
Macintosh
Technical Notes

Developer Technical Support

#239: Inside Object Pascal

Written by: Keith Rollin June 1989

This Technical Note briefly explains why Object Pascal and MacApp should only be used to write
applications and MPW tools.
__

Although Pascal can be used to write desk accessories, drivers, XCMDs and other types of stand–
alone code, and Object Pascal is an extension of Pascal, Object Pascal cannot be used to write
anything other than an application. This limitation is due to the fact that Object Pascal method
dispatching relies on a valid A5 pointing to a jump table. Because MacApp is written in Object
Pascal, this limitation applies to it as well.

Once Over Lightly

Object methods cannot always be called directly. To explain why this is so, let’s take a case from
MacApp. Part of the way MacApp works includes defining TView objects that can draw themselves.
Whenever an update event occurs, MacApp traverses the list of TView objects that are installed in a
window and calls the Draw method for each one. However, how does Pascal know which Draw
method to call? Does it call TYourView.Draw? Does it call TView.Draw? There is no way to
know, at compile time, what TView objects and descendants of TView will be passed to the MacApp
update routine. Therefore, there is no way to determine the appropriate Draw routine at compile time
and generate a direct call to it.

Object Pascal solves this problem by maintaining data structures called Class Info Tables for each
Object Class defined. These Class Info Tables not only contain information about the correct
procedure to call whenever a message is sent to an object, but they also contain information used to
create a new instance of that object.

The mechanism for this dispatching is quite complex and not described here. However, the main
point is that the mechanism absolutely relies on special jump table entries. These jump table entries
are used to dynamically map method calls to the correct procedure, using the information found in the
Class Info Tables. Since desk accessories, drivers, and XCMDs, by their very nature, cannot have a
jump table, you cannot use Object Pascal to create them.

Object Pascal can be used to write MPW tools, and, in fact, was used to create the MABuild and
PostRez tools that come with MacApp 2.0.

#239: Inside Object Pascal of 21

Conclusion

For more information on how Object Pascal works, I highly recommend the article by Ken Doyle,
“Introduction to Object Pascal,” anthologized in The Complete MacTutor, Volume 2. However, keep
in mind that this information is already slightly out of date, and should not be counted on to be
completely accurate at this time. In general, however, it is a good description of what is actually
happening when a method call is made.

Further Reference:
__

• Inside Macintosh, Volume II-53, The Segment Loader
• The Complete MacTutor, Volume 2, “Introduction to Object Pascal”, p. 336
• Macintosh Technical Note #105, MPW Object Pascal Without MacApp
• Macintosh Technical Note #110, MPW: Writing Stand-Alone Code
• Macintosh Technical Note #220, Segment Loader Limitations

#239: Inside Object Pascal of 22

