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1.0  What is an AHDL?

An Analog Hardware Description Language (AHDL) allows the direct specification of both the behavior

and structure of analog systems. These analog systems are not simply confined to electrical circuits. An

AHDL should support any system that can be described as a set of nonlinear ordinary differential, algebri-

ac, and boolean equations. This also includes thermal, magnetic, rotational, etc. in any combination. The

ability to describe systems incorporating mixed technologies is essential to an AHDL. Consider the follow-

ing definition:

The specification of behavior in an AHDL is given by specifying the equations that govern the behavior of

the hardware element being described. For electrical systems, these equations usually relate currents to

voltages as a function of time. It is important to note that in analog systems, time is represented as a contin-

uum, and currents and voltages are represented as continuous. Digital simulators represent both time and

signal levels as discrete values. An AHDL supports both domains in order to effectively simulate all as-

pects of today’s designs.

The structure of an analog system in an AHDL is described both in terms of its inherent hierarchy and the

interconnectivity of its constituent analog elements.

1.1  AHDL Requirements Checklist

One of the most basic requirements of an AHDL is that it model the physical conservation laws which are

imposed by nature on physical systems. Examples of such conservation laws is the conservation of energy

law which states that energy can neither be created or destroyed; it can only change its form. Electrical sys-

tems have energy conservation laws for charge, current, voltage, etc. An AHDL preserves these properties

by allowing the equations which relate one conserved quantity to another to be implicitly solved as part of

the underlying paradigm.

Specifically, the top-down design of today’s circuits and systems places the following requirements on an

AHDL:

❏ Physical conservation laws Components that obey physical laws (normal electrical ele-

ments), and components that do not obey physical laws (control

blocks) must both be supported.

❏ Technology independence Components of any technology (electrical, mechanical, ther-

mal, optical, fluid, etc.) must be supported, together with any

mixture of these technologies within a component (electrome-

chanical, electrothermal, etc.)

❏ Continuous & discrete signals The AHDL must support components with continuous time and

signals (analog blocks), components with discrete time and

boolean signals (digital blocks), and components with discrete

time and continuous signals (sampled-data system blocks), or

any mixture of any of these inside any block.

An Analog Hardware Description Language is a formal descriptive paradigm

which allows the direct specification of both the behavior and structure of both

analog and digital systems.
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❏ Fully hierarchical The AHDL should support full hierarchy in the system, a mix

of technologies and concepts throughout the hierarchy, and be

able to communicate information between blocks within the hi-

erarchy.

❏ Full modeling capabilities A complete range of modeling capabilities must be supported,

including:

❏ any number of simultaneous, nonlinear algebraic and differen-

tial equations with any interactions between them (full behav-

ioral modeling)

❏ the ability to modify the characteristics of a block as a function

of time or a condition in that block or any other block

❏ extendable elements (variable number of pins, parameters, etc.)

❏ the ability to use models written in standard programming lan-

guages

❏ the ability to mix analog and digital signals and capabilities in

any model

❏ the ability to mix any technologies in any model

❏ statistical dependencies for all parameters for all components

of any technology

❏ the specification of behavior in the frequency domain

❏ the ability to assign noise properties to any physical component

❏ either port-based or terminal-based descriptions

❏ the ability to specify initial conditions

❏ computation of small-signal parameters for any component of

any technology

❏ Compatibility The AHDL must be able to tie to existing technology simula-

tors (e.g., digital simulators), achieve the same results as exist-

ing analog simulators, and have the ability to incorporate all

emerging AHDL standards.

❏ Ease of use The AHDL must support the ability for ANY user (experienced

and novice) to create models and provide libraries of existing

models, including:

❏ electrical

❏ analog

❏ digital

❏ sampled-data systems

❏ interface models between these

❏ mechanical

❏ electromechanical

❏ thermal

❏ electrothermal

1.2  How AHDLs Differ from Behavioral Languages

Any computer language can be called a behavioral language. FORTRAN and C, for example, are used in

SPICE to describe the behavior of transistors. C++ is used in MIDAS to describe the behavior of sampled-

data systems. The problem with using a computer language to describe analog systems is that there is no

way to directly specify, as mathematical equations, the behavior of an element.
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In SPICE3, for example, approximately 300 lines of C code are needed to model a junction diode with par-

asitic capacitances. Using an AHDL, however, approximately 6 equations are needed to model the equiva-

lent behavior. These 6 equations directly specify the physical behavior of the diode. No manual

interpretation is needed to transform them to a behavioral language like C. The 6 equations are:

id  = v(p,m)/res # current through series resistance
qd  = v(p,m)*jcap # charge storage
i(p) += id # contribute current to + terminal
i(pi) += d_by_dt(qd) - id # contribute change in charge
i(n) -= idi + d_by_dt(qd) # contribute neg current to - terminal

Exmaple 1: Diode Equations in MAST

In AHDLs, the underlying semantics of the language and its syntax are designed to succinctly and accu-

rately represent the structure and behavior of analog systems.

Most computer languages are procedural in nature. Behavior is described within them as a series of steps

to be performed to calculate a given result from a given set of inputs. AHDLs, on the other hand, have a

procedural aspect but are declarative in nature. The procedural part is typically used to validate or manipu-

late parameters for a particular model. The declarative aspects are used to declare the behavior of the de-

vices as a set of equations.

1.3 How AHDLs Differ from Macromodeling

Macromodeling is defined here as the process of creating models by using pre-existing primitives to con-

struct a more complex structure. Macromodeling is usually identified with SPICE. A macromodel, for ex-

ample, would use current sources and transistors to model a differential amplifier. The problem is,

however, circuit behavior must be described as a network of pre-existing primitives. The artificial transfor-

mation of behavior to primitive structure obfuscates the expression of the behavior, and introduces simula-

tion inefficiencies. An AHDL, on the other hand, allows complex behavior to be expressed directly in

simple mathematical terms.

Quite often it is necessary to develop a model or set of models in order to perform computer simulations of

a circuit or system. A model of a physical device may be required so that relatively detailed phenomena of

a circuit can be studied. A model of a larger circuit or system may be required in other circumstances. The

level of detail in a system model may not have to be as high as that of a device model, but as part of a sim-

ulation of a larger system may still be quite useful.

Implementing a new model in a SPICE-like simulation program [1][2] is a tedious and time-consuming

task. This is the case if the model is to be implemented in the SPICE program as a primitive or simply con-

structed as a macromodel from other SPICE primitives. This task is much easier if a more powerful tech-

nology is used.

The following example addresses an article [3] (previously published in Circuits & Devices) to illustrate

that simulation and modeling using an AHDL is the preferred approach for modeling and simulating a

broad range of circuits and systems in many applications. This article presented a modeling problem that is

indicative of the level of effort required to “shoehorn” the model into SPICE. It contained a detailed de-

scription of a method to solve the following simultaneous nonlinear differential equations using SPICE.

The solution achieved using the MAST AHDL is then presented and described.The differential equations

are:
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The initial conditions are given as:

The diagram in Fig. 1, taken from [3], shows the SPICE2 network used to simulate the previous set of

equations.

There is, however, a more straightforward way to solve this problem. Although the diagram of the analog

computer realization in [3] is quite impressive, it doesn’t “look” much like differential equations. In an

ADHL, the problem is posed to the simulator in much the same way as it was posed to the engineer. In fact,

the description looks almost identical to the original problem statement. It almost seems like cheating.
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Fig. 1: SPICE2 network to simulate the example differential equations.
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Missing are artifacts like the 1000 MΩ resistors needed to satisfy SPICE’s restriction of floating nodes.

The following model, written in the AHDL MAST, would simulate the example differential equations:

make d_by_dt(x) = y*(1-z)
make d_by_dt(y) = x*(15+z) - 2*y/t
make d_by_dt(zprime) = z - 2*zprime/t - 2*(x**2 + y**2)
make d_by_dt(z) = zprime

control_section {
initial_condition(x,1.8)
initial_condition(y,0)
initial_condition(z,7)
initial_condition(zprime,0)

}

Exmaple 2: SPICE’S Differential Equations in MAST

All of the semiconductor models in SPICE are nonlinear differential equation-based. With SPICE, the dif-

ferential equations must be implemented in the SPICE source code or by using techniques similar to those

shown in Fig. 1. The task of implementing the differential equations in the SPICE source code is difficult.

The resulting models cannot be transferred and shared without transferring the entire SPICE code. This is

one of the primary reasons why much effort has been put into modeling with macromodel (such as the

SPICE differential equation solving techniques described here). Macromodeling is a fine technique, but

limited. The problem with SPICE macromodeling is that there are insufficient fundamental building blocks

with which to work. This is why a description language, such as an AHDL, is essential for modeling efforts

to move forward. Technical journals are full of excellent modeling work. A standard AHDL will make

models more readily available to interested engineers.

1.4  How AHDLs Differ from Existing HDLs

An AHDL differs from existing HDLs in a variety of ways. It is reasonable to say that an ADHL represents

a technology which is qualitatively different from technologies in use in HDLs today. In this section, a pro-

totypical AHDL is compared with SPICE, VHDL, CSSL, and MAST. Except for MAST, each compar-

ison reveals significant contrasts.

1.4.1  AHDLs vs. SPICE

On of the most fundamental aspects of an AHDL is its distinct separation from the simulator. Writing a

SPICE model requires detailed understanding of the operation of the simulator and, once written, actually

becomes part of the simulator (i.e., it is linked in). This makes writing a SPICE model more like extending

the simulator rather than describing model behavior.

A SPICE deck cannot really be considered an AHDL. SPICE decks can only describe the structure of an

analog system, not its behavior. One could argue that by allowing SPICE models to be parameterized,

which they are, behavior is being described by those parameters. But this argument really doesn’t hold up.

Most SPICEs do not allow equations to be given for parameters, which is a requirement for behavioral

modeling. Even the SPICE implementations that do allow expressions as parameters restrict the flexibility

of their application. Such parameters can only modify the behavior of controlled sources. One example of

this limitation is that there is no way to model an inductor in SPICE.
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1.4.2  AHDLs vs. VHDL

VHDL is a hardware description language. As such, it provides a model of hardware behavior, a model of

time, and a model of structure[4]. Each of these models must be expanded to allow for the specification of

analog behavior. VHDL was originally designed to model systems whose behavior can accurately be pre-

dicted by analyzing the propagation of discrete quantities across a directed network in a discrete amount of

time. Each of these transactions is called an event. The state of the system at time t is a deterministic func-

tion of the discrete events which precede t[5].

1.4.2.1  Digital Behavior vs. Analog Behavior

The simulation of analog (electrical) systems, on the other hand, requires that the system, and its constitu-

ent elements, be modeled not as the side-effects of discrete events, but as a system of non-linear ordinary

differential and algebraic equations. The system must obey certain conservation laws; for electrical sys-

tems these are Kirchoff’s Current Law (KCL) and Kirchoff’s Voltage Law (KVL)[6]. KCL states that the

sum of all currents entering each node is exactly equal to the sum of the currents leaving that node. KVL

holds that the sum of all voltages around any loop in the circuit must be exactly zero. Simulation of such a

system, therefore, requires that all analog elements be allowed to change their state continuously as a func-

tion of time.

It is useful to compare how each of the models of behavior, time, and structure currently supported by

VHDL apply to the simulation of analog systems. The tables below represent these contrasts. It should be

noted that although the tables often present the modeling characteristics of the two domains as being dia-

metrically opposed, they are, in fact, orthogonal. Indeed, every digital system can be shown to be simulat-

able using analog techniques, the only trade-off being a significant degradation of simulation efficiency,

and an over-supply of data.

Clearly, only the behavioral characteristics which are actually being modeled can be observable in a simu-

lated system. A logic simulation of a digital circuit can give detailed information on logic states and timing

information, but it can say nothing about circuit loading, power consumption, or the effects that self-heat-

ing and parasitic capacitances have on transistor switching delays. For instance, a three-input NAND gate,

modeled electrically using bipolar TTL, would typically be a circuit consisting of 8 transistors, 3 diodes,

and 6 resistors[7] (see Fig. 2). Additionally, each transistor would be modeled1 internally as a sub-circuit

consisting of a current source, 4 diodes, 3 resistors, and 5 nonlinear capacitors[8] (see Fig. 3).

VHDL Analog

Directed functional transformation of input signals

to output signals.

No directed input to output relationships; “inputs”

and “outputs” affect each other simultaneously.

Modeled as a discrete system. Modeled as a continuous system.

Elements are modeled as decoupled processes

communicating via signals.

Elements are tightly coupled, each mutually influ-

encing each other’s state simultaneously.

Behavior of an element is modeled algorithmically

as a process consisting of sequentially-ordered

operations.

Behavior of an element is modeled declaratively

as an unordered set of equations describing rela-

tionships and contributions.

Table 1: Behavioral Aspects
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A three-input NAND gate modeled at this level exhibits much more complex behavior than the same gate

simulated with logic states. An essentially one line boolean expression becomes a system of fifteen equa-

tions with fifteen uknown when described in analog terms. This increase in the volume of observable infor-

mation, though, comes at the expense of model complexity and simulation efficiency.

Consider the circuit and timing diagrams below (figures 4 and 5). In figure 5, the upper half of the diagram

represents the values input and output signals of three-input NAND gate when modeled using discrete

1.  There are essentially two archtypical descriptions proposed for the bipolar junction transistor (BJT). The first, pro-
posed in 1954 by Ebers and Moll[9], remained the industry standard until 1970. An improved version based on Ebers-
Moll was advanced by Gummel and Poon[10] in 1970. They improved on the Ebers-Moll(EM) model by adding ad-
ditional parasitic effects and associated paramaters. Notable simulators such as SPICE use the Gummel-Poon (GP)
model for BJTs, however, reduced accuracy simulations can be achieved by omitting some of the GP paramaters
whereupon the model behaves like the older EM model.

Fig. 2: Three-Input TTL Nand Gate
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Fig. 3: Bipolar Transistor (Gummel-Poon Model)
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events. The lower portion of the graph displays the voltage of the output signal for the analog version of

the NAND gate when driven with the same inputs. Notice the glitches occurring at 300 and 500 nanosec-

onds. These glitches would were not detected by the digital simulator, but become readily apparent from

the comensurate analog simulation. This gives an example of the kind of critical information which is com-

puted as the result of an analog simulation which is not available using event-driven simulation techniques.

Often the thousand-fold increase in simulation time required for analog is necessary to resolve the fine-

grained behavior of analog components.

1.4.2.2  Digital Time vs. Analog Time

The VHDL standard clearly defines the meaning of simulation time, as well as the sequence of events and

actions during a simulation cycle. The intent was to ensure that simulations are deterministic2. When sim-

ulated, a given circuit should behave exactly the same way, every time, and using any vendor’s simulator.

Furthermore, the state of the system is, by definition, knowable and observable for any time t, provided t is

Fig. 4: Circuit containing logic NAND and analog NAND
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Fig. 5: Timing diagram of three-input NAND gate
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an integer multiple of the minimum simulation time interval. This is a precise definition, and, in practice,

sufficient.

With analog systems, however, the situation is different. The state of an analog system can be known pre-

cisely for any time t by solving the set of nonlinear differential and algebraic equations describing the sys-

tem’s transient behavior. For certain small systems this can be done analytically, providing an exact

solution. For most non-trivial or real-world systems, however, numerical methods are employed to give an

approximation of the solution[6][11][12]. In general, these methods operate by descretizing the time con-

tinuum into the necessary number of time points to accurately compute the behavior of interest. For each

new time point, the system of equations is linearized, and then iteratively solved until the desired accuracy

is attained.

There are several consequences of simulating transient behavior using numerical approximation. One is

that the transient behavior of the circuit is only computed at specific time points. Behavior between those

points can be approximated through interpolation. (Even though the computed solution is an approxima-

tion, the computed solution is guaranteed to have a relative error to the exact solution which is less than

the local truncation error specified for the simulation, provided the previous solutions are exact.)3 The

problem is, of course, that the previous solutions are themselves approximations and therefore not exact.

The result of this compounding of local truncation errors is known as global truncation error. Unfortunate-

ly, there is no way to predict or measure the amount of global truncation error for a given local truncation

error other than changing the local truncation error, re-simulating (re-integrating), and comparing the re-

sults with a previous simulation. Comparing the results of successive simulations with decreasing local

truncation errors is a process known as calibration.

Some circuits may yield a system of equations which is numerically unstable. Numerical instability will

cause the numerical error component of each approximation to increase, rather than decrease. When this

happens, it is usually impossible for the simulation algorithms to converge on a solution which maintains

the local truncation error criteria.

Additionally, the choice of simulation techniques places certain limitations on models. SPICE, for in-

stance, requires the first derivative of a model, with respect to time, to be continuous. In order to guarantee

convergence, relaxation-based simulators require that a capacitor be connected between every node and

ground. Certain numerical methods are more appropriate for loosely-coupled4 MOS devices, while others

2.  If floating point calculations are used to trigger events, the function is deterministic only if the same floating point
format is used from one simulation to the next.

3.  In other words, the underlying mathematics guarantee that each step in the approximation is within a specified er-
ror tolerance, however, there is no way to know how these errors will accumulate over an entire simulation run.

VHDL Analog

Time represented as discrete intervals. Time represented as a continuum.

Each time step is divided into two stages: a stimu-

lus stage then a response stage (cause-effect).

No distinction between stimulus and response;

both happen simultaneously and instantly.

Minimum time interval is one femto-second. No static minimum interval is available; it is a

function of the precision of the underlying floating

point behavior.

Table 2: Temporal Aspects
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work better for circuits using tightly-coupled bipolar devices. Choosing the best simulation method for a

given circuit topology and technology is still an art, not a science.

1.4.2.3  Digital Structure vs. Analog Structure

The structural aspects between digital and analog systems share the most similarity. Both can express hier-

archy. Both are represented as a network of interconnected components. VHDL networks, however, are di-

rected, while analog networks are not. Connecting two analog elements together represents a mutually-

shared contribution to each other’s behavior. Analog networks are thus tightly coupled, while VHDL net-

works are highly decoupled. The connection of digital elements via signals can be thought of as an assem-

bly line, while the connection between analog elements is more like a marriage.

1.4.2.4  Analog-Digital Interfacing

The question then arises: How do digital elements communicate with analog elements within a mixed-mode

environment? One proven method[13][14] allows analog elements to generate events in response to a

change in their internal state, usually the crossing of a threshold. Digital elements which are sensitive to the

generated event are, in turn, activated and affected. Analog elements can similarly be sensitive to events,

whether generated by analog elements or digital elements, causing event-driven behavior modification of

the analog system. In this paradigm, the burden of analog event generation and event sensitivity rests with-

in the analog elements.

A proposed alternate scenario would be to allow digital elements to read analog quantities at specific times.

These values could then be tested, and appropriate action taken. This scenario has a two undesirable conse-

quences:

1. It would force unnecessary synchronization with the analog state, impacting simulation performance

with no gain in timing accuracy.

2. Analog values, which have dual characteristics (voltage and current), are incompatible with multi-val-

ued logic states. Analog thresholding would still be necessary, but this would then occur within digital

blocks, introducing mixed-mode behavior in an otherwise pure-digital section.

1.4.2.5 The Simulation Cycle

The following description is taken from the IEEE 1076 restandardization draft of 1992.Changes to this text

to support analog are shown underlined.

The execution of a model consists of an initialization phase followed by the repetitive execution of process

statements in the description of that model.  Each such repetition is said to be a simulation cycle.  In each

4.  Loosely-coupled devices are devices in which the inputs do not have dependent relationships on the outputs, such
as MOS transistors. Tightly-coupled devices have mutual dependencies between inputs and outputs, as in the case of
bipolar junction transistors (BJTs).

VHDL Analog

Elements are connected via unidirectional ports. Elements are connected via directionless termi-

nals.

Table 3: Structural Aspects



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

12

cycle, the values of all signals in the description are computed.  If as a result of this computation an event

occurs on a given signal, process statements that are sensitive to that signal will resume and will be execut-

ed as part of the simulation cycle.

At the beginning of initialization, current time, Tc, is assumed to be 0 ns.

The initialization phase consists of the following steps:

1. The values of all node voltages and branch currents are set to those calculated by dc analysis ex-

cept for those node voltages and branch currents which have been given an initial condition..

2. If the value of any analog system variable has crossed a treshold upon which a process is sensitive,

execute the process. Any changes to digital signals become the values to be used for step 3.

3. The driving value and the effective value of each explicitly declared signal are computed, and the

current value of the signal is set to the effective value.  This value is assumed to have been the val-

ue of the signal for an infinite length of time prior to the start of simulation.

4. The value of each implicit signal of the form S'Stable(T) or S'Quiet(T) is set to True.  The value of

each implicit signal of the form S'Delayed(T) is set to the initial value of its prefix, S.

5. The value of each implicit GUARD signal is set to the result of evaluating the corresponding guard

expression.

6. Each process in the model is executed until it suspends.

7. If no analog values are sensitive to signal which changed as a result of steps 1 through 6, the sys-

tem has become quiescent therefore proceed to step 8. Otherwise, determine of the ocillation count

has been exceeded. If it has report ocillation and exit. Otherwise loop back to step 2.

8. The time of the next simulation cycle (which, in this case is the first simulation cycle), Tn, is calcu-

lated according to the rules of step 7 of the simulation cycle, below.

A simulation cycle consists of the following steps:

1. The current time, Tc is set equal to Tn.  Simulation is complete when Tn = TIME'HIGH and there

are no active drivers or process resumptions at Tn.

2. Each active explicit signal in the model is updated.  (Events may occur on signals as a result.)

3. Each implicit signal in the model is updated.  (Events may occur on signals as a result.)

4. For each process P, if P is currently sensitive to a signal S, and an event has occurred on S in this

simulation cycle, then P resumes.

5. Each non-postponed process that has resumed in the current simulation cycle is executed until it

suspends.

6. The analog system is evaluated at time Tn...

7. The time of the next simulation cycle, Tn, is determined by setting it to the earliest of:

a. TIME'HIGH,

b. the next time at which a driver becomes active, or

c. the next time at which a process resumes.

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.

8. If the next simulation cycle will be a delta cycle, the remainder of this step is skipped.  Otherwise,

each postponed process which has resumed but has not been executed since its last resumption is
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executed until it suspends, then Tn is recalculated according to the rules of step 6.  It is an error if

the execution of any postponed process causes a delta cycle to occur immediately after the current

simulation cycle.

1.4.2.6 Formulation of Network Equations

There are essentially two methods used to formuate network equations: tableau form and modified nodal

form. Tableau form is mainly of theoretical importance. It generates large matrices even for very small

problems. They are very sparse, and therefore sparse solvers are a necessity. Unfortunately, since the matri-

ces do not have regular structures, the renumbering and preproccessing is complicated. Modified nodal for-

mautions are much more conmpact and can be solved without relying on sparse techniques even in the case

of moderate-size networks.

In the case of modified nodal form, each idelized component has an associated stamp. The stamp repre-

sents a matrix of the energy conservation equations which describe the behavior of the particular element.

The following list defines the stamps for the fundemental elements of electrical circuits. The canonical

form of the stamp derived using single-graph modified normal form.

Generic two-terminal element current flows through j to j’

Generic four-terminal element current flows through j to j’ and through

k to k’.

Current Source where J is the amount of current through

j->j’. Equations:

Ij = J

Ij’ = -J

Voltage Source where E is the amount of voltage across j

and j’. Equations:

Vj - Vj’ = E

Ij = I

Ij’ = -I

Admittance where y is the admittance of the node

(admittance is one over the impedence)

between j and j’. Equations:

Ij = y(Vj-Vj’)

Ij’=-y(Vj-Vj’)

Impedence where z is the impedence between the

nodes j and j’. Equations:

Vj-Vj’-zI = 0

Ij- = Ij’= I

j

j’

+

-

j

j’

k

k’

J

J−
Jj

j’

0 0 1

0 0 1−
1 1− 0

0

0

E

×
j

j’

m+1

y y−
y− yj’

j

0 0 1

0 0 1−
1 1− z−

j

j’

m+1
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Capacitor where sC is the time derivative of the

charge stored in the capacitor. Equations:

Ij= sC

Ij’= -sC

Inductor where sL is the time derivative of the

field flux of the inductor. Equations:

Ij = I

Ij’ = -I

Vj-Vj’ = sL

Voltage Controlled Current Source where g is the function relating the volt-

age across j and j’ to the current through

k->k’. Equations:

Ij = g(Vj-Vj’)

Ij’ = g(Vj-Vj’)

Voltage Controlled Voltage Source where u is the function relating the volt-

age across j and j’ to the voltage across k

and k‘. Equations:

-uVj+uVj’+Vk-Vk’ = 0

-Vk’ = 0

Ik = I

Ik’ = -I

Current Controlled Voltage Source where r is the function relating the cur-

rent through j->j’ to the voltage across k

and k’. Equations:

Vj -Vj’ = 0

Vk-Vk’-rI1= 0

Ij = -Ij’ = I1

Ik = -Ik = I2

Current Controlled Current Source where a is the function relating currrent

through j->j’ to the current through k-

>k’. Equations:

Vj-Vj’ = 0

Ij = -Ij’= I

Ik = -Ik’ = aI

When a circuit element like the ones above is encountered in a network, the stamp for that element is

placed within the system matrix in a location which is determined by the circuit topology.
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k
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m+1
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0 0 0 0 1−
0 0 0 0 a

0 0 0 0 a−
1 1− 0 0 0

j

j’

k
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m+1
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1.4.2.7 Simulator-specific extensions

To be specified.

1.4.3  AHDLs vs. CSSL

The acronym CSSL stands for Continuous System Simulation Language[15], and, as the name implies, is

only useful for describing continuous systems. CSSL uses control-system (signal-flow) semantics to define

the interactions between elements of the system. Control systems are an abstraction of analog systems.

Control systems are not required to implicitly obey any physical conservation laws like KVL and KCL.

The relationships between conserved properties like voltage and current can be expressed in CSSL, but

they must be done so explicitly. One advantage of an AHDL over CSSL is that these physical relationships

are handled implicitly, reducing the complexity of model to just the essential equations. The other advan-

tage is, obviously, the ability to model discontinuous systems with an AHDL

Discontinuities are common in electrical systems, or in physical systems in general, for that matter. Typi-

cally, an electronic component, such as a transistor, will have several “regions of operation”. The behavior

of the transistor within each region is determined by unique set of equations for that region. When the de-

vice crosses from one region to another this is said to be a discontinuity. Since this is such a common phe-

nomenon in nature, it seems unreasonably restrictive to disallow the expression of this kind of behavior.

That is why an AHDL does not. It makes the implementation of the underlying simulator much more diffi-

cult, but it a least allows the description of “real-world” behavior.

The following is an example of a CSSL program which models a lunar landing:

PROGRAM Lunar Landing Maneuver
INITIAL

r=1738.0E3, c2=4.925E12, f1=36350.0,
f2=1308.0, c11=0.000277, c12=0.000277,
h0=59404.0, v0=-2003.0, m0=1038.358,
tmx=230.0, tdec=43.2, tend=210.0

END $”of INITIAL”
DYNAMIC

DERIVATIVE
thrust = (1.0-step(tend))*(f1-(f1-f2)*step(tdec))
c1 = (1.0-step(tend))*(c11-(c11-c12)*step(tdec))
h = integ(v,h0)
v = integ(a,v0)
a = (1.0/m)*(thrust-m*g)
m = integ(mdot, m0)
mdot = -c1*abs(thrust)
g = c2/(h+r)**2

END $”of DERIVATIVE”
termt(t .ge. tmx .or. h .le. 0.90 .or. v .gt. 0.0)

END $”of DYNAMIC”
END $”of PROGRAM”

Exmaple 3: Luner Landing Programs in CSSL

In the example, the simulation is terminated when the boolean expression found in the termt statement

becomes true, otherwise the simulation would continue indefinitely. This termination strategy works fine

for relatively trivial sets of termination conditions, such as exceeding a time limit. However, when a com-

plex system (i.e., more than one element) is simulated, it is generally unwise to specify termination condi-

onts based on time as part of the model. Obviously, if the system is going to simulate as a whole, all of the
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time limits must agree, which could be difficult in a systems with thousands of elements. Alternatively, the

time end-point could be specified as a parameter to the simulator by the user, instead of being declared

within a general model.

As given, the lunar landing model would generate a system of three differential equations, five algebraic

equations, and eight unknowns. Since the system contains differential equations, it must be integrated to

find a solution for any point in time. The initial condition for each integral are given as the second argu-

ment to the integ function. Notice the variables thrust and c1 each have three states, depending on

the value of time. It is interesting to discover that minimal system formed by this example would only have

four equations. The necessary variables in the minimal system are h, v, a, and m. The rest can be derived

by substitution. CSSL does not make this distinction, which results in unnecessarily large systems and cor-

respondingly slower simulations.

It is a requirement of an AHDL to allow the expression of this variable property. If written in the AHDL

MAST, the previous example generates a system of equations which is only four by four (see Newton’s

laws of motion below):

template lander
{

number r=1738.0E3, c2=4.925E12, f1=36350.0,
f2=1308.0, c11=0.000277, c12=0.000277,
h0=59404.0, v0=-2003.0, m0=1038.358,
tmx=230.0, tdec=43.2, tend=210.0

g = c2/(h+r)**2 # gravity
mdot = -c1*abs(thrust) # lose fuel when firing

if ( time < tdec ) { # pedal to the metal!
thrust = f1
c1 = c11

}
else if ( time >= tdec & time < tend ) { # cool our jets...

thrust = f2
c1 = c12

}
else if ( time >= tend ) { # shut’em down...

thrust = 0.0
c1 = 0.0

}
when ( h <= 0.90 | v > 0.0 ) # bail out if we crash

halt_simulation(0) # or start going up!

d_by_dt(h) = v # Newton’s
d_by_dt(v) = a # Laws of
a = (1.0/m)*(thrust-m*g) # motion...
d_by_dt(m) = mdot # mass

control_section {
initial_condition(h, h0)
initial_condition(v, v0)
initial_condition(m, m0)

}
}

Exmaple 4: Lunder Lander in MAST
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Notice that the three “regions of operation” for the lander are expressed much more directly by using the if-

then-else structures available in MAST. Also, in MAST it is possible, but not required, to declare the

units of measurement applied to each variable. In the template above, we might have given all of the sys-

tem variables a units attribute which makes the simulation output more meaningful. Furthermore, the at-

tributing of units to variable allows the simulator to check the dimensional consistency of the variable

usage (e.g. meters to meters, velocity to velocity), eliminating some of the most common modeling errors.

Consider the following possible declaration of the system variable used in the example above:

var meters h # altitude
var mps v # velocity
var mpss a # acceleration
var kg m # spaceship mass

val kgs mdot # rate of weight loss
val newtons g, thrust, c1 # gravity, ...

Exmaple 5: System Variables Declared with Units Attatched

Just as in the CSSL version, discontinuities are introduced into the system at times tdec, tend, and tmx.

The model is, however, unnecessarily inefficient. Note the each of the three tests to detect the current re-

gion of operation must be performed on every simulation cycle. This is necessary although most of the time

the region of operation never changes. Instead of checking for this at every time step, digital events can be

used to trigger the change. The following model schedules events to trigger these actions. On a mixed-

mode simulator it would execute appoximately 10 times faster than the preceding analog-only model

would execute. This underscores the necessity of providing event-driven behavior in an analog language.

template lander
{

number r= 1738.0E3, c2=4.925E12, f1=36350.0,
f2=1308.0, c11=0.000277, c12=0.000277,
h0=59404.0, v0=-2003.0, m0=1038.358,
tmx=230.0, tdec=43.2, tend=210.0

state nu decid, endid
state n thrust, c1

mdot = -c1*abs(thrust) # get lighter as we burn fuel
g = c2/(h+r)**2 # gravitational pull

when ( time_init ) {
thrust = f1 # pedal to the metal!
c1 = c11
schedule_event(tdec, decid, 1) # schedule thrust reduction
schedule_event(tend, endid, 1) # schedule thrust shut off

}
when ( event_on(decid) ) { # cool our jets...

thrust = f2
c1 = c12
schedule_next_time(time) # re-evaluate equations now

}
when ( event_on(endid) ) { # shut’em down...

thrust = 0.0
c1 = 0.0
schedule_next_time(time) # re-evaluate equations now

}
when ( h <= 0.90 | v > 0.0 ) { # bail out if we crash

halt_simulation(0) # or start going up!
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}
d_by_dt(h)= v # Newton’s
d_by_dt(v) = a # Laws of
a = (1.0/m)*(thrust-m*g) # motion...
d_by_dt(m)= mdot # mass

control_section {
initial_condition(h, h0)
initial_condition(v, v0)
initial_condition(m, m0)

}
}

Exmaple 6: Mixed-Mode Lunar Lander in MAST

The following graphs were generated were generated by the Saber simulator using the models given

above. Both models were simulated and the resulting waveforms plotted against each other. As is shown by

the plots, the waveforms are identical, demonstrating the accuracy of the mixed-mode simulation versus

the pure analog simulation.
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Fig. 6: Plot of Spaceship Altitude
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Fig. 7: Plot of Spaceship Thrust



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

19

Since control systems can be considered an abstraction of analog systems, an ADHL can be used to model

them, as is demonstrated in the previous example. An AHDL can be thought of as a true functional super-

set of control system languages like CSSL.

2.0 A Look at Existing HDLs and How They Evolved

2.1  Evolution of languages

The following diagram (see Fig. 11) represents the applicability and heritage of many popular hardware

description languages and/or simulators. It is by no means complete. The placement along the timeline in-
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dicates the date which the language or simulator was first in use, or is proposed for release. All languages

below 1992 are in active use. The arrows represent lineage.

What becomes immediately apparent when looking at the above diagram is that the new and emerging

hardware description languages are becoming less specialized. In 1986, for instance, MAST spanned the

application spectrum of several highly-specialized languages. Between VHDL 1076.1 and MHDL, when

they become available (at least 2 years out), the entire application spectrum will be (eventually) covered.

This reflects the current trend toward standardization and away from proprietary language that we have

witnessed in the past decade, and which continues to dominate future HDL development.

2.2  Sample AHDL models

The following section presents sample models of the most basic elements of electrical circuits: a resistor, a

capacitor, an inductor, a diode, and a switch. The transistor, as noted previously, can be modeled as a con-

figuration of the first four elements. The switch is included to give an example of discontinuous behavior.

In all cases, only ideal behavior is represented. More comprehensive models would include parasitic ca-

pacitances, noise sources, terminal resistances, thermal effects, and the like.

The language constructs used for the VHDL examples are VERY PRELIMINARY. The examples are in-

tended to demonstrate required functionality, not the form it will take.

From studying the examples, it becomes apparent that several new constructs have been used. Firstly, ana-

log entities are connected by PINs, not PORTs. Pins are the same as terminals in n-port networks[16]. All

devices must have at least two terminals (pins). The pins have a voltage across them and current flowing

through them. These are known as branch voltages and branch currents, respectively. PINs can only be
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connected to other PINs, or to the reference node (typically ground), but never to PORTs. All of the ex-

amples presented below are two-pin devices. Transistors are three-pin or four-pin devices.

Secondly, the constructs p.v and p.i represent new functionality. This syntax is used to access the

through or across quantities associated with a pin. In this case, and for electrical systems in general, the

through quantity is current(i) and the across quantity is voltage(v). Further constructs introduced into the

language will be explained after each example.

2.2.1  Resistor

The behavior of an ideal resistor is given by Ohm’s Law, namely:

Written in MAST, the model would look like:

template resistor p m = r
electrical p, m
number r # resistance

{
branch v = v(p,m) # voltage across pins
branch i = i(p->m) # current through capacitor
v = i * r # Ohm’s Law

}

Exmaple 7: Resistor in MAST

Written in VHDL, the model might be:

ENTITY resistor IS
GENERIC ( r: REAL );
PIN ( p, m : electrical );

END resistor;

ARCHITECTURE resistor_equ OF resistor IS
BEGIN

EQUATION
branch v: voltage(p,m);
branch i: current(p,m);

BEGIN
v = i*r; -- Ohm’s Law

END EQUATION;
END resistor_equ;

Exmaple 8: Resistor in VHDL

In the above example, the three statements comprising the body of the entity are equations specifying rela-

tionships, not assignments. The first equation states that the voltage across the resistor is equal to the differ-

ence between the voltages (potential) at each pin. The second equation states that the current flowing

through the resistor is equal to the current flowing from pin p to pin m. These first two equations are known

as branch equations, since they identify branch currents and voltages. The last equation is an application of

Ohm’s Law; namely, the voltage across a resistor is equal to the current through it, multiplied by its resis-

tance.

v i r•=
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2.2.2  Capacitor

The behavior of a linear capacitor is given by the equation:

Written in MAST, the model would look like:

template capacitor p m = c
electrical p, m
number c # capacitance

{
branch v = v(p,m) # voltage across pins
branch i = i(p->m) # current through capacitor
q = c*v # charge stored in capacitor
i = d_by_dt(q) # current is derivative of charge

}

Exmaple 9: Capacitor in MAST

Written in VHDL, the model might be:

ENTITY capacitor IS
GENERIC ( c: REAL );
PIN ( p, m : electrical );

END capacitor;

ARCHITECTURE capacitor_equ OF capacitor IS
BEGIN

EQUATION
branch v: voltage(p,m);
branch i: current(p,m);
variable q: charge;

BEGIN
q = c*v; -- charge stored in cap
i = d_by_dt(q); -- current is derivative of charge

END EQUATION;
END capacitor_equ;

Exmaple 10: Capacitor in VHDL

This example introduces a new function d_by_dt(), or time derivative. Using this function, it is possible

to specify ordinary differential equations as part of model behavior. Thus, the last equation states that the

current through the capacitor is equal to the change in the charge contained within it, with respect to time.

i C
td

dv
•=
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2.2.3  Inductor

The behavior of an ideal inductor is given by the equation:

Written in MAST, the model would look like:

template inductor p m = l
electrical p, m
number l # inductance

{
branch v = v(p,m) # voltage across pins
branch i = i(p->m) # current through capacitor
v = d_by_dt(l*i) # v is time derivative of flux

}

Exmaple 11: Indcutor in MAST

Written in VHDL, the model might be:

ENTITY inductor IS
GENERIC ( l: REAL );
PIN ( p, m : electrical );

END inductor;

ARCHITECTURE inductor_equ OF inductor IS
BEGIN

EQUATION
branch v: voltage(p,m);
branch i: current(p,m);
variable f: flux;

BEGIN
f = l * i; -- flux is current times inductance
v = d_by_dt(f); -- voltage is derivative of flux

END EQUATION;
END inductor_equ;

Exmaple 12: Inductor in VHDL

This example is similar to one given for a capacitor. Notice that the dependent and independent variables

have been exchanged. With the capacitor, the current was dependent upon the voltage. Now, with the in-

ductor, the voltage is dependent on the current. This limits the application of KCL, which requires that cur-

rents be dependent on voltages. The equation could be rewritten to express the branch current through the

inductor as a function of the integral of the branch voltage across its terminals. Integrals, however, present

additional problems when dealing with initial conditions.

v L
td

di
•=
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2.2.4  Diode

The behavior of a real world diode is given by the equation:

Written in MAST, the model would look like:

template diode p m = vt, is
electrical p, m
number vt, is # diode characteristics

{
branch v = v(p,m) # voltage across pins
branch i = i(p->m) # current through capacitor
i = is*(exp(v/vt)-1) # i is the exponential of v

}

Exmaple 13: Diode in MAST

Written in VHDL, the model might be:

ENTITY diode IS
GENERIC ( vt, Is : REAL );
PIN ( p, m : electrical );

END diode;

ARCHITECTURE diode_equ OF diode IS
BEGIN

EQUATION
variable v: voltage(p,m);
variable i: current(p,m);

BEGIN
i = Is*(exp(v/vt)-1); -- i is exponential of v

END EQUATION;
END diode_equ;

Exmaple 14: Diode in VHDL

This example introduces the exp() function, implementing ex. The diode equation is one example of the

many kinds of nonlinear behavior found in electrical systems. All semiconductor devices exhibit nonlinear

behavior. Even more so, certain devices cannot have their behavior modeled as a continuous function of

time. Their behavior is, therefore, said to be a discontinuous function of time. Real world examples include

the firing of a spark-plug, or even the turning on or off of a switch. This kind of modeling problem can best

be described using the if-then-else constructs already available in VHDL.

i Is e

v

vt
1−•=
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2.2.5  Simple Switch

Consider the following example of an ideal single-pole-single-throw (SPST) switch:

template switch p m = pos, onres, offres
electrical p, m
number pos # switch position
number onres # on resistance
number offres # off resistance

{
branch v = v(p,m) # voltage across pins
branch i = i(p->m) # current through diode
if ( pos == 1 ) # if switch closed

v = i*onres # then voltage drop is fcn of onres
else # otherwise switch is open

i = v/offres # and little current is flowing
}

Exmaple 15: Switch in MAST

ENTITY switch IS
GENERIC ( pos : INTEGER;

onres, offres: REAL
);

PIN ( p, m : electrical );
END switch;

ARCHITECTURE switch OF switch IS
BEGIN

EQUATION
variable v: voltage(p,m);
variable i: current(p,m);

BEGIN
IF ( pos = 1 ) THEN -- if switch closed

v = i*onres; -- then voltage drop is fcn of onres
ELSE -- otherwise switch is open

i = v/offres; -- and little current is flowing
END IF;

END EQUATION;
END switch;

Exmaple 16: Switch in VHDL

Of course, in this example, the position of the switch is passed in as a GENERIC, and so its effect on the

analog system is known at elaboration time. More generally, the position could be a signal, causing the

equations to change dynamically during simulation. It should be noted that using if-then-else constructs

around equations introduces alternate declarations of the analog system. This is quite different from using

if-then-else in a process, which changes the execution path within that process.



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

26



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

27



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

28



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

29



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

30



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

31



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

32

Appendix A
References

[1] L. W. Nagel, “SPICE2 - A computer program to simulate semiconductor circuits,” Electronics Re-
search Laboratory Rep. No. ERLM520, University of California, Berkeley, 1975.

[2] T. Quarles, “Adding devices to SPICE3,” Electronics Research Laboratory Rep. No. ERL-M89/
47, University of California, Berkeley, April 1989.

[3] D. B. Herbert, “Simulating differential equations with SPICE2,” IEEE Circuits and Devices., vol.
8, no. 1, pp. 11-14, Jan 1992.

[4] Roger Lipsett, Carl Schaefer, Cary Ussery, VHDL: Hardware Description and Design, Kluwer Aca-
demic Publishers; 1989.

[5] Resve A. Saleh, A. Richard Newton, Mixed-Mode Simulation, Kluwer Academic Publishers; 1990.

[6] Jiri Vlach, Kishore Singhal, Computer Methods for Circuit Analysis and Design, Van Norstrand Re-
inhold; 1983.

[7] Charles Belove, Handbook of Modern Electronics and Electrical Engineering, John Wiley & Sons;
1986.

[8] I. Getreu, Modeling the Bipolar Transistor, Elsevier Scientific Publishing Company, Amsterdam-Ox-
ford-New York; 1978.

[9] J. J. Ebers and J. L. Moll, “Large-Signal Behavior of Junction Transistors”, Proc. IRE, Vol 42, pp.
1761-1772, December 1954.

[10] H. K. Gummel and H. C. Poon, “An Integral Charge Control Model of Bipolar Transistors”, Bell Sys-
tems Technical Journal, Vol. 49, pp. 827-852, May 1970.

[11] N. B. Rabbat, A. L. Sangiovanni-Vencentelli, and H. Y. Hsieh, “A Multilevel Newton Algorithm with
Macromodeling and Latency for Analysis of Large-scale Nonlinear Networks in the Time Domain,”
IEEE Transactions on Circuits and Systems, vol. CAS-26; 1979.

[12] C. W. Gear, “Automatic Multirate Methods for Ordinary Differential Equations,” Information Pro-
cessing 80, International Federation of Information Processing; 1980.

[13] Martin Vlach, “Modeling and Simulation with Saber,” Proceedings from The Third Annual IEEE
ASIC Seminar and Exhibit; pg. T-11.1, Sept. 1990, Rochester, NY.

[14] H. A. Mantooth, Martin Vlach, “Beyond SPICE with Saber and MAST,” Proceedings from The IEEE
International Symposium on Circuits and Systems; pp. 77-80, May 10-13, 1992, San Diego, CA.

[15] Donald C. Augustin, Mark S. Fineberg, Bruce B. Johnson, Rober N. Linebarger, F. John Sansom, and
Jon C. Strauss, “The SCi Continuous System Simulation Language (CSSL)”, Simulation, Vol. 9, pp.
281-303, 1967.

[16] Leon O. Chua, Charles A. Desoer, Ernest S. Kuh, Linear and Nonlinear Circuits, Chap. 13, McGraw-
Hill; 1987.



Overview of Analog-VHDL Requirements with Contrasts to Other Languages

33


