaskWord copies its input to its output after applying a the mask Mask to

each sample.

The parameter for MaskWord is:

� Mask: mask to be be applied to binary data stream.

Mask will be applied to each input sample to create an output sample.

Mask is of type int32. The default value is 0. Mask must be � -

2147483647 and � 2147483647.

3.13 Mux

Synopsis: Multiplexes Channels inputs into 1 output channel.

Mux takes Channels input channels and multiplexes these onto a single output

channel. Each input channel must have samples consisting of InputSampleSize

words. For example, complex data streams will generally have two words in

each sample. The output channel will have samples of OutputSampleSize

words.

The parameters for Mux are:

� Channels: number of input channels.

Mux combines Channels input channels into a single output channel.

Channels is of type int16. The default value is 2. Channels must be

� 2 and � 32767.

� InputSampleSize: number of consecutive words in one sample.

For each input channel it is assumed that a single sample is made up of

InputSampleSize words.

InputSampleSize is of type int32. The default value is 1. InputSampleSize

must be � 1 and � 2147483647.

� OutputSampleSize: number of consecutive words in input one sample.

3.14 PackWord 23

The number of words in an output channel sample is OutputSampleSize

.

OutputSampleSize is of type int32. The default value is 2. OutputSampleSize

must be � 1 and � 2147483647.

� MinimumChunk: minimumnumber out input samples to process at once.

MinimumChunk can be set to a minimum number of input samples to

be processed. This allows for greater e�ciency but limits the degree to

which data can be
ushed.

This is the �rst default parameter. MinimumChunk is of type int16. The

default value is 1. MinimumChunkmust be � 1 and � 32767.

3.14 PackWord

Synopsis: packs multiple input words to a single output word.

PackWordpacks the least signi�cant InputWordSize bits of InputsPerOutput

consecutive input words to a single output word. The �rst input word is

placed in the least signi�cant output bits. The physical word size must be at

least as large as InputWordSize � InputsPerOutput. If it is not an error is

generated and the node will not be usable. The inverse of this operation is

UnpackWord. RepackStream is a a more general but less e�cient operation

that is its own inverse.

The parameters for PackWord are:

� InputWordSize: size in bits to pack from each input.

InputWordSize is the number of bits in each input word to pack into

the output word.

InputWordSize is of type int16. The default value is 8. InputWordSize

must be � 1 and � 16.

� InputsPerOutput: number or input words to pack into one output.

24 3. DSP PROCESSING NODES

InputsPerOutput is the number of input words combined to form a

single output word.

InputsPerOutput is of type int16. The default value is 2. InputsPerOutput

must be � 2 and � 32.

3.15 Power

Synopsis: Power computes and scales the power in each sample.

Power computes the sum of the squares of each input sample element. Be-

fore summing the power in each channel is multiplied by a linear scale factor

Scale. The most common use is to compute the power of a complex sig-

nal. The linear scaling and the summation can cause an arithmetic over
ow.

Over
ows cannot occur in the squaring operation (with integer arithmetic)

because double precision integer arithmetic is used. Floating point over-

ows generate an interrupt and end node execution. Integer over
ows are

prevented by clipping. The �rst time clipping occurs a help message is gen-

erated. A new help message is generated after every 400 clippings.

The parameters for Power are:

� Amplitude:
ag select amplitude(1) or power(0).

If Amplitude is set to 1, the output will be the square root of the power

and not the power.

Amplitude is of type int16. The default value is 0. Amplitude must

be � 0 and � 1.

� Scale: scale factor applied before summing powers.

Scale is a linear scale factor applied before summing the squared el-

ements in a sample. For integer arithmetic, Scale should be set to

prevent over
ows. Note the squaring operation (in the integer arith-

metic model) is done in double precision integer arithmetic. Thus if one

is taking the amplitude as the �nal output (Amplitude =1), over
ows

can only occur from the summation step. If integer over
ows do oc-

cur the output signal is clipped. The �rst time clipping occurs, a help

3.16 RealFir 25

message is generated. A new help message is generated after every 400

clippings.

This is the �rst default parameter. Scale is of type double. This

parameter can be changed interactively. The default value is 1.0. Scale

must be � -1.e100 and � 1.e100.

3.16 RealFir

Synopsis: RealFir is a real symmetric (even or odd) �r �lter.

RealFir implements a symmetric FIR �lter. Input samples can have ZeroPad

0's interpolated between them. Output sample can be generated for every

Resample input (or zero pad) sample. The Coeff array contains half of the

symmetric coe�cients. Odd indicates if there are an even(0) or odd(1) total

number of coe�cients.

The parameters for RealFir are:

� Resample: �lter resampling factor (input rate/output rate).

Resample speci�es the �lter resampling factor. This is the ratio of the

input sampling rate to the output sampling rate.

Resample is of type int16. The default value is 1. Resample must be

� 1 and � 32767.

� ZeroPad: zero padding of input.

ZeroPad speci�es the number of 0's that are added after each input

sample.

This is the �rst default parameter. ZeroPad is of type int16. The

default value is 0. ZeroPad must be � 0 and � 32767.

� Odd: if set the �lter length is odd.

Odd determines if the �lter is if odd (Odd =1) or even (Odd=0).

This is the �rst default parameter. Odd is of type int16. The default

value is 0. Odd must be � 0 and � 1.

26 3. DSP PROCESSING NODES

� Coeff: list of unique coe�cients.

Coeff is the list of �lter coe�cients. The �lter is symmetric and only

half (or half plus one for odd length �lters) are speci�ed. The �rst in the

list is the �rst coe�cient of the �lter. The middle coe�cient is at the end

of the list. The default values for the coe�cients de�ne a low pass FIR

�lter with a pass band of .125 times the total bandwidth and transition

band of .375 times the bandwidth. The pass band is extremely
at

and the stop band is down over 100 db. This is an overdesigned �lter

for most practical applications but it provides a good test case. The

performance will be degraded by 16 bit integer arithmetic.

This is the �rst default parameter. Coeff is of type MachWord �. Coeff

is an array of size � 3 and � 1024. The following table contains the

default array values.

1.00018552e-04 3.70747893e-04 4.46594395e-04 -5.36969535e-04

-2.67492760e-03 -3.52687595e-03 8.25715193e-04 1.01494638e-02

1.50874056e-02 2.48008436e-03 -2.76876913e-02 -4.93498540e-02

-2.20594765e-02 7.30790837e-02 2.04010323e-01 2.99286359e-01

3.17 RepackStream

Synopsis: repack bit streams to di�erent physical word sizes.

RepackStream repacks a bit stream from an input physical word size,

InputWordSize to an output physical word size, OutputWordSize. If

SignedOutput is set the output will be written as a signed two's compli-

ment value in the full physical word size. Both input and output are treated

as continuous bit streams made up of physical words of the speci�ed number

of bits. The least signi�cant physical bits occur logically �rst in the contin-

uous stream. Logical words can cross physical word boundaries on both the

input and output streams. One can use this to repack bit streams containing

logical words of any length to a di�erent physical word size. One can also

use it to unpack a continuous stream of bits of any logical word size (up to

32 bits) to a stream of one physical output word for each each logical input

word. Similarly on can pack a stream of physical words into a continuous

bit stream, By setting OutputWordSize to the logical word size in the con-

3.18 SampleDelay 27

tinuous input bit stream you unpack that stream placing one logical input

word in each physical output word. By setting InputWordSize to the input

logical word size you pack an input stream that has one logical word in each

physical word into a continuous output bit stream. Neither InputWordSize

and OutputWordSize can be greater then the physical word size. If either

is the node will not be usable. If InputWordSize is an exact multiple of

OutputWordSize (or vice versa) UnpackWord (PackWord) is a more e�cient

process that does the same operation.

The parameters for RepackStream are:

� OutputWordSize: size in bits of output word.

OutputWordSize is the number of bits in each output word. The output

is treated as a continuous stream of bits made up of the least signi�cant

OutputWordSize bits from each physical output word.

OutputWordSize is of type int16. The default value is 8. OutputWordSize

must be � 1 and � 32.

� InputWordSize: size in bits of input word.

InputWordSize is the number of bits in the input word. The input is

treated as a continuous stream of bits made up of the least signi�cant

OutputWordSize bits from each physical output word.

InputWordSize is of type int16. The default value is 1. InputWordSize

must be � 1 and � 32.

� SignedOutput: option(1) to treat output as signed two's compliment

value.

If SignedOutput is set the output will be written as a signed two's

compliment value in the full physical word size.

SignedOutput is of type int16. The default value is 0. SignedOutput

must be � 0 and � 1.

3.18 SampleDelay

Synopsis: delays the output by a selected number of samples.

28 3. DSP PROCESSING NODES

SampleDelay initially copies Delta samples (with all components set equal

to FillValue) to its output. After that it simply copies its input to its

output. This results in a delay if Delta samples.

The parameters for SampleDelay are:

� Delta: signal delay in samples.

Delta speci�es the number of samples the output signal will be delayed

relative to the input.

Delta is of type int32. The default value is 1. Delta must be � 0 and

� 2147483647.

� FillValue: value to output before input data is copied.

FillValue is the value to be output for each sample component for the

�rst Delta samples.

This is the �rst default parameter. FillValue is of type MachWord. The

default value is 0. FillValuemust be � DEF MACH WORD MIN and

� DEF MACH WORD MAX.

3.19 ToInteger

Synopsis: converts MachWord data stream to integer.

ToInteger converts a MachWord data stream to integer format. The inverse

operation can be done with node `ToMachWord'. This class is not available

with the 16 bit arithmetic version of ObjectProDSP. Saturated output is

produced on over
ow. Over
ows are not reported.

This node has no parameters.

3.20 ToMach

Synopsis: converts binary data stream to MachWord.

3.21 Truncate 29

ToMach converts a binary data stream to type MachWord. If SignedConversion

is set the input will be treated as two's compliment signed values. Other-

wise it will be treated as unsigned. The inverse operation is ToInteger.

ToInteger and ToMach are meaningless and not available on the 16 bit inte-

ger simulator.

The parameter for ToMach is:

� SignedConversion: conversion of unsigned(0) or signed(1) integer in-

put to MachWord.

If SignedConversion is set the input integer will treated as a two's

compliment signed value. Otherwise it will be considered unsigned.

SignedConversion is of type int16. The default value is 0. SignedConversion

must be � 0 and � 1.

3.21 Truncate

Synopsis: Limit the dynamic range and signi�cant bits in a stream.

Truncate converts the MachWord input data to a 32 bit integer (after check-

ing for over
ow). On the
oating point simulator the input can also be 32

bit integers. The dynamic range is then restricted to Range. The number

of signi�cant bits is restricted to Accuracy. Neither Range nor Accuracy

include the sign bit. Although integers are represented is twos compliment

format truncation can be thought of as working on signed magnitude data.

Over
ow will saturate if OverflowMode is 0 and cause the high order bits to

be ignored if OverflowMode is 1. The output is converted back to MachWord

format.

The parameters for Truncate are:

� Range: Bits for dynamic range.

Range is the number of bits in the dynamic range of the output (not

counting the sign bit).

30 3. DSP PROCESSING NODES

Range is of type int16. This parameter can be changed interactively.

The default value is 31. Range must be � 1 and � 31.

� Accuracy: Signi�cant bits retained in output.

Accuracy is the number of signi�cant bits retained in the output (not

counting the sign bit). Accuracy will always be <= Range. If you

specify more accuracy then range accuracy will equal range.

Accuracy is of type int16. This parameter can be changed interactively.

The default value is 31. Accuracy must be � 1 and � 31.

� OverflowMode: For over
ows: 0 - saturate, 1 - truncate.

OverflowMode selects saturation (0) or truncation (1) mode. In satu-

ration mode an over
ow is replaced by the largest positive or negative

number representable depending on the sign of the input value. In Trun-

cation mode the high order bits are truncated as if the number was in

sign magnitude form.

OverflowMode is of type int16. This parameter can be changed inter-

actively. The default value is 0. OverflowMode must be � 0 and �

1.

� Round: Flag indicates rounding (1) or truncation (0).

Round if set rounds the result. Otherwise it is truncated. Truncation is

always towards 0 and not two's compliment truncation.

Round is of type int16. This parameter can be changed interactively.

The default value is 0. Round must be � 0 and � 1.

3.22 UnpackWord

Synopsis: unpack a single input word to multiple output words.

UnpackWord unpacks each input word to OutputsPerInput output words

each containing OutputWordSize bits. If SignedOutput is set the output will

be written as a signed two's compliment value in the full physical word size.

The least signi�cant bits of each input word are written �rst. The physical

word size must be at least as large as OutputWordSize � OutputsPerInput

31

. If not an error will be generated and the node will be unusable. The

inverse of this operation is PackWord. RepackStream is a more general but

less e�cient operation that is its own inverse.

The parameters for UnpackWord are:

� OutputWordSize: size in bits of output word.

OutputWordSize is the number of bits in the output word.

OutputWordSize is of type int16. The default value is 8. OutputWordSize

must be � 1 and � 16.

� OutputsPerInput: number or words to unpack from each input.

OutputsPerInput is the number of output words unpacked from each

input word.

This is the �rst default parameter. OutputsPerInput is of type int16.

The default value is 2. OutputsPerInput must be � 2 and � 32.

� SignedOutput: option(1) to treat output as signed two's compliment

value.

If SignedOutput is set the output will be written as a signed two's

compliment value in the full physical word size.

This is the �rst default parameter. SignedOutput is of type int16. The

default value is 0. SignedOutputmust be � 0 and � 1.

4 Input and signal generation nodes

The nodes in this secion have no input channels. They are either signal

generators or they read data from a disk �le or other source external to

ObjectProDSP.

4.1 ConstantData

Synopsis: generate a `MachWord' constant.

32 4. INPUT AND SIGNAL GENERATION NODES

ConstantData writes parameter Value to the output stream repeatedly. It

is written as a binary integer constant.

The parameter for ConstantData is:

� Value: constant output level.

Value is output as an an `MachWord' constant.

Value is of type int32. This parameter can be changed interactively.

The default value is 1024. Value must be � -2147483647 and �

2147483647.

4.2 Cos

Synopsis: Generates the real function Amplitude cos(Phase+N Frequency).

Cos generates the sampled real function: Amplitude cos(Phase+N Frequency).

N is the sample index that starts with N = 0.

The parameters for Cos are:

� Frequency: frequency (in radians per sample).

Frequency speci�es the signal frequency in radians per sample. In other

words the phase of a given sample is Frequency radians plus the phase

of the previous sample.

Frequency is of type double. This parameter can be changed inter-

actively. The default value is 0.125663706144. Frequency must be �

-3.1416 and � 3.1416.

� Phase: phase (in radians) of �rst sample.

Phase speci�es the initial phase of the �rst sample of the signal.

This is the �rst default parameter. Phase is of type double. This

parameter can be changed interactively. The default value is 0.0. Phase

must be � -6.2832 and � 6.2832.

4.3 CxCos 33

� Amplitude: absolute maximumamplitude of the continuous cosine func-

tion.

Amplitude speci�es the maximum amplitude of the continuous cosine

function. This may not be the maximum amplitude of the samples

generated. If the function is sampled at a phase that is an integer

multiple of Pi, then the samples will obtain this maximum.

This is the �rst default parameter. Amplitude is of type double. This

parameter can be changed interactively. The default value is 1024.

Amplitude must be � -1.e100 and � 1.e100.

4.3 CxCos

Synopsis: Generates the function Amplitude e^(2 Pi i(Phase+N Frequency)).

CxCos generates the sampled complex function: Amplitude e^(2 Pi i(Phase

+ N Frequency)). N is the sample index. It starts at 0.

The parameters for CxCos are:

� Frequency: frequency (in radians per sample).

Frequency speci�es the signal frequency in radians per sample. In other

words the phase of a given sample is Frequency radians plus the phase

of the previous sample.

Frequency is of type double. This parameter can be changed inter-

actively. The default value is 0.125663706144. Frequency must be �

-3.1416 and � 3.1416.

� Phase: phase (in radians) of �rst sample.

Phase speci�es the initial phase of the �rst sample of the signal.

This is the �rst default parameter. Phase is of type double. This

parameter can be changed interactively. The default value is 0.0. Phase

must be � -6.2832 and � 6.2832.

� Amplitude: absolute maximumamplitude of the continuous cosine func-

tion.

34 4. INPUT AND SIGNAL GENERATION NODES

Amplitude speci�es the maximum amplitude of the continuous cosine

function. This may not be the maximum amplitude of the samples

generated. If the function is sampled at a phase that is an integer

multiple of Pi, then the samples will obtain this maximum.

This is the �rst default parameter. Amplitude is of type double. This

parameter can be changed interactively. The default value is 1024.

Amplitude must be � -1.e100 and � 1.e100.

4.4 CxImp

Synopsis: Generates a periodic impulse or square wave.

CxImp generates a periodic impulse or square every Period samples. The

impulse amplitude is Amplitude e^(2 Pi i Phase). The �rst transition for 0

to this amplitude occurs at sample Transition. The nonzero amplitude is

maintained for Width � Period samples where Width is between 0 and 1. If

Width = 1.0 then the signal is a constant after the �rst transition.

The parameters for CxImp are:

� Period: the impulse is repeated after period samples.

Period speci�es the number of samples before the impulse is repeated.

Period is of type int32. The default value is 32. Period must be � 2

and � 2147483647.

� Phase: phase (in radians) of �rst sample.

Phase the relative amplitude of the real and imaginary components of

the signal. With Phase = 0 all the energy is in the real part. With

Phase = pi/2 all the energy is in the imaginary part.

This is the �rst default parameter. Phase is of type double. The default

value is 0.0. Phase must be � -6.2832 and � 6.2832.

� Amplitude: magnitude of impulse amplitude.

4.5 ImportData 35

Amplitude speci�es the the magnitude of the impulse amplitude. It is

the square root of the sum of the squares of the real and imaginary

amplitudes.

This is the �rst default parameter. Amplitude is of type double. The

default value is 1024. Amplitude must be � -1.e100 and � 1.e100.

� Width: peak width as a fraction of sample period (0=>impulse).

Width speci�es the peak width as a fraction of sample period. Width =

0 produces an impulse one sample wide. Width= 1 results in a constant

amplitude and phase signal. Width = .5 results in a standard square

wave.

This is the �rst default parameter. Width is of type double. The default

value is .5. Width must be � 0.0 and � 1.0.

� Transition: sample index where the �rst transition occurs.

Transition speci�es the sample index where the �rst signal transition

from 0 occurs. This may be longer than the sample Period .

This is the �rst default parameter. Transition is of type int32. The

default value is 0. Transition must be � 0 and � 2147483647.

4.5 ImportData

Synopsis: ImportData reads an ascii input �le.

ImportData reads ascii data in a variety of formats. Selected columns can

be be ignored. Each line is broken into �elds. A �eld is a string that has a

numeric value. These �elds are separated by any characters that do not have

an embedded numeric value. Selected �elds can be ignored.

The parameters for ImportData are:

� FileName: name of ascii �le to read.

FileName speci�es the name of the disk �le to be read. If no �le name is

speci�ed (default 0) you will be prompted for a �le name when execution

starts.

36 4. INPUT AND SIGNAL GENERATION NODES

FileName is of type const char *. The default value is 0.

� Format: `C' format to read data values.

Format speci�es the format to use in reading data. Any standard `C'

input format can be used. The default, `%d' for integer decimal data,

for octal data. If the format string ends in `X' or `x' integer data is

written to the output stream on a
oating point simulator. If the last

character is an `s' and the format is a
oating point format the data

will be normalized on the 16 bit integer simulator, i. e. .5 will be

converted to 16384 or half of full scale. If the last two characters of

the format string are an underscore () and any other character they

will be deleted from the format. You can use this to control the type

of output or scaling independent of the format for reading data. The

type of format is determined by looking for the �rst occurrence of `%'

ad then the �rst occurrence of one the letters `x', `d', `o' ,`f' or `e' after

that. Floating point format characters must be preceded by a `l' and

others must not. The letter can be in either upper or lower case. If

the format is not recognized and error will be generated. `x' and `o'

formats will read data as unsigned 32 bit integers. `d' will it as signed

32 bit integers. `e' and 'f' will read it as a double
oating point value.

Over
ows will be reported as warnings.

This is the �rst default parameter. Format is of type const char *.

The default value is \%d". Format must be legal in this context.

� Fields: number of data �elds on each line.

Fields speci�es the number of data �elds on each line. If set to 0 then

all data �elds that are found on a line will be read (up to a maximum

line width of 1024 characters.) A data �eld is any contiguous string of

legal digits separated by white space (blank, tab, the beginning of a line

or the end of a line) from other data �elds or other information on the

line. Decimal and octal �elds can start with a `+' or `-'. Hexadecimal

�elds may start with an optional `0x' or `0X' provided the Format string

is `%x' or `%X'. The value Fields is an upper limit on the �elds on a

line. There may be fewer �elds on a line and even lines with no valid

numeric �elds.

This is the �rst default parameter. Fields is of type int16. The default

value is 1. Fields must be � 0 and � 1024.

ImportData 37

� RepeatFlag:
ag to read the �le repeatedly.

Setting RepeatFlag causes the �le to be read at the beginning once the

end of �le is encountered. If the �le is short it will only be read once

and the data will be retained in memory.

This is the �rst default parameter. RepeatFlag is of type int16. The

default value is 0. RepeatFlag must be � 0 and � 1.

� SkipFields: list of �elds to skip (enter single 0 to skip none).

SkipFields is a list of �elds (in increasing order) to skip. Fields start

at 1. If all values are 0 no �elds are skipped.

This is the �rst default parameter. SkipFields is of type int32 *.

SkipFields is an array of size � 1 and � 1024. The following table

contains the default array values.

0

SkipFields must be legal in this context.

� SkipColumns: list of pairs of columns to skip (enter single 0 to skip

none.

SkipColumns is a list of pairs of column numbers in increasing order.

All data in columns starting at the �rst column number in the pair

and ending at the next column number after the second element in the

pair will be ignored. Thus the list f20, 24, 30, 32g would cause the

�ve columns 20 through 24 and the three columns 30 through 32 to

be skipped. If there are an odd number of entries all columns at or

following the last entry will be skipped. Columns start at 1. If only

values of 0 are entered no columns will be skipped.

This is the �rst default parameter. SkipColumns is of type int32 *.

SkipColumns is an array of size � 1 and � 1024. The following table

contains the default array values.

0

SkipColumns must be legal in this context.

38 4. INPUT AND SIGNAL GENERATION NODES

4.6 InputNode

Synopsis: InputNode reads a disk �le written by an OutputNode.

InputNode reads input from disk �le FileName . The number of channels

and the number of multiplexed elements in a sample are read from the header

of the disk �le. Member function DisplayHeader will give the values of all

the information read from the disk �le header.

The parameters for InputNode are:

� FileName: name of disk �le to read.

FileName speci�es the name of the disk �le to be read. If no �le name

is speci�ed (default 0) then the node name will be used.

FileName is of type const char *. The default value is 0.

� Flags:
ags for arithmetic type and other option.

If Flags& 4 is set the sample rate is forced to 1, overwriting the default

values.

This is the �rst default parameter. Flags is of type int16. The default

value is 0. Flags must be � -32767 and � 32767.

� DeltaOut: minimum output chunk size.

DeltaOut is the minimum output size. The node is not scheduled until

space for DeltaOut words is available in the output bu�er. It will only

write multiples of DeltaOut samples.

This is the �rst default parameter. DeltaOut is of type int32. The

default value is 1. DeltaOut must be � 1 and � 65536.

Following are the member functions of this node.

DisplayHeader

Synopsis: display the caption and parameters read from the disk.

4.7 InputWord 39

This function returns type void.

DisplayHeader displays the parameters read from �le FileName. These

include the original node name that generated the �le, the caption for this

node, the number of input channels, and the number of scalar elements in a

sample. The arithmetic type is also shown. The output channels and sample

size for this node are determined by these values. If the data in the �le is in

a di�erent arithmetic format than that currently in use, the �le data will be

converted.

This function has no parameters.

IgnoreHeaderCount

Synopsis: ignore the word counts in the data �le header.

This function returns type void.

The data �le header contains a count of the number of machine words in

each channel. This count is written at the time the node creating the �le is

deleted. If ObjectProDSPexits abnormally then these counts may never be

set and one will not be able to read any of the data in the �le. This option

causes these counts to be ignored. The result is that data will be read until

the physical end of �le. This may result in samples of all 0 being read at the

end of the �le that were never written to it.

This function has no parameters.

4.7 InputWord

Synopsis: InputWord reads words in a selected format from a binary �le.

InputWord reads words from a binary input �le. It is intended for import-

ing data to other processes. OutputWord writes �les that can be read by

InputWord . However OutputNode and InputNode are better for preserving

40 4. INPUT AND SIGNAL GENERATION NODES

data for later use in ObjecProDSP because these retain sample rate, timing,

block size and sample size information. You can manually specify the sam-

ple and block size of the data in the �le with parameters ElementSize and

BlockSize. Each output word is read in a format determined by FormatIn.

The options are: MachWord (0), int8(1), int16(2), int32(3), float(4),

double (5). Integer words are assumed in two's compliment format. You

can skip a header or initial segment of a �le by setting InitialSkip to the

number bytes to skip. IntegerOut is nonzero the output stream is written

as IntegerMachWord, otherwise it is written as MachWord. Integer output

values (IntegerMachWord) are treated as signed. If over
ow occurs the data

is hard limited and a warning is given. The output stream can have any value

for sample size, (ElementSize) or BlockSize but these are not preserved in

the output �le as they are with InputNode.

The parameters for InputWord are:

� FileName: binary input �le to read.

FileName is the binary input �le to read. If no default(0) is given the

node name will be used.

FileName is of type const char *. The default value is 0.

� FormatIn: format: MachWord(0), int8(1), int16(2), int32(3), float(4),

double(5).

FormatIn is the binary input format. The options are: MachWord(0),

int8(1), int16(2), int32(3), float (4), double(5). Integer words are

written in two's compliment format. Integer input values (IntegerMachWord)

are treated as signed. If over
ow occurs the data is hard limited and a

warning is given. The input stream can have any value for sample size,

(ElementSize)

This is the �rst default parameter. FormatIn is of type int16. The

default value is 0. FormatIn must be � 0 and � 5.

� IntegerOut: output format MachWord(0) or IntegerMachWord(1).

If IntegerOut is nonzero the output stream is written as IntegerMachWord.

Otherwise it is written as MachWord. If over
ow occurs the data is hard

limited and a warning is given.

4.8 Normal 41

This is the �rst default parameter. IntegerOut is of type int16. The

default value is 0. IntegerOut must be � 0 and � 1.

� InitialSkip: bytes to skip at start of �le.

The �rst InitialSkip bytes of the �le are ignored.

This is the �rst default parameter. InitialSkip is of type int32. The

default value is 0. InitialSkip must be � 0 and � 2147483647.

� ElementSize: number of words per sample.

ElementSize is the number of words per sample in the input �le.

This is the �rst default parameter. ElementSize is of type int16. The

default value is 1. ElementSize must be � 1 and � 32767.

� BlockSize: number of samples per block.

BlockSize is the number of samples per block in the input �le.

This is the �rst default parameter. BlockSize is of type int32. The

default value is 1. BlockSize must be � 1 and � 2147483647.

4.8 Normal

Synopsis: Generate normally distributed noise samples.

Normal generates noise samples from a normal distribution. Let Z be sam-

ples from the standard normal distribution. This process generates sam-

ples as Mean + Sigma � Z. A vector of ElementSize samples is generated.

ElementSize is ordinarily set to 1 for real data and 2 for complex data.

Seed determines the sequence generated. Each object instance maintains it

a separate state for the random number generator.

The parameters for Normal are:

� Sigma: standard deviation of normally distributed data.

Sigma speci�es the standard deviation of the normally distributed sam-

ples created by this generator. Sigma is a scale factor for values gener-

ated in the standard normal distribution.

42 4. INPUT AND SIGNAL GENERATION NODES

Sigma is of type double. This parameter can be changed interactively.

The default value is 1024.0. Sigma must be � 0.0 and � 1.e100.

� Mean: mean of normally distributed data.

Mean speci�es the mean of the normally distributed samples created by

this generator. Mean is an o�set for the values generated in the standard

normal distribution.

This is the �rst default parameter. Mean is of type double. This param-

eter can be changed interactively. The default value is 0.0. Mean must

be � -1.e100 and � 1.e100.

� ElementSize: number of words in one sample.

ElementSize speci�es the number of words in a single sample. It is

most commonly 1 for real data or 2 for complex data.

This is the �rst default parameter. ElementSize is of type int16. The

default value is 1. ElementSizemust be � 1 and � 32767.

� Seed: random number generator seed.

Seed seeds the random number generator. Each object instance main-

tains a separate history state for the random number generator. If the

same value of Seed is used in di�erent object instances they will generate

the same sequence.

This is the �rst default parameter. Seed is of type int32. The default

value is 1. Seed must be � 0 and � 2147483647.

4.9 Ramp

Synopsis: generates a linear ramp function.

Ramp generates a linear ramp function with the initial value of Min, and

increment between samples of Increment and upper bound on the output

of Max. At the point where the next output would exceed Max it is reset to

Min.

The parameters for Ramp are:

4.10 ReadFloat 43

� Min: minimum value of ramp sample.

Min is the minimum and initial value of the ramp function.

Min is of type int32. This parameter can be changed interactively. The

default value is 0. Min must be � -2147483647 and � 2147483647.

� Max: maximum value of ramp sample.

Max is an upper bound on the ramp function. Before exceeding Max a

sample will be reset to Min.

Max is of type int32. This parameter can be changed interactively. The

default value is 0. Max must be � -2147483647 and � 2147483647.

� Increment: increment between samples.

Increment is the amount added to the previous sample to generate the

next sample.

Increment is of type int32. This parameter can be changed inter-

actively. The default value is 1. Increment must be � 1 and �

2147483647.

4.10 ReadFloat

Synopsis: ReadFloat reads an ascii
oat input �le.

ReadFloat reads a �le of
oating point ascii formatted values and writes

them to a data stream of type `MachWord'. You can have as many values

as you want on each line but there can only be white space as de�ned in the

C++ input stream functions between numbers.

The parameter for ReadFloat is:

� FileName: ascii �le to read.

FileName speci�es the disk �le to be read. If no name is speci�ed the

node name will be used.

FileName is of type const char *. The default value is 0.

44 4. INPUT AND SIGNAL GENERATION NODES

4.11 ReadInt

Synopsis: ReadInt reads an ascii integer input �le.

ReadInt read a �le containing ascii formatted integers and writes the values

to a MachWord data stream. If Flags&2 is set on a 32 bit simulator 32 bit

integer values will be written. You can have as many values is you want on

each line but there can only be white space as de�ned in the C++ input

stream functions between numbers. ImportData can process more complex

input �les. If Flags&1 is set a hexadecimal input will be read as unsigned

integers and converted as needed.

The parameters for ReadInt are:

� FileName: ascii �le to read.

FileName speci�es the the disk �le to be read. If no name is speci�ed

the node name will be used.

FileName is of type const char *. The default value is 0.

� Flags:
ag for hex format input (1) and signed integer output (2).

Flags&1 speci�es hex format �le with optional 0x or 0X pre�x for each

value. Flags&2 will write 32 bit integer data on a
oating point simu-

lator. Decimal format �les are read as signed integers and hexadecimal

format as unsigned.

This is the �rst default parameter. Flags is of type int16. The default

value is 0. Flags must be � 0 and � 3.

4.12 UniformNoise

Synopsis: Generate uniformly distributed noise samples.

UniformNoise generates noise samples of ElementSize elements from a uni-

form distribution. Set ElementSize to 1 for real data or 2 for complex. The

values generated range between Minimum and Maximum. Seed determines the

4.13 VoiceNode 45

sequence generated. Each object instance maintains it a separate state for

the random number generator.

The parameters for UniformNoise are:

� Maximum: largest value of uniformly distributed noise.

Maximum is the largest value of uniformly distributed noise.

Maximum is of type double. This parameter can be changed interactively.

The default value is 1024.0. Maximum must be � -1.e100 and � 1.e100.

� Minimum: smallest value of uniformly distributed noise.

Minimum is the smallest value of uniformly distributed noise. Most com-

monly Minimum = - Maximum.

Minimum is of type double. This parameter can be changed interactively.

The default value is -1024.0. Minimum must be � -1.e100 and � 1.e100.

� ElementSize: number of words in one sample.

ElementSize speci�es the number of words in a single sample. It is

most commonly 1 for real data or 2 for complex data.

This is the �rst default parameter. ElementSize is of type int16. The

default value is 1. ElementSize must be � 1 and � 32767.

� Seed: random number generator seed.

Seed seeds the random number generator. Each object instance main-

tains a separate history state for the random number generator. If the

same value of Seed is used in di�erent object instances they will generate

the same.

This is the �rst default parameter. Seed is of type int32. The default

value is 1. Seed must be � 0 and � 2147483647.

4.13 VoiceNode

Synopsis: VoiceNode reads `Creative Voice' format �les.

46 4. INPUT AND SIGNAL GENERATION NODES

VoiceNode reads `Creative Voice' format �les. Only �les containing uncom-

pressed sampled data are supported. This format has one sample per each

byte in o�set format, i. e. 128 is subtracted from each unsigned byte to

create a signed sample. In the 16 bit integer simulator you will probably

need to rescale the data (most likely by dividing by 128) before writing it

in this format. Member function DisplayHeader displays the �le header. If

NoHeader is set then no header is read. Node VoiceStripOut writes �les in

this format.

The parameters for VoiceNode are:

� FileName: input �le in `Creative Voice' �le format.

FileNamemust be the name of an existing �le in the Creative Voice File

Format. Only uncompressed �les of block type 1 (New Voice Block) are

supported.

FileName is of type const char *. The default value is 0.

� NoHeader: �le does(0) or does not(1) contain a header.

NoHeader if set to 1 indicates the �le does not contain a header.

VoiceStripOutwrites �les in Creative Voice format �les with no header.

NoHeader is of type int16. The default value is 0. NoHeader must be

� 0 and � 1.

Following is the member function of this node.

DisplayHeader

Synopsis: display �le header.

This function returns type void.

DisplayHeader displays the information in the �le header.

This function has no parameters.

47

5 Output and data display nodes

The nodes in this section have no output channels. They either display

output, write it to a disk �le or write to some other external device.

5.1 AsciiFile

Synopsis: AsciiFile writes an ascii �le of data sent to it.

AsciiFile writes an ascii �le of the data sent to it. By default the data is

grouped as one sample per line with the words in each sample separated by

a space. If blocks are larger than one sample they are grouped in side curly

brackets `fg'. This formatting information can be removed with the NoGroup

option. The output format is accurate enough to fully represent the internal

data value. Hex uses a hexadecimal format. (Values that do not �t in a 32 bit

integer are hard limited and generate a warning with Hex format.) describes

the data format and the data source. It can be omitted using the NoHeader

option.

The parameters for AsciiFile are:

� FileName: output �le name (defaults to node name).

FileName speci�es the output ascii �le name head of the listing. If no

caption is speci�ed (default 0) then the node name will be used.

FileName is of type const char *. The default value is 0.

� Hex: option to output data in hex format.

Hex, when set, writes output in hexadecimal format. If the value will

not �t in a 32 bit integer it is hard limited and a warning is generated.

This is the �rst default parameter. Hex is of type int16. This parameter

can be changed interactively. The default value is 0. Hex must be � 0

and � 1.

� NoGroup: option to not group complex elements on one line.

48 5. OUTPUT AND DATA DISPLAY NODES

NoGroup, if set, writes data one word per line. The default is to write

the words in a sample on a single line (up to 20 words per sample) and

to put brackets `fg' around blocks if the block size is larger then the

sample size. If NoGroup is set then the data is written one per line with

no grouping information.

This is the �rst default parameter. NoGroup is of type int16. The

default value is 0. NoGroup must be � 0 and � 1.

� NoHeader: option to omit data header.

The default is to write a data header that describes the data format,

the time it was created and gives the names of the creating node and

network. If this option is set this header is omitted.

This is the �rst default parameter. NoHeader is of type int16. The

default value is 0. NoHeader must be � 0 and � 1.

5.2 CompareDisk

Synopsis: CompareDisk compares input to a �le written by an OutputNode.

CompareDisk compares the contents of disk �le FileName with data from its

input channels. All discrepancies are reported in a text window. CompareDisk's

primary purpose is for regression testing. The number of channels and the

number of multiplexed elements in a sample are read from the header of the

disk �le. Member function DisplayHeader will give the values of all the

information read from the disk �le header.

The parameters for CompareDisk are:

� FileName: name of disk �le to read.

FileName speci�es the name of the disk �le to be compared with the

data read from the input channels.

FileName is of type const char *. The default value is 0.

� MaxReport: maximum number of errors to report.

Only the �rst MaxReport errors will be reported.

CompareDisk 49

This is the �rst default parameter. MaxReport is of type int32. The

default value is 1000. MaxReport must be � 1 and � 2147483647.

� Tolerance: absolute value of minimum di�erence for an error.

Tolerance is the absolute value of the smallest di�erence that consti-

tutes an error. Ordinarily this value is 0.0. It might be set to a value

larger than 0 to compare slightly di�erent algorithms or results on two

di�erent computers with di�erent arithmetic.

This is the �rst default parameter. Tolerance is of type double. The

default value is 0.0. Tolerance must be � 0.0 and � 1.e100.

� ErrorFile: if set errors will be written to this �le.

ErrorFile is a �le in which errors will be reported instead of displaying

them in a window.

This is the �rst default parameter. ErrorFile is of type const char

*. The default value is 0.

Following are the member functions of this node.

DisplayHeader

Synopsis: display the caption and parameters read from the disk.

This function returns type void.

DisplayHeader displays the parameters read from �le FileName. These

include the original node name that generated the �le, the caption for this

node, the number of input channels, and the number of scalar elements in a

sample. The arithmetic type is also shown. The output channels and sample

size for this node are determined by these values. If the data in the �le is in

a di�erent arithmetic format than that currently in use, the �le data will be

converted.

This function has no parameters.

50 5. OUTPUT AND DATA DISPLAY NODES

IgnoreHeaderCount

Synopsis: ignore the word counts in the data �le header.

This function returns type void.

The data �le header contains a count of the number of machine words in

each channel. This count is written at the time the node creating the �le is

deleted. If ObjectProDSPexits abnormally then these counts may never be

set and one will not be able to read any of the data in the �le. This option

causes these counts to be ignored. The result is that data will be read until

the physical end of �le. This may result in samples of all 0 being read at the

end of the �le that were never written to it.

This function has no parameters.

5.3 EyePlot

Synopsis: EyePlot plots complex signal in eye plot (X versus Y) form.

EyePlot displays a complex signal on a single eye plot or X versus Y format.

The real value of a sample determines the X coordinate and the imaginary

value determines the Y coordinate.

The parameters for EyePlot are:

� SamplesPerPlot: the number of samples in one diaplay.

EyePlot generates a series of plots with SamplesPerPlot in each display.

If the input block size is not 1 then that value is overrides this parameter.

This is the �rst default parameter. SamplesPerPlot is of type double.

The default value is 400. SamplesPerPlot must be � 3. and � 1.e100.

� Caption: plot caption.

The plot caption is a string that will be displayed at the base of the

plot. The default value of 0 causes the plot node name to be used for

the caption.

5.4 HexList 51

This is the �rst default parameter. Caption is of type const char *.

The default value is 0.

5.4 HexList

Synopsis: HexList lists a speci�ed number of channels to a display window.

HexList displays Channels signals on a single list. If you only want to display

a single channel the `HexList' option in `Listing' may be more convenient. In

a
oating point simulator the input to HexList must be an integer format.

You can use `ToInteger' to do the conversion. `BlockSize' and `ElementSize'

are set when the �rst input channel is linked. All subsequent input channels

must have the same values.

The parameters for HexList are:

� Channels: number of input channels.

HexList lists Channels signals of integer data in a hexadecimal format.

Channels is of type int16. The default value is 1. Channels must be

� 1 and � 32.

� Caption: list caption.

Caption speci�es a caption that will appear at the head of the listing.

If no caption is speci�ed (default 0) then the node name will be used.

The caption cannot contain blanks. Use underscore instead.

Caption is of type const char *. The default value is 0.

5.5 Listing

Synopsis: Listing lists a speci�ed number of channels to a display window.

Listing displays its input data streams. The ElementSize words in each

sample are enclosed in parenthesis and separated by commas. Each sample

52 5. OUTPUT AND DATA DISPLAY NODES

is given an index of one to three levels. These are the element within a block,

the block index and the channel index. If the time
ag is set then the time

of each sample is listed. If Hex is set the data is displayed in hexadecimal

format and hard limited if it cannot �t in a 32 bit integer. Caption is a label

the listing window.

The parameters for Listing are:

� Hex: option(1) to output data in hex format.

Hex, when set, displays data in hexadecimal format. If a value will not

�t in a 32 bit integer it is hard limited.

Hex is of type int16. This parameter can be changed interactively. The

default value is 0. Hex must be � 0 and � 1.

� Caption: list caption.

Caption speci�es a caption that will appear at the head of the listing.

If no caption is speci�ed (default 0) then the node name will be used.

The caption cannot contain blanks. Use underscore instead.

Caption is of type const char *. The default value is 0.

5.6 OutputNode

Synopsis: OutputNode writes a speci�ed number of channels to a disk �le.

OutputNode writes Channels of input to disk �le FileName. Each chan-

nel contains `ElementSize' multiplexed elements. The data is blocked in as

FileBlockSize consecutive samples from each channel. An Caption can be

used to provide annotation of the �le contents. If a reset is done after the

output �le is opened the last character of the �le name is changed by adding

1 to it in the character sequence 0-9,A-Z,a-z. Once the last character `z'

is reached the next character is `0'. If the option is set not to overwrite a

�le then the open will fail if a �le with the new name already exists. This

cycling though �le names allows testing of reset in a stand alone program

that may need to process some data and then be reset to process the next

OutputNode 53

input stream. cycle through the sequence 0-9,A-Z,-a-z or numeric that is the

new �le name. If not

The parameters for OutputNode are:

� FileName: name of disk �le to create.

FileName speci�es the name of the disk �le to be created. If no caption

is speci�ed (default 0) then the node name will be used.

FileName is of type const char *. The default value is 0.

� Flags:
ags to overwrite exiting �le and other options.

if bit 1 of Flags is set then an existing �le with the same name is

overwritten without comment. If the overwrite option is not set and a

�le with the same name exists this node will not be initialized properly

in non interactive mode and network execution will fail. In interactive

mode, you will be asked to supply a new name. if bit 8 is set (Flags&8)

is true then the data will be converted from whatever format the input

channel is to 32 bit integer data and written in that format. The data

is hard limited.

This is the �rst default parameter. Flags is of type int16. The default

value is 1. Flags must be � -32767 and � 32767.

� Channels: number of input channels.

OutputNode writes Channels of data to a disk �le.

This is the �rst default parameter. Channels is of type int16. The

default value is 1. Channels must be � 1 and � 32.

� FileBlockSize: number of consecutive samples from one channel.

FileBlockSize determines the number of consecutive samples written

to each channel. Making this larger reduces the number of disk accesses

at the cost of larger memory bu�ers.

This is the �rst default parameter. FileBlockSize is of type int32.

The default value is 128. FileBlockSize must be � 1 and � 16384.

� Caption: descriptive caption.

Caption is a one line description of the contents of the �le. It is displayed

by executing a member function of an input node that reads this �le.

54 5. OUTPUT AND DATA DISPLAY NODES

This is the �rst default parameter. Caption is of type const char *.

The default value is 0.

� DeltaIn: minimum input chunk size.

The node will read chunks of multiples of DeltaIn samples. Note for

complex data there are two words in each sample. The node will not be

executed unless DeltaIn input samples are available.

This is the �rst default parameter. DeltaIn is of type int32. The

default value is 1. DeltaIn must be � 1 and � 16384.

5.7 OutputWord

Synopsis: OutputWord writes words in a selected format to a binary �le.

OutputWordwrites words to a binary �le. It is intended for exporting data to

other processes. OutputNode is better for preserving data for later use in Ob-

jectProDSP because Outputnode retains sample rate, timing, block size and

sample size information. Each input word is written in a format determined

by FormatOut. The options are: MachWord(0), int8(1), int16(2), int32(3),

float (4), double(5). Integer words are written in two's compliment format.

Integer input values (IntegerMachWord) are treated as signed. If over
ow

occurs the data is hard limited and a warning is given. The input stream

can have any value for sample size, (ElementSize) or BlockSize but these

are not preserved in the output �le as they are with OutputNode.

The parameters for OutputWord are:

� FileName: �le to create.

FileName is the �le to be created. If no default(0) is given the node

name will be used.

FileName is of type const char *. The default value is 0.

� FormatOut: format: MachWord(0), int8(1), int16(2), int32(3), float(4),

double(5).

5.8 Plot 55

FormatOut is the binary output format. The options are: MachWord(0),

int8(1), int16(2), int32(3), float (4), double(5). Integer words are

written in two's compliment format. Integer input values (IntegerMachWord)

are treated as signed. If over
ow occurs the data is hard limited and a

warning is given. The input stream can have any value for sample size,

(ElementSize)

FormatOut is of type int16. The default value is 0. FormatOut must

be � 0 and � 5.

5.8 Plot

Synopsis: Plot creates graphs of real, complex and two dimensional data

streams.

Plot displays signals in graphical form. The plot can be captioned by setting

Caption. If Caption is the default (0) a caption is constructed from the plot

node name and the name of its driver node. The data is auto-scaled. You

can display it with a �xed scale and alternate between the default full scale

display and a �xed scale. See the help �le on `change plot detail' accessible

under `Help' in the menu bar in any plot window.

The parameter for Plot is:

� Caption: plot caption.

The Caption is displayed at the base of the plot. The default value of

0 causes the plot node name to be used for the caption. The caption

cannot contain blanks. Use underscore instead.

Caption is of type const char *. The default value is 0.

5.9 VoiceStripOut

Synopsis: VoiceStripOutwrites a Creative Voice format �le with no header.

56 6. BASE CLASS NODES

VoiceStripOut writes its input to disk �le FileName in Creative Voice �le

format but with no header. This format has one sample per each byte in

o�set format, i. e. 128 is added to each input sample. (After this sum any

value < 0 is set to 0 and any value > 255 is set to 255 producing hard limit on

over
ows. In the 16 bit integer simulator you will probably need to rescale

the data (most likely by dividing by 128) before processing it. Input can

be MachWord or IntegerMachWord. (IntegerMachWord values are treated

as signed integers.) Input have any value for BlockSize and sample size

(ElementSize) but these values will not be recorded in the �le as they are

with OutputNode.

The parameter for VoiceStripOut is:

� FileName: �le to create.

FileName is the �le to be created. If no default(0) is given the node

name will be used.

FileName is of type const char *. The default value is 0.

6 Base class nodes

The nodes in this section are base classes for ObjectProDSP processing nodes.

They provide member functions that are available to all nodes in derived

classes. For example, the function to specify a non default output channel

for linking the next node could be de�ned in a base class that includes all

nodes that have output channels. There are three base classes for the three

groups of nodes de�ned in the previous three sections.

6.1 DisplayNodeStr

DisplayNodeStr is a base class for all nodes that have no output channels.

Such nodes either display data or write it to an external device. All member

functions of this base class are shared by such nodes.

DisplayNodeStr 57

Following are the member functions of this node.

Raise

Synopsis: raise any window referencing this node.

This function returns type void.

Raisewill cause a window displaying this network to be raised to the top level

over any overlapping windows. Examples of windows that will be a�ected

are a network display containing this node or a plot window for this node.

This function has no parameters.

DisplayInputTiming

Synopsis: display the timing of the selected input channel.

This function returns type void.

Member function DisplayInputTiming displays the timing of the selects

input channel for this node.

The parameters of this function are:

� Channel: input channel to display timing for.

Parameter Channel selects input channel to display timing for.

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � -32767 and � 32767.

Edit

Synopsis: make this node available for editing in a graphical network.

58 6. BASE CLASS NODES

This function returns type void.

If this node is not linked in an existing network it will be added to the display

of the network currently being edited. If there is no such network one will

be created.

This function has no parameters.

Unlink

Synopsis: unlink this node.

This function returns type void.

Member function Unlink disconnects this node from the DSP network it is

linked in.

This function has no parameters.

LinkIn

Synopsis: select the next input channel to link to.

This function returns type Node&.

The LinkIn member function selects the next input channel to link to. It's

single parameter (Channel) speci�es the channel index. Ordinarily the �rst

unused channel is linked to. This function overrides that default.

The parameters of this function are:

� Channel: input channel to link to.

The Channel determines the next input channel to link to.

Channel is of type int16. The default value is 0. Channel must be �

0 and � 32767.

6.2 ProcessNodeStr 59

NextFreeInput

Synopsis: display next free input link.

This function returns type void.

This function displays the next available input link for this node.

This function has no parameters.

6.2 ProcessNodeStr

This is a base class for all ObjectProDSPprocessing nodes that have both

input and output channels. Thus the member functions in this base class are

common to all such ObjectProDSPnodes.

Following are the member functions of this node.

Raise

Synopsis: raise any window referencing this node.

This function returns type void.

Raise will cause a displayed window referencing this node to raised to the

top level over any overlapping windows. Examples of windows that will be

a�ected are a network display containing this node or a plot window for this

node.

This function has no parameters.

SetSampleRate

Synopsis: set the sample rate for the network.

60 6. BASE CLASS NODES

This function returns type void.

The SetSampleRate member function sets the sample rate for the speci�ed

output channel of this node. In turn the rates for all input and output chan-

nels connected to this node are adjusted with one exception. The adjustment

will � b + c not be made through a node output channel that speci�es a

timing relationship of TimingTypeRandom.

The parameters of this function are:

� Rate: sample rate for node output.

Parameter Rate is the sample rate for node output channel Channel.

Rate is of type double. The default value is 1.0. Rate must be � 1.e-60

and � 1.e60.

� Channel: output channel to set sample rate for.

Parameter Channel determines the the output channel to set the sample

rate for.

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � 0 and � 32767.

DisplayInputTiming

Synopsis: display the timing of the selected input channel.

This function returns type void.

Member function DisplayInputTiming displays the timing of the selected

input channel for this node.

The parameters of this function are:

� Channel: input channel to display timing for.

Parameter Channel selects input channel to display timing for.

ProcessNodeStr 61

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � -32767 and � 32767.

DisplayOutputTiming

Synopsis: display the timing of the selected output channel.

This function returns type void.

Member function DisplayOutputTiming displays the timing of the selected

output channel for this node.

The parameters of this function are:

� Channel: output channel to display timing for.

Parameter Channel selects output channel to display timing for.

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � 0 and � 32767.

Edit

Synopsis: make this node available for editing in a graphical network.

This function returns type void.

If this node is not linked in an existing network it will be added to the display

of the network currently being edited. If there is no such network one will

be created.

This function has no parameters.

Unlink

Synopsis: unlink this node and connected nodes.

62 6. BASE CLASS NODES

This function returns type void.

Member function Unlink disconnects this node from the DSP network it is

linked in. All nodes that are connected as outputs from this node will be

unlinked. This process continues recursively up to the terminal output nodes

of all a�ected threads. Unlinking the �rst node in a single thread network

will unlink every node in the network. If a node has two or more inputs and

only one of these is unlinked the node will remain connected to the network

on the una�ected input channel or channels.

This function has no parameters.

LinkIn

Synopsis: select the next input channel to link to.

This function returns type Node&.

The LinkIn member function selects the next input channel to link to. It's

single parameter (Channel) speci�es the channel index. Ordinarily the �rst

unused channel is linked to. This function overrides that default.

The parameters of this function are:

� Channel: input channel to link to.

Parameter Channel determines the input channel to link to.

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � 0 and � 32767.

NextFreeInput

Synopsis: display next free input link.

This function returns type void.

6.3 SignalStr 63

This function displays the next available input link for this node.

This function has no parameters.

NextFreeOutput

Synopsis: display next free output link.

This function returns type void.

This function displays the next available output link for this node.

This function has no parameters.

6.3 SignalStr

SignalStr is a base class for all signal generation and data input nodes. The

member functions in this class are available in all these nodes.

Following are the member functions of this node.

Raise

Synopsis: raise any window referencing this node.

This function returns type void.

Raisewill cause a window displaying this network to be raised to the top level

over any overlapping windows. Examples of windows that will be a�ected

are a network display containing this node or a plot window for this node.

This function has no parameters.

64 6. BASE CLASS NODES

SetSampleRate

Synopsis: set the sample rate for the network.

This function returns type void.

The SetSampleRate member function sets the sample rate for the speci�ed

output channel of this node. In turn the rates for all input and output

channels connected to this node are adjusted with one exception. The ad-

justment will not be made through a node output channel that speci�es a

timing relationship of TimingTypeRandom.

The parameters of this function are:

� Rate: sample rate for node output.

Parameter Rate is the sample rate for node output channel Channel.

Rate is of type double. The default value is 1.0. Rate must be � 1.e-60

and � 1.e60.

� Channel: output channel to set sample rate for.

Parameter Channel determines the the output channel to set the sample

rate for.

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � 0 and � 32767.

DisplayOutputTiming

Synopsis: display the timing of the selected output channel.

This function returns type void.

Member function DisplayOutputTiming displays the timing of the selected

output channel for this node.

The parameters of this function are:

SignalStr 65

� Channel: output channel to display timing for.

Parameter Channel selects output channel to display timing for.

This is the �rst default parameter. Channel is of type int16. The

default value is 0. Channel must be � -32767 and � 32767.

Edit

Synopsis: make this node available for editing in a graphical network.

This function returns type void.

If this node is not linked in an existing network it will be added to the display

of the network currently being edited. If there is no such network one will

be created.

This function has no parameters.

Unlink

Synopsis: unlink this node and nodes connected to its output .

This function returns type void.

Member function Unlink disconnects this node from the DSP network it is

linked in. All nodes that are connected as outputs from this node will be

unlinked. This process continues recursively up to the terminal output nodes

of all a�ected threads. Unlinking the �rst node in a single thread network

will unlink every node in the network. If a node has two or more inputs and

only one of these is unlinked the node will remain connected to the network

on the una�ected input channel or channels.

This function has no parameters.

66 7. ADDITIONAL OBJECTPRODSP OBJECTS

NextFreeOutput

Synopsis: display next free output link.

This function returns type void.

This function displays the next available output link for this node.

This function has no parameters.

7 Additional ObjectProDSP objects

The objects in this section do not perform DSP processing or data I/O func-

tions. They provide auxillar function such as specifying bu�ering options or

control options.

7.1 CircBufDes

Synopsis: Circular bu�er descriptor.

After a network has been completely described, it is necessary to provide

physical bu�ers for all the connection paths between nodes. This is done by

�rst de�ning a BufferDescriptor. And then using this descriptor in the

network member function AssignBuffers. (If you do not do this manually

it will be done automatically before executing a network using the default

bu�er descriptor.) CircBufDes describes circular bu�ers. There is a sin-

gle parameter for this descriptor. It speci�es the size (Size) of the bu�er.

Other parameters describe the constraints on bu�er size for generating target

processor code.

The parameters for CircBufDes are:

� Size: bu�er size in words.

CircBufDes 67

Size determines the bu�er size for interactive execution. The larger the

bu�er is the more e�ciently the nodes can execute and the greater the

delay that is possible in the network. If the bu�ers are too small the

network may lock up without processing all input data.

Size is of type int32. The default value is 2048. Size must be � 1

and � 2147483647.

� TargetSize: desired bu�er size in target code.

TargetSize is the desired size of the bu�er used in code prepared for

execution on the target processor. An analysis will determine if this size

is adequate and if it is larger than will be of bene�t. The size will be

optimized based on this target size as an approximate goal.

This is the �rst default parameter. TargetSize is of type int32.

This parameter can be changed interactively. The default value is 512.

TargetSize must be � 0 and � 2147483647.

� TargetSizeGoal: target bu�er size goal (0 minimize size, 1 maximize

size).

TargetSizeGoal determines whether the bu�er will be made larger or

smaller then the selected size when the selected size is not optimal. If

TargetSizeGoal is 0 that space will be minimized. If TargetSizeGoal

is 1 then execution overhead will be minimized.

This is the �rst default parameter. TargetSizeGoal is of type int16.

This parameter can be changed interactively. The default value is 0.

TargetSizeGoal must be � 0 and � 1.

� TargetControlGoal: control goal (0 �xed bu�er size, 1 �xed sequence).

TargetControlGoal determines how execution is controlled. If it is 0

then the bu�er size is �xed and the amount of data available in the bu�er

is computed before each execution step. If TargetControlGoal is 1 then

each node is executed according to a �xed predetermined schedule and

the bu�er size is optimized to this schedule. Nodes with feedback or that

require excessively large bu�ers are defaulted to execute without �xed

sequences. Fixed sequence execution provides more e�cient execution

at the expense of larger bu�er requirements.

68 7. ADDITIONAL OBJECTPRODSP OBJECTS

This is the �rst default parameter. TargetControlGoal is of type

int16. This parameter can be changed interactively. The default value

is 1. TargetControlGoal must be � 0 and � 1.

� MaxTargetSize: maximum size for any single bu�er.

MaxTargetSize speci�es the maximumsize allowed for any single bu�er.

It can force the use of a non �xed sequence scheduler or even result in

an error message if the network cannot run without deadlock with this

size bu�er.

This is the �rst default parameter. MaxTargetSize is of type int32.

This parameter can be changed interactively. The default value is 4096.

MaxTargetSize must be � 1 and � 2147483647.

� MinTargetSize: minimum size for any single bu�er.

MinTargetSize speci�es the minimum size allowed for any single bu�er.

Setting this to a larger value can improve execution e�ciency at the cost

of more memory.

This is the �rst default parameter. MinTargetSize is of type int32.

This parameter can be changed interactively. The default value is 32.

MinTargetSize must be � 1 and � 2147483647.

Following is the member function of this node.

AssignToEdit

Synopsis: assign this descriptor to the network currently being edited.

This function returns type void.

AssignToEdit makes this the descriptor for the network currently being

edited. If a previous descriptor was assigned it will be overwritten.

This function has no parameters.

7.2 DataFlow 69

7.2 DataFlow

Synopsis: Data
ow based network control and scheduling.

DataFlow is a `Scheduler' based on a data
ow model. Its Only argument is

the TheNet to control.

The parameter for DataFlow is:

� TheNet: Network to control.

TheNet is the `Network' to be controlled.

TheNet is of type ProcessNet&. The default value is NetworkDef.

TheNet must be legal in this context.

Following are the member functions of this node.

GraphDisplay

Synopsis: display network topology and timing.

This function returns type void.

Member function GraphDisplay displays the network topology and timing.

The parameters of this function are:

� Option: display option (0 - short, 1 - full, 2- timing).

The Option parameter selects a network display that includes network

topology (Option = 0) plus network data
ow parameters (Option =

1) or network timing analysis (Option =2).

Option is of type int16. The default value is 0. Option must be � 0

and � 2.

70 7. ADDITIONAL OBJECTPRODSP OBJECTS

Execute

Synopsis: execute network generating the speci�ed number of samples.

This function returns type void.

Member function Execute executes the network being controlled. It causes

the signal generator (or �rst node in the network) to produce a speci�ed

number of input samples. Each node is executed for as many iterations

as possible given the available input data and output bu�er space. Execu-

tion halts when no node generates any new samples after a complete pass

throughout the network.

The parameters of this function are:

� InputSamples: input samples to process.

InputSamples speic�es the samples to be processes in the �rst node

during this network execution. If there are multiple threads in a network

than InputSamples is relative to the �rst thread.

InputSamples is of type int32. The default value is 128. InputSamples

must be � 1 and � 2147483647.

AssignBuffers

Synopsis: assign bu�ers to a completely de�ned network.

This function returns type void.

Member function AssignBuffers bu�ers to a completely de�ned data
ow

network. The network is �rst checked for completeness. Bu�ers will not be

assigned if the network fails this test. The single parameter of this function

speci�es the bu�er characteristics.

The parameters of this function are:

7.3 Network 71

� Descriptor: specify bu�er characteristics.

The Description parameter speci�es the bu�er characteristics.

Descriptor is of type BufferDescript&. The default value is CircBufDesDef.

ClearBuffers

Synopsis: remove all bu�ers from network.

This function returns type void.

You can not change the topology of a network while bu�ers are assigned.

Member function ClearBuffers removes all bu�ers so that the network can

be edited or di�erent bu�ers assigned.

This function has no parameters.

ClearNetwork

Synopsis: delete all network links.

This function returns type void.

Member function ClearNetwork removes all links in the network being con-

trolled. The nodes freed in this way can then be used in a di�erent network.

This function has no parameters.

7.3 Network

Synopsis: Data
ow network objects.

Network is the class that allows you to combine nodes to form a DSP process.

Member functions allow you to add threads (`operator+') and add nodes

(`operator>>'). It is easiest to use these functions by editing a network

72 7. ADDITIONAL OBJECTPRODSP OBJECTS

graphically. There are other member functions for editing and manipulating

networks. Most of these can also be called by graphically editing a network.

Member function Execute executes a network for a speci�ed number of input

blocks. It can only be accesses from the menu data base.

This node has no parameters.

Following are the member functions of this node.

GraphDisplay

Synopsis: display network topology.

This function returns type void.

Member function GraphDisplay displays network topology.

This function has no parameters.

Execute

Synopsis: execute network generating the speci�ed number of samples.

This function returns type void.

Member function Execute executes this network. It causes the �rst node

in the network to produce a speci�ed number of input blocks. Each node

is executed for as many iterations as possible given the available input data

and output bu�er space. Execution halts when no node generates any new

samples after a complete pass throughout the network.

The parameters of this function are:

� InputSamples: input samples to process.

InputSamples is the samples to be generated by the �rst node of the

�rst thread. InputSamples determines the input parameter k that the

Network 73

kernel for this driver is called with. InputSamples is not the same as k.

It must be divided by (DeltaOut � BlockSize). If there are multiple

threads in an independent subnetwork, the others will have their driver

input count adjusted according to their sample rates relative to this

�rst node in the �rst thread of the subnetwork. This adjustment is

made by analyzing the input and output sample ratios for all nodes in

a connected subnet of the network.

InputSamples is of type int32. The default value is 128. InputSamples

must be � 1 and � 2147483647.

Raise

Synopsis: raise a window containing this network display.

This function returns type void.

Raise will cause a window displaying this network to be raised to the top

level over any overlapping windows.

This function has no parameters.

ReplaceNode

Synopsis: replace a single node in a network.

This function returns type void.

ReplaceNode will substitute node Replacement for node ToReplace in the

network. The nodes must have the same number of input and output channels

and be compatible in all other respects. If an error occurs the original node

will remain in the network.

The parameters of this function are:

� ToReplace: node to replace.

74 7. ADDITIONAL OBJECTPRODSP OBJECTS

ToReplace is the node to be replaced.

ToReplace is of type Node&. The default value is DefaultNotLegal.

� Replacement: node to replace.

Replacement will be substituted in the network for ToReplace.

Replacement is of type Node&. The default value is DefaultNotLegal.

MakeTarget

Synopsis: create target processor code for this network.

This function returns type void.

Member function MakeTarget will create source and executable code for this

network for a supported target. See the description of parameter Target for

a list of the available targets. See parameter Directory for a description of

the �les created.

The parameters of this function are:

� Target: target processor.

Target is the target processor name. The default generates stand alone

generic C++ code. Currently no other processors are supported.

This is the �rst default parameter. Target is of type const char *.

The default value is \generic cpp".

� Create: create executable
ag.

if Create is 0 only the network source �les and a `domakemake' and

`Make�le' will be created. These can be used to create an executable.

If Create is 1 a `make' command will also be issued to create an exe-

cutable.

This is the �rst default parameter. Create is of type int16. The default

value is 1. Create must be � 0 and � 1.

Network 75

� Directory: directory of created �les.

If the default is chosen the network name is used for Directory. If di-

rectory Directory does not exist it will be created. The target network

topology, sequencing tables, and a short main program are written to

Directory. A shell script `OPDmkmkmk' is also written and executed.

This creates a `domakmake' �le which it then executes invoking `make-

make" to create a `Make�le'. If Create is selected `OPDmkmkmk' will

also invoke `make' to build an executable. If not go to Directory/sub

(where `sub' is a subdirectory determined by the type of simulator arith-

metic) and type `make' to build an executable.

This is the �rst default parameter. Directory is of type const char

*. The default value is 0.

MakeValidate

Synopsis: create a validation test case from this network.

This function returns type void.

Member function MakeValidate �rst replaces each display output node in

this network (such as plotting or listing nodes) with an OutputNode. This

network is then saved to directory DirName. Next the same nodes are replaced

with a CompareDisk node. This new network is written to the same directory

under a di�erent name. The �rst network saved state will include a statement

to execute for ExecuteCount + ExtraCountCreator blocks of input. The

second network will execute for ExecuteCount blocks. These networks are

used to generate baseline regression test data and to run tests against this

data.

The parameters of this function are:

� DirName: directory to place validation �les.

Validation �les are written to DirName. If the default is taken a directory

name will be constructed from the network name. If the directory does

not exist it will be created.

76 7. ADDITIONAL OBJECTPRODSP OBJECTS

This is the �rst default parameter. DirName is of type const char *.

The default value is 0.

� ExecuteCount: number of inputs to execute for.

The test network state generated will include a statement to execute for

ExecuteCount input blocks.

This is the �rst default parameter. ExecuteCount is of type int32. The

default value is 8192. ExecuteCount must be � 1 and � 2147483647.

� ExtraCountCreator: number of additional inputs to create data.

If the creator and validation program execute for the same number of

times then and end of �le may be encountered on some channels. This

provides a margin to prevent end of �le error messages. The creator

network will execute for ExecuteCount + ExtraExecuteCount times.

This is the �rst default parameter. ExtraCountCreator is of type

int32. The default value is 2048. ExtraCountCreator must be � 1

and � 2147483647.

� MaxReport: maximum number of errors to report.

Only the �rst MaxReport errors will be reported.

This is the �rst default parameter. MaxReport is of type int32. The

default value is 1000. MaxReport must be � 1 and � 2147483647.

� Tolerance: absolute value of minimum di�erence for an error.

Tolerance is the absolute value of the smallest di�erence that consti-

tutes an error. Ordinarily this value is 0.0. It might be set to a value

larger than 0 to compare slightly di�erent algorithms or results on two

di�erent computers with di�erent arithmetic.

This is the �rst default parameter. Tolerance is of type double. The

default value is 0.0. Tolerance must be � 0.0 and � 1.e100.

� errorFile: if set errors will be written to this �le.

ErrorFile is a �le in which errors will be reported instead of displaying

them in a window. If the default is taken a name will be constructed

from the network name and node name.

This is the �rst default parameter. errorFile is of type const char

*. The default value is 0.

Network 77

TargetValidate

Synopsis: create a target validation test case from this network.

This function returns type void.

Member function TargetValidate �rst replaces each display output node in

this network (such as plotting or listing nodes) with an OutputNode. This

network is then used to generate a target system in directory DirName/create'.

Next the same nodes are replaced with a CompareDisk node. The code

for this network is written to the directory DirName/test. Shell scripts will

be written to directory DirName to execute the networks for ExecuteCount

blocks (test network) and (ExecuteCount + ExtraCountCreator) blocks

(test data creation network). DirName will contain all test data and error

�les and network state descriptions.

The parameters of this function are:

� Target: target processor.

Target is the target processor name. The default generates stand alone

generic C++ code. Currently no other processors are supported.

This is the �rst default parameter. Target is of type const char *.

The default value is \generic cpp".

� Create: create executable
ag.

if Create is 0 a generic description of the network and a make �le will

be created. These can be used to create an executable for the speci�ed

target processor. If Create is 1 a `make' command will also be issued

to create an executable �le for the target processor.

This is the �rst default parameter. Create is of type int16. The default

value is 0. Create must be � 0 and � 1.

� DirName: directories to place validation �les.

The test cases will be written under directory DirName. Test data,

scripts to create and run tests and the network states will be in this

directory. Code for generateion and testing will be in subdirectories

78 7. ADDITIONAL OBJECTPRODSP OBJECTS

`create' and `test'. If the default is taken a directory name will be

constructed from the network name. Directories are created if they do

not exist.

This is the �rst default parameter. DirName is of type const char *.

The default value is 0.

� ExecuteCount: number of inputs to execute for.

A shell script will be created to execute the test network state for

ExecuteCount input blocks.

This is the �rst default parameter. ExecuteCount is of type int32. The

default value is 8192. ExecuteCount must be � 1 and � 2147483647.

� ExtraCountCreator: number of additional inputs to create data.

If the creator and validation program execute for the same number of

times then and end of �le may be encountered on some channels. This

provides a margin to prevent end of �le error messages. A shell script

will be created to execute the test network state for ExecuteCount +

ExtraCountCreator input blocks.

This is the �rst default parameter. ExtraCountCreator is of type

int32. The default value is 2048. ExtraCountCreator must be � 1

and � 2147483647.

� MaxReport: maximum number of errors to report.

Only the �rst MaxReport errors will be reported.

This is the �rst default parameter. MaxReport is of type int32. The

default value is 1000. MaxReport must be � 1 and � 2147483647.

� Tolerance: absolute value of minimum di�erence for an error.

Tolerance is the absolute value of the smallest di�erence that consti-

tutes an error. Ordinarily this value is 0.0. It might be set to a value

larger than 0 to compare slightly di�erent algorithms or results on two

di�erent computers with di�erent arithmetic.

This is the �rst default parameter. Tolerance is of type double. The

default value is 0.0. Tolerance must be � 0.0 and � 1.e100.

� ErrorFile: if set errors will be written to this �le.

Network 79

ErrorFile is a �le in which errors will be reported instead of displaying

them in a window. If the default is taken a name will be constructed

from the network name and node name.

This is the �rst default parameter. ErrorFile is of type const char

*. The default value is 0.

SetTimingExact

Synopsis: set exact or loose timing constraints.

This function returns type void.

If the timing analysis cannot resolve a network it may still execute correctly.

If Exact is one no attempt will be made to execute the network. Instead an

error will be generated. This is usually set for for validation tests to make

sure that timing analysis errors are not overlooked.

The parameters of this function are:

� Exact: timing constraints loose(0) or exact(1).

If the timing analysis cannot resolve a network it may still execute cor-

rectly. If Exact is one no attempt will be made to execute the network.

Exact is of type int16. The default value is 0. Exact must be � 0 and

� 1.

ReplaceWithOutput

Synopsis: replaces plot and listing nodes with an OutputNode.

This function returns type void.

Member function ReplaceWithOutput replaces all plot and listing nodes with

a new output node with a name derived from the node it is replacing. The

�le name is the same as the node name. This is used to create regression

80 7. ADDITIONAL OBJECTPRODSP OBJECTS

tests. First ReplaceWithOutput creates a network to generate test data.

Then ReplaceWithCompare creates a network for running a regression test

against the data. All three networks should be saved in separate state �les.

This function has no parameters.

ReplaceWithCompare

Synopsis: replace each OutputNode with a `Compare' node.

This function returns type void.

Member function ReplaceWithCompare replaces each OutputNode in a net-

work with a CompareDisk node. If an OutputNode has more than one input

channel the operation will fail. This is useful in converting a network used to

generate a regression test case to a network for running the regression test.

The new node name is created from the node replaced. The �le name is the

output �le written by the node being replaced. The other parameters are set

to be the same as the corresponding parameters of this function.

The parameters of this function are:

� MaxReport: maximum number of errors to report.

Only the �rst MaxReport errors will be reported.

This is the �rst default parameter. MaxReport is of type int32. The

default value is 1000. MaxReport must be � 1 and � 2147483647.

� Tolerance: absolute value of minimum di�erence for an error.

Tolerance is the absolute value of the smallest di�erence that consti-

tutes an error. Ordinarily this value is 0.0. It might be set to a value

larger than 0 to compare slightly di�erent algorithms or results on two

di�erent computers with di�erent arithmetic.

This is the �rst default parameter. Tolerance is of type double. The

default value is 0.0. Tolerance must be � 0.0 and � 1.e100.

Network 81

� ErrorFile: if set errors will be written to this �le.

ErrorFile is a �le in which errors will be reported instead of displaying

them in a window.

This is the �rst default parameter. ErrorFile is of type const char

*. The default value is 0.

operator+

Synopsis: the `+' operator adds a thread to a Network.

This function returns type Network&.

The `+' operator appends its right operand (a signal generation node)

TheNode to its left operand (a data
ow Network).

The parameters of this function are:

� TheNode: node to append to.

TheNode is a signal generator that starts a thread in the network to the

right of the `+' operator.

TheNode is of type SignalStr&. The default value is CosDef.

operator>>

Synopsis: operator>> appends a node to a network.

This function returns type Network&.

The `>>' operator appends its right operand (a processing or signal genera-

tion node) TheNode to its left operand (a DataFlow Network).

The parameters of this function are:

82 7. ADDITIONAL OBJECTPRODSP OBJECTS

� TheNode: node to append to.

TheNode is the node to append to the network on the right of operator

`>>'.

TheNode is of type Node&. The default value is GainDef.

GraphDisplayWindow

Synopsis: display network topology in a speci�ed window size.

This function returns type void.

Member function GraphDisplay displays the network topology. In a window

of up to Width x Height pixels. The window may start out smaller and grow

larger as nodes are added to it but it will not exceed these dimensions. (If

needed a vertical scrollbar will be added to the window.)

The parameters of this function are:

� Width: maximum width in pixels of display.

Width is the maximum width in pixels the window can grow to. It may

start out smaller but will not exceed this width as nodes are added to

it. (If needed a vertical scrollbar will be added to the window.)

Width is of type int16. The default value is 550. Width must be � 150

and � 2048.

� Height: maximum height in pixels of display.

Height is the maximum height in pixels the window can grow to. It

may start out smaller but will not exceed this height as nodes are added

to it. (If needed a vertical scrollbar will be added to the window.)

Height is of type int16. The default value is 700. Height must be �

150 and � 2048.

Network 83

DisplayNames

Synopsis: display the name of the controller and bu�er descriptor.

This function returns type void.

Member function DisplayNames displays the names of the controller and

bu�er descriptor for this node in the help window.

This function has no parameters.

SetBufferDescriptor

Synopsis: assign a bu�er descriptor to this network.

This function returns type void.

SetBufferDescriptor assigns descriptor Descriptor to this network. The

network need not be complete. No bu�ers are allocated.

The parameters of this function are:

� Descriptor: bu�er characteristics.

The Description parameter speci�es the bu�er characteristics.

Descriptor is of type BufferDescript&. The default value is CircBufDesDef.

AssociateNode

Synopsis: put this node in this networks display window.

This function returns type void.

AssociateNode associates node TheNode with this network. It does not link

the node into the network. Its only e�ect is to have the node displayed in

the window in which the network appears.

84 7. ADDITIONAL OBJECTPRODSP OBJECTS

The parameters of this function are:

� TheNode: node to associate with this network.

TheNode will be displayed in the window for this network. This member

function does not link the node into the network or a�ect anything other

than the display.

TheNode is of type Node&. The default value is DefaultNotLegal.

Link

Synopsis: make next link in network from speci�ed node and channel.

This function returns type Network&.

In building a data
ow topology network the connection operator `>>' always

links the output of the last node accessed (from the network to the left of

`>>') to the node on the right side of `>>'. For simple linear networks this

is adequate. For nodes with more than one output one must specify when to

use channels other than 0 using Link. Link causes the next link from the

network to begin at the speci�ed TheNode and OutChannel.

The parameters of this function are:

� TheNode: processing or signal generator to link to.

The TheNode parameter speci�es a node within this network to establish

the next link to. This is used in building the network topology when the

default option of linking to the last node accessed will not work. Link

is needed whenever a node has multiple output channels.

TheNode is of type Node&. The default value is GetFreeNodeOut.

� OutChannel: output channel of selected node to link to.

The OutChannel parameter specifes the index of the output channel

from the selected node. The next link in the network will originate from

this channel and node.

Network 85

This is the �rst default parameter. OutChannel is of type int16. The

default value is 0. OutChannel must be � 0 and � 32767.

SelfLink

Synopsis: establish a feedback link in a data
ow network.

This function returns type Network&.

SelfLink establishes a feedback link in a data
ow network. Input parame-

ters include the source node and its output channel and the destination node

and its input channel.

The parameters of this function are:

� NodeOut: node to link from.

The NodeOut parameter speci�es a node within this network to establish

the feedback link from.

NodeOut is of type Node&. The default value is GetFreeNodeOut.

� NodeIn: node to link to.

The NodeIn parameter speci�es a node within this network to establish

the feedback link to.

NodeIn is of type Node&. The default value is GetFreeNodeIn.

� ChannelOut: output channel of output node to link from.

The ChannelOut parameter specifes the index of the output channel of

NodeOut to link from.

This is the �rst default parameter. ChannelOut is of type int16. The

default value is 0. ChannelOut must be � 0 and � 32767.

� ChannelIn: input channel to link to.

The ChannelIn parameter specifes the index of the output channel of

NodeIn to link to.

This is the �rst default parameter. ChannelIn is of type int16. The

default value is 1. ChannelIn must be � 0 and � 32767.

86 7. ADDITIONAL OBJECTPRODSP OBJECTS

AssignBuffers

Synopsis: assign bu�ers to a completely de�ned network.

This function returns type void.

Member function AssignBuffers bu�ers to a complete network. Bu�ers will

not be assigned if the network is not complete. Descriptor determines the

bu�er characteristics.

The parameters of this function are:

� Descriptor: specify bu�er characteristics.

The Description parameter speci�es the bu�er characteristics.

Descriptor is of type BufferDescript&. The default value is CircBufDesDef.

GetBufferDescriptor

Synopsis: get the bu�er descriptor associated with this network.

This function returns type BufferDescript&.

Member function GetBufferDescriptor returns the bu�er descriptor asso-

ciated with this network.

This function has no parameters.

ClearBuffers

Synopsis: remove all bu�ers from network.

This function returns type void.

You can not change the topology of a network while bu�ers are assigned.

Member function ClearBuffers removes all bu�ers so that the network can

Network 87

be edited or di�erent bu�ers assigned.

This function has no parameters.

GetNetController

Synopsis: get the network controller associated with this network.

This function returns type NetControl&.

Member function GetNetController returns the network controller associ-

ated with this network.

This function has no parameters.

ClearNetwork

Synopsis: delete all network links.

This function returns type void.

Member function ClearNetwork removes all links in the network being con-

trolled. The nodes freed in this way can then be used in a di�erent network.

This function has no parameters.

88 7. ADDITIONAL OBJECTPRODSP OBJECTS

A GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to

share and change it. By contrast, the GNU General Public License is in-

tended to guarantee your freedom to share and change free software{to make

sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program

whose authors commit to using it. (Some other Free Software Foundation

software is covered by the GNU Library General Public License instead.)

You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom

to distribute copies of free software (and charge for this service if you wish),

that you receive source code or can get it if you want it, that you can change

the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These restrictions

translate to certain responsibilities for you if you distribute copies of the

software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or

for a fee, you must give the recipients all the rights that you have. You must

make sure that they, too, receive or can get the source code. And you must

1

show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)

o�er you this license which gives you legal permission to copy, distribute

and/or modify the software.

Also, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the

software is modi�ed by someone else and passed on, we want its recipients to

know that what they have is not the original, so that any problems introduced

by others will not re
ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We

wish to avoid the danger that redistributors of a free program will individually

obtain patent licenses, in e�ect making the program proprietary. To prevent

this, we have made it clear that any patent must be licensed for everyone's

free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation

follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a

notice placed by the copyright holder saying it may be distributed under

the terms of this General Public License. The \Program", below, refers

to any such program or work, and a \work based on the Program" means

either the Program or any derivative work under copyright law: that is to

say, a work containing the Program or a portion of it, either verbatim or

with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each

licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered

by this License; they are outside its scope. The act of running the Program

is not restricted, and the output from the Program is covered only if its

2

contents constitute a work based on the Program (independent of having

been made by running the Program). Whether that is true depends on what

the Program does.

1. You may copy and distribute verbatim copies of the Program's source

code as you receive it, in any medium, provided that you conspicuously

and appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may

at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of

it, thus forming a work based on the Program, and copy and distribute such

modi�cations or work under the terms of Section 1 above, provided that you

also meet all of these conditions:

a) You must cause the modi�ed �les to carry prominent notices

stating that you changed the �les and the date of any change.

b) You must cause any work that you distribute or publish, that

in whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modi�ed program normally reads commands interactively

when run, you must cause it, when started running for such interac-

tive use in the most ordinary way, to print or display an announce-

ment including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these condi-

tions, and telling the user how to view a copy of this License. (Ex-

ception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is

not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sec-

3

tions of that work are not derived from the Program, and can be reasonably

considered independent and separate works in themselves, then this License,

and its terms, do not apply to those sections when you distribute them as

separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to

the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise the

right to control the distribution of derivative or collective works based on the

Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under the

scope of this License.

3. You may copy and distribute the Program (or a work based on it, under

Section 2) in object code or executable form under the terms of Sections 1

and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sec-

tions 1 and 2 above on a medium customarily used for software

interchange; or,

b) Accompany it with a written o�er, valid for at least three years,

to give any third party, for a charge no more than your cost of phys-

ically performing source distribution, a complete machine-readable

copy of the corresponding source code, to be distributed under the

terms of Sections 1 and 2 above on a medium customarily used for

software interchange; or,

c) Accompany it with the information you received as to the o�er to

distribute corresponding source code. (This alternative is allowed

only for noncommercial distribution and only if you received the

program in object code or executable form with such an o�er, in

accord with Subsection b above.)

4

The source code for a work means the preferred form of the work for making

modi�cations to it. For an executable work, complete source code means

all the source code for all modules it contains, plus any associated interface

de�nition �les, plus the scripts used to control compilation and installation of

the executable. However, as a special exception, the source code distributed

need not include anything that is normally distributed (in either source or

binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself

accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy

from a designated place, then o�ering equivalent access to copy the source

code from the same place counts as distribution of the source code, even

though third parties are not compelled to copy the source along with the

object code.

4. You may not copy, modify, sublicense, or distribute the Program except

as expressly provided under this License. Any attempt otherwise to copy,

modify, sublicense or distribute the Program is void, and will automatically

terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed

it. However, nothing else grants you permission to modify or distribute the

Program or its derivative works. These actions are prohibited by law if you do

not accept this License. Therefore, by modifying or distributing the Program

(or any work based on the Program), you indicate your acceptance of this

License to do so, and all its terms and conditions for copying, distributing or

modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-

gram), the recipient automatically receives a license from the original licensor

to copy, distribute or modify the Program subject to these terms and condi-

tions. You may not impose any further restrictions on the recipients' exercise

of the rights granted herein. You are not responsible for enforcing compliance

by third parties to this License.

5

7. If, as a consequence of a court judgment or allegation of patent infringe-

ment or for any other reason (not limited to patent issues), conditions are

imposed on you (whether by court order, agreement or otherwise) that con-

tradict the conditions of this License, they do not excuse you from the condi-

tions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example,

if a patent license would not permit royalty-free redistribution of the Pro-

gram by all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-

ticular circumstance, the balance of the section is intended to apply and the

section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents

or other property right claims or to contest validity of any such claims; this

section has the sole purpose of protecting the integrity of the free software

distribution system, which is implemented by public license practices. Many

people have made generous contributions to the wide range of software dis-

tributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to dis-

tribute software through any other system and a licensee cannot impose that

choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain

countries either by patents or by copyrighted interfaces, the original copy-

right holder who places the Program under this License may add an explicit

geographical distribution limitation excluding those countries, so that distri-

bution is permitted only in or among countries not thus excluded. In such

case, this License incorporates the limitation as if written in the body of this

License.

9. The Free Software Foundation may publish revised and/or new versions

6

of the General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may di�er in detail to address

new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-

i�es a version number of this License which applies to it and \any later

version", you have the option of following the terms and conditions either of

that version or of any later version published by the Free Software Founda-

tion. If the Program does not specify a version number of this License, you

may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs

whose distribution conditions are di�erent, write to the author to ask for

permission. For software which is copyrighted by the Free Software Founda-

tion, write to the Free Software Foundation; we sometimes make exceptions

for this. Our decision will be guided by the two goals of preserving the free

status of all derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT

PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM \AS IS" WITHOUT WARRANTY

OF ANYKIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-

GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR

AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR

ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

7

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible

use to the public, the best way to achieve this is to make it free software

which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach

them to the start of each source �le to most e�ectively convey the exclusion

of warranty; and each �le should have at least the \copyright" line and a

pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it

does.> Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published

by the Free Software Foundation; either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied war-

ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-

LAR PURPOSE. See the GNU General Public License for more

details.

You should have received a copy of the GNU General Public Li-

cense along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

8

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for

details type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appro-

priate parts of the General Public License. Of course, the commands you use

may be called something other than `show w' and `show c'; they could even

be mouse-clicks or menu items{whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a \copyright disclaimer" for the program, if necessary.

Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-

gram `Gnomovision' (which makes passes at compilers) written by

James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General Public

License instead of this License.

9

10

Index

%d 2

%x 2

.usr 10

Accuracy 29, 30

Add 1, 2, 10

Add the output from multiple in-

puts 2

Additional ObjectProDSP objects

66

Amplitude 24, 32, 33, 34, 35

ArithDouble 9

ArithFloat 9

ArithInt16 9

ArithInt32 9

ascii 2

AsciiFile 6, 47

AssignBu�ers 66, 70, 86

AssignToEdit 68

AssociateNode 83

Base class nodes 56

binary 2

Block 3, 11, 12

BlockSize 8, 11, 12, 40, 41, 54, 56,

73

Bu�erDescriptor 66

Caption 50, 51, 52, 53, 55

CenterFrequency 13

Channel 57, 58, 60, 61, 62, 64, 65

ChannelIn 85

ChannelOut 85

Channels 10, 11, 16, 17, 22, 51, 52,

53

CircBufDes 66

ClearBu�ers 71, 86

ClearNetwork 71, 87

Code for packet type 8

Coe� 14, 15, 25, 26

CompareDisk 48, 75, 77, 80

Complex FFT 4

ConstantData 1, 32

Conversion nodes 4

Cos 1, 32

Create 74, 75, 77

Creative voice �le 2

CxCos 1, 33

CxFft 4, 12, 13

CxFir 3, 14

CxImp 1, 34

Data identi�cation 8

DataFlow 69, 81

DataType 8, 9, 15

DcTrap 3

Delta 28

DeltaIn 21, 54

DeltaOut 7, 21, 38, 73

Demod 3, 15

DemodFreq 14, 15, 16

Demux 5, 16

DenominatorSampling 9

Description 71, 83, 86

Descriptor 71, 83, 86

Directory 74, 75

DirName 75, 77

disk 2, 6

DisplayHeader 38, 39, 46, 48, 49

11

DisplayInputTiming 57, 60

DisplayNames 83

DisplayNodeStr 56

DisplayOutputTiming 61, 64

double 40, 54, 55

dsp processing 1, 3, 4, 5, 6

DSP processing nodes 10

Edit 57, 61, 65

ErrorFile 49, 76, 78, 79, 81

Exact 79

Execute 70, 72

ExecuteCount 75, 76, 77, 78

ExtraCountCreator 75, 76, 77, 78

ExtraExecuteCount 76

EyePlot 50

Fields 36

File format 9

FileBlockSize 52, 53

FileEltsCaption 8

FileEltsChannelHeader 8

FileEltsHeader 8, 9

FileEltsNodeName 8

FillValue 28

Filtering operations 3

FindStartTail 6, 17

FirstSample 9

Flags 18, 38, 44, 53

oat 40, 54, 55

Format 36

FormatIn 40

FormatOut 54, 55

Frequency 32, 33

Gain 6, 18

GainPad 5, 19

GetBu�erDescriptor 86

GetNetController 87

GraphDisplay 69, 72, 82

GraphDisplayWindow 82

Height 82

Hex 47, 52

HexList 51

IgnoreHeaderCount 39, 50

Import ascii data 2

ImportData 2, 6, 35, 44

Increment 42, 43

InitialSkip 40, 41

Input and signal generation nodes

31

InputElementSize 16, 17

InputNode 2, 7, 9, 38, 39, 40

InputSamples 70, 72, 73

InputSampleSize 16, 22

InputsPerOutput 23, 24

InputWord 2, 7, 39

InputWordSize 23, 26, 27

int16 40, 54, 55

int32 40, 54, 55

int8 40, 54, 55

IntegerMachWord 40, 54, 55, 56

IntegerOut 40

Integrate 3, 4, 20

IntegrationSize 20

Interpolate 3, 21

InverseFlag 13

k 72, 73

Length of data �eld in bytes 8

Link 84

LinkIn 58, 62

Listing 51

LogSize 13

12

LowerBound 17

MachWords in �le 9

MachWords in one sample 9

MakeTarget 74

MakeValidate 75

Mask 22

MaskWord 5, 22

Max 42, 43

Maximum 44, 45

MaxReport 48, 76, 78, 80

MaxTargetSize 68

Mean 41, 42

Min 42, 43

Minimum 44, 45

MinimumChunk 23

MinTargetSize 68

Miscellaneous DSP processing nodes

6

Mux 5, 22

Network 71, 81

NextFreeInput 59, 62

NextFreeOutput 63, 66

NodeIn 85

NodeOut 85

NoGroup 47, 48

NoHeader 46, 47, 48

Normal 1, 41

NullOutputSample 20

NumberOfChannels 8

NumberWords 9

NumeratorSampling 9

ObjectProDSP binary format data

�les 7

objects 1, 2, 3, 4, 5, 6

Odd 14, 15, 25

operator>> 81

operator+ 81

Option 69

OutChannel 84

Output and data display nodes 47

OutputArithmetic 12

OutputElementSize 16, 17

OutputSampleSize 22, 23

OutputsPerInput 30, 31

OutputStep 20

OutputWord 7, 39, 54

OutputWorde 2

OutputWordSize 26, 27, 30, 31

Over
owMode 29, 30

Overlap 13

Packet data 8

PackWord 5, 23, 27, 31

Period 34, 35

Phase 32, 33, 34

Plot 4, 55

Power 4, 24

Raise 57, 59, 63, 73

Ramp 1, 42

Range 29, 30

Rate 60, 64

Read and write disk �les 6

ReadFloat 6, 43

ReadInt 6, 44

RealFir 25

RepackStream 5, 23, 26, 31

RepeatFlag 37

Replacement 73, 74

ReplaceNode 73

ReplaceWithCompare 80

ReplaceWithOutput 79, 80

Resample 14, 25

13

RlFir 3

Round 30

SampleDelay 6, 28

Samples input (ratio) 9

Samples output (ratio) 9

SamplesPerPlot 50

Scale 10, 11, 18, 19, 20, 21, 24

Seed 41, 42, 44, 45

SelfLink 85

SetBu�erDescriptor 83

SetSampleRate 59, 60, 64

SetTimingExact 79

Sigma 41

signal 1

Signal nodes 1

SignalStr 63

SignedConversion 29

SignedOutput 26, 27, 30, 31

Size 66, 67

Skip 18

SkipColumns 37

SkipFields 37

SoundBlaster 2

Target 74, 77

TargetControlGoal 67

TargetSize 67

TargetSizeGoal 67

TargetValidate 77

TheNet 69

TheNode 81, 82, 83, 84

Time of �rst output 9

TimingTypeRandom 60, 64

ToFloat 6

ToInteger 4, 5, 28, 29

Tolerance 49, 76, 78, 80

ToMach 4, 5, 29

ToReplace 73, 74

Transition 34, 35

Truncate 4, 29

UniformNoise 1, 44

Unlink 58, 61, 62, 65

UnpackWord 5, 23, 27, 30

UpperBound 17, 18

Value 32

VoiceNode 2, 45, 46

VoiceStripOut 2, 46, 55, 56

Width 34, 35, 82

ZeroPad 14, 25

14

