
1 2

Prospero User’s Manual

Version 5

Draft of 8 July 1993

Document Revision No. 0.2

B. Clifford Neuman Steven Seger Augart

Information Sciences Institute

University of Southern California

1Digital copies of the latest revision of this document may be obtained through
Prospero as
/papers/subjects/operating-systems/prospero/doc/user-
manual.PS.Z, in the #/INET/EDU/ISI/swa virtual system, or through
Anonymous FTP from PROSPERO.ISI.EDU as
/pub/prospero/doc/prospero-user-manual.PS.Z

2This work was supported in part by the National Science Foundation
(Grant No. CCR-8619663), the Washington Technology Center, Digital
Equipment Corporation, and the Defense Advance Research Projects
Agency under NASA Cooperative Agreement NCC-2-539. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of any of the funding agencies. The authors may be
reached at USC/ISI, 4676 Admiralty Way, Marina del Rey, California
90292-6695, USA. Telephone +1 (310) 822-1511, email info-
prospero@isi.edu.

1

 Contents

1    Introduction

The Prospero file system is based on the Virtual System Model.    It differs
from traditional distributed file systems in several ways. In traditional file
systems, the mapping of names to files is the same for all users. Prospero
supports user centered naming: users construct customized views of the files
that are accessible. A virtual system defines this view and controls the
mapping from names to files. Objects may be organized in multiple ways and
the same object may appear in different virtual systems, or even with multiple
names in the same virtual system.

Prospero directories can contain references to files and directories that are
stored on remote nodes. This allows distribution at a much finer level of
granularity than is possible in traditional distributed file systems. Prospero
also provides several tools to support customization. Among them are the
union link and the filter.

2    The Directory Mechanism

In Prospero, the global file system consists of a collection of virtual file
systems. Virtual file systems usually start as a copy of a prototype. The root
contains links to files or directories3 selected by the user. Directory links can
be of several types: conventional, union, and filtered.

A conventional link is similar to a hard link in traditional file systems. It
may be made to any type of object, including a directory. It maps a name for
an object to the information needed to access the object. As long as an
unexpired link to an object exists the object may be accessed by that name. If
the object moves, a forwarding pointer will allow continued access using the
same name. An object is only deleted when no unexpired links to it remain.

A union link can only be made to a directory. With a union link, the
objects included in the linked directory become part of the virtual directory
containing the link. Thus, the contents of a virtual directory are the union of
the collection of conventional links it contains, and the contents of all
directories included through union links.

Filters may be attached to either type of link. A filter alters the set of links
that are seen in directories whose paths pass through the filtered link. A filter
can specify which links are to appear and which are to be ignored, it can
change the features of individual links, or it can synthesize new links that are
not in the original directory. Filters are written in C and are dynamically
linked during name resolution. A filtered link contains a reference to the filter
and any arguments required by the filter.

3 To distinguish them from directories and links in traditional systems, and
because they are often illusory, directories and links in Prospero are
sometimes referred to as virtual directories and virtual links.

3

3    Using the Prospero File System

This section assumes that Prospero has already been installed on your system.
Section 10 describes the installation procedure.

To use Prospero you must first determine the name of the directory that
contains the executables.4
• CSH users That directory contains a file called vfsetup.source, the contents

of which must be read by the shell. This can be accomplished by
sourceing it. For example, if the Prospero file system binaries are stored
in /usr/pfs/bin you should either execute the following command or add it
to your .cshrc file:

        source /usr/pfs/bin/vfsetup.source

• SH users That directory contains a file called vfsetup.profil, the
contents of which must be read by the shell. This can be accomplished
with the . command. For example, if the Prospero file system binaries are
stored in /usr/pfs/bin you should either execute the following command or
add it to your .profile file:

        . /usr/pfs/bin/vfsetup.profil

Before you can begin using the Prospero file system a virtual system must be
created for you. Section 10.2.1 explains how the Prospero site administrator
can create a new virtual system. Don’t be frightened away from
experimenting by these comments! Most Prospero sites support a guest virtual
system which can be used until your own virtual system is created. Prospero,
as shipped, is configured so that once you compile the clients you can type
“vfsetup guest” and start working right out of the box using a guest
virtual system at the USC Information Sciences Institute.

To use a virtual system, you must first execute the vfsetup command to
initialize your environment. For example, if the name of your virtual system
is guest you should execute the following command:

        vfsetup guest

4    Using the menu browser

The menu browser provides a simple straightforward interface to the Prospero
file system.

4 By default, the installation directory is /usr/pfs/bin.

4.1    Starting it up

In the simplest case, invoke it as “menu”. If you are vfsetup to a virtual
system and there is a directory named /MENU in that virtual system, it will
use that directory. If you have not run the vfsetup command or if there is
no link named /MENU in the current virtual system, it will bring up the
default menu for your site. We have set up a default menu for people who
compile Prospero to use the default site, the ISI guest site.

If you are already vfsetup to a virtual system, you can invoke the menu
browser as “menu linkname”. The browser will display the Prospero
directory linkname as its root menu.

4.2    Using it

The browser will display a numbered list showing the contents of the
directory. The items in the list will be followed by one of four characters:
. A file. If it is a data file, you will be able to retrieve it and save it. If it is a

text file, you can retrieve it and view it, and then have the option of
mailing it, saving it, or printing it.

> A directory (submenu). You can select it to see the contents, and then type
u to go up to the previous menu.

] A portal. This represents a service you will have to connect to via telnet or
some similar protocol. Select it in order to receive some instructions and
begin a telnet session.

: A search. It will display some initiali documentation. It may ask you to
select among several possible searches, and will then prompt you for what
you are searching for. Later versions of the menu browser will check what
you type at the prompts to make sure the format is correct. Type ? at the
beginning of any line in order to receive further documentation about the
meaning of that line.5

The results of the search will be displayed as a new menu that contains
a list of the items that matched the search, possibly including
subdirectories.6

5 If you want to search for an item beginning with a literal ?, then precede
it with a backslash to escape it. If you want to search for something
beginning with a backslash, then precede it with another backslash to
excape it.

6 N.B.: If you make a search that is relayed through the Prospero/Gopher
gateway, you may be immediately presented with a submenu containing a
single item, and will have to open that item to see the results of your
search.

5

Type the number of the item you wish to explore in order to explore that
item. Type q to quit.

4.3    Making your own menus

The main current deficiency of the menu browser interface is that at the
moment the browser is read-only. For now, you will have to learn a bit about
the command-line client interface in order to set up new directories under
Prospero, in order to change the names of menu items, and in order to create
new links. We are currently working to put most of the power of the
command line interface into the menu browser so that one does not have to
use two user interfaces for most purposes.

To make your own menus, you will have to learn the set_atr
command, to set attributes on objects, the vln command, to make new links,
and the vmkdir command, to make subdirectories.

5    Using the command-line clients

5.1    File Names

The slash, colon, pound sign, open and close parenthesis, and backslash
(/, :, #, (,), and \) are special characters in Prospero. The slash
separates components of file names and the colon separates information
identifying a virtual system from the name of a file within the virtual system.
These characters should not appear in any component of a file name unless
they have been quoted.

All special characters, including the backslash, can be quoted by
preceding them with a backslash. This is important to know, especially when
you’re working with names returned by the Prospero GOPHER-GW gateway;
those names often contain colons, slashes, and other special symbols.

The slash is used in user-level names to indicate moving into a
subdirectory, just as it does in UNIX-like operating systems. This is the only
important special character to know about upon the first reading of this
document; the others are more specialized.

By default, names are resolved relative to the active virtual system. If a
colon (:) appears in a name, the name is resolved relative to the name space
identified preceding the colon. If the character preceding the colon is a pound
sign (#), then the name preceding the pound sign will be treated as an alias
for a previously specified virtual system. For this reason, virtual systems
should not have names ending in a pound sign. A double colon (::) is the
closure operator. When encountered, the name space identified by the

CLOSURE attribute7 of the object named before the double colon is used to
resolve the name that follows.

The pound sign (#) is also used to resolve name conflicts when the same
component of a name is used by more than one object. In this case the pound
sign is followed by the magic number of the desired object. For this reason,
unless quoted, the pound sign should not be used in a component of a file
name if followed by a number (including sign), and if there are no intervening
non-numeric characters between the pound sign and the end of the
component.

The pound sign (#) is additionally used to indicate that a particular named
union link is to be followed when resolving a name, or to indicate that a filter
is to be applied. In these cases, the pound sign is the first character of a
component in a name and it is followed by the name of the union link to be
followed or the name of the filter to be applied. For this reason, unless quoted,
the pound sign should not be used as the first character in a component of a
file name (unless the full name of the component is #).

The open and close parenthesis ((and)) are used to delimit the
arguments to a filter specified as part of a file name. The arguments
immediately follow the name of the filter (which itself follows a pound sign).
If no arguments are required, the null argument list () must be included.

5.2    Finding Things

The Prospero file system provides tools that make it easier to keep track of
and organize information in large systems. When first created, your virtual
file system is likely to contain links to directories that organize information in
different ways. As the master copy of each of these directories is updated, you
will see the changes. You may customize these directories. The changes you
make to a customized directory are only seen from within your own virtual
system, but changes made to the master copy will also be visible to you. See
section 5.5 for instructions on customizing a directory.

Users are encouraged to organize their own projects and papers in a
manner that will allow them to be easily added to the master directory. For
example, users should consider creating a virtual directory that contains
pointers to copies of each of the papers that they want made available to the
outside world. This virtual directory may appear anywhere in the user’s
virtual system. Once set up, a link may be added to the master author
directory. In this manner, others will be able to find this directory. Once added
to the master directory, any future changes will be immediately available to
other users.

To add a link to the master copy of any of the shared directories, send a
message to your site administrator. The address should be pfs-administrator
on the primary system for the site. If you are using a virtual system stored at

7 See the Attributes appendix to the Prospero Protocol specification for the
definition of this attribute

7

the USC Information Sciences Institute, the address would be pfs-
administrator@isi.edu.

5.3    The Commands

This section assumes that the Prospero file system has been installed on the
system being used. Later sections explain how to install the Prospero file
system at a new site and on individual systems.

Most of the commands that are specific to the Prospero file system take a
debug option. The form is -D# where # is an optional integer and specifies the
level of detail. The higher the integer, the greater the detail. By itself, -D sets
the debugging level to 1. Debugging levels of 9 and above display the actual
Prospero protocol messages that go across the network.

5.3.1    Initialization and Changing Virtual Systems

        vfsetup [-n host path , [-r,v] name , -f file]

The vfsetup8 command sets up the selected virtual system. It adds the
appropriate directories to the search path and sets all necessary environment
variables. vfsetup can be called in several ways. With no arguments, it
reads the file ~/.virt-sys and uses the information found to access the virtual
system description. The -v option takes the name of the virtual directory
containing the system description. The -n option takes the name of a host and
the physical name of the virtual directory on that host that contains the virtual
system description. The -f option takes the name of a Unix file that is to be
read in place of ~/.virt-sys.

It is also possible to set up a virtual system by specifying its name. If the
-r option is specified, the name is taken to be the default name for the virtual
system at the local site. If the name is specified without a modifier, the name
is looked up in the /VIRTUAL-SYSTEMS directory of the presently active
virtual system (the site default is used if no virtual system is presently active).
For example, if the name of your virtual system is guest you can set up the
virtual system using following command.

        vfsetup guest

8 Because it changes environment variables, this command only has an
affect when its output is read by the shell. If vfsetup.source has been
sourceed, then vfsetup is an alias which will call the vfsetup
executable in the appropriate manner.

5.3.2    Creating Directories

        vmkdir directory

vmkdir creates a virtual directory with the selected name and adds a link
from its parent directory.

5.3.3    Adding and Deleting Links

vln

        vln [-i, -u, -s, -m, -a] {-e access-method-
info, -n host hsoname, linkname } newname

vln adds a new link to a directory. oldname is an existing name for the
object to which the link is to be made. newname is the name of the new link.
The -u option indicates that the new link is to be a union link. The -s option is
used to specify a symbolic link. The -i option is used to specify an invisible
link which will not be displayed in a normal directory listing.

The -n option (short for native) requires the specification of the name of
the host containing the target. The -n option indicates that the native
information for the target has been specified. host is the name of the host on
which the target resides and oldname is the name of the target on that host. If
the -s option has also been specified, then host is the name of the virtual
system to which oldname is relative.

The -e access-method-info (external) option indicates that the object
resides on a host that does not run Prospero. There are are number of possible
values for the access-method-info:
GOPHER host(port) gopher-selector {BINARY or TEXT} This access

method indicates that the object can be retrieved by sending the selector
string gopher-selector to a server running at port port on host host. You
must specify whether you want the object to be retrieved using the Gopher
binary or text retrieval methods.

TELNET host[(optional-port) introductory-message] If you do not provide a
port inside parentheses, then the default telnet port will be used. The
introductory-message will be displayed before the user connects to the
service. For example:

Type LAX at the prompt in order to get the current Los
Angeles weather forecast; type X to quit.

9

AFTP host path {BINARY or TEXT} This access method specifies that the
object can be retrieved via anonymous FTP, using either the binary or text
retrieval methods.

AFS afs-path This access method specifies that the object is available through
the Andrew File System. Its name via AFS is afs-path. You should not
precede the afs-path with /nfs/afs, /afs, or whatever the prefix is
that your local system prepends to AFS names.

#-of-access-method-args method-name

host-type host hsoname-type hsoname any additional args This type
is used to provide an explicit value for the ACCESS-METHOD attribute.
See appendix A of the Prospero protocol specification for a discussion
of the format of this attribute.

Note that some of the host names specified in these access methods may
include a port number inside parentheses. You will probably have to quote the
port number so that whatever shell you use does not interpret it in a way you
don’t expect.

Some examples of making links

Here I’m making an external Gopher TEXT link to a recipie:

vln -e GOPHER 'ashpool.micro.umn.edu(70)'
0/fun/Recipes/Balls/rum-balls TEXT rum-balls

I can now retrieve this document with vget or by running “ menu .”.
Here I’m making a link to a telnettable service. In this case, I have

decided to make the introductory-message a null string, since the service I’m
linking to has its own excellent documentation facilities:

vln -e TELNET 'DOWNWIND.SPRL.UMICH.EDU(3000)' ''
weather
set_atr weather OBJECT-INTERPRETATION PORTAL

In this case, I also had to run set_atr so that the menu browser would
know this was a PORTAL.

Here I’m making a native link to a directory gatewayed through the ISI
Gopher gateway (shipped as part of this distribution). Note that we are
currently providing a demonstration Gopher gateway on Prospero server on
ZEPHYR.ISI.EDU, port 1570.

 vln -n 'ZEPHYR.ISI.EDU(1570)'
'GOPHER-GW/GOPHER.MICRO.UMN.EDU(70)/1/' minnesota-
root-gopher

Specialized capabilities for Closure

If the standard input to vln has been redirected, the input will be searched for
a line of the form “Virtual-system-name: vs-name”. If found, oldname will be
relative to the virtual system which has been read from (closed with) the
input. If the -m option has been specified, the input will be additionally
searched for a line for the form “Virtual-file-name: filename”. If found,
filename will be used in place of oldname. The reading of the standard input
can be suppressed by specifying the -a option, in which case the currently
active virtual system will be used.

vrm

        vrm link

vrm removes the named link from a directory. It is important to note that
vrm only removes the link. The object will continue to exist if there are any
additional links to it. If there are none, then the object will become subject to
garbage collection at a future time.

Another important thing to note is that vrm will only remove a link if it
exists in the directly indicated directory. You may be confused by vrm
claiming that a link is not present when you can see it quite clearly via als or
vls or menu. This problem arises because the link you’re seeing is actually
included via a union link. Use the -u flag to vls to see if this is the case. You
can use the -u flag to vcd to put yourself into the directory that actually
contains the link and try the vrm again. This problem also often arises with
the list_acl, set_acl, and set_atr commands, and it has the same
solution.

5.3.4    Listing Directories

Virtual directories may be listed using the als command or vls. als
produces straightforward output similar to that produced by the standard UNIX
ls utility. We recommend its use. vls produces more complex output and is
more useful for maintaining directories than for exploring them. Of course, if
one is interested in browsing, in our opinion invoking the menu broswer
program on the current directory (to do this, invoke it as menu .) gives one
the most straightforward user interface.

11

        vls [-A, -a,-c,-f,-i,-u,-v] [-A attribute] [-
a attribute] [path]

vls takes the virtual path name for a file or directory. If the path is for a
directory, the links within that directory are displayed. If the path is for any
other type of object, then the information for the named link is displayed.

By default, vls displays for each link the link name (i.e., the local
component of the path name) and the target of the link. The target of the link
is generally a host and a name relative to that host.9 Some special characters
may precede the link name; their meanings are:
U This is a union link (always to a DIRECTORY or DIRECTORY+FILE).

Usually only shown if -u flag was specified, unless expanding the link
failed.

I for an invisible link (only shown if -i flag specified) (could be to a FILE,
DIRECTORY, or DIRECTORY+FILE).

blank (’ ’) if a normal link to a FILE.

S for SYMBOLIC

E for EXTERNAL (to an object on a host that does not run Prospero)

N for NULL (returned if inadequate permissions),

D for DIRECTORY

B (Both) for DIRECTORY+FILE

O for OBJECT (neither a DIRECTORY nor a FILE, just something that can
have attributes associated with it.)

* Indicates that a filter is associated with the link.

F Expanding this union link failed.

The -v option causes the object type, and the type of each field to be
displayed, and it lists the filters associated with the link. It also prevents the
truncation of fields that are too long to be cleanly displayed without the -v
option.

The -u option indicates that union links are not to be expanded. By
default, union links are expanded, and the results of that expansion displayed.
To see which union links are included in a directory, the -u option must be
specified.

The -i option indicates that invisible links should be displayed; they are
normally not.

9 We call these names Host-Specific Object Names, or HSONAMEs.

The -d flag indicates that even if the path argument to vls is a directory,
we want to look at that link instead of looking at the contents of the directory.
It is just like the -d flag to the UNIX ls command.

There are cases when a directory might include more than one link with
the same name. One way this can happen is if the directory contains union
links. By default, only the first link with a particular name is displayed. The -c
option tells vls to display all links, including those with conflicting names.
The name of conflicting links will be followed by a “#” and a number that
allows them to be uniquely identified.

The -f option causes union links which could not be expanded to be
displayed. This option is presently set by default.

The -a option indicates that the attributes associated with each object
pointed to by the link are to be displayed. It also forces the verbose option. If
only a particular attribute is desired, the attribute can be specified as part of
the -a option itself (e.g. -aFORWARDING-POINTER). The -a option by itself
displays all attributes. The -A option is similar to the -a option, but it only lists
the attributes associated with the link itself, not those associated with the
object referenced by the link10.

5.3.5    Moving Around

        vcd [-u] path

The vcd11 command allows one to change the virtual working directory.
If no argument is specified, the home directory is assumed. Otherwise, paths
starting with a slash (/) are treated as relative to the root of the virtual file
system, and other paths are treated as relative to the current working
directory. “..” specifies the directory above the current working directory
along the active path from the root.

The -u option allows one to change one’s virtual working directory to a
directory included through a named union link.

        vwd
        vwp

The vwd command prints the name of the current virtual directory relative
to the root of the virtual system. The vwp command prints the information

10 When using vls to list the results of an archie query, the -c and the -A
options should be specified.

11 Because it changes environment variables, this command only has an
affect when its output is read by the shell. vcd is an alias which calls
the p__vcd executable in the appropriate manner.

13

describing its physical storage location. These are actually aliases defined at
the time you run vfsetup.

5.4    Retrieving Files

        vget virtual-file [local-file]

The commands described so far allow you to move around the virtual file
system, but they do not allow you to access the files that it names. If a
program has been linked with the Prospero compatibility library, the program
can access files directly.

The vget command can be used to explicitly retrieve a file. The virtual-
file is the name of the file to be retrieved from the Prospero file system. local-
file is the real name that you want the file to have in your real current working
directory. If local-file is omitted the last component of the virtual file name
will be used.

If the standard input to vget has been redirected, the input will be
searched for a line of the form “Virtual-system-name: vs-name”. If found,
virtual-file will be relative to the virtual system which has been read from
(closed with) the input. If the -m option has been specified, the input will be
additionally searched for a line for the form “Virtual-file-name: filename”. If
found, filename will be used in place of virtual-file. The -a option can be used
to suppress the searching of the standard input.

vget does not currently open telnet connections to objects with access
methods of type TELNET. Nor does it treat objects with an OBJECT-
INTERPRETATION SEARCH in any interesting way; you should use the menu
program to open such objects.

5.5    Customizing a Directory

When a change is made to a directory, that change is often visible regardless
of the path through which the directory is viewed. There are times when it is
desirable to make a change that is only visible when the directory is viewed
through a particular path, or from a particular virtual system. Such a change
creates a customized view of the directory; the change will not affect the view
of the directory when reached through other paths, or from other virtual
systems.

To create a customized view of a directory, create an empty directory, add
a union link from the directory you just created to the target directory, then
remove the link to the old directory and replace it with a link to the directory
that was just created.

Links that are added to the customized directory will only be visible
through the customized directory, but changes to the target directory will also
be visible through the customized directory.

Some directories in your virtual system have already been customized.
The root of your virtual system is your own. Changes in the root do not
appear in the roots of other virtual systems. Each of the links from the root is
also a customized directory. For example, if you add a link to the /authors
directory, that link will not be visible to others. Directories at the next level,
however, are not customized. Thus, if you add a link to the directory
/authors/Shakespeare,William, that change will be visible to others unless you
first customize that directory.

You can determine whether a directory has been customized by using the
vls -u command. That command will show the current directory without
expanding union links. Admittedly, this is a little confusing. Future releases
will support the concept of an owning virtual system. This will clear up some
of the confusion by allowing automatic creation of a customized directory
when one is needed.

To have a link added to the master copy of a shared directory you should
send a message to pfs-administrator at your site, or to pfs-
administrator@isi.edu.

5.6    Attributes

Attributes associated with the object to which a link points may be retrieved
using the -a option to the vls command. Attributes associated with the link
itself may be retrieved using the -A option to vls. Attributes may be set using
the set_atr command.

Attributes in Prospero have three different value types: SEQUENCE,
FILTER, LINK. They can be in one of three namespaces: APPLICATION, FIELD,
and INTRINSIC. They have five different precedences: OBJECT, ADDITIONAL,
REPLACEMENT, CACHED, and LINK. The FILTER type, in turn, has a number of
options. These are all discussed in depth in the Prospero protocol manual. A
link or object may have multiple instances of any attribute on it. This array of
specialized features makes set_atr appear confusing at first.

set_atr

Shortcuts

However, there are some useful shortcuts: if you are organizing your
information through Prospero, theattributes you are likely to want to set on an
object (COLLATION-ORDER, MENU-ITEM-DESCRIPTION, and OBJECT-
INTERPRETATION) are in the APPLICATION namespace, which is the default for
set_atr. You almost certainly want to just keep one instance of the attribute
around, so set_atr defaults to using its replace option. If you want to
delete the attribute entirely, use the -delete-all option.

If no attribute precedence is explicitly specified, set_atr selects what it
believes the correct attribute precedences are using an adaptive mode: If a
link is external, set_atr will set a a REPLACEMENT attribute on it. If a link

15

is to an object stored under Prospero, set_atr will set an OBJECT attribute
on the object and then cache the value of the OBJECT attribute with a CACHED
value on the link itself. If set_atr can’t modify the object itself, it will
override the object’s value of the attribute by putting a REPLACEMENT value
on the link.

Examples

Here is an example of how I use set_atr to organize the anonymous FTP
Area of a host which has just started running a prospero server.

First, make a starting link to the AFTP area on that host:

vln -n ZEPHYR.ISI.EDU AFTP starting-link
vcd starting-link

I now run an als on the directory and verify the contents. Let’s say it
contains a file named “00README”. I want to make this file have a more
descriptive name for people using a menu browser. I also want to make it
appear first in the directory, above any files which do not have an explicit
COLLATION-ORDER specified. Moreover, I want another file, Incomplete,
to appear last in the directory:

als
    (contents scroll by)
set_atr 00README MENU-ITEM-DESCRIPTION 'Information
about the files in this directory'
set_atr -linkprec 00README COLLATION-ORDER NUMERIC 1
set_atr Incomplete MENU-ITEM-DESCRIPTION 'This file
is still unfinished.'
set_atr -linkprec Incomplete COLLATION-ORDER LAST
NUMERIC 1

In this case, I specified the additional -linkprec option to set_atr, because
COLLATION-ORDER is an attribute that applies only to a link in a directory, not
to the underlying object.

If I know that a file is of a particular type, I can set the OBJECT-
INTERPRETATION attribute on this file to help the menu browser handle the
contents effectively:

set_atr group-photo.gif OBJECT-INTERPRETATION IMAGE
GIF

[Sorry. Ignored \begin{sloppy} ... \end{sloppy}]
A quick example of turning a file invisible with the -linkprec option:

set_atr .cap -linkprec LINK-TYPE I

The full gamut of options

This has not been fully documented yet. Type set_atr by itself to receive a
full list of options.

5.7    Forwarding Pointers

This release includes preliminary support for forwarding pointers. If a file or
directory has moved and a forwarding pointer exists, the forwarding pointer
will be returned and the request retried. At the moment, forwarding pointers
must be added by hand; there are not presently any programs to add them. For
information on how to add these by hand, send a message to info-
prospero@isi.edu.

6    Protection

Access control lists (ACLs) may be associated with directories in Prospero,
and with individual links within a directory. These access control lists specify
how directory information is to be protected. They have nothing to do with
the protection of the file to which a link refers. Table 1 lists the protection
modes that may appear within an access control list entry.

Table 1: Protection modes in access control lists

 Directory Link
 Character Meaning Character Meaning

 A Administer a Administer
 V View v View
 L List l List
 R Read r Read
 M Modify m Modify
 D Delete d Delete
 I Insert does not apply to link
 B Administer does not override link
 Y View does not override link
 > Add-rights] Add-rights
 < Remove-rights [Remove-rights
) Add-rights does not override link

17

 (Remove-rights does not override link

When an entry appears in both columns, it means that the entry on the
directory overrides the entry on a link. For example, a user with R access to
the directory can read a link even if denied r access to the link. If a link
permission is stored in a directory access control list, then that permission
indicates the default protection associated with links in the directory that do
not specify their own access control lists.

The administer permission allows the changing of the access control list.
View allows it to be viewed. List allows one to see a directory entry using
wildcard searches. Read is required to determine the binding of a link (the file
it references). If one is allowed read, but not list, then one can only retrieve
the link if its exact name is specified. Modify allows one to change the
binding of a link, but it does not allow one to add or delete links. Insert allows
links to be added, and delete allows them to be deleted. The add and remove
rights are a restricted form of administer. They allow an individual to add or
remove a restricted set of rights. For example, “>r” allows one to grant read
access to someone else without also allowing one to grant modify access.

Negative rights may be specified by prepending a minus sign (-) to the
rights field. The order of access control list entries is important. For negative
rights to have an effect, they must precede any rights that authorize access by
that individual. When new ACL entries are added, they are added at the front
of the list, meaning that recent entries take precedence over older ones.

When access is checked for a link, three access control lists are checked.
First, the ACL associated with the link itself is checked. If the link does not
have its own ACL, then the default ACL associated with the directory is used.
Next, the ACL associated with the directory is checked to see if it grants
rights that override those in the link. Finally, if access has still not been
granted, a special override ACL is checked. This is maintained by the system
and should be used only in emergencies. Negative rights in one list does not
override access granted in another.

There are several different ACL entry types. DEFAULT, SYSTEM, and
DIRECTORY cause other access control lists to be included. DEFAULT is the
default ACL specified by the system on which the Prospero server is running.
SYSTEM is also specified separately on each Prospero server. It usually grants
additional access to system administrators. DIRECTORY is the default access
control list associated with the directory containing a link. It allows one to
easily specify that the rights on a link are to be in addition to the default rights
specified in the directory. If no rights are associated with these ACL entry
types, then the rights granted are based on those in the DEFAULT, SYSTEM, or
DIRECTORY access control lists themselves. If rights are specified for such
entries, then the rights are the minimum of those specified, and those in the
included ACL. The ACLs for new files and directories allow access to

DEFAULT and SYSTEM as defined in those lists. Users have the option of
removing such access12.

The ANY, AUTHENT, ASRTHOST, and TRSTHOST ACL types grant rights to
the specified individuals according to the accompanying permission list. ANY
matches any user. AUTHENT specifies an authentication method, and the name
of the authorized individual as returned by that method. At present, this entry
type is not supported. The ASRTHOST method specifies a list of authorized
principals in the form user@internet-address. If no Internet address is
specified (and no atsign), then the user is matched regardless of the requesting
host. Octets of the Internet address can be wildcarded, or replaced with a ‘%’.
A wildcard matches any number, and a ‘%’ matches the number corresponding
to the local host. For example, “bcn@%.%.%.*” matches the user “bcn” on
the local subnet. The user may be specified as *, meaning to match any user
at that internet-address.

The ASRTHOST type accepts the username asserted by the client. It is not
possible to verify that the user has not modified the software to claim
someone else’s identity. The Internet address can generally be considered
accurate, though it too can be spoofed by a knowledgeable and determined
attacker. The TRSTHOST type is identical to the ASRTHOST type, but is accepted
only when the request originates from a privileged port on the requesting
system. Although this method might be used to provide security similar to that
for the Berkeley R commands, it is not recommended that you install
Prospero binaries setuid root until the sources have undergone careful scrutiny
for possible security holes13.

The discussion of ACLs in this section is not inaccurate, but it does not
yet reflect the new object and container ACLs that are new with Prospero
version Alpha.5.2. Preliminary documentation on the new rights we have
developed for object ACLs is available in the text file doc/working-
notes/new-acl-types in the Prospero distribution. This text file will be
merged into this manual shortly.

The ppw command, which allows one to set and manipulate a password-
based authentication mechanism that is stronger than the ASRTHOST type
also needs to be documented here, as do the Kerberos version 5 authentication
facilities which are present in this release.

The system administrator’s pw_edit command also must be
documented here.

Listing ACLs

The list_acl command may be used to list the contents of an access
control list.

12 The SYSTEM access control list is separate from the OVERRIDE list
which can not be removed.

13 By no means should vget or vcache be installed setuid root as these
command write files to paths specified by the user.

19

        list_acl [-d dir] [-i host acl-name] [-o
object] [link-name]

With no arguments, it lists the ACL for the current directory. If the -d
option is specified, the argument that follows the option specifies the
directory whose ACL is to be listed. An optional link-name specifies that the
ACL to be listed is that of the named link within the directory. The -o option
indicates that the ACL should be listed for the underlying object.

Modifying ACLs

The set_acl command allows one to change the access control list
associated with a link or directory.

        set_acl [-asirKE,-n,-N] [-t type] [-d dir] [-l
link] [-o link-to-object]
    rights principals

The -d option is followed by the name of a directory. By default, the ACL
for the directory is modified. The -l option allows one the modify the ACL for
an individual link. The -o option allows one to modify the ACL for the object
pointed to by the link link-to-object.

The -a, -s, -i, -r, -K, and -E options indicate the operation to be performed
on the ACL. They correspond in order to add rights, subtract rights, insert a
new entry, remove an entry, kill the entire ACL (setting it to the default), and
replacing the entire ACL.

If the -t option is specified, it must be followed by the type of the ACL
entry to be added, deleted, etc. If the -t option is not specified, ASRTHOST is
the default.

The first field following the options specifies the rights to be added or
deleted. All remaining arguments are the names of the principals to be
included in the particular ACL entry.

When an ACL is set to an initial value (using the -K or -E options), the
SYSTEM ACL is automatically included. The SYSTEM entry can be removed
by using the -r option in a subsequent set_acl command. The addition of
the SYSTEM entry can be suppressed by using the -n option in conjunction
with the original -K or -E option. Whenever rights are removed from an ACL,
the system checks to make sure that the user removing the rights will be able
to fix any mistakes. If the the change would result in the user being unable to
make subsequent changes, the minimal rights allowing the user to make
subsequent changes are automatically added back. This safety mechanism
may be overridden by specifying the -N option.

7    Server Maintenance and Informational
Commands

7.1    pstatus

pstatus [<server>]

Use pstatus to see if the server server is alive.

7.2 padmin

padmin [-D#] [-N<priority>] [-force] { -kill |
-restart
                | -motd | {-set <parameter>} | {-get
<parameter>}
                | {-command [-headers | -1]} } [<server>]

Summary

The old pkl and psrvchat commands have been replaced
by the new ’padmin’ command. Padmin can be used to
administer a Prospero server (kill it, restart it,
set the message of the day). It can also be used by
a programmer to send raw Prospero protocol messages
to the server (with the -command option) and by
anybody to retrieve the message of the day (with the
-motd option).

Long Explanation of the options

The -D flag, as usual, sets the debugging level.
-N (’nice’) sets the priority for a query.

Setting a priority of 32765 or greater (-N by itself
does this) means that this command will be processed
only after the queue is empty. This is handy for
terminating or restarting a server that gets a lot
of traffic and often has requests waiting in the
queue.

-kill kills the server. -restart causes a
complete restart, including reloading the binary
(handy if you’ve just updated the binary). If these

21

options are specified, padmin will ask for
confirmation, unless the -force flag is specified.

If the -force flag is specified, padmin will not
confirm the -kill and -restart flags, nor will it
output the reply received. (This is modeled upon the
-f flag to rm).

-set takes an extra argument for a parameter to
set on the server. It will then read from standard
input for the text to send. This can only be used to
set parameters whose value is a SEQUENCE consisting
of a single ASCII string. -motd is equivalent to
-set MOTD. (Note that, currently, the only
parameters defined on most servers are MOTD,
RESTART, and TERMINATE, and they all have this
form.)

-command reads raw Prospero protocol messages
from the standard input and sends them to the
server, then shows the response to the user.

A -header option may follow the -command option.
The -header option will prefix the messages read
from the standard input with standard Prospero
VERSION and AUTHENTICATE statements for the current
Prospero version. (Note for Prospero programmers:
the headers from the -header option are generated
with the standard p__start_req() pfs library call).
A -1 option may follow -command instead of -header.
This will generate VERSION and AUTHENTICATE
statements for Prospero version 1 protocol format.

-k, -r, -f, -m, -s, -g, and -c also work, as
synonyms for the spelled out options. They can’t be
grouped together, though; you must specify them
independently. (i.e., “padmin -kfD9” won’t work; you
must say “padmin -k -f -D9”.)

For those used to the previous pkl command, the
default installation procedure also installs pkl as
a link to padmin. When invoked with the name pkl,
padmin duplicates pkl’s full functionality.

8    The compatability library

This section documents what we call the “compatability library” interface to
Prospero. The compatability library interface is not compiled by default; your
site maintainer must specify it. We have not focused recent work on it, and it
is not as useful an interface as the menu browser interface and the command
line interface, both of which are discussed above.

This section does not apply to you unless your maintainer has turned on
the compatability library interface

8.1    Using Existing Applications

The Prospero file system is presently implemented as a library. We provide
versions of cat and ls which have been linked with the Prospero
compatability library, which is an additional wrapper around the main
Prospero library. The relinked versions may be found in the same directory as
the other Prospero binaries, and will appear in your search path once the
vfsetup command has been executed.

If the venable command (see section 8.1) has been executed to set the
default name resolution mechanisms to the virtual file system, then the cd
command may be used to change virtual directories.

If the venable command (see section 8.1) has been executed to set the
default name resolution mechanisms to the virtual file system, then the ls
command may be used to list virtual directories.

By default, names which are to be resolved using Prospero must contain
or be preceded by a colon (:). File names that do not contain and are not
preceded by a colon are treated as native Unix file names. The default
behavior can be modified by setting the PFS_DEFAULT environment variable.
This may be done by using the venable command. When enabled, names
are resolved relative to the active virtual system by default. Names that are to
be treated as native Unix file names must be preceded by an atsign (@).
vdisable will return the default to its original state. The meanings of the
values for the PFS_DEFAULT environment variable are listed in Table 2.

Table 2: Settings for the PFS_DEFAULT environment variable

 Value Meaning
 0 Never resolve names within the virtual system
 1 Always resolve names within the virtual system
 2 Resolve names within the virtual system if they contain

a :
 3 Resolve names within the virtual system by default, but

treat names beginning with an @ or full path names that
don’t exist in the virtual system as native file names

 4 Resolve names within the virtual system by default, but
treat names beginning with an @ as native file names

 

23

9    Filters

Client-side filters are written in C, compiled, and dynamically linked during
name resolution. Because of portability problems with the dynamic linker,
client-side filters are not included in this release, but are available upon
request. There are also server-side filters, which are precompiled into the
server. These are intended to be used by special applications; the only ones
currently in general use are used by version 3 of Archie.

10    Setting up a new system

This section explains how to install the Prospero file system on a new system.
It assumes that the local site has already been configured. This section
(Section 10) can be skipped by most users.

10.1    Building the Binaries

[See the INSTALLATION file in the distribution]

10.2    Running the Server on Unix (like) Systems

If you are installing the Prospero server, a user and group ID must be
established under which the directory server will run. The directory associated
with the user ID should be a location in which additional information about
virtual files and directories can be stored. New files which are to exist only
within the Prospero file system will also be stored under this directory. It is
suggested that you chose the user name pfs for this pseudo-user, but other
names may be used as well.

Once the user ID has been set up, install the binaries. The directory in
which they must be installed is selected at compile time. As originally
distributed, it is /usr/pfs/bin. The program pstart should be installed
setuid and setgid the pseudo-user just described.

        pstart [hostname]

To start the server run pstart. pstart takes an optional host name. If
specified, the host name must be the primary name for the host on which the
server is running. In most cases, the server is able to determine the name on
its own and there is no need to specify it as an argument.

pstart will connect to the directory associated with the pseudo-user, it
will check to make sure that the user id is set appropriately, and it will exec
the directory server with the appropriate arguments.

Although it is not recommended, the directory server can also be started
manually. You must first be logged in as (or be su’ed to) the user under whose

ID you want the server to run. You can then execute dirsrv passing as
arguments the required directory names.

        dirsrv [-p#portnum] [-m] root shadow data
aftpdir afsdir hostname

The -p# option allows one to specify an alternate port to run the server on.
This alternate server can be reached with the hostname “your-
hostname(portnum)”. For instance, at ISI, we run a publicly accessible
GOPHER-GW server at ZEPHYR.ISI.EDU(1570). Common reasons for
running additional servers on alternate ports are for testing reasons, to take
some of the load off of your primary server, or to run a server dedicated to
publishing a special database.14

The -m (manual) option prevents the directory server from dissociating
itself from the terminal. It is only useful for debugging. root is the logical root
of the system. Only files below this point (and those under aftpdir and afsdir)
will be accessible through the Prospero file system. shadow is the name of the
directory that is to contain additional information about files and directories.
It should typically be the shadow subdirectory of the pseudo-user described
above. data is the local directory under in which new virtual directories and
their contents will be stored.

aftpdir is the name of the directory hierarchy to which anonymous FTP
has access and afsdir is the name of the directory through which files from the
Andrew File System may be accessed. If these access methods are not
supported by your system, these arguments should be the null string.

Users can use the Prospero file system even if the server is not running,
but they will be unable to access files or directories stored locally. If pstart
is installed setuid and setgid to the Prospero user and group IDs, then the
directory server can be started by any user. You may also want to start the
directory server from the system’s /etc/rc file.

As things stand, users can access files and directories created on the local
system, but they can not create new virtual systems stored locally. If you want
to allow virtual systems to be stored locally, then you must have the site
administrator add a reference to the new system from the pfs_storage virtual
directory.

Adding References to the New System

The remainder of this section describes the actions that are to be taken by the
site administrator. Systems that are running the release as distributed are part
of the USC Information Sciences Institute guest site. The site administrator is

14 Caveat: The common UNIX shells require you to quote the # in the -p#
option in order to keep it from being interpreted as the start of a
comment.

25

pfs-administrator@isi.edu. This applies even if your system is running a
server. If you are not a site administrator, you can skip this section.

If you want to allow virtual systems to be stored locally, several links
must be added and a new virtual directory must be created. This will only be
possible if the server has not been configured read-only. When a new site is
established (see Section 11) these links and directories are automatically
created on the primary system for the site. The following steps are only
required when adding additional systems.

In the following steps, HOST is the fully qualified domain name for the
host to be added and PATH is the full path of the subdirectory of the pseudo-
user (described above) which will store the new virtual directories. The last
component will typically be pfsdat. If that directory does not already exist, it
should be physically created.

A link must be added from the virtual directory pfs_storage to the pfsdat
directory on the new site. While still in the master virtual system, the
following steps will add this link.

        vcd /pfs_storage
        vln -n HOST PATH HOST

You will next have to create the local_vsystems virtual directory. You do
this by issuing the commands:

        vcd HOST
        vmkdir local_vsystems

10.2.1    Creating a Virtual File System

A virtual file system is created using the newvs command. The newvs
command is for use by the site administrator15. To have a virtual system
created, send a message to pfs-administrator at your site.

If you want to run a server but don’t want the hassle of setting up your
own site, we can arrange to have virtual systems stored on your server but
have your server still be part of the ISI guest site. We recommend this option.

        newvs [-v#] [-e] [host [name [home [owner
[desc_file]]]]]

The newvs command is used to create a new virtual system. If called
with no arguments, the user is prompted for the system on which the new

15 Systems which are running the release as distributed are part of the
University of Southern California Information Sciences Institute guest
site. The site administrator is pfs-administrator@isi.edu. This applies
even if your system is running a server.

virtual system is to reside, the name of the virtual system, the home directory,
the owner, and the name of the description file.

The name of the virtual system is the default name with which it will
appear in the local site’s master list of virtual systems. This name is not
automatically exported beyond the local site.

newvs will create the virtual system, assign a global name to it, and add
the selected name in the master list of virtual systems for the local site. It will
also copy the links from the prototype virtual system to the newly created
one. The -e option will suppress this copying, and will leave the new virtual
system empty. As a final step, newvs will optionally write a description file
that may be read by vfsetup.

The -v option is followed by an integer and sets the verbosity level. The
meaning of the verbosity levels are presented in Table 3.

Table 3: Verbosity levels for newvs

 Value Meaning
 0 (default) Prompt for required input
 1 (-v) Explain what is required when asking for

input
 2 List each action taken
 3 Stop before each step
 4 Stop before each step and explain the action

 

11    Setting up a New Site

This section explains how to set up a new site. Systems that are running the
release as distributed are part of the USC Information Sciences Institute guest
site. This applies even if your system is running a server. If you would like to
set up your own site, send a message to info-prospero@isi.edu to obtain the
appropriate additional files. Unless you are setting up your own site, you may
skip the remainder of this section.

Before you begin, you will have to obtain a global prefix that will
uniquely identify the virtual systems registered at your site. A prefix may be
obtained by sending a message to pfs-administrator@isi.edu.

The global prefix is part of the low level name for each virtual system. It
should be thought of as an address. Users employ higher level names to
specify virtual systems. Registering a prefix will allow objects created at your

27

site to be named by others. Even if your site will not be reachable by any
other sites, it is still important to register a prefix. Doing so guarantees that no
other site has the same prefix. This will make it possible to connect with the
rest of the global system should a connection ever be established. More
information on setting up an isolated site is described in Section 11.2.

11.1    Setting up the Master Directories

To initially set up a new site, run the command newpsite. newpsite will
construct a skeletal site configuration based on the compile time options
described in the previous section.

Once the site has been set up, it will be necessary to create additional
directories and add them to the prototype on which new virtual systems will
be modeled.

11.2    Setting up an Isolated Site

As was already mentioned, even if your site will be isolated from others, you
should still try to register a unique global prefix.

If your site will be isolated from other sites you will have to set up a
replica of the global root. This directory must be reachable with the name “#”
from your site’s master list of virtual systems. To create a replica of the global
root, create a directory and add nested subdirectories corresponding to each
component of your sites global prefix. The last entry should be a link to your
site’s master list of virtual systems.

11.2.1    If You Cannot Register a Prefix

If it is not possible to contact pfs-administrator@isi.edu, then it may still be
possible to generate a unique global prefix based on a unique identifier
assigned by another authority. Right now, the only names that may be turned
into unique global prefixes are officially registered Internet domain names.

Internet Domain Names.

If you have an officially registered Internet domain name, it may be turned
into a global prefix by reversing the order of the components, replacing the
periods with slashes, and prepending “#/INET/”.

        ISI.EDU            =            #/INET/EDU/ISI

12    Glossary

conventional link.

A conventional link is similar to a hard link in the Unix file system. It maps a
name for an object to the information needed to access it.

filter.

A filter is a program attached to a link. A filter can modify the results of
directory queries where the path from the root of the virtual file system to the
queried directory passes through the filtered link.

global file system.

The global file system is the collection of links and directories that make up
the virtual file systems accessible to the user. The links and directories form a
generalized directed-graph.

link.

A link is either a conventional link or a union link, with or without an
attached filter.

local system.

The local system is the physical system to which a user is logged in, on which
processes execute, or on which files are stored.

master directory.

A master directory is a directory maintained at the site level, and included
through union links as part of the corresponding directory in multiple virtual
systems.

site.

A site is a collection of virtual systems administered by a particular
organization. An important characteristic of a site is that its virtual systems
contain prominent references to the other virtual systems that are part of the
site.

union link.

A union link is a link to a directory that causes the links that are part of the
linked directory to appear as part of the directory containing the union link. A
directory’s contents are the union of the set of conventional links it contains
and the contents of all directories included through union links.

29

view.

A view is a mapping from names to objects. Name spaces, parts of name
spaces, and individual directories all define views. Because it specifies a
name space, a virtual system also imposes a view. It is possible for more than
one virtual system to impose the same or similar views.

virtual directory.

A virtual directory is a directory in a virtual file system. The contents of a
virtual directory might be calculated at the time the directory is queried by
applying filters or expanding union links.

virtual file system.

A virtual file system is the file system part of a virtual system. It consists of a
root directory and all the files and directories that can be reached by
traversing 0 or more links. The virtual file system is a projection of the global
file system as viewed from the selected root.

virtual system.

A virtual system is a distributed system that is assembled from the files,
processors, services, applications, users and other components available over
a global network. The owner of a virtual system identifies the components of
interest, and assembles them into a virtual system by assigning names.

31

13    Quick Reference

Commands affecting the Prospero file system:

This reference sheet is not as up to date as the rest of this manual. Sorry.

        vfsetup [-n host path , [-r,v] name , -f file]
        vcd [-u] path
        vwd
        vls [-v] [-u] [-f] [path]
        vln [-u] [-s] [-e] [-n host1] name1 name2
        vmkdir directory
        vrm link
        vget virtual-file [local-file]
        padmin [-motd | -kill | -restart | -set
parameter | -get parameter
    | -command] [server]
        newvs [-v#] [-e] [host [name [home
[desc_file]]]]
        list_acl [-d dir] [link-name]
        set_acl [-asirKE,-n,-N] [-t type] [-d dir] [-l
link] rights principals
        vdisable (not at all installations)
        venable    (not at all installations)

Meanings for PFS_DEFAULT:
The meanings of the values for the PFS_DEFAULT environment variable are:

Table 4: Settings for the PFS_DEFAULT environment variable

 Value Meaning
 0 Never resolve names within the virtual system
 1 Always resolve names within the virtual system
 2 Resolve names within the virtual system if they contain

a :
 3 Resolve names within the virtual system by default, but

treat names beginning with an @ or full path names that
don’t exist in the virtual system as native file names

 4 Resolve names within the virtual system by default, but
treat names beginning with an @ as native file names

 

33

