
1 2

Prospero Library Manual

Version 5

Draft of 5 July 1993

Document Revision No. 0.4.1

B. Clifford Neuman Steven Seger Augart

Information Sciences Institute

University of Southern California

1A digital copy of the latest revision of this document may be obtained through
Prospero as
/papers/subjects/operating-systems/prospero/doc/librar
y.PS.Z, in the #/INET/EDU/ISI/swa virtual system, or through
Anonymous FTP from PROSPERO.ISI.EDU as
/pub/prospero/doc/prospero-library.PS.Z

2This work was supported in part by the National Science Foundation
(Grant No. CCR-8619663), the Washington Technology Center, Digital
Equipment Corporation, and the Defense Advance Research Projects
Agency under NASA Cooperative Agreement NCC-2-539. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of any of the funding agencies. The authors may be
reached at USC/ISI, 4676 Admiralty Way, Marina del Rey, California
90292-6695, USA. Telephone +1 (310) 822-1511, email info-
prospero@isi.edu.

1

 Contents

1    WARNINGS

1. This manual is preliminary. It does not fully describe all of the Prospero
library calls.

2. This manual reflects Prospero releases Alpha.5.2 and later. You can use it
with Prospero releases between Alpha.5.0 and Beta.5.1; changes are
documented under the appropriate functions.

2    Introduction

This manual describes the entry points to the Prospero library.

3    PFS Library

3.1    Introduction

The PFS library includes procedures for allocating and freeing Prospero data
structures, resolving names using Prospero, reading directories, retrieving
attributes, adding and deleting links, and creating directories. Only those
procedures generally used by application programmers are described here.
The remaining routines are called internally.

These functions are prototyped in the include file pfs.h, found in the
include directory in the Prospero source tree. The data structures
manipulated by these functions and the definitions of the flag options are also
defined and documented in that file. When Prospero is installed normally, the
library (ready to be linked with) can be found in lib/pfs/libpfs.a in
the Prospero source hierarchy.

Since this manual is still not complete, a programmer will often find it
helpful to look at the source code files for the functions discussed here. Most
of them are preceded with large comments discussing their behavior in more
detail than is gone into here. They can all be found in the lib/pfs directory
in the Prospero source tree.

Examples of using these functions can be found in the user directory of
the Prospero source tree.

Programmers looking for examples of listing a directory and retrieving
attributes should look at vls.c. Examples of setting attributes are in
set_atr.c. An example of the pget_am interface to retrieving files is in
vget.c (after you see it, we expect you’ll appreciate the simplicity of
pfs_open(). An example of add_vlink() is in vln.c.

3

3.2    Error Reporting

Most functions in this library return a numeric error code (defined in
perrno.h). The functions in this library which return pointers to structures
will return a null pointer in case of an error. They will indicate which error
occurred by setting the global variable perrno (defined in the include file
perrno.h) to one of the constants defined in that file. Note: Functions that
return an explicit numeric error code are not guaranteed to set perrno.

Functions that set perrno or return an error code will also set an
explanatory message in the global variable p_err_string (also defined in
that file). Even if they have no additional information, they will set
p_err_string to the empty string so that the user isn’t misled by an old
error message.

3.2.1    WARNING

All the functions in this library are supposed to obey the above convention
about p_err_string. We have not gone over all of them to make certain
that the convention is obeyed in every case, due to the press of other work.

3.3    Data Structures

Most of the data structures in the PFS library are allocated and freed with
special allocation functions (VLINKs are allocated with vlalloc, etc. The
allocation functions also initialize the members of the structure to common
values and the freeing functions de-allocate allocated memory referred to by
the members of the structure.

Do not use the C library function free to free memory allocated by one of
the special Prospero allocating functions, and do not use one of the special
freeing functions to free memory allocated by malloc.

The VDIR structure does not have special allocation and freeing
structures. This is because in the current uses of the Prospero library, one
generally does not make linked lists of VDIR structures; instead, one allocates
them on the stack with code that looks like this:

VDIR_ST dir_st;
VDIR dir = &dir_st;

and then initializes them with:

vdir_init(dir);

and frees the allocated memory referred to by the members with:

vdir_freelinks(dir);

3.4    Entry Points

Entry points: atalloc, atfree, atlfree, vlalloc, vlfree,
vllfree, add_vlink,
del_vlink, p_get_dir, mk_vdir,
pget_am, pget_at, rd_vdir,
rd_vlink, pfs_open, and pfs_fopen.

PATTRIB atalloc(void), FILTER flalloc(void), TOKEN tkalloc(char *s),
ACL acalloc(void), and VLINK vlalloc(void) allocate and initialize
structures for storing attributes, filters, tokens, access control list entries, and
virtual links. They call out_of_memory() on failure, which is a macro in
pfs.h which currently raises an error condition and aborts program
execution. Its behavior may be changed by resetting the value of the global
variable internal_error_handler (defined in pfs.h to a function with some
alternative behavior (such as popping up a window with a failure message and
offering to restart the application or exit).3 Since the only failure condition for
these functions is running out of available memory, they do not set perrno.

atfree(PATTRIB at), flfree(FILTER fl), acfree(ACL ac), and
vlfree(VLINK vl) free the storage allocated to at, fl, ac, and vl. They also free
any standard Prospero memory structures referenced by the members of these
structures; for example, freeing a VLINK will also free any Prospero string
referenced by the VLINK’s host member.

atlfree(at) and vllfree(vl) free at and vl and all successors in a linked list
of such structures. They do not return error codes nor do they set perrno,
since they cannot fail. tkalloc(s) initializes the token member of the TOKEN
structure it allocates to be a copy of s.

char * stcopy(char *s) allocates an area of memory large enough to hold
the string s and copies s into it. It is usually used to store a string. The number
of bytes allocated to a string can be checked with the macro stsize(char *
string). An alternative interface to stcopy is char * stalloc(size_t nbytes).
stalloc allocates an area of uninitialized memory large enough to hold nbytes
bytes of data and returns a pointer to it. Another interface is char
*stcopyr(char *source, char *dest). The sequence:

a = stcopyr("string", a);

3 The Prospero directory server takes advantage of this and rebinds
internal_error_handler() to a function that logs a message to the
server’s log file and attempts to restart the server.

5

will yield results functionally equivalent to the sequence:

stfree(a);
a = stcopy("string");

The only difference is that stcopyr() attempts to reuse the already allocated
space, if available. This avoids the overhead of extra calls to malloc() and
free(), and is therefore frequently more efficient than the equivalent longer
sequence of calls. The existing Prospero libraries and utilities make frequent
use of stcopyr() for this purpose.

Also note that a = stcopyr("foo", (char *) NULL) is
equivalent to a = stcopy("foo"); Memory allocated by all of these
interfaces should be freed with stfree(st). stfree((char *) NULL) is a
guaranteed no-op. The various interfaces to stcopy() all call
out_of_memory() when appropriate.

A frequent cause of problems when using memory allocation functions is
freeing the same chunk of memory twice. One may optionally enable
consistency checking code in the allocators and freeing functions by defining
ALLOCATOR_CONSISTENCY_CHECK in pfs.h. This code has not yet
been finished for the stalloc() family, but works for all other allocators. If any
double freeing is detected, internal_error_handler() will be called.

A programmer may also easily check for memory leaks by looking at the
global variables int acl_count, pattrib_count, filter_count, pauth_count,
pfile_count, token_count, vlink_count, and rreq_count to see how many of
each of the corresponding structures have been allocated.4 5

add_vlink(direct,lname,l,flags) adds a new link l to the directory named
direct with the new link name lname. direct is a string naming the directory
that is to receive the link. If flags is AVL_UNION, then the link is added as a
union link. add_vlink returns PSUCCESS (0) on success and an error code on
failure.

This interface to this function will change in a later version of the library
to be p_add_nlink(), with a corresponding p_add_link that takes a VLINK
instead of a string for the direct argument.

del_vlink(path,flags) deletes the link named by path. At present, flags is
unused. del_vlink returns PSUCCESS (0) on success and an error code on
failure.

This interface to this function will change in a later version of the library
to be p_del_nlink(), with a corresponding p_del_link() that takes a VLINK
instead of a string for the path argument.

4 We use this facility to debug the Prospero server; it returns this
information in response to the pstatus command.

5 Some of the structures mentioned in this list of global variables are not
yet documented in this manual.

p_get_dir(VLINK dlink,char *components,VDIR dir,int flags,TOKEN
acomp) contacts the Prospero server on host dlink->host to read the directory
dlink->hsoname, resolving union links that are returned and applying dlink-
>filters, if set.

If components is a null pointer, all links in the directory are returned. If
components is a non-null string, only those links with names matching the
string. The string may be a wildcarded name containing the * and ?
characters; these have their conventional meanings. The string may also be a
regular expression, enclosed between parentheses; in that case, all links
matching the regular expression are returned.

p_get_dir() will always, in addition to any other links it might return,
return any link whose literal name is the components string. This feature
means that you do not have to worry about retrieving links whose names
contain special characters, even if more special characters are defined at some
future time. An example: The components string (bana*na), in addition to
matching banana and banananana, also (as an important special case)
matches the component whose literal name is (bana*na).

dir is a Prospero directory structure that is filled in. flags can suppress the
expansion of union links (GVD_UNION), force their expansion (GVD_EXPAND),
request the return of link attributes on the VLINK structure’s lattrib
member (GVD_ATTRIB), and suppress sorting of the directory links
(GVD_NOSORT). acomp should normally be NULL. For many applications, one
does not need to call this procedure, and should use rd_vdir and rd_vlink
instead. p_get_dir returns PSUCCESS (0) on success and an error code on
failure.

The standard way to retrieve the attributes of a link in a directory is to call
p_get_dir with the dlink argument pointing to the directory in which the link
is located and the components argument being the name of the link whose
attributes are to be retrieved.

Compatability note: p_get_dir was named get_vdir or p_get_vdir() in
releases of Prospero before Alpha.5.2. Those older interfaces are still
available but should be converted. release is backwards-compatible with those
older uses.

mk_vdir(char path[], int flags) creates a new virtual directory with the
new name path in the currently active virtual system. flags should usually be
0; the only flag currently defined is MKVD_LPRIV, which causes the
directory to be created with very limited permissions available to the creator.
See the documentation of the CREATE-OBJECT command in the protocol
specification if you want a better explanation of this option. mk_vdir returns
PSUCCESS (0) on success and an error code on failure.

This interface to this function will change in a later version of the library
to be p_mk_ndir(), with a corresponding p_mk_dir that takes a VLINK
referring to the directory and a string which is the new link name.

pget_am(VLINK link,TOKEN *ainfop, int methods) returns the access
method that should be used to access the object referenced by link. *ainfop is

7

a pointer to a variable of type TOKEN. When pget_am returns, this variable
will be a NULL pointer if no appropriate access methods were available or
will point to the value of the best ACCESS-METHOD attribute associated with
the object referenced by link if appropriate methods were available. When
more than one appropriate access method is available, pget_am attempts to
choose the least expensive one.

methods is a bit-vector identifying the methods that are acceptable to the
application. The methods presently supported are: the local filesystem
(P_AM_LOCAL), anonymous FTP (P_AM_AFTP), regular FTP (P_AM_FTP),
Sun’s Network File System (P_AM_NFS), the Andrew File System
(P_AM_AFS), the Gopher distributed directory service binary and text file
retrieval protocols (P_AM_GOPHER), and telnettable services (P_AM_TELNET).
Note that to effectively use the (P_AM_FTP) access method, the server on the
remote end will have to know that the user has an account valid for FTP on
the server. pget_am returns P_AM_ERROR (0) on failure and leaves an error
code in perrno. Upon success, pget_am returns the value of the access
method that was chosen.

This interface returns information that allows you to retrieve a file, but
does not do any of the work of retrieving it. We expect most programmers to
use the pfs_open or pfs_fopen interfaces instead. The only exception is the
TELNET access methods

PATTRIB pget_at(VLINK link,char atname[]) returns a list of values of
the atname attribute for the object referenced by link. If atname is NULL, all
attributes for the referenced object are returned. If atname is a string, it is a
string which is just a plus-separated list of attribute specification options to
the EDIT-OBJECT-INFO protocol message. pget_at returns NULL on
failure, or when no attributes are found. On failure, an error code is left in
perrno. On success, perrno is explicitly set to PSUCCESS.

If the object has been forwarded, pget_at() will follow the forwarding
pointers, just as other PFS library functions do. If the object has been
forwarded, pget_at() will modify link so that the link’s host and hsoname
members refer to the link’s new location.

This function will be renamed in a later version of this library. The new
function will be named p_get_at.

rd_vdir(dirarg,comparg,dir,flags) lists the directory named by dirarg
(relative to the current working directory or the root of the active virtual
system) returning the links whose names match comparg. dir is a Prospero
directory structure that is filled in. flags can suppress the expansion of union
links (RVD_UNION), force their expansion (RVD_EXPAND), request the return of
link attributes (RVD_ATTRIB), suppress sorting of the directory links
(RVD_NOSORT), suppress use of cached data when resolving names
(RVD_NOCACHE), or request the return of a reference to the named directory,
suppressing the return of its contents (RVD_DFILE_ONLY). rd_vdir returns
PSUCCESS (0) on success and an error code on failure.

As a special case, if the comparg is a null pointer or the empty string and
the dirarg refers to a link that is not a DIRECTORY, then a directory entry
containing a single link to the vlink named by comparg is returned; in that
special case, this interface behaves similarly to rd_slink.

This function’s interface will change; it will probably be renamed
p_get_ndir().

VLINK rd_vlink(path) is an alternative interface for resolving names.
rd_vlink returns the single link named by path. Its function is equivalent to
calling rd_vdir with comparg set to the last component of the path and dirarg
set to the prefix. rd_vlink returns NULL on failure leaving an error code in
perrno. rd_vlink() will also expand symbolic links it encounters, whereas
rd_vdir() returns the symbolic links in a directory unexpanded.

VLINK rd_slink(path) works just like rd_vlink, except it will not expand
symbolic links.

pfs_open(VLINK vl,int flags) and FILE *pfs_fopen(VLINK vl, char
*type) are identical to open and fopen in the C library except that instead of a
filename, they take a pointer to a Prospero virtual link structure and open the
file referenced by the link. Note that they currently do not work to create files;
indeed, they inherently can’t, since they accept a pointer to an already existing
link. pfs_open does not take the third optional mode argument that open
takes, since Prospero’s access control list mechanism does map well onto the
UNIX protection modes.

For files which are not already mapped into the local UNIX filesystem,
these functions work by retrieving the file as a temporary file; a reference to
this temporary file is then returned. In the current implementation, we do not
cache files; a new copy is retrieved every time you call pfs_open() or
pfs_fopen(). If you want to use the same data more than once (e.g., display it
via a paging program and then offer to save it), it will speed up your program
substantially if you know that pfs_open() and pfs_fopen() return file
references which you can run lseek() or fseek() on, respectively.

Until Prospero release Alpha.5.2, the pfs_open and pfs_fopen calls were
in libpcompat, not in libpfs.

4    Pcompat Library

The compatability library includes replacements for existing system calls and
library routines that interact with the directory service. The replacements
optionally resolve names using the Prospero file system. The behavior
depends on the value of the pfs_enable global variable. Possible values
are defined in pcompat.h and are described below.

The default Prospero installation procedure leaves the compatability
library in lib/pcompat/libpcompat.a. Programs linked with the
compatability library should also be linked with the pfs library, since the
compatability library uses some functions in libpfs.

9

As of this writing, the compatability library does not run on as many
machines as the pfs library does. Specifically, the compatability library is
known not to work on HP-UX and on AIX. Therefore, use of the pfs library is
suggested for maximal portability. The compatability library is not compiled
by default. (See the Prospero installation instructions for instructions on how
to compile it.).

Table 1: Settings for the pfs_enable global variable

 Value Meaning

PMAP_DIS
ABLE

Never resolve names within the virtual system

PMAP_EN
ABLE

Always resolve names within the virtual system

PMAP_CO
LON

Resolve names within the virtual system if they contain
a :

PMAP_ATS
IGN_NF

Resolve names within the virtual system by default, but
treat names beginning with an @ or full path names that
don’t exist in the virtual system as native file names

PMAP_ATS
IGN

Resolve names within the virtual system by default, but
treat names beginning with an @ as native file names

 

4.1    Entry Points

Entry points: closedir creat, execve, open, opendir,
readdir, scandir,
seekdir, stat, telldir, and pfs_access.

closedir, creat, execve, open, opendir, readdir, scandir, seekdir, stat, and
telldir are identical to the entry points with the same names in the standard C

library except that, depending on the value of the pfs_enable variable, file
names may be resolved using Prospero.

pfs_access(char *path,char *npath,int npathlen, int flags) accepts a
name, path, that is to be resolved using Prospero. pfs_access resolves the
name, selects an access method, mounts the appropriate file system or
retrieves the file if necessary, and returns a new name in npath that may be
passed to open. npath must be a buffer large enough to hold the new name,
and its size must be passed in npathlen. By setting flags, it is possible to
specify that the file is to be created if it does not exist (PFA_CREATE), or to
indicate that the file will be opened read only (PFA_RO). pfs_access returns
PSUCCESS (0) or PMC_DELETE_ON_CLOSE on success. A return value of
PMC_DELETE_ON_CLOSE indicates that the file has been cached on the local
system and that the calling application should delete the cached copy when
done with it. Any other return code indicates failure.

Warning: As of this writing, the PFA_CREATE flag has not been fully
implemented.

11

