
Ediff User’s Manual

Ediff version 2.34

July 1995

Michael Kifer

Copyright c© 1995 Michael Kifer
Copyright c© 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

1

1 Introduction

Ediff provides a convenient way for merging and comparing pairs (or triples) of files and
buffers. The files being compared, file-A, file-B, and file-C (if applicable) are shown in
separate windows (side by side, one above the another, or in separate frames), and the
differences are highlighted as you step through them. You can also copy difference regions
from one buffer to another (and recover old differences if you change your mind).

Another powerful feature is the ability to merge a pair of files into a third buffer. Merging
with an ancestor file is also supported. Furthermore, Ediff is equipped with directory-level
capabilities that allow the user to conveniently launch browsing or merging sessions on
groups of files in two (or three) different directories.

In addition, Ediff can apply a patch to a file and then let you step though both files,
the patched and the original one, simultaneously, difference-by-difference. You can even
apply a patch right out of a mail buffer, i.e., patches received by mail don’t even have to
be saved. Since Ediff lets you copy differences between buffers, you can, in effect, apply
patches selectively (i.e., you can copy a difference region from file_orig to file, thereby
undoing any particular patch that you don’t like).

Unfortunately, Ediff still doesn’t understand multi-file patches—this requires further
work (volunteers needed!).

Ediff is aware of version control, which lets the user compare files with their older ver-
sions. Ediff also works with remote and compressed files, automatically ftp-ing them over
and uncompressing them. See Chapter 6 [Remote and Compressed Files], page 9, for details.

This package builds upon ideas borrowed from emerge.el and several Ediff’s routines
are adaptations from that package. Although Ediff subsumes emerge.el in its functionality,
much of that functionality of Ediff is influenced by emerge.el. The implementation and
the interface are, of course, drastically different.

2

2 Major Entry Points

Ediff can be invoked interactively using the following functions, which can be run either
from the minibuffer or from the menu bar. In the menu bar, all Ediff’s entry points belong
to three submenus of the ‘Tools’ menu: ‘Compare,’ ‘Merge,’ and ‘Apply Patch.’ You don’t
have to remember these entry points, if Ediff is invoked via the menu bar.

ediff-files

ediff Compare two files.

ediff-buffers

Compare two buffers.

ediff-files3

ediff3 Compare three files.

ediff-buffers3

Compare three buffers.

ediff-directories

edirs Compare files common to two directories.

ediff-directories3

edirs3 Compare files common to three directories.

ediff-directory-revisions

edir-revisions

Compare versions of files in a given directory. Ediff selects only the files that
are under version control.

ediff-merge-directory-revisions

edir-merge-revisions

Merge versions of files in a given directory. Ediff selects only the files that are
under version control.

ediff-merge-directory-revisions-with-ancestor

edir-merge-revisions-with-ancestor

Merge versions of files in a given directory using other versions as ancestors.
Ediff selects only the files that are under version control.

ediff-windows-wordwise

Compare windows word-by-word.

ediff-windows-linewise

Compare windows line-by-line.

ediff-regions-wordwise

Compare regions word-by-word.

ediff-regions-linewise

Compare regions line-by-line.

ediff-revision

Compare versions of current buffer, if the buffer is visiting a file under version
control.

Chapter 2: Major Entry Points 3

ediff-patch-file

epatch Patch file then compare. At present, doesn’t understand multi-file patches.

ediff-patch-buffer

epatch-buffer

Patch buffer then compare.

ediff-merge-files

ediff-merge

Merge two files.

ediff-merge-files-with-ancestor

ediff-merge-with-ancestor

Same but with ancestor.

ediff-merge-buffers

Merge two buffers.

ediff-merge-buffers-with-ancestor

Same but with ancestor.

ediff-merge-directories

edirs-merge

Merge files common to two directories.

ediff-merge-directories-with-ancestor

edirs-merge-with-ancestor

Same but using files in a third directory as ancestors.

ediff-merge-revisions

Merge two versions of the file visited by the current buffer. Same but with
ancestor.

If you want Ediff to be loaded from the very beginning, you should have

(require 'ediff)

in your .emacs file. Otherwise, Ediff will be loaded automatically when you use one of the
above functions, either directly or through the menus.

When the above functions are invoked, they prompt the user about the information
they need—typically the files or buffers to compare or patch. Ediff tries to be smart about
these prompts. For instance, in comparing/merging files, it will offer the visible buffers as
defaults. In prompting for files, if the user enters a directory, the previously input file name
will be appended to that directory. In addition, if the variable ediff-use-last-dir is not
nil, Ediff will offer previously entered directories as defaults (which will be maintained
separately for each type of file, A, B, or C).

All the above functions use the Unix diff utility to find difference regions. They process
diff output and display it to the user in a convenient form. At present, Ediff understands
only the plain output from diff. Options such as ‘-c’ are not supported, nor is the format
produced by VMS diff.

The functions ediff-files, ediff-buffers, ediff-files3, ediff-buffers3 first dis-
play the coarse, line-based difference regions, as reported by the diff program. Since diff
may report fairly large chunks of text as being different, even though the difference may be

Chapter 2: Major Entry Points 4

localized to just a few words or even to the white space or line breaks, Ediff will further
refine the regions to indicate which exact words differ. If the only difference is in the white
space and line breaks, Ediff will say so. On a color display, fine differences are highlighted
with color; on a monochrome display, they are underlined. See Section 7.5 [Highlighting
Difference Regions], page 15, to learn how to change that.

The functions ediff-windows-wordwise, ediff-windows-line-wise, ediff-regions-
wordwise and ediff-regions-linewise do comparison on parts of buffers (which must al-
ready exist). Since ediff-windows-wordwise and ediff-regions-wordwise are intended
for relatively small segments of buffers, comparison is done on the basis of words rather than
lines. No refinement is necessary in this case. This technique is effective only for relatively
small regions (perhaps, up to 100 lines), as these functions have a relatively slow startup.

To compare large regions, use ediff-regions-linewise. In this mode, Ediff displays differ-
ences as it would if invoked via ediff-files or ediff-buffers.

The functions ediff-patch-file and ediff-patch-buffer apply a patch to a file or
a buffer and then run Ediff on these buffers, displaying the difference regions. Currently,
Ediff still doesn’t understand multi-file patches (volunteers?).

The entry points ediff-directories, ediff-merge-directories, etc., provide a con-
venient interface for comparing and merging files in different directories. The user is pre-
sented with Dired-like interface from which one can run a group of related Ediff sessions.

Finally, for files under version control, ediff-revision lets the user compare versions of
the file visited by the current buffer. Moreover, the functions ediff-directory-revisions,
ediff-merge-directory-revisions, etc., let the user run a group of related Ediff sessions
by taking a directory and comparing (or merging) versions of files in that directory (for files
that are under version control).

5

3 Commands

All Ediff commands pertinent to a given session are displayed in a quick help window, unless
you type ? to shrink the window to just one line. You can redisplay the help window by
hitting ? again. In this section we comment only on the features that cannot be readily
deduced from the quick help window. You can always type E in any control window to bring
up this manual.

Many Ediff commands take numeric prefix arguments. For instance, if you type a num-
ber, say 3, and then j (ediff-jump-to-difference), Ediff will take you to the 3d difference
region. Typing 3 and then a (ediff-diff-to-diff) will copy the 3d difference region from
buffer A to buffer B. Hitting b does copying in the opposite direction. (In 3-way comparison
mode, the commands for copying are ab, ba, ca, etc.) Likewise, 4 followed by ra will restore
the 4th difference region in buffer A (if it was previously saved as a result of copying from,
say, buffer B to A).

Without the prefix argument, all commands operate on the current difference region.

The total number of differences and the current difference number are always displayed
in the mode line of the control window.

If, after making changes to buffers A, B, or C, you decide to save them, it is recommended
to use ediff-save-buffer, which is bound to wa, wb, and wc (wa will save buffer A, wb
saves buffer B, etc.).

Typing wd saves the output from the diff utility to a file, so you can later refer to
it. With prefix argument, this command saves the plain output from diff (see ediff-

diff-program and ediff-diff-options). Without the argument, it saves customized
diff output (see ediff-custom-diff-program and ediff-custom-diff-options), if it is
available.

Instead of saving it, diff output can be displayed using the command D. Without the
prefix argument, it displays the customized diff output of the session. With the prefix
argument, it displays the plain diff output If either of the diff outputs is unavailable
(because it wasn’t generated or the user killed the respective buffer), then Ediff will try to
display the other diff output. If none is available, a warning is issued.

The command z suspends the current ediff session. It hides the control buffer and the
variants. The easiest way to resume a suspended Ediff session is through the registry of
active sessions. See Chapter 4 [Registry of Ediff Sessions], page 7, for details.

The command q quits the current Ediff session. With a prefix argument, it will ask the
user whether to delete the variant buffers.

The command s is used only for merging. It allows the user to shrink window C to its
minimal size, thereby exposing as much of buffers A and B as possible. This command is
intended only for temporary viewing. Therefore, Ediff will restore the original window size
for buffer C whenever window configuration is changed by the user (on toggling the help,
changing the manner in which windows are split, etc.). However, recentering and jumping
to a difference does not affect window C. Typing s again restores the original size of the
merge window.

With a positive prefix argument, the command s makes the merge window, window C,
slightly taller. With - or a negative prefix argument, s makes window C slightly shorter.

Chapter 3: Commands 6

In the merge mode, Ediff uses a default variant (one of the two files being merged)
when it cannot decide which of the difference regions (that of buffer A or buffer B) should
be copied into the merge buffer. A user may decide that the default variant was chosen
inappropriately and may wish to change that while merging is in progress. To facilitate this,
Ediff has a command, bound to &, which will cause Ediff to start merging anew beginning
with the current difference, using an alternative default variant (the user is asked to type
in the new default for merging), which can be either ‘default-A’, ‘default-B’, or ‘combined’.
See Section 7.9 [Merging and diff3], page 18, for details.

Such repeated merging affects only difference regions that have default-A/B status, and
only if they were not changed with respect to their originals.

Another command that is used only for merging is +. Its effect is to combine the current
difference regions of buffers A and B and put the combination into the merge buffer. See
Section 7.9 [Merging and diff3], page 18, specifically, the variables ediff-combine-diffs
and ediff-combination-pattern.

Some commands are not bound to any key:

ediff-show-registry

eregistry

This command brings up the registry of active Ediff sessions. Ediff registry
is a useful device that can be used for resuming Ediff sessions when the user
switched to some other work before finishing a comparison or merging job. It is
also useful for switching between multiple active Ediff sessions that are run at
the same time. The function eregistry is an alias for ediff-show-registry.

ediff-toggle-multiframe

Changes the display from the multi-frame mode (where the quick help window
is in a separate frame) to the single-frame mode (where all Ediff buffers share
the same frame), and vice versa.

ediff-revert-buffers-then-recompute-diffs

This is useful when, after making changes, you decided to make a fresh start,
or if at some point you changed the files being compared but want to discard
any changes to comparison buffers that were done since then. This command
will ask for confirmation before reverting files. With a prefix argument, it will
revert files without asking.

ediff-profile

Ediff has an admittedly primitive (but useful) facility for profiling Ediff’s com-
mands. Users should not be concerned with this feature, unless they are willing
to put time into improving the efficiency of Ediff. The function ediff-profile

toggles profiling of ediff commands.

7

4 Registry of Ediff Sessions

Ediff maintains a registry of all its invocations that are still active. This feature is very
convenient for switching among active Ediff sessions or for quickly restarting a suspended
Ediff session.

The focal point of this activity is a buffer called *Ediff Registry*. You can display this
buffer by typing R in any Ediff Control Buffer or Session Group Buffer (see Chapter 5
[Session Groups], page 8), or by typing M-x eregistry into the Minibuffer. The latter
would be the fastest way to bring up the registry buffer if no control or group buffer is
displayed in any of the visible Emacs windows. If you are in a habit of running multiple
long Ediff sessions and often need to suspend, resume, or switch between them, it may
be a good idea to have the registry buffer permanently displayed in a separate, dedicated
window.

The registry buffer has several convenient key bindings. For instance, clicking mouse
button 2 or typing RET or v over any session record resumes that session. Session records
in the registry buffer provide a fairly complete description of each session, so it is usually
easy to identify the right session to resume.

Other useful commands are bound to SPC (next registry record) and DEL (previous reg-
istry record). There are other commands as well, but you don’t need to memorize them,
since they are listed at the top of the registry buffer.

8

5 Session Groups

Several major entries of Ediff perform comparison and merging on directories. On
entering ediff-directories, ediff-directories3, ediff-merge-directories,
ediff-merge-directories-with-ancestor, ediff-directory-revisions, ediff-

merge-directory-revisions, or ediff-merge-directory-revisions-with-ancestor,
the user is presented with a Dired-like buffer that lists files common to the directories
involved along with their sizes. (The list of common files can be further filtered through
a regular expression, which the user is prompted for.) We call this buffer Session Group
Panel because all Ediff sessions associated with the listed files will have this buffer as a
common focal point.

Clicking button 2 or typing RET or v over a record describing files invokes Ediff in the
appropriate mode on these files. You can come back to the session group buffer associated
with a particular invocation of Ediff by typing M in Ediff control buffer of that invocation.

Many commands are available in the session group buffer; some are applicable only for
certain types of work. The relevant commands are always listed at the top of each session
group buffer, so there is no need to memorize them.

In directory comparison or merging, a session group panel displays only the files common
to all directories involved. The differences are kept in a separate buffer and are conveniently
displayed by typing D to the corresponding session group panel. Thus, as an added benefit,
Ediff can be used to compare the contents of up to three directories.

Session records in session group panels are also marked with +, for active sessions, and
with -, for finished sessions.

Sometimes, it is convenient to exclude certain session records from a group. Usually this
happens when the user doesn’t intend to run Ediff of certain files in the group, and the
corresponding session records just add clutter to the session group buffer. To help alleviate
this problem, the user can type x to mark a session as a candidate for exclusion and x to
actually hide the marked sessions. There actions are reversible: with a prefix argument,
h unmarks the session under the cursor, and x brings the hidden sessions into the view (x
doesn’t unmark them, though, so the user has to explicitly unmark the sessions of interest).

Group sessions also understand the command m, which marks sessions for future oper-
ations (other than hiding) on a group of sessions. At present, the only such group-level
operation is the creation of a multi-file patch.

A multi-file patch is a concatenated output of several runs of the Unix diff command
(some versions of diff let you create a multi-file patch in just one run). In a session group
buffer created in response to ediff-directories or ediff-directory-revisions, the user
can type P to create a multi-file patch of marked sessions (which must be marked using the m
command). Ediff then will display a buffer containing the patch. In an ediff-directories

session, it is enough to just mark the requisite sessions. In ediff-directory-revisions

revisions, the marked sessions must also be active, or else Ediff will refuse to produce a
multi-file patch. This is because, in the latter-style sessions, there are many ways to create
diff output, and it is easier to handle by running Ediff on the inactive sessions.

9

6 Remote and Compressed Files

Ediff works with remote, compressed, and encrypted files. Ediff supports ange-ftp.el, jka-
compr.el, uncompress.el and crypt++.el, but it may work with other similar packages as
well. This means that you can compare files residing on another machine, or you can apply
a patch to a file on another machine (even the patch itself can be a remote file!).

When patching compressed or remote files, Ediff does not rename the source file (unlike
what the patch utility would usually do). Instead, the source file retains its name and
the result of applying the patch is placed in a temporary file that has the suffix _patched

attached. Generally, this applies to files that are handled using black magic, such as special
file handlers (ange-ftp and some compression and encryption packages all use this method).

Regular files are treated by the patch utility in the usual manner, i.e., the original is
renamed into source-name_orig and the result of the patch is placed into the file source-
name. (Ediff uses _orig instead of the usual .orig to placate systems like VMS.)

10

7 Customization

Ediff has a rather self-explanatory interface, and in most cases the user won’t need to change
anything. However, should the need arise, there are extensive facilities to change the default
behavior.

Most of the customization can be done by setting various variables in the .emacs

file. Some customization (mostly window-related customization and faces) can be done
by putting appropriate lines in .Xdefaults, .xrdb, or whatever X resource file is in use.

With respect to the latter, it is important to be aware that the X resource for Ediff
customization is ‘Ediff’, not ‘emacs’. See Section 7.3 [Window and Frame Configuration],
page 12, See Section 7.5 [Highlighting Difference Regions], page 15, for further details.
Please also refer to Emacs manual for the information on how to set Emacs X resources.

7.1 Hooks

The bulk of customization can be done via the following hooks:

ediff-load-hooks

Can be used to change defaults after Ediff is loaded. These hooks are executed
right after the default bindings are set.

ediff-keymap-setup-hooks

Can be used to alter bindings in Ediff’s keymap. These hooks are called right
after the default bindings are set.

ediff-before-setup-windows-hooks

ediff-after-setup-windows-hooks

Called before/after Ediff sets up its window configuration. Can be used to save
the configuration that existed before Ediff starts or for whatever other purposes.

ediff-suspend-hooks

ediff-quit-hooks

Can be used to set desired window configurations, delete files Ediff didn’t want
to clean up after exiting, etc. By default, ediff-quit-hooks is set to a func-
tion, ediff-cleanup-mess, which cleans after Ediff, as appropriate in most
cases. It is rather unlikely that the user will want to change it. However,
the user may want add other hooks to ediff-quit-hooks, either before or af-
ter ediff-cleanup-mess (see the documentation for add-hook in Emacs man-
ual on how to do this). One should be aware that hooks executing before
ediff-cleanup-mess start in ediff-control-buffer; they should also leave
ediff-control-buffer as the current buffer when they finish. Hooks that
are executed after ediff-cleanup-mess should expect the current buffer be
either buffer A or buffer B. ediff-cleanup-mess doesn’t kill the buffers being
compared or merged (see ediff-cleanup-hooks, below).

ediff-cleanup-hooks

Default is nil. Hooks to run just before running ediff-quit-hooks. This is
a good place to do various cleanups, such as deleting the variant buffers. Ediff
provides a function, ediff-janitor, as one such possible hook, which the user

Chapter 7: Customization 11

can add-hooks to ediff-cleanup-hooks. This function kills buffers A, B, and,
possibly, C, if these buffers aren’t modified. In merge jobs, buffer C is never
deleted. However, the side effect of using this function is that you may not be
able to compare the same buffer in two separate Ediff sessions: quitting one of
them will delete this buffer in another session as well.

ediff-before-setup-control-frame-hooks

ediff-after-setup-control-frame-hooks

Can be used to relocate Ediff control frame when Ediff runs in a multiframe
mode (i.e., when the control buffer is in its own dedicated frame). Be aware
that many variables that drive Ediff are local to Ediff Control Panel (ediff-
control-buffer), which requires special care in writing these hooks. Take a
look at ediff-default-suspend-hook and ediff-default-quit-hook to see
what’s involved.

ediff-startup-hooks

Last hook called after Ediff starts up.

ediff-select-hooks

Called after Ediff selects the next difference region.

ediff-unselect-hooks

Called after Ediff unselects the current difference region.

ediff-prepare-buffer-hooks

Hooks executed for each Ediff buffer (A, B, C) right after these buffers are
arranged.

ediff-display-help-hooks

Ediff executes these hooks each time after setting up the help message. Can be
used to alter the help message for custom packages that run on top of Ediff.

ediff-mode-hooks

Called just after Ediff mode is set up in the control buffer. This is done before
any Ediff window is created. One can use it to set local variables that alter the
look of the display.

ediff-registry-setup-hooks

Hooks run after setting up the registry for all active Ediff session. See Chapter 5
[Session Groups], page 8, for details.

ediff-session-group-setup-hooks

Hooks run after setting up a control panel for a group of related Ediff sessions.
See Chapter 5 [Session Groups], page 8, for details.

7.2 Quick Help

Ediff provides quick help using its control panel window. Since this window takes a fair
share of the screen real estate, you can toggle it off by hitting ?. The control window will
then shrink to just one line and a mode line, displaying a short help message. The variable
ediff-prefer-long-help-message tells Ediff whether the user wants the short message
initially or the long one. By default, it is set to nil, meaning that the short message will

Chapter 7: Customization 12

be shown on startup. Set this to t, if you want Ediff to start with the long message. If
you want to change the appearance of the help message on a per-buffer basis, you must use
ediff-startup-hooks to change the value of the variable ediff-help-message, which is
local to ediff-control-buffer.

7.3 Window and Frame Configuration

On a non-windowing display, Ediff sets things up in one frame, splitting it between a small
control window and the windows for buffers A, B, and C. The split between these windows
can be horizontal or vertical, which can be changed interactively by typing | while the
cursor is in the control window.

On a window display, Ediff sets up a dedicated frame for Ediff Control Panel and then it
chooses windows as follows: If one of the buffers is invisible, it is displayed in the currently
selected frame. If a buffer is visible, it is displayed in the frame where it is visible. If,
according to the above criteria, the two buffers fall into the same frame, then so be it—the
frame will be shared by the two. The same algorithm works when you hit C-l (ediff-
recenter), p (ediff-previous-difference), n (ediff-next-difference), etc.

The above behavior also depends on whether the current frame is splittable, dedicated,
etc. Unfortunately, the margin is too small to present this remarkable algorithm.

The bottom line of all this is that you can compare buffers in one frame or in different
frames. The former is done by default, while the latter can be achieved by arranging buffers
A, B (and C, if applicable) to be seen in different frames. Ediff respects these arrangements,
automatically adapting itself to the multi-frame mode.

Ediff uses the following variables to set up its control panel (a.k.a. control buffer, a.k.a.
quick help window):

ediff-control-frame-parameters

The user can change or augment this variable including the font, color, etc. The
X resource name of Ediff Control Panel frames is ‘Ediff’. Under X-windows,
you can use this name to set up preferences in your ~/.Xdefaults, ~/.xrdb,
or whatever X resource file is in use. Usually this is preferable to changing
ediff-control-frame-parameters directly. For instance, you can specify in
~/.Xdefaults where the control frame is to be sitting on the screen using the
resource Ediff*geometry.

In general, any X resource pertaining the control frame can be reached via the
prefix Ediff*.

ediff-control-frame-position-function

The prefered way of specifying the position of the control frame is by setting the
variable ediff-control-frame-position-function to an appropriate func-
tion. The default value of this variable is ediff-make-frame-position. This
function places the control frame in the vicinity of the North-East corner of the
frame displaying buffer A.

The following variables can be used to adjust the location produced by ediff-make-

frame-position and for related customization.

Chapter 7: Customization 13

ediff-narrow-control-frame-leftward-shift

Specifies the number of characters for shifting the control frame from the right-
most edge of frame A when the control frame is displayed as a small window.

ediff-wide-control-frame-rightward-shift

Specifies the rightward shift of the control frame from the left edge of frame A
when the control frame shows the full menu of options.

ediff-control-frame-upward-shift

Specifies the number of pixels for the upward shift of the control frame.

ediff-prefer-iconified-control-frame

If t, the control frame becomes iconified automatically when the quick help
message is toggled off. This saves valuable real estate on the screen. Toggling
help back will deiconify the control frame.

To start Ediff with an iconified Control Panel, you should set this variable to
t and ediff-prefer-long-help-message to nil. This behavior is useful only
in Emacs (not in XEmacs) and only if the window manager is TWM or a
derivative.

If you truly and absolutely dislike the way Ediff sets up windows and if you cannot change
this via frame parameters, the last resort is to rewrite the function ediff-setup-windows.
However, we believe that detaching Ediff Control Panel from the rest and making it into a
separate frame offers an important opportunity by allowing you to iconify that frame. Under
Emacs, the icon will usually accept all of the Ediff commands, but will free up valuable real
estate on your screen (this may depend on the window manager, though). Iconifying won’t
do any good under XEmacs since XEmacs icons are not sensitive to keyboard input. The
saving grace is that, even if not iconified, the control frame is very small, smaller than some
icons, so it does not take much space in any case.

The following variable controls how windows are set up.

ediff-window-setup-function

The multiframe setup is achieved via ediff-setup-windows-multiframe func-
tion, which is a default on windowing displays. The plain setup, one where all
windows are always in one frame, is done via ediff-setup-windows-plain,
which is the default on a non-windowing display (or in an xterm window). In
fact, under Emacs, you can switch freely between these two setups by executing
the command ediff-toggle-multiframe using the Minibuffer.

If you don’t like any of these setups, write your own function. See the documen-
tation for ediff-window-setup-function for the basic guidelines. However,
writing window setups is not easy, so before embarking on this job you may
want to take a close look at ediff-setup-windows-plain and ediff-setup-

windows-multiframe.

The user can run multiple Ediff sessions at once, by invoking Ediff several times without
exiting previous Ediff sessions. Different sessions may even operate on the same pair of
files. Each session would have its own Ediff Control Panel and all the regarding a particular
session is local to the associated control panel buffer. You can switch between sessions by
suspending one session and then switching to another control panel. (Different control panel
buffers are distinguished by a numerical suffix, e.g., Ediff Control Panel<3>.)

Chapter 7: Customization 14

7.4 Selective Browsing

Sometimes it is convenient to be able to step through only some difference regions, those
that satisfy certain conditions, and to ignore all others. The commands #f and #h let
the user specify regular expressions to control the way Ediff skips to the next or previous
difference. Typing #f lets one specify regular expressions for each buffer, regexp-A, regexp-
B, and regexp-C. Ediff will then start stepping through only those difference regions where
the region in buffer A matches regexp-A and/or the region in buffer B matches regexp-B,
etc. Whether ‘and’ or ‘or’ will be used depends on how the user responds to a prompt.
Similarly, using #h, one specifies expressions that match difference regions to be ignored
while stepping through the differences. That is, if the buffer A part matches regexp-A, the
buffer B part matches regexp B and (if applicable) buffer-C part matches regexp-C, then
the region will be ignored by the commands n/SPC (ediff-next-difference) and p/DEL
(ediff-previous-difference) commands.

Hitting #f and #h toggles selective browsing on/off.

Note that selective browsing affects only ediff-next-difference and ediff-

previous-difference, i.e., the commands invoked by typing n/SPC and p/DEL. You can
still jump directly (using j or ga/gb/gc) to any numbered difference. Also, it should be
understood, that #f and #h do not change the position of the point in the buffers. The
effect of these commands is seen only when the user types n or p, i.e., when Ediff is told to
jump to the next or previous difference.

Users can supply their own functions to specify how Ediff should do selective browsing.
To change the default Ediff function, add a function to ediff-load-hooks which will do
the following assignments:

(fset ediff-hide-regexp-matches 'your-hide-function)

(fset ediff-focus-on-regexp-matches 'your-focus-function)

Useful hint: To specify a regexp that matches everything, don’t simply type RET in
response to a prompt. Typing RET tells Ediff to accept the default value, which may not be
what you want. Instead, you should enter something like ‘^’ or ‘$’ — which matches every
line.

If the user does not remember if selective browsing is in effect and which regexps are
being used, the status command, i, will supply the requisite information.

In addition to the ability to ignore regions that match regular expressions, Ediff can be
ordered to start skipping over certain ‘inessential’ regions. This is controlled by the variable

ediff-ignore-similar-regions

If t, causes Ediff to skip over difference regions that deemed inessential, i.e.,
where the only differences are those in the white space and newlines.

Note: In order for this feature to work, auto-refining of difference regions must be on,
since otherwise Ediff won’t know if there are fine differences between regions. Under X, auto-
refining is a default, but it is nixed on dumb terminals or in Xterm windows. Therefore,
in a non-windowing environment, the user must explicitly turn auto-refining on (e.g., by
typing @).

Caution: If many inessential regions appear in a row, Ediff may take a long time to jump
to the next region because it has to compute fine differences of all intermediate regions.

Chapter 7: Customization 15

7.5 Highlighting Difference Regions

The following variables control the way Ediff highlights difference regions.

ediff-before-flag-bol

ediff-after-flag-eol

ediff-before-flag-mol

ediff-after-flag-mol

The above are ASCII strings that mark the beginning and the end of the differ-
ences found in files A, B, and C. Ediff uses different flags to highlight regions
that begin/end at the beginning/end of a line or in a middle of a line.

ediff-current-diff-face-A

ediff-current-diff-face-B

ediff-current-diff-face-C

Ediff uses these faces to highlight current differences on X displays. These and
subsequently described faces can be set either in .emacs or in .Xdefaults. The
X resource for Ediff is ‘Ediff’, not ‘emacs’. Please refer to Emacs manual for
the information on how to set X resources.

ediff-fine-diff-face-A

ediff-fine-diff-face-B

ediff-fine-diff-face-C

Faces used to show the fine differences between the current differences regions
in buffers A, B, and C, respectively.

ediff-even-diff-face-A

ediff-even-diff-face-B

ediff-even-diff-face-C

ediff-odd-diff-face-A

ediff-odd-diff-face-B

ediff-odd-diff-face-C

Non-current difference regions are displayed using these alternating faces. The
odd and the even faces are actually identical on monochrome displays, because
without colors options are limited. So, Ediff uses italics to highlight non-current
differences.

ediff-highlight-all-diffs

Indicates whether—on a window system—the user wants differences to be
marked using ASCII strings (like on a dumb terminal) or using colors and
highlighting. Normally, Ediff highlights all differences, but the selected
difference is highlighted more visibly. One can cycle through various
modes of highlighting by hitting h. By default, Ediff starts in the mode
where all difference regions are highlighted. If you prefer to start in the
mode where unselected differences are not highlighted, you should set
ediff-highlight-all-diffs to nil. Typing h restores highlighting of all
differences.

Ediff lets you switch between the two modes of highlighting. That is, you can
switch interactively from highlighting using faces to highlighting using ASCII
flags, and back. Of course, switching has effect only under a windowing sys-

Chapter 7: Customization 16

tem. On a dumb terminal or in an xterm window, the only available option is
highlighting with ASCII flags.

If you want to change the above variables, they must be set before Ediff is loaded.

There are two ways to change the default setting for highlighting faces: either change
the variables, as in

(setq ediff-current-diff-face-A 'bold-italic)

or

(setq ediff-current-diff-face-A

(copy-face 'bold-italic 'ediff-current-diff-face-A))

or modify the defaults selectively:

(add-hook 'ediff-load-hooks

(function (lambda ()

(set-face-foreground ediff-current-diff-face-B "blue")

(set-face-background ediff-current-diff-face-B "red")

(make-face-italic ediff-current-diff-face-B))))

You may also want to take a look at how the above faces are defined in the source code
of Ediff.

Note: it is not recommended to use internal-get-face (or get-face in XEmacs)
when defining Ediff’s faces, since this may cause problems when there are several frames
with different font sizes. Instead, use copy-face, set-face-*, or make-face-* as shown
above.

7.6 Narrowing

If buffers being compared are narrowed at the time of invocation of Ediff, ediff-buffers
will preserve the narrowing range. However, if ediff-files is invoked on the files visited by
these buffers, narrowing will be turned off, since we assume that the user wants to compare
the entire files.

Invocation of ediff-regions-wordwise/linewise and ediff-windows-

wordwise/linewise will cause Ediff to set new narrowing ranges (corresponding to the
windows being compared). However, the old ranges are preserved and can be restored by
typing %. The original ranges will be also restored on quitting Ediff.

Two variables control the behavior of ediff-windows-wordwise/linewise, ediff-

regions-wordwise/linewise with respect to narrowing:

ediff-start-narrowed

If t, Ediff will narrow the display to the appropriate range if it is
invoked as ediff-windows-wordwise/linewise or ediff-regions-

wordwise/linewise. If nil, narrowing will not take place. However, the user
can still toggle narrowing on and off by typing %.

ediff-quit-widened

Controls whether on exiting Ediff should restore the visibility range that existed
before the current invocation.

Chapter 7: Customization 17

7.7 Refinement of Difference Regions

Ediff has variables to control the way fine differences are highlighted. This feature give the
user control over the process of refinement. Note that refinement ignores spaces, tabs, and
newlines.

ediff-auto-refine

The default is ‘on’, which means that fine differences within regions will be
highlighted automatically. On a slow machine, automatic refinement may be
painful. In that case, the user can toggle auto-refining on or off (or nix it
completely) by hitting @. When auto-refining is off, fine differences will be
shown only for regions for which these differences have been computed and
saved before. If auto-refining is nixed, fine differences will not be shown at all.
Hitting * will compute and redisplay fine differences for the current difference
region, regardless of the status auto-refining.

ediff-auto-refine-limit

If auto-refining is on, this variable limits the size of the regions to be auto-
refined. This guards against the possible slow-down that may be caused by
extraordinary large difference regions. The user can always refine the current
region by typing *.

ediff-forward-word-function

Gives the user control over how fine differences are computed. The value must
be a lisp function that determines how the current difference region should be
split into words.

Fine diferences are computed by first splitting the current difference region into
words and then passing this along to ediff-diff-program. For the default
ediff-forward-word-function (which is ediff-forward-word), a word is a
string consisting of letters, ‘-’, or ‘ ’; a string of punctuation symbols; a string
of digits, or a string consisting of symbols that are neither space, nor a letter.

This default behavior is controlled by four variables: ediff-word-1, ..., ediff-
word-4. See the on-line documentation for these variables and for the function
ediff-forward-word for an explanation of how to modify these variables.

Sometimes, when a region has too many differences between the variants, highlighting
of fine differences stands in the way, especially on color displays. If that is the case, the
user can type * with a negative prefix argument, which would unhighlight fine differences
for the current region.

To unhighlight fine differences in all diff regions, use the command @. Repeated typing
of this key cycles through three different states: auto-refining, no-auto-refining, and no-
highlighting of fine differences.

7.8 Patch and Diff Programs

The next group of variables determines the programs to be used for applying patches and
for computing the main difference regions (not the fine difference regions):

Chapter 7: Customization 18

ediff-patch-program

ediff-diff-program

ediff-diff3-program

Specify the functions that produce differences and do patching.

ediff-patch-options

ediff-diff-options

ediff-diff3-options

Specify which options to pass to the above utilities. It is unlikely that you
would want to change these. However, sometimes you may want to tell diff
to ignore spaces and such. Use the option ‘-w’ for that. Diff has several other
useful options (type ‘man diff’ to find out). However, Ediff does not let you
use the option ‘-c’, as it doesn’t recognize this format yet. If you need to save
the output from diff in a special format, Ediff lets you specify “custom” diff

format using the following two variables:

ediff-custom-diff-program

The output generated by ediff-custom-diff-program (which doesn’t even
have to be a Unix-style diff!) is not used by Ediff. It is provided exclusively
so that the user could save if using the function ediff-save-buffer (normally
bound to wd) and later refer to it. However, Ediff is not the preferred way
of producing diff output in Emacs. Unless you also intend to use Ediff for
browsing through the diff’ed files, M-x diff may be a faster way to generate
output from diff.

ediff-custom-diff-options

Specifies the options to pass to ediff-custom-diff-program.

Beware of VMS Diff: The output from VMS Diff is not yet supported. Instead, make sure
some implementation of Unix diff, such as gnudiff, is used.

7.9 Merging and diff3

Ediff supports 3-way comparison via the functions ediff-files3 and ediff-buffers3.
The interface is the same as for 2-way comparison. In 3-way comparison and merging, Ediff
reports if any two difference regions are identical. For instance, if the current region in
buffer A is the same as the region in buffer C, then the mode line of buffer A will display
[=diff(C)] and the mode line of buffer C will display [=diff(A)].

Merging is done according to the following algorithm.

If a difference region in one of the buffers, say B, differs from the ancestor file while the
region in the other buffer, A, doesn’t, then the merge buffer, C, gets B’s region. Similarly
when buffer A’s region differs from the ancestor and B’s doesn’t.

If both regions in buffers A and B differ from the ancestor file, Ediff will choose the
region according to the value of the variable

ediff-default-variant

If set to ‘default-A’ then A’s region is chosen. If set to ‘default-B’ then B’s
region is chosen. If set to ‘combined’ then the region in buffer C will look like
this:

#ifdef NEW /* variant A */

Chapter 7: Customization 19

difference region from buffer A

#else /* variant B */

difference region from buffer B

#endif /* NEW */

The actual strings that separate the regions copied from bufer A and B are
controlled by the variable

ediff-combination-pattern

A list of three strings. The first is inserted before the difference region of buffer
A; the second string goes between the regions; the third will trail region B, as
shown in the above example.

In addition to the state of the difference, during merging Ediff displays the state of the
merge for each region. If a difference came from buffer A by default (because both regions
A and B were different from the ancestor and ediff-default-variant was set to ‘default-A’)
then [=diff(A) default-A] is displayed in the mode line. If the difference in buffer C came,
say, from buffer B because the difference region in that buffer differs from the ancestor, but
the region in buffer A does not (if merging with an ancestor) then [=diff(B) prefer-B] is
displayed. The indicators default-A/B and prefer-A/B are inspired by emerge.el and have
the same meaning.

Another indicator of the state of merge is ‘combined’. It appears with any difference
region in buffer C that was obtained by combining the difference regions in buffers A and
B as explained above.

In addition to state of merge and difference indicator, in merging with an ancestor file or
buffer, Ediff informs the user when the current difference region in the (normally invisible)
ancestor buffer is empty via the AncestorEmpty indicator. This helps determine if the
changes made to the original in variants A and B represent pure insertion or deletion of
text: if the mode line shows AncestorEmpty and the corresponding region in buffers A or
B is not empty, this means that new text was inserted. If this indicator is not present and
the difference regions in buffers A or B are non-empty, this means that text was modified.
Otherwise, the original text was deleted.

Although the ancestor buffer is normally invisible, Ediff maintains difference regions
there and advances the current difference region accordingly. All highlighting of difference
regions is provided in the ancestor buffer, except for the fine differences. Therefore, if
desired, the user can put the ancestor buffer in a separate frame and watch it there. However,
on a TTY, only one frame can be visible at any given time, and Ediff doesn’t support any
single-frame window configuration where all buffers, including the ancestor buffer, would be
visible. However, the ancestor buffer can be displayed by typing / to the control window.
(Type C-l to hide it again.)

Note that the state-of-difference indicators ‘=diff(A)’ and ‘=diff(B)’ above are not re-
dundant, even in the presence of a state-of-merge indicator. In fact, the two serve different
purposes. For instance, if the mode line displays [=diff(B) prefer(B)] and you copy a differ-
ence region from buffer A to buffer C then ‘=diff(B)’ will change to ‘diff-A’ and the mode
line will display [=diff(A) prefer-B]. This indicates that the difference region in buffer C is
identical to that in buffer A, but originally buffer C’s region came from buffer B. This is
useful to know because the original difference region in buffer C can be recovered by typing
r, if necessary.

Chapter 7: Customization 20

Ediff never changes the state-of-merge indicator, except in response to the ! command
(see below), in which case the indicator is lost. On the other hand, the state-of-difference
indicator is changed automatically by the copying/recovery commands, a, b, r, +.

If Ediff is asked to recompute differences via the command !, the information about
origins of the regions in the merge buffer (default-A, prefer-B, or combined) will be lost.
This is because recomputing differences in this case means running diff3 on buffers A, B, and
the merge buffer, not on the ancestor buffer. (It makes no sense to recompute differences
using the ancestor file, since in the merging mode Ediff assumes that the user did not edit
buffers A and B, but he may have edited buffer C, and these changes are to be preserved.)
Since some difference regions may disappear as a result of editing buffer C and others may
arise, there is generally no simple way to tell where the various regions in the merge buffer
came from. In fact, recomputing differences erases all information about the ancestor buffer,
so it will be unhighlighted and disconnected from the current Ediff session. (However, this
doesn’t kill the ancestor buffer.)

In 3-way comparison, Ediff tries to disregard regions that consist entirely of white space.
For instance, if, say, the current region in buffer A consists of the white space only (or if it
is empty), Ediff will not take it into account for the purpose of computing fine differences.
The result is that Ediff can provide a better visual information regarding the actual fine
differences in the non-white regions in buffers B and C. Moreover, if the regions in buffers
B and C differ in the white space only, then a message to this effect will be displayed.

In the merge mode, the share of the split between window C (the window displaying the
merge-buffer) and the windows displaying buffers A and B is controlled by the variable

ediff-merge-window-share

The default is 0.5. To make the merge-buffer window smaller, reduce this
amount. It is not recommended to increase the size of the merge-window to
more than half the frame (i.e., to increase the value of ediff-merge-window-
share) to more than 0.5, since it would be hard to see the contents of buffers
A and B.

The user can temporarily shrink the merge window to just one line by typing s. This
change is temporary, until Ediff finds a reason to redraw the screen. Typing s again restores
the original window size.

With a positive prefix argument, this command will make the merge window slightly
taller. This change is persistent. With ‘-’ or with a negative prefix argument, the command
s makes the merge window slightly shorter. This change also persistent.

Ediff lets the user automatically ignore the regions where one of the buffer’s regions
is prefered because it disagrees with the ancestor, while the other buffer agrees with the
ancestor. In this case, Ediff displays only the difference regions where the two buffers, A
and B, both differ from the ancestor file. The variable that controls this behavior is

ediff-show-clashes-only

The value of this variable can be toggled interactively, by typing $. Note that
this variable controls only how Ediff chooses the next/previous difference to
show. The user can still jump directly to any difference using the command j

(with a prefix argument specifying the difference number).

Chapter 7: Customization 21

7.10 Support for Version Control

Ediff supports version control via the packages vc.el and rcs.el. The latter is a package
written by Sebastian Kremer <sk@thp.Uni-Koeln.DE>, which is available in

ftp.cs.buffalo.edu:pub/Emacs/rcs.tar.Z

ftp.uni-koeln.de:/pub/gnu/emacs/rcs.tar.Z

To specify which version control package you are using, set the variable ediff-version-
control-package, e.g.,

(setq ediff-version-control-package 'rcs)

A symbol. The default, is ‘vc’. Note: both packages provide access to RCS, but only
vc.el comes standard with Emacs and XEmacs.

ediff-revision-key

A string. For files under revision control, one key can be bound to the function
ediff-revision, which runs Ediff comparing versions of the current buffer.
This is controlled by the above variable. The default is nil, i.e., Ediff doesn’t
bind any key to run ediff-revision.

If the version control package used is vc.el, then ediff-revision-key is
bound in a key map accessible through the prefix C-x v, i.e., if you have e.g.,
(setq ediff-revision-key "=") in your ~/.emacs file, then to run ediff-

revision you will have to type C-x v =.

If the version control package is rcs.el is used, then the key is bound in the
global Emacs map, the one available by default. For that reason, it is recom-
mended that the key should start with a prefix, such as C-c. For instance, if you
would like to use C-c E to run ediff-revision, put (setq ediff-revision-

key "\C-cE") in your ~/.emacs file.

Note: Ediff doesn’t bind ediff-revision-key when it is first loaded. The
binding takes effect only when the user invokes ediff-revision. If you want
the binding to take effect right from the start, put this in your ~/emacs:

(setq ediff-revision-key "your-key")

(require 'ediff)

(ediff-load-version-control)

If you want the binding to take effect only after Ediff is first loaded into your
Emacs, use ediff-load-hooks:

(setq ediff-revision-key "your-key")

(add-hook 'ediff-load-hooks 'ediff-load-version-control)

7.11 Customizing the Mode Line

When Ediff is running, the mode line of Ediff Control Panel buffer shows the current
difference number and the total number of difference regions in the two files.

The mode line of the buffers being compared displays the type of the buffer (‘A:’, ‘B:’, or
‘C:’) and (usually) the file name. Ediff is trying to be intelligent in choosing the mode line
buffer identification. In particular, it works well with uniquify.el and mode-line.el packages
(which improve on the default way in which Emacs displays buffer identification). If you
don’t like the way Ediff changes the mode line, there always is ediff-prepare-buffer-

hooks, which can be used to modify the mode line.

Chapter 7: Customization 22

7.12 Miscellaneous

The following is the last batch of variables that can be customized:

ediff-split-window-function

Controls the way you want the window be split between file-A and file-B
(and file-C, if applicable). It defaults to the vertical split (split-window-
vertically, but you can set it to split-window-horizontally, if you so
wish.

ediff-merge-split-window-function

Controls how windows are split between buffers A and B in the merge mode.

ediff-make-wide-display-function

The user can toggle wide/regular display by typing m. In the wide display
mode, buffers A, B (and C, when applicable) are displayed in a single frame
that is as wide as the entire workstation screen. This is useful when files are
compared side-by-side. By default, the display is widened without changing
its height. However, the user can set the above variable to indicate the name
of a function to be called to widen the frame in which to display the buffers.
See the on-line documentation for ediff-make-wide-display-function for
details. It is also recommended to look into the source of the default function
ediff-make-wide-display.

ediff-use-last-dir

Controls the way Ediff presents the default directory when it prompts the user
for files to compare. If nil, Ediff will use the default directory of the current
buffer when it prompts the user for file names. Otherwise, it will use the
directories it had previously used for files A, B, or C, respectively.

ediff-no-emacs-help-in-control-buffer

If t, makes C-h behave like the DEL key, i.e., it will move you back to the previous
difference rather than invoking help. This is useful when, in an xterm window
or on a dumb terminal, the Backspace key is bound to C-h and is positioned
more conveniently than the DEL key.

ediff-toggle-read-only-function

Can be used to change the way Ediff toggles the read-only property in its buffers.
By default, Ediff uses toggle-read-only. For files under version control, Ediff
first tries to check the files out.

ediff-keep-variants

Default is t, meaning that the buffers being compared or merged will be pre-
served when Ediff quits. Setting this to nil causes Ediff to offer the user a
chance to delete these buffers (if they are not modified). Supplying a prefix
argument to the quit command (q) temporarily reverses the meaning of this
variable. This is convenient when the user prefers one of the behaviors most of
the time, but occasionally needs the other behavior.

Using ediff-cleanup-hooks, one can make Ediff delete the variants uncondi-
tionally (e.g., by making ediff-janitor into one of these hooks).

Chapter 7: Customization 23

Ediff lets you toggle the way windows are split, so you can try different settings interac-
tively. Note: if buffers A and B (and C, if applicable) are in different frames, windows are
not split, regardless of the value ediff-split-window-function. Instead, other windows
on these frames are deleted and Ediff starts displaying these buffers using these frames, one
file per frame. You can switch to the one-frame mode by hiding one of the buffers A/B/C.

Note that if Ediff detects that the two buffers it compares are residing in separate frames,
it assumes that the user wants them to be so displayed and stops splitting windows. Instead,
it will arrange each buffer to occupy its own frame.

The user can also swap the windows where buffers are displayed by typing ~.

7.13 Notes on Heavy-duty Customization

Some users need to customize Ediff in rather sophisticated ways, which requires different
defaults for different kinds of files (e.g., SGML, etc.). Ediff supports this kind of customiza-
tion is several ways. First, most customization variables are buffer-local. Those that aren’t
are usually accessible from within Ediff Control Panel, so one can make them local to the
panel by calling make-local-variable from within ediff-startup-hooks. Second, there is
now a new optional (6-th) argument to ediff-setup, which has the form ((var-name-1

. val-1) (var-name-2 . val-2) ...). The function ediff-setup will set the variables
on the list to the respective values in the Ediff control buffer. This is an easy way to
throw in custom variables (which usually should be buffer-local) that can then be tested
in various hooks. Make sure the variable ediff-job-name and ediff-word-mode are set
properly in this case, as some things in Ediff depend on this. Finally, if custom-tailored
help messages are desired, Ediff has ediff-brief-help-message-custom and ediff-long-

help-message-custom, which are local variables that can be set to a function that returns
a string.

When customizing Ediff, some other variables are useful, although they are not user-
definable. First, it should be kept in mind that most of the Ediff variables are local to the
Ediff control buffer, so this buffer must be current at the time these variables are accessed.
The control buffer is accessible via the variable ediff-control-buffer, which is also local
to that buffer.

Other variables of interest are:

ediff-buffer-A

The first of the data buffers being compared.

ediff-buffer-B

The second of the data buffers being compared.

ediff-buffer-C

In three-way comparisons, this is the third buffer being compared. In merging,
this is the merge buffer. In two-way comparison, this variable is nil.

ediff-window-A

The window displaying buffer A. If buffer A is not visible, this variable is nil or
it may be a dead window.

ediff-window-B

The window displaying buffer B.

Chapter 7: Customization 24

ediff-window-C

The window displaying buffer C, if any.

ediff-control-frame

A dedicated frame displaying the control buffer, if it exists. It is non-nil only
if Ediff uses the multiframe display, i.e., when the control buffer is in its own
frame.

25

8 Credits

Ediff was written by Michael Kifer <kifer@cs.sunysb.edu>. It was inspired by emerge.el
written by Dale R. Worley <drw@math.mit.edu>. An idea due to Boris Goldowsky
<boris@cs.rochester.edu> made it possible to highlight fine differences in Ediff buffers.
Alastair Burt <burt@dfki.uni-kl.de> ported Ediff to XEmacs, and Eric Freudenthal
<freudent@jan.ultra.nyu.edu> made it work with VC.

Many people provided help with bug reports, patches, and advice. Without them, Ediff
would not be nearly as useful as it is now. Here is a full list of contributors (I hope I didn’t
miss anyone):

Alastair Burt <burt@dfki.uni-kl.de>, Paul Bibilo

<peb@delcam.co.uk>, Kevin Broadey

<KevinB@bartley.demon.co.uk>, Harald Boegeholz

<hwb@machnix.mathematik.uni-stuttgart.de>, Jin S. Choi

<jin@atype.com>, Eric Eide <eeide@asylum.cs.utah.edu>,

Kevin Esler <esler@ch.hp.com>, Robert Estes

<estes@ece.ucdavis.edu>, Eric Freudenthal

<freudent@jan.ultra.nyu.edu>, Job Ganzevoort

<Job.Ganzevoort@cwi.nl>, Boris Goldowsky

<boris@cs.rochester.edu>, Allan Gottlieb

<gottlieb@allan.ultra.nyu.edu>, Xiaoli Huang <hxl@epic.com>,

Larry Gouge <larry@itginc.com>, Karl Heuer

<kwzh@gnu.ai.mit.edu>, <irvine@lks.csi.com>,

<jaffe@chipmunk.cita.utoronto.ca>, David Karr

<dkarr@nmo.gtegsc.com>, Norbert Kiesel

<norbert@i3.informatik.rwth-aachen.de>,

Leigh L Klotz <klotz@adoc.xerox.com>, Fritz Knabe

<Fritz.Knabe@ecrc.de>, Heinz Knutzen

<hk@informatik.uni-kiel.d400.de>,

Andrew Koenig <ark@research.att.com>,

Ken Laprade <laprade@dw3f.ess.harris.com>, Will C Lauer <wcl@cadre.com>,

Richard Levitte <levitte@e.kth.se>, Mike Long <mike.long@analog.com>,

Martin Maechler <maechler@stat.math.ethz.ch>, Simon Marshall

<Simon.Marshall@mail.esrin.esa.it>, Richard Mlynarik

<mly@adoc.xerox.com>, Chris Murphy <murphycm@sun.aston.ac.uk>,

Eyvind Ness <Eyvind.Ness@hrp.no>, Ray Nickson

<nickson@cs.uq.oz.au>, Paul Raines <raines@slac.stanford.edu>,

Benjamin Pierce <benjamin.pierce@cl.cam.ac.uk>,

Tibor Polgar <tlp00@spg.amdahl.com>, C.S. Roberson

<roberson@aur.alcatel.com>, Kevin Rodgers <kevin.rodgers@ihs.com>,

Sandy Rutherford <sandy@ibm550.sissa.it>, Heribert Schuetz

<schuetz@ecrc.de>, Andy Scott <ascott@pcocd2.intel.com>,

Axel Seibert <axel@tumbolia.ppp.informatik.uni-muenchen.de>,

Richard Stallman <rms@gnu.ai.mit.edu>, Richard Stanton

<stanton@haas.berkeley.edu>, Ake Stenhoff

<etxaksf@aom.ericsson.se>, Stig <stig@hackvan.com>, Peter Stout

Chapter 8: Credits 26

<Peter_Stout@cs.cmu.edu>, Chuck Thompson <cthomp@cs.uiuc.edu>,

Raymond Toy <toy@rtp.ericsson.se>, Ilya Zakharevich

<ilya@math.ohio-state.edu>

27

Index

C
Comparing files and buffers . 1

E
ediff . 2
ediff-after-flag-eol . 15
ediff-after-flag-mol . 15
ediff-after-setup-control-frame-hooks 11
ediff-after-setup-windows-hooks 10
ediff-auto-refine . 17
ediff-auto-refine-limit . 17
ediff-before-flag-bol . 15
ediff-before-flag-mol . 15
ediff-before-setup-control-frame-hooks 11
ediff-before-setup-windows-hooks 10
ediff-brief-help-message-custom 23
ediff-buffers . 2
ediff-buffers3 . 2
ediff-cleanup-hooks . 10
ediff-combination-pattern 19
ediff-control-buffer . 12
ediff-control-frame-parameters 12
ediff-control-frame-position-function 12
ediff-control-frame-upward-shift 13
ediff-current-diff-face-A 15
ediff-current-diff-face-B 15
ediff-current-diff-face-C 15
ediff-custom-diff-options 18
ediff-custom-diff-program 18
ediff-default-variant . 18
ediff-diff-options . 18
ediff-diff-program . 17, 18
ediff-diff3-options . 18
ediff-diff3-program . 18
ediff-directories . 2
ediff-directories3 . 2
ediff-directory-revisions . 2
ediff-display-help-hooks . 11
ediff-even-diff-face-A . 15
ediff-even-diff-face-B . 15
ediff-even-diff-face-C . 15
ediff-files . 2
ediff-files3 . 2
ediff-fine-diff-face-A . 15
ediff-fine-diff-face-B . 15
ediff-fine-diff-face-C . 15
ediff-forward-word . 17
ediff-forward-word-function 17
ediff-help-message . 12
ediff-highlight-all-diffs 15
ediff-ignore-similar-regions 14
ediff-janitor . 11
ediff-job-name . 23

ediff-keep-variants . 22
ediff-keymap-setup-hooks . 10
ediff-load-hooks . 10
ediff-long-help-message-custom 23
ediff-make-frame-position 12
ediff-make-wide-display-function 22
ediff-merge . 3
ediff-merge-buffers . 3
ediff-merge-buffers-with-ancestor 3
ediff-merge-directories . 3
ediff-merge-directories-with-ancestor 3
ediff-merge-directory-revisions 2
ediff-merge-directory-revisions-with-

ancestor . 2
ediff-merge-files . 3
ediff-merge-files-with-ancestor 3
ediff-merge-revisions . 3
ediff-merge-revisions-with-ancestor 3
ediff-merge-split-window-function 22
ediff-merge-window-share . 20
ediff-merge-with-ancestor . 3
ediff-mode-hooks . 11
ediff-narrow-control-frame-leftward-shift .13
ediff-no-emacs-help-in-control-buffer 22
ediff-odd-diff-face-A . 15
ediff-odd-diff-face-B . 15
ediff-odd-diff-face-C . 15
ediff-patch-buffer . 3
ediff-patch-file . 3
ediff-patch-options . 18
ediff-patch-program . 18
ediff-prefer-iconified-control-frame 13
ediff-prefer-long-help-message 12, 13
ediff-prepare-buffer-hooks 11, 21
ediff-profile . 6
ediff-quit-hooks . 10
ediff-regions-linewise . 2, 16
ediff-regions-wordwise . 2, 16
ediff-registry-setup-hooks 11
ediff-revert-buffers-then-recompute-diffs . 6
ediff-revision . 2
ediff-revision-key . 21
ediff-save-buffer . 18
ediff-select-hooks . 11
ediff-session-group-setup-hooks 11
ediff-setup . 23
ediff-setup-windows . 13
ediff-setup-windows-multiframe 13
ediff-setup-windows-plain 13
ediff-show-clashes-only . 20
ediff-show-registry . 6
ediff-split-window-function 22
ediff-start-narrowed . 16
ediff-startup-hooks 11, 12, 23
ediff-suspend-hooks . 10

Index 28

ediff-toggle-multiframe 6, 13
ediff-toggle-read-only-function 22
ediff-unselect-hooks . 11
ediff-use-last-dir . 3, 22
ediff-version-control-package 21
ediff-wide-control-frame-rightward-shift . 13
ediff-window-setup-function 13
ediff-windows-linewise . 2, 16
ediff-windows-wordwise . 2, 16
ediff-word-1 . 17
ediff-word-2 . 17
ediff-word-3 . 17
ediff-word-4 . 17
ediff-word-mode . 23
ediff3 . 2
edir-merge-revisions . 2
edir-merge-revisions-with-ancestor 2
edir-revisions . 2
edirs . 2
edirs-merge . 3
edirs-merge-with-ancestor . 3
edirs3 . 2
epatch . 3
epatch-buffer . 3
eregistry . 6

F
Finding differences . 1

M
Merging files and buffers . 1
mode-line.el . 21
Multi-file patches . 8

P
Patching files and buffers . 1

R
rcs.el . 21

S
split-window-horizontally 22
split-window-vertically . 22

U
uniquify.el . 21

V
vc.el . 21

i

Table of Contents

1 Introduction . 1

2 Major Entry Points . 2

3 Commands . 5

4 Registry of Ediff Sessions . 7

5 Session Groups . 8

6 Remote and Compressed Files 9

7 Customization . 10
7.1 Hooks . 10
7.2 Quick Help . 11
7.3 Window and Frame Configuration . 12
7.4 Selective Browsing . 14
7.5 Highlighting Difference Regions . 15
7.6 Narrowing . 16
7.7 Refinement of Difference Regions . 17
7.8 Patch and Diff Programs . 17
7.9 Merging and diff3 . 18
7.10 Support for Version Control . 21
7.11 Customizing the Mode Line . 21
7.12 Miscellaneous . 22
7.13 Notes on Heavy-duty Customization . 23

8 Credits . 25

Index . 27

	1 Introduction
	2 Major Entry Points
	3 Commands
	4 Registry of Ediff Sessions
	5 Session Groups
	6 Remote and Compressed Files
	7 Customization
	Hooks
	Quick Help
	Window and Frame Configuration
	Selective Browsing
	Highlighting Difference Regions
	Narrowing
	Refinement of Difference Regions
	Patch and Diff Programs
	Merging and diff3
	Support for Version Control
	Customizing the Mode Line
	Miscellaneous
	Notes on Heavy-duty Customization

	8 Credits
	Index

