
cook

a file construction tool

Peter Miller

ABSTRACT

This document describes cook, a maintenance tool designed to construct files. Cook may be used to main-

tain consistency between executable files and the associated source files that are used to generate them.

The consistency is designated by the relative last-modified times of files and is thus automatically adjusted

each time a file is edited, compiled or otherwise modified. Cook validates the consistency of a system of

files and executes all commands necessary to maintain that consistency.

- 2 -

1. Introduction

Cook is a tool for constructing files. It is given a set of files to create, and instructions detailing how to

construct them. In any non-trivial program there will be prerequisites to performing the actions necessary

to creating any file, such as extraction from a source-control system. Cook provides a mechanism to define

these.

When a program is being developed or maintained, the programmer will typically change one file of several

which comprise the program. Cook examines the last-modified times of the files to see when the prerequi-

sites of a file have changed, implying that the file needs to be recreated as it is logically out of date.

Cook also provides a facility for implicit recipes, allowing users to specify how to form a file with a given

suffix from a file with a different suffix. For example, to create filename.o from filename.c

1.1 How to Use this Manual

This manual is divided into two parts.

The first part is tutorial introduction to cook. This part runs from chapter 4 to chapter 5.

The second part is for reference and details precisely how cook works. This part runs from chapter 6 to

chapter 14.

Users familiar with other programs similar to cook are advised to skim the tutorial part before diving into

the reference part.

Page 2 Page 2

Cook Cook

2. Ancient History

Cook was originally developed because I was marooned on an operating system without anything even

vaguely resembling make. This was in 1988. Since I had to write my own, I added a few improvements.

When I finally escaped back to UNIX, it took only two days to port cook to SystemV. I have since deleted all

code for that original operating system, although clues to its identity are still present.

After I had cook up on UNIX, the progress the world had made caught up with me. It was gratifying that

many of the features other make-oid authors had thought necessary were either already present, or easily

and seamlessly added.

Cook was written with portability in mind. This does not means it is entirely portable, unfortunately.

Cook has been tested on SystemV R2 and SystemV R3 and SunOS R4. It should also be portable to oth-

ers.

If you have any trouble getting cook working, please e-mail me so I know where I went wrong.

Page 3 Page 3

Cook Cook

3. License

cook version 1.9

Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write

to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Page 4 Page 4

Cook Cook

4. Cook from the Outside

This chapter is part of the tutorial on how to use the cook program. It focuses on how to use cook, without

needing to know how cook works internally.

4.1 What can cook do for me?

By far the most common use of cook, by experts and beginners alike, is to issue the command

cook
and cook will consult its cookbook to see what needs to be done.

In general, cook is used to take a set of files and chew on them in some way to produce another set of files;

such as the source files for a program, and how to turn them into the executable program file. In order for

cook to do anything useful, it nees to know what to do. "What to do" is contained in a file called

Howto.cook in the same directory as the files it is going to work on. You need to execute the cook com-

mand in the same directory as all of the files.

4.2 What is cook doing?

The Howto.cook file was written by the same person who wrote the source files. It contains a set of recipes;

each of which, among other things, contain commands for how to manipulate the files. The cook program

echos each of the commands it is about to execute, so that you can watch what it is doing as it goes.

If the Howto.cook file contained only commands, you would be better off using a shell script. In addition to

the commands is information telling cook which files need to be constructed before other files can be, and

from this information cook determines the order in which to execute the commands. Also, cook examines

other information to determine which commands it need not do, because the associated files are already up-

to-date.

4.3 What can cook always do?

If you are in a directory with a Howto.cook file, you can expect a few common requests to work

cook clobber This command can be expected to remove any files from the directory which

cook is able to reconstruct.

cook all This is the default action, and so can be obtained by a simple cook request. It

causes cook to construct some specific file or set of files.

cook clean This is similar to "cook clobber" above, but it only removes intermediate files,

and not not the final file or files which "cook all" constructs.

In addition to the above, many Howto.cook files will also define

cook install If a program or library or document is constructed in the directory, the this com-

mand will install it into the correct place in the system.

cook uninstall The reverse of the above, it removes something from the system.

4.4 If something goes wrong

Most errors while cook is constructing file are caused by errors in the source files, and not the Howto.cook

file. In general, you can fix the problems in the source files, and execute the cook command again, and

cook will resume from the command which incurred the error.

To help you while editing the files with the errors, cook keeps a listing file of all the commands it executed,

and any output of those commands, in a file called Howto.list in the current directory.

You may want cook to find all the errors it can before you do any editing, do do this, use the -Continue
option (it may be abbreviated to -c for convenience).

Page 5 Page 5

Cook Cook

5. Cook from a Cookbook

This chapter describes the contents and meaning of a cookbook, a file which contains information cook
needs to do its job. It focuses on what a cookbook looks like, and touches on a few areas of how cook
works does its job.

5.1 What does Cook do?

The basic building block for cook is the concept of a recipe. A recipe has three parts:

1. one or more files which the recipe constructs, known as the targets of the recipe

2. zero or more files which are used by the recipe to construct the target, known as the ingredients of

the recipe

3. one or more commands to execute which construct the targets from the ingredients, known as the

body of the recipe.

When a number of recipes are given, some recipes may describe how to cook the ingredients of other

recipes. When cook is asked to construct a particular target it automatically determines the correct order to

perform the recipe bodies to cook the requested target.

Cook would not be especially useful if you had to give explicit recipes for how to cook every little thing.

As a result, cook has the concept of an implicit recipe. An implicit recipe is very similar to an explicit

recipe, except that the targets and ingredients of the recipe are patterns to be matched to file names, rather

than explicit file names. This means it is possible to write a recipe, for example which constructs a files

with a name ending in ‘.o’ from a file of the same name, but ending in ‘.c’ rather than ‘.o’.

In addition to recipes, cook needs to know when to construct targets from ingredients. Cook has been

designed to cook as little as possible. "As little as possible" is determined by examining when each file was

last modified, and only constructing targets when that are out of date with the ingredients.

5.1.1 When is Cook useful?

From the above description, cook may be described as a tool for maintaining consistency of sets of files.

5.1.2 When is Cook not useful?

Cook is not useful for maintaining consistency of sets of things which are within files and thus cook is

unable to determine when they were modified. For example, cook is not useful for maintaining consistency

of sets of records within a database.

5.2 How do I tell Cook what to do?

Sets of recipes are gathered together into cookbooks. When cook is executed it looks for a cookbook of the

name Howto.cook in the current directory. If you did not name a file to be constructed on the command

line, the first target in the cookbook will be constructed.

The best way to understand how to write recipes is an example. In this example, a program, prog, is com-

posed of three files: foo.c, bar.c and baz.c. To inform cook of this, the cookbook

#include "c"

prog: foo.o bar.o baz.o
{

cc -o prog foo.o bar.o baz.o;
}

is sufficient for prog to be constructed.

This cookbook has two parts. The line

#include "c"
tells cook to refer to a system cookbook which tells it, among other things, how to construct a something.o

Page 6 Page 6

Cook Cook

file from a something.c file.

The second part is a recipe. The first line of this recipe

prog: foo.o bar.o baz.o
...

names the target, prog, and the ingredients, foo.o, bar.o and baz.o.

The next three lines

...
{

cc -o prog foo.o bar.o baz.o;
}

are the recipe body, which consists of a single cc(1) command to be executed. Recipe bodies are always

within { curly braces }, and commands always end with a semicolon (;).

Thus, to update prog after any of the source files have been edited, it is only necessary to issue the com-

mand

cook prog
This could be simplified further, because cook will cook the targets of the first recipe by default; in this

case, prog.

The power of cook becomes more apparent when include files are considered. If the files foo.c and baz.c

include the file defs.h, this would automatically be detected by cook. If defs.h were to be edited, and cook
re-executed, this would cause cook to recompile both foo.c and baz.c, and relink prog.

5.2.1 The common program case

The above example may be simplified even further. If the four files foo.c, bar.c, baz.c and defs.h all resided

in a directory with a path of /some/where/prog, the the Howto.cook file in that directory need only contain

#include "c"
#include "program"

for prog to be cooked. This is because the "program" cookbook looks for all of the something.c files in

the current directory, compiles them all, and links them into a program named after the current directory.

The default target in the "program" cookbook is called all. The ingredient of all is the program named

after the current directory. Two other targets are supplied by this cookbook:

clean removes all of the something.o files from the current directory.

clobber removes the program named after the current directory, and also removes all of the something.o
files from the current directory.

5.3 Creating a Cookbook

To use cook you will usually need to define a cookbook, by creating a file, usually called Howto.cook in the

current directory, with your favorite text editor.

This file has a specific format. The format has been designed to be easy to learn, even for the casual user.

Much of the power of cook is contained in how it works, without complicating the format of the cookbook.

Example of what a cookbook looks like are scattered throughout this document. The following example is

the entire cookbook for cook itself.

#include "c"
#include "yacc"
#include "usr.local"
#include "program"

As you can see, even for a complex program like cook the cookbook is remarkably simple.

Page 7 Page 7

Cook Cook

6. The Command Line

Cook may be invoked from the command line by a command of the form

cook [option...] [filename...]

cook [option...] [filename...]

Options and filenames may be arbitrarily mixed on the command line; no processing is done until all

options and filenames on the command line have been scanned.

Cook will attempt to create the named files from the recipes given to it. The recipes are contained in a file

called Howto.cook in the current directory. This file may, in turn, include other files containing additional

recipes.

If no filenames are given on the command line the targets of the first recipe defined are cooked.

6.1 Options

The valid options for cook are listed below. Any other options (words on the command line beginning with

‘-’) will cause a diagnostic message to be issued.

-Action Execute the commands given in the recipes. This is the default.

-No_Action Do not execute the commands given in the recipes.

-Continue If cooking a target should fail, continue with other recipes for which the failed target is

not an ingredient, directly or indirectly.

-No_Continue If cooking a target should fail, cook will exit. This is the default.

-Errok When a command is executed, the exit code will be ignored.

-No_Errok When a command is executed, if the exit code is positive it will be deemed to fail, and

thus the recipe containing it to have failed. This is the default.

-FingerPrint When cook examined a file to determine if it has changed, it uses the last-modified time

information available in the file system. There are times when this is altered, but the file

contents do not actually change. The fingerprinting facility examines the file when it

appears to have changed, and compares the old fingerprint against the present file con-

tents. If the fingerprint did not change, the last-modified time in the file system is

ignored. Note that this has implications if you are in the habit of using the touch(1) com-

mand − cook will do nothing until you actually change the file.

-No_FingerPrint
Do not use fingerprints to supplement the last-modified time file information. This is the

default.

-Force Always perform the actions of recipes, irrespective of the last-modified times of any of

the ingredients.

This option is useful if something beyond the scope of the cookbook has been modified;

for example, a bug fix in a compiler.

-No_Force Perform the actions of the recipes if any of the ingredients are logically out of date. This

is the default.

-Help Provide information about how to execute cook on stdout, and perform no other function.

-Include filename

Search the named directory before the standard places for included cookbooks. Each

directory so named will be scanned in the order given. The standard places are

$HOME/.cook then /usr/local/lib/cook.

Page 8 Page 8

Cook Cook

-List Causes cook to automatically redirect the stdout and stderr of the session. Output will

continue to come to the terminal, unless cook is executing in the background. The name

of the file will be the name of the cookbook with any suffix removed and ".list"

appended; this will usually be Howto.list. This is the default.

-List filename Causes cook to automatically redirect the stdout and stderr of the session into the named

file. Output will continue to come to the terminal, unless cook is executing in the back-

ground.

-No_List No automatic redirection of the session of the session will be made.

-No_List filename

No automatic redirection of the session of the session will be made, however subsequent

-List options will default to listing to the named file.

-Meter After each command is executed, print a summary of the command’s CPU usage.

-No_Meter Do not print a CPU usage summary after each command. This is the default.

-Precious When commands in the body of a recipe fail, no not delete the targets of the recipe.

-No_Precious When commands in the body of a recipe fail, delete the targets of the recipe. This is the

default.

-Silent Do not echo commands before they are executed.

-No_Silent Echo commands before they are executed. This is the default.

-TErminal When listing, also send the output stream to the terminal. This is the default.

-No_TErminal When listing, do not send the output to the terminal.

-Touch Update the last-modified times of the target files, rather than execute the actions bound to

recipes.

This can be useful if you have made a modification to a file that you know will make a

system of files logically out of date, but has no significance; for example, adding a com-

ment to a widely used include file.

-No_Touch Execute the actions bound to recipes, rather than update the last-modified times of the tar-

get files. This is the default.

-Update This option causes cook to check the last-modified time of the targets of recipes, and

updates them if necessary, to make sure they are consistent with (younger than) the last-

modified times of the ingredients. This results in more system calls, and can slow things

down on some systems.

-No_Update Do not update the file last-modified times after performing the body of a recipe. This is

the default.

name=value Assign the value to the named variable. The value may contain spaces if you can con-

vince the shell to pass them through.

In the above descriptions, a shorter form is indicated by the uppercase letters; for example, the -No_Touch
option may be abbreviated to -nt. Cook is case insensitive to the options, so you may arbitrarily mix cases

within the options.

Tw o options are provided for tracing the inferences cook makes when attempting to cook a target.

-TRace Cook will emit copious amounts of information about the inferences it is making when

cooking targets. This option may be used when you think cook is acting strangely, or are

just curious.

Page 9 Page 9

Cook Cook

-No_TRace Cook will not emit information about the inferences it is making when cooking targets.

This is the default.

Page 10 Page 10

Cook Cook

7. Cookbook Language Definition

This chapter defines that language which cookbooks are written in. While some of its properties are similar

to C, do not be misled.

A number of sections appear within this chapter.

1. The Lexical Analysis section describes what the words of the cookbook language look like.

2. The Preprocessor section describes the include mechanism and the conditional compilation mecha-

nism.

3. The Syntax Descriptions section describes how to read the syntax definitions in the following sec-

tion.

4. The Syntax and Semantics section describes how words in the cookbook may be combined to form

valid constructs (the syntax), and what these constructs mean (the semantics).

The sections are laid out in the recommended reading order.

Page 11 Page 11

Cook Cook

7.1 Lexical Analysis

The cookbook is made of a number of recipes, which are in turn made of words. This section describes

what constitutes a word, and what does not.

7.1.1 Words and Keywords

Words are made of sequences of almost any character, and are separated by white space (including end-of-

line) or the special symbols. Cook is always case sensitive when reading cookbooks.

The characters :;={}[] are the special symbols, and are words in themselves, needing no delimiting.

In addition to the special symbols, some words, known as keywords, hav e special meaning to cook. The

keywords are:

if then else set

loop loopstop fail unsetenv

You will meet the keywords in later sections.

7.1.2 Escape Sequences

The character \ is the escape character. If a character is preceded by a \ any specialness, if it had any, will

be removed. If it had no specialness it may have some added.

This means that, if you want to use if as a word, rather than a keyword, at least one of its characters needs

to be escaped, for example \if.

The escape sequences which are special are as follows.

\b The backspace character

\f The form feed character

\n The newline or linefeed character

\r The carriage return character

\t The horizontal tab character

\nnn A character with a value of nnn, where

nnn is an octal number of at most 3

digits.

An escaped end-of-line is totally ignored. It should be noted that a cookbook may not have any non-

printing ASCII characters in it other than space, tab and end-of-line.

7.1.3 Quoting

Words, and sections of words, may be quoted. If any part of a word is quoted it cannot be a keyword.

This means that, if you want to use if as a word, rather than a keyword, at least one of its characters needs

to be quoted, for example ’if ’.

Both single (’) and double (quotes are understood by cook, and one may enclose the other. If a quote is

escaped it does not open or close a quote as it usually would.

Cook does not like newlines within quotes. This is a generally good heuristic for catching unbalanced

quotes.

7.1.4 Comments

Comments are delimited on the left by /*, and on the right by */, If the / character has been escaped or

quoted, it doesn’t introduce a comment. Comments may be nested. Comments may span multiple lines.

Comments are replaced by one logical space.

Page 12 Page 12

Cook Cook

7.2 Preprocessor

The preprocessor may be thought of as doing a little work before the Syntax and Semantics section has its

turn.

The preprocessor is driven by preprocessor directives. A preprocessor directive is a line which starts with a

hash (#) character. Each of the preprocessor directives is described below.

7.2.1 include

The most common preprocessor directive is

#include "filename"

This preprocessor directive is processed as if the contents of the named file had appeared in the cookbook,

rather than the preprocessor include directive.

The most common use of the #include directive is to include system cookbooks.

The standard places to search are first any path specified with the -Include command line option, and then

$HOME/.cook and then /usr/local/lib/cook in that order.

7.2.2 include-cooked

This directive looks similar to the one above, but do not be deceived.

#include-cooked filename...
You may name several filenames on the line, and they may be expressions.

The search path used for these files is the same as that used for other cooked files, see the search_list vari-

able and the resolve built-in function for more information. The order in which you set the search_list and

the the #include-cooked directives is important. Always set the search_list variable first, if you are going to

use it.

Files included in this way are checked, after they hav e been read, to make sure they are up-to-date. If they

are not, cook brings them up-to-date and then re-reads the cookbook and starts over.

You will only get a warning if the files are not found. Usually, cook will either succeed in constructing

them, in which case they will be present the second time around, or a fatal error will result from attempting

to construct them. Note that it is possible to go into an infinite loop, if the files are constantly out-of-date.

The commonest use of this construct is maintaining include file dependency lists for source files.

obj = [fromto %.c %.o [glob *.c]];

%.o: %.c
{

[cc] [cc_flags] -c %.c;
}

%.d: %.c
{

c_incl -prefix "’%.o %.d: %.c’" -suffix "’;’"
-nc -nc %.c > %.d;

}

#include-cooked [fromto %.o %.d [obj]]
This cookbook fragment shows how include file dependencies are maintained. Notice how the .d files have

a recipe to construct them, and that they are also included. Cook will bring them up-to-date if necessary,

and then re-read the cookbook, so that it is always working with the current include dependencies. (The

doubly nested quotes are to insulate the spaces and special characters from both cook and the shell.)

You could use gcc -MM if you prefer (you will need some extra shell script). The c_incl program under-

stands absent files better but doesn’t understand conditional compilation, and gcc understands conditional

compilation but gives fatal errors for absent include files. Warning: If you are using search_list you must

Page 13 Page 13

Cook Cook

use c_incl. Gcc returns complete paths, which will result in cook failing to notice when an include file is

copied from later in the search list to earlier, and then modified.

7.2.3 include-cooked-nowarn

This directive is almost identical to the one above, but no warning is issued for absent files.

#include-cooked-nowarn filename...
You may name several filenames on the line, and they may be expressions.

7.2.4 if

The #if directive may be used to conditionally pass tokens to the syntax and semantics processing. Direc-

tives take the form

#if expression1

something1

#elif expression2

something2

#else
something3

#endif
There may be any number of elif clauses, and the else clause is optional. Only one of the somethings

will be passed through.

7.2.5 ifdef

This directive takes a similar form to the if directive, but with a different first line:

#ifdef variable

This is syntactic sugar for

#if [defined symbol]
This is of most use in bracketing #include directives.

7.2.6 ifndef

This directive takes a similar form to the if directive, but with a different first line:

#ifndef variable

This is syntactic sugar for

#if [not [defined symbol]]
This is of most use in bracketing #include directives.

7.2.7 pragma

This is for the addition of extensions.

7.2.7.1 once

This directive is to ensure that include files in which it appears are included exactly once.

This directive has the form

#pragma once

7.2.7.2 unknown extensions

Any extensions not recognized will be ignored.

Page 14 Page 14

Cook Cook

7.3 Syntax Descriptions

In the syntax descriptions which follow there are several meta symbols, defined as follows.

= A definition symbol.

| The alternative symbol.

. The end-of-production symbol.

/*text*/ This is a comment.

’text’ The text is a literal terminal symbol of the

grammar being defined.

Like all real languages, the format is free form, no columns or end-of-line are significant.

As an example, the syntax description format is described using itself.

syntax
= /* empty */
| syntax production
.

A syntax definition may consist of zero or more productions.

production
= name ’=’ term ’.’
.

A production names a non-terminal symbol of the grammar being defined on the left, and its expansion on

the right.

term
= factor
| term ’|’ term
.

A term may consist of a factor; or a term may consist of zero or more of the above terms separated by alter-

native symbols.

factor
= /* empty */
| factor name
| factor literal
.

A factor consists of zero or more symbol names (terminal or non-terminal) or literals in a row.

A symbol is terminal if it is not named on the left-hand-side of a production, or it is a literal.

Page 15 Page 15

Cook Cook

7.4 Syntax and Semantics

7.4.1 Overall Structure

The general form of the cookbook is defined as

cookbook
= /* empty */
| cookbook statement
.

A cookbook is defined as a sequence of statements. Each statement statement is executed. For a definition

of what it means when a statement is executed, see the individual statement definitions.

The nonterminal symbol statement will be defined in the sections below.

Please note that a statement is not always evaluated when is is read, but at specific, well defined times.

7.4.2 The Compound Statement

A nonterminal symbol which will be referred to below is the compound_statement symbol, defined as fol-

lows:

compound_statement
= ’{’ statements ’}’
.

statements
= /* empty */
| statements statement
.

The compound statement may be used anywhere a statement may be, and in particular

statement
= compound_statement
.

7.4.3 Variables and Expressions

Cook provides variables to the user to simplify things.

7.4.3.1 The Assignment Statement

It is possible to assign to variables with the following statement.

statement
= expr ’=’ exprs ’;’
.

When this statement is executed, the variable whose name the left hand expression evaluates to will be

assigned the value that the right hand expression list evaluates to.

7.4.3.2 Expressions

Many definitions make reference to the expr, elist and exprs nonterminal symbols. These are defined as fol-

lows.

The elist is a list of at least one expression, whereas the exprs is a list of zero or more expressions.

elist
= expr
| elist expr
.

exprs
= /* empty */
| exprs expr
.

An expression is composed of variable references, function invocations, words, or concatenation of expres-

sions. The concatenation is implied by abutting the two parts of the expression together, e.g.:

"[fred]>thing" is an indirection on fred concatenated with the literal word ">thing".

expr

Page 16 Page 16

Cook Cook

= WORD
| ’[’ elist ’]’
| expr cat expr
.

When an [elist] expression is evaluated, the elist is evaluated first. If the result is a single word, then a vari-

able of that name is searched for. If found the value of an expression of this form is the value of the vari-

able.

If there is no variable of the given name, or the elist evaluated to more than one word, the first word is taken

to be a built-in function name. If there is no function of this name it is an error.

The cat operator works as one would expect, joining the last word of the left expression and the first word

of the right expression together, and otherwise leaving the order of the expressions alone. One usually uses

the trivial case of single word expressions.

7.4.4 Recipes

A number of forms of statement are concerned with telling cook how to cook things. There are three

forms, the explicit recipe, the implicit recipe, and the ingredients recipe.

7.4.4.1 The Explicit Recipe Statement

The explicit recipe has the form

statement
= elist ’:’ exprs flags gate compound_statement
use_clause

.
The target(s) of the recipe are to the left of the colon, and the ingredients, if any, are to the right. The state-

ments, usually commands, to perform to cook the target(s) are contained in the compound statement. The

expressions are only evaluated into words when the recipe is instantiated.

7.4.4.1.1 Recipe Flags

The flags are defined as follows.

flags
= /* empty */
| ’set’ words
.

A number of flags may be used

clearstat The last-modified time of the files named in executed commands will be removed from

the last-modified time cache. This is essential for commands such as rm(1) and mv(1).

noclearstat Do not clear entries from the last-modified time cache. This is usually the default.

default If no targets are specified on the command line, the first recipe with the default flag will

be used. Not meaningful for implicit recipes.

nodefault If no targets are specified on the command line, and there are no recipes with the default

flag set, the first recipe without the nodefault flag will be used. Not meaningful for

implicit recipes.

errok If the errok flag is specified, the commands within the actions bound to the recipe must

always be successful.

noerrok Exit status from commands will be ignored. This is usually the default.

fingerprint File fingerprints are used to supplement last-modified time information about files, which

is how cook determines if a file is out-of-date and needs to be cooked. If a file appears to

have changed, find the last-modified time, it is fingerprinted, and the fingerprint compared

with what it was in the past. The file has change if and only if the fingerprint has also

changed. A cryptographically strong hash is used, so the chance of a file edit producing

an identical fingerprint is less than 1 in 2**200. Fingerprinting is disabled by default.

Page 17 Page 17

Cook Cook

nofingerprint Do not use file fingerprinting. This is usually the default.

forced If the forced flag is specified, the actions bound to the recipe will always be evaluated.

noforced If the noforced flag is specified, the actions bound to the recipe will be evaluated when

the recipe is logically out-of-date. This is usually the default.

mkdir If the mkdir flag is specified, the directories of any targets will be created before the

actions bound to the recipe are evaluated.

nomkdir If the nomkdir flag is specified, the directories of any targets will need to be created by

the actions bound to the recipe. This is usually the default.

precious If the precious flag is specified, if the actions bound to the recipe fail, the targets of the

recipe will not be deleted.

noprecious If the noprecious flag is specified, if the actions bound to the recipe fail, the targets of the

recipe will be deleted. This is usually the default.

recurse If this flag is specified, recipes will recuse upon themselves if one of their ingredients

matches one of their targets. This can cause problems, and so it is not the default.

norecurse If this flag is specified, the recipe will not recurse if one of its ingredients matches one of

its targets. This is the default.

silent If the silent flag is specified, the command within the actions bound to the recipe will not

be echoed.

nosilent Commands will be echoed. This is usually the default.

unlink If the unlink flag is specified, of any targets will be unlinked before the actions bound to

the recipe are evaluated.

nounlink If the nounlink flag is specified, the recipe targets are not removed before the actions

bound to the recipe are performed. This is usually the default.

wildpath If the wildpath flag is specified in an implicit recipe, leading path on pattern matches will

be prepended to reconstructions.

nowildpath Leading path will not be prepended to reconstructions. This is usually the default.

meter If the meter flag is specified, a summary of the CPU usage by the commands within this

recipe will be printed after each command. The silent options override this option.

nometer Do not meter commands. This is usually the default.

time-adjust This option causes cook to check the last-modified time of the targets of recipes, and

adjust them if necessary, to make sure they are consistent with (younger than) the last-

modified times of the ingredients. This usually adjusts the file time into the (near) future.

A warning message will be printed, telling you how many seconds the file was adjusted.

This results in more system calls, and can slow things down on some systems.

no-time-adjust Do not adjust the file last-modified times after performing the body of a recipe. This is

usually the default.

time-adjust-back This option causes cook to force the last-modified time of the targets of recipes to be

exactly one (1) second younger than their youngest ingredient. This usualy adjusts the

file time into the (recent) past. A warning message will be printed, telling you how many

seconds the file was adjusted. This results in more system calls, and can slow things

down on some systems. This is primarily useful when some later process is going to

compress file modification times; this provides smarter compression.

0. This flag was once named the ‘‘update’’ flag. The name was changed to more closely reflect its function. The old name

continues to work.

Page 18 Page 18

Cook Cook

stripdot This option causes cook to remove leading "./" prefixes from filenames. This is usually

the default.

nostripdot This option causes cook to leave leading "./" prefixes on filenames.

Each flag may also be specified in the negative, by adding a "no" prefix, to override any existing positive

default setting. There is a strict precedence defined for the various levels of flag setting, see the end of the

"How Cook Works" chapter for details.

7.4.4.1.2 Recipe Gate

Each recipe may have a gate. The gate is a way of specifying a conditional recipe; if the condition is not

true, the recipe is not used. The condition is in addition to the condition that the ingredients are cookable.

gate
= /* empty */
| ’if’ expr
.

7.4.4.1.3 Use Clause

There are times when it is necessary to know that a recipe has been applied, but because the recipe was up-

to-date, the recipe body was not run.

use_clause
= /* empty */
: ’use’ compound_statement

The use clause is run every time the recipe is applied, even if the recipe is up-to-date. It will be run after

the the recipe body, if the recipe body is run. All of the usual percent (%) substitutions and automatic vari-

ables will apply.

7.4.4.1.4 Double Colon

Most cookbooks are constructed so that if cook finds a suitable recipe for the target it is currently construct-

ing, it will apply the recipe and then conclude that it has finished constructing the target. In some rare cases

you will want cook to keep going after applying a recipe. To specify this use a ‘‘double colon’’ construc-

tion:

statement
= elist ’::’ exprs flags gate compound_statement
use_clause

.
This operates like a normal explicit recipe, but cook will continue on looking for recipes after applying this

one. As soon as an applicable ‘‘single colon’’ recipe is found and applied, cook will conclude that it has

finished constructing the target.

7.4.4.2 The Implicit Recipe Statement

Implicit recipes are distinguished from explicit recipes in that and implicit recipe has a target with a ’%’

character in it.

7.4.4.2.1 Simple Form

In general the user will rarely need to use the implicit recipe form, as there are a huge range of implicit

recipes already defined in the system default recipes.

An example of this recipe form is

%: %.Z
{

uncompress %;
}

This recipe tells cook how to use the uncompress(1) program.

Page 19 Page 19

Cook Cook

7.4.4.2.2 Complex Form

The implicit recipe recipe has a second form

statement
= elist ’:’ exprs1 ’:’ exprs2 flags gate

compound_statement use_clause
.

In this form, the ingredients specified in exprs1 are used to determine the applicability of the recipe; if these

are all constructible then the recipe will be applied, if any are not constructible then the recipe will not be

applied. If the recipe is applied, the ingredients specified in exprs2 are required to be constructible. The

exprs2 section is known as the forced ingredients section.

Note: if you want the exprs1 section to be empty you must separate the two colons with a space, otherwise

cook will think this is a ‘‘double colon’’ recipe.

An example of this is the C recipe

%.o: %.c: [collect c_incl %.c]
{

cc -c %.c;
}

This recipe is applied if the %.c file can be constructed, and is not applied if it cannot be constructed. The

include dependencies are only expressed if the recipe is going to be applied; but if they are expressed, they

must be constructible. This means that absent include files generate an error.

The naive form of this recipe

%.o: %.c [collect c_incl %.c]
{

cc -c %.c;
}

will attempt to apply the c_incl command before the %.c file is guaranteed to exist. This is because the

exprs2 is performed after the exprs1 all exist (because they are constructible, they hav e been constructed).

In this naive form, absent include files result in the recipe not being applied.

7.4.4.2.3 Double Colon

Just as explicit recipes have a ‘‘double colon’’ form, so do both types of implicit recipes. The semantics are

identical, with cook looking for more than one applicable implicit recipe, but stopping if it finds an applica-

ble ‘‘single colon’’ implicit recipe.

As stated earlier in this manual, cook first scans for explicit recipes before scanning for implicit recipes. If

an explicit recipe has been applied, cook will not also look for applicable implicit recipes, even if all the

applicable explicit recipes were double colon recipes.

7.4.4.3 The Ingredients Recipe Statement

The ingredients recipe has the form

statement
= elist ’:’ elist flags gate ’;’
.

The target(s) of the recipe are to the left of the colon, and the prerequisites are to the right. There are no

statements to perform to cook the targets of this recipe, it is simply supplementary to any other recipe, usu-

ally an implicit recipe.

The expressions are only evaluated into words when the recipe is instantiated.

7.4.5 Commands

Commands may take sev eral forms in cook. They all have one thing in common; they execute a command.

statement
= command
.

Page 20 Page 20

Cook Cook

7.4.5.1 The Simple Command Statement

The simplest command form is

command
= simple_command
.

simple_command
= elist flags ’;’
.

When executed, the elist is evaluated into a word list and used as a command to be passed to the operating

system. On UNIX this usually means that a shell is invoked to run the command, unless the string contains

no shell meta-characters.

The flags are those which may be specified in the explicit recipe statement. They hav e a higher precedence

than either the set statement or the recipe flags.

Some characters in commands are special both to the shell and to cook. You will need to quote or escape

these characters. Each command is executed in a separate process, so the cd command will not work, you

will need to combine it with the relevant commands, not forgetting to escape the semicolon (;) characters.

7.4.5.2 The Data Command Statement

For programs which require stdin to be supplied by cook to perform their functions, the data command

statement has been provided.

command
= simple_command

’data’
expr

’dataend’
.

In this form, the expr is evaluated and used as input to the command. Between the data and dataend
keywords the definition of the special symbols and whitespace change. There are only two special sym-

bols, [and], to allow functions and variable references to appear in the expression. In addition, whitespace

ceases to have its usual specialness; it is handed to the command, instead.

The data keyword must be the last on a line, whitespace after the data keyword up to and including end-of-

line, will not be given to the command.

The dataend keyword must appear alone on a line, optionally surrounded by whitespace; it is is not alone,

it is not a dataend keyword and will not terminate the expression.

An example of this may be useful.

/usr/fred/%: %
{

newgrp fred;
data

cp % /usr/fred/%
dataend

}
If the directory /usr/fred has read-only permissions for others, and group write permissions, and belonged

to group fred , and you were a member of group fred , the above implicit recipe could be used to copy the

file.

7.4.5.3 The Set Statement

It is possible to override the defaults used by cook or even those specified by the COOK environment vari-

able, by using the set statement.

statement
= ’set’ words ’;’
.

The flag values are those mentioned in the flags clause of the explicit recipe statement. Many command-

Page 21 Page 21

Cook Cook

line options have equivalent flag settings. There is no ‘‘unset’’ statement, to restore the default settings, but

it is possible to set flags the other way, by adding or removing the ‘‘no’’ prefix.

To set flags for individual recipes, use the flags clause of the recipe statements.

To set flags for individual commands, use the flags clause of the command statements.

7.4.5.3.1 Examples

Fingerprinting is not used by default, because it can cause a few surprises, and takes a little more CPU. To

enable fingerprinting for you project, place the statement

set fingerprint;
somewhere in your Howto.cook file. The -No_FingerPrint command line option can still override this, but

the default behavior will be to use fingerprints.

To prevent echoing of commands as they are executed, place

set silent;
somewhere in your Howto.cook file. The -NoSilent command line option can still override this, but the

default behavior will be not to echo commands.

7.4.5.4 The Fail Statement

Cook can be forced to think that a recipe has failed by the uses of the fail statement.

statement
= ’fail’ ’;’
.

This is hugely useful when programs do not return a useful exit status, but do fail to produce the goods.

Another variation of this statement is

statement
= ’fail’ ’backtrack’ ’;’
.

This enables you to write a recipe which will succeed if all of the ingredients are up-to-date, but cause cook
to backtrack if any of the ingredients are out-of-date. It is useful with some software configuration manage-

ment systems.

7.4.6 Flow Control

This section details statement forms which the casual user will never need.

7.4.6.1 The If Statement

The if statement has one of two forms.

statement
= ’if’ expr ’then’ statement
| ’if’ expr ’then’ statement ’else’ statement
.

In nested if statements, the else will bind to the closest else-less if.

An expression is false if and only if all of its words are null or it has no words.

7.4.6.2 The Loop and Loopend Statements

Looping is provided for in cook by the generic infinite loop construct defined below. A facility is provided

to break out of a loop at any point.

statement
= ’loop’ statement
| ’loopstop’ ’;’
.

The statement following the loop directive is executed repeatedly forever. The loopstop statement is only

semantically valid within the scope of a loop statement.

Page 22 Page 22

Cook Cook

8. Built-In Functions

This chapter defines each of the builtin functions of cook.

A builtin function is invoked by using an expression of the form

[func-name arg arg ...]
in most places where a literal word is valid.

8.1 addprefix

The addprefix" function is used to add a prefix to a list or words. This function requires at least one argu-

ment. The first argument is a prefix to be added to the second and subsequent arguments.

8.1.1 See Also

addsuffix, patsubst, prepost, subst

8.2 addsuffix

The addsuffix" function is used to add a suffix to a list or words. This function requires at least one argu-

ment. The first argument is a suffix to be added to the second and subsequent arguments.

8.2.1 See Also

addprefix, patsubst, prepost, subst

8.3 and

This function requires at least two arguments, upon which it forms a logical conjunction. The value

returned is "1" (true) if none of the arguments are "" (false), otherwise "" (false) is returned.

8.3.1 Example

The following cookbook fragment shows how to use the [and] function in conditional recipes.

#if [and [defined change] [defined baseline]]
...do something...

#endif
This fragment will only do something if both the change and baseline variables are defined.

8.3.2 Caveat

This function is rather clumsy, and probably needs to be replaced by a better syntax within the cokbook

grammar itself.

This function does not short-circuit evaluation.

8.3.3 See Also

or, not

Page 23 Page 23

Cook Cook

8.4 basename

The basename treats each argument as filenames, and extracts all but the suffix of each filename. If the file-

name contains a period, the basename is everything up to (but not including) the period. Otherwise, the

basename is the entire filename.

8.4.1 Example

Expression Result

[basename foo.c] foo

[basename foo/bar.c] foo/bar

[basename baz] baz

8.4.2 See Also

dirname, entryname, suffix

8.4.3 Caveat

This function is almost nothing like the unix command of the same name. It operates in this manner for

compatibility with other packages.

8.5 cando

This function is used to test whether cook knows how to cook the given targets. For each argument, the

result contains either "1" (true) or "" (false).

8.5.1 Caveat

This function is rarely required, since it is inherent in the basic functioning of cook.

8.5.2 See Also

uptodate

8.6 catenate

This function requires zero or more arguments. If no arguments are supplied, the result is an empty word

list. If one or more arguments are supplied, the result is a word list of one word being the catenation of all

of the arguments.

8.6.1 Example

Expression Result

[catenate a] a

[catenate a b] ab

[catenate a " " b] "a b"

Quotes used in the results for clarity.

8.6.2 See Also

split, unsplit, prepost, join

Page 24 Page 24

Cook Cook

8.7 collect

The arguments are interpreted as a command to be passed to the operating system. The result is one word

for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.7.1 Example

Read the date and time and assign it to a variable:

now = [collect date];
Do not use the collect function to expand a filename wildcard, used the [glob] function instead.

8.7.2 See Also

collect_lines, execute, glob

8.8 collect_lines

The arguments are interpreted as a command to be passed to the operating system. The result one "word"

for each line of the output of the command.

8.8.1 Example

To read each line of a file into a variable:

files = [collect_lines cat file];
Spaces and tabs in the input lines will be preserved in the "words" of the result.

8.8.2 See Also

collect, glob

8.9 count

This function requires zero or more arguments. The result is a word list of one word containing the (deci-

mal) length of the argument word list.

8.9.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:

echo There are [count [files]] files.;
echo The last file is [word [count [files]] [files]].;

8.9.2 See Also

head, tail, word

8.10 defined

This function requires a single argument, the name of a variable to be tested for existence. It returns "1"

(true) if the named variable is defined and "" (false) if it is not.

8.10.1 Example

This function is most often seen in conditional portions of cookbooks:

if [defined baseline] then
cc_flags = [cc_flags] -I[baseline];

Page 25 Page 25

Cook Cook

8.11 dir

This function requires one or more arguments, the names of files which will have their directory parts

extracted.

8.11.1 Example

Expression Result

[dir a] .

[dir a/b] a

[dir a/b/c] a/b

8.11.2 See Also

pathname, entryname, basename, suffix

8.12 dirname

This function requires one or more arguments, the names of files which will have their directory parts

extracted.

8.12.1 Example

Expression Result

[dirname a] .

[dirname a/b] a

[dirname a/b/c] a/b

8.12.2 See Also

pathname, entryname, basename, suffix

8.13 downcase

This function requires one or more arguments, words to be forced into lower case.

8.13.1 Example

Expression Result

[downcase FOO] foo

[downcase Bar] bar

[downcase baz] baz

8.13.2 See Also

upcase

Page 26 Page 26

Cook Cook

8.14 entryname

This function requires one or more arguments, the names of files which will have their entry name parts

extracted.

8.14.1 Example

Expression Result

[entryname a] a

[entryname a/b] b

[entryname a/b/c] c

8.14.2 See Also

dirname, basename, suffix

8.15 execute

This function requires at least one argument, and executes the command given by the arguments. If the

executed command returns non-zero exit status the resulting value is "" (false), otherwise it is "1" (true).

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.15.1 Caveat

This function is not often required as its functionality is available in a more useful for as recipe bodies.

8.15.2 See Also

collect

8.16 exists

This function requires one argument, being the name of a file to test for existence. The resulting wordlist is

"" (false) if the file does not exist, and "1" (true) if the file does exist.

8.16.1 Example

To remove the target of a recipe before building it again:

%.a: [%_obj]
{

if [exists [target]] then
rm [target]

set clearstat;
[ar] qc [target] [%_obj];

}
Note: you must use the clearstat, because otherwise cook’s "stat cache" will be incorrect.

8.16.2 See Also

cando, find_command, uptodate

Page 27 Page 27

Cook Cook

8.17 filter

This function requires one or more arguments. The first argument is a pattern, the second and later argu-

ments are strings to match against this pattern. The resulting wordlist contains those arguments which

matched the pattern given as the first argument.

8.17.1 Example

Expression Result

[filter %.c a.c a.o] a.c

[filter %.cc a.c a.o]

8.17.2 See Also

filter_out

8.18 filter_out

This function requires one or more arguments. The first argument is a pattern, the second and later argu-

ments are strings to match against this pattern. The resulting wordlist contains those arguments which did

not match the pattern given as the first argument.

8.18.1 Example

Expression Result

[filter %.c a.c a.o] a.o

[filter %.cc a.c a.o] a.c a.o

8.18.2 See Also

filter

8.19 find_command

This function requires at least one argument, being the names of commands to search for in $PATH. The

resulting word list contains either "" (false) or a fully qualified path name for each command given.

8.19.1 Example

Some systems require ranlib(1) to be run on archives, and some do not. Here is a simple way to test:

ranlib = [find_command ranlib];

%.a: [%_obj]
{

if [exists [target]] then
rm [target]

set clearstat;
ar qc [target] [%_obj];
if [ranlib] then

[ranlib] [target];
}

8.19.2 See Also

cando, exists, uptodate

Page 28 Page 28

Cook Cook

8.20 findstring

The findstring function is used to match a fixed string against a set of strings. This function takes at least

one argument. The first argument is the fixed string, the second and subsequent arguments are matched

against the first. The result contains one word for each of the second and subsequent arguments, each will

either be the empty string (false) or the string to be matched, it a match was found.

8.20.1 Example

Expression Result

[findstring a a b c] a "" ""

[findstring a b c] "" ""

Quotes are for clarity, to emphasize the empty strings. Because the empty string is "false", this can be used

in an if statement:

if [findstring fish [sources]] then
sources = [sources] hook.c;

8.20.2 See Also

match, match_mask, subst, patsubst

8.21 fromto

This function requires at least two arguments. Fromto gives the user access to the wildcard transformations

available to cook. The first argument is the "from" form, the second argument is the "to" form. All other

arguments are mapped from one to the other.

8.21.1 Example

Given a list of C sources files, generate a list of object files as follows:

obj = [fromto %.c %.o [src]];

8.21.2 See Also

filter, filter_out, subst

8.22 getenv

Each argument is treated as the name of an environment variable. The result is the value of each argument

variable, or "" if it does not exist.

8.22.1 Example

To read the value of the HOME environemnt variable:

home = [getenv HOME];

Values of variables are not automagically set from the environment, you must set each one explicitly:

cc = [getenv CC];
if [not [cc]] then

cc = gcc;

8.22.2 See Also

find_command

Page 29 Page 29

Cook Cook

8.23 glob

Each argument is treated as a sh(1) file name pattern, and expanded accordingly. The resulting list of file-

names is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequence /* is a comment introducer, and is a frequent source of problems when com-

bined with the glob function. Remember to quote glob arguments which needs this character sequence.

8.23.1 Example

To find the sources in the current directory:

src = [glob *.c];
obj = [fromto %.c %.o [src]];

8.23.2 See Also

filter, filter_out

8.24 head

This function requires zero or more arguments. The wordlist returned is empty if there were no arguments,

or the first argument if there were arguments.

8.24.1 Example

You can iterate along a list using the loop statement combined with the head and tail functions:

dirs = a b c d;
src = ;

tmp = [dirs];
loop
{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then

loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]/*.c];

}
More efficient ways exist to do this, this an example only.

8.24.2 See Also

count, glob, fromto, prepost, tail, word

Page 30 Page 30

Cook Cook

8.25 Home

The home function is used to find the home directory of the named users. You may name more than one

user. If no users are named, it returns the home directory of the current user.

8.26 if

This function requires one or more arguments, the arguments before the "then" word are used as a condi-

tion. If the condition is true the words between the "then" word and the "else" word are the result, other-

wise the words after the "else" word are the value. The "else" clause is optional. There is no way to escape

the "then" and "else" words.

8.26.1 Caveat

It is often clearer to use the if statement than this function.

8.27 in

This function requires one or more arguments. The wordlist returned is a single word: "1" (true) if the first

argument is equal to any of the later ones; "" (false) if not.

This function can also be used for equality testing, just use a single element in the set.

8.27.1 Example

Frequently seen in conditional parts of recipes:

%: [%_obj]
{

[cc] -o [target] [%_obj];
if [in [target] [private]] then

chmod og-rwx [target];
}

8.27.2 See Also

stringset

8.28 join

The join function is used to join two sets of strings together, element by element. The argument list must

contain an even number of arguments, with the first have joind pair-wise with the last half. There is no

marker of any kind between the lists, so the user needs to ensure they are both the same length.

8.28.1 Example

Expression Result

[join a b c d] ac db

[join a b] ab

8.28.2 See Also

catenate, basename, suffix

Page 31 Page 31

Cook Cook

8.29 match_mask

This function requires one or more arguments. The first argument is a pattern, the second and later argu-

ments are strings to match against this pattern. The resulting wordlist contains those arguments which

matched the pattern given as the first argument.

8.29.1 Example

Expression Result

[match_mask %.c a.c a.o] a.c

[match_mask %.cc a.c a.o]

8.29.2 See Also

filter-out

8.30 matches

This function requires one or more arguments. The first argument is a pattern, the second and later argu-

ments are strings to match against the pattern. The resulting wordlist contains "" (false) if did not match

and "1" (true) if it did.

8.30.1 Example

This function may be used to test for strings which have a particular form:

if [matches %1C%2 [version]] then
cc_flags = [cc_flags] -DDEBUG

8.30.2 See Also

filter, filter-out

8.31 mtime

This function requires one argument, the name of a file to fetch the last-modified time of. The resulting

wordlist is "" (false) is the file does not exist, or a string containing a (sortable) representation of the date

and time the files was last modified.

8.31.1 See Also

exists, sort_newest

8.32 not

This function requires zero or more arguments, the value to be logically negated. It returns "1" (true) if all

of the arguments are "" (false), or there are no arguments; and returns "" (false) otherwise. This is symmet-

ric with the definition of true and false for if.

8.32.1 Example

This is often seen in recipes:

%1/%0%2.o: %1/%0%2.c
{

if [not [exists [dirname [target]]]] then
mkdir -p [dirname [target]]

set clearstat;
[cc] [cc_flags] -I%1 %1/%0%2.;
mv %2.o [target];

}
Note that "%0" matches zero or more whole filename portions, including the trailing slash. See the chapter

on pattern matching for more information.

8.32.2 See Also

and, or

Page 32 Page 32

Cook Cook

8.33 operating_system

This function requires zero or more arguments. The resulting wordlist contains the values of various

attributes of the operating system, as named in the arguments. If no attributes are named, "system" is

assumed. Below is a list of attributes:

system The name of the operating system cook presently being run under. For example: if you

were running on SunOS 4.1.3, this would return "SunOS".

release The specific release of operating system, within name, cook is presently being run under.

For example: if you were running on SunOS 4.1.3, this would return "4.1.3".

version Version information. For SunOS 4.1.3, this would return the kernel build number, for

other systems it is often the kernel patch release number.

machine The name of the hardware cook is presently running on. For example: If you were run-

ning on SunOS 4.1.3 this would return "sun4" or similar.

This function may be abbreviated to "os".

8.33.1 Example

This function is usually used to determine the architecture (either system or machine):

arch=[os system]-[os release]-[os machine];
if [matches SunOS-4.1%1-sun4%2 [arch]] then

arch = sun4;
else if [matches SunOS-5.%1-sun4%2 [arch]] then

arch = sun5;
else if [matches SunOS-5.%1-i86pc [arch]] then

arch = sun5pc;
else if [matches ConvexOS-%1-%2 [arch]] then

arch = convex;
else

arch = unknown;

8.33.2 Caveat

This function is implemented using the uname(2) system call. Some systems do not implement this cor-

rectly, and therefore this function is less useful than it should be, and needs the pattern match appropach

used above.

8.34 Options

This functions takes no arguments. The results is a complete list of cook options, exactly describing the

current options setting. This intended for use in constructing recursive cook invokations.

The option setting generated are a combination of the command line options used to invoke cook, the con-

tents of the COOK environment variable, the results of the ‘‘set’’ command and the various ‘‘set’’ clauses.

8.34.1 Example

The top level cookbook for a recursive project structure can be as follows:

%:
{

dirlist = [dirname [glob ’*/Howto.cook’]];
loop
{

dir = [head [dirlist]];
if [not [dir]] then
loopstop;
dirlist = [tail [dirlist]];

cd [dir]\; cook [options] %;

Page 33 Page 33

Cook Cook

}
}

/*
* This recipe sets the default.
* It doesn’t actually do anything.
*/
all:;

Please note the % hiding on the end of the nested cook command, this is how the target is communicated to

the nested cook.

8.34.2 See Also

The supplied ‘‘recursive’’ cookbook does exactly this. In order to use it, you need a Howto.cook file con-

taining the single line

#include "recursive"

8.35 or

This function requires at least two arguments, upon which it forms a logical disjunction. The value

returned is "1" (true) if any one of the arguments is not "" (false), otherwise "" (false) is returned.

8.35.1 See Also

and, not

8.36 pathname

The function requires one or more arguments, being files names to be replaced with their full path names.

8.36.1 Example

Relative names are made absolute:

pwd = [pathname .];

8.36.2 See Also

dirname, entryname

8.37 patsubst

This function requires at least two arguments. Patsubst gives the user access to the wildcard transforma-

tions available to cook. The first argument is the "from" form, the second argument is the "to" form. All

other arguments are mapped from one to the other.

8.37.1 Example

Given a list of C sources files, generate a list of object files as follows:

obj = [patsubst %.c %.o [src]];

8.37.2 See Also

filter, filter_out, subst

See the pattern matching chapter for more information about patterns.

Page 34 Page 34

Cook Cook

8.38 prepost

This function must have at least two arguments. The first argument is a prefix and the second argument is a

suffix. The resulting word list is the third and later arguments each given the prefix and suffix as defined by

the first and second arguments.

8.38.1 See Also

addprefix, addsuffix, patsubst, subst

8.39 quote

Each argument is quoted by single quotes, with special characters escaped as necessary.

8.39.1 See Also

collect, execute

8.40 resolve

This builtin function is used to resolve file names when using the search_list variable to locate files. This

builtin function produces resolved file names as output. This is useful when taking partial copies of a

source to perform controlled updates. The targets of recipes are always cooked into the current directory.

8.40.1 Example

This function is used in cookbooks which use the search_list functionality:

search_list = . baseline;

%.o: %.c
{

[cc] [cc_flags] [addprefix -I [search_list]] [resolve %.c];
}

8.41 shell

The arguments are interpreted as a command to be passed to the operating system. The result is one word

for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.41.1 Example

Read the date and time and assign it to a variable:

now = [shell date];
Do not use the shell function to expand a filename wildcard, used the [wildcard] function instead.

8.41.2 See Also

collect_lines, execute, wildcard

Page 35 Page 35

Cook Cook

8.42 sort

The arguments are sorted lexicographically. Duplicates are not removed.

8.42.1 See Also

sort_newest

8.43 sort_newest

The arguments are sorted by file last-modified time, youngest to oldest. File names are resolved first (see

the resolve function, below). Absent files will be sorted to the start of the list.

8.43.1 Example

This function is often used to "shorten the wait" when building large project, so that the file you edited most

recently is recompiled almost immediately:

src = [glob *.c];
obj = [sort_newest [fromto %.c %.o [src]]];

8.43.2 See Also

fromto, glob, sort

8.44 Split

The split function is used to split strings into multiple strings, given the separator. This function requires at

least one argument. The first argument is the separator character, the second and subsequent arguments are

to be separated. The result is the separated strings, each as a separate word.

8.44.1 Example

Expression Result

[split : foo:bar:baz] foo bar baz

[split " " "New York"] New York

Each of the words in the result is a separate string.

8.44.2 See Also

unsplit, join, catenate, strip

8.45 stringset

Logical operations are performed on sets of strings. These include conjunction (implicit), disjunction (*)

and difference (-).

8.45.1 Example

Expression Result

[stringset a b a] a b

[stringset a b c * a] a

[stringset a b c - a] b c

The can be very useful in constructing lists of source files:

src = [stringset [glob "*.[cyl]"] - y.tab.c lex.yy.c];

8.45.2 See Also

filter, filter_out, glob, in, patsubst, subst

Page 36 Page 36

Cook Cook

8.46 Strip

The strip function is used to remove leading and trailing white space from words. Internal sequences of

white space are replaced by a single space.

8.46.1 Example

Expression Result

[strip " " "foo " " bar"] "" foo bar

[strip " really big "] "really big"

8.46.2 See Also

split

8.46.3 subst

The subst function is used to perform string substitutions on its arguments. This functinm requires at least

two arguments. The first argument is the "from" string, the second argument is the "to" string. All occur-

reneces of "from" are replaced with "to" in the third and subsequent arguments.

8.46.4 Example

This is a litteral replacement, not a pattern replacement:

Expression Result

[subst buffalo cress water.buffalo] water.cress

[subst .c .o test.c] test.o

[subst .c .o stat.cache.c] stat.oache.o

Note that last case: it is not selective.

8.46.5 See Also

patsubst, filter, filter_out

8.47 suffix

The suffix function treats each argument as a filename, and extracts the suffix from each. If the filename

contains a period, the suffix is everything starting with the last period. Otherwise, the suffix is the empty

string (as opposed to nothing at all).

8.47.1 Example

Expression Result

[suffix a.c foo b.y] .c "" .y

[suffix stat.cache.c] .c

[suffix .eric] ""

Quotes used for clarity.

The suffix functions in this way to allow sensable results when using the join function to re-unite filenames

dismembered by the basename and sufix functions.

8.47.2 See Also

basename, dirname, entryname, join, patsubst

Page 37 Page 37

Cook Cook

8.48 tail

This function requires zero or more arguments. The word list returned will be empty if there is less than

two arguments, otherwise it will consist of the second and later arguments.

8.48.1 See Also

count, head, word

8.49 Unsplit

The unsplit function is used to glue strings together, using the specified glue. The first argument is the text

to go between each of the second and subsequent arguments.

8.49.1 Example

Expression Result

[unsplit ":" one two three] "one:two:three"

[unsplit " " four five six] "four five six"

The quotes are necessary to isolate characters such as colon and space which cook would normally treat

differently.

8.49.2 See Also

split, catenate, prepost

8.50 upcase

This function requires one or more arguments, words to be forced into upper case.

8.51 downcase

This function requires one or more arguments, words to be forced into lower case.

8.51.1 Example

Expression Result

[upcase FOO] FOO

[upcase Bar] BAR

[upcase baz] BAZ

8.51.2 See Also

downcase

8.52 uptodate

This function requires one or more arguments, filenames to be brought up-to-date. The result are true ("1")

if no error occurred, or false ("") if some error occurred.

8.52.1 See Also

cando

Page 38 Page 38

Cook Cook

8.53 wildcard

Each argument is treated as a sh(1) file name pattern, and expanded accordingly. The resulting list of file-

names is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

8.53.1 Example

To find the sources in the current directory:

src = [wildcard *.c];
obj = [patsubst %.c %.o [src]];

8.53.2 See Also

filter, filter_out, patsubst

8.54 word

The word function is used to extract a specific word from a list of words. The function requires at least one

argument. The first argument is the number of the word to extract from the wordlist. The wordlist is the

second and subsequent arguments. An empty list will be returned if you ask for an element off the end of

the list.

8.54.1 Example

Expression Result

[word 1 one two three] one

[word 2 one two three] two

[word 3 one two three] three

[word 5 one two three]

The last element of a list of words may be extracted as:

last = [word [count [list]] [list]];

8.54.2 See Also

count, head

8.55 words

This function requires zero or more arguments. The result is a word list of one word containing the (deci-

mal) length of the argument word list.

8.55.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:

echo There are [words [files]] files.;
echo The last file is [word [words [files]] [files]].;

8.55.2 See Also

head, tail, word

Page 39 Page 39

Cook Cook

9. Predefined Variables

A number of variables are defined by cook at run-time.

9.1 need

The ingredients of the recipe currently being cooked.

9.2 search_list

This variable may be set to a list of directories to be searched for targets and ingredients. This list is ini-

tially the current directory (.) and will always have the current directory prepended if it is not present. This

is useful when taking partial copies of a source to perform controlled updates. Use the resolve builtin func-

tion to determine what file name cook actually found. The targets of recipes are always cooked into the

current directory.

9.3 self

The name cook was inv oked as, usually "cook". Be careful what you call cook, because anything with the

string "cook" in it will be changed, including (but not limited to) file suffixes and environment variable

names.

9.4 target

The target of the recipe currently being cooked. Specifically, the target which caused the recipe to be

invoked.

9.5 targets

The targets of the recipe currently being cooked. This includes all targets of the recipe, should there be

more than one.

9.6 younger

The subset of the ingredients of the recipe currently being cooked which are younger than the target.

9.7 version

The version of cook currently executing.

Page 40 Page 40

Cook Cook

10. Actions when Cooking

This section describes what cook does when you ask it to cook something.

Cook performs the following actions in the order stated.

10.1 Scan the COOK Environment Variable

The COOK environment variable is looked for. If it is found, it is treated as if it consisted of cook com-

mand line arguments. Only the -Help option is illegal. This could result is very strange behavior if used

incorrectly.

This feature is supplied to override cook’s default with your own preferences.

10.2 Scan the Command Line

The command line is scanned as defined in chapter 3.

10.3 Locate the Cookbook

The current directory is scanned for the cookbook. Names which a cookbook may have include

howto.cook Howto.cook .howto.cook

how.to.cook How.to.cook .how.to.cook

cookfile Cookfile .cookrc

cook.file Cook.file .cook.rc

The first so named file found in the current directory will be used. The order of search is not defined. You

are strongly advised to have just one of these name forms in any directory. The name Howto.cook is the

preferred form.

10.4 Form the Listing Filename

The listing file, if not explicitly named in the environment variable or on the command line, will be the

name of the cookbook, with any suffix removed and ’.list’ appended.

10.5 Create the Listing file

The listing file is created. If cook is executing in the background, or the -NoTTy option has been specified,

stdout and stderr will be redirected into the listing file. If cook is executing in the foreground, and the

-NoTTy option has not been specified, stdout and stderr will be redirected into a pipe to a tee(1) command;

which will, in turn, copy the output into the named file.

A heading line with the name of the file and the date, is generated.

10.6 Scan the Cookbook

When cook reads the cookbook it evaluates all of the statements it finds in it. Usually these statements

instantiate recipes, although other things are possible.

Recipes contain statements that are not evaluated immediately, but which are remembered for later execu-

tion when cooking a target. The meaning of a cookbook is defined in chapter X.

10.7 Determine targets to cook

If no target files are named on the command line, the targets of the first defined explicit or ingredients

recipe. It is an error if this is none.

10.8 Cooking a Target

Each of the targets, in the order given, are cooked.

To cook a target each the following steps is performed in the order given:

1. Cook scans through the instantiated ingredients recipes in the order they were defined. All ingredi-

ents recipes with the target in their target list are used.

Page 41 Page 41

Cook Cook

If a recipe is used, then any ingredients are recursively cooked. If any of the ingredients are

younger than the target, all other explicit or implicit recipes with the same target will be deemed to

be out of date.1

2. Cook then scans through the instantiated explicit recipes in the order they were defined. All explicit

recipes with the target in their target list are used.

If a recipe is a used, the ingredients are recursively cooked. If any ingredients are out of date or the

target does not yet exist (or the "forced" flag is set in the recipe’s set clause) the recipe body will be

performed. If a recipe has no ingredients, it will not be performed, unless the target does not yet

exist, or it is forced.

3. If the target was not in the target list of any explicit recipe, cook then scans the instantiated implicit

recipes in the order they were defined.

Implicit recipe targets and ingredients may contain a wildcard character (%), which is why they are

implicit. When expressions are evaluated into word lists in an implicit recipe, any word containing

the wildcard character (%) will be expanded out by the current wildcard expansion.

If the target matches a pattern in the targets of an implicit recipe, it is a candidate. Each ingredient

of a candidate recipe is recursively cooked. If any ingredient cannot be cooked, then the implicit

recipe is not used. If all ingredients can be cooked, then the implicit recipe is used.

If an implicit recipe is a used, the forced ingredients are recursively cooked. It is an error if a forced

ingredient cannot be constructed. After the forced ingredients are constructed, the recipe body is

performed.

Only the first implicit recipe to get to this point is used. The scan stops at this point.

4. If the target is not the subject of any ingredients or explicit recipe, and no implicit recipes can be

applied, then two things can happen.

• If the file exists, then it is up to date, or

• If the file does not exist then cook doesn’t know how.

If a command in the body of any recipe fail, cook will not that body any further, and will not perform the

body of any recipe for which the target of the failed actions was an ingredient, directly or indirectly.

Cook will trap recursive looping of targets.

• If the file exists, the it is up to date, or

• If the file does not exist then cook doesn’t know how.

10.9 File Status

Cook determines the time a file was last modified by asking the operating system. Because this operation

tents to be performed frequently, cook maintains a cache of this information, rather than make redundant

calls to the operating system. Because this information is cached, it is possible for cook’s memory of a

file’s last-modified time to become inconsistent with the file’s actual last-modified time. In particular, cook
doe not ask the operating system for the "new" last-modified time of a recipe target once a recipe body is

completed. Careful use of the set clearstat clause will generally prevent this. For example, the fol-

lowing recipe needs to create a directory when writing its output:

bin/%: [%_obj]
{

if [not [exists bin]] then
mkdir bin;

[cc] -o [target] [need];
}

1. A target which does not exist yet is considered to be infinitely ancient, and thus everything is younger than it.

Page 42 Page 42

Cook Cook

If there were several programs being cooked, e.g. bin/foo and bin/bar, the second time cook performed the

recipe, it would erroneously attempt to make the bin directory a second time - contrary to the test. This is

because [exists bin] used the cache, and nothing tells cook that the cache is now wrong. The recipe should

have been written

bin/%: [%_obj]
{

if [not [exists bin]] then
mkdir bin

set clearstat;
[cc] -o [target] [need];

}
which tells cook that it should remove any files named in the mkdir command from the cache.

An alternative way of performing the above example is to the the mkdir recipe flag:

bin/%: [%_obj]
set mkdir

{
[cc] -o [target] [need];

}
This flag instructs cook to create the directory for the target before running the recipe body. There is a sim-

ilar unlink flag, which unlinks the targets of the recipe before running the recipe body. These two flags take

care of most, but not all, uses of the clearstat flag.

A second mechanism used by cook to determine the last-modified times of files is a file fingerprint. This is

a cryptographically strong hash of the contents of a file. The chances of two different files having the same

fingerprint is less than 1 in 2**200. If cook notices that a file has changed, because its last-modified time

has changed, a fingerprint is taken of the file and compared with the remembered fingerprint. If the finger-

prints differ, the file is considered to be different. If the fingerprints match, the file is considered not to have

changed.

This description of fingerprints is somewhat simplified, the actual mechanics depends on remembering two

different last-modified times, as well as the fingerprint, in a file called .cook.fp in the current directory.

Fingerprinting can cause some surprises. For example, when you use the touch(1) command, cook will

often fail to do anything, and report instead that everything is up-to-date. This is because the fingerprint

has not changed. In this situation, either remove the .cook.fp file, or use the -No_FingerPrint command

line option.

Page 43 Page 43

Cook Cook

11. Option Precedence

At various points in the description there are a number of flags and options with the same, or similar,

names. These are in fact different levels of the same option.

The different levels, from highest precedence to lowest, are as follows.

Error This level is used to disable undesirable side effects when an error occurs.

Command Line Options specified on the command line override almost everything. There are some iso-

lated cases where there is no equivalent command line option. They are in scope for the

entire cook session.

Execute When a command attached to a recipe is executed, the flags in the ’set’ clause are given

this precedence. They are in scope for the duration of the execution of the command they

are bound to.

Recipe When a recipe is considered for use, the flags in the ’set’ clause are given the precedence.

They are in scope for the evaluation of the ingredients names and the execution of the

recipe body; they are not in scope while cooking the ingredients.

Cookbook When a ’set’ statement is encountered in the cookbook, the option are given this priority.

They are in scope until the end of the cook session.

Environment Variable

When the options in the COOK environment variable are set, they are given this prece-

dence. They are in scope for the entire cook session.

Default All options have a default setting. The defaults noted in chapter 3 are given this prece-

dence. They are in scope for the entire cook session.

Page 44 Page 44

Cook Cook

12. File name patterns

The tough part about designing a pattern matcher for something like cook is that the patterns must be

reversible. That is, it must be possible to use the same string both as a pattern to be matched against and as

a template for building a string once a pattern has matched. Rather like the difference between the left and

right sides of an editor search-and-replace command in an editor using the same description for both the

search pattern and the replace template. This is why classic regular expressions have not been used. They

tend to be slow to match, too.

This matcher has eleven match "fields", referenced as % and %0 to %9. The % character can be escaped

as %%. The % and %1 to %9 forms match any character except /. The %0 form matches all characters,

but must be either empty, or hav e whole path components, including the trailing / on each component.

A few examples will make this clearer:

string does not match

%.c snot/fred.c

%1/%2.c etc/boo/fred.c

string matches setting

%.c fred.c %="fred"

%1/%2.c snot/fred.c %1="snot"

%2="fred"

%0%5.c fred.c %0=""

%5="fred"

%0%6.c snot/fred.c %0="snot/"

%6="fred"

%0%7.c etc/boo/fred.c %0="etc/boo/"

%7="fred"

/usr/%1/%1%2/%3.%2%4 /usr/man/man1/fred.1x %1="man"

%2="1"

%3="fred"

%4="x"

The %0 behaviour is designed to allow patterns to range over subtrees in a controlled manner. Note that

the use of this sort of pattern in a recipe will result in deeper searches than the naive recipe designer would

expect.

Page 45 Page 45

Cook Cook

13. Supplied Cookbooks

A number of cookbooks are supplied with cook. To make use of one, a preprocessor directive of the form

#include "whichone"
must appear the the start of your cookbook.

Cook does not have any "builtin" recipes. All recipes are stored in text files, so they are more easily read,

understood, copied, hacked or corrected. The supplied cookbooks live in the /usr/local/lib/cook directory.

You may supply your own "system" recipes, by placing cookbooks into a directory called $HOME/.cook or

using the -Include command line option, possibly in your $COOK environment variable.

13.1 as

This cookbook defines how to use the assembler.

13.1.1 recipes

%.o: %.s Construct object files from assembler source files.

13.1.2 variables

as The assembler command. Not altered if already defined.

as_flags Options to pass the assembler command. Not altered if already defined. The default is

empty.

as_src Assembler source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_clean Files which may be removed from the current directory in a clean target.

13.2 c

This cookbook describes how to work with C files. Include file dependencies are automatically determined.

13.2.1 recipes

%.o: %.c Construct object files form C source files, with automatic include file dependency detec-

tion.

%.ln: %.c Construct lint object files from C source files, with automatic include file dependency

detection.

13.2.2 variables

c_incl The C include dependency sniffer command. Not altered if already defined.

cc The C compiler command. Not altered if already defined.

lint The lint command. Not altered if already defined.

cc_flags Options to pass to the C compiler command. Not altered if already defined. The default

is "-O".

cc_include_flags Options passed to the C compiler and c_incl controlling include file searching. Not

altered if already defined. The default is empty.

cc_src C source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if neces-

sary).

Page 46 Page 46

Cook Cook

dot_obj Object files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_clean Files which may be removed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if

necessary).

13.2.3 See Also

The ‘‘library’’ cookbook, for linking C sources into a library.

The ‘‘program’’ cookbook, for linking C sources into a program.

13.3 f77

This cookbook describes how to work with Fortran files.

13.3.1 recipes

%.o: %.f77 Construct object files form Fortran source files.

13.3.2 variables

f77 The Fortran compiler command. Not altered if already defined.

f77_flags Options to pass to the Fortran compiler command. Not altered if already defined. The

default is "-O".

f77_src Fortran source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_clean Files which may be removed from the current directory in a clean target.

13.3.3 See Also

The ‘‘library’’ cookbook, for linking Fortran sources into a library.

The ‘‘program’’ cookbook, for linking Fortran sources into a program.

13.4 g77

This cookbook is the same as the ‘‘f77’’ cookbook, but it sets the f77 variable to the GNU Fortran compiler,

g77.

Page 47 Page 47

Cook Cook

13.5 gcc

This cookbook is the same as the ‘‘c’’ cookbook, but it sets the cc variable to the GNU C compiler, gcc.

13.6 home

This cookbook defined where certain directories are, and some common uses of those directories, relative

to $HOME.

13.6.1 variables

home The current users’ home directory.

bin The directory to place program binaries into.

include The directory to place include files into.

lib The directory to place libraries into.

cc_include_flags The [include] directory is appended to the search options.

cc_link_flags The [lib] directory is appended to the search options.

13.7 lex

This cookbook describes how to work with lex files.

13.7.1 recipes

%.l: %.c Construct C source files from lex source files.

13.7.2 variables

lex The lex command. Not altered if already defined.

lex_flags Options to pass to the lex command. Not altered if already defined. The default is empty.

lex_src Lex source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_clean Files which may be removed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if

necessary).

Page 48 Page 48

Cook Cook

13.8 library

This cookbook defines how to construct a library.

If an include file (or files) are defined for this library, you will have to append them to [install] in your

Howto.cook file.

13.8.1 variables

all targets of the all recipe

install targets of the install recipe

me The name of the library to be constructed. Defaults to the last component of the path-

name of the current directory.

ar The archive command.

install targets of the install command. Only defined if the [lib] variable is defined.

13.8.2 recipes

all construct the targets defined in [all].

clean remove the files named in [dot_clean].

clobber remove the files name in [dot_clean] and [all].

install Construct the files named in [install]. Only defined if the [lib] variable is defined.

uninstall Remove the files named in [install]. Only defined if the [lib] variable is defined.

13.9 print

This cookbook is used to print files. It will almost certainly need to be changed for every site.

13.9.1 recipes

%.lw: %.ps Print a PostScript file.

%.lp: % Print a text file.

13.9.2 variables

lp The print command. Not altered if already defined.

lp_flags Options passed to the print command. Not altered if already defined. Defaults to empty.

13.10 program

This cookbook defines how to construct a program.

If your program uses any libraries, you will have to append them to [ld_libraries] in your Howto.cook file.

13.10.1 variables

all Targets of the all recipe.

install targets of the install recipe

ld The name of the linker command. Not altered if already defined. Set to the same as the

‘‘cc’’ variable if set, otherwise set to the same as the ‘‘f77’’ variable if set, otherwise set

to ‘‘ld’’.

ld_flags Not altered if already defined. The default is empty.

ld_libraries Options passed to the C compiler when linking, these are typically library search paths

(-L) and libraries (-l). Not altered if already defined. The default is empty.

Page 49 Page 49

Cook Cook

me The name of the program to be constructed. Defaults to the last component of the path-

name of the current directory.

13.10.2 recipes

all Construct the targets named in [all].

clean Remove the files named in [dot_clean].

clobber Remove the files named in [dot_clean] and [all].

install Construct the files named in [install]. Only defined if the [lib] variable is defined.

uninstall Remove the files named in [install]. Only defined if the [lib] variable is defined.

13.10.3 See Also

The ‘‘c’’ cookbook, for C sources.

The ‘‘f77’’ cookbook, for Fortran sources.

The ‘‘usr’’ or ‘‘usr.local’’ or ‘‘home’’ cookbooks, for defining install locations.

13.11 rcs

This cookbook is used to extract files from RCS.

13.11.1 recipes

%: RCS/%,v Extract files from RCS.

%: %,v Extract files from RCS.

13.11.2 variables

co The RCS checkout command.

co_flags Flags for the co command, default to empty.

13.12 recursive

This cookbook may be used to construct recursive cook direwctory structures, where the top-level cook-

book only invokes cookbooks in deeper directories.

All largets given to this cookbook result in all sub-directories containing a Howto.cook file having cook
invoked with the same target.

13.12.1 Recipes

The all recipe is defined, but it does nothing, it only exists to set the default target name.

Page 50 Page 50

Cook Cook

13.13 sccs

This cookbook is used to extract files from SCCS.

13.13.1 recipes

%: SCCS/s.% Extract files from SCCS.

%: s.% Extract files from SCCS.

13.13.2 variables

get The SCCS get command.

get_flags Flags for the get command, default to empty.

13.14 text

This cookbook is used to process text documents.

Include file dependencies are automatically detected. The requirements for various preprocessors are auto-

matically detected (eg eqn, tbl, pic, graf).

13.14.1 recipes

%.ps: %.t PostScript for generic *roff source.

%: %.t Straight text from *roff source.

13.14.2 variables

text_incl The text_incl command (finds include dependencies). Not altered if already set.

text_roff The text_roff command (finds preprocessor requirements). Not altered if already set.

roff_flags Arguments passed to text_roff, and indirectly to the *roff program. Not altered if already

set. Defaults to empty.

13.15 usr

This cookbook defined where certain directories are, relative to /usr.

13.15.1 variables

bin The directory to place program binaries into.

include The directory to place include files into.

lib The directory to place libraries into.

Page 51 Page 51

Cook Cook

13.16 usr.local

This cookbook defined where certain directories are, and some common uses of those directories, elative to

/usr/local.

.H 3 "variables"

bin The directory to place program binaries into.

include The directory to place include files into.

lib The directory to place libraries into.

cc_include_flags The [include] directory is added to the search options.

cc_link_flags The [lib] directory is added to the search options.

13.17 yacc

This cookbook describes how to use yacc.

You will have to add "-d" to the [yacc_flags] variable if you want %.h files generated.

If a y.output file is constructed, it will be moved to %.list.

13.17.1 recipes

%.c %.h: %.y Construct C source and header files from yacc source files. Applied if -d in [yacc_flags].

%.c: %.y Construct C source files from yacc source files. Applied if -d not in [yacc_flags].

13.17.2 variables

yacc_src Yacc source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if neces-

sary).

dot_clean Files which may be removed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if

necessary).

13.18 yacc_many

This cookbook describes how to use yacc. The difference with the "yacc" cookbook is that this cookbook

allows you to have more that one yacc generated parser in the same program, by using the classic sed(1)

hack of the output.

Page 52 Page 52

Cook Cook

14. Glossary

This document employs a number of terms specific to cook.

body A set of statements, usually commands, to be performed to cook the targets of a recipe

after the ingredients exist.

command A command is a list of words to be passed to the operating system to be executed.

cook When used as a verb, refers to the actions cook would perform to create a target, accord-

ing to some recipe.

cookbook A file containing input for cook, usually recipes.

explicit recipe An explicit recipe is one where the targets contain no patterns. That is, there are no per-

cent (’%’) characters in any of the targets.

fingerprint A cryptographically strong hash of the contents of a file, use to determine if the file con-

tents have changed.

flag A flag modifies the behaviour of a cook session, recipe or command.

forced ingredient A files which must exist before a target file of an implicit recipe may be cooked. The

inability to construct a forced ingredient is an error.

function A function is an action applied to a word list.

gate A gate is a condition which allows the conditional application of a recipe. The gate con-

dition is in addition to the requirement that the ingrediaents are cookable.

implicit recipe An implicit recipe is a recipe with patterns in the targets. That is, there is a percent (’%’)

character in at least one of the targets.

ingredient A files which must exist before a target file may be cooked. In an implicit recipe the

inability to construct of an ingredient means that the recipe will not be applied. In an

explicit recipe the inability to construct an ingredient is an error.

last-modified time

UNIX imbues files with several attributes. One of these is a time-stamp of when the file

was last modified. Usually this is when the file was last written to.

recipe A recipe consists of several parts.

1. A set of targets to be cooked,

2. A set of ingredients of those targets, and

3. An optional set of forced ingredients.

4. An optional set of flags.

5. An optional gate.

6. An optional body .

target The object of a recipe, a thing which is cooked.

touch UNIX imbues files with several attributes. One of these is a time-stamp of when the file

was last modified. Usually this is when the file was last written to, however it is possible

to simply adjust this attribute, rather than actually writing to the file; this is colloquially

known as touching a file.

variable A variable is a named place holder for a value. The value may be changed.

Page 53 Page 53

CONTENTS

1. Introduction .. 2

1.1 How to Use this Manual ... 2

2. Ancient History .. 3

3. License ... 4

4. Cook from the Outside ... 5

4.1 What can cook do for me? .. 5

4.2 What is cook doing? ... 5

4.3 What can cook always do? .. 5

4.4 If something goes wrong .. 5

5. Cook from a Cookbook ... 6

5.1 What does Cook do? ... 6

5.2 How do I tell Cook what to do? .. 6

5.3 Creating a Cookbook .. 7

6. The Command Line ... 8

6.1 Options .. 8

7. Cookbook Language Definition ... 11

7.1 Lexical Analysis ... 12

7.2 Preprocessor .. 13

7.3 Syntax Descriptions .. 15

7.4 Syntax and Semantics ... 16

8. Built-In Functions .. 23

8.1 addprefix ... 23

8.2 addsuffix .. 23

8.3 and ... 23

8.4 basename ... 24

8.5 cando ... 24

8.6 catenate ... 24

8.7 collect .. 25

8.8 collect_lines .. 25

8.9 count ... 25

8.10 defined ... 25

8.11 dir .. 26

8.12 dirname ... 26

8.13 downcase ... 26

8.14 entryname ... 27

8.15 execute .. 27

8.16 exists ... 27

8.17 filter ... 28

8.18 filter_out .. 28

8.19 find_command .. 28

8.20 findstring ... 29

8.21 fromto ... 29

8.22 getenv .. 29

8.23 glob ... 30

8.24 head ... 30

i

8.25 Home ... 31

8.26 if .. 31

8.27 in ... 31

8.28 join .. 31

8.29 match_mask .. 32

8.30 matches ... 32

8.31 mtime .. 32

8.32 not ... 32

8.33 operating_system .. 33

8.34 Options .. 33

8.35 or ... 34

8.36 pathname ... 34

8.37 patsubst ... 34

8.38 prepost ... 35

8.39 quote ... 35

8.40 resolve ... 35

8.41 shell ... 35

8.42 sort .. 36

8.43 sort_newest ... 36

8.44 Split ... 36

8.45 stringset ... 36

8.46 Strip ... 37

8.47 suffix ... 37

8.48 tail ... 38

8.49 Unsplit ... 38

8.50 upcase ... 38

8.51 downcase ... 38

8.52 uptodate ... 38

8.53 wildcard .. 39

8.54 word .. 39

8.55 words ... 39

9. Predefined Variables .. 40

9.1 need ... 40

9.2 search_list ... 40

9.3 self ... 40

9.4 target ... 40

9.5 targets .. 40

9.6 younger ... 40

9.7 version ... 40

10. Actions when Cooking .. 41

10.1 Scan the COOK Environment Variable .. 41

10.2 Scan the Command Line ... 41

10.3 Locate the Cookbook .. 41

10.4 Form the Listing Filename .. 41

10.5 Create the Listing file .. 41

10.6 Scan the Cookbook ... 41

10.7 Determine targets to cook ... 41

10.8 Cooking a Target ... 41

10.9 File Status ... 42

11. Option Precedence ... 44

12. File name patterns .. 45

ii

13. Supplied Cookbooks .. 46

13.1 as ... 46

13.2 c ... 46

13.3 f77 ... 47

13.4 g77 .. 47

13.5 gcc ... 48

13.6 home ... 48

13.7 lex ... 48

13.8 library .. 49

13.9 print ... 49

13.10 program ... 49

13.11 rcs .. 50

13.12 recursive .. 50

13.13 sccs .. 51

13.14 text .. 51

13.15 usr ... 51

13.16 usr.local ... 52

13.17 yacc ... 52

13.18 yacc_many .. 52

14. Glossary ... 53

iii

