
XF

Design and Implementation of a Programming Environment for

Interactive Construction of Graphical User Interfaces

Technische Universit�at Berlin

Institut f�ur Angewandte Informatik

Fachbereich 20 (Informatik)

Lehrgebiet Softwaretechnik

vorgelegt von:

Sven Delmas

gar�eld@cs.tu-berlin.de Abstract

XF is an integrated programming environment that supports the development of graphical user interfaces. The

described programming system enables developers who don't want to dive into the complex task of window system

programming, to construct sophisticated graphical applications in a very short time. XF takes advantage of Tk,

a Motif

TM

-like widget set that is accessible through Tcl, a very e�cient interpreted programming language. The

exibility of this approach allows to build or modify application programs while they are running. This makes it

possible to test the e�ect of modi�cations immediately without incurring costly recompilation cycles.

Many users of XF have reported that the tool is very easy to use, and allows rapid construction of graphical

interfaces. Nevertheless it does not restrict the developer when he wants to manipultate the graphical interface

in more detail. Support for libraries of reusable interface components and functions leads to further reductions of

the development time, and also supports a standardized look & feel. It is possible to merge external code into the

application, and to reuse pre-existing code.

Berlin, 19 March. 1993

1

Acknowledgements

I owe gratitude to many people who supported and inspired me when implementing the program

and writing this paper.

Special thanks to Wilfried Koch and Axel Mahler who both attended my work and made sug-

gestions for XF and the paper. Andreas Lampen, who also contributed many ideas, both for

the paper and for XF. Many people around the world who have used XF and reported bugs,

suggestions and comments on the program.

The BYO team, that developed BYO which was the trigger for the development of XF. This

program contains the basic concept for XF, and showed how easy it is to write a powerful

interface builder based upon Tcl/Tk.

Very special thanks to John Ousterhout, the inventor of Tcl/Tk. The power and
exibility of

these packages made the development of XF possible (and his answers to my questions and

suggestions).

My sister Britta. She corrected my numerous spelling errors, and my lousy English, partially

supported by ispell. And �nally a big (unnamed) soda pop producer, for providing the co�ein

that was necessary to keep my brain going (The choice of an old generation).

Sven Delmas

Contents

1 Introduction 6

1.1 Roadmap : 6

1.2 Why use an interface builder ? : 6

1.3 Why use Tcl/Tk ? : 7

1.4 Why use XF ? : 8

2 The Design of XF 9

2.1 Interface builders : 9

2.2 Existing interface builders : 10

2.3 The XF design : 12

3 Tcl/Tk 14

3.1 Tcl : 14

3.1.1 Syntax : 14

3.1.2 Datatypes : 14

3.1.3 Variables : 14

3.1.4 Commands : 15

3.1.5 Quoting : 15

3.2 Tk : 15

3.2.1 Widget classes : 15

3.2.2 Inserting widgets : 15

3.2.3 Widget commands : 16

3.2.4 Widget con�guration : 16

3.2.5 Geometry handling : 16

3.2.6 Other Tk commands : 18

3.2.7 XF relevant commands : 18

4 Using XF 20

4.1 The �rst steps : 20

4.1.1 Start : 20

4.1.2 Inserting widgets into the widget tree : 21

4.1.3 Layouting widgets : 22

4.1.4 Con�guring widgets : 22

4.1.5 Procedures : 25

4.2 Advanced features : 25

4.2.1 Templates : 25

4.2.2 Toplevel windows : 26

4.2.3 Source modules : 26

4.2.4 Levels for procedures and bindings : 27

2

CONTENTS 3

5 The Implementation of XF 29

5.1 The generated code : 30

5.2 XF constraints : 31

5.2.1 Restrictions : 31

5.2.2 Pitfalls : 32

5.3 Extending XF : 32

5.3.1 Supporting new widgets : 32

5.3.2 The procedure XFExternalInitProc : 33

5.3.3 XF startup �le : 33

5.3.4 Adding procedures named XFProc : 33

6 Conclusion 34

6.1 Epilogue : 34

6.2 Missing features : 34

A External Tools 36

A.1 Edge : 37

A.2 Editors : 38

A.2.1 TkEmacs : 38

A.2.2 Emacs : 38

A.2.3 vi : 38

A.3 ShapeTools : 39

A.3.1 Saving procedures : 39

A.3.2 Retrieving modules : 39

A.4 xfappdef : 40

A.5 xfhardcopy : 41

A.5.1 Hardcopy commands : 41

A.6 xfhelp : 42

A.6.1 Help pages : 43

A.7 xfpixmap : 44

A.8 xftutorial : 45

A.8.1 The script �les : 45

B XF User's Guide 46

B.1 Main : 47

B.1.1 XFProcMain : 47

B.2 File : 48

B.2.1 XFProcFileEnterTCL (Enter TCL code) : 48

B.2.2 XFProcFileInsert (Insert...) : 48

B.2.3 XFProcFileLoad (Load...) : 49

B.2.4 XFProcFileNew (New) : 49

B.2.5 XFProcFileQuit (Quit) : 50

B.2.6 XFProcFileSave (Save) : 50

B.2.7 XFProcFileSaveAs (Save as...) : 50

B.3 Con�guration : 51

B.3.1 XFProcConfAddCurrentItem : 51

B.3.2 XFProcConfBinding (Binding) : 51

B.3.3 XFProcConfBindingAll (Binding for all widgets) : 52

B.3.4 XFProcConfBindingClass (Binding for selected Class) : : : : : : : : : : : : : : : : : : 52

B.3.5 XFProcConfCon�gure : 52

B.3.6 XFProcConfGeometryDefault : 52

B.3.7 XFProcConfInsertTemplate : 52

B.3.8 XFProcConfInsertWidgetDefault : 52

B.3.9 XFProcConfInsertWidgetCon�g : 52

CONTENTS 4

B.3.10 XFProcConfLayout (Layout) : 53

B.3.11 XFProcConfPacking (Packing) : 54

B.3.12 XFProcConfParametersDefault (Parameters) : 54

B.3.13 XFProcConfParametersGeneral (Parameters (general)) : : : : : : : : : : : : : : : : : 55

B.3.14 XFProcConfParametersGroups (Parameters (widget groups)) : : : : : : : : : : : : : : 55

B.3.15 XFProcConfParametersSmall (Parameters (small)) : 56

B.3.16 XFProcConfParametersSpecial (Parameters (special)) : : : : : : : : : : : : : : : : : : 56

B.3.17 XFProcConfPlacing (Placing) : 56

B.4 Edit : 58

B.4.1 XFProcEditClearCut (Clear Cutbu�er) : 58

B.4.2 XFProcEditCopy (Copy) : 58

B.4.3 XFProcEditCut (Cut) : 58

B.4.4 XFProcEditDelete (Delete) : 58

B.4.5 XFProcEditLoadCut (Load Cutbu�er) : 58

B.4.6 XFProcEditLoadTemplate : 58

B.4.7 XFProcEditMakeAProc (Make a procedure) : 58

B.4.8 XFProcEditPaste (Paste) : 59

B.4.9 XFProcEditSaveCut (Save Cutbu�er) : 59

B.4.10 XFProcEditSaveCutAsTemplate (Save Template (cut bu�er)) : : : : : : : : : : : : : : 59

B.4.11 XFProcEditShowCut (Show Cutbu�er) : 59

B.5 Programming : 61

B.5.1 XFProcProgCommands (Commands) : 61

B.5.2 XFProcProgEditScript (Edit script) : 63

B.5.3 XFProcProgEndSrc (End source) : 63

B.5.4 XFProcProgErrors (Error status) : 63

B.5.5 XFProcProgGlobals (Global variables) : 64

B.5.6 XFProcProgProcs (Procedures) : 65

B.5.7 XFProcProgShowScript (Show script) : 66

B.5.8 XFProcProgStartupSrc (Startup source) : 66

B.5.9 XFProcProgWidgetTree (Widget tree) : 67

B.6 Misc : 68

B.6.1 XFProcMiscAliases (Aliases) : 68

B.6.2 XFProcMiscAppDefaults (Application defaults) : 68

B.6.3 XFProcMiscEdge (Widget tree (edge)) : 68

B.6.4 XFProcMiscHardcopy (Hardcopies) : 68

B.6.5 XFProcMiscModules (Module structure) : 69

B.6.6 XFProcMiscPixmaps (Pixmaps) : 70

B.6.7 XFProcMiscSaveEdge (Dump tree (/tmpPath/....grl)) : : : : : : : : : : : : : : : : : : 70

B.6.8 XFProcMiscTestProgram (Test program) : 70

B.7 Options : 71

B.7.1 XFProcOptionsBindings (Bindings) : 71

B.7.2 XFProcOptionsGeneral (General options) : 72

B.7.3 XFProcOptionsIconBar (Iconbar con�guration) : 74

B.7.4 XFProcOptionsInterpreter (Interpreter options) : 74

B.7.5 XFProcOptionsMenuBar (Menubar con�guration) : 74

B.7.6 XFProcOptionsPathFile (Path/�le names) : 75

B.7.7 XFProcOptionsSaveClassBindings (Save class bindings) : : : : : : : : : : : : : : : : : 77

B.7.8 XFProcOptionsSaveModuleList (Save module list) : 77

B.7.9 XFProcOptionsSaveOptions (Save options) : 77

B.7.10 XFProcOptionsSavePositions (Save window positions) : : : : : : : : : : : : : : : : : : 77

B.7.11 XFProcOptionsSource (Source options) : 78

B.7.12 XFProcOptionsVersion (Version control options) : 79

B.7.13 XFProcOptionsWindow (Window options) : 82

CONTENTS 5

B.8 Help : 84

B.8.1 XFProcHelpAbout (About) : 84

B.8.2 XFProcHelpHelp : 84

B.8.3 XFProcHelpTutorial (Tutorial) : 84

C Templates 85

C.1 Combined : 86

C.1.1 CanvasLS, CanvasRS : 86

C.1.2 EntryL, EntryLLS, EntryLS, EntryS : 87

C.1.3 HypertextLS, HypertextRS : 88

C.1.4 ListboxLS, ListboxRS : 89

C.1.5 PhotoLS, PhotoRS : 90

C.1.6 TextLS, TextRO, TextROLS, TextRORS, TextRS : 91

C.1.7 TkEmacsLS, TkEmacsRS : 92

C.2 Procedures : 93

C.2.1 AlertBox, AlertBoxFd, AlertBoxFile : 93

C.2.2 ClearList, ClearText : 94

C.2.3 ColorBox : 95

C.2.4 CursorBox : 96

C.2.5 FSBox : 97

C.2.6 FdInList, FileInList, FdInText, FileInText : 99

C.2.7 FontBox : 100

C.2.8 IconBar : 101

C.2.9 InputBox : 104

C.2.10 IsADir, IsAFile, IsASymlink : 106

C.2.11 KeysymBox : 107

C.2.12 MakeMButton : 108

C.2.13 MenuBar : 109

C.2.14 ReadBox : 111

C.2.15 TextBox, TextBoxFd, TextBoxFile : 112

C.2.16 YesNoBox : 113

C.2.17 �leselect : 114

C.3 Widgets : 115

C.3.1 MListbox : 115

C.3.2 Menubar : 116

C.3.3 OptionButtonE, OptionButtonL : 117

C.3.4 Popup1, Popup2, Popup3, PopupC-1, PopupM-1, PopupS-1 : : : : : : : : : : : : : : : 118

Chapter 1

Introduction

Developing graphical user interfaces using graphical environments like the X window system

TM

provides the

programmer with high
exibility, much functionality, but often big confusion as well. Facing thousands of

pages of documentation, most programmers decide to leave the programming of graphical user interfaces to

\experts". Even these experts often use only parts of the functionality the window system o�ers, and above

all, developing a graphical user interface is a time consuming task.

While everybody wants a graphical interface for his applications, as they make the handling easier and

reduce the learning e�ort, nobody likes implementing applications with graphical interfaces. A programmer

who implements a graphical user interface by hand, writes or changes some interface code, compiles and tests

it. Afterwards, he often �nds out that the changes had the wrong impact on the interface. The programmer

has to handle numerous variables and statements containing widget initialization, con�guration and geometry

information. The resulting application code mainly implements the interface, and the functionality of the

application is thrust into the background. Studies have shown that about 50 to 80 per cent of the code of

an application with a graphical interface are used to implement the graphical interface.

The introduction of OOP techniques for interface building makes the implementation of graphical inter-

faces much easier. Toolkits like Interviews[10], Theseus++[4] and others can drastically reduce the complex-

ity and size of the interface code. But for many developers, even this reduced complexity of the interface

code is not acceptable. They don't want to care about the implementation of the interface, they want to

work on the application itself. For those users, a graphical interface builder can be the solution.

1.1 Roadmap

The �rst chapter, describes the motivation behind the development of XF and the aim of this thesis. The

second chapter describes the design of XF and compares it with other interface builders. The third chapter

chapter provides a brief introduction into Tcl/Tk. Users that are familiar with Tcl/Tk can skip this chapter.

Subsequently the concepts and the general handling of XF is described, followed by a short view inside of XF.

Finally, there is a conclusion, containing a short overview of the current situation and the future development.

The appendix contains a description of the external Tools which are used by XF, a explanation of the dialog

components that are provided and a description of all templates that are part of the XF distribution.

1.2 Why use an interface builder ?

One way to make the development of graphical interfaces more attractive and more e�cient is to use a

graphical tool that supports this development process. Such a tool should provide access to the facilities

of a widget set combined with an easy way to handle those widgets, and to implement the application's

functionality.

The design of a \good" graphical interface is a hard job. And writing the interface code \by hand" changes

the focus of the developer from the implementation of the application's functionality to the implementation

6

CHAPTER 1. INTRODUCTION 7

of the application's interface. The main work (and the biggest piece of code) when developing a program with

a graphical user interface is often writing the interface code. The code that implements the functionality of

the program is only a fraction of the resulting code (as written above, studies have shown that about 50-80

per cent of the application's code with a graphical interface are used to implement the graphical interface).

The complexity is, among other reasons, caused by geometry dependencies between widgets and numerous

widget parameterizations that were often found by trial and error instead of design. Changing this code often

leads to trouble and sometimes to a re-implementation. This makes it hard to react to changed requirements

that occur during the development of the application.

A frequently chosen way to get a more
exible handling of the design and implementation of a graphical

user interface is the use of graphical interface builders. These tools usually provide access to a certain widget

set. The development is supported by features like:

� Widget creation.

The di�erent widget types can be inserted into the resulting interface by moving (dragging) them into

the workspace.

� Widget parameterization.

For the various widget types, special con�guration dialogs give access to the widget parameters (like

colors, fonts etc.).

� Widget layout.

The layout of the widgets can be modi�ed interactively.

� Implementation of application functionality

Code implementing the functionality of the program can be written and bound to widgets.

The �rst three topics mainly describe the design and implementation of the static aspects for the resulting

application. The functionality supporting this can be found in almost every interface builder. But an

interface builder must also support the user at the implementation of the functionality and, more generally,

the dynamic behavior of the application program. Without a way to implement functionality, the interface

builder is more a prototype tool than an real interface builder. In fact, the ability to implement functionality

makes an interface builder more an application builder for graphical applications.

The support of the de�nition of dynamic aspects of the user interface is often unsatisfying. It may happen

that the re-usability of the generated code is restricted (caused by the fact that the automatically generated

code may not be changed by the user), or testing of the created functionality is only possible after a time

consuming building process.

It is important that the resulting code is fast and simple to be handled. This means it should be possible

to adapt the code by hand, without losing the support of the interface builder for this program. The turn

around time should not be too long, too. A change in the application program should not cause a long

rebuild. Instead, the change must be visible and operational immediately. One (costly) way to get short

turn around times is to always buy the most recent hardware. Another way can be to use... Tcl/Tk in

combination with XF.

1.3 Why use Tcl/Tk ?

Tcl/Tk is a package containing a shell-like interpreted language (Tcl), and a Motif

TM

-like

1

widget set

(Tk). It runs under various UNIX

TM 2

environments, and is based upon the X window system

TM3

[19].

The handling of Tcl as an implementation language is very easy, and Tk provides an easy access to the

implementation of graphical user interfaces. Compared to interfaces implemented with traditional widget

sets, the code written in Tk is usually much smaller, while the performance is in most cases at least as good

1

MOTIF is a registered trademark of the Open Software Foundation

2

UNIX is a registered trademark of AT&T Bell Laboratories

3

X Window System is a registered trademark of The Massachusetts Institute of Technologie

CHAPTER 1. INTRODUCTION 8

as with the traditional widget set. Another advantage is that Tcl/Tk code is interpreted, so the turn around

time is zero. Changes to Tcl/Tk code (including the graphical interface) can be made while the application

code is interpreted.

Functionality not available under Tcl/Tk, or very speed dependent tasks can be added to Tcl/Tk using

the very simple C-interface. New widgets are also added by this mechanism. Furthermore there already

exists a wide range of additional widgets.

The community of Tcl/Tk users is constantly growing. Already, a great number of programs is freely

available, and there is an increasing number of commercial applications, as well.

1.4 Why use XF ?

XF is a programming environment for Tcl/Tk applications. Although the usage of Tcl/Tk is very simple,

there is a big number of options and commands that have to be mastered. Using a program like XF to

compose and con�gure the interface of an application can reduce the development time, and result in better

code. Currently, XF only supports the development of Tcl/Tk based applications, but it is possible that

future versions also support other widget sets and/or languages. The main design aims for XF are:

� Rapid construction of interactive user interfaces.

The interface designer can access all widgets by selecting them from a list. Layout and con�guration

of widgets are supported by interactive dialogs. The implementation and binding to the interface of

the application's functionality are supported as well. These features cover the basic functionality that

each interface builder usually has.

� Immediate access to the resulting interface.

The work space where the application is built is the resulting application (interface and functionality).

At any point of the construction, the user can use and test the functionality of the resulting application

immediately. This is possible due to the great
exibility of Tcl/Tk.

� High
exibility for later changes.

All aspects of the resulting application (interface and functionality) can be changed with XF, or by

editing the generated Tcl-code directly. This includes the possibility to merge external Tcl/Tk code

into the application.

� Support for group development.

Complex programs are very often developed in groups. While the interface is developed by one part

of the group it can happen that the functionality of the program is developed by another part. Much

attention was given to the support of distributed development.

� Support for \standard" interfaces.

The development of complex dialogs and functionality is a time consuming task. To reduce the de-

velopment time and to have a common interface style among di�erent applications, XF supports the

storing, retrieval and sharing of interface and function components.

� Fun when developing with XF.

Probably the most important feature of XF is to have fun when developing. This means that the

beginner gets enough support to be able to build an application, while the expert can manipulate

every aspect of the resulting application if he wants to. It is possible to develop simple interfaces just

by playing around with XF. This does not mean that users must or only can play around with XF,

but it is not necessary to read thousands of pages to be able to use XF. For more complex programs

the user will need good planning, and careful study of the Tcl/Tk/XF related documentation.

Chapter 2

The Design of XF

The development of graphical interfaces becomes more and more important, as more and more graphical

oriented computers are used. Many users are still working with traditional commandline tools, and only

use the graphical capabilities of their computers to display several command shells. Of course, this may be

appropriate for some tasks, and users but using an application with a graphical interface usually improves

the user's productivity. Usually graphical interfaces provide a more intuitive access to applications. This

is possible by the use of graphical symbols, color, various fonts etc.. This does not mean that graphical

interfaces must be totally di�erent from traditional interfaces, but the graphical environment gives more

freedom for the design of the application.

The range of applications that are supplied with a graphical interface goes from complex software packages

(like word processors) to small interface components (like alert boxes) for \toy" applications. The complexity

of the graphical environment makes it necessary that developers get some kind of support. First, to allow a

fast development of applications, and second to support the design of \good" graphical interfaces.

The developer of a complex software package usually needs support for the design of a consistent interface.

It is important that the process of the implementation is supported. Changeability of the design, support

for product maintenance and project management are important.

On the other hand, the existance of commonly used and well-known traditional applications makes it

interesting for the user to create graphical frontends for existing commandline oriented tools. An example

for this kind of encapsulation of traditional applications into a graphical frontend is the HP Encapsulator

TM

[3] and [5]. This is a language that can be used to embed existing non graphical applications into a graphical

environment. Such an interface must be built easily, and the resulting code must be easy to handle. A

programmer implementing such an interface usually does not want to learn how to use complex windowing

systems.

2.1 Interface builders

To support the development of graphical user interfaces, the usage of graphical development tools seems

reasonable. The design of a graphical interface is a very important but also a very di�cult task. Creating

the code that implements the interface by constructing it interactively in a graphical tool can reduce the

implementation expense. Great parts of the code implementing the interface can be generated automatically

by the interface builder. This allows the developer to pay more attention to the design of the graphical

interface. The inexperienced user has the chance to construct an interface by playing around, while the

experienced user is supported to access the complete functionality that the graphical environment o�ers. It

can also prevent coding bugs, as the automatically generated code is usually more structured, and better

tested.

There exists a wide range of interface builders that are based upon di�erent widget sets and on di�erent

implementation languages. Most of the interface builders provide the same basic functionality that can be

summarized to the following four features:

9

CHAPTER 2. THE DESIGN OF XF 10

� Object (widget) creation.

The objects that form the interface of the application program can be created and deleted.

� Object (widget) parametrization.

The objects that form the interface of the application program can be parameterized.

� Object (widget) layout.

The objects that form the interface of the application program can be arranged.

� Functionality implementation.

The code that implements the functionality of the application program can be created, or at least the

automatically created code is prepared to be enriched by the functionality code.

But there are also some di�erences between the various interface builders. The di�erences occure because

the interface builders support di�erent widget sets and di�erent languages. The targeted groups of users

and application types vary as well.

� The implementation language.

This point is not important for the automatically generated code, but it is important for the code

that has to be written by hand. It also implies the general concept of the interface builder, as there

exist compiled languages and interpreted languages. Compiled languages can lead to long turn around

times, while interpreted languages can cause slow program execution.

� The supported widget set.

This di�erence is not very important. Most widget sets provide the same basic functionality, but the

supported widget set in
uences the look & feel of the interface builder and of the created applications.

� The level of integration.

The application builders di�er in the kind of objects they handle. In some interface builders, these

objects are simulations of toolkit elements. The objects do not represent objects of a concrete widget

set. Other interface builders represent objects of a concrete widget set, but the objects are not func-

tional. The resulting application is in a special design mode. And another type of interface builders

manipulate concrete objects that are fully functional. The resulting application is functional while it

is built, there is no special design mode.

2.2 Existing interface builders

The following list of interface builders contains commercial and academic interface builders. The list is not

complete, but it gives a short impression of some of the available tools.

� DEC VUIT (Digital Equipment Corporation)

The VUIT interface builder supports the Motif

TM

widget set, and additional user de�ned widgets.

The application interface is shown in a work area, where it can be constructed interactively. VUIT

allows the inserting, con�guring and layouting of the widgets. The generated interface code (C, Fortran,

ADA or Pascal) can call user de�ned functions, that are stored separately from this code. The interface

builder supports the internationalization of the resulting program.

� HP Interface Architect (Hewlett-Packard Company)

This interface builder is based upon the Motif

TM

widget set. Widgets can be inserted interactively,

modi�ed and positioned in a work area. For various resource types, additional dialogs support the

speci�cation of the resource value. The program has an internal C interpreter that reduces the turn

around time, and allows it to test the changes immediately.

� NeXT Interface-Builder (NeXT Computer Inc.)

This system is completely integrated into the NeXT environment (Nextstep). This makes it more

powerful than many other interface builders, as the communication between the interface builder, the

CHAPTER 2. THE DESIGN OF XF 11

application to be built, other applications and the system environment is more sophisticated. The user

can interactively create, con�gure and layout objects in a work area. The objects that are manipulated

are instances of the NeXT interface objects. The classes that implement the interface objects are

implemented in objective C. These instanciated objects communicate with each other via messages.

The interface builder supports the de�nition of connections between these objects. The automatically

generated objective C code contains all de�nitions and declarations that are needed for the application

interface. The user can enrich this code with the functionality that is required by the program.

� Ibuild[21]

Ibuild was developed by John Vlissides (IBM T.J. Watson Research Center), Steven Tang (Stanford

University) and Charles Brauer (Fujitsu Network Transmission Systems, Inc.). The concept of Ibuild

is di�erent from that of most of the other application builders. The program is based upon Unidraw,

a framework for building direct manipulation editors. The interface that is built by the user is simu-

lated. This allows an abstraction from concrete widget sets (toolkits). The user can develop interfaces

independently from widget sets (toolkits) that may not even exist. The application is constructed in

a more drawing like way, where the objects are layouted in a WYSIWYG style and the relationships

of the objects are speci�ed interactively. As the system is based upon a framework that is designed

for drawing and direct manipulation, it is easy to build applications that handle graphical input and

direct manipulation. The program generates C++ code for the InterViews and UniDraw toolkits.

� SUIT

SUIT was developed by Randy Pausch, Matthew Conway and Rober DeLine from the University of

Virginia. It is an interface toolkit, which was designed to be easy to use, and to be available at various

platforms. An interface built with SUIT is a collection of objects that have a property list (describing

the state of the object), a C procedure that examines the state of the object, and a C procedure that

handles the user input and changes the object state. To interactively manipulate objects, a property

editor gives access to the di�erent properties of the available objects. The application can be modi�ed

while the program is running. To avoid two di�erent modes, one for working and the other for editing,

the manipulation of objects is done with a (keyboard) modi�er, while the normal work with the objects

is done without a modi�er.

� GINA

GINA was developed at the GMD Germany. It is an interface builder based upon the Motif

TM

widget

set, and upon Common Lisp. Widgets can be created and manipulated in a work space. The

parametrization and layouting of the widgets is supported by special dialogs, and it is possible to

add code that implements the application functionality at running time. The program produces a lisp

or a C++ code �le that implements the interface. The user can add functionality to the program by

adding the code to a second (special) �le that is also part of the resulting application.

� BYO

BYO is a Tcl/Tk based interface builder that was developed at the Victoria University of Wellington,

New Zealand by Andrew Robinson, James Noble, Peter Wood, Roanne Steele, Alexander Leadbeater,

Alan Young and Paul Sche�er. The basic concept of this program is to have an interface builder that

directly manipulates a running application. To allow this, the interface builder takes advantage of

a simple communication feature that is part of the Tk system. It is possible to manipulate several

applications at the same time. There are various interface builder dialogs supporting the creation,

parametrization and layouting of the widgets. The current status of the manipulated application is

retrieved and saved to a Tcl/Tk �le.

CHAPTER 2. THE DESIGN OF XF 12

2.3 The XF design

Thanks to the great
exibility and the simple handling of Tcl/Tk, and a very instructive and conceptionally

clean predecessor (named BYO), it was easy to implement XF. There exists no real design of XF. It was

inspired by the simple (but very powerful) concept of BYO, and a further development that I have done

named XASK. This program provided a simple language for building a certain type of simple graphical

interfaces. These interfaces were connected with traditional (non graphical) applications. As there was no

interface builder for this system and the language was very limited, the arrival of Tcl/Tk and BYO lead to

the decision to switch to this more powerful environment.

Three points were most important for the design of XF. The programm was supposed to be able to

manipulate a running application. This was important because this is the only way to guarantee that the

user really gets what he wants, and can test the application without having to compile it or to switch to a

simulation mode. This restricted the choice of implementation languages, as the application must be open

for modi�cations while it is running. One way would have been to simulate the running application by

writing an interpreter for the implementation language (like C). The other way was to use an interpreted

language. The second alternative was chosen. At this point, there were two alternative languages available.

The �rst language was Tcl/Tk, a package containing a scripting language and a Motif

TM

-like widget set.

The second language was elk, a scheme interpreter with an interface to the X toolkit and widget set based

upon the X toolkit (This system is part of the X contributed software). Due to a greater acceptance in the

community (and greater acceptance by the author of XF), Tcl was chosen.

The idea of manipulating an application with an interface builder while it is running was taken from BYO.

This approach has the advantage that it reduces the amount of data that has to be used to store the contents

of the currently developed application. As all changes are directly applied to the program, the program itself

contains all information which is necessary to create a Tcl/Tk �le containing the program de�nition. BYO

achieves this by using a Tk feature to communicate with the application running in a di�erent interpreter

(see �gure 2.1). This approach allows the simultaneous manipulation of several applications.

Tk−interpreter

BYO

Tk−interpreter

Tk−interpreter

Tk−interpreter

modifies

Application1

Application2

Application3

Figure 2.1: BYO design

XF chooses a di�erent approach. It uses one interpreter for both programs (XF and the application to

be built). The name spaces of both programs (variables, procedures and widgets) are separated by naming

convention (see �gure 2.2). This was originally done to reduce the communication tra�c, and to reduce the

complexity of the application. As the approach of BYO is more
exible, XF will probably be adapted to

(also) support this type of manipulating an external application.

CHAPTER 2. THE DESIGN OF XF 13

Tk−interpreter

XF Application

m
o

d
if
ie

s

Figure 2.2: XF design

The second very important point was that the developer is supported as much as possible. Newly created

widgets are created with reasonable default parameters, to prevent the need of changing every newly created

widget. Nevertheless, every aspect of the application can be changed with XF. If this is not possible in a

certain situation, or the user does not want so much support, it is always possible to change the code directly

(by hand in an editor). While many interface builders don't allow the manipulation of the generated code,

directly changed code can be reused with XF without any restriction.

The third important point for the design of XF was to allow the extension of XF . There are several well

de�ned internal interfaces, where additional features (like new layouting dialogs, or new widget con�guration

dialogs) can be added toXF. Furthermore, the user is able to adapt most aspects ofXF via interactive dialogs.

This includes the menubar and iconbar layout, the bindings that are used to manipulate the application

program and various aspects of the XF dialog boxes.

The design of the interface of XF itself was also a very important task. Like most interface builders,

XF displays the available widget classes in some kind of main window. From here, all features of XF are

activated. The various features are implemented as additional dialogs, that are popped up when they are

activated. All con�guration and layouting dialogs are nonmodal, so that the user can change parameters

and the layout of various widgets simultaneously.

Chapter 3

Tcl/Tk

XF is implemented by using the Tcl/Tk package, and the code that is generated is also Tcl/Tk code. Tcl is

a shell-like scripting language. Tk is a windowing toolkit o�ering access to a Motif

TM

-like widget set via

Tcl commands. Both packages have been developed by John Ousterhout.

The short description of Tcl/Tk in this paper is mainly based upon the draft of a book from John

Ousterhout [15], slides that John Ousterhout used in his tutorial at the 7th Annual X Technical Conference

[18] and other publications of John Ousterhout [17], [16].

When developing applications with XF, a basic understanding of some aspects of Tcl/Tk is needed. To

implement the functionality of the application, the user should be able to write Tcl code. Although XF

provides support for the geometry management of the widgets, the user should also know how the geometry

management in Tk works.

3.1 Tcl

Tcl stands for a language and a library containing an interpreter. It is a general purpose language designed

to be used as an extension language for di�erent applications. By adding the Tcl interpreter to an applica-

tion, the general functionality of a command language like variable handling, control structures, command

invocation etc. can be reused. Di�erent applications can use the same language, reducing the implemen-

tation expense for the developer, and the learning expense for the user. A Tcl interpreter embedded into

an application can be easily extended with application speci�c functions to �t di�erent needs of a speci�c

application.

3.1.1 Syntax

The syntax of Tcl is simple. It is a compromise between a shell style language and a lisp like language. The

simple structure of commands is typical for a shell language, and is one reason for the acceptance of Tcl as

an implementation language. A command is formed by words separated by spaces. The �rst word is the

command and the following words are arguments. Commands are separated by newlines or semi-colons.

3.1.2 Datatypes

The only datatype in Tcl is string. This makes it easy to exchange data and also allows the use of data as

executable Tcl code and vice versa. A special type of strings are lists. This is the lisp-like part of Tcl. A list

is a string formated in a special way. The Tcl library contains commands that support the handling of lists.

3.1.3 Variables

Tcl allows the de�nition of variables with the set command. The command gets two parameters. The �rst

parameter is the name of the variable, and the second parameter is the new value of the variable. To refer

14

CHAPTER 3. TCL/TK 15

to the value of a variable, the dereferring symbol \$" is used. Alternatively, the set command called with no

new value returns the current value of the variable.

3.1.4 Commands

Commands can return strings as a result. To substitute a command with its return value, the command is

included into square brackets. The Tcl library contains a rich set of commands that cover most requirements

of a programmer. There are commands to handle lists, strings, �le I/O, arithmetic expressions etc.. The

control structures that Tcl provides (like if, while etc.) are also normal Tcl commands. They take Tcl scripts

as arguments. This makes the Tcl syntax much simpler.

A programmer can de�ne new commands that are handled like the built in commands by writing Tcl

code, or by embedding new C function in the Tcl interpreter. This is very easy, and the restriction to only

one datatype (string) makes the passing of arguments very simple. All core commands and control structures

that Tcl provides are added as C functions to the Tcl interpreter.

3.1.5 Quoting

Quoting of words can be used to suppress the meaning of special characters (like dollar, curly braces etc.).

While quoting with \" only suppresses the special meaning of space (as a word separator), curly braces

suppress the meaning of all special characters. Quoting a parameter with curly braces delays its interpretation

to the execution of the called command.

3.2 Tk

Tk is a Motif

TM

-like widget set that gives access to the widgets via Tcl commands. The widget classes

use Tcl to implement parts of their own functionality, and to implement application speci�c functionality.

This allows it to create complex user interfaces in an interpreted scripting language. The performance of the

resulting code is excellent, and the use of the commands is simple.

3.2.1 Widget classes

A Tk interface is built by widgets. Widgets are grouped into classes. The class of a widget de�nes its

appearance on the screen and the functionality of the widget. The Tk widget set provides classes like:

Button, Label, Frame, Text, Scrollbar etc..

3.2.2 Inserting widgets

When widgets are created, they are inserted into the already existing widget tree. The widget tree has a

root, named \.". All inserted widgets are children of \.", or a descendant of \.". Usually the higher-level

widgets are container widgets (like frames) that de�ne a layout structure for the interface, and the leaves of

the widget tree are the widgets that the user uses to interact with the application (like buttons).

An inserted widget has a quali�ed name, formed by the widget path in the widget tree. The name of a

widget looks like a (complete) �lename in the UNIX

TM

�le system. The \/" from the �lesystem is replaced

by a \.". The widget name re
ects the location of the widget inside the widget tree.

Depending on the widget class, the user calls a command to actually create the widget. The command that

is called usually is the name of the class in downcase letters. The widget creation command may contain

con�guration parameters that set certain widget resources. The syntax of these parameters is described

below. To create a button as a direct child of the root, the command looks like this:

button .b1 -text Quit -command destroy .

.b1 is the widget path of the widget. The following options are used to con�gure the button at the

creation time. This command creates the widget, and creates a new Tcl command named .b1, which is used

CHAPTER 3. TCL/TK 16

to access the widget (i.e. for additional con�guration, or other command invocations for this widget). The

widget is not displayed when it is created. It is mapped when a geometry manager is used to arrange the

widget (see below).

3.2.3 Widget commands

Each widget class has a set of commands (widget commands) which are special to that widget class. To

invoke a widget command for a speci�c widget, the Tcl command representing the widget is called. This

command invocation is followed by the widget command name to be executed and optional parameters. All

widget classes have the widget command con�gure which is used to con�gure the widget. There are several

widget class speci�c commands, like the
ash command for button widgets. The widget command invocation

looks like this:

.b1 configure -background blue

.b1 flash

3.2.4 Widget con�guration

As described above, all widget classes have a widget command named con�gure. This commands gives the

user access to the widget resources. Usually, widgets have resources like: foreground, background, font etc..

To set a speci�c resource, the Tcl command representing the widget is called, followed by the con�gure

widget command. Then follows the resource name. Resource names begin with a \-". Behind the resource

name, the new value is speci�ed. If no new value is speci�ed, the current value of the resource is returned.

Some widgets (like buttons) have resources that allow it to bind functionality to them. The resources

are called -command, -xscrollcommand etc.. These resources contain Tcl scripts which are evaluated when

the command is activated (for example when a button is pressed).

.b1 configure -foreground red

.b1 configure -command ``puts stdout exit''

3.2.5 Geometry handling

Widgets that are inserted into the widget tree, are not displayed. To display the widgets, and to give them

a position and size, the Tk geometry managers are used. There are two geometry managers, the placer and

the packer.

The placer

The placer allows the direct speci�cation of (absolute/relative) widget coordinates and sizes. It does not

really make a geometry handling, and leaves the responsibility for the layout to the user. Here is a small

example of a layout, created with the placer. First, the code to place the widgets:

place .b1 -relx .5 -y 30 -width 60 -height 40 -anchor c

place .s1 -x 0 -y 50 -relwidth .1 -relheight .7

place .l1 -relx .1 -y 50 -relwidth .9 -relheight .7

CHAPTER 3. TCL/TK 17

The resulting layout has a button at the top, named .b with a �xed width (60 pixel) and height (40

pixel), a �xed y position (30 pixel) and a relative x position of 50 percent of the parent's width. So the

button has always the speci�ed size, is always 30 pixel away from the top border, and always centered in the

middle of the parent. The scrollbar and the listbox use 70 percent of the parents height and (together) the

complete width of the parent. They are placed below the button.

Figure 3.1: Placed widgets

The packer

The packer is much more powerful than the placer. The children of a widget are automatically arranged

around the edges of the parent's cavity. The user can control where, and how the children are packed, but

the layout itself is done by the packer. This is done in several steps:

Pick a side of the parent widget (master).

The widget (slave) that is packed into the master

is packed to this side of the master.

Slice o� a frame for slave.

This means, that the packer reserves a area in

the master for the slave. This frame occupies the

complete side of the master.

CHAPTER 3. TCL/TK 18

Possibly grow slave to �ll frame.

If the packing options specify it, the slave widget

is resized to �ll the frame in one or both axis.

Position slave in frame.

The slave is packed into the master. The position

inside the reserved frame can be speci�ed.

When all this is done, the widget occurs in the parent. Packing and placing can be combined. Here is a

small example of a layout, created with the packer. First the code to pack the widgets:

pack append . .b1 fbottom fillxg

pack append . .s1 fleft fillyg

pack append . .l1 fright fill expandg

The resulting layout has a button packed to the bottom of the parent �lling the complete width of the

parent. The scrollbar is packed to the left side and occupies the height of the parent, and the listbox uses

the rest of the available space.

Figure 3.2: Packed widgets

3.2.6 Other Tk commands

Beside the widget related commands, Tk o�ers commands for more general functionalities. This includes

commands to de�ne event bindings or to handle the X selection. The commands are explained in the Tcl/Tk

book by John Ousterhout [15].

3.2.7 XF relevant commands

XF tries to support the development of Tcl/Tk programs as well as possible. This does not mean that the

user does not have to know anything about Tk . To access parts of the interface, the developer must know

some Tk commands.

The interface allows it to ask the user for information, but the code that requires this information must

retrieve it from the interface. So here is a list of the most important commands to retrieve and set information

from/to the interface.

CHAPTER 3. TCL/TK 19

Text widgets

For text widgets, the following commands are important. The �rst command deletes the current contents of

the widget. The second command inserts the string \Insert this text" into the widget, and the last command

retrieves the current contents of the widget.

widgetCommand delete 1.0 end

widgetCommand insert 1.0 Insert this text

widgetCommand get 1.0 end

Entry widgets

For entry widgets, the following commands are important. The �rst command deletes the current contents of

the widget. The second command inserts the string \Insert this text" into the widget, and the last command

retrieves the current contents of the widget.

widgetCommand delete 0 end

widgetCommand insert 0 Insert this text

widgetCommand get

Scale widgets

For scale widgets, the following commands are important. The �rst command sets the scale to 10, and the

second command retrieves the current value of the scale.

widgetCommand set 10

widgetCommand get

Checkbutton widgets

To set and retrieve the current state of a checkbutton, these widgets have a resource named (-variable). This

variable represents the current state of a checkbutton. It is set to 0 or 1 by default, depending on the current

state of the button. It is possible to specify for each button which value is assigned to the variable when

each button is pressed. This is done with the resources -onvalue and -o�value).

Radiobutton widgets

To set and retrieve the current state of a radiobutton, these widgets have a resource named (-variable). This

variable represents the current selection of a group of radiobuttons. Radiobuttons are grouped by giving

them the same global variable. It is possible to specify which value is assigned to the variable when each

button is pressed. This is done with the resource (-value).

Send

One of the most powerful features in Tk is the ability to send commands directly to other Tk applications,

using the send command. This command takes a Tcl/Tk script as a argument, and evaluates it in the

speci�ed interpreter. The result of the evaluation is returned to the calling program. This feature makes it

easy to spilt functionality used by an application (like color selection, �le selection etc.) between di�erent

applications, as the communication between these applications, is almost the same as it would be in one

complete application (procedure calls). This can lead to a model of applications, where many specialized

Tcl/Tk application communicate together to provide functionality to other (more general) programs.

Chapter 4

Using XF

XF may be used for prototyping, and for the complete implementation of an application. To implement

a complete application, it is necessary that the user is able to write Tcl/Tk code. XF can free the user a

lot of implementation work, but parts of the functionality have to be implemented by the user. So, a basic

understanding of Tcl/Tk is required.

First, the user should think about the purpose and the look of his application. A rough layout of the

application should be drawn, where the dialog structure and the distribution of dialog components to di�erent

toplevel (dialog) windows is planned. Of course, it is also possible to use XF without a concrete idea of the

resulting application. Widgets can be rearranged at any time to see what the resulting interface looks like.

The developer of a graphical user interface must be very careful not to overload the application in-

terface with neat little features which can confuse the user. Many graphical user interfaces tend to be

confusing, because the interface tries to o�er too much functionality/information, or presents the function-

ality/information in a wrong way. A graphical user interface is not \good", just because it is graphical. It

has to be carefully designed and constructed.

The following step-by-step introduction to XF is idealized. The user will probably never really work this

way. There are always changes to the widget structure, layout or functionality that occur in the middle of

the work, due to enhancements or necessary changes. Nevertheless, this view of designing and implementing

applications with XF can be a helpful baseline for the work. The dialogs listed in this chapter are only

described shortly. There is a special chapter about the dialog components in XF, where all dialogs are

explained in a more detailed way (see chapter 6).

4.1 The �rst steps

4.1.1 Start

After starting XF , two toplevels appear on the screen. The empty toplevel window is the workspace where

the application will be built. The second window is the main XF window (see �gure 4.1).

The main window is split horizontally into several parts. At the top of the window, there is a section

where the functionality of XF can be activated. Below this section, three lists represent the available widget

classes and templates. The items in the left list represent widget classes that are part of the Tk distribution.

The middle list represents additional widget classes that are available as extensions to the standard Tk

widget set. They require a modi�ed Tk command interpreter. The right list represents complex widget

structures and/or procedures that form some kind of dialog element. These pieces of Tcl/Tk source are

called \templates". The two buttons at the bottom are used to insert (create) a widget of the currently

selected widget class or template into the application.

Typically, a Tcl/Tk application has one main dialog window (the Tk main window). From here, the other

dialog windows and the functionality of the application are activated (displayed). Dialog components that do

not need to be in the main dialog window can be placed in additional toplevel windows (like option settings

or alert boxes). A toplevel window is almost the same as the main Tk window, but they can be destroyed,

20

CHAPTER 4. USING XF 21

Figure 4.1: The screen after the start of XF

while the main Tk window cannot be destroyed. So it makes sense to put dialog elements that have to be

displayed permanently into the main Tk window, and dialog elements that are used only temporarily into

toplevel windows. The toplevel windows and the mainTk window contain the widgets that form the interface

of the application. Widgets can contain other widgets forming the widget tree. Higher-level widgets are used

as containers to layout the leaf widgets that implement the functionality.

4.1.2 Inserting widgets into the widget tree

The building of an application begins with the inserting of the widgets. If there exists a rough idea of the

layout, the widgetstructure can already represent the layout of the application. This means that frames are

used to structure the widgets.

Widgets are inserted into the application by pressing one of the two buttons in the main window of XF.

It is also possible to double click on the list item in the main XF window representing a widget class. A

new widget is inserted into the current widget path(current widget). This path can be set by double clicking

the middle mouse button on the widget that is to become the new current widget, or by specifying it with

the menubuttons showing the current widget path below the status line. The dots in this pathname contain

menus that show all children of the widget on the left of the dot.

The scale at the bottom of the main window can be used to insert a number of widgets at once. Inserting

a widget with the left button (Add with defaults) produces a widget with default settings and a default

CHAPTER 4. USING XF 22

widget name. Inserting a widget with the right button (Configure and add) pops up a dialog, in which

certain parameters and the widget name can be speci�ed. By clicking on the button (OK), the widget is

inserted.

4.1.3 Layouting widgets

When all widgets are inserted into the widget tree, respectively the widgets that should be inserted at this

time, the layouting starts. Typically, the basic layout structure of an application is de�ned by using frame

widgets. Widgets that are grouped together are inserted into the same frame.

The widgets are placed in their parents with the geometry managers. Tk provides two geometry managers,

the packer and the placer. Which one is used depends on the needed result, and the preference of the user.

It is possible, but not recommended, to combine the two layouting methods in the same toplevel window.

Both geometry managers ignore the widgets managed with the other geometry manager. So it can happen

that widgets accidentally overlap, or the size of a widget is not computed correctly. The combination of

both methods should only be used by the experienced user, as it is necessary that both concepts are really

understood in their e�ects. The draft of John Ousterhout's[15] book explains the Tk geometry managers in

detail.

The user can choose between two ways of layouting with XF. He can manipulate the widgets directly

(usually when the widgets are placed), or he can use special dialogs where all parameters for the layouting

can be set (the usual way for packed widgets). Direct manipulation is only possible, when the layout

dialog (Configuration j Layouting) is activated. This dialog is intended to prevent unintentional widget

layouting during the development and provides minimal access to some layout parameters.

Layouting with the placer

As explained above, there is a placing dialog, where widgets can be selected, placed and rearranged. This

dialog is activated with the menu item (Configuration j Placing). The description of the placer given in

the introduction to Tk explains the options that are available in the placing dialog.

When the layouting window is activated (or when layouting is always allowed), the user can manipulate

widgets with the left mouse button (he has to press the Modi�er1 key together with the mouse button).

Selecting the widget in the center allows the moving of that widget. If the widget is grabbed at the border,

the widget can be resized, where di�erent points at the border allow sizing in certain directions.

Layouting with the packer

As explained above, there is a packing dialog, where widgets can be selected, packed and rearranged. This

dialog is activated with the menu item (Configuration j Packing). The description of the packer given in

the introduction to Tk explains the options that are available in the packing dialog.

It is also possible to directly pack widgets when the layout dialog is activated (or when layouting is always

allowed). Selecting a widget by pressing the the left mouse button (he as to be pressed together with the

Modi�er1 key), moves the widget to the border of the parent that is the closest for the mouse pointer. In

the layout window some parameters like �ll, expand etc. can be set.

When layouting with the packer, it is important to group widgets with frame widgets. The user can use

the frames as row-column widgets. The children of one frame are usually packed to one side of the parent.

4.1.4 Con�guring widgets

The next step when building an application with XF is to set the widget parameters. Parameters that can

be con�gured for widgets are i.e. the foreground color, or the text font. To change the parameters of a

widget, the menu item (Configuration j Parameters) can be selected. It is also possible to double click

with the right mouse button at the widget to be con�gured. This activates the parameters setting dialog for

the currently selected widget, or the double clicked widget.

CHAPTER 4. USING XF 23

Figure 4.2: A standard widget parameter box

The parameter dialog box (an example is shown in �gure 4.2) allows the setting of di�erent parameters

(resources) for the widgets. For some of these resources special dialogs allow an interactive selection of pos-

sible values, by double clicking the right mouse button in the value �eld inside the parameter setting dialog.

A very important parameter is the command parameter. This parameter allows it to bind functionality (Tcl

commands) to a widget (i.e. a button, or a menu item).

Each widget class has its own parameter dialog. For some widgets (like canvas or menu) there exist special

dialog boxes that provide support for sophisticated features of the widget class (like drawing graphical objects

in a canvas widget, or building a menu). For all parameters that are not covered with these dialog boxes, a

general parameter dialog provides access to all resources that can be modi�ed for a widget (see �gure 4.3).

CHAPTER 4. USING XF 24

Figure 4.3: The general widget parameter box

Very often, certain widget parameters are identical for a great number of widgets. In this case, the

parameter setting for widget groups can be used (see �gure 4.4). This dialog allows it to select groups of

widgets, and to set parameters for all these widgets at once. The basic handling is like for the general

parameter dialog.

Figure 4.4: The widget parameter box for groups

CHAPTER 4. USING XF 25

4.1.5 Procedures

When the interface for the application is �nished, the functionality must be implemented. The functionality

is usually implemented with Tcl/Tk procedures that are called by buttons, bindings etc.. Here the user's

Tcl/Tk experience is needed (respectively: here he gains Tcl/Tk experience).

The implementation of the functionality is supported by XF with special dialogs. These dialogs are

activated with the menu items (Programming j Procedures) and (Programming j Commands). They activate

dialog windows, where procedures and commands can be created, modi�ed, deleted etc. (see �gure 4.5).

Figure 4.5: The procedure dialog

Besides the procedures that are written by the user, there exist various special procedures, that are

used by XF. The procedure dialog only gives access to procedures that the user is allowed to change. The

two most important procedures are StartupSrc and EndSrc. To modify these procedures, the menu items

(Programming j Startup source) and (Programming j End source) are used.

If the application needs control when the application program is started (i.e. for parsing the argument

list or for setting the contents of a list at startup), the code is added to the startup procedure. This code is

executed as �rst source of the complete application.

If the application needs control after the toplevel windows (containing the dialog components) have been

displayed (i.e. to initialize widgets with certain values), the code is added to the end procedures.

4.2 Advanced features

4.2.1 Templates

XF provides the concept of templates. Templates are �les which contain Tcl/Tk code de�ning a widget

structure and/or procedures (stored as Tcl/Tk code). A template can be loaded by the user, adding this

widget structure and/or functionality to the application program. The inserted template behaves the same

way as any other code written by the user. The user can change it, con�gure the inserted widgets etc..

CHAPTER 4. USING XF 26

The available templates are shown in the right list of the main XF window. By double clicking on a list

item, the selected template is inserted. If the contents of a template have changed (i.e. when a new XF

distribution is published), the template can be reloaded by inserting it again. This is only necessary when

the old template was buggy, or the new template provides new functionality.

XF comes with a set of templates. There exist three main groups of templates named: Combined,

Procedures and Widgets. The user can save widget structures and procedures as new templates. If a widget

structure is temporarily stored to the cut bu�er (with the cut/copy functionality), this widget structure can

be saved with the menu item (Edit j Save Template (cut buffer)). It is also possible to interactively

select procedures and a widget path to be stored to a template in the module structure dialog (Misc j

Modules).

To reduce the size of the application program, it is possible to use a special type of templates. They

are called autoloadable templates. This type of templates resides in a directory (./autoProcedures), where

a tclIndex �le can be found as well. All procedures de�ned in the templates are listed in the tclIndex �le,

and can be loaded automatically (using the Tcl auto load feature). The procedures are not saved when the

program is saved. Instead the user has to add the pathname where the templates reside to the environment

variable XF LOAD PATH. This variable contains a list of directory names separated by \:", where XF can

�nd modules that are part of the application program.

4.2.2 Toplevel windows

Toplevel windows (including the main Tk window \.") contain the widgets that form the interface. The main

Tk window \." is the root of the widget tree. An application usually contains various dialog components

implementing di�erent aspects of the program. They have to be displayed depending on the current status

of the program. This makes it important to be able to hide/show toplevel windows.

The main Tk window \." can be hidden with the command: \wm withdraw .". To display the win-

dow, the command: \wm deiconify ." is called. This also works for the other toplevel windows, but

XF provides an additional way to show/hide the toplevel windows. Each window can be displayed with

the automatically created procedure ShowWindow.<toplevelName>. To remove a window, the procedure

DestroyWindow.<toplevelName> is called.

When the code for the application is saved, the current display status of the toplevel windows is saved.

This means that when the application is started, the toplevel windows that were displayed when the program

was saved are displayed, and the toplevel windows that where hidden when the program was saved are not

displayed. To change the display status of a window when developing with XF, the menu attached to the

label (Current widget path:) in the main XF window can be used.

4.2.3 Source modules

An XF generated program can be packed into one �le, containing the complete code. This is usually done

for code that will be distributed. It makes the calling easier, and reduces the number of �les to be installed.

To create such a �le, the menu item (File j Save as...) is activated.

During the development, it is usually better to have small modules that can be handled independently.

For example it is a good idea to put the external (XF created) code into a separate module. The code for

the widget creation should be put into a separate module, preferrably one module for each toplevel. Finally

the procedures loaded from templates should also be stored into modules named after the templates. This

makes it easier to locate and modify di�erent pieces of code when working with an editor.

Another aspect of modularization is the working in groups. If a program is built by a group of developers,

each developer can put his code into one or more separate modules. These modules are stored locally by

each developer, giving him full control over the modules. Modules handled by the other developers can be

retrieved by XF at loading time. To access the distributed modules, it is necessary to set the environment

variable XF LOAD PATH. This variable contains a list of directory names separated by \:". Here, XF

tries to �nd modules that are part of the application. XF looks for plain �les, and for archives using the

ShapeTools.

By specifying which modules should be saved (with the module structure dialog), only the modules that

are accessed by the developer are updated. Each developer can publish a module when it is ready, by moving

CHAPTER 4. USING XF 27

it to a public directory, or by making a check-in into the global archive using ShapeTools. The global program

structure should be maintained by one speci�c administrator, who has control over the main module.

To distribute the toplevel windows and the procedures into di�erent modules, there exists a special

dialog box. This dialog allows the user to split the contents of his application (toplevels and procedures)

into readable pieces (see �gure 4.6).

Figure 4.6: The module structure dialog

New modules are added by typing the new module name, and pressing the button (Insert module). To

add an element to a module, the user clicks on the appropriate item in the left list. To remove elements

from a module, the user double clicks on the item in the right list. There is always one module that has the

name of the application. It contains all toplevels and procedures that were not placed in another module.

A module can be made an auto load module with the checkbutton labelled (Auto load), right beside the

module name. This means the needed code is generated that loads the module when a procedure from that

module is called.

To support the development in groups, it is possible to specify which modules should actually be saved.

This is done with the checkbutton labelled (Save module), right beside the module name. This information

can be saved to a user speci�c �le.

By selecting the button (Handle Templates) this dialog is switched to the template mode. Here the

user can select exactly one widget path and an unlimited number of procedures to be saved to a template.

To save this template the (Save) button is pressed. This save button can also be used to save the complete

program (when the template mode is not activated).

4.2.4 Levels for procedures and bindings

To make the handling of bindings and procedures easy to survey, they can be assigned to a level. This means

that the �rst line of the Tcl/Tk command that is bound to an event or a procedure name begins with the

comment \# xf ignore me <level>". Such a binding or procedure is handled di�erently than other bindings

and procedures. They can be hidden in the XF dialogs, and they can be ignored when the source is saved.

The user can assign 9 levels to bindings and procedures. Each level can be turned on and o� separately

(both for displaying and saving). Some levels are used by XF already, but the remaining levels can be used

to categorize procedures and event bindings. For event bindings, only the level 9 is used by XF. This level

means that the bindings are totally ignored. The following table shows the usage of the levels for procedures.

CHAPTER 4. USING XF 28

Level Purpose

1 Not used by XF.

2 Not used by XF.

3 Not used by XF.

4 Procedures that are used to implement the XF alias fea-

ture get this level. They should be saved, but it is not

necessary to display them.

5 The main template procedures (those which are called

by the user) have this level.

6 The supporting template procedures (those which are

not called by the user) have this level. They should not

be displayed.

7 Procedures that are used by the XF generated code get

this level. They should be saved, but it is not necessary

to display them.

8 Tk procedures that are to be saved get this level. Right

now no procedure has this level.

9 Procedures that have this level are totally ignored by

XF.

Chapter 5

The Implementation of XF

The startup of XF is shown in �gure 5.1. First, the XF con�guration �le is loaded. Afterwards, the

application default �le is loaded, and parsed. Now, the application source is loaded. After that, the local

startup �le is loaded, where the user can add functionality to XF . Then the main XF window is initialized,

and the application defaults are applied to the widgets. Finally, XF gives control to the Tk main loop. Inside

this loop, the X events are processed (i.e. to activate the various XF dialogs).

Initialize XF

main window

Apply application

defaults

Start

Load config

Load application

defaults

Load startup

Tk−main loop

Load source

Figure 5.1: XF startup

Procedures that are needed by XF are loaded with the auto load feature of Tcl. This means that they

are loaded on demand.

29

CHAPTER 5. THE IMPLEMENTATION OF XF 30

5.1 The generated code

The source that is created by XF has a general layout, and contains a certain set of functionality. The

produced code can be saved into one �le, or be splitted into several modules. In both cases the general

layout and functionality is the same.

Apart from the procedures that are written by the user, XF saves a number of procedures that are used

to create the widget structures, initialize the program or support the special XF bindings. The creation of

most of this code can be turned o� and on explicitly (Options j Source options).

1. Module inclusion code.

If the source has been split into modules, the main �le of the application begins with code that initializes

the module load path and parses the commandline options.

2. Toplevel creation code.

The procedures \ShowWindow...", \DestroyWindow..." etc. are created automatically by XF , to

display and hide the various toplevel windows of the application. There can also be procedures named

\StartupSrc...", \MiddleSrc..." and \EndSrc...". They are called by the corresponding window creation

procedure, and can be used to initialize the widgets that are inside the displayed toplevel window.

3. User de�ned procedures.

If the source is structured into modules, the procedures that have been written by the developer are

all stored in this section. The order can be changed, and the procedures can be distributed to di�erent

modules.

4. Internal procedures.

This section contains procedures that XF creates to produce a running application. The creation

of most of these procedures can be turned o� and on explicitly (Options j Source options). The

remainingXF internal procedures are all assigned to the level 7 (see chapter \Using XF"). If the saving

of level 7 is disabled, these procedures are not saved. If the source is not structured into modules, the

user de�ned and the internal procedures are mixed, as XF stores all procedures in alphabetical order.

(a) XFLocalIncludeModule

This procedure is called with the name of the module to be loaded. The procedure scanns

through the directories speci�ed with the environment variable XF LAOD PATH, and tries to

load this module. In addition to that archives are searched for the modules. The user can use the

environment variable XF VERSION SHOW to specify the retrieve command (see the description

of version control).

(b) XFLocalParseAppDefs, XFLocalLoadAppDefs and XFLocalSetAppDefs

These procedures provide full support for the X Resource mechanism. The procedure XFLocal-

LoadAppDefs gets an application class name, and loads the resource stored under this name. The

procedure XFLocalSetAppDefs applies the resources to the speci�ed widget path.

(c) SymbolicName and SN

These two procedures implement the symbolic name handling. The developer can assign a name

to a widget path name. This makes the access to this widget easier. Calling these procedures

with the symbolic name, returns the concrete widget path name.

(d) Alias and Unalias

These two procedures implement the alias handling. Aliases can be used to access procedures

and widgets under a di�erent name. The di�erence from symbolic names is that each aliased

procedure creates an additional procedure, making this approach a little space consuming. The

alias procedure gets two parameters, �rst the new alias name, and second the procedure that is

aliased. Unalias gets one parameter, speci�ying the alias name to be removed.

(e) GetSelection

This procedure is used to implement a safe X selection retrieval for the text and entry widget. If

the bindings do not contain this procedure, it may be deleted.

CHAPTER 5. THE IMPLEMENTATION OF XF 31

(f) MenuPopupAdd and MenuPopupHandle

The procedure \MenuPopupAdd" sets the appropriate bindings to pop up a menu. The popup

menu is attatched to the widget speci�ed with the �rst parameter. The second parameter speci�es

the mouse button that activates the popup menu (1, 2 or 3). The next paramter speci�es the

widget name of the menu that is to be popped up. The following parameter is optional, and can

contain a valid event modi�er. The last parameter can contain a canvas tag or id. The menu is

attatched to this tag or id.

(g) NoFunction

This procedure does nothing. It can be called with any number of parameters.

5. StartupSrc and EndSrc.

These two procedures contain source that is executed at the startup of the application program.

\StartupSrc" is executed as �rst code in the application, and \EndSrc" is executed after all toplevel

windows have been displayed. The user must add initialization code to one of these procedures.

6. Invocation of StartupSrc.

The startup code is evaluated.

7. Initialization of variables.

The global variables are initialized with the procedure \InitGlobals", or directly inside the code. The

developer should initialize important variables directly in his initialization code for his application. The

values assigned in the \InitGlobals" procedure represent the values when the application was saved.

8. Showing the toplevel windows.

The toplevel windows that should be displayed are created by invoking the appropriate \ShowWindow"

procedure.

9. Loading of bindings.

The user can specify a Tcl/Tk �le containing bindings for his application. This �le can be speci�ed with

the environment variable XF BIND FILE, or the commandline option \-xfbind�le" when the source

contains the commandline parsing code.

10. Application default handling.

The application default �le is loaded, and the settings are applied to the displayed widgets.

11. Invocation of EndSrc.

The end code is evaluated.

5.2 XF constraints

5.2.1 Restrictions

There are some restrictions when using XF. Code that is written with XF, or should be imported to XF

should consider the following points:

� No variable names starting with xf,

� no window names starting with .xf,

� no procedure names starting with XF,

� no procedure names starting with ShowWindow,

� no procedure names starting with DestroyWindow,

� no procedure names starting with StartupSrc,

� no procedure names starting with MiddleSrc,

CHAPTER 5. THE IMPLEMENTATION OF XF 32

� no procedure names starting with EndSrc,

� toplevels may only be children of \.".

These restrictions should not a�ect the normal working with Tcl/Tk. They are needed for design or

performance reasons.

5.2.2 Pitfalls

The following list contains interesting hints, that are not really restrictions, but have to be handled carefully.

� Using fg and "".

Tcl commands bound to events or resources can be surrounded with fg or "". The use of fg is much

safer, than the use of "". The code surrounded by "" is parsed and substitutions are performed, when

the binding is added or the resource is set. This may lead to unwanted results. It is better to use

global variables to pass parameters into commands bound to events or resources.

� Setting auto path.

If the loaded source sets the auto path variable, it should check if it is started inside of XF . Manipu-

lating the auto path variable can make XF inoperable.

5.3 Extending XF

5.3.1 Supporting new widgets

The several widgets are supported via widget class speci�c �les, that are located in the \additionals" directory.

To add support for a new widget, the user has to write such a �le. The name of the �le is the class name

of the widget class to be supported. The user should take a look at the �les that have been de�ned already

(i.e. elements/Button) to get an impression of this kind of support �les.

In general, it is up to the user what he does in this �le. There have to be some procedures that follow

certain naming conventions. Besides, the user can implement the support as he wants to. Of course, the

existing support �les use many functions provided by XF to make the writing of the widget support �les

easier.

XFAdd.<WidgetClass>

Each support �le must contain a procedure named \XFAdd.<WidgetClass>". All exported procedures in the

support �le end with the widget class name. This procedure inserts a widget of that class to the application.

It gets three paramters. The �rst parameter can be ignored (set to ""). The second paramter is an optional

widget name. This is not the complete widget path, only the preferred name of the widget at the insertation

level. The last parameter is set to \add" or \con�g". \Add" means that the widget is inserted with default

parameters, and \con�g" means that the widget will be con�gured by the user.

The procedure has to guarantee that the widget name is unique. To create a unique widget name,

the procedure \XFMiscGetUniqueName" can be used. After inserting the widget into the current widget

path (xfStatus(path)), the new widget must be placed, using the procedure \XFMiscPositionWidget". This

procedure gets the complete widget path name as parameter. The procedure \XFMiscBindWidgetTree"

also gets the widget path name, as this is required to set the XF internal bindings for that widget. Finally

the procedure \XFEditSetPath" should be called, to update the XF internal lists. This procedure gets the

current widget path as parameter.

XFAddTmp.<WidgetClass>

The optional procedure XFAddTmp.<WidgetClass> is used to create a temporary widget of that class. This

can be useful when the widget creation command is not the same as the widget class name.

CHAPTER 5. THE IMPLEMENTATION OF XF 33

XFCon�g.<WidgetClass>

The procedures \XFCon�g.<WidgetClass>0-5" call the various parameter setting dialogs. The number

indicates the type of the dialog. It is possible to specify higher numbers than 5. If a procedure representing

a dialog between 0 and 3 does not exist, the default XF dialog is used.

Nr. Purpose

0 Activates the packing dialog for this widget.

1 Activates the placing dialog for this widget.

2 Activates the default geometry handling dialog for this

widget.

3 Activates the binding dialog for this widget.

4 Activates the default parameter dialog for this widget.

This dialog should cover the most important resources

of the widget.

5 Activates the special parameter dialog for this widget.

This dialog is used to implement special features, like

drawing for canvas widgets.

The procedures that implement the parameter setting dialog can use various functions that XF provides

to make the writing of widget dialog easier. The procedures \XFTmpltToplevel" and \XFElementInit"

create a standard parameter setting formular. The procedures get several parameters that are explained in

the source code. For various resource types, there are procedures that create appropriate dialog elements

(i.e. \XFElementColor").

To enable the undo feature, the procedure \XFElementSave" is called, getting the widget name of the

con�gured widget, the class of that widget, and a list of resource names.

XFSaveWidget.<WidgetClass>

To allow a special handling for the saving of the widgets, the procedure \XFSaveWidget.<WidgetClass>"

can be de�ned. This procedure gets a �le descriptor, and the name of the widget to be saveed. This procedure

has the responsibility to completely write the code that creates the widget.

XFSaveSpecial.<WidgetClass>

To just save additional code for the widget after the widget creation code has actually been saved, the

procedure \XFSaveSpecial.<WidgetClass>" can be de�ned. This procedure gets the widget path name,

and returns a string that should be saved, containing addtional widget creation code.

5.3.2 The procedure XFExternalInitProc

Procedures that begin with this name are evaluated when XF is started. This allows it to run initialization

code that should only be executed when XF is running.

5.3.3 XF startup �le

XF allows the speci�cation of a startup �le via the commandline option -xfstartup. The default name for

this �le is \.xf init". This �le is evaluated when XF is started. Here addiditional code can be merged adding

new functionality to XF.

5.3.4 Adding procedures named XFProc

The best integration of new functionality into XF is done when the user writes a procedure the name of

which begins with an \XFProc". By adding this procedure to the tclIndex �le, the procedure can now be

called from the menubar or the iconbar.

Chapter 6

Conclusion

6.1 Epilogue

A short look on Tcl/Tk is worth the e�ort, no matter if XF will be used or not. The boost in productivity is

enormous. The �rst version of XF (which was my �rst Tcl/Tk program) was written in about 2-3 months.

This version already contained almost all the basic functionality that is still part of XF.

Users reported that developing withXF tore down the wall between them and the X window system

TM

. It

enabled them to develop complex user interfaces in a few days, without knowing anything about the internals

of the X window system

TM

. Of course, a major reason for this is the easy handling of Tcl/Tk, but XF makes

it even easier to work with Tcl/Tk. It is possible to switch between hand coding and developing with the

user interface builder at any time. Experienced users who implement major parts of their applications by

hand can still use XF for certain tasks.

There are a few restrictions when developing with XF. They should not a�ect the development. It's just

that certain names should not be used for variables, procedures and widgets. And there are some conventions

where directly inserted code has to be placed. Besides, it should be possible to write any application that

can be written directly with Tcl/Tk under XF. The user can always switch between directly changing the

application, and using XF to modify the application.

There is a growing number of XF users, and there are already commercial users of Tcl/Tk and XF. The

reports of these users indicate that the concept and the implementation of XF are a good working base

for the design and implementation of graphical interfaces, although there are some problems. The most

important problem is that, as XF and the application that is built are sharing the same interpreter, changes

to the application causing errors may also cause problems with XF itself. The cause for this sensitivity is

just the same
exibility that allows the implementation of XF. Without this
exibility XF would not be

possible.

The current restriction of Tcl/Tk to the UNIX

TM

platformmay be overcome in the future. In this case,

XF would be available on alternative platforms (e.g. Windows running under MS �DOS

TM 1

).

6.2 Missing features

There are some missing features in XF. Future releases will hopefully contain:

� undo/redo.

Allowing an undo/redo in an program like XF is almost a \must". This is hard to do, as it can make

the program slower, and the basic design does not support this.

� con�guration via send.

Right now, the application that should be modi�ed with XF must be loaded together with XF. This

was a design decision. It will be changed to allow the parallel manipulation of many applications with

1

DOS is a registered trademark of Microsoft Corporation

34

CHAPTER 6. CONCLUSION 35

one XF. This gets more and more important with the increasing use of send to connect di�erent Tcl/Tk

applications.

� support for speci�c interface styles.

XF makes no assumptions (and provides no special support) for certain styles of interfaces. One

interface style that should de�nitely be supported more is the design of forms. This will include an

automatic layout, a validation check for entered data and an automatic connection between �elds and

forms.

� drag&drop.

The ability to drag&drop widgets and groups of widgets will be added in a future release. This will

be used to rearrange the widget layout, and to de�ne connections between widgets (i.e. connecting a

scrollbar to a listbox). The problem is the drag&drop between di�erent applications/toplevels, and the

general visualization of this drag&drop. Right now, the Tcl/Tk distribution does not provide support

for this, like a general drag&drop protocol.

� default parameter settings.

There should be a way to de�ne default parameter settings for widgets. Changes to a default parameter

setting should be automatically applied to all widgets that where con�gured with this default parameter

setting,

� support for debugging.

Right now debugging is not supported. There exists a small extension to Tcl that allows the debugging

of Tcl programs. It should be examined if this feature can be used and embedded into XF.

� support for other languages & widget sets.

XF was originally designed to support the development of Tcl/Tk applications. Of course, this will

always be the major aim of XF, as Tcl/Tk is used to implementXF. But it should be possible to create

C code for parts of the application code. It should also be possible to use XF as a sort of abstract

interface builder that is able to create code for other widget sets than Tk (i.e. Motif

TM

).

XF is still in development, and new features are permanently added. If a user has speci�c wishes or

�nds bugs, he can contact me to get this into the next release. With this paper, the internal interface is

documented, and I hope that users will contribute new functionality.

Comments are welcome....

Appendix A

External Tools

Whenever it is possible and suitable, XF uses external tools to implement functionality. This means that

certain tasks in the development are performed with an application especially designed for this purpose.

This reduces the size and complexity of XF, and gives the user the chance to use commonly used tools inside

of XF.

XF uses the following external programs:

� edge,

� emacs,

� shape,

� tkemacs,

� vi,

� xfappdef,

� xfhardcopy,

� xfhelp,

� xfpixmap,

� xftutorial.

36

APPENDIX A. EXTERNAL TOOLS 37

A.1 Edge

Edge[14] is a program that allows the layouting and displaying of graphs. XF uses this program as an

additional feature to represent the widget structure as a tree. It is not possible to use the displayed widget

tree interactively. If this feature is not used (wanted), edge is not needed.

Figure A.1: The edge program

APPENDIX A. EXTERNAL TOOLS 38

A.2 Editors

When editing sources every user has his own preferences which editor to use. XF does not force the user

to use one speci�c editor. To select the editor, chose the menu item (Options j General options). The

entry Editor allows you to specify a shell command that activates the editor. If this entry is empty the Tk

internal text widget is used. When calling the editor XF must pass a �le name to the editor. The editor

command must contain the string \$xfFileName" at the position where the �lename is to be replaced.

To select the (optional) tkEmacs widget as editor, the menu item (Options j Interpreter options)

is chosen. After selecting the checkbutton (Interpreter has the tkEmacs widget), the emacs widget

described below is used.

A.2.1 TkEmacs

If the tkEmacs widget is used as editor by selecting the checkbutton (Interpreter has the tkEmacs

widget) in the (Options j Interpreter Options) dialog, the user gets complete access to emacs. The

emacs is displayed in a Tk window, which means the user can work with emacs without leaving XF. The

widget is only used in the procedure editing dialogs (Programming j Procedures) and (Programming j

Commands). The reason is that each occurrence of this widget creates a separate emacs. This could lead into

system overload.

A.2.2 Emacs

If emacs is speci�ed as the editor by setting the entry Editor in the (Options j General) dialog to \emacs

$xfFileName", an external emacs is started in a separate window. This external editor is only used in the

procedure editing dialogs (Programming j Procedures) and (Programming j Commands), to prevent system

overload. The entered code is sent to XF by terminating the editor. If the code is not correct (Tcl syntax),

the editor is automatically restarted. If the user cannot �nd the error, the code should be saved to an

external �le. Then, the bu�er can be cleared, and emacs can be terminated. An empty �le is assumed to be

correct.

A.2.3 vi

To use vi as editor under XF, the string \xterm -e vi $xfFileName" is entered as editor command. Beside

the di�erent command string, everything is the same as when emacs is used as external editor.

APPENDIX A. EXTERNAL TOOLS 39

A.3 ShapeTools

ShapeTools is a toolkit for software con�guration management [9], [8], [12], [13], [11]. XF uses parts of this

package for version control. If the ShapeTools are not installed, the functionality of XF is restricted in some

way, but the program is still working.

A.3.1 Saving procedures

XF allows saving selected procedures into a shape archive. This makes the procedures publically available,

and allows the access to the development history of this procedure. This feature is accessed from the

Programming dialog window. The buttons (Save) and (Load) are used to save and load the procedures.

Saved procedures are stored with version numbers, showing the development of this procedure. If ShapeTools

are not installed, the procedures are saved as plain �les, without any additional information. In this case

only one version of the procedure exists.

A.3.2 Retrieving modules

When XF is used in a developer group, writing on di�erent parts of the same program, shared access and

version control get important. XF tries to support the distributed development process.

The ShapeTools concept of distributed development is based upon the sharing of one global source archive.

All pieces of code that are intended to be publically available are checked-in into this database.

XF supports this public access. When the application is started and loads a code module, XF tries to

locate the module by scanning through the path names listed in the environment variable XF LOAD PATH.

This variable contains a list of path names separated by \:" where modules for this application can be found.

If the code module is not found, XF retrieves the last checked-in version of the module from the ShapeTools

archive.

APPENDIX A. EXTERNAL TOOLS 40

A.4 xfappdef

XFappdef allows to interactively manipulate an X Resource �le. It is possible to add and remove resource

name speci�ers. There are menus, where all known program classes are listed, and menus showing a set

of commonly used resource names. For certain resources, there exist special dialogs, where the user can

interactively select/specify the value for a resource. The program has dialogs for Font, Color, Cursor File

and Pixmap selection. This program is part of the XF distribution and is used to manipulate the XF

resources, and the resources for the program that is build with XF.

Figure A.2: The xfappdef program

The upper list contains all resource speci�cations that are given in the application resource �le. The

two buttons below this list control the insertion and deletion of resource speci�ers. The entry contains the

currently selected resource speci�er, or the name of a resource speci�er that should be inserted or deleted.

The text �eld contains the value of the currently selected resource speci�er, or the new value to be inserted.

The buttons at the bottom activate special dialogs that support the setting of certain resource types.

To load, merge and save the resource �le, the menubutton (File) is used. The menubutton (Classes)

provides access to all application class names that are known. By selecting the menubutton (Resources),

a selection of commonly used resource names can be accessed. Selecting an application class name or a

resource name automatically inserts this value into the entry �eld that shows the resource name speci�er.

APPENDIX A. EXTERNAL TOOLS 41

A.5 xfhardcopy

XFhardcopy allows to interactively select Tk applications and path names inside these applications, for

dumping to a �le. The program uses di�erent external programs to implement the hardcopy commands

(xgrabsc 2.1, xwd), and it provides access to the Tk postscript command for canvas widgets (this command

is new in Tk 3.0). If the hardcopy commands that come with the distribution do not work or if there exist

more appropriate programs, the hardcopy commands can be adapted by the user. This program is part of

the XF distribution, and is used to make hardcopies from the program that is built with XF.

Figure A.3: The xfhardcopy program

The Tk application which should be hardcopied can be selected from the upper left list, and a widget

path inside of this application from the upper right list. To make a hardcopy of the selected widget tree

(application), one of the hardcopy commands from the bottom list is selected with a double click. By default

the hardcopy is written into the current directory under the name xfHardCopy. To specify a di�erent output

�le name, the hardcopy is made with the menu item named (File j Hardcopy to...).

A.5.1 Hardcopy commands

To modify the currently selected hardcopy command the menu item (File j Modify hardcopy command)

is activated. The following parameters can occur in the hardcopy commands and are substituted when the

hardcopy command is activated:

Variable name Contents

height The height of the selected widget

id The X window id of the selected widget

outputFile The name of the speci�ed output �le

rootx The absolute x position of the widget

rooty The absolute y position of the widget

widget The Tk widget name of the selected widget

width The width of the selected widget

x The relative x position of the widget

y The relative y position of the widget

APPENDIX A. EXTERNAL TOOLS 42

A.6 xfhelp

XFhelp is a general help program based upon Tcl/Tk . Di�erent programs can use this program to provide

help for themselves. The user can browse through the help pages, specify book marks, append notes etc..

Once xfhelp is started, all additional calls of xfhelp use the existing xfhelp, and just change the currently

displayed contents. This program is part of the XF distribution, and is used to provide help for the user.

Figure A.4: The xfhelp program

The menubutton (File) only contains a quit button. The menubutton (Groups) allows to jump directly

between the help pages for the di�erent programs. The upper left list contains the help pages at the current

level. A help page is displayed by clicking on the list item. The upper right list contains the book marks.

Below the two lists, the currently selected help page is displayed. This help page contains the name of the

topic, the title, the list of keywords, and the help text itself. The displayed help depends on the radiobuttons

under the left listbox. It is possible to display Help pages, Hint pages, user writeable Note pages, Manual

pages and a special Help page.

A book mark can be inserted by selecting the item in the left list, and pressing the button (Insert mark).

To delete a book mark, the book mark is selected, and the button (Delete mark) is pressed. To jump to

the book mark, double click the list item, or select the (Goto mark) button.

APPENDIX A. EXTERNAL TOOLS 43

A.6.1 Help pages

The help pages can be distributed over di�erent directory trees. This allows storing global help information in

a global directory, while the user notes are stored in a local directory. New subtopics are created by creating

a directory. New help pages can be added by creating a �le with a .H extension in the help directory.

Besides the main Help pages, additional help �les can be created. They have the same name, but a di�erent

extension.

Hints have the extension .I, and notes have the extension .N. Special help information consists of a Tcl

script ending with a .S. Special help �les allow calling external programs, like ghostscript. To display a

postscript �le, the Tcl command DisplayPostscript is called. This is a built-in that checks if there exists

an environment variable named XF HELP PS CMD. If this variable exists, this is the command that is

executed, with the �le name as parameter. Otherwise, ghostscript is started. The variable \runPath"

contains the absolute path name of the help page, and should precede the �lename that is passed on to the

command.

Help pages can start with two special information lines. One line can begin with '###Title '. This is

the title for this help page. The second line can begin with '###Keywords '. This is a list of keywords

attached to this help page. The following text is the help text that is displayed in the help area.

APPENDIX A. EXTERNAL TOOLS 44

A.7 xfpixmap

Xfpixmap allows drawing pixmaps based upon the Xpm 3 format[7]. To use the program, the wish that

is used must contain the TkPixmap patch. This patch implements the pinfo command. The functionality

of xfpixmap is restricted to a basic functionality, and the performance is not very good especially for big

pictures (big == >40x40). This program is part of the XF distribution, and is used to manipulate pixmaps.

Figure A.5: The xfpixmap program

To set a color, the left mouse button is clicked at the pixel cell. The middle mouse button is used to set

the transparent (background) color, and the right mouse button is used to set the drawing color to the color

of the pixel cell under the mouse pointer. The current drawing color can be selected by pressing at the color

button in the color array.

To change the color value for a color in the palette, this color is made the active color. Then the button

that contains the name of the current color right over the palette is pressed. The new color can now be

selected in the color selection box. By pressing at the button that contains the current transparent color, a

new transparent color is selected.

The size of the picture can be changed with the scales at the left side. When a new width, height and

pixel cell size have been selected, the button (Set raster) is pressed. The array of nine arrows is used to

manipulate the drawing space in various ways. The buttons (Fill) and (Clear) do what they are supposed

to do.

APPENDIX A. EXTERNAL TOOLS 45

A.8 xftutorial

XFtutorial allows to interactively introduce a user to the usage of a Tcl/Tk program. The developer writes

a tutorial script, leading the user through the functionality of the program. This program is part of the XF

distribution, and is used to introduce the user into the handling of XF.

Figure A.6: The xftutorial program

The menubutton (File) contains an item to print the current help page, and to quit the program. The

menubutton (Chapters) contains all chapters that are available. The text area displays the current help

text. Below this area, there are three buttons that control the paging of the tutorial. Tutorial pages can

have actions attached to them, which are performed when the next page is selected, or the Perform action

button is pressed.

A.8.1 The script �les

The script �les must contain input following certain rules. One of the script �les must de�ne a global list

named chapterList. This list contains a list of lists. The �rst element of the lists is the title of the chapter,

followed by the underline position of the menu item, and the script name of this chapter. To insert a

separator, an empty list is inserted.

Each script �le must de�ne two variables �rst. The �rst variable (<chapter>Last) speci�es the last

accessible page number. The second variable (<chapter>LastSectionDone) is an internal counter initialized

with -1.

Each page is represented by three variables. The �rst variable (<chapter>Name<pagenumber>) contains

the name of the page. The second variable (<chapter>Text<pagenumber>) contains the text to display.

And the third variable (<chapter>Command<pagenumber>) contains the command to be executed. This

command is sent to the application that uses the tutorial.

Appendix B

XF User's Guide

The functionality of XF is mainly accessed via the menubar and/or the iconbar of the main XF window.

The items in the menubar and the iconbar usually call one of the procedures that XF o�ers for external

access. These procedures are named in a special way. They begin with XFProc, followed by the real name

of the procedure. The following sections describe the procedures that are available. They are grouped by

functionality as it is represented by the menubuttons in the main XF window. Some procedures are not used

in the default menubar, or are placed in another menu. The menu structure may be adapted by the user, so

the structure of this chapter does not have to match the concrete menu structure.

It is possible to add new functionality to XF by writing a module that contains procedures following this

naming convention. This module should be added to the directory where the XF source is located. To make

the procedures accessible, the tclIndex �le in this directory must contain the procedure names followed by

the new module name. The procedures can be attached to menu items in the menubar con�guration, or to

icons in the iconbar con�guration.

46

APPENDIX B. XF USER'S GUIDE 47

B.1 Main

B.1.1 XFProcMain

This procedure is automatically called when XF is started. The procedure pops up the main XF window.

This window provides access to the functionality.

Figure B.1: The procedure XFProcMain

The main window is structured in several parts. At the top, there is a menubar and an iconbar. Both

call the procedures that implement the various dialogs. They can be con�gured by the user.

Below the iconbar, a status line shows the status of the program, and a small label shows the status of

the cut bu�er.

The label (Current widget path:) has a menu attached to it, that contains a list of all toplevels. This

menu is used to show/display the toplevels. The widget path right beside this label has menus attached to

the dots, containing all children of the widget left from the dot. The user can navigate through the widget

tree with these menus.

The three lists that occupy most of the space of the main window, contain the class names (and template

names) that can be inserted into the application. A double click with the left mouse button inserts the

widget with default parameters. A double click with the right mouse button inserts the widget after calling

a parameter dialog. The two buttons at the bottom do the same as the double clicking. With the slider, the

number of inserted widgets can be selected.

The left list contains the widgets that are part of the standard Tk distribution. The middle list contains

additional widgets that have been added to the interpreter, and the right list contains the templates. Tem-

plates are complex widget structures and procedures that can be inserted and used as if the user wrote them

himself.

APPENDIX B. XF USER'S GUIDE 48

B.2 File

B.2.1 XFProcFileEnterTCL (Enter TCL code)

Calling this procedure pops up a dialog box, where the user can enter Tcl/Tk code that is evaluated if he

presses the button (Send) or the button (Send + Clear). The button (Clear) clears the text area. To

remove the dialog box, the button (Dismiss) is pressed.

Figure B.2: The procedure XFProcFileEnterTCL

B.2.2 XFProcFileInsert (Insert...)

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here, the user can select a Tcl/Tk �le that will be merged into the currently edited application. The code

that is merged should not collide with the already built application. This is very important for the widget

names, which are to be inserted. This procedure gets no parameters.

APPENDIX B. XF USER'S GUIDE 49

B.2.3 XFProcFileLoad (Load...)

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here, the user can select a Tcl/Tk �le that will be loaded into the currently edited application. Before the

code is loaded, the currently edited application is deleted form the interpreter. The loaded code should be

careful with changes to the autoload path. If the autoload path is rede�ned, it is important that the XF

source directory (xfPath(src)) is part of the new autoload path. This procedure gets no parameters.

Figure B.3: The procedure XFProcFileLoad

B.2.4 XFProcFileNew (New)

Calling this procedure pops up a yes/no box asking the user if he really wants to remove all existing

de�nitions. If the user answers yes, the current application is removed from the interpreter. This procedure

gets no parameters.

Figure B.4: The procedure XFProcFileNew

APPENDIX B. XF USER'S GUIDE 50

B.2.5 XFProcFileQuit (Quit)

Calling this procedure pops up a yes/no box asking the user if he really wants to quit the application. If he

answers yes, the application is terminated. This procedure gets one optional parameter. This parameter is

the value that is passed on to the exit call.

Figure B.5: The procedure XFProcFileQuit

B.2.6 XFProcFileSave (Save)

Calling this procedure saves the current application. The output is divided into the speci�ed modules (see

XFProcModule). This procedure gets no parameters.

B.2.7 XFProcFileSaveAs (Save as...)

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here, the user can select a �lename that is used for the output. The complete application is saved to this

�le. Saving an application in this form does not change the speci�ed module structure. If an application is

loaded and saved in modules, the structure will be the same as before. This procedure gets no parameters.

APPENDIX B. XF USER'S GUIDE 51

B.3 Con�guration

B.3.1 XFProcConfAddCurrentItem

This procedure inserts the currently selected type of item. The item type is selected in the main XF window

from one of the three lists. The procedure takes one parameter that can be \add" or \con�g". This parameter

speci�es the way that the new element is inserted. \Adding" means that the inserted widget is created with

default parameters, \con�guring" means that the widget is con�gured by the user �rst and then inserted.

B.3.2 XFProcConfBinding (Binding)

This procedure activates the binding dialog for the currently selected widget or the widget that was passed

on as �rst parameter. The binding dialog allows the setting of bindings for this speci�c widget.

Figure B.6: The procedure XFProcConfBinding

The menubar at the top contains various event patterns that are inserted into the event string when the

menu item is selected. Below the menubar the currently modi�ed widget is displayed. Clicking on the name

ashes the widget in the application.

Below the widget name, a list shows all events that are de�ned for this widget. It is possible to hide

events (i.e. all Tk events are hidden). To show/hide an event, the �rst line of the command that is bound

to the event must contain the string \# xf ignore me <level>", where level is a number from 0 to 9. Each

level can be turned on or of separately (both for displaying and saving). To display a level, the appropriate

checkbutton in the (Options j General Options) dialog is toggled.

The entry below the event listbox contains the currently selected event, or the new event composed with

the menubar or by hand. To insert or delete the event, the two buttons (Insert event) and (Delete event)

are used. The text widget at the bottom shows the Tcl/Tk command that is bound to the currently selected

event, or the new command that should be inserted.

The buttons at the bottom allow the calling of other dialog boxes for the widget con�guration. There

are also buttons to apply the changes (if they are not applied permanently), and to terminate the dialog.

APPENDIX B. XF USER'S GUIDE 52

B.3.3 XFProcConfBindingAll (Binding for all widgets)

This procedure pops up the standard binding dialog. There are no parameters passed on to this procedure.

The di�erence to a widget speci�c binding con�guration is that the bindings modi�ed with this dialog are

applied to all widgets.

B.3.4 XFProcConfBindingClass (Binding for selected Class)

This procedure pops up the standard binding dialog. There is one optional parameter, specifying the widget

class which is to be manipulated. The di�erence to a widget speci�c binding con�guration is that the bindings

modi�ed with this dialog are applied to all widgets of the currently selected class. Class bindings are not

saved automatically. Instead, the developer can save the current class bindings into a general binding �le.

This �le can be set with an XF option or a commandline switch. If there exist special class bindings, this

�le should be part of the distribution. If this is too complicated, there exists an option in the (Options j

Source options) dialog to embed the class bindings into the created code.

B.3.5 XFProcConfCon�gure

This procedure is usually not called directly. It activates the con�guration dialog for the currently selected

widget, or the widget that was passed on as �rst parameter. The second parameter selects the dialog box

to be displayed. This parameter is a number. 0 calls the packing dialog, 1 the placing dialog, 2 the default

geometry dialog, 3 the binding dialog, 4 the default parameter dialog, and 5 the special parameter dialog.

Each number matches a dialog, speci�ed in a widget speci�c dialog �le (from the directory ./elements or

./additionals). The next parameter should be an empty string. After that follows the widget class that is

con�gured, and the type of the con�guration (add or con�g). \Add" means that a new widget is created

with default parameters, and \con�g" means that the parameter setting dialog is called. For the standard

calls of this procedure there are wrappers that make the calling easier.

B.3.6 XFProcConfGeometryDefault

This procedure activates the default geometry handling dialog for the currently selected widget, or the widget

that was passed as �rst parameter. The default geometry handler can be speci�ed in the dialog box (Options

j General Options).

B.3.7 XFProcConfInsertTemplate

This procedure inserts the speci�ed template into the application. The template name passed on as parameter

refers to the currently displayed template directory. If the name is a directory, the current template directory

is changed to this directory.

B.3.8 XFProcConfInsertWidgetDefault

This procedure gets a widget class name as parameter, and inserts a new widget of this class into the currently

selected widget. The widget is inserted with default parameters.

B.3.9 XFProcConfInsertWidgetCon�g

This procedure gets a widget class name as parameter, and inserts a new widget of this class into the currently

selected widget. Before the widget is actually inserted, a parameter dialog box is popped up, where the user

can con�gure the widget (including the widget name).

APPENDIX B. XF USER'S GUIDE 53

B.3.10 XFProcConfLayout (Layout)

This procedure pops up the layout dialog box. This dialog box provides access to the interactive (direct)

placing and packing of widgets. Usually, direct manipulation of the widgets is only allowed when this dialog

box is displayed. This can be changed in the options dialog (Options j General Options).

Figure B.7: The procedure XFProcConfLayout

The left side of the dialog box contains placer options. Here, the user can select if the geometry is set in

absolute or relative values. The position of a widget can be set by pressing the left mouse button together

with Modi�er1. If the button is pressed on the border of the widget, the widget can be resized. If a parent

contains no placed children, the �rst time a widget is placed in that parent, a small dialog box warns the

user, and gives him the choice to place the parent, too, to keep the size of the parent widget or to abort the

placing.

The right side of the dialog box gives access to a number of packer options. These options are applied

to a packed widget when the left mouse button is pressed together with Modi�er1 in the border region of

the widget. To move a widget to a speci�c border of the parent, the widget is selected with the left mouse

button together with Modi�er1. Then, the mouse is moved to the border.

APPENDIX B. XF USER'S GUIDE 54

B.3.11 XFProcConfPacking (Packing)

This procedure activates the packing dialog for the currently selected widget, or the widget that was passed

on as �rst parameter. With this dialog box, it is possible to change the packing of the complete widget tree.

This means that the user just has to call this dialog box once to layout the complete widget tree.

Figure B.8: The procedure XFProcConfPacking

The top area contains the available packer options. The options show the current setting of the child

selected in the right list at the bottom. Selecting another child in that list updates the settings. The left list

contains the widget tree. By double clicking at a widget in that list, this widget is made the current master.

The right list contains the packed children of this master.

The buttons below the listboxes allow the navigation in the widget tree. Selecting the parent means that

the parent of the current master is made the new master. Selecting a child means that the currently selected

child in the right list is made the new master. As there exist two independent geometry manager, it can

happen that a child of a widget should be managed with the other geometry manager. This is done with

the two buttons (Pack child) and (Unpack child).

The remaining buttons at the bottom give access to the other widget speci�c dialogs. There is always

one button that activates the parameter box for the current master, and one button that activates it for the

current child. There are also buttons that apply the changes and terminate the dialog box.

B.3.12 XFProcConfParametersDefault (Parameters)

This procedure activates the default parameter setting dialog for the currently selected widget, or the widget

that was passed on as �rst parameter. This dialog is usually the most important dialog.

APPENDIX B. XF USER'S GUIDE 55

B.3.13 XFProcConfParametersGeneral (Parameters (general))

This procedure gives access to the general parameter dialog. XF supports a subset of widget resources with

XF speci�c dialog boxes. This only covers the most frequently used resources. Special resources can be

accessed with this dialog box.

Figure B.9: The procedure XFProcConfParametersGeneral

The upper left list shows all widgets in the application. To change the current widget, the user clicks on

the widget name. The right list shows the names of all available resources for the current widget.

Below these lists, the class of the selected widget is displayed. The symbolic name is shown as well and

can be manipulated. The resource �eld contains the name of the currently selected resource, and the text

�eld at the bottom shows the value of the resource.

A number of buttons at the bottom provides access to some dialog boxes, where values for standard

resources (like colors) can be interactively selected. The remaining buttons at the bottom are used for setting

the resources for the current widget (or for all descendants of the current widget), and for terminating the

dialog box.

B.3.14 XFProcConfParametersGroups (Parameters (widget groups))

This procedure calls the dialog box for parameter setting for groups of widgets. Very often, parameters (like

foreground) have to be set for a great number of widgets. Instead of calling the parameter setting dialog for

each widget separately, this dialog allows the interactive selection of widgets, and the setting of parameters

for these widgets.

The upper left list contains all widgets in the application. A widget is added to the selection by clicking

on its name. A selected widget is displayed in the middle list, where it can be removed with a click. The

right list shows a list of resources. A resource name can be selected by clicking on the name.

Below the lists, two lines allow the selection of widgets via shell style expressions, or regular expressions.

The next entry contains the resource name. The name can be entered by clicking on a list item in the upper

right list, or by typing it by hand. The text widget at the bottom contains the value for the resource.

APPENDIX B. XF USER'S GUIDE 56

Figure B.10: The procedure XFProcConfParametersGroups

A number of buttons at the bottom provides access to some dialog boxes, where values for standard

resources (like colors) can be interactively selected. The remaining buttons at the bottom are used to set

the resources for the selected widgets (or for all descendants of the selected widgets), to clear the selection

etc..

B.3.15 XFProcConfParametersSmall (Parameters (small))

This procedure activates the small parameter setting dialog for the currently selected widget, or the widget

that was passed on as �rst parameter. This dialog is usually the most important dialog, and contains the

most important resources that can be changed for a widget. If a resource is not accessible with this dialog,

the general parameter dialog must be used.

B.3.16 XFProcConfParametersSpecial (Parameters (special))

This procedure activates the special parameter dialog for the currently selected widget, or the widget that

was passed as �rst parameter. A special parameter dialog is a complex interface for special features of a

widget class. I.e. the handling of menu items and canvas items is done in a special parameter dialog. If a

widget has no special dialog box, nothing happens when this procedure is called.

B.3.17 XFProcConfPlacing (Placing)

This procedure activates the placing dialog for the currently selected widget, or the widget that was passed

on as �rst parameter. With this dialog box, it is possible to change the placing of the complete widget tree.

This means that the user only has to call this dialog box once to layout the complete widget tree.

The top area contains the available placer options. The options show the current setting of the child

selected in the right list at the bottom. Selecting another child in that list updates the settings. The left list

contains the widget tree. By double clicking at a widget in that list, this widget is made the current master.

The right list contains the children placed (managed) by this master.

APPENDIX B. XF USER'S GUIDE 57

Figure B.11: The procedure XFProcConfPlacing

As there exist two independent geometry managers, it can happen that a child of a widget should be

managed with the other geometry manager. This is done with the two buttons (Place child) and (Forget

child).

The remaining buttons at the bottom give access to the other widget speci�c dialogs. There is always

one button that activates the parameter box for the current master, and one button that activates it for the

current child. There are also buttons that apply the changes and terminate the dialog box.

APPENDIX B. XF USER'S GUIDE 58

B.4 Edit

B.4.1 XFProcEditClearCut (Clear Cutbu�er)

Calling this procedure clears the current cutbu�er. The widget structure stored in the cutbu�er is lost. If

the contents of the cutbu�er were displayed in a dialog box, this dialog box is removed. This procedure

takes no arguments.

B.4.2 XFProcEditCopy (Copy)

Calling this procedure copies the speci�ed widget or the current widget (if no widget was speci�ed) to the

cutbu�er. The widget structure remains in the application, and the cutbu�er contains a copy of this widget

structure. This procedure takes one optional argument. The argument speci�es the widget path to be copied.

If no widget path is speci�ed, the current widget path is used.

If widgets inside of the copied widget structure are used by other widgets, these commands have to be

adapted when the widget tree is pasted.

B.4.3 XFProcEditCut (Cut)

Calling this procedure cuts the speci�ed widget or the current widget (if no widget was speci�ed) to the

cutbu�er. The widget structure is removed from the application, and the cutbu�er contains the widget

structure. This procedure takes one optional argument. The argument speci�es the widget path to be cut.

If no widget path is speci�ed, the current widget path is used.

If widgets inside of the cut widget structure are used by other widgets, these commands have to be

adapted when the widget tree is pasted.

B.4.4 XFProcEditDelete (Delete)

Calling this procedure deletes the speci�ed widget or the current widget (if no widget was speci�ed). The

widget structure is removed from the application. This procedure takes one optional argument. The ar-

gument speci�es the widget path to be deleteed. If no widget path is speci�ed, the current widget path is

used.

B.4.5 XFProcEditLoadCut (Load Cutbu�er)

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here, the user can select a cutbu�er �le that was saved using the procedure XFProcEditSaveCut. The �le to

be loaded must be a cutbu�er �le, in order to be accessible for pasting. This procedure takes no arguments.

B.4.6 XFProcEditLoadTemplate

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here the user can select a template �le that was saved using the procedure XFProcEditSaveCutAsTemplate.

This procedure takes no arguments.

B.4.7 XFProcEditMakeAProc (Make a procedure)

Calling this procedure creates a procedure from the speci�ed widget or the current widget (if no widget was

speci�ed). The name of the new procedure is V<WidgetClass><pathName>. The widget structure remains

in the application. Making a widget structure a procedure allows it to dynamically reproduce complex widget

structures. This can be useful for applications where several toplevels contain the same sub widget structure.

If no widget path is speci�ed, the current widget path is used.

The created procedure is called with one parameter to create a new instance of the widget tree. This

parameter speci�es the parent name of the widget. The programmer has to guarantee that the parent will

not contain the same widget structure more than once.

APPENDIX B. XF USER'S GUIDE 59

The call of the procedure can have additional parameters which are used to con�gure the created widget

structure. Calling the procedure with a parent name that already contains the widget structure allows it

to recon�gure the widget tree. The parameters are the usual resource pairs. First the resource name, and

then the new value. The resource is set for all widgets that support this resource. If a resource is to be

set for one speci�c subwidget, the complete pathname is speci�ed as a parameter, followed by the usual

resourcename/resourcevalue pair. There are three special con�guration parameters that are only used when

the widget structure is created. They are named -startupSrc, -middleSrc and -endSrc. Each parameter gets

one argument. The startupSrc is evaluated before any widget is created. The middleSrc is evaluated when all

widgets are created, but before they are mapped. The endSrc is evaluated before the procedure is �nished.

B.4.8 XFProcEditPaste (Paste)

Calling this procedure inserts the current cutbu�er to the speci�ed widget or the current widget (if no widget

was speci�ed). The widget structure remains in the cutbu�er. This procedure takes one optional argument.

The argument speci�es the widget path where the cutbu�er is to be inserted. If no widget path is speci�ed,

the current widget path is used.

B.4.9 XFProcEditSaveCut (Save Cutbu�er)

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here, the user can select a �lename that is used to save the cutbu�er. Later, this cutbu�er �le can be loaded

using the procedure XFProcEditLoadCut. This procedure takes no arguments.

B.4.10 XFProcEditSaveCutAsTemplate (Save Template (cut bu�er))

Calling this procedure pops up a standard �le selector box (described in the templates section under FSBox).

Here, the user can select a �lename that is used to save the cutbu�er. The cutbu�er is saved as a template,

which means that the �lename has the extension .t, and the �le should be located in one of the template

directories. This procedure takes one argument. The value should always be \cb".

B.4.11 XFProcEditShowCut (Show Cutbu�er)

Calling this procedure pops up a dialog box containing the current cutbu�er. This can be in textual

representation, or as a widget structure. If the parameter of the procedure is \tree", the cutbu�er is

displayed as a widget tree:

Figure B.12: The procedure XFProcEditShowCut (tree)

APPENDIX B. XF USER'S GUIDE 60

If the parameter is \script", the Tcl/Tk script is displayed:

Figure B.13: The procedure XFProcEditShowCut (script)

APPENDIX B. XF USER'S GUIDE 61

B.5 Programming

B.5.1 XFProcProgCommands (Commands)

This procedure pops up the command handling dialog. This dialog provides access to the user de�ned

procedures and the Tcl/Tk commands.

Figure B.14: The procedure XFProcProgCommands

The upper list shows all commands. By clicking on a name, the name, the arguments and the body are

inserted into the three �elds below the list.

To restrict the displayed commands to a subset, a pattern can be speci�ed. This pattern can be used to

include matching commands, or to exclude them.

The buttons at the bottom of the window control the changing of the commands. The (Insert) button

creates a new procedure with the current name, arguments and body. The (Edit) button updates the current

procedure. The (Rename) button pops up a dialog box where the new name can be entered. The (Remove)

button removes the current procedure. The (Hide) button allows hiding a procedure. A hidden procedure

no longer exists as a procedure. To unhide a procedure the user switches to the hidden procedures and

presses the (Unhide) button. The (Clear) button clears the text �elds, and the (Help) button calls the help

program for the current procedure. The remaining buttons at the bottom control the rescan of the variables,

and allow the termination of the dialog.

APPENDIX B. XF USER'S GUIDE 62

The (Save) button allows the saving of procedures to a ShapeTools archive or a plain �le. These pro-

cedures can later be reused in other programs. The save dialog allows the de�nition of a message that is

attached to the saved �le.

Figure B.15: The procedure XFProcProgCommands (saving)

The (Load) button allows the loading of externally saved procedures. The procedure can be loaded or

displayed.

Figure B.16: The procedure XFProcProgCommands (loading)

APPENDIX B. XF USER'S GUIDE 63

B.5.2 XFProcProgEditScript (Edit script)

This procedure saves the current application, and displays it in a text box. The user can view and edit the

resulting code. When he con�rms the changes, the application is reloaded.

Figure B.17: The procedure XFProcProgEditScript

B.5.3 XFProcProgEndSrc (End source)

This procedure activates the procedure handling dialog with \EndSrc" as procedure name. This procedure

is evaluated before the control is passed on to the Tk main loop. It is the last code that is executed at the

startup.

B.5.4 XFProcProgErrors (Error status)

This procedure pops up a dialog box, where the last error that occurred during the execution of XF is

displayed. Most errors that are displayed are \correct", which means that it is ok that they occur.

Figure B.18: The procedure XFProcProgErros

APPENDIX B. XF USER'S GUIDE 64

B.5.5 XFProcProgGlobals (Global variables)

This procedure pops up the globals handling dialog. This dialog provides access to the global variables.

Figure B.19: The procedure XFProcProgGlobals

The upper list shows all global variables. By clicking on a name, the name and the current value are

inserted into the two �elds below the list.

To restrict the displayed variables to a subset, a pattern can be speci�ed. This pattern can be used to

include matching variables, or to exclude them.

The buttons at the bottom of the dialog control the changing of the global variables. The insert button

creates a global variable with the current name containing the current value. The rename button pops up a

dialog box where the new name can be entered. The remove button removes the current variable, and the

clear button clears the text �elds. The remaining buttons at the bottom control the rescan of the variables,

and allow the termination of the dialog.

APPENDIX B. XF USER'S GUIDE 65

B.5.6 XFProcProgProcs (Procedures)

This procedure pops up the procedure handling dialog. This dialog provides access to the user de�ned

procedures. The handling is the same as for the command handling dialog, except that this dialog does not

display commands.

Figure B.20: The procedure XFProcProgProcs

APPENDIX B. XF USER'S GUIDE 66

B.5.7 XFProcProgShowScript (Show script)

This procedure saves the current application, and displays it in a text box. The user can view the resulting

code.

Figure B.21: The procedure XFProcProgShowScript

B.5.8 XFProcProgStartupSrc (Startup source)

This procedure activates the procedure handling dialog with \StartupSrc" as procedure name. This proce-

dure is evaluated as �rst code in the application. It can be used to parse the commandline etc..

APPENDIX B. XF USER'S GUIDE 67

B.5.9 XFProcProgWidgetTree (Widget tree)

This procedure activates the widget tree dialog. Here, the widget tree is displayed as a simple graph. The

user can restrict the displayed widget tree to a subtree.

Figure B.22: The procedure XFProcProgWidgetTree

The items representing the various widgets have a popup menu attatched to the left mouse button. Here,

all widget speci�c dialogs can be activated. With this menu, the user can also restrict the displayed widgets

to a subtree, and remove the restriction. It is possible to set the current widget with the standard binding

(usually with a doubleclick with the middle mouse button). The button (Print to (./xfWidgetTree))

writes a postscript hardcopy of the displayed widget tree to the �le ./xfWidgetTree.

APPENDIX B. XF USER'S GUIDE 68

B.6 Misc

B.6.1 XFProcMiscAliases (Aliases)

This procedure gives access to the alias feature of XF. It is possible to de�ne procedure names that can be

used instead of existing procedure names. This is very useful for complex widget names which can now be

abbreviated to a short precise name.

Figure B.23: The procedure XFProcMiscAliases

The left list contains the known aliases, and the right list the known procedures and commands. To

insert a new alias, the new name is typed into the entry labeled (Alias name:). By clicking on a procedure

or command name from the right list, this name is inserted into the entry below the alias name. The two

buttons (Insert) and (Delete) control the insertion and deletion of the aliases.

B.6.2 XFProcMiscAppDefaults (Application defaults)

This procedure calls the external program xfappdef. The procedure gets an application class name speci-

fying the resource �le to edit. A description of the program can be found in the appropriate part of this

documentation.

B.6.3 XFProcMiscEdge (Widget tree (edge))

This procedure dumps the current widget tree as an edge grl �le, and automatically starts edge. Edge is a

program that can display graphs.

B.6.4 XFProcMiscHardcopy (Hardcopies)

This procedure calls the external program xfhardcopy. A description of the program can be found in the

appropriate part of this documentation.

APPENDIX B. XF USER'S GUIDE 69

B.6.5 XFProcMiscModules (Module structure)

Calling this procedure pops up the module structure dialog box. This procedure gets no parameters. An

XF generated program can be packed into one �le, containing the complete code. It is also possible to split

the code into several modules. This is done in this dialog box.

Figure B.24: The procedure XFProcMiscModules

To add a new module, the new module name is entered, and the (Insert module) button is pressed.

The current module is selected from the module list. The contents of that module are displayed in the right

list. The order of the module contents can be changed by selecting a name, and changing its position with

the slider right beside the list.

To add new elements (procedures and toplevels) to a module, a name is selected in one of the left lists.

To remove an element from a module, the element is selected in the right list and the (Delete element)

button is pressed. To remove a module, the module is selected in the left list, and the (Delete module)

button is pressed.

If the contents of a module should be auto loadable, the checkbutton (Auto load) right beside the module

name is toggled. This means that a tclIndex �le is created, and the needed code for auto loading is created.

To restrict the saving to a subset of the modules, the checkbutton (Save module) right beside the module

name can be toggled. If the checkbutton is deselected for a module, this module will not be saved. The

current selection of modules to be saved can be stored to a local �le named .xf-save-modules with the

procedure XFProcOptionsSaveModules.

This dialog is also used to create templates. By clicking the (Handle Templates) button, the selected

procedures and the widget path are written to a template that is created when the (Save) button is pressed.

APPENDIX B. XF USER'S GUIDE 70

B.6.6 XFProcMiscPixmaps (Pixmaps)

This procedure activates a dialog box in which the user can select pixmaps to be preloaded. Preloading means

that the generated source code contains the bitmaps/pixmaps in string form. To do this, the TkPixmap

extension pinfo is required.

Figure B.25: The procedure XFProcMiscPixmaps

The left list contains all bitmaps/pixmaps that are currently loaded into Tk. By double clicking on a

name, this name is inserted into the right list. This means that this bitmap/pixmap will be preloaded. To

remove a selected name from the right list, double click on the name. With the (Edit) button, an external

bitmap editor can be called, to modify the bitmap/pixmap.

B.6.7 XFProcMiscSaveEdge (Dump tree (/tmpPath/....grl))

This procedure dumps the current widget tree as an edge grl �le. Edge is a program that can display graphs.

The output �le is written to the temporary directory, and is named <ProgramName>.grl.

B.6.8 XFProcMiscTestProgram (Test program)

This procedure saves the current application, and starts an extra wish, where the user can test the application.

APPENDIX B. XF USER'S GUIDE 71

B.7 Options

B.7.1 XFProcOptionsBindings (Bindings)

This dialog box provides access to the bindings that are used by XF. Most bindings in XF can be adapted

by the user, to allow XF to work with di�erent window manager con�gurations.

Figure B.26: The procedure XFProcOptionsBindings

The single options have the following meanings (some option names may be abbreviated):

Option name Purpose

Call con�guration This is the binding to activate parameter setting. This

event works for each widget in the application, and also for

some parameter setting �elds in the XF parameter dialogs.

Select current widget This event is used to make one widget in the application

the current widget.

Primary select This is the general (preferred) selection event.

Secondary select This is the alternative for the primary select. This is only

used when the primary select is already used (almost never

required).

Third select This is the alternative for the primary and secondary select.

Show widget name This event allows it to display the widget name of the wid-

get under the mouse pointer in a dialog box (the name is

also inserted into the cutbu�er, so it can be pasted).

Remove widget name This event must correspond to the \Show widget name"

event. This event removes the dialog box showing the wid-

get name.

Begin widget moving This event starts the interactive placing/sizing of a widget.

It must correspond to the other moving/sizing events.

APPENDIX B. XF USER'S GUIDE 72

Option name Purpose

Move widget This event is the moving event that is used to update the

widget position during the moving. It must correspond to

the other moving/sizing events.

End widget moving This event ends the interactive placing/sizing of a widget.

It must correspond to the other moving/sizing events.

Popup menu (mouse nr.) This is the number of the mouse button that should be used

to display a popup menu. Popup menus are available in the

widget tree.

B.7.2 XFProcOptionsGeneral (General options)

This dialog box provides access to the general XF options.

Figure B.27: The procedure XFProcOptionsGeneral

The single options have the following meanings (some option names may be abbreviated):

APPENDIX B. XF USER'S GUIDE 73

Option name Purpose

Auto save The interval slider speci�es the interval between two auto

saves. The �le number slider speci�es the number of backup

�les to be created. The backup �les are created in the

temporary directory, and they start with an \as".

Ask for widget name... This checkbutton activates a dialog box, where the user can

enter a widget name before a widget is inserted.

Default geometry manager Depending on these buttons, new widgets are inserted using

the packer or the placer.

Allow layouting without... If this checkbutton is true direct layouting of the widgets

is only allowed when the layout dialog box is popped up

(to prevent erroneous geometry changes). Otherwise the

layouting is always possible.

Default geometry manager Depending on these buttons, new widgets are displayed,

using the packer or the placer.

Layout border width With this slider, the sizing border of widgets can be speci-

�ed. This border is used to size widgets, while the remain-

ing inner area is used to move the widget.

GridX/GridY With these sliders, a grid can be de�ned for widgets that

are layouted with the placer.

Scrollbar side Depending on these buttons, scrollbars are displayed left

from the controlled widgets or right.

Save options on exit If this checkbutton is true, the current XF options are saved

when the program is stopped.

Save positions on exit If this checkbutton is true, the current XF window positions

are saved when the program is stopped.

Binding show levels These checkbuttons specify which levels of bindings are dis-

played in the binding dialog. The level of a binding is speci-

�ed by the string \# xf ignore me<level>" at the beginning

of the Tcl/Tk command.

Procedure show levels These checkbuttons specify which levels of procedures are

displayed in the procedure dialogs. The level of a procedure

is speci�ed by the string \# xf ignore me <level>" at the

beginning of the Tcl/Tk command.

Bitmap editor This entry contains the command that is invoked to start an

external bitmap editor. The editor command must contain

the string $xfFileName at the position where the �lename

which is to be edited should be substituted.

Pixmap editor This entry contains the command that is invoked to start an

external pixmap editor. The editor command must contain

the string $xfFileName at the position where the �lename

which is to be edited should be substituted.

Editor This entry contains the command that is invoked to start

an external editor. The editor command must contain

the string $xfFileName at the position where the �lename

which is to be edited should be substituted.

APPENDIX B. XF USER'S GUIDE 74

Option name Purpose

Message font This font is used in XF message boxes. All other dialogs

are using the default font.

Flash color This color is used to highlight the selected widget.

B.7.3 XFProcOptionsIconBar (Iconbar con�guration)

This procedure activates the iconbar con�guration. This dialog is explained in the chapter about the tem-

plates.

B.7.4 XFProcOptionsInterpreter (Interpreter options)

This dialog box provides access to the interpreter settings that are used by XF.

Figure B.28: The procedure XFProcOptionsInterpreter

The single options have the following meanings (some option names may be abbreviated):

Option name Purpose

Motif look & feel This checkbutton toggles the global variable tk strictMotif

which is used to make the behavior of Tk more motif-like.

Interpreter has tkEmacs Only when this checkbutton is selected, the tkEmacs widget

is used for editing Tcl/Tk source. Otherwise, an existing

tkEmacs widget is ignored.

Interpreter This is the name of the interpreter which is inserted at the

beginning of the created code to allow the execution of this

Tcl/Tk code.

Interpreter (tutorial) This is the name of the interpreter that is used to run the

tutorial. Usually, this is the standard wish. To allow the

use of special extensions in future versions, this name is

adaptable.

B.7.5 XFProcOptionsMenuBar (Menubar con�guration)

This procedure activates the menubar con�guration. This dialog is explained in the chapter about the

templates.

APPENDIX B. XF USER'S GUIDE 75

B.7.6 XFProcOptionsPathFile (Path/�le names)

This dialog box provides access to the path and �le names that XF uses.

Figure B.29: The procedure XFProcOptionsPathFile

The single options have the following meanings (some option names may be abbreviated):

Option name Purpose

XF path This pathname is pointing at the root of the installed XF

distribution.

Additionals path This pathname is pointing at the directory where the

sources for the support of additional widgets are located.

Elements path This pathname is pointing at the directory where the

sources for the support of the standard Tk widgets are lo-

cated.

Help path This is a list of pathnames separated by \:" containing the

help pages for the help program.

APPENDIX B. XF USER'S GUIDE 76

Option name Purpose

Icon path This is a list of pathnames separated by \:" containing the

icons for the iconbar.

Library path This pathname points at the directory where the library

�les of XF are located.

Module load path This is a list of pathnames separated by \:" pointing at di-

rectories where XF can �nd modules that should be loaded.

If these directories contain tclIndex �les, the auto loading

facility of Tcl also uses this pathname.

Procedures path This pathname is pointing at the directory where the

Tcl/Tk procedures can be stored.

Source path This pathname is pointing at the directory where the XF

sources are located.

Template path This is a list of pathnames separated by \:" pointing at

directories where templates can be found and stored.

Tmp path This pathname is pointing at the directory where XF can

store temporary data. This includes the auto save �les.

AppDef �le This �lename speci�es the application default �le that XF

should load at startup. This �le can contain standard X

resource speci�cations

Binding �le This �lename speci�es the �le containing class bindings.

These bindings can be changed and saved with XF. If

the class bindings are signi�cant for the application, they

should be included directly in the application source with

an option in (Options j Source options).

Color �le This �lename speci�es the �le containing the colornames for

the color selection box. This �le is created automatically

when XF is installed.

Con�g �le This �lename speci�es the con�guration �le for XF. This

�lename can be speci�ed with a commandline option when

XF is started (-xfcon�g).

Cursor �le This �lename speci�es the �le containing the cursornames

for the cursor selection box. This �le is created automati-

cally when XF is installed.

Font �le This �lename speci�es the �le containing the fontnames for

the font selection box. This �le is created automatically

when XF is installed.

Iconbar �le This �lename speci�es the iconbar con�guration �le.

Keysym �le This �lename speci�es the �le containing the keysymnames

for the keysym selection box. This �le is created automat-

ically when XF is installed.

Menubar �le This �lename speci�es the menubar con�guration �le.

Position �le This �lename speci�es the window position �le for XF. This

�le contains the window positions of the XF dialog boxes.

APPENDIX B. XF USER'S GUIDE 77

Option name Purpose

Startup �le This �lename speci�es the startup �le. This �le is evalu-

ated when XF is started. Here, the user can make local

extensions to XF.

TkEmacs editor This is the name of the emacs that is called by the tkEmacs

widget. Usually, this value is not changed.

TkEmacs lisp �le This is the name of the emacs lisp code that is loaded by

the tkEmacs widget. Usually, this value is not changed.

B.7.7 XFProcOptionsSaveClassBindings (Save class bindings)

This procedure saves the currently de�ned class bindings for the widgets to the bindings �le. This �le can

be speci�ed in the (Options j Path/file names) dialog.

B.7.8 XFProcOptionsSaveModuleList (Save module list)

This procedure saves the current selection of changeable modules to the local �le \.xf-save-modules". Only

modules that have been selected in the module structure dialog are saved when the application is saved.

B.7.9 XFProcOptionsSaveOptions (Save options)

This procedure explicitly saves the current options to the options �le. This �le can be speci�ed in the

(Options j Path/Filenames) dialog. The user can specify that the options should be automatically saved

when he leaves XF.

B.7.10 XFProcOptionsSavePositions (Save window positions)

This option explicitly saves the current positions and sizes of the XF windows to the position �le. This �le

can be speci�ed in the (Options j Path/Filenames) dialog. The user can specify that the options should

be automatically saved when he leaves XF.

APPENDIX B. XF USER'S GUIDE 78

B.7.11 XFProcOptionsSource (Source options)

This dialog box provides access to the source code generation options.

Figure B.30: The procedure XFProcOptionsSource

The single options have the following meanings (some option names may be abbreviated):

Option name Purpose

Application default code If this checkbutton is selected, XF will create code that

allows the parsing of application default �les. The code

searches in the application default directories for a �le

matching the application name, and parses it.

Form support code If this checkbutton is true, XF will create code that sup-

ports formulars. The code allows the automatic connection

of text/entry widgets, and handles the geometry of these

widgets.

APPENDIX B. XF USER'S GUIDE 79

Option name Purpose

Commandline parsing code If this checkbutton is true, XF will create code that parses

the commandline options for some special XF extensions.

Pixmap preloading code If this checkbutton is true, XF will create code that uses the

TkPixmap extension pinfo to include the bitmaps/pixmaps

that are used by the application into the code.

Class bindings If this checkbutton is true, XF will include the class bind-

ings into the created code.

Create tclIndex �le If this checkbutton is true, XF will create a tclIndex �le for

those modules that are speci�ed to be auto loadable.

Create shell script If this checkbutton is true, XF will create a shell script for

calling the resulting application.

Bindings are surrounded... Depending on these buttons, XF will enclose the Tcl/Tk

commands bound to an event in fg or "". Please use fg,

for the enclosing in "" may lead into trouble.

Procedures are surrounded... Depending on these buttons, XF will enclose the Tcl/Tk

commands bound to a resource (like the -command resource

for buttons) in fg or "". Please use fg, for the enclosing in

"" may lead into trouble.

Binding save levels These checkbuttons specify which levels of bindings are

saved. The level of a binding is speci�ed by the string

\# xf ignore me <level>" at the beginning of the Tcl/Tk

command.

Procedure save levels These checkbuttons specify which levels of the procedures

are saved. The level of a procedure is speci�ed by the string

\# xf ignore me <level>" at the beginning of the Tcl/Tk

command.

Comment layout Depending on the radiobuttons below the text widget, the

text widget allows the changing of comments that are in-

serted in the code by XF. These comments can contain

several variables. These are: programName, moduleName,

tclVersion, tkVersion, xfVersion, magicCookie and proce-

dureName.

B.7.12 XFProcOptionsVersion (Version control options)

This dialog box provides access to the version control facilities that XF uses. It is possible to store and

retrieve procedures and modules to/from ShapeTools archives. The commands need some parameters which

are provided by XF as Tcl variables. The variable xfFileName contains the name of the object to be

processed. The variable xfFileVersion contains the version number of the object to be processed. The

variable xfMessage contains the message to attach to an object when it is saved.

APPENDIX B. XF USER'S GUIDE 80

Figure B.31: The procedure XFProcOptionsVersion

The single options have the following meanings (some option names may be abbreviated):

Option name Purpose

Use version control This checkbutton allows it to disable the use of the version

control system.

List This command is executed to get a name list of all objects

in the version system. Before this command is executed,

XF changes into the correct directory.

List (long) This command is executed to get a detailed information

on one speci�c object in the version system. The object is

identi�ed with a version number. Before this command is

executed, XF changes into the correct directory.

List default (long) This command is executed to get a detailed information on

one speci�c object in the version system. The object is the

default object that is used when no explicit version number

is given. Before this command is executed, XF changes into

the correct directory.

Retrieve This command is executed to retrieve one speci�c object

from the version system. The object is identi�ed with a ver-

sion number. Before this command is executed, XF changes

into the correct directory.

Retrieve default This command is executed to retrieve one speci�c object

from the version system. The object is the default object

that is used when no explicit version number is given. Be-

fore this command is executed, XF changes into the correct

directory.

APPENDIX B. XF USER'S GUIDE 81

Option name Purpose

Remove This command is executed to remove a retrieved object.

Before this command is executed, XF changes into the cor-

rect directory.

Save This command is executed to save an object into the version

system. Before this command is executed, XF changes into

the correct directory.

Save with comment This command is executed to save an object into the version

system. It also takes a message that is attached to that

object. Before this command is executed, XF changes into

the correct directory.

Show This command is executed to show the contents of one spe-

ci�c object from the version system. The object is identi�ed

with a version number. Before this command is executed,

XF changes into the correct directory.

Show default This command is executed to show the contents of one spe-

ci�c object from the version system. The object is the de-

fault object that is used when no explicit version number is

given. Before this command is executed, XF changes into

the correct directory.

Test This command is executed to check if the version control

system is installed on the machine.

APPENDIX B. XF USER'S GUIDE 82

B.7.13 XFProcOptionsWindow (Window options)

This dialog box provides access to the window handling in XF. It is possible to control the appearance of

the main window, and the positioning/sizing of the XF dialog boxes.

Figure B.32: The procedure XFProcOptionsWindow

The single options have the following meanings (some option names may be abbreviated):

Option name Purpose

Automatic window placing This checkbutton toggles the placing policy of XF. Auto-

matic placing means, that the position of the dialog boxes

is set by XF at startup. The changes that the user makes

are stored.

Automatic window sizing This checkbutton toggles the sizing policy ofXF. Automatic

sizing means, that the size of the dialog boxes is set by XF

at startup. The changes that the user makes are stored.

Automatic window stacking This checkbutton toggles the placing/sizing policy of XF.

Automatic stacking means that the size and position of

some dialog boxes are set to the size and position of a

\leading" window. This can only be done for parameter

dialogs.

One window per window class This checkbutton toggles the dialog box creation policy of

XF. If only one window per window class is allowed, XF

will use an already existing toplevel of the same window

class to display dialog boxes.

APPENDIX B. XF USER'S GUIDE 83

Option name Purpose

Automatic root window placing If this checkbutton is true, the main application window is

placed to +0+0 on startup.

Hide edit lists If this checkbutton is true, the main XF window does not

contain the widget listboxes.

Hide iconbar If this checkbutton is true, the main XF window does not

contain the iconbar.

Hide menubar If this checkbutton is true, the main XF window does not

contain the menubar.

Hide path name If this checkbutton is true, the main XF window does not

contain the current widget path.

Hide status line If this checkbutton is true, the main XF window does not

contain the status line.

Show iconbar as toplevel If this checkbutton is true, the iconbar of the main XF

window is displayed as a separate toplevel at startup.

APPENDIX B. XF USER'S GUIDE 84

B.8 Help

B.8.1 XFProcHelpAbout (About)

This procedure pops up the XF about box. It gets no parameters.

Figure B.33: The procedure XFProcHelpAbout

B.8.2 XFProcHelpHelp

This procedure calls the external program xfhelp. The procedure gets a list separated by spaces specifying

the help page to be displayed. The help pages are structured in a directory tree. The program provides

access to the Tcl/Tk manual pages, XF help pages and user changeable notes. A description of the program

can be found in the appropriate part of this documentation.

B.8.3 XFProcHelpTutorial (Tutorial)

This procedure calls the external program xftutorial. The procedure gets no parameters. The tutorial pro-

gram introduces the user into the usage of XF. An interactive example for a session leads him through the

basic concepts of XF. A description of the program can be found in the appropriate part of this documen-

tation.

Appendix C

Templates

XF provides the concept of templates. Templates are �les that contain a widget structure and/or procedures.

They can be loaded by the user, and add this widget structure and/or functionality to the program.

The XF distribution contains three main groups of templates. Combined templates contain only a combi-

nation of widgets that form a complex widget structure. The second group are Procedures. They implement

functionality, i.e. a dialog box that can be popped up or general functions to handle lists. The third group

of templates (Widgets) implements a sort of new widgets. This means that new complex widgets are built

basing upon existing widgets.

The following chapter describes the templates that are part of the XF distribution. The user can de�ne

his own new templates.

85

APPENDIX C. TEMPLATES 86

C.1 Combined

C.1.1 CanvasLS, CanvasRS

A canvas widget surrounded by two scrollbars. The appropriate commands to enable scrolling are already

set. CanvasLS and CanvasRS di�er at the side where the vertical scrollbar is displayed.

Figure C.1: The template CanvasLS

APPENDIX C. TEMPLATES 87

C.1.2 EntryL, EntryLLS, EntryLS, EntryS

EntryL implements an entry widget with a label at the left side.

Figure C.2: The template EntryL

EntryLLS implements an entry widget with a label at the left side, and a horizontal scrollbar. The

commands for scrolling are set.

Figure C.3: The template EntryLLS

EntryLS implements an entry widget with a label at the left side, and a horizontal scrollbar. The

commands for scrolling are set.

Figure C.4: The template EntryLS

EntryS implements an entry widget with a horizontal scrollbar. The commands for scrolling are set.

Figure C.5: The template EntryS

APPENDIX C. TEMPLATES 88

C.1.3 HypertextLS, HypertextRS

A hypertext widget surrounded by two scrollbars. The appropriate commands to enable scrolling are already

set. HypertextLS and HypertextRS di�er at the side where the vertical scrollbar is displayed.

Figure C.6: The template HypertextLS

APPENDIX C. TEMPLATES 89

C.1.4 ListboxLS, ListboxRS

A listbox widget surrounded by two scrollbars. The appropriate commands to enable scrolling are already

set. ListboxLS and ListboxRS di�er at the side where the vertical scrollbar is displayed.

Figure C.7: The template ListboxLS

APPENDIX C. TEMPLATES 90

C.1.5 PhotoLS, PhotoRS

A photo widget surrounded by two scrollbars. The appropriate commands to enable scrolling are already

set. PhotoLS and PhotoRS di�er at the side where the vertical scrollbar is displayed.

Figure C.8: The template PhotoLS

APPENDIX C. TEMPLATES 91

C.1.6 TextLS, TextRO, TextROLS, TextRORS, TextRS

A text widget with a vertical scrollbar. The appropriate commands to enable scrolling are already set.

TextLS and TextRS di�er at the side where the vertical scrollbar is displayed. TextRO, TextROLS and

TextRORS insert text widgets that are disabled for user input.

Figure C.9: The template TextLS

APPENDIX C. TEMPLATES 92

C.1.7 TkEmacsLS, TkEmacsRS

A tkemacs widget with a vertical and horizontal scrollbar. The appropriate commands to enable scrolling

are already set. TkEmacsLS and TkEmacsRS di�er at the side where the vertical scrollbar is displayed.

Figure C.10: The template TkEmacsLS

APPENDIX C. TEMPLATES 93

C.2 Procedures

C.2.1 AlertBox, AlertBoxFd, AlertBoxFile

This template de�nes three new procedures named AlertBox, AlertBoxFd and AlertBoxFile. Calling one of

these procedures pops up an alert box. These boxes can be modal or not. If the dialog box is modal, the

procedure returns the number of the pressed button. Otherwise the speci�ed command is evaluated. The

procedures get the following parameters:

Parameter name Opt. Purpose

alertBoxMessage y The message, �le or �le descriptor that is displayed.

alertBoxCommand y The command to execute when OK is pressed. The dia-

log box is not modal (non blocking) when this parameter

is not an empty string.

alertBoxGeometry y This is the geometry of the dialog box.

alertBoxTitle y This is the title bar of the dialog box.

args y Any additional parameters are interpreted as a button

label. The dialog box is modal (blocking), and the re-

turn value of the procedure is the number of the pressed

button.

To con�gure the di�erent aspects of the alert box, there exists a global array named alertBox. A default

value of \-" means that the Tk default value is used. This array contains elements that control the alert box

(color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

after 0 Invokes the �rst button after n seconds. The dialog

box is removed.

anchor nw The anchor of the message widget.

background - The background color.

font - The font.

foreground - The foreground color.

justify center The justi�cation of the message widget.

toplevelName .alertBox The toplevel name. This variable makes it possible

to popup multiple dialog boxes at the same time.

A small example of an invocation may look like this:

set result [AlertBox ''This is an alert message!'' ''''n

200x70 ''Dialog title'' OK Abort Cancel]

This would create the following dialog box:

Figure C.11: The template AlertBox

APPENDIX C. TEMPLATES 94

C.2.2 ClearList, ClearText

This template de�nes two procedures that clear the contents of a list/text widget. The procedures get the

following parameters:

Parameter name Opt. Purpose

listWidget n The list/text widget that should be cleared

APPENDIX C. TEMPLATES 95

C.2.3 ColorBox

This template de�nes a new procedure named ColorBox. Calling this procedure pops up a dialog box to

select a color. Colors can be entered by their name, selected from a list, de�ned in RGB values or as HSV

values. The procedure gets the following parameters:

Parameter name Opt. Purpose

colorBoxFileColor y The �le containing a list of colors.

colorBoxMessage y The message to be displayed. If the parameter contains

the patterns *foreground* or *background*, the appro-

priate resource is set in the demo widget, and in the

target widget.

colorBoxEntryW y This is the entry widget where the selected color is to

be inserted.

colorBoxTargetW y This is the widget that is con�gured. If this parameter

is speci�ed, the selected color is applied to the widget.

To con�gure the di�erent aspects of the color box, there exists a global array named colorBox. A default

value of \-" means that the Tk default value is used. This array contains elements that control the color

box (color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

palette "" A list of color names.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an invocation may look like this:

ColorBox ''/usr/lib/X11/rgb.txt'' ''Background''

This would create the following dialog box:

Figure C.12: The template ColorBox

APPENDIX C. TEMPLATES 96

C.2.4 CursorBox

This template de�nes a new procedure named CursorBox. Calling this procedure pops up a dialog box

to select a cursor. The cursor can be selected from a list, or entered directly. The foreground and the

background color can be selected. If the template ColorBox exists, a double click with the right mouse

button activates the color selection box. The procedure gets the following parameters:

Parameter name Opt. Purpose

cursorBoxFileCursor y The �le containing a list of cursors.

cursorBoxFileColor y The �le containing a list of colors.

cursorBoxMessage y The resource name that is con�gured.

cursorBoxEntryW y This is the entry widget where the selected cursor is

inserted.

cursorBoxTargetW y This is the widget that is con�gured. If this parameter

is speci�ed, the selected cursor is applied to the widget

immediately.

To con�gure the di�erent aspects of the cursor box, there exists a global array named cursorBox. A

default value of \-" means that the Tk default value is used. This array contains elements that control the

cursor box (color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an invocation may look like this:

CursorBox ''/usr/local/lib/Cursors'' ''/usr/lib/X11/rgb.txt''

This would create the following dialog box:

Figure C.13: The template CursorBox

APPENDIX C. TEMPLATES 97

C.2.5 FSBox

This template de�nes a new procedure named FSBox. Calling this procedure pops up a dialog box to select

a �le. The dialog box is either modal or non-modal. If the dialog box is modal, the procedure returns the

selected �le name. Otherwise, the speci�ed Tcl command script is evaluated. Many features support the �le

selection. There exists a path history, available as a pull down menu (at the label left from the current path

name). The label left from the selection pattern contains a pull down menu with all possible extensions.

When typing path and �le names by hand, the Tab key performs �le name completion. The �le selector

box has a special mode for selecting bitmaps (pixmaps) where the currently selected picture is displayed in

a display area. The procedure gets the following parameters:

Parameter name Opt. Purpose

fsBoxMessage y The message to be displayed.

fsBoxFileName y This is a �le name that is inserted in the �le name se-

lection �eld, as a default value

fsBoxActionOk y This is the Tcl script that is evaluated when the OK

button is pressed. To access the selected �le and path

name, access the global variable fsBox described below.

If no commands are speci�ed, the dialog box is modal.

fsBoxActionCancel y This is the Tcl script that is evaluated when the Cancel

button is pressed. To access the selected �le and path

name, access the global variable fsBox described below.

If no commands are speci�ed, the dialog box is modal.

To con�gure the di�erent aspects of the �le box, there exists a global array named fsBox. A default value

of \-" means that the Tk default value is used. This array contains elements that control the �le box (color,

font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

name "" The name of the selected �le.

path "" The path name of the selected �le.

pattern "" The display selection pattern.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

showPixmaps 0 If this variable is 1, the selected �les are interpreted

as picture �les, and are displayed in an area right

from the �le list.

A small example of an invocation may look like this:

FSBox

APPENDIX C. TEMPLATES 98

This would create the following dialog box:

Figure C.14: The template FSBox

APPENDIX C. TEMPLATES 99

C.2.6 FdInList, FileInList, FdInText, FileInText

This template de�nes four procedures that put the contents of an open �le descriptor or a �le into a list

widget or a text widget. The procedures get the following parameters:

Parameter name Opt. Purpose

listWidget n The list widget where the �le contents are inserted.

�leInFile y The �lename/�ledescriptor that is to be inserted.

APPENDIX C. TEMPLATES 100

C.2.7 FontBox

This template de�nes a new procedure named FontBox. Calling this procedure pops up a dialog box to

select a font. The font can be selected from a list, or the di�erent style parameters can be combined from

menus. The procedure gets the following parameters:

Parameter name Opt. Purpose

fontBoxFileFont y The �le containing a list of fonts.

fontBoxMessage y The resource name that is con�gured.

fontBoxEntryW y This is the entry widget where the selected font is

inserted.

fontBoxTargetW y This is the widget that is con�gured. If this parameters

is speci�ed, the selected font is applied to the widget

immediately.

To con�gure the di�erent aspects of the font box, there exists a global array named fontBox. A default

value of \-" means that the Tk default value is used. This array contains elements that control the font box

(color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an invocation may look like this:

FontBox ''/usr/local/lib/Fonts''

This would create the following dialog box:

Figure C.15: The template FontBox

APPENDIX C. TEMPLATES 101

C.2.8 IconBar

This template de�nes a new feature that supports user changeable icon bars. The usage of this feature is

more complex than it is for most other templates. An iconbar can be part of your toplevel, or it can use

its own toplevel. To switch between both modes, each iconbar has an icon at the right side that toggles

between both modes. The icon left from this toggle icon pages through the di�erent iconbar lines. An iconbar

contains lines that are separated by a separator. Your code must contain a frame de�nition. By calling the

procedure IconBarInit, the iconbar is initialized. The procedure takes the following parameters:

Parameter name Opt. Purpose

iconBarUserFile n This �le contains the user speci�c iconbar con�gura-

tion. This �le is written when the user presses the Save

button.

iconBarFile n This �le contains the fallback iconbar de�nition. This

�le is usually global for all users.

iconBarIcons n A list of path names separated by \:". In thse path

names, the bitmaps for the icon bar can be found.

This will load and initialize the iconbar. To actually display the iconbar you have to call the procedure

IconBarShow. This procedure creates the iconbar. The procedure gets the following parameters:

Parameter name Opt. Purpose

iconBarName n The icon bar name. The name identi�es a set of icons.

An application can contain several iconbars, each under

a unique name.

iconBarPath y The widget path name where the iconbar is located. If

the path name is empty, a toplevel is created.

iconBarStatus y The status of the iconbar. An iconbar can have the

status \child", which means, that it is inserted to the

widget path de�ned by the previous parameter. The

status \toplevel" means that the iconbar is displayed in

a separate toplevel.

To remove a displayed iconbar, you can call the procedure IconBarRemove. The procedure gets the

following parameters:

Parameter name Opt. Purpose

iconBarName n The icon bar name. The name identi�es a set of icons.

An application can contain several iconbars, each under

a unique name.

iconBarPath y The widget path name where the iconbar should be in-

serted. If the path name is not empty, the children of

this widget are destroyed.

To modify an existing iconbar, the procedure IconBarConf is called. This pops up a dialog box where

bitmaps can be combined with procedure calls, and added to the iconbar. The procedure gets the following

parameters:

Parameter name Opt. Purpose

iconBarName n The icon bar name. The name identi�es a set of icons.

An application can contain several iconbars, each under

a unique name.

iconBarPath y The widget path name where the iconbar is located.

iconBarProcs y A list of procedure names that can be used in the icon-

bar. This does not restrict the usage of other pro-

cedures, but it gives an impression of the available

functionality.

APPENDIX C. TEMPLATES 102

To con�gure the di�erent aspects of the iconbar, there exists a global array named iconBar. A default

value of \-" means that the Tk default value is used. This array contains elements that control the iconbar

(color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

barBorder 2 The iconbar border width.

barIgnoreSep 0 The iconbar separators are ignored.

barRelief sunken The iconbar relief.

font - The font.

foreground - The foreground color.

iconBorder 2 The icon border width.

iconHeight 20 The icon height.

iconO�set 0 The icon o�set.

iconRelief 2 The icon relief.

iconWidth 20 The icon width.

label "" The label where the description is displayed.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an initialization may look like this:

frame .myIconBar

IconBarInit /.local-iconbar /usr/local/lib/global-iconbar /usr/local/lib/icons

IconBarShow default .frame

This would create the following dialog box:

Figure C.16: The template IconBar (initialization)

APPENDIX C. TEMPLATES 103

A small example of an invocation of the con�guration may look like this:

IconBarConf default .frame fProc1 Proc2 Proc3g

This would create the following dialog box:

Figure C.17: The template IconBar (con�guration)

APPENDIX C. TEMPLATES 104

C.2.9 InputBox

This template de�nes two new procedures named InputBoxOne and InputBoxMulti. Calling this procedures

pops up a dialog box to make textual input. The procedure InputBoxOne allows one line of text, and the

procedure InputBoxMulti allows several lines of text. The input boxes can be modal or not. If they are

modal, the entered string is returned. Otherwise, the speci�ed command is evaluated. The procedure gets

the following parameters:

Parameter name Opt. Purpose

inputBoxMessage y The message to be displayed.

inputBoxCommandOk y The Tcl script that is evaluated when the button

named (OK) is pressed. To access the inserted text,

use the variable inputBox(toplevelName,inputOne) or

inputBox(toplevelName,inputMulti). If no commands

are speci�ed, the dialog box is modal.

inputBoxCommandCancel y The Tcl script that is evaluated when the button

named (Cancel) is pressed. To access the inserted text,

use the variable inputBox(toplevelName,inputOne) or

inputBox(toplevelName,inputMulti). If no commands

are speci�ed, the dialog box is modal.

inputBoxGeometry y The geometry of the toplevel.

inputBoxTitle y The title of the toplevel.

To con�gure the di�erent aspects of the input box, there exists a global array named inputBox. A default

value of \-" means that the Tk default value is used. This array contains elements that control the input

box (color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

anchor n The anchor of the message widget.

background - The background color.

font - The font.

foreground - The foreground color.

justify center The justi�cation of the message widget.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

toplevelName .inputBox The toplevel name. This variable makes it possible

to popup multiple dialog boxes at the same time.

toplevelName,inputOne "" \toplevelName" is replaced by the name of the

toplevel. This variable contains the text of the one

line input box.

toplevelName,inputMulti "" \toplevelName" is replaced by the name of the

toplevel. This variable contains the text of the mul-

tiple line input box.

A small example of an invocation may look like this:

InputBoxMulti

APPENDIX C. TEMPLATES 105

This would create the following dialog box:

Figure C.18: The template InputBox

APPENDIX C. TEMPLATES 106

C.2.10 IsADir, IsAFile, IsASymlink

This template de�nes three procedures that check if the passed parameter speci�es a valid directory, �le

or symbolic link. Symbolic links are resolved to the concrete pathname. The procedures get the following

parameters:

Parameter name Opt. Purpose

pathName n The path/�le name to check.

APPENDIX C. TEMPLATES 107

C.2.11 KeysymBox

This template de�nes a new procedure named KeysymBox. Calling this procedure pops up a dialog box to

select a keysym. The keysym can be selected from a list, or keypress keysyms can be entered via an example

area. The procedure gets the following parameters:

Parameter name Opt. Purpose

keysymBoxFileKeysym y The �le containing a list of keysyms.

keysymBoxMessage y The message to display.

keysymBoxEntryW y The entry widget where the selected keysym is inserted.

To con�gure the di�erent aspects of the keysym box, there exists a global array named keysymBox. A

default value of \-" means that the Tk default value is used. This array contains elements that control the

keysym box (color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

overwrite 0 New events are inserted into the entry widget, or

overwrite the current event.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an invocation may look like this:

KeysymBox ''/usr/local/lib/Keysyms''

This would create the following dialog box:

Figure C.19: The template KeysymBox

APPENDIX C. TEMPLATES 108

C.2.12 MakeMButton

This template creates a menubutton, with an automatically created menu attached. The type and contents of

the menu are speci�ed by parameters that are passed on to the procedure. The procedure gets the following

parameters:

Parameter name Opt. Purpose

widgetName n The name of the menubutton that is to be created.

buttonLabel n The label of the menubutton.

itemType n The type of the menu items that are created. Valid

types are command, check and radio.

itemList n The list of menu item names that are to be created.

If itemType is check or radio, and the itemFunctions

are empty, these are also the names of the associated

variable.

itemFunctions y This list contains one or more command/variablenames.

They are attached to the created menu items.

A small example of an invocation may look like this:

MakeMButton .mbutton Optionsmenu radio fOption1 Option2 Option3g

This would create the following dialog box:

Figure C.20: The template MakeMButton

APPENDIX C. TEMPLATES 109

C.2.13 MenuBar

This template de�nes a new feature, that supports user changeable menu bars. The usage of this feature

is more complex than it is for most other templates. Your code must contain a number of menubutton

creations. These menubuttons need not be widget tree siblings, but is only possible to con�gure one set of

sibling menubuttons at a time. After a set of menubuttons has been created, the procedure MenuBarInit is

called. This procedure takes the following parameters:

Parameter name Opt. Purpose

menuBarUserFile n This �le contains the user-speci�c menubar con�gura-

tion. This �le is written when the user presses the Save

button.

menuBarFile n This �le contains the fallback menubar de�nition. This

�le is usually global for all users.

This will load and initialize the menubar. To call the menubar con�guration, the procedure MenuBarConf

is called. This procedure gets the following parameter:

Parameter name Opt. Purpose

menuBarCon�g n The widget path name, containing the menubuttons to

be con�gured.

This pops up a dialog window in which all aspects of the menubar can be modi�ed. Select the menubutton

to con�gure from the upper right list. Setting the label to an empty string hides the menubutton. To con�gure

a menu, the lower right list is used. A new menu is created when a menubutton is inserted that uses this

menu. Select the menu to change, and press the Modify menu button. When all changes are done, the

modi�ed menubar should be saved to the local user-speci�c �le by pressing the Save button.

To con�gure the di�erent aspects of the menubar, there exists a global array named menuBar. A default

value of \-" means that the Tk default value is used. This array contains elements that control the menubar

(color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an initialization may look like this:

frame .myMenuBar

menubutton .myMenuBar.file -text fFileg

menubutton .myMenuBar.misc -text fMiscg

menubutton .myMenuBar.help -text fHelpg

MenuBarInit �/.local-menubar /usr/local/lib/global-menubar

pack append .myMenuBar .myMenuBar.file fleftg .myMenuBar.misc fleftg .myMenuBar.help frightg

pack append . .myMenuBar ftop fillg

APPENDIX C. TEMPLATES 110

This would create the following dialog box:

Figure C.21: The template MenuBar (initialization)

A small example of an invocation of the con�guration may look like this:

MenuBarConf .menuBar

This would create the following dialog box:

Figure C.22: The template MenuBar (con�guration)

APPENDIX C. TEMPLATES 111

C.2.14 ReadBox

This template de�nes a new procedure named ReadBox. Calling this procedure pops up a dialog box to enter

and evaluate Tcl/Tk commands. If the template AlertBox is also included, error messages are displayed in

a alert box. The procedure gets no parameters.

To con�gure the di�erent aspects of the read box, there exists a global array named readBox. A default

value of \-" means that the Tk default value is used. This array contains elements that control the read box

(color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

A small example of an invocation may look like this:

ReadBox

This would create the following dialog box:

Figure C.23: The template ReadBox

APPENDIX C. TEMPLATES 112

C.2.15 TextBox, TextBoxFd, TextBoxFile

This template de�nes three new procedures named TextBox, TextBoxFd and TextBoxFile. Calling this

procedures pops up a dialog box to display several lines of text in a text widget. These boxes can be modal

or not. If the dialog box is modal, the procedure returns the number of the pressed button. Otherwise the

speci�ed command is evaluated. The displayed text, a �lename or an open �le descriptor can be passed on.

The procedure gets the following parameters:

Parameter name Opt. Purpose

textBoxMessage y The message, �le or �le descriptor that is displayed.

textBoxCommand y The command to be executed when OK is pressed. The

dialog box is not modal (non blocking) when this pa-

rameter is not an empty string.

textBoxGeometry y This is the geometry of the dialog box.

textBoxTitle y This is the title bar of the dialog box.

args y Any additional parameters are interpreted as a button

label. The dialog box is modal (blocking). The return

value of TextBox is the number of the pressed button.

To con�gure the di�erent aspects of the text box, there exists a global array named textBox. A default

value of \-" means that the Tk default value is used. This array contains elements that control the text box

(color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

background - The background color.

font - The font.

foreground - The foreground color.

scrollActiveForeground - The scrollbar active foreground color.

scrollBackground - The scrollbar background color.

scrollForeground - The scrollbar foreground color.

scrollSide right The side of the scrollbar.

state disabled The state of the text widget. Disabled means, that

no input from the user is allowed. Normal means

that the user can type text.

toplevelName .textBox The toplevel name. This variable makes it possible

to popup several dialog boxes at the same time.

A small example of an invocation may look like this:

TextBox ''Text message''

This would create the following dialog box:

Figure C.24: The template TextBox

APPENDIX C. TEMPLATES 113

C.2.16 YesNoBox

This template de�nes a new procedure named YesNoBox. Calling this procedure pops up a dialog box with

a question to be answered with yes or no. The procedure gets the following parameters:

Parameter name Opt. Purpose

yesNoBoxMessage y The message to be displayed.

yesNoBoxGeometry y The geometry of the yes/no box.

To con�gure the di�erent aspects of the yes/no box, there exists a global array named yesNoBox. A

default value of \-" means that the Tk default value is used. This array contains elements that control the

yes/no box (color, font etc.):

Array element Default Purpose

activeBackground - The active background color.

activeForeground - The active foreground color.

afterNo 0 Invokes the no button after n seconds. The dialog

box is removed.

afterYes 0 Invokes the yes button after n seconds. The dialog

box is removed.

anchor nw The anchor of the message widget.

background - The background color.

font - The font.

foreground - The foreground color.

justify center The justi�cation of the message widget.

A small example of an invocation may look like this:

global yesNoBox

set yesNoBox(font) *times*24*

if f[YesNoBox ''Yes/no message''] == 0g f

puts stdout ''yes''

g

This would create the following dialog box:

Figure C.25: The template YesNoBox

APPENDIX C. TEMPLATES 114

C.2.17 �leselect

This template de�nes a new procedure named �leselect. Calling this procedure pops up a dialog box to

select a �le. When the (OK) button is pressed, the procedure passed on as �rst parameter is evaluated. This

procedure gets the �lename as parameter. The procedure gets the following parameters:

Parameter name Opt. Purpose

cmd y This command is evaluated when the OK button is

pressed

purpose y This is the message of the �le selector box

w y This is the toplevel path name

A small example of an invocation may look like this:

fileselect

This would create the following dialog box:

Figure C.26: The template �leselect

APPENDIX C. TEMPLATES 115

C.3 Widgets

C.3.1 MListbox

A listbox arranged in a way that looks a little bit like Motif

TM

. The appropriate commands for scrolling

are already set.

Figure C.27: The template MListbox

APPENDIX C. TEMPLATES 116

C.3.2 Menubar

A frame widget containing two menubuttons. One is named File, and is aligned to the left side. The second

button is named Help, and is aligned to the right side.

Figure C.28: The template Menubar

APPENDIX C. TEMPLATES 117

C.3.3 OptionButtonE, OptionButtonL

This is a labeled entry/label that displays a value that can be changed by selecting the pull down menu

bound to the button right from the entry/label.

Figure C.29: The template OptionButtonE

APPENDIX C. TEMPLATES 118

C.3.4 Popup1, Popup2, Popup3, PopupC-1, PopupM-1, PopupS-1

These templates create popup menus that are activated by the event that identi�es the name of the template.

Figure C.30: The template Popup1

List of Figures

2.1 BYO design : 12

2.2 XF design : 13

3.1 Placed widgets : 17

3.2 Packed widgets : 18

4.1 The screen after the start of XF : 21

4.2 A standard widget parameter box : 23

4.3 The general widget parameter box : 24

4.4 The widget parameter box for groups : 24

4.5 The procedure dialog : 25

4.6 The module structure dialog : 27

5.1 XF startup : 29

A.1 The edge program : 37

A.2 The xfappdef program : 40

A.3 The xfhardcopy program : 41

A.4 The xfhelp program : 42

A.5 The xfpixmap program : 44

A.6 The xftutorial program : 45

B.1 The procedure XFProcMain : 47

B.2 The procedure XFProcFileEnterTCL : 48

B.3 The procedure XFProcFileLoad : 49

B.4 The procedure XFProcFileNew : 49

B.5 The procedure XFProcFileQuit : 50

B.6 The procedure XFProcConfBinding : 51

B.7 The procedure XFProcConfLayout : 53

B.8 The procedure XFProcConfPacking : 54

B.9 The procedure XFProcConfParametersGeneral : 55

B.10 The procedure XFProcConfParametersGroups : 56

B.11 The procedure XFProcConfPlacing : 57

B.12 The procedure XFProcEditShowCut (tree) : 59

B.13 The procedure XFProcEditShowCut (script) : 60

B.14 The procedure XFProcProgCommands : 61

B.15 The procedure XFProcProgCommands (saving) : 62

B.16 The procedure XFProcProgCommands (loading) : 62

B.17 The procedure XFProcProgEditScript : 63

B.18 The procedure XFProcProgErros : 63

B.19 The procedure XFProcProgGlobals : 64

B.20 The procedure XFProcProgProcs : 65

B.21 The procedure XFProcProgShowScript : 66

119

LIST OF FIGURES 120

B.22 The procedure XFProcProgWidgetTree : 67

B.23 The procedure XFProcMiscAliases : 68

B.24 The procedure XFProcMiscModules : 69

B.25 The procedure XFProcMiscPixmaps : 70

B.26 The procedure XFProcOptionsBindings : 71

B.27 The procedure XFProcOptionsGeneral : 72

B.28 The procedure XFProcOptionsInterpreter : 74

B.29 The procedure XFProcOptionsPathFile : 75

B.30 The procedure XFProcOptionsSource : 78

B.31 The procedure XFProcOptionsVersion : 80

B.32 The procedure XFProcOptionsWindow : 82

B.33 The procedure XFProcHelpAbout : 84

C.1 The template CanvasLS : 86

C.2 The template EntryL : 87

C.3 The template EntryLLS : 87

C.4 The template EntryLS : 87

C.5 The template EntryS : 87

C.6 The template HypertextLS : 88

C.7 The template ListboxLS : 89

C.8 The template PhotoLS : 90

C.9 The template TextLS : 91

C.10 The template TkEmacsLS : 92

C.11 The template AlertBox : 93

C.12 The template ColorBox : 95

C.13 The template CursorBox : 96

C.14 The template FSBox : 98

C.15 The template FontBox : 100

C.16 The template IconBar (initialization) : 102

C.17 The template IconBar (con�guration) : 103

C.18 The template InputBox : 105

C.19 The template KeysymBox : 107

C.20 The template MakeMButton : 108

C.21 The template MenuBar (initialization) : 110

C.22 The template MenuBar (con�guration) : 110

C.23 The template ReadBox : 111

C.24 The template TextBox : 112

C.25 The template YesNoBox : 113

C.26 The template �leselect : 114

C.27 The template MListbox : 115

C.28 The template Menubar : 116

C.29 The template OptionButtonE : 117

C.30 The template Popup1 : 118

Bibliography

[1] Michel Beaudouin-Lafon. User Interface Support for the Integration of Software Tools: an Iconic Model

of Interaction. Sigplan Notices, 24(2):143{152, November 1988.

[2] Michel Beaudouin-Lafon and Solange Karsenty. Iconic Shells for Multitasking Workstations. In Pro-

ceedings of the ACM Symposium on Small Systems. ACM Press, May 1988.

[3] Martin R. Cagan. The HP SoftBench Environment Architecture for a New Generation of Software

Tools. Hewlett-Packard Journal, 41(3):36{47, June 1990.

[4] D. Eckardt, W. Huebner, and G. Lux-Muelders. Konzeption der STONE-Benutzungsober
aeche THE-

SEUS++. STONE Technical Report ZGDV.006.1, Zentrum fuer Graphische Datenverarbeitung, Darm-

stadt, Germany, December 1989.

[5] Brian D. Fromme. HP Encapsulator: Bridging the Generation Gap. Hewlett-Packard Journal, 41(3):59{

68, June 1990.

[6] Jonathan Grudin. The Case Against User Interface Consistency. Communications of the ACM,

32(1):1164{1173, October 1989.

[7] Arnaud Le Hors. XPM Manual. Technical report, Groupe Bull, Bull Research c/o INRIA, 1993.

[8] Andreas Lampen. Advancing Files to Attributed Software Objects. In Proceedings of the Winter 1991

USENIX Conference, pages 219{229, Berkeley (CA), USA, January 1991. USENIX Association.

[9] Andreas Lampen and Axel Mahler. An Object Base for Attributed Software Objects. In Proceedings

of the Autumn 1988 EUUG Conference, pages 95{106, Lisbon, Portugal, October 1988. European Unix

systems User Group.

[10] Mark A. Linton, Paul R. Calder, and John M. Vlissides. InterViews: A C++ Graphical Interface

Toolkit. Technical report, Stanford University, Stanford (CA), USA, 1988.

[11] Axel Mahler. Organizing Tools in a Uniform Environment Framework. In Proceedings of the Winter 91

USENIX Conference, pages 231{242, Dallas (TX), USA, January 1991. USENIX Association.

[12] Axel Mahler and Andreas Lampen. An Integrated Toolset for Engineering Software Con�gurations.

SIGPLAN Software Engineering Notes, 13(5):191{200, November 1988.

[13] Axel Mahler and Andreas Lampen. Integrating Con�guration Management into a Generic Environment.

In Symposium on Practical Software Development Environments, pages 229{237, Irvine (CA), USA,

December 1990. ACM Press.

[14] F. Newbery-Paulisch and W. F. Tichy. EDGE: An Extendible Graph Editor. Software-Practice and

Experience, 20, June 1990.

[15] John Ousterhout. The Tcl/Tk Book. unpublished draft.

[16] John Ousterhout. Tcl: An Embeddable Command Language. In Proceedings of the Winter 1990

USENIX Conference, pages 133{146, Berkeley (CA), USA, January 1990. USENIX Association.

121

BIBLIOGRAPHY 122

[17] John Ousterhout. An X11 Toolkit Based on the Tcl Language. In Proceedings of the Winter 1991

USENIX Conference, pages 105{115, Berkeley (CA), USA, January 1991. USENIX Association.

[18] John Ousterhout. The Tcl Language and the Tk Toolkit. Tutorial, 7th Annual X Technical Conference,

Boston (MA), USA, January 1993.

[19] Robert Schei
er and James Gettys. X Window System (Second Edition). Digital Press, 1990.

[20] Ben Shneiderman. Designing the User Interface: Strategies for E�ective Human-Computer Interaction.

Addison-Wesley Publishing Company, reading, mass. edition, 1987.

[21] John M. Vlissides, Steve Tang, and Charles Brauer. Ibuild User's Guide. Technical report, Stanford

University, Stanford (CA), USA, 1992.

Index

Con�guration menu, 51{57

XFProcConfAddCurrentItem, 51

XFProcConfBinding, 51

XFProcConfBindingAll, 52

XFProcConfBindingClass, 52

XFProcConfCon�gure, 52

XFProcConfGeometryDefault, 52

XFProcConfInsertTemplate, 52

XFProcConfInsertWidgetCon�g, 52

XFProcConfInsertWidgetDefault, 52

XFProcConfLayout, 53

XFProcConfPacking, 54

XFProcConfParametersDefault, 54

XFProcConfParametersGeneral, 55

XFProcConfParametersGroups, 55

XFProcConfParametersSmall, 56

XFProcConfParametersSpecial, 56

XFProcConfPlacing, 56

Edit menu, 58{60

XFProcEditClearCut, 58

XFProcEditCopy, 58

XFProcEditCut, 58

XFProcEditDelete, 58

XFProcEditLoadCut, 58

XFProcEditLoadTemplate, 58

XFProcEditMakeAProc, 58

XFProcEditPaste, 59

XFProcEditSaveCut, 59

XFProcEditSaveCutAsTemplate, 59

XFProcEditShowCut, 59

External tools, 36{45

Edge, 37

ShapeTools, 39

xfappdef, 40

xfhardcopy, 41

xfhelp, 42

xfpixmap, 44

xftutorial, 45

File menu, 48{50

XFProcFileEnterTCL, 48

XFProcFileInsert, 48

XFProcFileLoad, 49

XFProcFileNew, 49

XFProcFileQuit, 50

XFProcFileSave, 50

XFProcFileSaveAs, 50

Help menu, 84

XFProcHelpAbout, 84

XFProcHelpHelp, 84

XFProcHelpTutorial, 84

Interface builders, 9{11

BYO, 11

GINA, 11

HP Interface Architect, 10

Ibuild, 11

NeXT Interface-Builder, 10

SUIT, 11

VUIT, 10

Main XF window, 47

XFProcMain, 47

Misc menu, 68{70

XFProcMiscAliases, 68

XFProcMiscAppDefaults, 68

XFProcMiscEdge, 68

XFProcMiscHardcopy, 68

XFProcMiscModules, 69

XFProcMiscPixmaps, 70

XFProcMiscSaveEdge, 70

XFProcMiscTestProgram, 70

Options menu, 71{83

XFProcOptionsBindings, 71

XFProcOptionsGeneral, 72

XFProcOptionsIconBar, 74

XFProcOptionsInterpreter, 74

XFProcOptionsMenuBar, 74

XFProcOptionsPathFile, 75

XFProcOptionsSaveClassBindings, 77

XFProcOptionsSaveModuleList, 77

XFProcOptionsSaveOptions, 77

XFProcOptionsSavePositions, 77

XFProcOptionsSource, 78

XFProcOptionsVersion, 79

XFProcOptionsWindow, 82

packer, 22

123

INDEX 124

placer, 22

procedures, 25

EndSrc, 25

StartupSrc, 25

XFExternalInitProc, 33

XFProc..., 33

Programming menu, 61{67

XFProcProgCommands, 61

XFProcProgEditScript, 63

XFProcProgEndSrc, 63

XFProcProgErrors, 63

XFProcProgGlobals, 64

XFProcProgProcs, 65

XFProcProgShowScript, 66

XFProcProgStartupSrc, 66

XFProcProgWidgetTree, 67

Tcl, 14{15

commands, 15

datatypes, 14

quoting, 15

syntax, 14

variables, 14

Templates, 25, 85{118

Combined, 86{92

CanvasLS, 86

CanvasRS, 86

HypertextLS, 88

HypertextRS, 88

ListboxLS, 89

ListboxRS, 89

PhotoLS, 90

PhotoRS, 90

TextLS, 91

TextRO, 91

TextROLS, 91

TextRORS, 91

TextRS, 91

TkEmacsLS, 92

TkEmacsRS, 92

Procedures, 93{114

AlertBox, 93

AlertBoxFd, 93

AlertBoxFile, 93

ClearList, 94

ClearText, 94

ColorBox, 95

CursorBox, 96

EntryL, 87

EntryLLS, 87

EntryLS, 87

EntryS, 87

FdInList, 99

FdInText, 99

FileInList, 99

FileInText, 99

�leselect, 114

FontBox, 100

FSBox, 97

IconBar, 101

IconBarConf, 101

IconBarInit, 101

IconBarRemove, 101

IconBarShow, 101

InputBoxMulti, 104

InputBoxOne, 104

IsADir, 106

IsAFile, 106

IsASymlink, 106

KeysymBox, 107

MakeMButton, 108

MenuBar, 109

MenuBarConf, 109

MenuBarInit, 109

ReadBox, 111

TextBox, 112

TextBoxFd, 112

TextBoxFile, 112

YesNoBox, 113

Widgets, 115{118

Menubar, 116

MListbox, 115

OptionButtonE, 117

OptionButtonL, 117

Popup1, 118

Popup2, 118

Popup3, 118

PopupC-1, 118

PopupM-1, 118

PopupS-1, 118

Tk, 15{19

con�guring widgets, 16

creating widgets, 15

geometry handling (packer), 17

geometry handling (placer), 16

other Tk commands, 18

widget classes, 15

widget commands, 16

widget path, 15

widget tree, 15

XF relevant commands, 18

widget

con�g, 22

current widget, 21

current widget path, 21

insert, 21

layout, 22

INDEX 125

XF

alias, 30

developing in groups, 26

�nal product, 27

levels for bindings, 27

levels for procedures, 27

Pitfalls, 32

restrictions, 31

source modules, 26

startup �le, 33

supporting new widgets, 32

symbolic name, 30

toplevel windows, 26

XF main window, 20

XFExternalInitProc, 33

XFProcConfAddCurrentItem, 51

XFProcConfBinding, 51

XFProcConfBindingAll, 52

XFProcConfBindingClass, 52

XFProcConfCon�gure, 52

XFProcConfGeometryDefault, 52

XFProcConfInsertTemplate, 52

XFProcConfInsertWidgetCon�g, 52

XFProcConfInsertWidgetDefault, 52

XFProcConfLayout, 53

XFProcConfPacking, 54

XFProcConfParametersDefault, 54

XFProcConfParametersGeneral, 55

XFProcConfParametersGroups, 55

XFProcConfParametersSmall, 56

XFProcConfParametersSpecial, 56

XFProcConfPlacing, 56

XFProcEditClearCut, 58

XFProcEditCopy, 58

XFProcEditCut, 58

XFProcEditDelete, 58

XFProcEditLoadCut, 58

XFProcEditLoadTemplate, 58

XFProcEditMakeAProc, 58

XFProcEditPaste, 59

XFProcEditSaveCut, 59

XFProcEditSaveCutAsTemplate, 59

XFProcEditShowCut, 59

XFProcFileEnterTCL, 48

XFProcFileInsert, 48

XFProcFileLoad, 49

XFProcFileNew, 49

XFProcFileQuit, 50

XFProcFileSave, 50

XFProcFileSaveAs, 50

XFProcHelpAbout, 84

XFProcHelpHelp, 84

XFProcHelpTutorial, 84

XFProcMiscAliases, 68

XFProcMiscAppDefaults, 68

XFProcMiscEdge, 68

XFProcMiscHardcopy, 68

XFProcMiscModules, 69

XFProcMiscPixmaps, 70

XFProcMiscSaveEdge, 70

XFProcMiscTestProgram, 70

XFProcOptionsBindings, 71

XFProcOptionsGeneral, 72

XFProcOptionsIconBar, 74

XFProcOptionsInterpreter, 74

XFProcOptionsMenuBar, 74

XFProcOptionsPathFile, 75

XFProcOptionsSaveClassBindings, 77

XFProcOptionsSaveModuleList, 77

XFProcOptionsSaveOptions, 77

XFProcOptionsSavePositions, 77

XFProcOptionsSource, 78

XFProcOptionsVersion, 79

XFProcOptionsWindow, 82

XFProcProgCommands, 61

XFProcProgEditScript, 63

XFProcProgEndSrc, 63

XFProcProgErrors, 63

XFProcProgGlobals, 64

XFProcProgProcs, 65

XFProcProgShowScript, 66

XFProcProgStartupSrc, 66

XFProcProgWidgetTree, 67

