
Designing a Meta Object Protocol to Wrap a

Standard Graphical Toolkit

Erick Gallesio

Universit�e de Nice - Sophia Antipolis

I3S/CNRS - ESSI

Route des Colles - B.P. 145

06903 Sophia-Antipolis Cedex - FRANCE

Email: eg@unice.fr

Abstract. This paper presents a graphical package which relies on the

Tk toolkit and the Scheme programming language. The Tk package is

a widely used graphical toolkit built upon the Tcl scripting language.

Tcl was not designed as a general purpose programming language and

its usage for large-scale software development is generally not suitable.

To improve the programming level of the Tk toolkit, we have de�ned

STklos, a Scheme language with a CLOS-like object system. This al-

ternative language has been used to embody the standard Tk widgets in

a clean hierarchy of classes, which is presented here. The STklos object

system implementation is based on a Meta Object Protocol; this proto-

col and its usage for accessing the Tk toolkit in an e�cient way are also

presented here.

1 Motivations

The Tk package [13] is a widely used graphical toolkit which provides a large

set of widgets such as buttons, scrollbars, menus or text editors. With these

high level widgets, one can build rather complex interfaces with little e�ort and

without coping with the usual intricacies needed when programming under the

X window system [14]. The Tk toolkit relies on a small interpretative scripting

language named Tcl (Tool Command Language) [11], a string based language

with a shell-like syntax.

Tcl is a small scripting language. To easily embed the Tcl interpreter in

application programs, some usual programming languages capabilities have been

set aside by its author. In particular, Tcl has a poor set of data structures

reduced to character strings and associative arrays. It provides numbers, which

are simulated with strings and which are, consequently, slow. In fact, a proper

usage of Tcl consists in writing small scripts to glue large application components

written in C or C++. However, experience shows that people are reluctant to

use it in this way, and that they often prefer to write applications with a single

programming language.

Tk is indeed an application with an embedded Tcl interpreter [12]. The inter-

pretative nature of Tcl provides Tk a simple and attractive interface to develop

simple graphical programs. However, the easiness a�orded by Tcl for the design



of small interfaces is misleading and it often encourages people to start heavy

developments with this language. But, writing large applications with a language

which lacks ways of structuring data tends to be more and more painful as the

program grows. We think that this kind of usage is beyond the scope of a lan-

guage such as Tcl, and we have tried to propose a solution for a better using of

the Tk toolkit.

In order to improve the Tk toolkit for large applications, we decided to

replace Tcl by a conventional programming language. Furthermore, the substitute

language must ful�ll some important requirements; it must be

{ high level and provides useful data types such as structures, arrays, lists

or strings

{ small enough for allowing to embed it in applications (as Tcl)

{ e�cient so that most applications can be written entirely in this language

without having to resort to C or C++ programming.

{ easily extensible so that user can investigate several interesting program-

ming paradigms (e.g. objects, prototypes, actors, . . . )

{ already de�ned. This point is, of course, not mandatory, but we think that

it is preferable to use an existing programming language, if possible, rather

than de�ning a new one.

Scheme [1] is a Lisp dialect which satis�es quite well the previous points. It is a

statically scoped language with a clear and simple semantic. Moreover, Scheme

procedures are �rst class objects able to capture their creation environment.

This language feature is important since it allows us to envision the coding of

interfaces callbacks in a clean way. In this framework, we have de�ned STk [3], a

graphical package based on Tk toolkit where the Tcl language as been replaced

by a Scheme interpreter.

STk is a small and e�cient Scheme interpreter. As Tcl, it is small enough

to be used simply as a glue language which can be embedded in an existing ap-

plication. Furthermore, the solid basis provided by the Scheme language a�ords

the tools necessary for writing, and maintaining medium size Graphical User

Interfaces (GUI). Nevertheless, we think the expressive power of Scheme is not

su�cient to envisage its use for large-scale software development. In particular,

the lack of an object mechanism increases the programming complexity of large

applications. STklos, the object extension of STk, has been de�ned to alle-

viate this problem. This extension provides meta classes, multiple inheritance

and generic functions �a la CLOS [7, 15] or Dylan [2]. STklos has also been

used to embody the prede�ned Tk widgets in a hierarchy of classes. Usage of

these classes simpli�es the core Tk usage by providing an homogeneous access to

widget options and by hiding the Tk widgets low level idiosyncrasies. Moreover,

as expected, usage of objects facilitates code reuse and de�nition of new wid-

gets classes. Finally, we think that the object orientation of STklos, as well as

the solid basis of the Scheme programming language, a�ord therefore the tools

necessary to envision writing, and maintaining, complex GUI.

The rest of this paper is divided in three sections. The next section presents

the STk package and its object system. Wrapping the standard Tk widgets in



STklos classes and the in
uence of this integration in interfaces programming

are described in section 3. STklos implementation relies on a MOP (Meta

Object Protocol), in the spirit of the one de�ned for CLOS [6]. Section 4 presents

this protocol and how it has been used to integrate the Tk standard widgets in

the Scheme world.

2 Presentation of STklos

Programming with STk can be done at two distinct levels. The �rst level uses

only the standard Scheme constructs and is quite classical. The second level gives

access to STklos, the object oriented extension of STk. Of course, both levels

can be used at the same time in a single program. However, most of the time,

one will use the higher level, resorting to the lower one for speci�c purposes only.

2.1 STk: the Basic Layer

Starting a session with STk brings the user in the basic layer which gives access

to an extended Scheme interpreter able to handle the Tk toolkit. With a little

set of rewriting rules from the original Tcl/Tk library, and the Tk manual pages

close at hand, one can easily build a STk program using the Tk toolkit.

Creation of new widgets (button, label, canvas, . . . ) is done by special STk

primitives procedures. For instance, creating a new button can be done as fol-

lowed

(button '.b)

Tk uses a very special way to name widgets: a widget name is a kind of pathname

which re
ects its position in the graphical hierarchy of widgets. In this example,

the name of the newly created button is \.b". This pathname states that \b" is

a son of \.", the root window. Note that the name of the widget must be quoted

due to the Scheme evaluation mechanism.

Calling a widget creation primitive, such as button, builds a new Scheme

object which is called a Tk-command. This object, which is considered as a

new basic type by the STk interpreter, is automatically stored in a variable

whose name is the symbol given to the creation function (.b in this case). A

Tk-command is a special kind of function which is generally used, as in Tcl/Tk,

to customize its associated widget. For instance, the expression

(.b 'configure :text "Hello, world" :border 3)

allows us to set the text and background options of the .b button. Of course, as

in Tcl/Tk, parameters can be passed at widget creation time, and the previous

button creation and initialization could have been done in a single expression,

such as

(button '.b :text "Hello, world" :border 3)



Tk proposes a general purpose binding mechanism to associate a handlers

to an external event (e.g. a key press or a mouse action). An event handler is

automatically triggered by the library when the given event occurs. In Tcl, an

event handler is a string which is evaluated at the global level, whereas in STk

it is a Scheme closure. The following expression adds a new event handler to the

.b button when the third mouse button is depressed over it:

(bind .b "<ButtonPress-3>"

(let ((count 0))

(lambda ()

(set! count (+ count 1))

(format #t "# of button press: ~A~%" count))))

This simple example shows that STk handlers are cleaner than Tcl ones: the

standard Scheme lexical scoping allows a handler to have its own private global

variables (as count here); on the other hand, a Tcl handler is a 
at string unable

to carry an environment.

Even if closures a�ord a better expressive power for writing event handlers

than Tcl strings, programming an interface resorting only to the constructions

of the basic layer becomes rapidly tedious. In fact, the STk basic layer can be

considered as a kind of assembly language for interfaces programming and we

will see in section 3 how it can be used for the rei�cation of the Tk widgets in

STklos classes.

2.2 STk: the Object Layer

STklos, the object extension of STk, is close to the CLOS system [7]; it is

brie
y introduced in this section. Note that we consider only the language aspects

of STklos here and we forget its use for integrating the Tk toolkit for a while.

De�nition of a new class is done with the define-classmacro. For instance,

(define-class Point ()

((x :init-keyword :x :accessor x-of)

(y :init-keyword :y :accessor y-of)))

de�nes the characteristics of a point. Two slots are declared here: x and y.

Creation of new instances is done with the make constructor:

(define p (make Point :x 10 :y 20))

The evaluation of the preceding form builds a new point and initializes its slots

x and y with the values 10 and 20. Slot content can be accessed by the two basic

primitives slot-ref and slot-set!. These primitives are low level primitives

and users often prefer to use accessors, since they generally lead to a clearer code.

For instance, getting the value of the y slot of p could be done in the following

way:

(y-of p) ; or (slot-ref p 'y)



since the y-of accessor has been de�ned for slot y. This slot can be set by the

generalized set! form, as illustrated by the following example:

(set! (y-of p) 1) ; or (slot-set! p 'y 1)

Now, we can de�ne the Rectangle class which inherits from the Point class:

(define-class Rectangle (Point)

((width :init-keyword :width :accessor width-of)

(height :init-keyword :height :accessor height-of)))

The instances of this class have four slots (x, y, width and height). Methods

1

de�ned for instances of the Point class can also be used for instances of the

Rectangle class. For example, the x coordinate of a Rectangle can be accessed

with the accessor method x-of de�ned before.

Previous class de�nition represents rectangles with a reference point, a width

and a height. This representation for rectangles is, most of the time, convenient

but we sometimes need a representation using the coordinates of two opposite

corners. In that case, virtual slots can be used. A virtual slot is a slot which is

de�ned as a normal slot but whose allocation is declared as :virtual. Such a

slot has a null allocation and its reading (resp. writing) provokes the execution

of a getter (resp. setter) function which must be provided by the user within the

class de�nition. The getter and setter functions are de�ned with the :slot-ref

and :slot-set! options. Here is another writing of the Rectangle class using

virtual slots:

(define-class Rectangle (Point)

((width :init-keyword :width :accessor width-of)

(height :init-keyword :height :accessor height-of)

(x2 :init-keyword :x2 :accessor x2-of

:allocation :virtual

:slot-ref (lambda (obj) (+ (x-of obj) (width-of obj)))

:slot-set! (lambda (obj val)

(set! (width-of obj) (- val (x-of obj)))))

(y2 :init-keyword :y2 :accessor y2-of

:allocation :virtual

:slot-ref (lambda (obj) (+ (y-of obj) (height-of obj)))

:slot-set! (lambda (obj val)

(set! (height-of obj) (- val (y-of obj)))))))

In this new de�nition of Rectangle, x2 and y2 are virtual slots. The getter and

setter associated functions are lambda expressions which compute or set their

value depending on other slots value. Note that a virtual slot accessor closure

can change the value of standard slots in order to keep the system coherent.

1

In STklos[5], the execution of a method rely on a subset of the CLOS generic func-

tionsmechanism (only primary methods are supported and the methods combination

cannot be changed).



Since virtual slots do not imply memory allocation, they could easily be

simulated with classical accessor methods. But, declaring a slot as virtual allows

introspecting functions to \see" it as a standard slot. On the contrary, using a

couple of methods to simulate such a slot would hide it to these functions.

3 Integration of Tk widgets

3.1 The Class Hierarchy

This section presents how the standard Tk widgets have been embodied in

STklos classes. Each graphical object de�ned in the Tk toolkit such as menu,

label or button is represented by a STklos class. The corresponding classes

constitute a hierarchy which is brie
y described here. First, all the classes share

a unique ancestor: the <Tk-object> class

2

. This class de�nes a set of slots nec-

essary to establish a communication between the Scheme and Tk worlds. In

particular, two slots are de�ned in this class

3

:

{ The parent slot contains a reference to the object which (graphically) in-

cludes the current object.

{ The Id slot contains a reference to the low level STk Tk-command which

implements the STklos widget. This Tk-command, which is di�erent for

each class, is created during STklos instance initialization. This slot estab-

lishes the link between the STk and the STklos layers and guarantees, by

keeping a reference to the low level widget, a protection against GC recovery.

The next level of the class hierarchy de�nes a fork with two branches: the

<Tk-widget> class and <Tk-canvas-item> class. Instances of the former class

are classical widgets such as buttons or menus whereas instances of the later are

objects contained in a canvas

4

such as lines, ovals or rectangles. Both kind of

Tk objects are directly implemented as STklos classes in a one-to-one relation-

ship. A partial view of the STklos hierarchy is shown in Fig. 1. Here are some

important points:

{ In Tk, interface widgets (e.g. buttons) are �rst class objects, but canvas items

(e.g. rectangles) can be accessed only through their containing canvas. Thus,

actions on widgets or canvas items must be done in di�erent ways. Accessing

a canvas item option requires two references: one to the canvas which contains

it and one to its identi�cation (a number) in this canvas. In order to make

canvas items �rst class objects, the class <Tk-canvas-item>de�nes the extra

slot Cid which contains the Tk identi�cation number associated to the item.

2

End users will not have to use direct instances of the <Tk-object> class (all classes

whose name begins with the \Tk-" pre�x are abstract classes which should not be

instanced; they correspond to the implementation speci�c classes of [9]).

3

The actual implementation is more complex, but to make easier the reading of this

paper, we have simpli�ed the de�nition of classes, and hence the class hierarchy.

4

The canvas widget a�orded by the Tk library allows 2D structured drawing.



<Tk-complex-button>

<Labeled-Entry>
<Choice-box>
...

<Tk-object>

<Tk-widget> <Tk-canvas-item>

<Tk-simple-widget> <Tk-composite-widget>

<Frame>
<Scale>
<Menu>

<Rectangle><Label>

<Button>

<Check-button> <Radio-button>

<Line>

<Canvas>
...

Fig. 1. A partial view of the STklos hierarchy

{ The hierarchical view of Tk widgets permits a better apprehension of the Tk

toolkit, even if there is no notion of inheritance in standard Tk. According

to Fig. 1, a button can be seen as a reactive label. As a consequence, the

methods in charge of the look of a label or button text (font, foreground

color, . . . ) can be gathered in the <Label> class. Thus, the <Button> class

has only to manage the operations which are speci�c to a reactive text, such

as the associated command to invoke when the mouse button is depressed

over it.

{ Simple and composite widgets share a common ancestor (<Tk-widget>).

Consequently, composites widgets, which are written in Scheme, are con-

trolled exactly in the same way as C built-in Tk widgets. This kind of widgets

is discussed in [4].

3.2 Accessing Tk Widgets Options

Each Tk toolkit widget accepts a speci�c set of options which enables its aspect

customization such as its color, font, text or relief. Options may be speci�ed

either on the command line when the widget is created or with the configure

operation which is applicable to all Tk widgets. In STklos, each option of a

Tk widget is seen as an object slot, and getting or setting the con�guration of

a Tk option is equivalent to read or write an object slot. The following example

shows a possible STklos de�nition of a Tk button.



(define-class <Button> (<Label>)

((command :accessor command :init-keyword :command

:allocation :tk-virtual))

:metaclass <Tk-metaclass>)

This new class inherits from <Label> and owns an extra slot called command. The

allocation of this slot is quali�ed with :tk-virtual. Tk-virtual slots are special

purpose slots: they can be used as normal slots but they are not allocated in the

Scheme world (i.e. their value is stored in one of the structures manipulated by

the Tk library instead of in a Scheme object). Consequently, reading or writing

such a slot is done in a particular way: access to Tk-virtual slot uses in turn the

standard Tk configure operation as in 2.1. Tk-virtual widgets slots are a special

kind of virtual slots which are managed by the meta class <Tk-metaclass>.

De�ning a class using this meta class allows the modi�cation of a slot accessors

at the lowest level. Therefore, the value of a virtual slot always re
ect the actual

value of the associated Tk option (remember that no space is reserved for this

slot in the Scheme core and that accesses are directly done within the Tk data

structures). The speci�cation of the meta class of the <Button> class in given

with the :metaclass option

5

. It is important to note that the construction of

the slot accessors is made at class creation so that no particular computation

is necessary when accessing such a slot. Thus, customizing a widget by using a

slot access at the STklos level is as e�cient as using a standard Tk option

con�guration at the STk base level.

The previous de�nition of <Button> is not su�cient for a complete integra-

tion of the Tk button widget in a STklos class. Indeed, the MOP ensures that

Tk-constructor is called when creating a new <Tk-widget> (and <Button> is

an indirect instance of <Tk-widget> as shown in Fig. 1). This function must

determine the Tk library function (a Tk-command) which has to be called to

create the new widget. The following method for Tk-constructor su�ces to do

this job:

(define-method Tk-constructor ((b <Button>))

button)

The previous <Button> class and Tk-constructor method de�nitions are the

two only things necessary for de�ning a new STklos widget. This point is

particularly important since it permits to minimize the integration cost of new

Tk widgets and, consequently, to follow future Tk releases with minimal coding.

The following variable de�nition shows how we can use the above <Button>

class:

(define b (make <Button> :font "fixed"

:command (lambda () (display "Hello\n"))))

This expression assigns to the symbol b a new instance of <Button>. Changing

the font or the command associated to this object could be done by using either

the slot-set! or the generalized set! primitives as shown in 2.2.

5

In fact, this meta class citation can be omitted since <Label> (or one of its ancestor)

has probably already speci�ed it. In this case the system will automatically choose

the most speci�c meta class.



3.3 Comparison of STklos and Standard Tk

Some of the advantages of STklos, approach over standard Tk have already

been discussed before. In this section, we go on further this discussion.

Low Level Detail Hiding One of the most important bene�ts when embody-

ing Tk widgets in STklos is that most of the Tk idiosyncrasies are hidden to

the user. As a positive consequence, this improves greatly the level we can pro-

gram GUI. A major improvement concerning this point is that we do not need

anymore to take care of the Tk widget naming conventions. The fact that Tk im-

poses that the name of a widget must re
ect the hierarchy to which it belongs,

and the lack of relative naming conventions are very severe constraints when

designing a GUI. These points make di�cult, in standard Tk, the de�nition of

reusable interface components and usage of long pathnames (which are current

in non toy applications) is very awkward to manage. Furthermore, these conven-

tions lead to change large pieces of code as soon as a modi�cation is done in the

widget hierarchy. In this sense, Tk naming conventions do not �t well with GUI

programming since the design of an interface brings aesthetic problems which

often conduct to develop it on a trial and error basis.

In STklos, Tk naming convention are completely hidden and the only thing

the user needs to know when creating a new object is the widget which contains

it. This object is called its parent. An example of nested widgets creation is

shown below:

(define f (make <Frame>))

(define b1 (make <Button> :text "B1" :parent f))

(define b2 (make <Button> :text "B2" :parent f))

The buttons b1 and b2 created here specify that their parent is the frame f. Since

this frame does not specify a particular parent, it is supposed to be a direct

descendant of the root window. Note that only the de�nition of f should be

changed if we decide that f should no more be a top-level frame. A modi�cation

in the hierarchy of this widget is automatically propagated to all the widgets

belonging to this hierarchy. STklos also extends this parent notion to take into

account canvas items (rectangles, lines, ovals, . . . ): a canvas item is considered

to be a descendant of the canvas which contains it. This vision of the canvas

items allows the STklos user to manipulate canvas items as �rst class objects.

For instance,

(define c (make <Canvas>))

(define r (make <Rectangle> :parent c :coords '(0 0 50 50)))

de�nes a rectangle called r in the c canvas. As said before, accessing this rectan-

gle implies the use of two references in standard Tk: the canvas which contains

it, and its identi�cation number in this canvas. In STklos, both informations

are contained in the object which represent the rectangle. For instance, after

executing the expression,



(bind r "<Enter>" (lambda (x y)

(format #t "Mouse enters in ~A ~A~%" x y)))

a message is displayed, each times the mouse enters the r rectangle. It is impor-

tant to note here that we would use exactly the same expression to associate such

a binding to a simple widget such as a button or a label, whereas it needs two

di�erent syntactic forms in Tcl/Tk, since the procedures which access a canvas

item or an interface widget are di�erent.

Uniform Access to the Toolkit Usage of generic functions is also a signi�cant

improvement over the Tk basic level programming since it allows an homoge-

neous access to Tk commands. Suppose that we want to give access to the value

of a scale or an entry widget with the generic function value. This can easily

be done by the following method in STklos:

(define-method value ((obj <Tk-simple-widget>))

((Id obj) 'get))

In this case, one method is su�cient to implement the getter function since

the Tk sub-option for reading the value of a scale or an entry is the same.Writing

the setter function for those widgets is a little bit more complicated since the

way of changing a scale value is di�erent from the way of changing an entry

value in Tk:

(define-method (setter value) ((obj <Scale>) v)

((Id obj) 'set v))

(define-method (setter value) ((obj <Entry>) v)

((Id obj) 'delete 0 'end)

((Id obj) 'insert 0 v))

Using the same generic function (with two di�erent methods) permits to hide

to the user these low level details and gives him/her a coherent access to the

toolkit. In the call,

(set! (value x) 100)

the system chooses the method to apply depending on the class of x. Of course,

an error

6

will be signaled if x is not an entry or a scale. Note that this notion

of widget value could also be easily implemented with a virtual slot (see 2.2)

even if :value does not exist as a Tk option per se. This approach, which is

the one chosen in the current released library, allows introspecting functions to

manage the value of a widget as a standard slot. In particular, this library o�ers

a small interface builder which heavily use introspection to automatically build

6

more exactly, the system calls the no-applicable-method generic function which,

by default, signals an error, as in CLOS. User can specialize this function to provide

another handler.



specialized widget editors. De�ning value as a virtual slots for most widgets

allows the user to tune it in the same fashion as the font or the background Tk

options. Designing an interface builder using only standard Tk constructs would

have been a lot more painful.

The previous examples show that programming with STklos brings the

power of a full featured object language in the area of GUI construction. How-

ever, this �ne integration of the Tk toolkit could not have been done without

the underlying Meta Object Protocol of STklos. This protocol is discussed in

the following section.

4 Implementation

In the previous section, we show through several examples the gain provided by

an object language to use the Tk toolkit. The simplicity of these examples could

make think that the de�nition of an ad-hoc object system for Tk widgets could

su�ce to have an OO vision of the toolkit. However, we feel that this approach,

which has been widely used for Tcl, is not the good one. Providing a general

purpose Scheme object system, which can easily be customized for using Tk,

seems a far better approach. Indeed, in the GUI area, applications programmers

often need to be able to use introspection on the objects they manipulate, or they

need to de�ne new ways to access object slots when composing several widgets.

These constraints have led us to de�ne a MOP based object extension for STk,

because it is probably the cleanest way to achieve the requirements expressed

above.

This section presents how to integrate Tk widgets in a hierarchy such as the

one shown in Fig. 1. The discussion is split in two parts. First, we present the

services a MOP must o�er for this integration and then, we show how we can

exploit them to build this hierarchy.

4.1 The STklos Meta Object Protocol

STklos meta object protocol implementation is based on Tiny-Clos [8], a min-

imal MOP written in Scheme. Current version of STklos MOP is written in

C and in Scheme. Code written in C correspond to the generic functions calls,

which allows to implement them as e�ciently as possible. The rest of the imple-

mentation, where time consumption is less important (e.g. computation of class

precedence lists or printing methods), is written in Scheme. This conducts to an

e�cient implementation where the overhead of OO programming vs \classical"

programming is as low as possible.

As said before, STklos is a general purpose OO extension, but a great

attention has been carried for the services its MOP must provide in order to

integrate easily and e�ciently Tk widgets in STklos objects. The STklos

protocol must at least o�er following capabilities:

{ a way to intervene in the initialization of a STklos widget. The �rst task

which must be done at this stage consists to generate a name (using the Tk



conventions) for the widget which will implement the new instance. Then,

the instance creation arguments list must be �ltered to distinguish the user

arguments which concern only STklos (e.g. the parent slot discussed in 3.1)

from those which correspond to Tk options. This distinction among param-

eters is necessary because the Tk library raises an error when it encounters

a parameter it does not know how to manage.

{ the possibility to de�ne slots with special behaviour and allocation schemes.

In e�ect, beyond virtual slots already discussed in 2.2, the protocol should

allow to map the Tk widget options as slots of a STklos object. Note

that the way to do this mapping will be di�erent for a simple widget and a

canvas item, since Tk o�ers two di�erent methods for accessing their options.

Furthermore, the protocol for de�ning slots must be as simple as possible

to allow application programmers to extend the library with new kinds of

widgets.

The creation of a STklos object is done with the make generic function. As in

CLOS, this function �rst allocates a new instance (by calling the generic function

allocate-instance) and then returns this instance initialized. Initialization of

the new instance is performed by the initialize generic function.

Class slots are computed when the class is initialized. The STklos MOP

calls the generic function compute-get-n-set which, given the de�nition of a

slot, returns a couple of procedures. These procedures correspond to the reader

and writer functions for the slot. In case of a virtual slot de�nition (see 2.2),

for instance, compute-get-n-set returns a list constituted of the two evaluated

lambda expressions given in the :slot-ref and :slot-set! options.

4.2 Using the MOP to Wrap Tk Widgets

We present here only the salient points which are necessary to the integration of

Tk widgets and simple canvas items in an object world. The code exposed here

is simpler than the one which is used in the current distribution of STk, but

principles are the same. A complete listing of the source code of this simpli�ed

implementation is given in annex.

Managing Tk Options as Object Slots. When a new class is created, the

generic function compute-get-n-set is called for each slot this class de�nes.

This function takes two parameters: the class which is being created and the slot

de�nition (a list). This allows us to de�ne a meta class which takes into account

a special kind of slots: tk-virtual allocated slots. The meta class in charge of these

slots is called <Tk-metaclass>. This class is de�ned as:

(define-class <Tk-metaclass> (<class>)

((valid-options :accessor Tk-valid-option)))

The slot valid-options contains the list of options a Tk widget recognizes.

This slot is initialized when a new widget class is de�ned (its value is set to the



list of the slots whose allocation is Tk-virtual). Usage of valid-options will be

discussed later.

Tk-virtual slots have been presented in 3.2. Reading and writing this kind of

slot implies the use of the configure sub-option which is always available for

Tk widgets. In standard Tk, reading the value of a widget option, such as width,

for a given widget w must be done with

(list-ref (w 'configure :width) 4)

Setting the width of this widget to the value val is a little bit simpler and can

be expressed as:

(w 'configure :width val)

Consider now a canvas item whose enclosing canvas and identi�cation number

are respectively c and id; reading and writing the value of its width option can

be done with

(list-ref (c 'itemconfigure id :width) 4)

and

(c 'itemconfigure id :width val)

We said in previous subsection that the generic function compute-get-n-set

has in charge slot allocation. Given the Tk conventions exposed before, it is easy

to de�ne a <Tk-metaclass> specialized method for this function. This method

must return a list whose �rst element is a closure for reading the slot, and whose

second element is a closure for its writing:

(define-method compute-get-n-set ((class <Tk-Metaclass>) slot)

(if (eqv? (get-slot-allocation slot) :tk-virtual)

;; this is a Tk-virtual slot

(let ((opt (make-keyword (car slot))))

(list (lambda (obj) (list-ref ((Id obj) 'configure opt) 4))

(lambda (obj val) ((Id obj) 'configure opt val))))

;; call super compute-get-n-set

(next-method)))

This method �rst tests the allocation type of the slot with get-slot-allocation.

If the slot is a Tk-virtual one, this method returns the reader and writer clo-

sures in a list. Otherwise, this method calls next-method, that is to say the

compute-get-n-set method de�ned over the super class of <Tk-metaclass>.

Since Tk accesses canvas items options in a di�erent way than simple widgets

ones, <Tk-metaclass> cannot be used for reading and writing their slots. A meta

class for canvas items can be simply de�ned as

(define-class <Tk-item-metaclass> (<Tk-Metaclass>)

())

Given this meta class and the Tk conventions shown before, it is simple to de�ne

a compute-get-n-set method specialized for canvas items:



(define-method compute-get-n-set ((class <Tk-item-metaclass>) slot)

(if (eqv? (get-slot-allocation slot) :tk-virtual)

(let ((opt (make-keyword (car slot))))

(list (lambda (obj)

(list-ref ((Id obj) 'itemconfigure (Cid obj) opt) 4))

(lambda (obj val)

((Id obj) 'itemconfigure (Cid obj) opt val))))

(next-method)))

Two points are important to note here:

{ Methods of the generic function compute-get-n-set are very dependent of

the procedure Tk proposes for accessing widget options. However, it must be

noted that only the two returned lambda expressions should be re-written if

the author of the Tk toolkit decides to change current conventions. We can

even say that the MOP permits to write programs which are less dependent

of the Tk toolkit than Tcl/Tk programs, since dependences can be isolated

in a few methods instead of being spread all over the code.

{ The protocol for accessing the slots of new kind of widgets is easily customiz-

able. The STklos library uses it for the Tk text tags (a tag is an annota-

tion which allows to associate a script to a portion of the string associated

to a Tk text widget). De�ning a meta class for text tags and a specialized

compute-get-n-setmethod su�ce to see them as �rst class objects whose

state is stored in the slots of a STklos instance. Similarly, the STklos

library de�nes a meta class for managing composite widgets where a slot

access for a compound widget can be propagated to some of its composing

widgets.

Widget Initialization. When a new object is initialized, the MOP ensures

that the initialize generic function is called. This method must �lter the

arguments given to make in order to pass only valid options to Tk, and to take

into account slots which deal only with STklos (such as parent, for example).

This method is given below:

(define-method initialize ((self <Tk-simple-widget>) initargs)

;; Use split-options on initargs to separate STklos slots from Tk

;; ones. Set parent to the root window if not speci�ed in initargs

(let* ((options (split-options (Tk-valid-options (class-of self))

initargs))

(parent (get-keyword :parent (cdr options) *root*)))

;; Call the Tk command which creates the widget

(set! (Id self) (apply (tk-constructor self)

(make-tk-name parent)

(car options)))

;; Initialize other slots (i.e. non Tk-virtual ones)

(next-method self (cdr options))))

The list of valid Tk options is found in the slot valid-options of the class of

the widget which must be initialized. Given this list, options are separated in



two lists with the split-options helper function (this function returns a list

whose �rst element is the set of Tk options and whose rest contains the other

arguments). Given for instance the call

(define b (make <Button> :parent p :text "Hi" :counter 12))

this method will call the generic function Tk-constructor to �nd the Tk-

command which implements the widget at the STk basic level. Then, it calls this

command with a generated name and the list (:text "Hi"). As said before, the

value returned by the Tk widget constructor must be stored in the Id slot of the

new instance. From this point, all tk-virtual slots are initialized and the call to

next-method at the end of this method ensures the initializations of other slots

with the list (:parent p :counter 12). So, slots of user de�ned classes which

inherit from standard STklos classes are properly initialized. The initialize

method for canvas items follows the same principles and is not developed here.

Interested readers can �nd it in the annex.

Performances In order to compare the performances of STk against Tcl ones,

we will compare the STk basic layer with Tcl/Tk �rst and then we will compare

STk and STklos.

Tcl is by nature an interpreted language and some of its aspects make di�-

cult the writing of a compiler for this language. Furthermore, the fact that Tcl is

a string language implies that the values manipulated by a programmust always

be converted to strings, which is time consuming. This explains the poor per-

formances of the current Tcl interpreter. Some compilers for this language have

been announced but, to our knowledge, none has been achieved at this date.

STk current implementation also relies on an interpreter. However, the se-

mantic of the Scheme programming language has been designed to allow simple

and e�cient interpreters or compilers implementations. STk interpreter is hence

small an o�ers good performances. In particular, it runs 4 to 7 times faster than

Tcl interpreter on general purpose computations. When using the Tk toolkit, Tcl

takes advantage of the way arguments are passed to the functions of the library.

In e�ect, the Tk toolkit uses the C language argc/argv classical convention for

arguments passing. Given these conventions, the STk interpreter must convert

to strings the parameters given to Tk commands, whereas this conversion is un-

necessary in Tcl since everything is kept as strings in the interpreter. However,

the penalty induced by these conversions is generally negligible facing the over-

all computation time of a program, and interfaces written with STk tend to be

faster than Tcl ones.

Let us consider now the performances of STklos comparing to STk. In

STklos, as in CLOS, the generic function call mechanism costs a lot. Because

this mechanism can be the bottleneck of a MOP based architecture, it has been

implemented in C to be as fast as possible. However, the current implementation

is relatively direct and don't use yet the optimizations which can generally be

applied on generic function calls. This explains the relative poor performances

of generic function calls compared to closure invocation. Actually, a generic



function call is 6 times slower than a simple Scheme function call. Consequently,

an interface written in STklos is far much slower than an application resorting

only on simple STk constructs. The generic function overhead can even makes

STklos programs, under certain circumstances, a little bit slower than Tcl

programs. However, applying memoization optimization techniques such as the

one presented in [10] will decrease the ratio between generic and non generic

functions to provide performances close to the basic layer.

5 Conclusion

We have shown in this paper the STklos object system and how it can be

tailored to provide an easy access to a standard graphical toolkit. One of the

major bene�ts of this system is that it allows a neat rei�cation of a class-less

toolkit. This point is important since it is generally admitted that an object

vision of widgets greatly improves the level of GUI programming.

STklos provides a real programming language for the Tk toolkit. Further-

more, the underlying meta object protocol of STklos provides a pleasant way

to access the toolkit options for each widget and it allows us to hide most of the

idiosyncrasies of this toolkit in a clean way. It makes easier the developement of

large Graphical User Interfaces with Tk, and extend hence the interest of this

toolkit.

Availability

STklos is distributed with the STk package and runs on a wide variety of

architectures and systems. The last version of this package is available at the

following address: ftp://kaolin.unice.fr/pub/STk.tar.gz.

References

1. William Clinger and Jonathan Rees (editors). Revised

4

Report on the Algorithmic

Language Scheme. ACM Lisp Pointers, 4(3), 1991.

2. Apple Computer. Dylan: an Object Oriented Dynamic Language. April 1992.

3. Erick Gallesio. Embedding a scheme interpreter in the Tk toolkit. In Lawrence A.

Rowe, editor, First Tcl/Tk Workshop, Berkeley, pages 103{109, June 1993.

4. Erick Gallesio. STklos: A scheme object oriented system dealing with the tk

toolkit. In ICS, editor, Xhibition 94, San Jose, CA, pages 63{71, June 1994.

5. Erick Gallesio. STk reference manual. Technical Report RT 95-31a, I3S CNRS /

Universit�e de Nice - Sophia Antipolis, juillet 1995.

6. Jim de Rivi�eres Gregor Kickzales and Daniel G. Bobrow. The Art of Meta Object

Protocol. MIT Press, 1991.

7. Daniel D. Bobrow, Linda G DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor

Kiczales and David A. Moon. Common Lisp Object System speci�cation. Sigplan

Notices, 23(Special Issue), november 1986.

8. Gregor Kickzales. Tiny-clos. Source available on parcftp.xerox.com in directory

/pub/mops, December 1992.



9. Gregor Kickzales and John Lamping. Issues in the design and speci�cation of class

libraries. In Proceedings of OOPSLA, 1992.

10. Gregor J. Kiczales and Luis H. Rodriguez Jr. Object-Oriented Programming: The

CLOS Perspective, chapter E�cient Method Dispatch in PCL, pages 335{348. The

MIT Press, Cambridge, MA, 1993.

11. John K. Ousterhout. Tcl: an embeddable command language. In USENIXWinter

Conference, pages 183{192, January 1990.

12. John K. Ousterhout. An X11 toolkit based on the Tcl Language. In USENIX

Winter Conference, pages 105{115, January 1991.

13. John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, 1994.

14. Robert W. Schei
ert and Jim Gettys. The X Window System. ACM Transactions

on Graphics, 5(2):79{109, April 1986.

15. Guy L. Steele Jr. Common Lisp: the Language, 2nd Edition. Digital Press, 12

Crosby Drive, Bedford, MA 01730, USA, 1990.

Annex: A Minimal Meta Object Protocol for Tk

Hereafter is a minimal implementation of the Meta Object Protocol described

in section 3. Three widgets classes (<Canvas>, <Label> and <Button>) and two

canvas items (<Line> and <Rectangle>) are de�ned using this MOP. The pro-

tocol exposed here has been simpli�ed to �t in the limited size of this paper

and de�ned widgets recognize only a small subset of the Tk options. However,

in spite of this size, this MOP is completely operational.

;;;;

;;;; Utilities

;;;;

(define make-tk-name

(lambda (parent)

(gensym (format #f "~A.v" (if (eq? parent *root*) "" (Id parent))))))

(define split-options

(lambda (valid-slots initargs)

(letrec

((separate

(lambda (valids args tk-opt other)

(if (null? args)

(cons tk-opt other)

(if (member (car args) valids)

(separate valids (cddr args)

(list* (car args) (cadr args) tk-opt)

other)

(separate valids (cddr args)

tk-opt

(list* (car args) (cadr args) other)))))))

(separate valid-slots initargs '() '()))))



;;;;

;;;; Simple widgets

;;;;

;;

;; <Tk-metaclass> class de�nition and associated methods

;;

(define-class <Tk-Metaclass> (<class>)

((valid-options :accessor Tk-valid-options)))

(define-method initialize ((class <Tk-Metaclass>) initargs)

(next-method)

;; Build a list of allowed keywords. These keywords will be passed to

;; the Tk-command at build time

(let ((slots (slot-ref class 'slots))

(res '())

(tk-virtual? (lambda(s)

(eqv? (get-slot-allocation s) :tk-virtual))))

(for-each (lambda (s)

(when (tk-virtual? s)

(let ((key (make-keyword (car s))))

(set! res (cons key res)))))

slots)

;; Store this list in the new allocated class

(set! (Tk-valid-options class) res)))

(define-method compute-get-n-set ((class <Tk-Metaclass>) slot)

(if (eqv? (get-slot-allocation slot) :tk-virtual)

;; this is a Tk-virtual slot

(let ((opt (make-keyword (car slot))))

(list (lambda (o) (list-ref ((Id o) 'configure opt) 4))

(lambda (o v) ((Id o) 'configure opt v))))

;; call super compute-get-n-set

(next-method)))

;;

;; Basic virtual classes for widgets: <Tk-object>, <Tk-widget> and

;; <Tk-simple-widget>

;;

(define-class <Tk-object> ()

((Id :accessor Id) ;; Widget Id

(parent :accessor parent :init-keyword :parent))) ;; Parent widget

(define-class <Tk-widget> (<Tk-object>)

())

(define-class <Tk-simple-widget> (<Tk-widget>)



;; Each widget has at least the slot bg for its background colour

((bg :accessor bg :init-keyword :bg :allocation :tk-virtual))

:metaclass <Tk-Metaclass>)

(define-method initialize ((self <Tk-simple-widget>) initargs)

;; Use split-options on initargs to separate STklos slots

;; from Tk ones. Set parent to the root window if not speci�ed

;; in initargs

(let* ((options (split-options (Tk-valid-options (class-of self))

initargs))

(parent (get-keyword :parent (cdr options) *root*)))

;; Call the Tk command which creates the widget

(set! (Id self) (apply (tk-constructor self)

(make-tk-name parent)

(car options)))

;; Initialize other slots (i.e. non Tk-virtual ones)

(next-method self (cdr options))))

;;

;; We can now de�ne three widget classes: <Label>, <Button> and <Canvas>

;; as well as their associated Tk-command

;;

(define-class <Label> (<Tk-simple-widget>)

((font :accessor font :init-keyword :font :allocation :tk-virtual)

(text :accessor text :init-keyword :text :allocation :tk-virtual)))

(define-class <Button> (<Label>)

((command :accessor command :init-keyword :command

:allocation :tk-virtual)))

(define-class <Canvas> (<Tk-simple-widget>)

())

(define-method tk-constructor ((self <Label>)) label)

(define-method tk-constructor ((self <Button>)) button)

(define-method tk-constructor ((self <Canvas>)) canvas)

;;;;

;;;; Canvas items widgets

;;;;

;;

;; <Tk-item-metaclass> class de�nition and associated methods

;;

(define-class <Tk-item-metaclass> (<Tk-Metaclass>)

())



(define-method compute-get-n-set ((class <Tk-item-metaclass>) slot)

(if (eqv? (get-slot-allocation slot) :tk-virtual)

;; this is a Tk-virtual slot

(let ((opt (make-keyword (car slot))))

(list (lambda (obj)

(list-ref ((Id obj) 'itemconfigure (Cid obj) opt) 4))

(lambda (obj val)

((Id obj) 'itemconfigure (Cid obj) opt val))))

;; call super compute-get-n-set

(next-method)))

;;

;; Basic virtual class: <Tk-canvas-item>

;;

(define-class <Tk-canvas-item> (<Tk-object>)

((Cid :accessor Cid)

(width :accessor width :allocation :tk-virtual))

:metaclass <Tk-item-metaclass>)

(define-method initialize ((self <Tk-canvas-item>) initargs)

(let* ((options (split-options (Tk-valid-options (class-of self))

initargs))

(parent (get-keyword :parent (cdr options) #f))

(coords (get-keyword :coords (cdr options) #f)))

(if (not (and parent coords))

(error "Parent widget and coordinates must be given!!"))

(set! (Id self) (Id parent))

(set! (CId self) (apply (Id parent)

'create

(canvas-item-initializer self)

(append coords (car options))))

;; Initialize other slots (i.e. non Tk-virtual ones)

(next-method self (cdr options))))

;;

;; We can now de�ne two canvas item classes: <Line> and <Rectangle>

;; as well as their associated initializer

;;

(define-class <Line> (<Tk-canvas-item>)

())

(define-class <Rectangle> (<Tk-canvas-item>)

((fill :accessor fill :init-keyword :fill :allocation :tk-virtual)))

(define-method canvas-item-initializer ((self <Rectangle>)) "rectangle")

(define-method canvas-item-initializer ((self <Line>)) "line")


