
GameMaster Release 1.0

Programming GameMaster Rule Books

or

The Quotations of the Prophet Rhys

Version 1.0b3

Rhys Hollow and Quinn
2 December 1991

Programming GameMaster Rule Books i

Table of Contents

Table of Contents i
1. An Introduction to GameMaster 1
1.1. Network Capabilities 1
1.2. The Purpose of this Manual 1
1.3. The History of GameMaster 2
1.4. Contacting the Authors 2
2. An Overview of Rule Books 3
2.1. Game Events 3
2.2. Rule and Game Data Structures 3
2.3. Game Display 4
2.4. Game Dialogs 5
2.5. Game Environment 6
2.6. Rule Books and Memory 6
2.7. Version Numbering 6
3. The Resources 8
3.1. Resource ID Allocation 8
3.2. Required Resources 8
3.3. The GMRZ Resource 9
3.4. Optional Resources 12
4. The Game Event Record 13
5. The Game Events 17
5.1. Notation Conventions 17
5.2. Rule Book Open/Close Events 18
5.3. Game Open/Close Events 19
5.4. Game Communications Events 22
5.5. Game Control Events 23
5.6. Game Input Events 25
5.7. Game Return Events 28
6. Hints and Tips 31
6.1. GrafPorts, Dialogs and Windows 31
6.2. Drawing 31
6.3. Accessing QuickDraw Globals 31
6.4. Debugging 32
6.5. Standard State 32
6.6. Rule Book Miscellanea 32
6.7. How GameMaster Connects Games 33
7. The GameMaster Distribution 35
7.1. The GameMaster User’s Kit 35
7.2. The GameMaster Developer’s Kit 35
∞

Programming GameMaster Rule Books i

Programming GameMaster Rule Books ii

1. An Introduction to GameMaster

GameMaster is a Macintosh application that makes it very easy to create two player,

network capable games.    The principle behind GameMaster is very simple.

GameMaster itself is a standard Macintosh application that handles all of the usual

drudgery associated with programming a Macintosh.    All that is required of the game

author is to create a file that encapsulates the rules and display of the game.    The file is

known as the rule book.    These rule book files are placed in the same folder as

GameMaster.

When running GameMaster the user sees a menu that allows them to start    a game

using any of the available rule books.    Thus each game is played according to a

particular rule book.    A window is created in which the game is displayed.    The exact

operation of this game window is determined by the rule book.

1.1. Network Capabilities

Any properly written GameMaster rule book will automatically generate network

capable games.    The rule books have a very simple model of networking.

GameMaster handles all the usual horror associated with network programming.

GameMaster uses both AppleTalk (using ADSP) and MacTCP to communicate with

other GameMasters running on other Macintoshes.    The MacTCP alternative was

provided because it allows for world-wide game play.

1.2. The Purpose of this Manual

This manual was written to help Macintosh programmers learn how to write

GameMaster rule books.    It is provided bundled with a number of other files as the

GameMaster Developer’s Kit.    The rest of this manual is dedicated to describing

exactly what GameMaster expects of its rule books.
1.3. The History of GameMaster

GameMaster was written by Rhys Hollow (gurhs@uniwa.uwa.oz.au) in late 1991.    The

AppleTalk support was written by Marcus Jager (marcus@cs.uwa.oz.au).    The

MacTCP support is courtesy of Peter Lewis (nlewispn@cc.curtin.edu.au).    This manual

was written by Quinn (quinn@cs.uwa.oz.au) and based on Rhys’ programming docu-

Programming GameMaster Rule Books ii

mentation.    The game rules were written by Rhys (Othello, BattleShips, Connect 4),

Peter (Simple Talk, File Transfer, Global Thermonuclear War, Derf Ball, Dots and

Boxes), and Quinn (Chess and TicTacToe).

GameMaster was written in Think Pascal 4, with help from ResEdit 2.1.1.    The

program was mostly developed on a Macintosh Classic.    The documentation was

written in WriteNow 2.2.

1.4. Contacting the Authors

If you wish to contact the author of GameMaster you can Email Rhys at his address

above.    Please make sure you include the word GameMaster in the subject line.

If you are reporting bugs (Bugs!    What bugs!) please quote the system on which you

were running (ie hardware, system software, extensions) and the version of

GameMaster you were using.    Please report bugs in rule books to the author of the rule

book.

Please send any comments regarding this manual to Quinn at the address above.

∞

Programming GameMaster Rule Books ii

2. An Overview of Rule Books

A GameMaster rule book is a file of type ‘GMRB’ and creator ‘GMST’.    Its data fork

should be empty.    The resource fork contains a number of fixed resources that describe

the game, a resource that contains the code that embodies the game rules, and an

arbitrary number of rule book resources.    A more thorough description of the resource

fork’s contents can be found in Chapter 3.

2.1. Game Events

GameMaster works on the following principle.    When launched (and subsequently

when idle) it creates a list of all the rule books in the folder from which it was launched.

The user can then select New Game and choose the rule book that they would like to

use.    GameMaster opens the rule book’s resource fork, checks it for integrity, and then

loads the rule book’s code.    From then on the dialog between GameMaster and the rule

book is based around GameMaster calling the rule book whenever certain events

happen.    Unlike a standard Macintosh application, the rule book is not called for trivial

events.    GameMaster only calls the rule book for events that it can’t handle.    A

complete description of each event can be found in Chapter 5.    In addition rule books

can indicate to GameMaster that they are not interested in specific events.

2.2. Game Data Structures

Each time GameMaster calls a rule book it passes a reference to a data structure known

as the game event record.    This record contains information telling the rule book what

to do.    The rule book can also change the record in order to pass information back to

GameMaster.    The structure of the game event record is described in Chapter 4.

The first time it calls a rule book GameMaster allows the rule book to store a 4 byte

quantity into the game event record’s globals field.    Every subsequent time

GameMaster calls the rule book it will pass back that value in the globals field of the

game event record.    This allows the rule book to create a handle or pointer to its global

variables and access them on each event.

The rule book is shared between all games played with that particular set of rules.

Each instance of the rules (each game) has a game handle that stores the state of the

Programming GameMaster Rule Books ii

game.    GameMaster creates an empty handle and stores it in the game field of the game

event record.    The rule book is free to grow and shrink this heap block at will.

GameMaster expects that this block of memory will contain all of the relevant state

information required to start the identical game on a remote machine or to restore the

game from a saved file.    However, GameMaster sends a ge_Flatten event to warn the

rule book immediately before it relies on this fact.

2.3. Game Display

For each active game GameMaster creates a modeless dialog window that the game

uses to display the game state to the user.    The rule book provides two important data

structures used to create this window.    The first is a dialog item list.    GameMaster

bases the game’s window on this list.    The second is the width and height of the play

area as determine by the ge_InitRuleBook event.    The play area is a rectangle within

the game window with its top-left at (0,0) and its width and height determined by the

rule book.

GameMaster imposes certain restrictions on the size of the play area brought about by

the dialog procedure described in the next section.    Firstly the width of the play area

must be more than 135 pixels.    Secondly the play area must fit on the screen.    Unless

you want to support calculating the play area at run-time this means that it must fit on

the standard 9 inch screen of a Mac Classic (512 by 342).    Given that you lose 20

pixels to the menu bar, 20 pixels to the window title bar, and 40 to 50 pixels to

GameMaster’s controls, this means that the maximum height of the play area is about

260.

All game window updates are done through the dialog item list.    The rule book can

have control, PICT, ICON, button, checkbox, radio button, static text and edit items text

in this list.    These are updated automagically by the Dialog Manager.    The rule book

can also have user items for any dynamic components.    The rule book can then set each

user item’s update procedure on the ge_NewGame and ge_OldGame events.

Rule books can also add and remove menus from the menu bar and be notified when the

user selects these menu items.

2.4. Game Dialogs

GameMaster often needs to interact with the user.    The most common case of user

Programming GameMaster Rule Books ii

interaction is asking the user whether they would like to play a game.    As we all know

‘modal bad, modeless good’ so GameMaster was designed to support non-modal

interaction.    It achieves this by adding a small panel to the bottom of each game

window.

Three states of the Dialog Panel

When the game requires user interaction, GameMaster slides down this panel to reveal a

message and optionally some buttons.    This panel is used for two purposes.    Firstly it

can display a message informing the user of the status of the game (centre).    Secondly

it can display a mini-dialog (right).    From there the game does not continue until the

user dismisses the dialog by clicking on the buttons.    In both of these states the game is

known as dialoging.    When a game is dialoging no user input events are sent to its rule

book.

This Dialog Panel affects a rule book in three ways.    Firstly, the rule book designer

must take into account the size of this panel when laying out the rule book’s display.

Secondly, the rule book can display its own message and buttons in the panel using

ge_Ask events.    Lastly, any real-time rule book should note that when the Dialog Panel

is down user input to the game is ignored.

2.5. Game Event Environment

Before sending any events to the rule book GameMaster does the following things:–
• Calls SetPort to set the current GrafPort to that of the game’s window, except for events

that can be sent to a rule book when there is no current game ie ge_InitRuleBook and
ge_FinishRuleBook.

• Calls UseResFile to make the rule book’s resource file the first to be searched.
• Fills out the appropriate fields in the game event record

Note that there may be other resource files (specifically GameMaster’s and other rule

books’) in the resource search path.    If the rule book modifies its resource fork

(definitely not recommended) then it must be certain that it only modifies its own

resources.

2.6. Rule Books and Memory

The rule books share their heap with GameMaster.    Thus the rule books must be careful

Programming GameMaster Rule Books ii

about the amount of memory that they allocate.    As part of its required structure a rule

book must contain a resource that describes how much memory it uses, both to load the

rule book and to start a new game using that rule book.    GameMaster prevents the user

from playing a game unless there is sufficient memory to fulfil these requirements.

However, this does not mean the rule book will never run out of memory because other

rule books might overrun their memory allocations.

2.7. Version Numbering

GameMaster rule books can be connected to one another across networks.    It would be

very bad if GameMaster connected two incompatible version of a rule book.    To

prevent this the rule book indicates to GameMaster the following version numbers:–
• The rule book version number.
• The oldest version number of the rule book to which this rule book can be safely

connected.
• The version number of the GameMaster that this rule book was written for.
• The oldest version of GameMaster with which this rule book can be used.

Each version number is an integer (two bytes).    This integer is interpreted as a 4 digit

BCD number.    The first nibble is ignored and should be zero.    The second nibble is the

major version number, the third the minor version number and the fourth the bug fix

version number.

When GameMaster displays version numbers (such as in the about box) it displays each

of these nibbles in decimal separated by a period (‘.’).    For example a version number

$0123 yields version 1.2.3.

∞

Programming GameMaster Rule Books ii

3. The Resources

The resources in a rule book’s resource fork can be divided into three classes:    required

resources, optional resources and rule book resources.    Much of the rest of this chapter

is dedicated to describing the required resources, in particular the GMRZ resource.

The final section details the optional resources.    Rule book resources are entirely rule

book dependent.    However, it is necessary to first describe how required, optional and

rule book resources are distinguished.

3.1. Resource ID Allocation

The resource IDs less than 128 are reserved by the system.

The resource IDs between 128 and 999 are reserved for use by GameMaster.    This

leaves the resource ID range 1000 to 32767 for use by the rule book resources.

Note that all required and optional resources have IDs between 128 and 999.    Also note

that the rule book may contain certain system resources with IDs outside of the

allocated range, for example ‘vers’ 1 and 2, ‘ICN#’ -16455.

3.2. Required Resources

GameMaster requires that the rule book contain the following resources:–

‘GMRZ’ 128

This resource contains important information that GameMaster needs to know about

each rule book.    Its structure is quite complex and it is described in detail in the next

section.

‘PROC’ 128

This resource is the code that makes up the core of the rule book.    The resource must

start with a procedure with the following interface:–

procedure MyGameRules(var gameevent : gameEventRecord);

Naturally the procedure identifier (ie MyGameRules) is unimportant.

Programming GameMaster Rule Books ii

‘DITL’ 128

This dialog item list controls the overall layout of the window associated with any game

that uses this rule book.    The item list can contain any of the standard dialog items.

When GameMaster starts a new game it creates a modeless dialog based on this DITL.

GameMaster adds its own items after the rule’s items.    Thus the rule book should not

rely on the length of the item list.

Note that this DITL resource should be purgeable.    Also note that any secondary

resources (PICTs, ICONs, etc) are rule book resources and must have resource IDs

greater than 1000.

3.3. The GMRZ Resource

The GMRZ has a large number of fields of which the rule book designer should be

aware.    Each of the fields of the GMRZ resource is described in turn below.    Note that

the type identifiers are taken from the ResEdit 2.x template supplied as part of the

GameMaster Developer’s Kit.

PO3F Name of the Game

This string represents the name of the game that the rule book plays.    It is used to

display the name of the game in the about box.

PO7F Author

Your name.    Wow, you’re world famous!

PO7F Copyright String

This string is provided so you can legally retain your claim to fame.

PO3F ID String

This string identifies the rule book to GameMaster.    This string is used when

GameMaster connects with another GameMaster across the network.    It is compared

with the corresponding string on the remote machine to make sure that the rule    books

are the same.    This is important because the user can rename rule books from the

Finder and connecting two games based on different rule books would be bad!

HWRD Rule Book Version

Programming GameMaster Rule Books ii

This word is the version number of the rule book.    The format of this (and subsequent)

version numbers was described in Section 2.7.

HWRD Required Rule Book Version

This word is the oldest version of this rule book with which this rule book can safely be

connected.

HWRD GameMaster Version

The version number of GameMaster under which this rule book was developed.

HWRD Required GameMaster Version

The oldest version of GameMaster with which this rule book can be safely used.

DLNG Rule Book Partition

The number of bytes that must be free for this rule book to be used.    If there are no

games currently being played with this rule book, GameMaster adds this number to the

Game Memory Partition to determine the total amount of space required for a new

game.

DLNG Game Memory Partition

The number of bytes taken by each new game using this rule book.

BBITDisallow Save

If this bit is set then the user will not be able to save games played with this rule book.

Note that unless the Disallow Connect bit is also set the rule book can still be sent

ge_OldGame events as part of the network connect process.

BBITDisallow Connect

If this bit is set then the user will not be able to connect games made with this rule book.

You can set this for rule books that do not support networking.

BBITDisallow Restart

If this bit is set then the user will not be able to restart games played with this rule book.

Programming GameMaster Rule Books ii

BBITDisallow Swap

If this bit is set then the user will not be able to swap games played with this rule book.

Swapping is only possible when two games are connected and it involves changing

which player the local machine is playing.    Note that unless the Disallow Connect bit is

also set the rule book can still be sent ge_Swap events as part of the network connect

process.

BBITNo Idle Events

If this bit is set then no ge_Idle events will be sent to this rule book.    Idle events are

only useful if you wish to animate your display or write a real-time game.    Most rule

books can safely set this bit.

BBITNo SleepQuery Events

If this bit is set then no ge_SleepQuery events will be sent to this rule book.

ge_SleepQuery events are used to time the idle events and change the shape of the

cursor.    Set this if you never change the shape of the cursor and you do not require idle

events.

BBITReserved0

This bit is reserved for future expansion and should be clear.

BBITReserved1

This bit is reserved for future expansion and should be clear.

DBYT Reserved2

This bit is reserved for future expansion and should be clear.

DWRD Reserved3

This bit is reserved for future expansion and should be clear.

3.4. Optional Resources

‘PICT’ 128

If this picture is present GameMaster will put it in the rule book’s about box.    The

Programming GameMaster Rule Books ii

picture must be wider than 200 pixels and otherwise such that the about box fits on the

screen.

∞

Programming GameMaster Rule Books ii

4. The Game Event Record

The game event record has the following structure:–
gameEventRecord =

record

event: gameEventType;

game : Handle;

globals : Handle;

where : Point;

modifiers : integer;

message : Str255;

but1, but2 : buttonStr;

int1, int2 : integer;

long1 : longint;

modified : boolean;

myturn : boolean;

version : integer;

dialoging: boolean;

dumspace: array[1..10] of longint;

end;

The following sections describe each field in detail.

event : gameEventType; Read/Write

The event field is set appropriately every time GameMaster calls the rule book.    The

value of the event field determines the semantics of the message passed to the rule

book.    The definition of gameEventType is as follows:–
gameEventType = (ge_InitRuleBook, ge_FinishRuleBook,

ge_NewGame, ge_OldGame, ge_Swap,ge_Restart, ge_Close,

ge_Activate, ge_Deactivate, ge_UpdateMenus, ge_Menu,

ge_MouseDown, ge_KeyDown, ge_Idle, ge_SleepQuery,

ge_ConnectionMade, ge_MessageReceived, ge_ConnectionLost,

ge_Ask, ge_Answer, ge_Error, ge_SendMessage,

ge_Flatten);

The semantics of each of the values of the event field is discussed in Chapter 5.    The

rule book can also modify the event field in order to tell GameMaster to perform certain

actions.

If the rule book receives any game event records with the event field set to a value not

in this list then it should ignore the event.

game : Handle; Read Only

Programming GameMaster Rule Books ii

The game field holds a handle to the a heap block that the rule book uses to store the

state information (or game record) for each game.    The rule book must cast the handle

to the appropriate type of its game storage.    The handle is both allocated and

deallocated by GameMaster but the rule book is free to resize it at will.    If the game

field is nil then this game record has not yet been created or has already been destroyed.

globals : Handle; Read/Write

The globals field can be used by the rule book to hold any arbitrary data it requires.

Normally this would be either a pointer or a handle to its global data.    The rule book

must cast the globals handle to the type of the globals storage that it uses.    The globals

field is the same for every game played with the rule book.    The only time that the rule

book is called without a valid globals field in the game event record is on

ge_InitRuleBook at which time it is expected to set it up.

where : Point; Read Only

The where field is used to communicate the coordinates of the mouse in local

coordinates on certain events.

modifiers : integer; Read Only

The modifiers field is used to communicate the current modifiers to the rule book on

certain events.    The bits in the field have the same meaning as the modifiers field in the

Toolbox EventRecord.

message : str255; Read/Write

The message field is used to hold the text of messages displayed to the user and also

messages sent between rule books connected via the network.    The length of the string

in the message field should always be less than 250 characters.

but1, but2 : buttonStr; Read/Write

The but1 and but2 fields are used to hold the labels for buttons that the rule book can

get GameMaster to display using the ge_Ask event.    The buttonStr type is defined as

follows:–
buttonStr = string[7]

Programming GameMaster Rule Books ii

The buttons are of a fixed size and you should make sure that your button strings fit.

int1, int2 : integer; Read/Write

The int1 and int2 fields are used to hold generic integers.    The semantics of these fields

is event dependent.

long1 : longint; Read/Write

The long1 field is used to hold a generic longint.    The semantics of this field is event

dependent.

modified : boolean; Read/Write

The modified field is used to keep track of whether the game referenced by the game

event record has been modified since it was last saved.    Set this field to true if you

modify anything important in the game state.

myturn : boolean; Read/Write

The myturn field is used to keep track of whether GameMaster should send you certain

events.    If the game has not been connected then the rule book should set myturn to

true to receive all events.    If the game has been connected then the state of myturn

determines which game is in control.    If myturn is false then GameMaster will not send

you the following events:–
• ge_MouseDown
• ge_KeyDown

The reason why myturn exists is to prevent all sorts of horrible race conditions while the

connection is being arbitrated.

If the local game is in control then the local myturn field will be true.    If the remote

game is in control then the local myturn field will be false.    If both games want control

then both games should have myturn set.    It would be extremely unusual for both

games to have myturn false.

version : integer; Read Only

The version field holds the version number of the GameMaster that is executing this

rule book.    The format is the same as that described in Section 2.7 and used in the

GMRZ resource.

Programming GameMaster Rule Books ii

dialoging : boolean; Read Only

This boolean is true if GameMaster was displaying a dialog at the time it sent the event

to the rule book.    If you try to display a dialog while GameMaster is already displaying

your dialog will not be displayed.

dumspace : array [1..10] of longint; no access

The dumspace field provide space for future expansion of the GameMaster/rule book

interface.    You should neither change nor rely on the contents of this array.

∞

Programming GameMaster Rule Books ii

5. The Game Events

When GameMaster detects certain conditions, or requires specific information, it sends

the rule book an event.    The meaning of each event is determined by the event field of

the game event record.    The events can be grouped into 6 classes:    Rule Book

Open/Close, Game Open/Close, Game Communications, Game Control, Game Input,

Game Return.

5.1. Notation Conventions

Each event described has a summary in the following form:–

gameEventRecord

field fieldType ∫ comment

field fieldType fi comment

field fieldType ‹ comment

field fieldType € comment

The first column is the field name.    The next column is the type of the field.    The third

column shows who is responsible for setting the field.    The last column gives a

comment as to what the field contains.

If the field is marked with a congruent (∫) then the contents of that field are set to a

particular value.    The rule book can rely on that value being present but must not

change it.

If the field is marked with an out arrow (fi) then the rule book must set the field to an

appropriate value before returning to GameMaster.    Unless otherwise noted the value

of the field on entry is undefined.

If the field is marked with an in arrow (‹) then the field contains an appropriate value on

entry.    Unless otherwise noted GameMaster doesn’t care what the value is when you

return.

If the field is marked with a bidirectional arrow (€) then GameMaster sets the field to a

value which the rule book can use.    The rule book must update (if necessary) that value

before it returns.

If the field is missing then the value of the field is undefined and the rule book must

neither rely on nor change it.

Programming GameMaster Rule Books ii

5.2. Rule Book Open/Close Events

These Rule Book Open/Close Events are special in that they are the only events that can

be sent to the rule book without a valid game.    Thus the game field of the game event

record is nil and thePort is not set to a game window.

ge_InitRuleBook

GameMaster guarantees that the first event it will ever send to a rule book is the

ge_InitRuleBook event.    The rule book can store any 4 byte value in the globals field

and perform any other initialisation.    Normally the rule book would allocate any global

data on the heap and store a pointer or handle to it in the globals fields.

gameEventRecord

event gameEventType ‹ ge_InitRuleBook

version integer ∫ GameMaster version

globals Handle fi handle to rule globals

int1 integer fi play area width

int2 integer fi play area height

dialoging boolean ∫ true if dialog currently displayed

On return from this event GameMaster expects that the width of the game’s play area be

stored in int1 and the height in int2.

ge_FinishRuleBook

GameMaster guarantees that the last event it will ever send to a rule book (before

closing its resource fork) is the ge_FinishRuleBook event.    The rule book should use

this opportunity to deallocate any global storage it has.    Setting the globals pointer to

nil is also a good idea.

gameEventRecord

event gameEventType ‹ ge_FinishRuleBook

version integer ∫ GameMaster version

globals Handle ‹ handle to rule globals

fi nil

dialoging boolean ∫ true if dialog currently displayed

5.3. Game Open/Close Events

Programming GameMaster Rule Books ii

The Game Open/Close Events provide the basic control necessary to start new and old

games, restart games and close games.

ge_NewGame

When the user creates a game using the New Game menu item GameMaster sends this

event to the rule book.    GameMaster has already created a zero sized handle and stored

it in the game field.    The rule book should grow this handle and initialise it to the

appropriate initial state.

gameEventRecord

event gameEventType ‹ ge_NewGame

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean ∫ false

myturn boolean ‹ true

fi whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

On return GameMaster expects that the game handle be filled out with an initial game

state.

ge_OldGame

When the user resumes a saved game GameMaster sends the ge_OldGame event to the

rule book.    The game handle has already been filled out with the saved game state.

The rule book should overwrite any fields in the game which are inappropriate to load

from disk and return.

gameEventRecord

event gameEventType ‹ ge_OldGame

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean ∫ false

myturn boolean ‹ true

fi whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

Programming GameMaster Rule Books ii

The ge_OldGame event is also used as part of the network connect process.

ge_Swap

The ge_Swap event is sent to a rule book when the user chooses Swap from the

GameMaster menus.    Swapping is only meaningful when two games are connected.

The idea behind swap is that it should change what side the each player is playing.    For

example, if Fred was playing Black and Sheila white, then after a swap Fred would be

playing White and Sheila black.

gameEventRecord

event gameEventType ‹ ge_Swap

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The ge_Swap event is also used as part of the network connect process.

ge_Restart

The ge_Restart event is sent to a rule book when the user chooses Restart from the

GameMaster menus.    If the game is connected then both sides should organise to be

playing different players after the restart.

gameEventRecord

event gameEventType ‹ ge_Restart

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The rule should reinitialise the contents of the game handle to that of a new game.

ge_Flatten

Programming GameMaster Rule Books ii

GameMaster sends the ge_Flatten event to a rule book when it needs to use the contents

of the game handle.    Normally this means that the game is about to be saved or sent

across the network.    The game handle must remain ‘flat’ until another event is sent to

the rule book.

gameEventRecord

event gameEventType ‹ ge_Flatten

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

dialoging boolean ∫ true if dialog currently displayed

If the game state as recorded in the game handle is out of date then the game should

update the game handle.    The ge_Flatten event gives the rule book writer the option of

storing pointers in the game record for efficiency while still allowing games to be saved

and connected across the network.

ge_Close

GameMaster sends the ge_Close event to a rule book when the user closes one of its

game windows.

gameEventRecord

event gameEventType ‹ ge_Close

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

dialoging boolean ∫ true if dialog currently displayed

This event is simply a chance for the rule book to do any cleaning up not covered by

other events.    Specifically, if the rule book stores pointers in the contents of the game

handle (and only there) it should note that the game handle is about to be disposed.

5.4. Game Communications Events

The Game Communications Events provide the framework by which rule books on

separate machines can talk.

Programming GameMaster Rule Books ii

ge_ConnectionMade

The ge_ConnectionMade event is sent to a rule book when the game referenced in the

game event record is connected to to a remote game.    GameMaster uses the game state

stored in the game record to ensure that both the local and remote players are playing

the same game.

gameEventRecord

event gameEventType ‹ ge_ConnectionMade

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean ∫ true if the game has been modified

myturn boolean ‹ true

fi whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The game should update the game handle to allow for the fact that messages may now

be sent and received.

ge_ConnectionLost

The ge_ConnectionLost    event is sent to a rule book when the connection to another

game is lost for some reason, possibly network troubles, the remote machine has

crashed, or the other player has just closed his end.

gameEventRecord

event gameEventType ‹ ge_ConnectionLost

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean ∫ true if the game has been modified

myturn boolean ‹ whether it’s the game’s turn

fi true

dialoging boolean ∫ true if dialog currently displayed

ge_MessageReceived

The ge_MessageReceived event can only be sent if the game is connected to another

remote game, that is between a ge_ConnectionMade and a ge_ConnectionLost event.

When a game receives a message it should perform any action associated with that

Programming GameMaster Rule Books ii

message.

gameEventRecord

event gameEventType ‹ ge_MessageReceived

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

message Str255 ‹ message from the remote game

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The other connection event is ge_SendMessage.    This is a Game Return Event and is

discussed in Section 5.7.

5.5. Game Control Events

The Game Control Events are designed to allow rule books to use menus.    They also

give the rule books notification of window (de)activation.    The rule books can also use

these events for their own purposes.

ge_Activate

The ge_Activate event is sent to a rule book when one of its game windows is activated

(ie brought to the front).

gameEventRecord

event gameEventType ‹ ge_Activate

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean ∫ true if the game has been modified

myturn boolean ∫ whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The rule book should perform any action associated with bringing the window to the

front.    One probable action is to add menus to the menu bar.    Note that if the rule book

adds menus it should make sure that the menu ID is greater than 1000 and call

DrawMenuBar.

Programming GameMaster Rule Books ii

ge_Deactivate

The ge_Deactivate event is sent to a rule book when one of its game windows is

deactivated (ie another window is brought to the front).

gameEventRecord

event gameEventType ‹ ge_Deactivate

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modified boolean ∫ true if the game has been modified

myturn boolean ∫ whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The rule book should perform any action associated with deactivating the window.

One probable action is to remove menus added on the ge_Activate.    Note that if the

rule book removes menus it should redraw the menu bar.

ge_UpdateMenus

GameMaster sends this event to the rule book associated with the active game window

when the user clicks in the menu bar or selects a command key.    This gives the game

an opportunity to update the menus before the user sees them.

gameEventRecord

event gameEventType ‹ ge_UpdateMenus

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modifiers integer ∫ event modifiers

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The rule book should dim, underline, check, etc any menus and/or menu items on

menus that it has added to the menu bar.

ge_Menu

When the user selects a menu item, either through the menu bar or its command key

Programming GameMaster Rule Books ii

equivalent, from one of the menus that GameMaster is not responsible for it sends the

ge_Menu event to the rule book associated with the active game window.

gameEventRecord

event gameEventType ‹ ge_Menu

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modifiers integer ∫ event modifiers

int1 integer ∫ menu id

int2 integer ∫ item number

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The rule book should perform any action associated with the menu selection.

5.6. Game Input Events

The Game Input Events are used to send user input to the rule books.

ge_MouseDown

The ge_MouseDown event is sent whenever the user clicks in one of the enabled items

in the game’s item list.    Note that GameMaster has already called DialogSelect and sets

int1 to the item number of the selected item.

gameEventRecord

event gameEventType ‹ ge_MouseDown

version integer ∫ GameMaster version

globals Handle ∫ handle to rule globals

game Handle ∫ game record handle

where Point ‹ location of mouse down (local coords)

modifiers integer ∫ event modifiers

int1 integer ∫ dialog item number

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The rule book can perform any action associated with the mouse down.

Programming GameMaster Rule Books ii

ge_KeyDown

When the user presses a key a ge_KeyDown event is sent to the rule book associated

with the active game window.    The modifiers are sent in the modifiers field.    The

ASCII of the key pressed is in int1 and the key code in int2.

gameEventRecord

event gameEventType ‹ ge_KeyDown

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modifiers integer ∫ event modifiers

int1 integer ∫ char code

int2 integer ∫ key code

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

Note that command keys equivalents are intercepted by GameMaster and are sent as

ge_Menu events.

ge_Idle

The ge_Idle event is sent to each game periodically.    It allows games to perform events

in pseudo-real time.

gameEventRecord

event gameEventType ‹ ge_Idle

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

modifiers integer ∫ event modifiers

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

ge_SleepQuery

The ge_SleepQuery is only sent to the game with the frontmost window and performs

two functions.    Firstly it allows the rule book to specify how often it would like to

receive ge_Idle events.    Secondly it gives the rule book an opportunity to force an idle

Programming GameMaster Rule Books ii

event if the mouse moves.    This is useful when the rule book changes the cursor shape

to reflect what it is over.

gameEventRecord

event gameEventType ‹ ge_SleepQuery

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

int1 integer fi the number of ticks before the next idle event

long1 longint ‹ nil

fi a region handle describing the current cursor region

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

GameMaster will send an idle event to the rule book if either the mouse leaves the

cursor region or int1 ticks pass.

GameMaster will dispose of the region returned in long1.

ge_Answer

The ge_Answer event is sent to a rule book when the user presses one of the buttons

brought up by the ge_Ask.

gameEventRecord

event gameEventType ‹ ge_MouseDown

version integer ∫ GameMaster version

game Handle ∫ game record handle

globals Handle ∫ handle to rule globals

int1 integer ‹ which button was pressed

modified boolean € true if the game has been modified

myturn boolean € whether it’s the game’s turn

dialoging boolean ∫ true if dialog currently displayed

The value of int1 is 1 if button 1 was pressed and 2 if button 2 was pressed.    If int1 is 0

then the last ge_Ask failed to complete.    This is most probably because GameMaster is

already displaying its own dialog.    Do not, under any circumstances, respond to this by

sending another ge_Ask.    You can check the value of the dialoging boolean to

determine if GameMaster is already displaying a dialog.

Programming GameMaster Rule Books ii

5.7. Game Return Events

A rule book can send events back to GameMaster to request certain actions.    It does

this by changing the event field of the game event record.    The event record thus

returned is known as a Game Return Event.    Only the fields specific to each Game

Return Event are documented below.    If it is not mentioned then a field retains the

meaning associated with the original event.

ge_SendMessage

The ge_SendMessage event can be sent back on any event after (and including) the

ge_ConnectionMade and before (but not including) the ge_ConnectionLost.

gameEventRecord

event gameEventType ∫ ge_SendMessage

message Str255 fi message to send to remote game

After receiving a ge_SendMessage, GameMaster will send a ge_MessageReceived to

the remote game with the message set to the message returned.

Note that the message string is limited to 250 characters even though 255 characters are

allocated for it.

ge_Error

The ge_Error event can be sent back on any event.    The rule book uses this event to

signal that an unrecoverable (bad!) error has occurred.

gameEventRecord

event gameEventType ∫ ge_SendMessage

message Str255 fi error message

int1 integer fi error number

Upon receiving a ge_Error, GameMaster will notify the user of the error and shut down

the game associated with that message.    Rule books should most probably be aware

that, at the moment, GameMaster completely ignores ge_Error events!    It was provided

purely as a mechanism for rule books to be compatible with a future GameMaster with

improved error handling.

ge_Ask

Programming GameMaster Rule Books ii

The ge_Ask event can be sent back by the rule book to ask the user a simple question.

gameEventRecord

event gameEventType ∫ ge_SendMessage

message Str255 fi question to ask

but1 buttonStr fi string for first button

but2 buttonStr fi string for second button

Upon receiving a ge_Ask, GameMaster will put up a dialog asking the user a question.

The message is displayed.    If but1 is not empty then a button is displayed with that text.

If but2 is not empty then a button is displayed with that text.    GameMaster waits for the

user to press one of the buttons and then sends a ge_Answer event.    If no button is

displayed then the user must simply wait.    The rule book can cancel this wait state by

sending a ge_Ask event with message, but1 and but2 all empty.

To be compatible with the dialogs built in to GameMaster but1 should be ‘No’ or

‘Cancel’ and but2 ‘OK’ or ‘Yes’.    This is obviously subject to the semantics of the rule

book.

∞

Programming GameMaster Rule Books ii

6. Programming Rules: Hints and Tips

This chapter is a collection of hints and tips for programming GameMaster rule books.

6.1. GrafPorts, Dialogs and Windows

Before calling the rule book GameMaster sets the port to the game window.    The rule

can use GetPort to find the address of this GrafPort.    Because a WindowRecord is an

extension of a GrafPort and a DialogRecord is an extension of a WindowRecord the rule

can cast the result of the GetPort to a WindowPeek or DialogPeek.    Note that Inside

Macintosh defines GrafPtr, WindowPtr and DialogPtr to be equivalent types.

6.2. Drawing

One of the hardest parts of writing a rule book is giving the user item update procedures

enough information to draw the item.    The user item update procedure has the

following interface:–
procedure UserItemUpdate(w : WindowPtr; itemNo : integer);

This gives the procedure access to the WindowRecord (by casting w to a WindowPeek

and indirecting) which in turn gives access to the refcon.    The rule book can place the

game handle into this refcon (on a ge_NewGame/ge_OldGame), thereby giving the

procedure access to the game handles contents.    The rule book can also store the

globals handle in its game record.    This gives the procedure access to the rule book’s

globals.

6.3. Accessing QuickDraw Globals

Theoretically the rule books should have a valid A5 world.    This means that it can quite

easily access GameMaster’s QuickDraw globals.    It should not modify them or access

the application globals.

At the moment we can’t get Think Pascal to do this for us nicely.    However, we do

supply a unit called QuickDrawRules.p that gives rule books easy access to the

QuickDraw globals.

Programming GameMaster Rule Books ii

6.4. Debugging

Sorry guys but you can’t use the Think Pascal integrated debugger to debug your rule

books.    At the moment it’s MacsBug only.    However to help you GameMaster exports

a symbol (ShutDownGameMaster).    When your rule book (or for that matter

GameMaster) crashes you can enter ‘g ShutDownGameMaster ’ to quit GameMaster

gracefully, shutting down MacTCP as you go.

Do not enter ‘g ShutDown’ for short.    It’s not much fun!

6.5. Standard State

We have found it convenient to maintain three state variables in our game records.

They are:–
• connection_state (local or remote)
• local_player (black or white) If connection_state is remote then local_player determines

who we’re playing.
• player_to_move (black or white) The player who should move next.

Thus you can set myturn using:–

myturn :=

(connection_state=local) or

((connection_state=remote) and

(local_player=player_to_move));

6.6. Rule Book Miscellanea

A collection of important things to remember:–
• Always make you resource IDs greater than 1000.    ResEdit 2.x has the annoying habit

of giving new created resources the default ID of 128.    This is especially dangerous
when you create a PICT item using the nice DITL editor.

• Menu IDs must be greater than 1000.    Remember that there is a difference between
menu IDs and the ID of their menu resource.    Learn how to set the menu ID in ResEdit
(select ‘Edit Menu & MDEF ID’ from the ‘MENU’ menu).

• Remember to enable a dialog item if you want to receive mouse clicks on it.
• Remember you do not need to track dialog controls.    However if you simulate a button

using a user item you should track it properly (ie simulate the behaviour of toolbox
buttons).

• Remember that the game handle you are passed on a ge_NewGame is a valid empty
handle.    Call SetHandleSize to increase its size.

Programming GameMaster Rule Books ii

• Check error codes when calling the ToolBox (Hey, I sound like DTS!).    Return a
ge_Error event if you encounter a situation you cannot handle sensibly.

• Pascal is inherently safer than C.

6.7. How GameMaster Connects Games

If you follow the guidelines outlined above (and the interface defined in the previous

chapters) GameMaster will organise to connect your game through the network

automatically.    How it does this is documented here for your interest only.

Imagine GameMaster running on two machines, one called Eriodon and the other

Rocky.    The user of Eriodon starts a game and connects to Rocky.    The following

happens:–
• The Eriodon GameMaster sends a ge_Flatten to its local rule book to make sure that the

game handle is the most up to date available.
• The Eriodon GameMaster sends the contents of the game handle to the Rocky

GameMaster.
• The Rocky GameMaster starts a game.    If the rule book did not already have a running

game it sends a ge_InitRuleBook to it.    Regardless it sends a ge_OldGame to the rule
book using the state supplied by the Eriodon GameMaster.

• The Rocky GameMaster then sends a ge_Swap its local rule book.    This ensures that
the two players are playing on different sides.

• Both GameMasters then send ge_ConnectionMade to the games.

From here on in the rule books are expected to keep their game records ‘in synch’ by

exchanging messages.

∞

Programming GameMaster Rule Books ii

7. The GameMaster Distribution

7.1. The GameMaster User’s Kit

The basic GameMaster is distributed as GameMaster User’s Kit which contains:–
• GameMaster    The main application.
• The GameMaster User’s Manual    A simple manual to help you use GameMaster.
• Connect 4    Rhys’ masterpiece.
• Othello    Cute and fun.
• BattleShips    A classic two player game (but only for networked machines).
• Dots and Boxes    Mind bending.
• Global Thermonuclear War    Realistic.
• DerfBall    A devil of a game.
• Simple Talk    Useful but not really a game.
• File Transfer    A demonstration of just how much we expect others to abuse the concept

of GameMaster.
• Chess    A classic.
• TicTacToe    Simple stuff.
• Empire    If Jager ever finishes.

7.2. The GameMaster Developer’s Kit

The GameMaster Developer’s Kit contains the following files:–
• Programming GameMaster Rule Books    This manual.
• GameTypes.unit    The Pascal interfaces needed to write GameMaster rules.
• GMRZTemplate.rsrc    A ResEdit template to add to your ResEdit Preferences file to

help you edit GMRZ resources.
• The source code to all of the games distributed in the GameMaster User’s Kit.
• A number of Pascal units useful for developing rule books.

∞

Programming GameMaster Rule Books ii

