
Lemur Documentation p. 1

Acknowledgements

Lemur is based on mqan, a tool developed
by Robert Maher and James Beauchamp at
the University of Illinois.

Macintosh gurus—Kurt Hebel, John Brewer,
Dan Walkowski

Sinusoidal modeling guru—Lippold Haken

Overview
Sinusoidal modeling

Lemur is based on the principal of sinusoidal modeling, especially the
premise that any periodic signal can be reproduced by a summation of sine
waves. During analysis, Lemur performs a series of Fast Fourier Transforms
(FFT’s) on a samples file to derive a set of time-varying sine waves. During
synthesis, Lemur synthesizes these sine waves and adds them together to
produce a new samples file.

Lemur Documentation p. 2
McAulay-Quatieri technique

In a 1985 technical report from M. I. T. Lincoln Labs, McAulay and Quatieri
proposed a sinusoidal analysis technique for speech processing. The basic
premise of the MQ technique is that a sound can be represented by a
collection of tracks, each of is a sine wave oscillator with time-varying
amplitude and frequency. To construct these tracks, FFT’s are performed on
the signal being analyzed at regular intervals, called frames. Amplitude
peaks in the resulting spectra are identified. These peaks are the most
prominent frequencies in the sound at that instant. The peaks in adjacent
frames are compared and matched. A continuous chain of these matches is a
track. To ensure smooth tracks, the MQ analysis minimizes the difference
between the frequencies of the peaks being matched. A peak that is not
matched represents either the birth or death of a track.

Lemur Documentation p. 3

Lemur extensions

Lemur provides some extensions to the basic McAulay-Quatieri technique.

Frequency Bins

The original MQ paper attempted to model psychoacoustic masking effects
by suggesting that an amplitude threshold for peak detection should be based
on the loudest peak in each frame. In other words, when the sound is loud,
only loud peaks need to be represented, since quieter ones will be masked.
When the sound is quiet, the quieter peaks are much more important.
Unfortunately, this global threshold ignores the importance of frequency in
masking effects. For example, a high frequency rarely masks a low one.
Lemur provides a refinement of the original MQ amplitude threshold by
breaking the frequency domain into logarithmically-sized bins. The loudest
peak in each bin is determined, and an amplitude threshold for each bin is
based on its loudest peak. This allows quiet peaks to be ignored in a bin
containing loud peaks, while detecting quiet peaks in a bin without loud
peaks.

Dormancy

In examining the results of an MQ analysis, one often observes a track
which dies out and another track which is born a few frames later at roughly
the same frequency. These are best understood as two portions of the same
track. To facilitate this representation, Lemur allows tracks to lie dormant for
a given number of frames before dying out. A dormant track has zero
amplitude, but participates in peak matching. When a dormant track is
connected to a live peak, Lemur interpolates to the new frequency and
amplitude.

Analysis

During analysis, Lemur analyzes an AIFF
samples file and creates an MQ file. While
the analysis is running, the graph window
displays the tracks as they are created. The
smaller window gives you an idea of how
long you will have to wait.

Lemur Documentation p. 4
Spectrum

The Spectrum dialog box allows you to control the Fast Fourier
Transformation (FFT).

FFT LENGTH • In order to take advantage of various symmetries, the FFT
size is always a power of two. FFT length is always a tradeoff: A larger FFT
gives more frequency accuracy, but averages over a longer period of time,
which means poorer representation of transients.

WINDOW LENGTH • The input to each FFT is a windowed set of samples
from the input file. The tradeoffs discussed above for FFT length also apply
here. The window length must be smaller than the FFT length.

KAISER WINDOW PARAMETER • Lemur uses a Kaiser windowing function.
Those of you who are familiar with the Kaiser window may adjust its
parameter, which controls the shape of the window. Most users will never
touch this option.

HOP SIZE • Between frames, Lemur “hops” over by a given number of
samples. The hop size is generally smaller than the FFT length, so that each
sample is involved in several FFT’s. This is especially important when you
intend to time stretch during synthesis.

INPUT SCALING • Lemur automatically scales the input file assuming that it
has a full volume range. You can specify another input scaling if you wish.

Lemur Documentation p. 5

Peak Selection

The Peak Selection dialog box controls various aspects of peak selection and
track formation.

NUMBER OF FREQUENCY BINS • Lemur divides the frequency spectrum
generated by the FFT into a number of frequency bins, and performs peak
detection on each bin separately. The bins are logarithmically-sized, with the
smallest bins containing the lowest frequency peaks. For an 1024 point FFT,
the following bin arrangements are possible:

of bins bin sizes

1 1024
2 512 + 512
3 256 + 256 + 512
4 128 + 128 + 256 + 512
5 64 + 64 + 128 + 256 + 512
6 32 + 32 + 64 + 128 + 256 + 512
7 16 + 16 + 32 + 64 +128 + 256 + 512
8 8 + 8 + 16 + 32 + 64 + 128 + 256 + 512
9 4 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512

Each bin must contain at least four points of the frequency spectrum. A
larger FFT size means more frequency resolution and allows more frequency
bins.

THRESHOLD • In addition to the time-varying threshold for peak detection
which was discussed above, Lemur imposes an additional, constant
threshold. This constant threshold is meant to represent the noise floor of the
signal. The quietest allowable peak is always determined by the maximum
of the two thresholds.

RANGE • Lemur locates the loudest peak in each frequency bin and subtracts
the Range from its amplitude to determine the peak detection threshold.
Reducing the range generally means an overall reduction in the number of
peaks, but can have a detrimental effect on the quality of the synthesized
sound.

DORMANCY • This setting controls the number of frames a track can lie
dormant before actually dying out. With larger dormancy settings, the
analysis will proceed more slowly, as Lemur attempts to match the dormant
tracks at each frame. A higher dormancy will also delay the initial
appearance of the tracks in the graph window.

CAPTURE RANGE • Lemur imposes a neighborhood for peak matching which
varies with frequency. The default value seems to work fine.

Synthesis

Lemur Documentation p. 6

During Synthesis, Lemur examines an MQ
file and produces a new AIFF samples file.
While the synthesis is running, Lemur
displays the tracks as they are read from the
MQ file.

Scaling and shifting

One of the most important features of sinusoidal techniques is the ability to
perform various transformations which are difficult in the time domain.
Lemur provides three transformations during synthesis.

TIME SCALING is performed by adjusting the temporal spacing between
frames. Unlike playing your 33 RPM records at 45 RPM, Time Scaling
changes the duration of your sound without changing its pitch. If
lengthening your sound produces strange artifacts, try re-analyzing with a
smaller hop size.

Lemur Documentation p. 7

FREQUENCY SCALING multiplies every frequency in the MQ file by a given
value before synthesizing. This preserves frequency ratios, but does not
model the fixed formants of speech. As a result, frequency scaled speech
will not sound like the original speaker talking at a higher pitch. Note that
frequency scaling does not change the duration of your sound. If you scale
up your frequencies too far, some of then will fall above the Nyquist rate and
cause aliasing.

FREQUENCY SHIFTING adds a given value to every frequency in the MQ file
before synthesizing. This does not preserve frequency ratios, but (for small
shifting values) tends to preserve fixed format structures.

Control files

The three transformations discussed above can be controlled in two different
ways—by specifying constant values or by specifying a control file. When a
control file is specified, Lemur reads a new value from the control file for
each frame. Note that the control file must have the same duration as the
original sample file. Thus, the control file provides time-varying control
over shifting and scaling. You can construct these control files (which are
ordinary AIFF samples files) using whatever tools you have, or with
Lemur’s simple breakpoint editor, which can generate files with step
functions or linear segments.

Control files are interpreted in several ways, depending on what they are
used to control. When a control file is used for time scaling, the samples in
the control file are normalized to values between +1 and -1. The time scale is
ten (10) raised to this power. Thus, you can expand or contract by a factor of
ten. A sample value of zero has no effect. The same algorithm is used for
frequency scaling, so you can multiply or divide your frequencies by a factor
of ten. Again, a sample value of zero has no effect. When a control file is
used for frequency shifting, the samples in the control file are normalized to
plus or minus half the sample rate (also known as the Nyquist rate). A
sample value of zero has no effect.

The control files facility should prove useful to composers seeking novel
effects. Time-varying time scaling is also useful for research in speech
processing. Constant time scaling does not model what happens when people
speak slowly, since the consonants are stretched along with the vowels. If
you have an algorithm which examines the MQ file and decides which parts
are vowels and which parts are consonants, you can automatically construct
a control file which will stretch the vowels while leaving the consonants
untouched. Similar ideas might be used to stretch the sustain of a violin tone
while leaving the attack transient untouched.

Lemur Documentation p. 8

MQ file format

The MQ file produced by a Lemur analysis
begins with a header which contains the
following information:
2 bytes integer versionNumber
2 bytes integer headerLength
12 bytes floating point inputScaleFactor
12 bytes floating point analysisThreshold
12 bytes floating point analysisRange
2 bytes signed integer numberOfFrequencyBins
2 bytes signed integer FFTlength
2 bytes signed integer windowLength
2 bytes signed integer analysisHopSize
4 bytes unsigned integer originalNumSamples
12 bytes floating point sampleRate
12 bytes floating point captureRange
2 bytes signed integer trackDormancyPeriod
12 bytes floating point timeScale
12 bytes floating point frequencyScale
12 bytes floating point frequencyShift
12 bytes floating point windowControl
4 bytes <reserved> timeScaleFile
4 bytes <reserved> freqScaleFile
4 bytes <reserved> freqShiftFile

Following this header, the file contains
successive frames in chronological order. At
the beginning of each frame is a two byte
integer which specifies how many peaks are
in that frame. Empty frames are allowed.
The peaks are presented in order from
lowest frequency to highest. Each peak has
the following format:
12 bytes floating point magnitude

Lemur Documentation p. 9
12 bytes floating point frequency
12 bytes floating point phase
2 bytes integer nextPeakIndex

The nextPeakIndex is used to connect a peak
with the next peak in its track by giving the
ordinality of a peak in the next frame. For
example, if a given peak has the value 5 for
its nextPeakIndex, then that peak should be
connected with the fifth peak in the next
frame.

Known Problems

Lemur may behave strangely if the program
is run from a volume mounted with
AppleShare or if you attempt to analyze a
file on a remote volume.

Lemur is based on code which was
developed in a UNIX environment. Hence, it
does not conform to the Macintosh
programming paradigm of an “event loop”
based application. Those of you who are
familiar with the details of the Macintosh
interface will notice a few irregularities. For
example, selecting desk accessories from the
apple menu does not always work, nor does

Lemur Documentation p. 10

the System 7 application menu. We hope
you will bear with these problems which we
may try to fix in a future release.

Lemur Documentation p. 11

Bibliography

T. F. Quatieri and R. J. McAulay, Speech
Analysis/Synthesis Based on a Sinusoidal
Representation. Technical Report 693,
Lincoln Laboratory, M. I. T.

Robert Crawford Maher, An Approach for
the separation of voices in composite
musical signals. Ph. D. dissertation, April
1989. University of Illinois at Urbana-
Champaign.

Xavier Serra, A system for sound
analysis/transformation/synthesis based on
a deterministic plus stochastic
decomposition. Department of Music Report
No. STAN-M-58, Center for Computer
Music Research in Music and Acoustics,
Stanford University. (Originally an October,
1989 Ph. D. dissertation).

John Sciarabba, Psychoacoustics in sound
synthesis. M. S. Thesis, Department of
Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign

Lemur Documentation p. 12

(also available through the CERL Sound
Group).

