
MUI 2.3 Autodocs

————————————————————————

MUI - MagicUserInterface

Version 2.3

(c) Copyright 1993/94 by Stefan Stuntz

- ShareWare -

————————————————————————

31. Dezember 1994

Zusammenfassung

MUI is an object oriented system to create and maintain graphical user

interfaces. From a programmers point of view, using MUI saves a lot of time

and makes life much easier. Thinking about complicated terms like window

resizing or font sensitivity is simply not neccesary.

On the other hand, users of MUI based applications have the ability to cu-

stomize nearly every pixel of a programs interface according to their personal

taste.

MUI ist ein objektorientiertes System zum Erstellen und Verwalten von gra-

fischen Benutzeroberflächen. Vom Standpunkt eines Programmierers aus ge-

sehen spart man mit MUI viel Zeit und Arbeit. Es ist nicht nötig, an sonst

so komplizierte Dinge wie Font-Sensitivität oder Window-Resizing auch nur

einen Gedanken zu verschwenden.

Auf der anderen Seite hat man als Benutzer einer auf MUI basierenden Ap-

plikation die Möglichkeit, nahezu jedes Pixel der Oberfläche an seinen ganz

persönlichen Geschmack anzupassen.

1

2

LaTEX-Fassung von: Michael Roth
Böhringertstr. 13
78345 Moos

email: mroth@inlet.lake.de
FIDO: 2:246/8100.14

INHALTSVERZEICHNIS 3

Inhaltsverzeichnis

1 muimaster.library 12
1.1 MUI AllocAslRequest . 12
1.2 MUI AslRequest . 12
1.3 MUI CreateCustomClass . 12
1.4 MUI DeleteCustomClass . 13
1.5 MUI DisposeObject . 14
1.6 MUI Error . 14
1.7 MUI FreeAslRequest . 15
1.8 MUI FreeClass . 15
1.9 MUI GetClass . 15
1.10 MUI MakeObjectA . 15
1.11 MUI NewObjectA . 16
1.12 MUI Redraw . 17
1.13 MUI RequestA . 19
1.14 MUI RejectIDCMP . 20
1.15 MUI RequestIDCMP . 20
1.16 MUI SetError . 21

2 Application.mui 22
2.1 MUIM Application GetMenuCheck 22
2.2 MUIM Application GetMenuState 22
2.3 MUIM Application Input . 22
2.4 MUIM Application InputBuffered . 24
2.5 MUIM Application Load . 25
2.6 MUIM Application PushMethod . 25
2.7 MUIM Application ReturnID . 26
2.8 MUIM Application Save . 27
2.9 MUIM Application SetMenuCheck 28
2.10 MUIM Application SetMenuState . 28
2.11 MUIM Application ShowHelp . 29
2.12 MUIA Application Active . 29
2.13 MUIA Application Author . 29
2.14 MUIA Application Base . 30
2.15 MUIA Application Broker . 30
2.16 MUIA Application BrokerHook . 30
2.17 MUIA Application BrokerPort . 31
2.18 MUIA Application BrokerPri . 31
2.19 MUIA Application Commands . 31
2.20 MUIA Application Copyright . 32
2.21 MUIA Application Description . 32
2.22 MUIA Application DiskObject . 33
2.23 MUIA Application DoubleStart . 33
2.24 MUIA Application DropObject . 33
2.25 MUIA Application ForceQuit . 34
2.26 MUIA Application HelpFile . 34
2.27 MUIA Application Iconified . 35
2.28 MUIA Application Menu . 36
2.29 MUIA Application MenuAction . 36
2.30 MUIA Application MenuHelp . 36
2.31 MUIA Application Menustrip . 36
2.32 MUIA Application RexxHook . 37
2.33 MUIA Application RexxMsg . 37

4 INHALTSVERZEICHNIS

2.34 MUIA Application RexxString ΓΓΓ. . 626.12 MUIA Boopsi TagWindow . 637 Coloradjust.mui 637.1 MUIA Coloradjust Blue . 637.2 MUIA Coloradjust Green . 647.3 MUIA Coloradjust ModeID . 647.4 MUIA Coloradjust Red . 647.5 MUIA Coloradjust RGB . 648 Colorfield.mui 658.1 MUIA Colorfield Blue . 658.2 MUIA Colorfield Green . 658.3 MUIA Colorfield Pen . 658.4 MUIA Colorfield Red . 668.5 MUIA Colorfield RGB . 669 Colorpanel.mui 6610Cycle.mui 6610.1 MUIA Cycle Active . 6610.2 MUIA Cycle Entries . 6711Dirlist.mui 6711.1 MUIM Dirlist ReRead . 6811.2 MUIA Dirlist AcceptPattern . 6811.3 MUIA Dirlist Directory . 6811.4 MUIA Dirlist DrawersOnly . 6911.5 MUIA Dirlist FilesOnly . 6911.6 MUIA Dirlist FilterDrawers . 69

6 INHALTSVERZEICHNIS

11.7 MUIA Dirlist FilterHook . 69
11.8 MUIA Dirlist MultiSelDirs . 70
11.9 MUIA Dirlist NumBytes . 70
11.10MUIA Dirlist NumDrawers . 70
11.11MUIA Dirlist NumFiles . 70
11.12MUIA Dirlist Path . 70
11.13MUIA Dirlist RejectIcons . 71
11.14MUIA Dirlist RejectPattern . 71
11.15MUIA Dirlist SortDirs . 71
11.16MUIA Dirlist SortHighLow . 71
11.17MUIA Dirlist SortType . 71
11.18MUIA Dirlist Status . 72

12Family.mui 72
12.1 MUIM Family AddHead . 72
12.2 MUIM Family AddTail . 73
12.3 MUIM Family Insert . 73
12.4 MUIM Family Remove . 73
12.5 MUIM Family Sort . 74
12.6 MUIM Family Transfer . 74
12.7 MUIA Family Child . 74

13Floattext.mui 75
13.1 MUIA Floattext Justify . 75
13.2 MUIA Floattext SkipChars . 75
13.3 MUIA Floattext TabSize . 75
13.4 MUIA Floattext Text . 76

14Gauge.mui 76
14.1 MUIA Gauge Current . 76
14.2 MUIA Gauge Divide . 77
14.3 MUIA Gauge Horiz . 77
14.4 MUIA Gauge InfoText . 77
14.5 MUIA Gauge Max . 78

15Group.mui 78
15.1 MUIA Group ActivePage . 78
15.2 MUIA Group Child . 79
15.3 MUIA Group Columns . 79
15.4 MUIA Group Horiz . 80
15.5 MUIA Group HorizSpacing . 80
15.6 MUIA Group PageMode . 81
15.7 MUIA Group Rows . 81
15.8 MUIA Group SameHeight . 82
15.9 MUIA Group SameSize . 82
15.10MUIA Group SameWidth . 83
15.11MUIA Group Spacing . 83
15.12MUIA Group VertSpacing . 83

16Image.mui 84
16.1 MUIA Image FontMatch . 84
16.2 MUIA Image FontMatchHeight . 84
16.3 MUIA Image FontMatchWidth . 84
16.4 MUIA Image FreeHoriz . 84

INHALTSVERZEICHNIS 7

16.5 MUIA Image FreeVert . 85

16.6 MUIA Image OldImage . 85

16.7 MUIA Image Spec . 85

16.8 MUIA Image State . 86

17List.mui 86

17.1 MUIM List Clear . 86

17.2 MUIM List Exchange . 86

17.3 MUIM List GetEntry . 87

17.4 MUIM List Insert . 88

17.5 MUIM List InsertSingle . 88

17.6 MUIM List Jump . 89

17.7 MUIM List Move . 90

17.8 MUIM List NextSelected . 90

17.9 MUIM List Redraw . 91

17.10MUIM List Remove . 91

17.11MUIM List Select . 92

17.12MUIM List Sort . 93

17.13MUIA List Active . 93

17.14MUIA List AdjustHeight . 93

17.15MUIA List AdjustWidth . 93

17.16MUIA List CompareHook . 94

17.17MUIA List ConstructHook . 94

17.18MUIA List DestructHook . 95

17.19MUIA List DisplayHook . 95

17.20MUIA List Entries . 96

17.21MUIA List First . 97

17.22MUIA List Format . 97

17.23MUIA List InsertPosition . 99

17.24MUIA List MultiTestHook . 99

17.25MUIA List Quiet . 99

17.26MUIA List SourceArray . 99

17.27MUIA List Title . 100

17.28MUIA List Visible . 101

18Listview.mui 101

18.1 MUIA Listview ClickColumn . 101

18.2 MUIA Listview DefClickColumn . 101

18.3 MUIA Listview DoubleClick . 102

18.4 MUIA Listview Input . 102

18.5 MUIA Listview List . 102

18.6 MUIA Listview MultiSelect . 102

18.7 MUIA Listview ScrollerPos . 103

18.8 MUIA Listview SelectChange . 103

19Menustrip.mui 103

19.1 MUIA Menustrip Enabled . 103

20Menu.mui 104

20.1 MUIA Menu Enabled . 104

20.2 MUIA Menu Title . 104

8 INHALTSVERZEICHNIS

21Menuitem.mui 104
21.1 MUIA Menuitem Checked . 104
21.2 MUIA Menuitem Checkit . 104
21.3 MUIA Menuitem Enabled . 105
21.4 MUIA Menuitem Exclude . 105
21.5 MUIA Menuitem Shortcut . 105
21.6 MUIA Menuitem Title . 105
21.7 MUIA Menuitem Toggle . 105
21.8 MUIA Menuitem Trigger . 106

22Notify.mui 106
22.1 MUIM CallHook . 106
22.2 MUIM FindUData . 107
22.3 MUIM GetUData . 107
22.4 MUIM KillNotify . 108
22.5 MUIM MultiSet . 108
22.6 MUIM NoNotifySet . 109
22.7 MUIM Notify . 109
22.8 MUIM Set . 111
22.9 MUIM SetAsString . 112
22.10MUIM SetUData . 112
22.11MUIM WriteLong . 113
22.12MUIM WriteString . 114
22.13MUIA AppMessage . 114
22.14MUIA HelpFile . 115
22.15MUIA HelpLine . 115
22.16MUIA HelpNode . 115
22.17MUIA NoNotify . 116
22.18MUIA Revision . 116
22.19MUIA UserData . 116
22.20MUIA Version . 116

23Palette.mui 117
23.1 MUIA Palette Entries . 117
23.2 MUIA Palette Groupable . 118
23.3 MUIA Palette Names . 118

24Popasl.mui 119
24.1 MUIA Popasl Active . 119
24.2 MUIA Popasl StartHook . 120
24.3 MUIA Popasl StopHook . 121
24.4 MUIA Popasl Type . 121

25Poplist.mui 121
25.1 MUIA Poplist Array . 121

26Popobject.mui 121
26.1 MUIA Popobject Follow . 122
26.2 MUIA Popobject Light . 122
26.3 MUIA Popobject Object . 122
26.4 MUIA Popobject ObjStrHook . 122
26.5 MUIA Popobject StrObjHook . 123
26.6 MUIA Popobject Volatile . 124
26.7 MUIA Popobject WindowHook . 124

INHALTSVERZEICHNIS 9

27Popstring.mui 124
27.1 MUIM Popstring Close . 125
27.2 MUIM Popstring Open . 125
27.3 MUIA Popstring Button . 125
27.4 MUIA Popstring CloseHook . 126
27.5 MUIA Popstring OpenHook . 126
27.6 MUIA Popstring String . 127
27.7 MUIA Popstring Toggle . 127

28Prop.mui 127
28.1 MUIA Prop Entries . 127
28.2 MUIA Prop First . 128
28.3 MUIA Prop Horiz . 128
28.4 MUIA Prop Slider . 128
28.5 MUIA Prop Visible . 128

29Radio.mui 128
29.1 MUIA Radio Active . 128
29.2 MUIA Radio Entries . 129

30Rectangle.mui 129
30.1 MUIA Rectangle HBar . 129
30.2 MUIA Rectangle VBar . 130

31Register.mui 130
31.1 MUIA Register Frame . 130
31.2 MUIA Register Titles . 130

32Scale.mui 131
32.1 MUIA Scale Horiz . 131

33Scrmodelist.mui 131

34Scrollbar.mui 131

35Scrollgroup.mui 131
35.1 MUIA Scrollgroup Contents . 132
35.2 MUIA Scrollgroup FreeHoriz . 132
35.3 MUIA Scrollgroup FreeVert . 132

36Slider.mui 132
36.1 MUIA Slider Level . 132
36.2 MUIA Slider Max . 132
36.3 MUIA Slider Min . 133
36.4 MUIA Slider Quiet . 133
36.5 MUIA Slider Reverse . 133

37String.mui 133
37.1 MUIA String Accept . 133
37.2 MUIA String Acknowledge . 134
37.3 MUIA String AttachedList . 134
37.4 MUIA String BufferPos . 134
37.5 MUIA String Contents . 134
37.6 MUIA String DisplayPos . 135
37.7 MUIA String EditHook . 135

10 INHALTSVERZEICHNIS

37.8 MUIA String Format . 135
37.9 MUIA String Integer . 136
37.10MUIA String MaxLen . 136
37.11MUIA String Reject . 136
37.12MUIA String Secret . 136

38Text.mui 137
38.1 MUIA Text Contents . 137
38.2 MUIA Text HiChar . 138
38.3 MUIA Text PreParse . 138
38.4 MUIA Text SetMax . 138
38.5 MUIA Text SetMin . 139

39Virtgroup.mui 139
39.1 MUIA Virtgroup Height . 139
39.2 MUIA Virtgroup Left . 139
39.3 MUIA Virtgroup Top . 140
39.4 MUIA Virtgroup Width . 140

40Volumelist.mui 140

41Window.mui 140
41.1 MUIM Window GetMenuCheck . 141
41.2 MUIM Window GetMenuState . 141
41.3 MUIM Window ScreenToBack . 141
41.4 MUIM Window ScreenToFront . 141
41.5 MUIM Window SetCycleChain . 142
41.6 MUIM Window SetMenuCheck . 142
41.7 MUIM Window SetMenuState . 143
41.8 MUIM Window ToBack . 143
41.9 MUIM Window ToFront . 143
41.10MUIA Window Activate . 144
41.11MUIA Window ActiveObject . 144
41.12MUIA Window AltHeight . 144
41.13MUIA Window AltLeftEdge . 144
41.14MUIA Window AltTopEdge . 145
41.15MUIA Window AltWidth . 145
41.16MUIA Window AppWindow . 145
41.17MUIA Window Backdrop . 146
41.18MUIA Window Borderless . 146
41.19MUIA Window CloseGadget . 146
41.20MUIA Window CloseRequest . 146
41.21MUIA Window DefaultObject . 146
41.22MUIA Window DepthGadget . 147
41.23MUIA Window DragBar . 147
41.24MUIA Window FancyDrawing . 147
41.25MUIA Window Height . 147
41.26MUIA Window ID . 148
41.27MUIA Window InputEvent . 148
41.28MUIA Window LeftEdge . 149
41.29MUIA Window Menu . 149
41.30MUIA Window MenuAction . 149
41.31MUIA Window Menustrip . 150
41.32MUIA Window MouseObject . 150

INHALTSVERZEICHNIS 11

41.33MUIA Window NeedsMouseObject 150
41.34MUIA Window NoMenus . 150
41.35MUIA Window Open . 151
41.36MUIA Window PublicScreen . 151
41.37MUIA Window RefWindow . 151
41.38MUIA Window RootObject . 152
41.39MUIA Window Screen . 152
41.40MUIA Window ScreenTitle . 152
41.41MUIA Window SizeGadget . 153
41.42MUIA Window SizeRight . 153
41.43MUIA Window Sleep . 153
41.44MUIA Window Title . 153
41.45MUIA Window TopEdge . 153
41.46MUIA Window Width . 154
41.47MUIA Window Window . 154

12 1 MUIMASTER.LIBRARY

1 muimaster.library

PURPOSE

muimaster.library contains functions for creating and diposing objects, for reque-
ster handling and for controlling custom classes. Additionally, several of the stan-
dard MUI classes are built into muimaster.library. For you as a programmer, the-
re is no difference between using a builtin class or an external class coming as
”sys:classes/¡foobar¿.mui”. The MUI object generation call takes care of this situa-
tion and loads external classes automatically when they are needed.

1.1 MUI AllocAslRequest

FUNCTION

Provide an interface to asl.library. Using this ensures your application will benefit
from future expansions to MUI’s window and iconification handling.

SEE ALSO

asl.library/AllocAslRequest

1.2 MUI AslRequest

FUNCTION

Provide an interface to asl.library. Using this ensures your application will benefit
from future expansions to MUI’s window and iconification handling.

SEE ALSO

asl.library/AslRequest

1.3 MUI CreateCustomClass – create a public/private cu-
stom class.

SYNOPSIS

MUI CreateCustomClass (base, supername, supermcc, datasize, dispfunc)
A0 A1 A2 D0 A3

struct MUI CustomClass ∗ MUI CreateCustomClass(struct Library ∗, char ∗,
int, APTR);

FUNCTION

This function creates a public or private MUI custom class. Public custom classes
are shared libraries and can be found in ”libs:mui/¡foobar¿.mcc”. Private classes
simply consist of a dispatcher and are built into applications.

MUI CreateCustomClass() returns a pointer to a struct MUI CustomClass
which in turn contains a pointer to a struct IClass. For private classes, this struct
IClass pointer needs to be fed to a intuition.library/NewObject() call to create new
objects.

MUI creates the dispatcher hook for you, you may not use the IClass-
¿cl Dispatcher.h Data field! If you need custom data for your dispatcher, use the

1.4 MUI DeleteCustomClass 13

cl UserData of the IClass structure or the mcc UserData of the MUI CustomClass
structure.

For public classes, MUI makes sure that a6 contains a pointer to your library
base when your dispatcher is called. For private classes, you will need to keep track
of A4 of similiar things your compiler may need yourself.

INPUTS

base = if you create a public class, you have to call MUI CreateCustomClass()
from your libraries init function. In this case, place your library base pointer
here. For private classes, you must supply NULL.

supername = super class of your class. This can either be a builtin MUI class
(”xyz.mui”) or a external custom class (”xyz.mcc”).

supermcc = if (and only if) the super class is a private custom class and hence
has no name, you are allowed to pass a NULL supername and a pointer to
the MUI CustomClass structure of the super class here.

datasize = size of your classes data structure.

dispfunc = your classes dispatcher function (no hook!). The dispatcher will be
called with a struct IClass in a0, with your object in a2 and the message in
a1.

RESULT

A pointer to a struct MUI CustomClass or NULL to indicate an error.

SEE ALSO

MUI DeleteCustomClass()

1.4 MUI DeleteCustomClass – delete a public/private cu-
stom class.

SYNOPSIS

MUI DeleteCustomClass (mcc)
A0

BOOL MUI DeleteCustomClass(struct MUI CustomClass ∗);

FUNCTION

Delete a public or private custom class. Note that you must not delete classes with
outstanding objects or sub classes.

INPUTS

mcc = pointer obtained from MUI CreateCustomClass().

RESULT

TRUE if all went well, FALSE if some objects or sub classes were still hanging
around. Nothing will be freed in this case.

14 1 MUIMASTER.LIBRARY

SEE ALSO

MUI CreateCustomClass()

1.5 MUI DisposeObject – Delete a MUI object.

SYNOPSIS

MUI DisposeObject(object)
A0

VOID MUI DisposeObject(APTR);

FUNCTION

Deletes a MUI object and all of it’s auxiliary data. These objects are all created by
MUI NewObject(). Objects of certain classes ”own” other objects, which will also
be deleted when the object is passed to MUI DisposeObject(). Read the per-class
documentation carefully to be aware of these instances.

INPUTS

object = abstract pointer to a MUI object returned by MUI NewObject(). The
pointer may be NULL, in which case this function has no effect.

RESULT

None.

SEE ALSO

MUI NewObject(), SetAttrs(), GetAttr().

1.6 MUI Error – Return extra information from the MUI
system.

SYNOPSIS

LONG MUI Error(VOID);

FUNCTION

Some MUI functions will set an error if they fail for some reason. The error functions
is task sensitive, only the task that caused the error will receive it from this function.

RESULT

Currently, the following error values are defined:

MUIE OK - no error, everything allright.
MUIE OutOfMemory - went out of memory.
MUIE OutOfGfxMemory - went out of graphics memory.
MUIE InvalidWindowObject - NULL window specified.
MUIE MissingLibrary - can’t open a needed library.
MUIE NoARexx - unable to create arexx port.
MUIE SingleTask - application is already running.

1.7 MUI FreeAslRequest 15

SEE ALSO

MUI SetError()

1.7 MUI FreeAslRequest

FUNCTION

Provide an interface to asl.library. Using this ensures your application will benefit
from future expansions to MUI’s window and iconification handling.

SEE ALSO

asl.library/FreeAslRequest

1.8 MUI FreeClass – Free class.

SYNOPSIS

MUI FreeClass(classptr)
A0

VOID MUI FreeClass(struct IClass ∗classptr);

FUNCTION

This function is obsolete since MUI V8. Use MUI DeleteCustomClass() instead.

SEE ALSO

MUI CreateCustomClass(), MUI DeleteCustomClass()

1.9 MUI GetClass – Get a pointer to a MUI class.

SYNOPSIS

class = MUI GetClass(classid)
D0 A0

struct IClass ∗ MUI GetClass(char ∗classid);

FUNCTION

This function is obsolete since MUI V8. Use MUI CreateCustomClass instead.

SEE ALSO

MUI CreateCustomClass(), MUI DeleteCustomClass()

1.10 MUI MakeObjectA – create an object from the builtin
object collection.

MUI MakeObject – Varargs stub for MUI MakeObjectA

16 1 MUIMASTER.LIBRARY

SYNOPSIS

object = MUI MakeObjectA(objtype, params)
D0 D0 A0

Object ∗ MUI MakeObjectA(ULONG type, ULONG ∗params);
Object ∗ MUI MakeObject(ULONG type, ...);

FUNCTION

Prior to muimaster.library V8, MUI was distributed with several macros to help
creating often used objects. This practice was easy, but using lots of these macros
often resulted in big programs. Now, muimaster library contains an object library
with several often used objects already built in.

MUI MakeObject() takes the type of the object as first parameter and a list of
additional (type specific) parameters. Note that these additional values are not a
taglist!

See the header file mui.h for documentation on object types and the required
parameters.

SEE ALSO

MUI CreateCustomClass(), MUI DeleteCustomClass()

1.11 MUI NewObjectA – Create an object from a class.

MUI NewObject – Varargs stub for MUI NewObjectA().

SYNOPSIS

object = MUI NewObjectA(class, tags)
D0 A0 A1

APTR MUI NewObjectA(char ∗, struct TagItem ∗);
object = MUI NewObject(classID, Tag1, ...)
APTR MUI NewObject(classID, ULONG, ...);

FUNCTION

This is the general method of creating objects from MUI classes. You specify a class
by its ID string. If the class is not already in memory or built into muimaster.library,
it will be loaded using OpenLibrary(”mui/%s”,0).

You further specify initial ”create-time” attributes for the object via a TagItem
list, and they are applied to the resulting generic data object that is returned.
The attributes, their meanings, attributes applied only at create-time, and required
attributes are all defined and documented on a class-by-class basis.

INPUTS

classID = the name/ID string of a MUI class, e.g. ”Image.mui”. Class names are
case sensitive!

tagList = pointer to array of TagItems containing attribute/value pairs to be ap-
plied to the object being created.

1.12 MUI Redraw 17

RESULT

A MUI object, which may be used in different contexts such as an application,
window or gadget, and may be manipulated by generic functions. You eventually free
the object using MUI DisposeObject(). NULL indicates failure, more information
on the error can be obtained with MUI Error().

SEE ALSO

MUI DisposeObject(), MUI Error(), SetAttrs(), GetAttr().

1.12 MUI Redraw – Redraw yourself.

SYNOPSIS

MUI Redraw(obj, flag)
A0 D0

VOID MUI Redraw(Object ∗obj, ULONG flag);

FUNCTION

With MUI Redraw(), an object tells itself to refresh, e.g. when some internal at-
tributes were changed. Calling MUI Redraw() is only legal within a custom class
dispatcher, using this function within an applications main part is invalid!

Most objects graphical representation in a window depends on some attributes.
A fuel gauge for example would depend on its MUIA Gauge Current attribute, an
animation object would depend on MUIA Animation CurrentFrame.

Whenever someone changes such an attribute with a SetAttrs() call, the corre-
sponding object receives an OM SET method with the new value. Usually, it could
just render itself with some graphics.library calls. However, if the object is placed
in a virtual group or if some other clipping or coordinate translation is required,
this simple rendering will lead into problems.

That’s why MUI offers the MUI Redraw() function call. Instead of drawing
directly during OM SET, you should simply call MUI Redraw(). MUI calculates all
necessary coordinates and clip regions (in case of virtual groups) and then sends a
MUIM Draw method to your object.

To emphasize this point again: The only time your object is allowed to ren-
der something is when you receive a MUIM Draw method. Drawing during other
methods is illegal.

NOTE

As long as no special cases (e.g. virtual groups) are present, MUI Redraw is very
quick and calls your MUIM Draw method immediately. No coordinate translations
or clip regions need to be calculated.

INPUTS

obj - pointer to yourself.

flag - MADF DRAWOBJECT or MADF DRAWUPDATE. The flag given here af-
fects the objects flags when MUI calls the MUIM Draw method. There are
several caveats when implementing MUIM DRAW, see the developer docu-
mentation for details.

18 1 MUIMASTER.LIBRARY

EXAMPLE

/* Note: This example was broken up to version 2.1 of muimaster.doc */

LONG mSet(struct IClass *cl,Object *obj,sruct opSet *msg)

{

struct Data *data = INST_DATA(cl,obj);

struct TagItem *tags,*tag;

for (tags=msg->ops_AttrList;tag=NextTagItem(&tags);)

{

switch (tag->ti_Tag)

{

case MYATTR_PEN_1:

data->pen1 = tag->ti_Data; /* set the new value */

data->mark = 1; /* set internal marker*/

MUI_Redraw(obj,MADF_DRAWUPDATE); /* update ourselves */

break;

case MYATTR_PEN_1:

data->pen2 = tag->ti_Data; /* set the new value */

data->mark = 2; /* set internal marker*/

MUI_Redraw(obj,MADF_DRAWUPDATE); /* update ourselves */

break;

}

}

return(DoSuperMethodA(cl,obj,msg));

}

LONG mDraw(struct IClass *cl,Object *obj,struct MUIP_Draw *msg)

{

struct Data *data = INST_DATA(cl,obj);

// ** Note: You *must* call the super method prior to do

// ** anything else, otherwise msg->flags will not be set

// ** properly !!!

DoSuperMethodA(cl,obj,msg); // ALWAYS REQUIRED!

if (msg->flags & MADF_DRAWUPDATE)

{

/* called as a result of our MUI_Redraw() during

MUIM_Set method. Depending on our internal

marker, we render different things. */

switch (data->mark)

{

case 1: RenderChangesFromPen1(cl,obj); break;

case 2: RenderChangesFromPen2(cl,obj); break;

}

}

else if (msg->flags & MADF_DRAWOBJECT)

{

/* complete redraw, maybe the window was just opened. */

DrawObjectCompletely(cl,obj);

}

1.13 MUI RequestA 19

/* if MADF_DRAWOBJECT wasn’t set, MUI just wanted to update

the frame or some other part of our object. In this case

we just do nothing. */

return(0);

}

SEE ALSO

area.mui/MUIM Draw

1.13 MUI RequestA – Pop up a MUI requester.

SYNOPSIS

MUI RequestA(app,win,flags,title,gadgets,format,params)
D0 D1 D2 A0 A1 A2 A3

LONG MUI RequestA (APTR app, APTR win, LONGBITS flags, char ∗title,
char ∗gadgets, char ∗format, APTR params);

LONG MUI Request (APTR app, APTR win, LONGBITS flags, char ∗title,
char ∗gadgets, char ∗format, ...);

FUNCTION

Pop up a MUI requester. Using a MUI requester instead of a standard system
requester offers you the possibility to include text containing all the text engine
format codes.

INPUTS

app - The application object. If you leave this NULL, MUI RequestA() will fall
back to a standard system requester.

win - Pointer to a window of the application. If this is used, the requester will
appear centered relative to this window.

flags - For future expansion, must be 0 for now.

title - Title for the requester window. Defaults to the name of the application when
NULL (and app!=NULL).

gadgets - Pointer to a string containing the possible answers. The format looks
like ” Save— Use— Test— Cancel”. If you precede an entry with a ’∗’, this
answer will become the active object. Pressing ¡Return¿ will terminate the
requester with this response. A ’ ’ character indicates the keyboard shortcut
for this response.

format - A printf-style formatting string.

params - Pointer to an array of ULONG containing the parameter values for for-
mat.

20 1 MUIMASTER.LIBRARY

RESULT

0, 1, ..., N = Successive id values, for the gadgets you specify for the requester.
NOTE: The numbering from left to right is actually: 1, 2, ..., N, 0. In case of a
problem (e.g. out of memory), the function returns FALSE.

SEE ALSO

MUIA Text Contents

1.14 MUI RejectIDCMP – Reject previously requested
input events.

SYNOPSIS

MUI RejectIDCMP(obj, flags)
A0 D0

VOID MUI RejectIDCMP(Object ∗obj, ULONG flags);

FUNCTION

Reject previously requested input events. You should ensure that you reject all input
events you requested for an object before it gets disposed. Rejecting flags that you
never requested has no effect.

Critical flags such as IDCMP MOUSEMOVE and IDCMP INTUITICKS should
be rejected as soon as possible. See MUI RequestIDCMP() for details.

INPUTS

obj - pointer to yourself as an object.

flags - one or more IDCMP XXXX flags.

EXAMPLE

LONG CleanupMethod(struct IClass *cl, Object *obj, Msg msg)

{

MUI_RejectIDCMP(obj, IDCMP_MOUSEBUTTONS|IDCMP_RAWKEY);

return(DoSuperMethodA(cl,obj,msg));

}

SEE ALSO

MUI RequestIDMCP()

1.15 MUI RequestIDCMP – Request input events for your
custom class.

SYNOPSIS

MUI RequestIDCMP(obj, flags)
A0 D0

VOID MUI RequestIDCMP(Object ∗obj, ULONG flags);

1.16 MUI SetError 21

FUNCTION

If your custom class needs to do some input handling, you must explicitly request
the events you want to receive. You can request (and reject) events at any time.

Whenever an input event you requested arrives at your parent windows message
port, your object will receive a MUIM HandleInput method.

NOTE

Time consuming IDCMP flags such as IDCMP INTUITICKS and ID-
CMP MOUSEMOVE should be handled with care. Too many objects receiving
them will degrade performance With the following paragraph in mind, this isn’t
really a problem:

You should try to request critical events only when you really need them and
reject them with MUI RejectIDCMP() as soon as possible. Usually, mouse control-
led objects only need MOUSEMOVES and INTUITICKS when a button is pressed.
You should request these flags only on demand, i.e. after receiving a mouse down
event and reject them immediately after the button has been released.

INPUTS

obj - pointer to yourself as an object.

flags - one or more IDCMP XXXX flags.

EXAMPLE

LONG SetupMethod(struct IClass *cl, Object *obj, Msg msg)

{

if (!DoSuperMethodA(cl,obj,msg))

return(FALSE);

/* do some setup here... */

...;

/* i need mousebutton events and keyboard */

MUI_RequestIDCMP(obj, IDCMP_MOUSEBUTTONS|IDCMP_RAWKEY);

return(TRUE);

}

SEE ALSO

MUI RejectIDMCP()

1.16 MUI SetError – Set an error value.

SYNOPSIS

VOID MUI SetError(LONG);

FUNCTION

Setup a MUI error. MUI Error() will return this value when asked.

22 2 APPLICATION.MUI

SEE ALSO

MUI Error()

2 Application.mui

Application class is the master class for all MUI applications. It serves as a kind
of anchor for all input, either coming from the user or somewhere from the system,
e.g. commodities or ARexx messages.

An application can have any number of sub windows, these windows are the
children of the application.

2.1 MUIM Application GetMenuCheck (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Application GetMenuCheck,ULONG MenuID);

FUNCTION

Ask whether a checkmark menu item has its checkmark set or cleared. The appli-
cation will ask its sub windows for a menu item with the given id and return the
state of the first item it finds.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

SEE ALSO

MUIM Application SetMenuCheck, MUIA Application Menu

2.2 MUIM Application GetMenuState (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Application GetMenuState,ULONG MenuID);

FUNCTION

Ask whether a menu item is enabled or disabled. The application will ask its sub
windows for a menu item with the given id and return the state of the first item it
finds.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

SEE ALSO

MUIM Application SetMenuState, MUIA Application Menu

2.3 MUIM Application Input (V4)

SYNOPSIS

DoMethod(obj,MUIM Application Input,LONGBITS ∗signal);

2.3 MUIM Application Input 23

FUNCTION

The MUI system itself does not wait for any user input. It just tells your application
which signal bits it has allocated, then it’s up to you to call MUIs input handle
function when one of these signals gets set.

In a simple MUI application you would just Wait() for these signals and call
MUI when one is received. However, you can perfectly allocate some signal bits
yourself and include them in your Wait() command. You needn’t even Wait(), your
application could maybe calculate some fractal graphics or copy disks, the only
important thing is that you call MUI’s input method when one of the MUI allocated
signals arrives.

The usual way of communication with your user interface is via return ids. Every
action happening to the GUI can create return ids, e.g. pressing a button or trying
to close a window. MUI buffers these ids and uses them as result codes for the input
method. Thats where you can get it from and take the appropriate actions.

Now lets have a look on a usual input loop of a MUI application. Ima-
gine you have an Play and a Cancel button and have previously told them
to return ID PLAY and ID CANCEL when pressed. (see MUIM Notify and
MUIM Application ReturnID on information about these topics). Your input loop
would look like this:

while (running)

{

ULONG signals;

switch (DoMethod(app,MUIM_Application_Input,&signals))

{

case ID_PLAY:

PlaySound();

break;

case ID_CANCEL:

case MUIV_Application_ReturnID_Quit:

running = FALSE;

break;

}

if (running && signals) Wait(signals);

}

So what is happening here?
First, you have to call the MUIM Application Input method. You supply the

address of a ULONG as parameter, thats where MUI fills in the signals it needs.
Note that you can call the input method at any time, regardless of signal setting.
MUI will simply return when there is nothing to do.

In case the user pressed the Play or the Cancel button, MUIM Application Input
will return ID PLAY or ID CANCEL. Otherwise you will receive a 0, that’s why
you cannot use 0 as one of your id values.

There is one predefined id called MUIV Application ReturnID Quit. This will
be sent to you when someone tried to quit your application from outside, e.g. via
commodities exchange or the ARexx ”quit” command. It is required that your
application handles this id, just treat as if the user clicked on a ”Quit” button or
selected a ”Quit” menu item.

After handling the return value, you have to examine if MUI wants you to wait
for any signals. If this is the case (signals != 0), just wait for it. If MUI puts a 0

24 2 APPLICATION.MUI

into signals it wants to tell you to immediately call the input method again, maybe
some other return ids have received and need to be handled. You ∗must∗ check this
because Wait()ing on a zero signal mask is not a good idea!

NOTE

It is very important that you call the input method whenever a signal arrives.
MUI needs this to correctly refresh its windows, handle resizing and iconification
operations and commodities and ARexx messages. If you don’t, you will annoy your
user!

If your program needs to be in a state where you are for some reasons unable to
call the input method for a considerable amount of time (maybe half a second or
more), you should put your application to sleep. See MUIA Application Sleep on
how to do this.

SEE ALSO

MUIA Application Sleep, MUIM Application InputBuffered

2.4 MUIM Application InputBuffered (V4)

SYNOPSIS

DoMethod(obj,MUIM Application InputBuffered,);

FUNCTION

Imagine your application does some time consuming operation, e.g. copying a disk,
and you are for some reasons unable to react on return ids during this period. One
solution would be to simply put your application to sleep, it will get a busy pointer
and the user knows whats going on.

However, this will make it impossible for the user to resize your applications
windows or iconify it, he will have to wait until you are done with your operation.

MUIM Application InputBuffered offers a solution for this problem. Using this
method, you needn’t set to sleep your application. Just call it on a regular basis
and MUI will be able to handle all actions concerning the GUI. You do not need
to pay attention on return values, they remain on an internal stack until your next
call to the non buffered input method.

EXAMPLE

for (track=0; track<80; track++)

{

read_track();

DoMethod(app,MUIM_Application_InputBuffered);

write_track();

DoMethod(app,MUIM_Application_InputBuffered);

}

SEE ALSO

MUIM Application Input, MUIA Application Sleep

2.5 MUIM Application Load 25

2.5 MUIM Application Load (V4)

SYNOPSIS

DoMethod(obj,MUIM Application Load,STRPTR name);

FUNCTION

MUIM Application Save, MUIM Application Load and MUIA ExportID offer an
easy way of saving and loading a programs configuration.

Each gadget with a non NULLMUIA ExportID will get its contents saved during
MUIM Application Save and restored during MUIM Application Load. This makes
it very easy to design a configuration window with ”Save”, ”Use” and ”Cancel”
buttons to allow the user storing the settings. When the application starts, you
would just have to call MUIM Application Load and the stored settings will be
read and installed.

Not all classes are able to import and export their contents. Currently, you may
define MUIA ExportIDs for

String class - MUIA String Contents is ex/imported.
Radio class - MUIA Radio Active is ex/imported.
Cycle class - MUIA Cycle Active is ex/imported.
List class - MUIA List Active is /ex/imported.
Text class - MUIA Text Contents is ex/imported.
Slider class - MUIA Slider Level is ex/imported.
Area class - MUIA Selected is ex/imported

(e.g. for Checkmark gadgets)
Menuitem class - MUIA Checked is ex/imported (V9).
Group class - MUIA Group ActivePage is ex/imported (V8).

INPUTS

name - Name of the file you wish to load the settings from. Usually you won’t need
to think of a real name but instead use one of the magic cookies

• MUIV Application Load ENV or

• MUIV Application Load ENVARC.

EXAMPLE

see the sample program "Settings.c"

SEE ALSO

MUIM Application Save, MUIA ExportID

2.6 MUIM Application PushMethod (V4)

SYNOPSIS

DoMethod(obj,MUIM Application PushMethod,Object ∗dest, LONG count, /∗ ...
∗/);

26 2 APPLICATION.MUI

FUNCTION

Usually, you may not talk to the MUI system from two tasks at the same time.
MUIM Application PushMethod provides some kind of solution for this problem.

This (and only this) method may be called from a second task. It takes another
method as parameter and puts in onto a private stack of the application object. The
next time MUIM Application Input is called, the pushed method will be executed
in the context of the current task.

INPUTS

dest - object on which to perform the pushed method.

count - number of following arguments.

... - the destination method.

EXAMPLE

/* set a status line from a sub task */

DoMethod(app,MUIM_Application_PushMethod,

txstatus,3,MUIM_Set,MUIA_Text_Contents,"reading...");

SEE ALSO

MUIM Application Input

2.7 MUIM Application ReturnID (V4)

SYNOPSIS

DoMethod(obj,MUIM Application ReturnID,ULONG retid);

FUNCTION

Tell MUI to return the given id with the next call to MUIM Application Input.
Together with the MUI’s notification mechanism, this method connects your

user interface and your program. If you e.g. want to be informed if the user presses
a ”Play” button, you would have define an id for this action and set up a notification
event with MUIM Notify.

You can use any long word as return id, except from -255 up to 0. The-
se values are reserved for MUI’s internal use and for special return values like
MUIV Application ReturnID Quit.

Note that MUI will put all incoming return ids onto a private fifo stack and feed
this stack to its input methods result code later.

EXAMPLE

/* inform me if a button is pressed (actually released, */

/* since this is the way amiga buttons are handled) */

#define ID_PLAYBUTTON 42

...

DoMethod(buttonobj, MUIM_Notify,

2.8 MUIM Application Save 27

MUIA_Pressed, FALSE,

appobj, 2, MUIM_Application_ReturndID, ID_PLAYBUTTON);

...

while (running)

{

switch (DoMethod(appobj,MUIM_Application_Input,&sigs))

{

case ID_PLAYBUTTON:

printf("Ok, lets play a game...");

break;

}

}

SEE ALSO

MUIM Application Input, MUIM Notify

2.8 MUIM Application Save (V4)

SYNOPSIS

DoMethod(obj,MUIM Application Save,STRPTR name);

FUNCTION

MUIM Application Save, MUIM Application Load and MUIA ExportID offer an
easy way of saving and loading a programs configuration.

Each gadget with a non NULLMUIA ExportID will get its contents saved during
MUIM Application Save and restored during MUIM Application Load. This makes
it very easy to design a configuration window with ”Save”, ”Use” and ”Cancel”
buttons to allow the user storing the settings. When the application starts, you
would just have to call MUIM Application Load and the stored settings will be
read and installed.

Not all classes are able to import and export their contents. Currently, you may
define MUIA ExportIDs for

String class - MUIA String Contents is ex/imported.
Radio class - MUIA Radio Active is ex/imported.
Cycle class - MUIA Cycle Active is ex/imported.
List class - MUIA List Active is /ex/imported.
Text class - MUIA Text Contents is ex/imported.
Slider class - MUIA Slider Level is ex/imported.
Area class - MUIA Selected is ex/imported

(e.g. for Checkmark gadgets)
Menuitem class - MUIA Checked is ex/imported (V9).
Group class - MUIA Group ActivePage is ex/imported (V8).

INPUTS

name - Name of the file you wish to save the settings to. Usually you won’t need
to think of a real name but instead use one of the magic cookies

• MUIV Application Save ENV or

• MUIV Application Save ENVARC.

28 2 APPLICATION.MUI

This will save your application’s settings somewhere in env:mui/ or envarc:mui/,
you needn’t worry about it.

EXAMPLE

see the sample program "Settings.c"

SEE ALSO

MUIM Application Load, MUIA ExportID

2.9 MUIM Application SetMenuCheck (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Application SetMenuCheck,ULONG MenuID, LONG stat);

FUNCTION

Set or clear the checkmark of a menu item. The application will ask its sub windows
for menu items with the given id and set/clear all found entries.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

set - TRUE to set checkmark, FALSE to clear

SEE ALSO

MUIM Application GetMenuCheck, MUIA Application Menu,

2.10 MUIM Application SetMenuState (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Application SetMenuState,ULONG MenuID, LONG stat);

FUNCTION

Enable or disable a menu item. The application will ask its sub windows for menu
items with the given id and enable/disable all found entries.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

set - TRUE to enable item, FALSE to disable.

SEE ALSO

MUIM Application GetMenuState, MUIA Application Menu,

2.11 MUIM Application ShowHelp 29

2.11 MUIM Application ShowHelp (V4)

SYNOPSIS

DoMethod(obj,MUIM Application ShowHelp,Object ∗window, char ∗name, char
∗node, LONG line);

FUNCTION

Show an AmigaGuide help file. The application will be put to sleep until the file is
displayed.

Usually, you don’t need to call this method directly. MUI comes with a sophi-
sticated online help system, you just need to supply your gadgets with help nodes
and everything will be handled automatically.

INPUTS

window - (Object ∗) - Help will appear on this windows screen. May be NULL.

name - (char ∗) - name of the help file

node - (char ∗) - name of a node in this help file

line - (char ∗) - line number

SEE ALSO

MUIA HelpFile, MUIA HelpNode, MUIA HelpLine

2.12 MUIA Application Active – (V4) [ISG], BOOL

FUNCTION

This attribute reflects the state that the user adjusted with commodities Exchange.
MUI itself doesn’t pay any attention to it, this is up to you.

SEE ALSO

MUIA Application Broker

2.13 MUIA Application Author – (V4) [I.G], STRPTR

FUNCTION

Name of the applications author.

EXAMPLE

see MUIA_Application_Title

SEE ALSO

MUIA Application Title, MUIA Application Copyright,
MUIA Application Version, MUIA Application Description,
MUIA Application Base

30 2 APPLICATION.MUI

2.14 MUIA Application Base – (V4) [I.G], STRPTR

FUNCTION

The basename for an application. This name is used for the builtin ARexx port and
for some internal file management.

A basename must neither contain spaces nor any special characters such as
”:/()#?∗...”.

When your program is a single task applica-
tion (i.e. MUIA Application SingleTask is TRUE), the base name will be used
without further modification.

Otherwise, it gets a ”.1”, ”.2”, etc. appended, depending on how many applica-
tions are already running. If you need to know the name of your ARexx port, you
can query the base name attribute after the application is created.

EXAMPLE

see MUIA_Application_Title

SEE ALSO

MUIA Application Title, MUIA Application Version, MUIA Application Author,
MUIA Application Copyright, MUIA Application Description

2.15 MUIA Application Broker – (V4) [..G], Broker ∗

FUNCTION

If you need to attach some additional commodities objects to your application (e.g.
because you need lots of hotkeys), you can obtain a pointer to the applications
Broker structure and add some commodities objects.

MUI will free the complete broker when the application is disposed, no need for
you to free your objects yourself.

To receive input from your objects, you will also need to install a
MUIA Application BrokerHook.

NOTE

Unless you have set MUIA Application RequiresCX, you must be prepared to recei-
ve a NULL pointer. In this case, the commodities interface is not available, maybe
because the user installed a light version of MUI.

SEE ALSO

MUIA Application BrokerHook

2.16 MUIA Application BrokerHook – (V4) [ISG], struct
Hook ∗

FUNCTION

You specify a pointer to hook structure. The function will be called whenever a
commodities message arrives (between MUI’s GetMsg() and ReplyMsg()).

You receive a pointer to the application object as object in a2 and a pointer to
commodities CxMsg message in a1.

2.17 MUIA Application BrokerPort 31

NOTE

The commodities interface isn’t available in the memory saving ”light” version of
MUI. Your hook will never be called in this case.

SEE ALSO

MUIA Application Broker

2.17 MUIA Application BrokerPort – (V6) [..G], struct Ms-
gPort ∗

FUNCTION

Get a pointer to the applications commodities message port. If you want to add
own Hotkeys to your application, you need a message port. Instead of creating your
own, you should better use this one.

NOTE

Unless you have set MUIA Application RequiresCX, you must be prepared to recei-
ve a NULL pointer. In this case, the commodities interface is not available, maybe
because the user installed a light version of MUI.

SEE ALSO

MUIA Application BrokerHook

2.18 MUIA Application BrokerPri – (V6) [I.G], LONG

FUNCTION

Adjust the priority of an applications broker.

SEE ALSO

MUIA Application BrokerHook

2.19 MUIA Application Commands – (V4) [ISG], struct
MUI Command ∗

FUNCTION

This attribute allows an application to include its own set of ARexx commands. You
specify a pointer to an array of MUI Command structures, which look like this:

struct MUI_Command

{

char *mc_Name;

char *mc_Template;

LONG mc_Parameters;

struct Hook *mc_Hook;

LONG mc_Reserved[5];

};

mc Name contains the name of your command. Commands are not case sensitive.

32 2 APPLICATION.MUI

mc Template is an argument template that follows the same rules as
dos.library/ReadArgs(). It may be NULL, in which case your command
doesn’t need any parameters.

mc Parameters is the number of parameters specified in the template array.

mc Hook is a pointer to the callback hook defining the function to be called.

You may specify any number of MUI Command structures, but you must ter-
minate your array with a NULL field.

When a command shows up an applications ARexx port, MUI parses the ar-
guments according to the given template and calls the hook with the application
object as hook object in a2 and a pointer to an array of longwords containing the
parameters in a1.

The result code of your hook will be replied to ARexx as rc.
If you have some simple ARexx commands that just emulate some user action

(e.g. clicking a button), you can use the magic cookie MC TEMPLATE ID for
mc Template and a return id value for mc Parameters. In this case, MUI will do no
argument parsing and instead simply return the specified id value on the next call
to MUIM Application Input.

For more sophisticated possibilities in ARexx callback hooks, please refer to
MUIA Application RexxMsg and MUIA Application RexxString.

EXAMPLE

static struct MUI_Command commands[] =

{

{ "rescan", MC_TEMPLATE_ID, ID_RESCAN, NULL },

{ "select", "PATTERN/A" , 1 , &selhook },

{ NULL , NULL , NULL , NULL }

};

SEE ALSO

MUIA Application RexxMsg, MUIA Application RexxString

2.20 MUIA Application Copyright – (V4) [I.G], STRPTR

FUNCTION

A copyright string, containing the year and the company.

EXAMPLE

see MUIA_Application_Title

SEE ALSO

MUIA Application Title, MUIA Application Version, MUIA Application Author,
MUIA Application Description, MUIA Application Base

2.21 MUIA Application Description – (V4) [I.G], STRPTR

FUNCTION

Short description, about 40 characters. Shown e.g. in commodities exchange.

2.22 MUIA Application DiskObject 33

EXAMPLE

see MUIA_Application_Title

SEE ALSO

MUIA Application Title, MUIA Application Version, MUIA Application Author,
MUIA Application Copyright, MUIA Application Base

2.22 MUIA Application DiskObject – (V4) [ISG], struct
DiskObject ∗

FUNCTION

Pointer to a struct DiskObject, e.g. obtained from GetDiskObject(). If present, MUI
will use this object for the AppIcon when your application gets iconified.

Otherwise MUI will try to locate ”env:sys/dev mui.info” and, if not present, fall
back to a default icon.

EXAMPLE

...

MUIA_Application_DiskObject,

dobj = GetDiskObject("PROGDIR:MyApp"),

...

/* note that you have to free dobj yourself! */

NOTE

Unless you have set MUIA Application RequiresIconification, this attribute might
have no effect, maybe because the user installed a light version of MUI. You must
be prepared to receive a NULL pointer when you try to read it!

SEE ALSO

MUIA Application Iconified

2.23 MUIA Application DoubleStart – (V4) [..G], BOOL

FUNCTION

This attribute is set automatically when the user tries to start a MUIA SingleTask
application twice. You can react on this and take appropriate actions, e.g. pop up
a requester or quit yourself.

SEE ALSO

MUIA Application SingleTask

2.24 MUIA Application DropObject – (V5) [IS.], Object ∗

FUNCTION

If your application is iconified and the user drops icons onto the AppIcon, the object
specified here will receive the AppMessage.

34 2 APPLICATION.MUI

SEE ALSO

MUIA Window AppWindow, MUIM CallHook

2.25 MUIA Application ForceQuit – (V8) [..G], BOOL

FUNCTION

When your input loop receives a MUIV Application ReturnID Quit, you should
query this attribute. In case its TRUE, your program should exit quietly without
popping up any safety requesters or other stuff.

MUI will e.g. set this if the user issued a ”QUIT FORCE” ARexx command to
your application.

2.26 MUIA Application HelpFile – (V8) [ISG], STRPTR

FUNCTION

This attribute allows defining an AmigaGuide style file to be displayed when the
user requests online help.

When the HELP button is pressed and the application defines a
MUIA Application HelpFile, MUI tries to obtain MUIA HelpNode from the cur-
rent object (the one under the mouse pointer). If MUIA HelpNode is not defined,
MUI continues asking the parent object for this attribute (usually a group, but
remember: the parent of a windows root object is the window itself, the parent of
a window is the application).

When a non NULL MUIA HelpNode is found, the same procedure is applied to
MUIA HelpLIne. Then MUI puts the application to sleep and displays the file at
the position specified with MUIA HelpNode and/or MUIA HelpLine.

This behaviour allows you to define one MUIA Application HelpFile for your
application object and different help nodes and lines for your applications windows
and/or gadgets.

EXAMPLE

ApplicationObject,

...

MUIA_Application_HelpFile, "progdir:myapp.guide",

...,

SubWindow, WindowObject,

MUIA_Window_Title, "Prefs Window",

...,

MUIA_HelpNode, "prefs-section",

...,

End,

SubWindow, WindowObject,

MUIA_Window_Title, "Play Window",

...

MUIA_HelpNode, "play-section",

...

WindowContents, VGroup,

...,

Child, StringObject,

MUIA_HelpNode, "play-string",

...,

2.27 MUIA Application Iconified 35

End,

End,

End,

End;

In this case, the user will get the prefs-section chapter of ”myapp.guide” when
he requests help in the Prefs window, the play-string chapter when he requests help
over the string gadget in the Play window or the play-section chapter somewhere
else in the Play window.

NOTE

Since muimaster.library V8, this attribute replaces the old and obsolete
MUIA HelpFile attribute. MUI no longer supports the possibility to specify dif-
ferent help files for different parts of your application. This step was necessary due
to some other internal changes and enhancements.

SEE ALSO

MUIA HelpNode, MUIA HelpLine

2.27 MUIA Application Iconified – (V4) [.SG], BOOL

FUNCTION

Setting this attribute to TRUE causes the application to become iconified. Eve-
ry open window will be closed and a (configurable) AppIcon will appear on the
workbench.

Same thing happens when the user hits the iconify gadget in the window border
or uses commodities Exchange to hide your applications interface.

There is no way for you to prevent your application from being ico-
nified. However, you can react on the iconification by listening to the
MUIA Application Iconified attribute with notification. This allows you to free so-
me resources you don’t need in iconified state.

When an application is iconified and you try to open a window, the window won’t
open immediately. Instead MUI remembers this action and opens the window once
the application is uniconified again.

EXAMPLE

/* inform the main input loop of iconification events */

#define ID_HIDE 42

#define ID_SHOW 24

DoMethod(app,MUIM_Notify,

MUIA_Application_Iconified, TRUE,

app, 2, MUIM_Application_ReturnID, ID_HIDE);

DoMethod(app,MUIM_Notify,

MUIA_Application_Iconified, FALSE,

app, 2, MUIM_Application_ReturnID, ID_SHOW);

36 2 APPLICATION.MUI

SEE ALSO

MUIA Application DiskObject

2.28 MUIA Application Menu – (V4) [I.G], struct NewMe-
nu ∗ (OBSOLETE)

FUNCTION

Obsolete, use MUIA Application Menustrip instead.

SEE ALSO

MUIA Application Menustrip

2.29 MUIA Application MenuAction – (V4) [..G], ULONG

FUNCTION

Whenever a menu item is selected, this attribute will be set to the corresponding
UserData field of the gadtools NewMenu structure. This allows reacting on menu
items via broadcasting.

SEE ALSO

MUIA Application Menu, MUIA Application MenuAction

2.30 MUIA Application MenuHelp – (V4) [..G], ULONG

FUNCTION

Whenever a menu item is selected with the help key, this attribute will be set to the
corresponding UserData field of the gadtools NewMenu structure. Together with
MUIM Application ShowHelp this allows creation of menu help texts.

SEE ALSO

MUIA Application Menu, MUIA Application ShowHelp

2.31 MUIA Application Menustrip – (V8) [I..], Object ∗

FUNCTION

Specify a menu strip object for the application. The object is treated as a child of
the application and will be disposed when the application is disposed.

Menustrip objects defined for the application are used as menu for every window
of the application, as long as the window doesn’t define its private menu.

MUIA Application Menustrip replaces the old and obsolete
MUIA Application Menu tag.

Usually, you will create the menu object with MUI’s builtin object library from
a gadtools NewMenu structure, but its also OK to define the menu tree ”by hand”
using the Family class.

2.32 MUIA Application RexxHook 37

2.32 MUIA Application RexxHook – (V7) [ISG], struct
Hook ∗

FUNCTION

When specified, MUI calls this hook whenever a rexx message arrives and MUI
can’t map it to a builtin or a programmer specified command. The hook will be
called with a pointer to itself in A0, a pointer to the application object in A2 and
a pointer to a struct RexxMsg in A1.

The return code from the hook is used as result code when replying the message,
the secondary result can be set with MUIA Application RexxString.

SEE ALSO

MUIA Application Commands

2.33 MUIA Application RexxMsg – (V4) [..G], struct
RxMsg ∗

FUNCTION

Within an ARexx callback hook, you can obtain a pointer to the RexxMsg that
came with the command. This allows you to use some ARexx support functions
coming with amiga.lib

SEE ALSO

MUIA Application Commands, MUIA Application RexxString

2.34 MUIA Application RexxString – (V4) [.S.], STRPTR

FUNCTION

ARexx allows returning a string as result of a function call. This attribute allows
setting the result string within an ARexx callback hook.

The string is temporarily copied.

SEE ALSO

MUIA Application Commands, MUIA Application RexxMsg

2.35 MUIA Application SingleTask – (V4) [I..], BOOL

FUNCTION

Boolean value to indicate whether or not your application is a single task program.
When set to TRUE, MUI will refuse to create more than one application object.

In this case, the already running application gets its MUIA DoubleStart attri-
bute set to TRUE. You can listen to this and take appropriate actions, e.g. pop up
a requester.

Examples for single task applications are the system preferences program. It
doesn’t make sense for them to run more than once.

SEE ALSO

MUIA Application DoubleStart

38 2 APPLICATION.MUI

2.36 MUIA Application Sleep – (V4) [.S.], BOOL

FUNCTION

This attribute can be used to put a whole application to sleep. All open windows
get disabled and a busy pointer appears.

This attribute contains a nesting count, if you tell your application to sleep
twice, you will have to tell it to wake up twice too.

If you need to do some time consuming actions, you always should set this
attribute to inform the user that you are currently unable to handle input.

A sleeping application’s windows cannot be resized.

EXAMPLE

set(app,MUIA_Application_Sleep,TRUE); // go to bed

calc_fractals();

set(app,MUIA_Application_Sleep,FALSE); // wake up

SEE ALSO

MUIA Window Sleep, MUIM Application InputBuffered

2.37 MUIA Application Title – (V4) [I.G], STRPTR

FUNCTION

This tag defines the title of an application. The title is e.g. shown in Commodities
Exchange or in the MUI preferences program.

An application title shall not contain any version information, just the pure title.
Also, special characters such as ”:/()#?∗...” are not allowed.

You should use a quiet long and unique name for your applications. Naming it
”Viewer” or ”Browser” is not a wise choice.

The length of the name must not exceed 30 characters!

EXAMPLE

ApplicationObject,

MUIA_Application_Title , "WbMan",

MUIA_Application_Version , "$VER: WbMan 0.24 (19.7.93)",

MUIA_Application_Copyright , " c© 1993 by Klaus Melchior",

MUIA_Application_Author , "Klaus Melchior",

MUIA_Application_Description, "Manages the WBStartup.",

MUIA_Application_Base , "WBMAN",

...

SEE ALSO

MUIA Application Version, MUIA Application Copyright,
MUIA Application Author, MUIA Application Description,
MUIA Application Base

2.38 MUIA Application UseCommodities 39

2.38 MUIA Application UseCommodities – (V10) [I..],
BOOL

FUNCTION

When set to FALSE, the application will run without a commodities interface.
Think very well before using this tag!

SEE ALSO

MUIA Application UseRexx

2.39 MUIA Application UseRexx – (V10) [I..], BOOL

FUNCTION

When set to FALSE, the application will run without an ARexx interface. Think
very well before using this tag!

SEE ALSO

MUIA Application UseCommodities

2.40 MUIA Application Version – (V4) [I.G], STRPTR

FUNCTION

Define a version string for an application. This string shall follow standard version
string convetions but must not contain a leading ”\0”.

EXAMPLE

see MUIA_Application_Title

SEE ALSO

MUIA Application Title, MUIA Application Copyright,
MUIA Application Author, MUIA Application Description,
MUIA Application Base

2.41 MUIA Application Window – (V4) [I..], Object ∗

FUNCTION

A pointer to a MUI object of Window class. An application may have any number
of sub windows, each of them being a child of the application.

When the application receives some kind of user input through its IDCMP, it
diverts the message down to its children, as long as they are opened.

Things like iconification or preferences changes cause the application object to
temporarily close every open window (and reopen it later). Your main program
normally doesn’t need to deal with these things.

As with the children of group class, it’s common to use a call to
MUI NewObject() as value for this attribute. No error checking needs to be do-
ne, the application object handles every failure automatically.

When you dispose your application, its sub windows will also get deleted. Thus,
the only thing to do to remove your application is a

40 3 AREA.MUI

MUI DisposeObject(ApplicationObject);
Every window, every gadget, every memory will be freed by this single call.

EXAMPLE

Please refer to one of the example programs.

SEE ALSO

3 Area.mui

Area class is a super class for every other MUI class except windows and applica-
tions. It holds information about an objects current position, size and weight and
manages frames, fonts and backgrounds.

Additionally, area class handles the user input. By setting an objects
MUIA InputMode, you can make it behave like a button or like a toggle gadget.
That’s why MUI doesn’t offer an extra button class. A button is simply a text ob-
ject with a raised frame and a relverify input mode. Since especially group class is
a subclass of area, you can create rather complex buttons consisting of many other
display elements.

3.1 MUIM AskMinMax (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM AskMinMax,struct MUI MinMax *MinMaxInfo);

FUNCTION

see developer documentation.

3.2 MUIM Cleanup (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM Cleanup,);

FUNCTION

see developer documentation.

3.3 MUIM Draw (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM Draw,ULONG flags);

FUNCTION

see developer documentation.

3.4 MUIM HandleInput 41

3.4 MUIM HandleInput (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM HandleInput,struct IntuiMessage *imsg, LONG muikey);

FUNCTION

see developer documentation.

3.5 MUIM Hide (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM Hide,);

FUNCTION

see developer documentation.

3.6 MUIM Setup (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM Setup,struct MUI RenderInfo *RenderInfo);

FUNCTION

see developer documentation.

3.7 MUIM Show (V4)

[For use within custom classes only]

SYNOPSIS

DoMethod(obj,MUIM Show,);

FUNCTION

see developer documentation.

3.8 MUIA ApplicationObject – (V4) [..G], Object *

FUNCTION

You can obtain a pointer to the application object that some gadget belongs to by
using this attribute. Useful mainly within callback hooks if you do not want to deal
with global variables.

42 3 AREA.MUI

SEE ALSO

MUIA WindowObject

3.9 MUIA Background – (V4) [IS.], LONG

FUNCTION

Adjust the background for an object.
Every MUI object has its own background setting. The background is displayed

”behind” the actual object contents, e.g. behind a the text of a text object or behind
the image of an image object.

This attribute takes the same values as MUIA Image Spec, please refer to aut-
odocs of image class for a complete description.

An object without a specific background setting will inherit the pattern from its
parent group. The default background for a window and many other background
patterns are adjustable with the preferences program.

Only a few MUII xxxxxxx tags make sense as background. Important are:

MUII ButtonBack: You have to set this when you create a button gadget. Thus,
your button will be displayed in the users preferred style.

MUII TextBack: Set this when you create a text object with a TextFrame, e.g.
some kind of status line. Do *not* use MUII TextBack for simple text without
frame (e.g. gadget labels).

MUII BACKGROUND
MUII SHADOW
MUII SHINE
MUII FILL
MUII SHADOWBACK
MUII SHADOWFILL
MUII SHADOWSHINE
MUII FILLBACK
MUII FILLSHINE
MUII SHINEBACK
MUII SHINEBACK2
One of MUI’s predefined pattern. These are not configurable by the user and

will always look the same.

NOTE

It is important that you test your programs with a fancy pattern configuration.
With the default setting you won’t notice any errors in your backgrounds.

3.10 MUIA BottomEdge – (V4) [..G], LONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g.
need it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is
currently open.

SEE ALSO

MUIA TopEdge, MUIA Width, MUIA Height, MUIA RightEdge, MUIA LeftEdge

3.11 MUIA ControlChar 43

3.11 MUIA ControlChar – (V4) [I..], char

FUNCTION

Pressing the control char will have the same effect as pressing return if the object
was active.

This can be used to create old style key shortcuts.

NOTE

Using an uppercase control char will force the user to press shift.

SEE ALSO

mui.h / KeyButton() macro

3.12 MUIA Disabled – (V4) [ISG], BOOL

FUNCTION

Disable or enable a gadget. Setting this attribute causes a gadget to become disab-
led, it gets a ghost pattern and doesn’t respond to user input any longer.

Disabled gadgets cannot be activated with the TAB key.

Using MUIA Disable on a group of objects will disable all objects within that
group.

EXAMPLE

/* we have a radio button gadget with three */

/* entries, the third should enable a string gadget */

/* with additional parameters */

DoMethod(radio, MUIM_Notify, MUIA_Radio_Active, 0,

string, 3, MUIM_Set, MUIA_Disabled, TRUE);

DoMethod(radio, MUIM_Notify, MUIA_Radio_Active, 1,

string, 3, MUIM_Set, MUIA_Disabled, TRUE);

DoMethod(radio, MUIM_Notify, MUIA_Radio_Active, 2,

string, 3, MUIM_Set, MUIA_Disabled, FALSE);

3.13 MUIA ExportID – (V4) [ISG], LONG

FUNCTION

Objects with a non NULL MUIA ExportID export their contents during
MUIM Application Save and import them during MUIM Application Load.

You have to use different ExportIDs for your objects!

SEE ALSO

MUIM Application Save, MUIM Application Load

44 3 AREA.MUI

3.14 MUIA FixHeight – (V4) [I..], LONG

FUNCTION

Give your object a fixed pixel height. This tag is absolutely not needed in a gene-
ral MUI application and only present for emergency situations. Please think twice
before using it!

EXAMPLE

/* create an 8x8 pixel rectangle with FILLPEN */

RectangleObject,

MUIA_FixWidth , 8,

MUIA_FixHeight , 8,

MUIA_Background, MUII_FILL,

End;

SEE ALSO

MUIA FixWidth, MUIA FixWidthTxt, MUIA FixHeightTxt

3.15 MUIA FixHeightTxt – (V4) [I..], LONG

FUNCTION

Give your object a fixed pixel height. The height will match the height of the given
string. This tag is absolutely not needed in a general MUI application and only
present for emergency situations. Please think twice before using it!

EXAMPLE

/* create a fixed size rectangle with FILLPEN */

RectangleObject,

MUIA_FixWidthTxt , "00:00:00",

MUIA_FixHeightTxt, "\n\n",

MUIA_Background , MUII_FILL,

End;

SEE ALSO

MUIA FixHeight, MUIA FixWidth, MUIA FixWidthTxt

3.16 MUIA FixWidth – (V4) [I..], LONG

FUNCTION

Give your object a fixed pixel width. This tag is absolutely not needed in a gene-
ral MUI application and only present for emergency situations. Please think twice
before using it!

3.17 MUIA FixWidthTxt 45

EXAMPLE

/* create an 8x8 pixel rectangle with FILLPEN */

RectangleObject,

MUIA_FixWidth , 8,

MUIA_FixHeight , 8,

MUIA_Background, MUII_FILL,

End;

SEE ALSO

MUIA FixHeight, MUIA FixWidthTxt, MUIA FixHeightTxt

3.17 MUIA FixWidthTxt – (V4) [I..], STRPTR

FUNCTION

Give your object a fixed pixel width. The width will match the width of the given
string. This tag is absolutely not needed in a general MUI application and only
present for emergency situations. Please think twice before using it!

EXAMPLE

/* create a fixed size rectangle with FILLPEN */

RectangleObject,

MUIA_FixWidthTxt , "00:00:00",

MUIA_FixHeightTxt, "\n\n",

MUIA_Background , MUII_FILL,

End;

SEE ALSO

MUIA FixHeight, MUIA FixWidth, MUIA FixHeightTxt

3.18 MUIA Font – (V4) [I.G], struct TextFont *

SPECIAL INPUTS

MUIV Font Inherit
MUIV Font Normal
MUIV Font List
MUIV Font Tiny
MUIV Font Fixed
MUIV Font Title
MUIV Font Big

FUNCTION

Every MUI object can have its own font, just set it with this tag. Objects without
an explicit font setting will inherit it from their parent group.

You normally won’t need to open a font yourself, just use one of the predefined
values to get a font from the users preferences.

46 3 AREA.MUI

EXAMPLE

/* since the text contains tabs, */

/* use the fixed width font for displaying */

msgread = FloattextObject,

MUIA_Font, MUIV_Font_Fixed,

...,

End;

3.19 MUIA Frame – (V4) [I..], LONG

SPECIAL INPUTS

MUIV Frame None
MUIV Frame Button
MUIV Frame ImageButton
MUIV Frame Text
MUIV Frame String
MUIV Frame ReadList
MUIV Frame InputList
MUIV Frame Prop
MUIV Frame Gauge
MUIV Frame Group
MUIV Frame PopUp
MUIV Frame Virtual
MUIV Frame Slider
MUIV Frame Count

FUNCTION

Define a frame for the current object. Since area class is a superclass for all elements
in a window, you can assign frames to every object you wish.

You don’t adjust the style of your frame directly, instead you only specify a type:

MUIV Frame Button for standard buttons with text in it.

MUIV Frame ImageButton for small buttons with images, e.g. the arrows of a
scrollbar.

MUIV Frame Text for a text field, e.g. a status line display.

MUIV Frame String for a string gadget.

MUIV Frame ReadList for a read only list.

MUIV Frame InputList for a list that handles input (has a cursor).

MUIV Frame Prop for proportional gadgets.

MUIV Frame Group for groups.

How the frame is going to look is adjustable via the preferences program.
Four spacing values belong to each frame that tell MUI how many pixels should

be left free between the frame and its contents. These spacing values are also user
adjustable as long as you don’t override them with one of the MUIA InnerXXXX
tags.

3.20 MUIA FramePhantomHoriz 47

NOTE

The first object in a window (MUIA Window RootObject) may not have a frame.
If you need this you will have to create a dummy group with just one child.

EXAMPLE

strobj = StringObject,

MUIA_Frame, MUIV_Frame_String,

End;

SEE ALSO

MUIA InnerLeft, MUIA InnerRight, MUIA InnerTop, MUIA InnerBottom

3.20 MUIA FramePhantomHoriz – (V4) [I..], BOOL

FUNCTION

Setting this to TRUE causes the specified frame to be a horizontal phantom frame.
The frame will not appear but its vertical components (frame height, inner top and
inner bottom spacing) will be used to calculate positions and dimensions (horizontal
components are treated as 0).

This is extremely useful for a correct labeling of objects. You would e.g. label a
string gadget by using a text object with a phantom string frame. Thus, the label
text will be always on the same vertical position as the string gadget text, no matter
what spacing values the user configured.

SEE ALSO

Label() macros in ”mui.h”.

3.21 MUIA FrameTitle – (V4) [I..], STRPTR

FUNCTION

This tag identifies a text string that will be displayed centered in the top line of a
frame. This can become handy if you want to name groups of objects.

You may not use MUIA FrameTitle without defining a MUIA Frame.

EXAMPLE

VGroup,

MUIA_Frame , MUIV_Frame_Group,

MUIA_FrameTitle, "Spacing",

...

SEE ALSO

MUIA Frame

48 3 AREA.MUI

3.22 MUIA Height – (V4) [..G], LONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g.
need it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is
currently open.

SEE ALSO

MUIA TopEdge, MUIA Width, MUIA LeftEdge, MUIA RightEdge,
MUIA BottomEdge

3.23 MUIA HorizWeight – (V4) [I..], LONG

FUNCTION

Adjust the horizontal weight of an object. Usually you can simply use MUIA Weight
instead of this tag but in some two-dimensional groups it may become handy to
have different horizontal and vertical weights.

SEE ALSO

MUIA Weight

3.24 MUIA InnerBottom – (V4) [I..], LONG

FUNCTION

Adjust the space between an object and its frame. Usually you shouldn’t use this
tag since you will override the users preferred default setting.

SEE ALSO

MUIA Frame

3.25 MUIA InnerLeft – (V4) [I..], LONG

FUNCTION

Adjust the space between an object and its frame. Usually you shouldn’t use this
tag since you will override the users preferred default setting.

SEE ALSO

MUIA Frame

3.26 MUIA InnerRight – (V4) [I..], LONG

FUNCTION

Adjust the space between an object and its frame. Usually you shouldn’t use this
tag since you will override the users preferred default setting.

SEE ALSO

MUIA Frame

3.27 MUIA InnerTop 49

3.27 MUIA InnerTop – (V4) [I..], LONG

FUNCTION

Adjust the space between an object and its frame. Usually you shouldn’t use this
tag since you will override the users preferred default setting.

SEE ALSO

MUIA Frame

3.28 MUIA InputMode – (V4) [I..], LONG

SPECIAL INPUTS

MUIV InputMode None
MUIV InputMode RelVerify
MUIV InputMode Immediate
MUIV InputMode Toggle

FUNCTION

Adjust the input mode for an object.

MUI has no distinct button class. Instead you can make every object (even
groups) behave like a button by setting an input mode for them. Several input
modes area available:

MUIV InputMode None: No input, this is not a gadget.

MUIV InputMode RelVerify: For buttons and similar stuff.

MUIV InputMode Immediate: Used e.g. in a radio button object.

MUIV InputMode Toggle: For things like checkmark gadgets.

The input mode setting determines how a user action will trigger the attribu-
tes MUIA Selected, MUIA Pressed and MUIA Timer. See their documentation for
details.

EXAMPLE

/* A traditional button, just a text object with */

/* a button frame and a relverify input mode: */

okbutton = TextObject,

MUIA_Frame , MUIV_Frame_Button,

MUIA_InputMode , MUIV_InputMode_RelVerify,

MUIA_Text_Contents, "OK",

...

SEE ALSO

MUIA Selected, MUIA Timer, MUIA Pressed

50 3 AREA.MUI

3.29 MUIA LeftEdge – (V4) [..G], LONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g.
need it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is
currently open.

SEE ALSO

MUIA TopEdge, MUIA Width, MUIA Height, MUIA RightEdge,
MUIA BottomEdge

3.30 MUIA Pressed – (V4) [..G], BOOL

FUNCTION

Learn if a button is pressed (or released). The MUIA Pressed attribute of a gadget
is triggered by some user action, depending on the input mode:

• MUIV InputMode RelVerify:

– set when lmb is pressed.

– cleared when lmb is released and the mouse is still over the gadget (other-
wise it will be cleared too, but without triggering a notification event).

• MUIV InputMode Immediate:

– undefined, use MUIA Selected for this.

• MUIV InputMode Toggle:

– undefined, use MUIA Selected for this.

Waiting for MUIA Pressed getting FALSE is the usual way to react on button
gadgets.

EXAMPLE

DoMethod(btcancel,MUIM_Notify,MUIA_Pressed,FALSE,

app,2,MUIM_Application_ReturnID,ID_CANCEL);

SEE ALSO

MUIA Selected, MUIA Timer, MUIA ShowSelState, MUIA InputMode

3.31 MUIA RightEdge – (V4) [..G], LONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g.
need it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is
currently open.

3.32 MUIA Selected 51

SEE ALSO

MUIA TopEdge, MUIA Width, MUIA Height, MUIA LeftEdge,
MUIA BottomEdge

3.32 MUIA Selected – (V4) [ISG], BOOL

FUNCTION

Get and set the selected state of a gadget. This attribute can be triggered by the
user clicking on the gadget (or using the keyboard), depending on the input mode:

• MUIV InputMode RelVerify:

– set when lmb is pressed.

– cleared when lmb is released.

– cleared when the gadget is selected and the mouse leaves the gadget box.

– set when the mouse reenters the gadget box.

• MUIV InputMode Immediate:

– set when lmb is pressed.

• MUIV InputMode Toggle:

– toggled when lmb is pressed.

Of course you may set this attribute yourself, e.g. to adjust the state of a check-
mark gadget.

A selected gadget will display its border reverse and get the configured
MUII SelectedBack background. This can be avoided using the MUIA ShowSelState
tag.

SEE ALSO

MUIA Pressed, MUIA Timer, MUIA ShowSelState, MUIA InputMode

3.33 MUIA ShowMe – (V4) [ISG], BOOL

FUNCTION

Objects with this attribute set are not displayed. You can set MUIA ShowMe at
any time, causing objects to appear and to disappear immediately. A new layout is
calculated whenever some objects are shown or hidden. When necessary, MUI will
resize the parent window to make place for the new objects.

NOTE

Currently, MUI does a complete window refresh after showing/hiding objects. This
behaviour might get improved in the future.

3.34 MUIA ShowSelState – (V4) [I..], BOOL

FUNCTION

Normally a gadget will reverse its frame and display the configured
MUII SelectetBack background pattern in its selected state. For some objects
(e.g. checkmarks) this is not recommended and can be supressed by setting
MUIA ShowSelState to FALSE.

52 3 AREA.MUI

SEE ALSO

MUIA Selected

3.35 MUIA Timer – (V4) [..G], LONG

FUNCTION

MUIA Timer gets triggered when a relverify button is pressed and (after a little
delay) increases every INTUITICK as long as the mouse remains over the gadget.

This makes it possible to have buttons repeatedly cause some actions, just like
the arrow gadgets of a scrollbar.

EXAMPLE

DoMethod(btmore,MUIM_Notify,MUIA_Timer,MUIV_EveryTime,

app,2,MUIM_Application_ReturnID,ID_MORE);

DoMethod(btless,MUIM_Notify,MUIA_Timer,MUIV_EveryTime,

app,2,MUIM_Application_ReturnID,ID_LESS);

SEE ALSO

MUIA Pressed, MUIA Selected

3.36 MUIA TopEdge – (V4) [..G], LONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g.
need it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is
currently open.

SEE ALSO

MUIA LeftEdge, MUIA Width, MUIA Height, MUIA RightEdge,
MUIA BottomEdge

3.37 MUIA VertWeight – (V4) [I..], LONG

FUNCTION

Adjust the vertical weight of an object. Usually you can simply use MUIA Weight
instead of this tag but in some two-dimensional groups it may become handy to
have different horizontal and vertical weights.

SEE ALSO

MUIA Weight

3.38 MUIA Weight 53

3.38 MUIA Weight – (V4) [I..], LONG

FUNCTION

This tag is a shorthand for MUIA HorizWeight and MUIA VertHeight, it sets both
weights at once.

The weight of an object determines how much room it will get during the layout
process. Imagine you have a 100 pixel wide horizontal group with two string gadgets.
Usually, each gadget will get half of the room and be 50 pixels wide. If you feel the
left gadget is more important and should be bigger, you can give it a weight of 200
(and 100 for the right gadget). Because the left gadget is twice as ”heavy” as the
right gadget, it will become twice as big (about 66 pixel) as the right one (34 pixel).

Of course giving weights only makes sense if the object is resizable. A
MUIA VertWeight for a (always fixed height) string gadget is useless.
An object with a weight of 0 will always stay at its minimum size.
By default, all objects have a weight of 100.

EXAMPLE

HGroup,

StringGadget, MUIA_Weight, 50, End,

StringGadget, MUIA_Weight, 100, End,

StringGadget, MUIA_Weight, 200, End,

End;

SEE ALSO

MUIA HorizWeight, MUIA VertWeight

3.39 MUIA Width – (V4) [..G], LONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g.
need it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is
currently open.

SEE ALSO

MUIA TopEdge, MUIA LeftEdge, MUIA Height, MUIA RightEdge,
MUIA BottomEdge

3.40 MUIA Window – (V4) [..G], struct Window *

FUNCTION

This attribute can be used to get a pointer to the intuition window structure of the
parent window ot the object. This pointer could e.g. be used in calls to asl.library.

The result is only valid when the window is opened.

SEE ALSO

MUIA Window Window

54 4 BITMAP.MUI

3.41 MUIA WindowObject – (V4) [..G], Object *

FUNCTION

You can obtain a pointer to the window object that some gadget belongs to by
using this attribute. Useful mainly within callback hooks if you do not want to deal
with global variables.

SEE ALSO

MUIA ApplicationObject

4 Bitmap.mui

The Bitmap class allows including self-made image data in MUI applications. Usual-
ly, image class was intended to be used for this purpose but unfortunately, its design
was not very useful.

In its most simple usage, Bitmap class just display a given BitMap. However,
you can also tell it to do automatic color remapping to match the current display
context and you can define a transparent color to make the BitMap appear on any
background.

4.1 MUIA Bitmap Bitmap – (V8) [ISG], struct BitMap ∗

FUNCTION

This attribute specifies a pointer to a struct BitMap. Note that specifying only a
BitMap isn’t enough, you have to tell MUI about the pixel width and height with
MUIA Bitmap Width and MUIA Bitmap Height too.

SEE ALSO

MUIA Bitmap Width, MUIA Bitmap Height, MUIA Bitmap Transparent,
MUIA Bitmap SourceColors, MUIA Bitmap MappingTable

4.2 MUIA Bitmap Height – (V8) [ISG], LONG

FUNCTION

Define the pixel height of the BitMap.

NOTE

By default, the bitmap object has a minimum size of 1 pixel and an unlimited
maxium size. If the space is too small to hold your BitMap, it will be clipped.
Usually, you will use MUIA FixWidth and MUIA FixHeight with BitMap objects
to make them always exactly as big as the bitmap.

SEE ALSO

MUIA Bitmap Bitmap, MUIA Bitmap Width, MUIA Bitmap Transparent,
MUIA Bitmap SourceColors, MUIA Bitmap MappingTable

4.3 MUIA Bitmap MappingTable 55

4.3 MUIA Bitmap MappingTable – (V8) [ISG], UBYTE ∗

FUNCTION

Address of an array of UBYTEs, one for each color of the source BitMap. MUI will
remap the BitMap according to the contents of the array.

Since MUI applications usually don’t know about their display environment,
this tag is rarely used. Instead, MUIA Bitmap SourceColors can be used to allow
context sensitive color remapping.

SEE ALSO

MUIA Bitmap Bitmap, MUIA Bitmap Height, MUIA Bitmap Width,
MUIA Bitmap Transparent

4.4 MUIA Bitmap SourceColors – (V8) [ISG], ULONG ∗

FUNCTION

This attribute defines the color palette of the source BitMap. If specified, MUI will
try to locate these colors on the current screen and remap the BitMap accordingly.

You can e.g. specify some great looking 8-color images for several buttons of
your application and MUI will ensure they look fine even on 4-color screens or on
screens with completely different colors.

When running Kickstart V39 or higher, MUI will use ObtainBestPen() to find
or create your colors. Below V39, a simple color-map search is performed to find
the best matching entry, but no colors will be changed.

The source palette is specified with an array of ULONGs, three entries per color,
32bits per gun.

EXAMPLE

/* MagicWB-like palette for an 8-color image */

const ULONG aboutlogo_colors[24] =

{

0xaaaaaaaa,0xaaaaaaaa,0xa0a0a0a0,

0x00000000,0x00000000,0x00000000,

0xffffffff,0xffffffff,0xffffffff,

0x66666666,0x88888888,0xbbbbbbbb,

0x99999999,0x99999999,0x99999999,

0xbbbbbbbb,0xbbbbbbbb,0xbbbbbbbb,

0xbbbbbbbb,0xaaaaaaaa,0x99999999,

0xffffffff,0xbbbbbbbb,0xaaaaaaaa

};

SEE ALSO

MUIA Bitmap Bitmap, MUIA Bitmap Height, MUIA Bitmap Width,
MUIA Bitmap MappingTable, MUIA Bitmap MappingTable

56 5 BODYCHUNK.MUI

4.5 MUIA Bitmap Transparent – (V8) [ISG], LONG

FUNCTION

If specified, MUI will consider this color of the BitMap to be transparent. A mask
plane will be generated and used for blitting, the background will shine through.

SEE ALSO

MUIA Bitmap Bitmap, MUIA Bitmap Height, MUIA Bitmap Width,
MUIA Bitmap SourceColors, MUIA Bitmap MappingTable

4.6 MUIA Bitmap Width – (V8) [ISG], LONG

FUNCTION

Define the pixel width of the BitMap.

NOTE

By default, the bitmap object has a minimum size of 1 pixel and an unlimited
maxium size. If the space is too small to hold your BitMap, it will be clipped.
Usually, you will use MUIA FixWidth and MUIA FixHeight with BitMap objects
to make them always exactly as big as the bitmap.

SEE ALSO

MUIA Bitmap Bitmap, MUIA Bitmap Height, MUIA Bitmap Transparent,
MUIA Bitmap SourceColors, MUIA Bitmap MappingTable

5 Bodychunk.mui

Big and colorful images (e.g. About-Logos) usually take lots of space when stored in
a traditional BitMap structure. To save memory, you can decide to have the picture
compressed in your code and use the Bodychunk class instead of the Bitmap class
for displaying. MUI will then automatically decompress your image when its about
to appear in a window.

Since Bodychunk class is a subclass of Bitmap class, you can of course use all
the Bitmaps remapping and transparency features.

5.1 MUIA Bodychunk Body – (V8) [ISG], UBYTE ∗

FUNCTION

Specify a pointer to the BODY data of your picture. This BODY data must follow
normal IFF/ILBM conventions.

You have to supply MUIA Bitmap Width, MUIA Bitmap Height and
MUIA Bodychunk Depth to describe the contents of the BODY data, otherwise
MUI will fail to decompress it.

SEE ALSO

MUIA Bodychunk Depth, MUIA Bodychunk Compression,
MUIA Bodychunk Masking

5.2 MUIA Bodychunk Compression 57

5.2 MUIA Bodychunk Compression – (V8) [ISG], UBYTE

FUNCTION

MUI is able to uncompress byte&run compressed BODY chunks automatically. If
your data is compressed, you must supply a value of cmpByteRun1 (==1) for this
tag. Other compression techniques are not supported.

Omitting this tag or setting it to 0 indicates that the BODY data is uncompres-
sed. Using the Bodychunk class doesn’t make much sense in this case since its main
purpose is to save memory for big images.

SEE ALSO

MUIA Bodychunk Masking, MUIA Bodychunk Body

5.3 MUIA Bodychunk Depth – (V8) [ISG], LONG

FUNCTION

Specify the depth of your picture here. This tag is required for correct BODY
chunk parsing. Also remember to use MUIA Bodychunk Masking if your BODY
data contains a masking bitplane.

SEE ALSO

MUIA Bodychunk Body, MUIA Bodychunk Masking

5.4 MUIA Bodychunk Masking – (V8) [ISG], UBYTE

FUNCTION

You must indicate if your BODY data contains a masking plane. Currently, MUI
does not use this masking plane for any purpose, but this attribute is required to
allow correct parsing of the BODY data.

SEE ALSO

MUIA Bodychunk Body, MUIA Bodychunk Compression

6 Boopsi.mui

MUI’s boopsi class provides an interface to standard, system style boopsi gadgets.
Since boopsis gadgetclass misses some important features needed for an automatic
layout system like MUI, there are several problems with such an interface. MUI
tries to solve these problems with some additional attributes.

Coming with release 3.x of the amiga operating system are some very nice boopsi
gadgets such as ”colorwheel.gadget” or ”gradientslider.gadget”. With MUI’s boopsi
class, you can use these gadgets just as if they were MUI objects.

You can talk to a MUIized boopsi object as if it was the boopsi object itself.
MUI will pass through all attributes and try to be completely transparent. Additio-
nally, if a boopsi object generates notification events via IDCMP UPDATE, MUI
turns them into MUI notification events. Thus, you can e.g. react on the change
of WHEEL Saturation in a MUI colorwheel boopsi gadget as on any other MUI
attribute.

An example program ”BoopsiDoor.c” is provided to show how this magic works.

58 6 BOOPSI.MUI

NOTE

OS 3.0/3.1 colorwheel.gadget can accidently render itself one pixel too big, overwri-
ting other parts of the window. As a workaround, MUI will subtract one from the
width/height before passing it on to a colorwheel boopsi object.

6.1 MUIA Boopsi Class – (V4) [ISG], struct IClass ∗

FUNCTION

Pointer to the (private) class you want to create a boopsi object from. Only useful
if you previously generated your own boopsi class with MakeClass().

Of course you may not free the class until you’re done with your object.

SEE ALSO

MUIA Boopsi ClassID

6.2 MUIA Boopsi ClassID – (V4) [ISG], char ∗

FUNCTION

MUIA Boopsi ClassID specifies the name for the public Boopsi class you want to
create an object of. It will only be used when MUIA Boopsi Class is NULL.

The public class must be in memory before you can create an instance of it, you
will have to open the required class library by hand.

Note the string given to MUIA Boopsi ClassID must remain valid until you’re
done with the object.

EXAMPLE

/* Complete example code can be found in BoopsiDoor.c */

cwbase = OpenLibrary("gadgets/colorwheel.gadget",0);

Wheel = BoopsiObject, /* MUI and Boopsi tags mixed */

NeXTFrame,

MUIA_Boopsi_ClassID , "colorwheel.gadget",

MUIA_Boopsi_MinWidth , 30, /* boopsi objects don’t know */

MUIA_Boopsi_MinHeight, 30, /* their sizes, so we help */

MUIA_Boopsi_Remember , WHEEL_Saturation, /* keep important values */

MUIA_Boopsi_Remember , WHEEL_Hue, /* during window resize */

MUIA_Boopsi_TagScreen, WHEEL_Screen, /* this magic fills in */

WHEEL_Screen , NULL, /* the screen pointer */

GA_Left , 0,

GA_Top , 0, /* MUI will automatically */

GA_Width , 0, /* fill in the correct values */

GA_Height , 0,

ICA_TARGET , ICTARGET_IDCMP, /* needed for notification */

End;

...

MUI_DisposeObject(wheel);

CloseLibrary(cwbase);

6.3 MUIA Boopsi MaxHeight 59

SEE ALSO

MUIA Boopsi Class

6.3 MUIA Boopsi MaxHeight – (V4) [ISG], ULONG

FUNCTION

For MUI’s automatic layout system, it’s required that objects know their minimum
and maximums sizes. Since boopsi gadgets don’t support this feature, you will have
to help MUI and adjust these values by hand.

Defaults

MUIA MinWidth - 1 pixel
MUIA MinHeight - 1 pixel
MUIA MaxWidth - unlimited
MUIA MaxHeight - unlimited

EXAMPLE

see MUIA_Boopsi_ClassID

SEE ALSO

MUIA Boopsi ClassID

6.4 MUIA Boopsi MaxWidth – (V4) [ISG], ULONG

FUNCTION

For MUI’s automatic layout system, it’s required that objects know their minimum
and maximums sizes. Since boopsi gadgets don’t support this feature, you will have
to help MUI and adjust these values by hand.

Defaults

MUIA MinWidth - 1 pixel
MUIA MinHeight - 1 pixel
MUIA MaxWidth - unlimited
MUIA MaxHeight - unlimited

EXAMPLE

see MUIA_Boopsi_ClassID

SEE ALSO

MUIA Boopsi ClassID

6.5 MUIA Boopsi MinHeight – (V4) [ISG], ULONG

FUNCTION

For MUI’s automatic layout system, it’s required that objects know their minimum
and maximums sizes. Since boopsi gadgets don’t support this feature, you will have
to help MUI and adjust these values by hand.

60 6 BOOPSI.MUI

Defaults

MUIA MinWidth - 1 pixel
MUIA MinHeight - 1 pixel
MUIA MaxWidth - unlimited
MUIA MaxHeight - unlimited

EXAMPLE

see MUIA_Boopsi_ClassID

SEE ALSO

MUIA Boopsi ClassID

6.6 MUIA Boopsi MinWidth – (V4) [ISG], ULONG

FUNCTION

For MUI’s automatic layout system, it’s required that objects know their minimum
and maximums sizes. Since boopsi gadgets don’t support this feature, you will have
to help MUI and adjust these values by hand.

Defaults

MUIA MinWidth - 1 pixel
MUIA MinHeight - 1 pixel
MUIA MaxWidth - unlimited
MUIA MaxHeight - unlimited

EXAMPLE

see MUIA_Boopsi_ClassID

SEE ALSO

MUIA Boopsi ClassID

6.7 MUIA Boopsi Object – (V4) [..G], Object ∗

FUNCTION

No input, just an output since this attribute is only getable. What MUI returns
when generating a BoopsiObject is a standard MUI object, not a pointer to the
Boopsi gadget itself. In case you really need this Boopsi gadget pointer, you can
obtain it by getting MUIA Boopsi Object from the MUI object.

Since MUI passes along every unknown attribute to the boopsi gadget, there
should be no need for this tag anyway.

Note that the boopsi object pointer is only valid when the window is open!

SEE ALSO

MUIA Boopsi Class, MUIA Boopsi ClassID

6.8 MUIA Boopsi Remember 61

6.8 MUIA Boopsi Remember – (V4) [I..], ULONG

FUNCTION

Most boopsi objects are kind of silly, they don’t support automatic resizing or
jumping from screen to screen. Therefor, MUI sometimes needs to dispose and
regenerate a boopsi object. This will result in loosing the current state of the object,
e.g. saturation and hue values in a colorwheel.

To solve this problem, you can tell MUI what attributes must be remembered du-
ring dispose/regeneration. For a colorwheel, this would e.g. be WHEEL Saturation
and WHEEL Hue.

Before disposing the boopsi object, the remember tags are read and stored in a
private buffer. After regeneration, the contents of this buffer are passed back to the
boopsi again.

Note that you can define up to five MUIA Remember tags.

BUGS

The remember procedure will not work when the attributes you want to remember
are just pointers to data stored somewhere in the boopsi object.

EXAMPLE

see MUIA_Boopsi_ClassID

SEE ALSO

MUIA Boopsi ClassID

6.9 MUIA Boopsi Smart – (V9) [I..], BOOL

FUNCTION

Specify TRUE for smart BOOPSI gadgets that allow resizing, e.g. the textfield.class.
In this case, MUI will not dispose and recreate the object.

6.10 MUIA Boopsi TagDrawInfo – (V4) [ISG], ULONG

FUNCTION

Unfortunately, most boopsi gadgets need information on the display environment
they will reside in at object creation time. Due to MUI’s concept, this information
is not available that early.

To solve this problem, MUI doesn’t generate the boopsi object instantly, creation
is delayed until the window containing the gadget is opened.

At this time, MUI fills some values about display environment into the boopsi
objects creation tag list. You have to tell MUI, what tags are actually needed.

With MUIA Boopsi TagDrawInfo you can tell MUI where to fill in a needed
DrawInfo structure.

EXAMPLE

If your boopsi gadget needs a pointer to a DrawInfo structure supplied with the
MYBOOPSI DrawInfo tag, you would have to specify

62 6 BOOPSI.MUI

BoopsiObject,

RecessedFrame,

...

MUIA_Boopsi_TagDrawInfo, MYBOOPSI_DrawInfo,

...

MYBOOPSI_DrawInfo, 0, /* will be filled later by MUI */

...

GA_Left , 0, /* needs to be there, will */

GA_Top , 0, /* be filled later by MUI */

GA_Width , 0,

GA_Height, 0,

End;

SEE ALSO

MUIA Boopsi ClassID, MUIA Boopsi TagScreen, MUIA Boopsi TagWindow

6.11 MUIA Boopsi TagScreen – (V4) [ISG], ULONG

FUNCTION

Unfortunately, most boopsi gadgets need information on the display environment
they will reside in at object creation time. Due to MUI’s concept, this information
is not available that early.

To solve this problem, MUI doesn’t generate the boopsi object instantly, creation
is delayed until the window containing the gadget is opened.

At this time, MUI fills some values about display environment into the boopsi
objects creation tag list. You have to tell MUI, what tags are actually needed.

With MUIA Boopsi TagScreen you can tell MUI where to fill in a needed Screen
structure.

EXAMPLE

If your boopsi gadget needs a pointer to a Screen structure supplied with the MY-
BOOPSI Screen tag, you would have to specify

BoopsiObject,

RecessedFrame,

...

MUIA_Boopsi_TagScreen, MYBOOPSI_Screen,

...

MYBOOPSI_Screen, 0, /* will be filled later by MUI */

...

GA_Left , 0, /* needs to be there, will */

GA_Top , 0, /* be filled later by MUI */

GA_Width , 0,

GA_Height, 0,

End;

SEE ALSO

MUIA Boopsi ClassID, MUIA Boopsi TagDrawInfo, MUIA Boopsi TagWindow

6.12 MUIA Boopsi TagWindow 63

6.12 MUIA Boopsi TagWindow – (V4) [ISG], ULONG

FUNCTION

Unfortunately, most boopsi gadgets need information on the display environment
they will reside in at object creation time. Due to MUI’s concept, this information
is not available that early.

To solve this problem, MUI doesn’t generate the boopsi object instantly, creation
is delayed until the window containing the gadget is opened.

At this time, MUI fills some values about display environment into the boopsi
objects creation tag list. You have to tell MUI, what tags are actually needed.

With MUIA Boopsi TagWindow you can tell MUI where to fill in a needed
Window structure.

EXAMPLE

If your boopsi gadget needs a pointer to a Window structure supplied with the
MYBOOPSI Window tag, you would have to specify

BoopsiObject,

RecessedFrame,

...

MUIA_Boopsi_TagWindow, MYBOOPSI_Window,

...

MYBOOPSI_Window, 0, /* will be filled later by MUI */

...

GA_Left , 0, /* needs to be there, will */

GA_Top , 0, /* be filled later by MUI */

GA_Width , 0,

GA_Height, 0,

End;

SEE ALSO

MUIA Boopsi ClassID, MUIA Boopsi TagDrawInfo, MUIA Boopsi TagWindow

7 Coloradjust.mui

Coloradjust class creates some gadgets that allow adjusting a single color. Depen-
ding on the operating system, different kinds of gadgets are be used. Kickstart 2.x
users might only receive an RGB slider triple, Kickstart 3.x users could get an ad-
ditional colorwheel if available. However, the outfit of this class is not important for
you as a programmer.

7.1 MUIA Coloradjust Blue – (V4) [ISG], ULONG

FUNCTION

Set or get the 32-bit blue component of the adjusted color. Values range from 0 (no
blue) to $ffffffff (full blue).

SEE ALSO

MUIA Coloradjust Green, MUIA Coloradjust Red, MUIA Coloradjust RGB,
MUIA Coloradjust ModeID

64 7 COLORADJUST.MUI

7.2 MUIA Coloradjust Green – (V4) [ISG], ULONG

FUNCTION

Set or get the 32-bit green component of the adjusted color. Values range from 0
(no green) to $ffffffff (full green).

SEE ALSO

MUIA Coloradjust Red, MUIA Coloradjust Blue, MUIA Coloradjust RGB,
MUIA Coloradjust ModeID

7.3 MUIA Coloradjust ModeID – (V4) [ISG], ULONG

FUNCTION

This attribute tells the coloradjust object for which screen mode the color shall be
adjusted. The object queries the display data base for some mode attributes (such
as supported number of red/green/blue bits) and adjusts its display accordingly,
giving the user an idea of what colors are supported.

Omitting this attribute does not affect the functionality of a coloradjust object.
The user will still be able to adjust a color. However, if you know the ModeID, you
should supply it.

SEE ALSO

MUIA Coloradjust RGB

EXAMPLE

set(cadj,MUIA_Coloradjust_ModeID,GetVPModeID(viewport));

7.4 MUIA Coloradjust Red – (V4) [ISG], ULONG

FUNCTION

Set or get the 32-bit red component of the adjusted color. Values range from 0 (no
red) to $ffffffff (full red).

SEE ALSO

MUIA Coloradjust Green, MUIA Coloradjust Blue, MUIA Coloradjust RGB,
MUIA Coloradjust ModeID

7.5 MUIA Coloradjust RGB – (V4) [ISG], ULONG ∗

FUNCTION

Set or get the red/green/blue values all at once. You pass in / receive a pointer to
three longwords containing the 32-bit red, green and blue values.

65

EXAMPLE

ULONG rgb[3] = { 0xa000000,0xdeadbeaf,0x42424242 };

set(cadj,MUIA_Coloradjust_RGB,rgb);

ULONG *rgb;

get(cadj,MUIA_Coloradjust_RGB,&rgb);

printf("red=%08lx green=%08lx blue=%08lx\n",rgb[0],rgb[1],rgb[2]);

SEE ALSO

MUIA Coloradjust Green, MUIA Coloradjust Blue, MUIA Coloradjust Red,
MUIA Coloradjust ModeID

8 Colorfield.mui

Colorfield class creates a rectangle filled with a specific color, useful e.g. within a
palette requester. You can change the color of the field at any time by setting its
RGB attributes.

The field will try to obtain an exclusive pen on the current screen. When none
is available, it just displays some kind of rastered background. Maybe it will get a
little more intelligent and try to display the color by mixing together some other
colors, but thats a future topic.

Needless to say that Colorfield only works with Kickstart 3.x and above, since
lower operating systems don’t support pen sharing. When using this class with a
lower OS, you will also get some kind of (boring) raster.

8.1 MUIA Colorfield Blue – (V4) [ISG], ULONG

FUNCTION

Set or get the 32-bit blue component of the fields color. Values range from 0 (no
blue) to $ffffffff (full blue).

SEE ALSO

MUIA Colorfield Green, MUIA Colorfield Red, MUIA Colorfield RGB

8.2 MUIA Colorfield Green – (V4) [ISG], ULONG

FUNCTION

Set or get the 32-bit green component of the fields color. Values range from 0 (no
green) to $ffffffff (full green).

SEE ALSO

MUIA Colorfield Red, MUIA Colorfield Blue, MUIA Colorfield RGB

8.3 MUIA Colorfield Pen – (V4) [..G], ULONG

FUNCTION

When specified, the colorfield uses exactly this pen instead of trying to obtain a
new one.

66 10 CYCLE.MUI

SEE ALSO

MUIA Colorfield RGB

8.4 MUIA Colorfield Red – (V4) [ISG], ULONG

FUNCTION

Set or get the 32-bit red component of the fields color. Values range from 0 (no red)
to $ffffffff (full red).

SEE ALSO

MUIA Colorfield Green, MUIA Colorfield Blue, MUIA Colorfield RGB

8.5 MUIA Colorfield RGB – (V4) [ISG], ULONG ∗

FUNCTION

Set or get the red/green/blue values of a colorfield all at once. You pass in / receive
a pointer to three longwords containing the 32-bit red, green and blue values.

EXAMPLE

ULONG rgb[3] = { 0xa000000,0xdeadbeaf,0x42424242 };

set(field,MUIA_Colorfield_RGB,rgb);

ULONG *rgb;

get(field,MUIA_Colorfield_RGB,&rgb);

printf("red=%08lx green=%08lx blue=%08lx\n",rgb[0],rgb[1],rgb[2]);

SEE ALSO

MUIA Colorfield Green, MUIA Colorfield Blue, MUIA Colorfield Red

9 Colorpanel.mui

This class is for preferences programs use only and currently not documented.

10 Cycle.mui

Cycle class generates the well known cycle gadgets. However, MUI cycle gadgets
feature a (configurable) popup menu to avoid clicking through many entries.

10.1 MUIA Cycle Active – (V4) [ISG], LONG

SPECIAL INPUTS MUIV Cycle Active Next MUIV Cycle Active Prev

10.2 MUIA Cycle Entries 67

FUNCTION

This attributes defines the number of the active entry in the cycle gadgets. Valid
range is from 0 for the first entry to NumEntries-1 for the last.

Setting MUIA Cycle Active causes the gadget to be updated. On the other hand,
when the user plays around with the gadget, MUIA Cycle Active will always reflects
the current state.

Using MUIV Cycle Active Next and MUIV Cycle Active Prev as attribute va-
lue during set causes the gadget to cycle through its entries in the given direction.

EXAMPLE

set(cycleobj,MUIA_Cycle_Active,3);

SEE ALSO

MUIA Cycle Entries

10.2 MUIA Cycle Entries – (V4) [I..], STRPTR ∗

FUNCTION

Here you can define what entries shall be displayed in your cycle gadget. You must
supply a pointer to a string array, containing one entry for each item and terminated
with a NULL.

Remember that cycle gadget entries may contain any text formatting code such
as bold, italic or underlined characters.

Cycle gadgets set the preparse string for all entries to ”\33c”, this means that
they will automatically appear centered. Of course you can override this by simply
preceding your entries with own formatting code.

EXAMPLE

static const char *CYA_GroupTitleColor[] =

{

"normal",

"highlight",

"3-dimensional",

NULL

};

CY_Title = CycleObject,

MUIA_Cycle_Entries, CYA_GroupTitleColor,

End;

SEE ALSO

MUIA Cycle Active, MUIA Text Contents

11 Dirlist.mui

Dirlist class provides a quick and easy way of showing entries in a directory. It
features lots of control attributes, many of them known from the popular asl file
requester.

68 11 DIRLIST.MUI

This class is ∗not∗ intended to replace asl.library! Nobody wants to see every
MUI application coming with another selfmade file requester. Please continue using
ASL for real file requesting purposes!

However, sometimes it may be useful to have a little directory list placed so-
mewhere in your user interface. Imagine an answering machine tool that stores
incoming calls in a preconfigured directory. Using a dirlist object, you can include
the GUI for selecting a call in your window with lots of other gadgets like ”Play”,
”Delete”, etc.

Dirlist class offers all of a files attributes: name, size, date, time, flags and com-
ment. Using the MUIA List Format attribute, you can control which of them shall
be displayed.

If you want to read the entries of your directory, just send the dirlist object a
MUIM List GetEntry method. You will receive a pointer to a struct FileInfoBlock
which remains valid until your next call to MUIM List GetEntry.

11.1 MUIM Dirlist ReRead (V4)

SYNOPSIS

DoMethod(obj,MUIM Dirlist ReRead,);

FUNCTION

Force the dirlist object to reread the current directory.

EXAMPLE

if (NewCallReceived())

DoMethod(dirlistobj,MUIM_Dirlist_ReRead);

SEE ALSO

MUIA Dirlist Directory

11.2 MUIA Dirlist AcceptPattern – (V4) [IS.], STRPTR

FUNCTION

Entries not matching this pattern are rejected. Note that the pattern has to be
parsed with dos.library/ParsePatternNoCase().

SEE ALSO

MUIA Dirlist RejectPattern, MUIA Dirlist FilterDrawers

11.3 MUIA Dirlist Directory – (V4) [ISG], STRPTR

FUNCTION

Set a new directory for the dirlist object. Since reading a directory can take a long
long time, MUI delegates this work to a sub task.

Setting this attribute causes the object to clear the current directory
(if any) and start loading a new one. MUIA Dirlist Status will be set to
MUIV Dirlist Status Reading and the sub task will be launched.

By listening to MUIA Dirlist Status, you can learn if the directory reading is
completed or if something went wrong.

11.4 MUIA Dirlist DrawersOnly 69

A value of NULL just clears the current directory and sets MUIA Dirlist Status
to MUIV Dirlist Status Invalid.

EXAMPLE

set(dirobj,MUIA_Dirlist_Directory,"zyxel:incoming");

SEE ALSO

MUIA Dirlist Status

11.4 MUIA Dirlist DrawersOnly – (V4) [IS.], BOOL

FUNCTION

Indicate whether you only want drawers to be displayed.

SEE ALSO

MUIA Dirlist Directory, MUIA Dirlist FilesOnly

11.5 MUIA Dirlist FilesOnly – (V4) [IS.], BOOL

FUNCTION

Indicate whether you only want files to be displayed.

SEE ALSO

MUIA Dirlist Directory, MUIA Dirlist DrawersOnly

11.6 MUIA Dirlist FilterDrawers – (V4) [IS.], BOOL

FUNCTION

Indicate whether you want drawers matched agains MUIA Dirlist RejectPattern
and MUIA Dirlist AcceptPattern.

Defaults to FALSE.

SEE ALSO

MUIA Dirlist RejectPattern, MUIA Dirlist AcceptPattern

11.7 MUIA Dirlist FilterHook – (V4) [IS.], struct Hook ∗

FUNCTION

A hook to call for each file encountered. If the function returns TRUE, the file is
included in the file list, otherwise it is rejected and not displayed. The function
receives the following parameters:

A0 - (struct Hook ∗) - the hook itself
A1 - (struct ExAllData ∗) - valid upto ed Comment
A2 - (Object ∗) - the dirlist object

All other filter attributes are ignored when a MUIA Dirlist FilterHook is set.

70 11 DIRLIST.MUI

SEE ALSO

MUIA Dirlist Directory

11.8 MUIA Dirlist MultiSelDirs – (V6) [IS.], BOOL

FUNCTION

Allows multi selection of directories. Defaults to FALSE.

SEE ALSO

MUIA Dirlist FilterDrawers

11.9 MUIA Dirlist NumBytes – (V4) [..G], LONG

FUNCTION

When MUIA Dirlist Status is MUIV Dirlist Valid, you can obtain the number of
bytes occupied by the directory from this tag.

SEE ALSO

MUIA Dirlist NumFiles, MUIA Dirlist NumDrawers

11.10 MUIA Dirlist NumDrawers – (V4) [..G], LONG

FUNCTION

When MUIA Dirlist Status is MUIV Dirlist Valid, you can obtain the number of
drawers in the displayed directory from this tag.

SEE ALSO

MUIA Dirlist NumFiles, MUIA Dirlist Status

11.11 MUIA Dirlist NumFiles – (V4) [..G], LONG

FUNCTION

When MUIA Dirlist Status is MUIV Dirlist Valid, you can obtain the number of
files in the displayed directory from this tag.

SEE ALSO

MUIA Dirlist NumDrawers, MUIA Dirlist Status

11.12 MUIA Dirlist Path – (V4) [..G], STRPTR

FUNCTION

When MUIA Dirlist Status is MUIV Dirlist Valid and you have an active entry
in the list (MUIA List Active not equal MUIV List Active Off), you will receive a
pointer to the complete path specification of the selected file. Otherwise you get a
NULL.

SEE ALSO

MUIA Dirlist Status

11.13 MUIA Dirlist RejectIcons 71

11.13 MUIA Dirlist RejectIcons – (V4) [IS.], BOOL

FUNCTION

Indicate whether you want icons (∗.info files) to be rejected.

SEE ALSO

MUIA Dirlist Directory

11.14 MUIA Dirlist RejectPattern – (V4) [IS.], STRPTR

FUNCTION

Entries matching this pattern are rejected. Note that the pattern has to be parsed
with dos.library/ParsePatternNoCase().

SEE ALSO

MUIA Dirlist AcceptPattern, MUIA Dirlist FilterDrawers

11.15 MUIA Dirlist SortDirs – (V4) [IS.], LONG

SPECIAL INPUTS

MUIV Dirlist SortDirs First
MUIV Dirlist SortDirs Last
MUIV Dirlist SortDirs Mix

FUNCTION

Adjust the place where directories shall be displayed.

SEE ALSO

MUIA Dirlist SortHighLow, MUIA Dirlist SortType

11.16 MUIA Dirlist SortHighLow – (V4) [IS.], BOOL

FUNCTION

Indicate if you want to sort your directory reversely.

SEE ALSO

MUIA Dirlist SortType, MUIA Dirlist SortDirs

11.17 MUIA Dirlist SortType – (V4) [IS.], LONG

SPECIAL INPUTS

MUIV Dirlist SortType Name
MUIV Dirlist SortType Date
MUIV Dirlist SortType Size

FUNCTION

Indicate what fields should be used as sort criteria.

72 12 FAMILY.MUI

SEE ALSO

MUIA Dirlist SortDirs, MUIA Dirlist SortHighLow

11.18 MUIA Dirlist Status – (V4) [..G], LONG

SPECIAL INPUTS

MUIV Dirlist Status Invalid
MUIV Dirlist Status Reading
MUIV Dirlist Status Valid

FUNCTION

Read the status of the dirlist object. The result is one of

MUIV Dirlist Status Invalid: object contains no valid directory.

MUIV Dirlist Status Reading 1: object is currently reading a new directory.

MUIV Dirlist Status Valid 2 object contains a valid directory.

SEE ALSO

MUIA Dirlist Directory

12 Family.mui

Family class is the base class for objects that are able to handle a list of children.
This is e.g. the case for MUIs Menustrip, Menu and Menuitem objects.

Family class defines methods and attributes to add and remove children, sort
children, and transfer children to other Family objects.

Group class and application class should also be a subclass of Family class, but
due to BOOPSI system limitations, this is currently impossible. If the future will
allow more logical class trees, things might change, but everything will be done in
a compatible manner.

12.1 MUIM Family AddHead (V8)

SYNOPSIS

DoMethod(obj,MUIM Family AddHead,Object ∗obj);

FUNCTION

Add an object as first object to the family. Subclasses of family class usually define
which types of objects are possible within their family.

INPUTS

obj - the object to be added.

SEE ALSO

MUIM Family AddTail, MUIM Family Insert, MUIM Family Remove,
MUIA Family Child

12.2 MUIM Family AddTail 73

12.2 MUIM Family AddTail (V8)

SYNOPSIS

DoMethod(obj,MUIM Family AddTail,Object ∗obj);

FUNCTION

Add an object as last object to the family. Subclasses of family class usually define
which types of objects are possible within their family.

This method does the same as OM ADDMEMBER.

INPUTS

obj - the object to be added.

SEE ALSO

MUIM Family AddHead, MUIM Family Insert, MUIM Family Remove,
MUIA Family Child

12.3 MUIM Family Insert (V8)

SYNOPSIS

DoMethod(obj,MUIM Family Insert,Object ∗obj, Object ∗pred);

FUNCTION

Add an object after another object to the family. Subclasses of family class usually
define which types of objects are possible within their family.

INPUTS

obj - the object to be added.

pred - the new object is inserted ∗after∗ this object. pred must of course be a
member of the family.

SEE ALSO

MUIM Family AddTail, MUIM Family AddHead, MUIM Family Remove,
MUIA Family Child

12.4 MUIM Family Remove (V8)

SYNOPSIS

DoMethod(obj,MUIM Family Remove,Object ∗obj);

FUNCTION

Remove an object from a family.
This method does the same as OM REMMEMBER.

INPUTS

obj - the object to be removed.

74 12 FAMILY.MUI

SEE ALSO

MUIM Family AddTail, MUIM Family Insert, MUIM Family AddHead,
MUIA Family Child

12.5 MUIM Family Sort (V8)

SYNOPSIS

DoMethod(obj,MUIM Family Sort,Object ∗obj[1]);

FUNCTION

Sort the children of a family.

INPUTS

child - array that contains ∗all∗ the children of the family in the desired order.
The array must be terminated with a NULL entry.

SEE ALSO

MUIA Family Child

12.6 MUIM Family Transfer (V8)

SYNOPSIS

DoMethod(obj,MUIM Family Transfer,Object ∗family);

FUNCTION

All the children of the family are removed and added to another family in the same
order.

INPUTS

family - the destination family.

SEE ALSO

MUIA Family Child

12.7 MUIA Family Child – (V8) [I..], Object ∗

FUNCTION

You supply a pointer to a previously created MUI object here. This object will be
added to family at family creation time.

Of course you can specify any number of child objects, limited only by available
memory.

Normally, the value for a MUIA Family Child tag is a direct call to another
MUI NewObject(), children are generated ”on the fly”.

When a family is disposed, all of its children will also get deleted. If you supply
a NULL pointer as child, the family object will fail and previously dispose all valid
children found in the taglist.

This behaviour makes it possible to generate a complete family within one single
(but long) MUI NewObject() call. Error checking is not necessary since every error,

75

even if it occurs in a very deep nesting level, will cause the complete call to fail
without leaving back any previously created object.

NOTE

As a special case, MUIA Group Child is also recognized and treated as
MUIA Family Child.

SEE ALSO

MUIM Family AddTail, MUIM Family Insert, MUIM Family AddHead,
MUIA Family Remove

13 Floattext.mui

Floattext class is a subclass of list class that takes a big text string as input and splits
it up into several lines to be dislayed. Formatting capabilities include paragraphs
an justified text with word wrap.

13.1 MUIA Floattext Justify – (V4) [ISG], BOOL

FUNCTION

Indicate whether you want your the text aligned to the left and right border. MUI
will try to insert spaces between words to reach this goal.

If you want right aligned or centered text, use the MUIA List Format attribute.

SEE ALSO

MUIA Floattext Text, MUIA List Format

13.2 MUIA Floattext SkipChars – (V4) [IS.], STRPTR

FUNCTION

Defines an array of characters that shall be skipped when displaying the text. If
you e.g. want to display a fido message and know it has some CTRL-A control
characters in it, you could set this attrinbute to ”\1” to prevent floattext class from
displaying unreadable crap.

SEE ALSO

MUIA Floattext Text

13.3 MUIA Floattext TabSize – (V4) [IS.], LONG

FUNCTION

Adjust the tab size for a text. The tab size is measured in spaces, so if you plan to
use tabs not only at the beginning of a paragraph, you should consider using the
fixed width font.

Tab size defaults to 8.

SEE ALSO

MUIA Floattext Text

76 14 GAUGE.MUI

13.4 MUIA Floattext Text – (V4) [ISG], STRPTR

FUNCTION

String of characters to be displayed as floattext. This string may contain linefeeds
to mark the end of paragraphs or tab characters for indention.

MUI will automatically format the text according to the width of the floattext
object. If a word won’t fit into the current line, it will be wrapped.

If you plan to use tabs not only at the beginning of a line you should consider
using the configured fixed width font.

MUI copies the complete string into a private buffer, you won’t need to keep
your text in memory. If memory is low, nothing will be displayed. Thats why
you always have to be prepared for handling a NULL pointer when getting back
MUIA Floattext Text.

Setting MUIA Floattext Text to NULL means to clear the current text.

Please note that justification and word wrap with proportional fonts is a compli-
cated operation and may take a considerable amount of time, especially with long
texts on slow machines.

EXAMPLE

char *text = AllocVec(filesize,MEMF_ANY);

Read(file,text,filesize);

fto = FloattextObject,

MUIA_Floattext_Text,text,

End;

FreeVec(text);

/* ... if you need your text later, you can get it */

/* with a simple get(fto,MUIA_Floattext_Text,&text); */

SEE ALSO

MUIA Floattext Justify, MUIA Floattext TabSize, MUIA Floattext SkipChars

14 Gauge.mui

A gauge object is a nice looking display element useful for some kind of progress
display.

14.1 MUIA Gauge Current – (V4) [ISG], LONG

FUNCTION

Set the current level of the gauge. The value must be between 0 and
MUIA Gauge Max.

SEE ALSO

MUIA Gauge Max

14.2 MUIA Gauge Divide 77

14.2 MUIA Gauge Divide – (V4) [ISG], BOOL

FUNCTION

If this attribute is != 0, every value set with MUIA Gauge Current will be divided
by this before further processing.

EXAMPLE

See BoopsiDoor demo program.

SEE ALSO

MUIA Gauge Current

14.3 MUIA Gauge Horiz – (V4) [I..], BOOL

FUNCTION

Determine if you want a horizontal or vertical gauge. Default to FALSE

SEE ALSO

MUIA Gauge Current

14.4 MUIA Gauge InfoText – (V7) [ISG], char ∗

FUNCTION

The text given here is displayed within a gauge object and is usually intended to
show some kind of percentage information.

This texts preparse is set to ”\33c\0338”, this makes it appear centered and
highlighted by default.

Any %ld will be replaced with the current value of MUIA Gauge Current.

NOTE

Currently, InfoText works only for horizontal gauges and gives them a fixed height.

VERSION

Implemented in version 7 of gauge class (MUI 1.5).

EXAMPLE

...

MUIA_Gauge_InfoText, "%ld %%",

...

SEE ALSO

MUIA Gauge Current

78 15 GROUP.MUI

14.5 MUIA Gauge Max – (V4) [ISG], LONG

FUNCTION

Set the maximum value for the gauge. Defaults to 100.

SEE ALSO

MUIA Gauge Current

15 Group.mui

Group class is responsible for the complete layout of a MUI window. A group may
contain any number of child objects, maybe buttons, cycle gadgets or even other
groups.

Some attributes of group class define how the children of a group are layouted.
You can e.g. tell your group to place its children horizontally (in a row) or vertically
(in a column). Since every MUI object knows about its minimum and maximum
dimensions, group class has everything it needs to do that job.

More sophisticated layout is possible by assigning different weights to objects in
a group or by making a group two-dimensional.

Beneath the layout issues, a group object passes attributes and methods through
to all of its children. Thus, you can talk and listen to any child of a group by talking
and listening to the group itself.

15.1 MUIA Group ActivePage – (V5) [ISG], LONG

SPECIAL INPUTS

MUIV Group ActivePage First
MUIV Group ActivePage Last
MUIV Group ActivePage Prev
MUIV Group ActivePage Next

VERSION

Available since version 5 of ”group.mui”.

FUNCTION

Set (or get) the active page of a page group. Only this active page is displayed, all
others are hidden.

The value may range from 0 (for the first child) to numchildren-1 (for the last
child). Children are adressed in the order of creation:

EXAMPLE

PageGroup,

Child, Page_0_Object,

Child, Page_1_Object,

Child, Page_2_Object,

Child, Page_3_Object,

End;

NOTE

You may never supply an incorrect page value!

15.2 MUIA Group Child 79

SEE ALSO

MUIA Group PageMode

15.2 MUIA Group Child – (V4) [I..], Object ∗

FUNCTION

You supply a pointer to a previously created MUI object here. This object will be
treated as child of the group, the group is responsible for positioning the object.

Of course you can specify any number of child objects, limited only by available
memory.

Normally, the value for a MUIA Group Child tag is a direct call to another
MUI NewObject(), children are generated ”on the fly”.

When a group is disposed, all of its children will also get deleted. If you supply
a NULL pointer as child, the group object will fail and previously dispose all valid
children found in the taglist.

This behaviour makes it possible to generate a complete application within one
single (but long) MUI NewObject() call. Error checking is not necessary since every
error, even if it occurs in a very deep nesting level, will cause the complete call to
fail without leaving back any previously created object.

EXAMPLE

Please have a look at some of the supplied example

programs.

SEE ALSO

MUIA Group Horiz

15.3 MUIA Group Columns – (V4) [IS.], LONG

FUNCTION

Indicate number of columns in a two dimensional group. If you use this tag, the
total number of children must be dividable by the number of columns.

The children will be positioned in a two dimensional array, e.g. allowing easy
creation of button fields (maybe for calculator).

The children in your taglist are always read line by line.

When MUI layouts two-dimensional groups, it does actually two layout calcula-
tions, one for the rows and one the columns. Parameters like weights and dimensions
are handled this way:

• the minimum width of a column/row is the maximum minimum width of all
objects in this column/row.

• the maximum width of a column/row is the minimum maximum width of all
objects in this column/row.

• the weight of a column/row is the sum of all objects in this column/row.

Actually, there is no difference if you use MUIA Group Columns or
MUIA Group Rows.

80 15 GROUP.MUI

EXAMPLE

/* group of labeled string gadgets */

GroupObject,

MUIA_Group_Columns, 2,

MUIA_Group_Child , label1,

MUIA_Group_Child , string1,

MUIA_Group_Child , label2,

MUIA_Group_Child , string2,

MUIA_Group_Child , label3,

MUIA_Group_Child , string3,

...

End;

SEE ALSO

MUIA Group Rows, MUIA Group Horiz

15.4 MUIA Group Horiz – (V4) [I..], BOOL

FUNCTION

Boolean value to indicate whether the objects in this group shall be layouted hori-
zontally or vertically. Defaults to FALSE.

This is the easy way of telling your group how it has to look like. If you want two-
dimensional groups, you have to use MUIA Group Columns or MUIA Group Rows.

EXAMPLE

GroupObject,

MUIA_Group_Horiz, TRUE,

MUIA_Group_Child, obj1,

MUIA_Group_Child, obj2,

MUIA_Group_Child, obj3,

End;

SEE ALSO

MUIA Group Columns, MUIA Group Rows, MUIA Group Child

15.5 MUIA Group HorizSpacing – (V4) [IS.], LONG

FUNCTION

Number of pixels to be inserted between horizontal elements of a group.

Please use this tag wisely, you will override the user’s prefered default setting!

SEE ALSO

MUIA Group Spacing, MUIA Group VertSpacing

15.6 MUIA Group PageMode 81

15.6 MUIA Group PageMode – (V5) [IS.], BOOL

VERSION

Available since version 5 of ”group.mui”.

FUNCTION

Settings this attribute to TRUE makes the current group a page group. Page
groups always display only one their children, which one can be adjusted with
the MUIA Group ActivePage attribute.

Imagine you have a preferences window with several different pages, e.g. the
MUI preferences with object, frame, image, font, screen, keyboard and system prefs.
Instead of one separate window for each group, you could put all pages into one
page group and have a cycle gadget for page switching. This will make your program
easier to use since the user won’t have to handle a lot of windows. However, he will
not be able to work with more than one page at the same time.

Sizes are calculated as follows:

• The minimum width/height of a page group is the maximum minimum
width/height of all its children.

• The maximum width/height of a page group is the minimum maximum
width/height of all its children.

• When the maximum width/height of a child in a page group is smaller than
the minimum width/height of the page group (since it contains another child
with big minimum width/height), the child be centered.

Page groups are not limited in depth, children of a page group may of course be
other page groups.

If you want to have a gadget only visible under certain conditions, you could
make a page group containing this gadget and an empty rectangle object.

If you want TAB cycling for the objects in a page group, simply include all
objects in the cycle chain (as if they all were visible at the same time).

EXAMPLE

demo program "Pages.c"

SEE ALSO

MUIA Group ActivePage

15.7 MUIA Group Rows – (V4) [IS.], LONG

FUNCTION

Indicate number of rows in a two dimensional group. If you use this tag, the total
number of children must be dividable by the number of rows.

The children will be positioned in a two dimensional array, e.g. allowing easy
creation of button fields (maybe for calculator).

The children in your taglist are always read line by line.
When MUI layouts two-dimensional groups, it does actually two layout calcula-

tions, one for the rows and one the columns. Parameters like weights and dimensions
are handled this way:

82 15 GROUP.MUI

• the minimum width of a column/row is the maximum minimum width of all
objects in this column/row.

• the maximum width of a column/row is the minimum maximum width of all
objects in this column/row.

• the weight of a column/row is the sum of all objects in this column/row.

Actually, there is no difference if you use MUIA Group Columns or
MUIA Group Rows.

SEE ALSO

MUIA Group Columns, MUIA Group Horiz

15.8 MUIA Group SameHeight – (V4) [I..], BOOL

FUNCTION

Boolean value to indicate that all children of this group shall have the same height.

BUGS

Up to version 5 of groupclass, using MUIA Group SameHeight could make objects
larger than their maximum height. This has been fixed for version 6.

SEE ALSO

MUIA Group SameSize, MUIA Group SameWidth

15.9 MUIA Group SameSize – (V4) [I..], BOOL

FUNCTION

This is a shorthand for MUIA Group SameWidth and MUIA Group SameHeight,
it sets both of these attributes at once.

Using MUIA Group SameSize, you won’t need to think if your group is horizon-
tal or vertical, both cases are handled automatically.

Forcing all objects of a group to be the same size is e.g. useful for a row of
buttons. It’s visually more attractive when these buttons have equal sizes instead
of being just as big as the text within.

BUGS

Up to version 5 of groupclass, using MUIA Group SameSize could make objects
larger than their maximum size. This has been fixed for version 6.

EXAMPLE

/* three buttons, same size */

GroupObject,

MUIA_Group_Horiz , TRUE,

MUIA_Group_SameSize, TRUE,

MUIA_Group_Child , but1,

MUIA_Group_Child , but2,

MUIA_Group_Child , but3,

15.10 MUIA Group SameWidth 83

End;

SEE ALSO

MUIA Group SameWidth, MUIA Group SameHeight

15.10 MUIA Group SameWidth – (V4) [I..], BOOL

FUNCTION

Boolean value to indicate that all children of this group shall have the same width.

BUGS

Up to version 5 of groupclass, using MUIA Group SameWidth could make objects
larger than their maximum width. This has been fixed for version 6.

SEE ALSO

MUIA Group SameSize, MUIA Group SameHeight

15.11 MUIA Group Spacing – (V4) [IS.], LONG

FUNCTION

This is a shorthand for MUIA Group HorizSpacing and MUIA Group VertSpacing,
it sets both of these attributes at once.

Using MUIA Group Spacing, you won’t need to think if your group is horizontal
or vertical, both cases are handled automatically.

Note that setting a spacing value for a group overrides the user’s default settings.
Please use it only if you have a good reason.

EXAMPLE

/* no space between obj1 and obj2: */

GroupObject,

MUIA_Group_Horiz , TRUE,

MUIA_Group_Spacing, 0,

MUIA_Group_Child , obj1,

MUIA_Group_Child , obj2,

End;

SEE ALSO

MUIA Group HorizSpacing, MUIA Group VertSpacing

15.12 MUIA Group VertSpacing – (V4) [IS.], LONG

FUNCTION

Number of pixels to be inserted between vertical elements of a group.
Please use this tag wisely, you will override the user’s prefered default setting!

84 16 IMAGE.MUI

SEE ALSO

MUIA Group Spacing, MUIA Group HorizSpacing

16 Image.mui

Image class is used to display one of MUI’s standard images or some selfmade image
data.

16.1 MUIA Image FontMatch – (V4) [I..], BOOL

FUNCTION

If TRUE, width and height of the given image will be scaled to match the current
font. Images are always defined with a reference font of topaz/8, bigger fonts will
make the image grow (as long as its maximum size is big enough).

EXAMPLE

The arrows of a scroll bar are e.g. defined with

MUIA_Image_FontMatch.

SEE ALSO

MUIA Image FontMatch, MUIA Image FontMatchWidth

16.2 MUIA Image FontMatchHeight – (V4) [I..], BOOL

FUNCTION

If TRUE, the height of the given image will be scaled to match the current font.
Images are always defined with a reference font of topaz/8, bigger fonts will make
the image grow (as long as its maximum size is big enough).

SEE ALSO

MUIA Image FontMatch, MUIA Image FontMatchWidth

16.3 MUIA Image FontMatchWidth – (V4) [I..], BOOL

FUNCTION

If TRUE, the width of the given image will be scaled to match the current font.
Images are always defined with a reference font of topaz/8, bigger fonts will make
the image grow (as long as its maximum size is big enough).

SEE ALSO

MUIA Image FontMatch, MUIA Image FontMatchHeight

16.4 MUIA Image FreeHoriz – (V4) [I..], BOOL

FUNCTION

Tell the image if its allowed to get scaled horizontally. Defaults to FALSE.

16.5 MUIA Image FreeVert 85

SEE ALSO

MUIA Image FreeVert, MUIA Image FontMatch

16.5 MUIA Image FreeVert – (V4) [I..], BOOL

FUNCTION

Tell the image if its allowed to get scaled vertically. Defaults to FALSE.

SEE ALSO

MUIA Image FreeHoriz, MUIA Image FontMatch

16.6 MUIA Image OldImage – (V4) [I..], struct Image ∗

FUNCTION

Allows you to use any conventional image structure within a MUI window. The
resulting object is always as big as the image and not resizable.

16.7 MUIA Image Spec – (V4) [I..], char ∗

FUNCTION

Specify the type of your image. Usually, you will use one of the predefined standard
images here, (one of the MUII xxx definitions from mui.h), but you also can supply
a string containing a MUI image specification. Image specifications always starts
with a digit, followed by a ’:’, followed by some parameters. Currently, the following
things are defined (all numeric parameters need to be ascii values!):

”0:<x>” where <x> is between MUII BACKGROUND and MUII FILLBACK2
identifying a builtin pattern.

”1:<x>” where <x> identifies a builtin standard image. Don’t use this, use ”6:<x>”
instead.

”2:<r>,<g>,” where <r>, <g> and are 32-bit RGB color values specified as
8-digit hex string (e.g. 00000000 or ffffffff). Kick 2.x users will get an empty
image.

”3:<n>” where <n> is the name of an external boopsi image class.

”4:<n>” where <n> is the name of an external MUI brush.

”5:<n>” where <n> is the name of an external picture file that should be loaded
with datatypes. Kick 2.x users will get an empty image.

”6:<x>” where <x> is between MUII WindowBack and MUII Count-1 identifying
a preconfigured image/background.

SEE ALSO

MUIA Image OldImage

86 17 LIST.MUI

16.8 MUIA Image State – (V4) [IS.], LONG

FUNCTION

Some MUI images offer different states, you can select one of the by setting this
attribute. Simply use one of the IDS NORMAL, IDS SELECTED, ... values defined
in ”intuition/imageclass.h”.

NOTE

Objects that respond to user input will automatically toggle their state between
IDS NORMAL to IDS SELECTED depending on their MUIA Selected attribute.

SEE ALSO

MUIA Image Spec

17 List.mui

MUI’s list class is very powerful. It handles all types of entries, from a simple string
to a complicated structure with many associated resources. Multi column lists are
also supported, the format for a column is adjustable.

Lists support any kind of sorting, multi selection and an active entry that can
be controlled with the mouse or the cursor keys.

Note: A list object alone doesn’t make much sense, you should always use it as
child of a listview object. This one attaches a scrollbar and handles all user input.

17.1 MUIM List Clear (V4)

SYNOPSIS

DoMethod(obj,MUIM List Clear,);

FUNCTION

Clear the list, all entries are removed. If a destruct hook is set it will be called for
every entry.

SEE ALSO

MUIM List Insert, MUIA List DestructHook

17.2 MUIM List Exchange (V4)

SYNOPSIS

DoMethod(obj,MUIM List Exchange,LONG pos1, LONG pos2);

FUNCTION

Exchange two entries in a list.

17.3 MUIM List GetEntry 87

INPUTS

pos1 - number of the first entry.

pos2 - number of the second entry.

Possible special values since muimaster.library V9:

MUIV List Exchange Top 0
MUIV List Exchange Active -1
MUIV List Exchange Bottom -2
MUIV List Exchange Next -3 /∗ only valid for second parameter ∗/
MUIV List Exchange Previous -4 /∗ only valid for second parameter ∗/

SEE ALSO

MUIM List Insert, MUIM List Remove, MUIM List Move

17.3 MUIM List GetEntry (V4)

SYNOPSIS

DoMethod(obj,MUIM List GetEntry,LONG pos, APTR ∗entry);

FUNCTION

Get an entry of a list.

INPUTS

pos - Number of entry, MUIV List GetEntry Active can be used to get the active
entry.

entry - Pointer to a longword where the entry will be stored. If the entry is not
available (either because you are out of bounds or because there is no active
entry), you will receive a NULL.

EXAMPLE

/* iterate through a list containing file info blocks */

for (i=0;;i++)

{

struct FileInfoBlock *fib;

DoMethod(list,MUIM_List_GetEntry,i,&fib);

if (!fib) break;

printf("%s\n",fib->fib_FileName);

}

SEE ALSO

MUIM List Insert, MUIM List Remove

88 17 LIST.MUI

17.4 MUIM List Insert (V4)

SYNOPSIS

DoMethod(obj,MUIM List Insert,APTR ∗entries, LONG count, LONG pos);

FUNCTION

Insert new entries into a list. When the list has a construct hook, the given pointers
won’t be inserted directly but instead passed through to the construct hook.

INPUTS

entries - pointer to an array of pointers to be inserted. Warning: This is a pointer
to a pointer. See example for details.

count - Number of elements to be inserted. If count==-1, entries will be inserted
until NULL pointer in the entries array is found.

pos - New entries will be added in front of this entry.

MUIV List Insert Top: insert as first entry.
MUIV List Insert Active: insert in front of the active entry.
MUIV List Insert Sorted: insert sorted.
MUIV List Insert Bottom: insert as last entry.

EXAMPLE

/* insert a string */

char *str = "New entry";

DoMethod(list,MUIM_List_Insert,&str,1,MUIV_List_Insert_Bottom);

/* insert an array */

char *str[] =

{

"Entry 1",

"Entry 2",

"Entry 3",

"Entry 4",

NULL

};

DoMethod(list,MUIM_List_Insert,str,-1,MUIV_List_Insert_Bottom);

SEE ALSO

MUIM List Remove, MUIA List ConstructHook

17.5 MUIM List InsertSingle (V7)

SYNOPSIS

DoMethod(obj,MUIM List InsertSingle,APTR entry, LONG pos);

17.6 MUIM List Jump 89

FUNCTION

Insert one new entry into a list. Using MUIM List Insert has caused some confu-
sion since it takes an array to items instead a single item. To insert single items,
MUIM List InsertSingle is the better choice.

When the list has a construct hook, the given pointer won’t be inserted directly
but instead passed through to the construct hook.

INPUTS

entry - item to insert.

pos - New entry will be added in front of this entry.

MUIV List Insert Top: insert as first entry.
MUIV List Insert Active: insert in front of the active entry.
MUIV List Insert Sorted: insert sorted.
MUIV List Insert Bottom: insert as last entry.

EXAMPLE

/* insert a string */

DoMethod(list,MUIM_List_InsertSingle,"foobar",MUIV_List_Insert_Bottom);

SEE ALSO

MUIM List Remove, MUIA List ConstructHook, MUIM List InsertSingle

17.6 MUIM List Jump (V4)

SYNOPSIS

DoMethod(obj,MUIM List Jump,LONG pos);

FUNCTION

Scroll any entry into the visible part of a list.

NOTE

Jumping to an entry doesn’t mean to make this entry the active one. This can be
done by setting the MUIA List Active attribute.

INPUTS

pos - Number of the entry that should be made visible. Use
MUIV List Jump Active to jump to the active entry.

EXAMPLE

/* line 42 is interesting, so make it visible */

DoMethod(list,MUIM_List_Jump,42);

SEE ALSO

MUIA List Active

90 17 LIST.MUI

17.7 MUIM List Move (V9)

SYNOPSIS

DoMethod(obj,MUIM List Move,LONG from, LONG to);

FUNCTION

Move an entry from one position to another.

INPUTS

pos1 - number of the first entry.

pos2 - number of the second entry.

Possible special values since muimaster.library V9:

MUIV List Move Top 0
MUIV List Move Active -1
MUIV List Move Bottom -2
MUIV List Move Next -3 /∗ only valid for second parameter ∗/
MUIV List Move Previous -4 /∗ only valid for second parameter ∗/

SEE ALSO

MUIM List Insert, MUIM List Remove, MUIM List Exchange

17.8 MUIM List NextSelected (V6)

SYNOPSIS

DoMethod(obj,MUIM List NextSelected,LONG ∗pos);

FUNCTION

Iterate through the selected entries of a list. This method steps through the contents
of a (multi select) list and returns every entry that is currently selected. When no
entry is selected but an entry is active, only the active entry will be returned.

This behaviour will result in not returning the active entry when you have some
other selected entries somewhere in your list. Since the active entry just acts as
some kind of cursor mark, this seems to be the only sensible possibility to handle
multi selection together with keyboard control.

INPUTS

pos - a pointer to longword that will hold the number of the returned entry.
Must be set to MUIV List NextSelected Start at start of iteration. Is set to
MUIV List NextSelected End when iteration is finished.

EXAMPLE

/* Iterate through a list with FileInfoBlocks */

struct FileInfoBlock *fib;

LONG id = MUIV_List_NextSelected_Start;

17.9 MUIM List Redraw 91

for (;;)

{

DoMethod(list,MUIM_List_NextSelected,&id);

if (id==MUIV_List_NextSelected_End) break;

DoMethod(list,MUIM_List_GetEntry,id,&fib);

printf("selected: %s\n",fib->fib_FileName);

}

SEE ALSO

MUIM List Select

17.9 MUIM List Redraw (V4)

SYNOPSIS

DoMethod(obj,MUIM List Redraw,LONG pos);

FUNCTION

If you made some changes to an entry of your list and want these changes to be
shown in the display, you will have to call this method.

INPUTS

pos - Number of the line to redraw. When the line is not currently visible, nothing
will happen. Specials:

MUIV List Redraw Active: redraw the active line (if any),
MUIV List Redraw All: redraw all lines.

EXAMPLE

/* do a complete refresh: */

DoMethod(list,MUIM_List_Redraw,MUIV_List_Redraw_All);

17.10 MUIM List Remove (V4)

SYNOPSIS

DoMethod(obj,MUIM List Remove,LONG pos);

FUNCTION

Remove an entry from a list.

INPUTS

pos - number of the entry to be removed or one of
MUIV List Remove First,
MUIV List Remove Active,
MUIV List Remove Last.
When the active entry is removed, the following entry will become active.

92 17 LIST.MUI

EXAMPLE

/* when delete is pressed, remove the active entry */

DoMethod(btdel,MUIM_Notify,MUIA_Pressed,FALSE,

list,2,MUIM_List_Remove,MUIV_List_Remove_Active);

SEE ALSO

MUIM List Insert, MUIA List DestructHook

17.11 MUIM List Select (V4)

SYNOPSIS

DoMethod(obj,MUIM List Select,LONG pos, LONG seltype, LONG ∗state);

FUNCTION

Select/deselect a list entry or ask an entry if its selected.

INPUTS

pos - Number of the entry or

MUIV List Select Active for the active entry.
MUIV List Select All for all entries.

seltype - Value:

MUIV List Select Off unselect entry.
MUIV List Select On select entry.
MUIV List Select Toggle toggle entry.
MUIV List Select Ask just ask about the state.

state - Pointer to a longword. If not NULL, this will be filled with the current
selection state.

NOTE

Since version V9 of muimaster.library: If pos==MUIV List Select All and selty-
pe==MUIV List Select Ask, state will be filled with the total number of selected
entries.

EXAMPLE

/* toggle selection state of active entry */

DoMethod(list,MUIM_List_Select,MUIV_List_Select_Active,

MUIV_List_Select_Toggle,NULL);

/* select all entries */

DoMethod(list,MUIM_List_Select,MUIV_List_Select_All,

MUIV_List_Select_On,NULL);

SEE ALSO

MUIA List MultiTest Hook

17.12 MUIM List Sort 93

17.12 MUIM List Sort (V4)

SYNOPSIS

DoMethod(obj,MUIM List Sort,);

FUNCTION

Sort the list. MUI uses an iterative quicksort algorithm, no stack problems will
occur.

SEE ALSO

MUIA List CompareHook

17.13 MUIA List Active – (V4) [ISG], LONG

SPECIAL INPUTS

MUIV List Active Off
MUIV List Active Top
MUIV List Active Bottom
MUIV List Active Up
MUIV List Active Down
MUIV List Active PageUp
MUIV List Active PageDown

FUNCTION

Reading this attribute will return the number of the active entry (the one
with the cursor on it). The result is between 0 and MUIA List Entries-1 or
MUIV List Active Off, in which case there is currently no active entry.

Setting the attribute will cause the list to move the cursor to the new position
and scroll this position into the visible area.

SEE ALSO

MUIA List Entries, MUIA List First, MUIA List Visible

17.14 MUIA List AdjustHeight – (V4) [I..], BOOL

FUNCTION

A list with MUIA List AdjustHeight set to true is exactly as high as all of its entries
and not resizable. This is only possible when the list is filled ∗before∗ the window
is opened.

SEE ALSO

MUIA List AdjustWidth

17.15 MUIA List AdjustWidth – (V4) [I..], BOOL

FUNCTION

A list with MUIA List AdjustWidth set to true is exactly as wide as the widest
entry and not resizable. This is only possible when the list is filled before the
window is opened.

94 17 LIST.MUI

SEE ALSO

MUIA List AdjustHeight

17.16 MUIA List CompareHook – (V4) [IS.], struct Hook ∗

FUNCTION

If you plan to have the entries of your list sorted (either by inserting them sorted or
by using the MUIM List Sort method) and if the entries of your list are not simple
strings, you must supply a compare hook.

This hook will be called with one list element in A1 and another one in A2. You
should return

return value statement
-1 e1 < e2
0 e1 == e2
1 e1 > e2

EXAMPLE

/* the builtin string compare function */

LONG __asm cmpfunc(_a1 char *s1,_a2 char *s2)

{

return(stricmp(s1,s2));

}

SEE ALSO

MUIA List ConstructHook, MUIA List DestructHook

17.17 MUIA List ConstructHook – (V4) [IS.], struct Hook
∗

SPECIAL INPUTS

MUIV List ConstructHook String

FUNCTION

The construct hook is called whenever you add an entry to your list. MUI will not
insert the given pointer directly, but instead call the construct hook and add its
result code.

Imagine you want to display a list of entries in a directory. You could step
through it using Examine()/ExNext() and directly use the MUIM List Insert me-
thod on your file info block buffer.

Your construct hook will be called with this file info block as parameter, makes
a copy of it and returns the address of that copy. Thats what is actually added to
the list.

The corresponding destruct hook is called whenever an entry shall be removed.
It’s task would simply be to free the memory and maybe other resources concering
this entry that were allocated by the construct hook.

Using these two functions, you will never have to worry about freeing the me-
mory used by your list entries. Clearing the list or disposing the list object will
automatically remove all entries and thus free the associated resources.

17.18 MUIA List DestructHook 95

The construct hook will be called with the hook in A0, the data given to
MUIM List Insert as message in register A1 and with pointer to a standard kick
3.x memory pool in A2. If you want, you can use the exec or amiga.lib functions
for allocating memory within this pool, but this is only an option.

If the construct hook returns NULL, nothing will be added to the list.

There is a builtin construct hook available called
MUIV List ConstructHook String. This expects that you only add strings to your
list and will make a local copy of this string to allow you destroying the original.
Of course you must also use MUIV List DestructHook String in this case.

Without construct and destruct hooks, you are responsible for allocating and
freeing entries yourself.

EXAMPLE

/* the builtin string construct and destruct functions: */

APTR __asm consfunc(_a2 APTR pool,_a1 char *str)

{

char *new;

if (new=AllocPooled(pool,strlen(str)+1))

strcpy(new,str);

return(new);

}

VOID __asm desfunc(_a2 APTR pool,_a1 char *entry)

{

FreePooled(pool,entry,strlen(entry)+1);

}

/* for more sophisticated hooks see demo program WbMan.c */

SEE ALSO

MUIA List DestructHook, MUIA List DisplayHook

17.18 MUIA List DestructHook – (V4) [IS.], struct Hook ∗

SPECIAL INPUTS MUIV List DestructHook String

FUNCTION

Set up a destruct hook for your list. For detailed explanation see
MUIA List ConstructHook.

SEE ALSO

MUIA List ConstructHook, MUIA List DisplayHook

17.19 MUIA List DisplayHook – (V4) [IS.], struct Hook ∗

FUNCTION

Since MUI’s lists can handle any kind of entries, you have to supply a display hook
to specify what should actually be shown in the display.

96 17 LIST.MUI

The hook will be called with a pointer to the entry to be displayed in A1 and a
pointer to a string array containing as many entries as your list may have columns
in A2.

You must fill this array with the strings that you want to display.

Note: You can of course use MUI’s text engine facilities here to create e.g. right
aligned or centered columns.

Without a display hook, MUI expects a simple one columned string list.

See MUIA List Format for details about column handling.

NOTE

Since version 6 of MUI, the display hook also gets the position of the current entry
as additional parameter. You can easily do e.g. some line numbering using this
feature. The number (from 0 to NumEntries-1) is stored in the longword preceding
the column array (see example below).

EXAMPLE

/* list of file info blocks, two columned, name and size */

LONG __asm dispfunc(_a2 char **array,_a1 struct FileInfoBlock *fib)

{

static char buf1[20],buf2[20];

if (fib->fib_EntryType<0)

sprintf(buf2,"\33r%ld",fib->fib_Size);

else

strcpy(buf2,"\33r(dir)");

sprintf(buf1,"%ld",array[-1]); // get the line number.

*array++ = buf1;

*array++ = fib->fib_FileName;

*array = buf2;

return(0);

}

SEE ALSO

MUIA List Format, MUIA Text Contents

17.20 MUIA List Entries – (V4) [..G], LONG

FUNCTION

Get the current number of entries in the list.

SEE ALSO

MUIA List First, MUIA List Visible, MUIA List Active

17.21 MUIA List First 97

17.21 MUIA List First – (V4) [..G], LONG

FUNCTION

Get the number of the entry displayed on top of the list. You have to be prepared
to get a result of -1, which means that the list is not visible at all (e.g. when the
window is iconifed).

SEE ALSO

MUIA List Visible, MUIA List Entries, MUIA List Active

17.22 MUIA List Format – (V4) [ISG], STRPTR

FUNCTION

MUI has the ability to handle multi column lists. To define how many columns
should be displayed and how they should be formatted, you specify a format string.

This format string must contain one entry for each column you want to see.
Entries are seperated by commas, one entry is parsed via dos.library/ReadArgs().

The template for a single entry looks like this:

DELTA=D/N, PREPARSE=P/K, WEIGHT=W/N, MINWIDTH=MIW/N,
MAXWIDTH=MAW/N, COL=C/N

DELTA Space in pixel between this column and the next. the last displayed column
ignores this setting. Defaults to 4.

PREPARSE A preparse value for this column. Setting this e.g. to ”\33c” would
make the column centered. See MUIA Text Contents for other control codes.

WEIGHT The weight of the column. As with MUI’s group class, columns are
layouted with a minimum size, a maximum size and weight. A column with a
weight of 200 would gain twice the space than a column with a weight of 100.
Defaults to 100.

MINWIDTH Minimum percentage width for the current column. If your list is
200 pixel wide and you set this to 25, your column will at least be 50 pixel.
The special value -1 for this parameter means that the minimum width is as
wide as the widest entry in this column. This ensures that every entry will be
completely visible (as long as the list is wide enough). Defaults to -1.

MAXWIDTH Maximum percentage width for the current column. If your list is
200 pixel wide and you set this to 25, your column will not be wider as 50
pixel. The special value -1 for this parameter means that the maximum width
is as wide as the widest entry in this column. Defaults to -1.

COL This value adjusts the number of the current column. This allows you to
adjust the order of your columns without having to change your display hook.
See example for details. Defaults to current entry number (0,1,...)

If your list object gets so small there is not enough place for the minwidth
of a column, this column will be hidden completely and the remaining space is
distributed between the remaining columns. This is not true if the column is the
first column, in this case the entries will simply be clipped.

98 17 LIST.MUI

NOTE

You will have as many columns in your list as entries in the format string (i.e.
number of commas + 1). Empty entries, e.g. with a format string of ”,,,,” are
perfectly ok.

The default list format is an empty string (””), this means a one column list
without special formatting.

BUGS

Currently there is a maximum of 64 columns for a list.

EXAMPLE

/* Three column list without further formatting: */

MUIA_List_Format: ",,"

/* Three column list, middle column centered: */

MUIA_List_Format: ",P=\33c,"

/* Three column list, display order 2 1 0: */

MUIA_List_Format: "COL=2,COL=1,COL=0"

/* now something more complex. */

/* the display hook defines six entries: */

dispfunc(_a2 char **array,_a1 struct Article *at)

{

*array++ = at->FromName; // col 0

*array++ = at->FromPath; // col 1

*array++ = at->ToName; // col 2

*array++ = at->ToPath; // col 3

*array++ = at->Date; // col 4

*array = at->Subject; // col 5

}

/* but we only want to have fromname, date and subject

/* actually displayed, subject shoud be centered: */

MUIA_List_Format, "COL=0,COL=4,COL=5 P=\33c"

/* maybe this looks kind of silly, why not make our */

/* display hook only fill in these three columns. */

/* well, if you would e.g. make the format string */

/* user configurable and document what your display */

/* hook puts into the array, the user could decide */

/* what columns he actually wants to see. */

/* The supplied example DFView does something like */

/* that. */

/* two column list: ! Eye 1234 !

! Foot 22 !

! Nose 22331 ! */

MUIA_List_Format, "MAW=100,P=\33r"

SEE ALSO

MUIA List DisplayHook, MUIA Text Contents

17.23 MUIA List InsertPosition 99

17.23 MUIA List InsertPosition – (V9) [..G], LONG

FUNCTION

After insertion of an element with MUIM List Insert, you can query the position of
the new entry by getting this attribute.

17.24 MUIA List MultiTestHook – (V4) [IS.], struct Hook ∗

FUNCTION

If you plan to have a multi selecting list but not all of your entries are actually multi
selectable (e.g. in a file requester), you can supply a MUIA List MultiTestHook.

It will be called with a pointer to an entry in A1 and should return TRUE if
the entry is multi selectable, FALSE otherwise.

EXAMPLE

/* multi test func for a list of file info blocks */

LONG __asm mtfunc(_a1 struct FileInfoBlock *fib)

{

if (fib->fib_DirEntryType<0)

return(TRUE);

else

return(FALSE);

}

SEE ALSO

MUIA List ConstructHook, MUIA List DestructHook

17.25 MUIA List Quiet – (V4) [.S.], BOOL

FUNCTION

If you add/remove lots of entries to/from a currently visible list, this will cause lots
of screen action and slow down the operation. Setting MUIA List Quiet to true will
temporarily prevent the list from being refreshed, this refresh will take place only
once when you set it back to false again.

EXAMPLE

set(list,MUIA_List_Quiet,TRUE);

AddThousandEntries(list);

set(list,MUIA_List_Quiet,FALSE);

SEE ALSO

MUIM List Insert, MUIM List Remove

17.26 MUIA List SourceArray – (V4) [I..], APTR

FUNCTION

The NULL terminated array given here is immediately inserted into the list after
object creation time.

100 17 LIST.MUI

EXAMPLE

static const char *KeyList[] =

{

"Cursor Up",

"Cursor Down",

"Cursor Left",

"Cursor Right",

NULL;

};

LV_Keys = ListviewObject,

MUIA_Listview_List, ListObject,

InputListFrame,

MUIA_List_AdjustWidth, TRUE,

MUIA_List_SourceArray, KeyList,

End,

End;

17.27 MUIA List Title – (V6) [ISG], char ∗

FUNCTION

Specify a title for the current list. The title is displayed at the very first line and
doesn’t scroll away when the list top position moves.

Usually, the title is just a string. However, if you have a multi column list with a
custom display hook and you want to have seperate titles for each of your columns,
you can set this attribute to TRUE. In this case, whenever MUI feels that the list
title has to be drawn, it will call your display hook with a NULL entry pointer.
Your hook has to check for this NULL entry and fill the given string array with
your column titles. Layout of the column titles follows the same rules as layout of
the lists entries.

EXAMPLE

/* display function for a multi columned file list with titles */

LONG __asm DisplayFunc(_a2 char **array,_a1 struct Entry *e)

{

struct Data *data = hook->h_Data;

if (e)

{

*array++ = e->Name;

*array++ = e->Size;

*array++ = e->Date;

*array++ = e->Time;

*array++ = e->Flags;

*array = e->Comment;

}

else

{

*array++ = "Name";

*array++ = "Size";

*array++ = "Date";

*array++ = "Time";

17.28 MUIA List Visible 101

*array++ = "Flags";

*array = "Comment";

}

return(0);

}

SEE ALSO

MUIA List DisplayHook

17.28 MUIA List Visible – (V4) [..G], LONG

FUNCTION

Get the current number of visible entries in the list. You have to be prepared to get
a result of -1, which means that the list is not visible at all (e.g. when the window
is iconifed).

SEE ALSO

MUIA List First, MUIA List Entries, MUIA List Active

18 Listview.mui

It’s important to know that MUI makes a difference between a list and a listview.
A list is just a collection of some entries and is part of a listview, which attaches a
scrollbar and input handling to the list.

During object creation time, you have to be careful not specifying listview tags
for the list object or list tags for the listview object, both versions won’t work.
Once the objects are setup, you can of course talk to the listview as if it was the
list directly.

18.1 MUIA Listview ClickColumn – (V7) [..G], LONG

FUNCTION

When using a multi column list, this attribute contains the number of the column
where the user clicked.

SEE ALSO

MUIA Listview DefClickColumn

18.2 MUIA Listview DefClickColumn – (V7) [ISG], LONG

FUNCTION

When the listview is controlled with the keyboard and the user presses RETURN,
the value given here will be used as default for MUIA Listview ClickColumn.

SEE ALSO

MUIA Listview ClickColumn

102 18 LISTVIEW.MUI

18.3 MUIA Listview DoubleClick – (V4) [I.G], BOOL

FUNCTION

This attribute is set to TRUE whenever the user double clicks on an entry in the
list.

SEE ALSO

MUIA Listview SelectChange

18.4 MUIA Listview Input – (V4) [I..], BOOL

FUNCTION

Setting this to FALSE will result in a read only list view. Defaults to TRUE.

SEE ALSO

MUIA Listview MultiSelect

18.5 MUIA Listview List – (V4) [I..], Object ∗

FUNCTION

Every listview needs a list object as child. Specify it here.
As every other child, it will get disposes when its parent object is disposed.

EXAMPLE

ListviewObject,

MUIA_Listview_Input, FALSE,

MUIA_Listview_List , ListObject,

ReadListFrame,

MUIA_List_Format , ",,",

End,

End;

SEE ALSO

MUIA Listview Input

18.6 MUIA Listview MultiSelect – (V7) [I..], LONG

SPECIAL INPUTS

MUIV Listview MultiSelect None
MUIV Listview MultiSelect Default
MUIV Listview MultiSelect Shifted
MUIV Listview MultiSelect Always

FUNCTION

Four possibilities exist for a listviews multi select capabilities:

MUIV Listview MultiSelect None: The listview cannot multiselect at all.

18.7 MUIA Listview ScrollerPos 103

MUIV Listview MultiSelect Default: The multi select type (with or without
shift) depends on the users preferences setting.

MUIV Listview MultiSelect Shifted: Overrides the users prefs, multi selec-
ting only together with shift key.

MUIV Listview MultiSelect Always: Overrides the users prefs, multi selec-
ting without shift key.

Please do not override the users prefs unless you have a good reason!

SEE ALSO

MUIA List MultiTestHook

18.7 MUIA Listview ScrollerPos – (V10) [I..], BOOL

SPECIAL INPUTS

MUIV Listview ScrollerPos Default
MUIV Listview ScrollerPos Left
MUIV Listview ScrollerPos Right

FUNCTION

Specifies the position of a listviews scrollbar. Don’t use this tag unless it’s absolutely
required!

18.8 MUIA Listview SelectChange – (V4) [..G], BOOL

FUNCTION

This attribute is set to TRUE whenever the selection state of one or more items
in the list is changing. You can use this e.g. if you want to display the number of
selected items in a status line.

SEE ALSO

MUIA List MultiSelect

19 Menustrip.mui

Menustrip class is the base class for MUI’s object oriented menus. Its children are
objects of Menu class, each of them describes exactly one menu.

A Menustrip object doesn’t feature many options itself, but as a subclass of
Family class, it simply acts as father for multiple Menu objects.

The Menustrip object is usually specified as a child of either Applicati-
on class or window class with the attributes MUIA Application Menustrip or
MUIA Window Menustrip.

19.1 MUIA Menustrip Enabled – (V8) [ISG], BOOL

FUNCTION

Enable or disable the complete menu strip.

104 21 MENUITEM.MUI

20 Menu.mui

Objects of menu class describe exactly one pulldown menu. They don’t feature many
options themselves, but as a subclass of Family class, they act as father for their
several menu item objects.

20.1 MUIA Menu Enabled – (V8) [ISG], BOOL

FUNCTION

Enable or disable the complete menu.

20.2 MUIA Menu Title – (V8) [ISG], STRPTR

FUNCTION

Describe the title of the menu. Note that the string is not copied and must remain
valid until the menu object is disposed.

SEE ALSO

MUIA Menu Enabled

21 Menuitem.mui

Menuitem class describes a single menu item. You can use all of the gadtools menus
features expect Image menus here.

Since Menuitem class is a subclass of Family class, you can add other menu
items as children of a menu item to indicate sub menus. MUI does not limit the
level of sub menus, but the operating system currently allows a maximum nesting
level of one. Because of this, children of menu items should not contain other menu
items for now, the results are unpredictable.

NOTE

For handling menu items, MUIA UserData and the methods MUIM SetUData,
MUIM GetUData and MUIM FindUData can become quite useful. See the Menu
demo program and the accompanying documentation for details.

21.1 MUIA Menuitem Checked – (V8) [ISG], BOOL

FUNCTION

set/get the checked state of a checkit menu item.

SEE ALSO

MUIA Menuitem Checkit, MUIA Menuitem Enabled, MUIA Menuitem Exclude

21.2 MUIA Menuitem Checkit – (V8) [ISG], BOOL

FUNCTION

Set to TRUE and this item will become a checkmarkable item.

21.3 MUIA Menuitem Enabled 105

SEE ALSO

MUIA Menuitem Checked, MUIA Menuitem Enabled, MUIA Menuitem Exclude

21.3 MUIA Menuitem Enabled – (V8) [ISG], BOOL

FUNCTION

enabled/disalbe the menu item.

SEE ALSO

MUIA Menuitem Checkit, MUIA Menuitem Checked, MUIA Menuitem Exclude

21.4 MUIA Menuitem Exclude – (V8) [ISG], LONG

FUNCTION

bitmask of menu item numbers that are to be deselected when this one is selected.

SEE ALSO

MUIA Menuitem Checkit, MUIA Menuitem Enabled, MUIA Menuitem Checked

21.5 MUIA Menuitem Shortcut – (V8) [ISG], char

FUNCTION

Define the shortcut for a menu item.

SEE ALSO

MUIA Menuitem Title

21.6 MUIA Menuitem Title – (V8) [ISG], STRPTR

FUNCTION

Define the items title.

SEE ALSO

MUIA Menuitem Shortcut

21.7 MUIA Menuitem Toggle – (V8) [ISG], BOOL

FUNCTION

Define the state of the TOGGLE flag for this item.

SEE ALSO

MUIA Menuitem Checkit, MUIA Menuitem Enabled, MUIA Menuitem Checked

106 22 NOTIFY.MUI

21.8 MUIA Menuitem Trigger – (V8) [..G], struct MenuI-
tem ∗

FUNCTION

This attribute is set to a pointer to the struct MenuItem of the item object when the
item is selected. By setting up notification on this attribute with MUIV EveryTime,
you can react on menu actions and query the MenuItems flags immediately.

Note that menu reactions are also possible any maybe a bit ea-
sier with MUIA Application ReturnID, MUIA Application MenuAction and
MUIA Window MenuAction.

22 Notify.mui

Notify class is superclass of all other MUI classes. It’s main purpose is to handle
MUI’s notification mechanism, but it also contains some other methods and attri-
butes useful for every object.

22.1 MUIM CallHook (V4)

SYNOPSIS

DoMethod(obj,MUIM CallHook,struct Hook ∗Hook, ULONG param1, /∗ ... ∗/);

FUNCTION

Call a standard amiga callback hook, defined by a Hook structure. Together with
MUIM Notify, you can easily bind hooks to buttons, your hook will be called when
the button is pressed.

The hook will be called with a pointer to the hook structure in a0, a pointer to
the calling object in a2 and a pointer to the first parameter in a1.

INPUTS

Hook pointer to a struct Hook.

param1,... zero or more parameters. The hook function will receive a pointer to
the first parameter in register a1.

EXAMPLE

standalone:

DoMethod(obj,MUIM_CallHook,&hookstruct,13,42,"foobar","barfoo");

within a notification statement:

DoMethod(propobj,MUIM_Notify,MUIA_Prop_First,MUIV_EveryTime,

propobj,3,MUIM_CallHook,&prophook,MUIV_TriggerValue);

prophook will be called every time the knob is moving and gets

a pointer to the knobs current level in a1.

22.2 MUIM FindUData 107

22.2 MUIM FindUData (V8)

SYNOPSIS

DoMethod(obj,MUIM FindUData,ULONG udata);

FUNCTION

This method tests if the MUIA UserData of the object contains the given <uda-
ta> and returns the object pointer in this case.

Although this is not very useful for single objects, performing this method on
objects that handle children can become very handy. In this case, all the children
(any maybe their children) are tested against <udata>and the first matching object
is returned.

This method is especially useful if you created your menu tree with a NewMenu
structure and you want to find the object pointer for a single menu item.

INPUTS

udata - userdata to look for.

RESULT

A pointer to the first object with the specified user data or NULL if no object is
found.

NOTE

If you have many objects in your application, MUIM FindUData may take quite
long. You can limit the amount of time by performing the method not on the
application but on the window or even on the group/family your object is placed
in.

SEE ALSO

MUIM GetUData, MUIM SetUData

22.3 MUIM GetUData (V8)

SYNOPSIS

DoMethod(obj,MUIM GetUData,ULONG udata, ULONG attr, ULONG ∗storage);

FUNCTION

This method tests if the MUIA UserData of the object contains the given <uda-
ta> and gets <attr> to <storage> for itself in this case.

Although this is not very useful for single objects, performing this method on
objects that handle children can become very handy. In this case, all the children
(any maybe their children) are searched against <udata>and the first matching
objects will be asked for the specified attribute.

108 22 NOTIFY.MUI

INPUTS

udata - userdata to look for.

attr - attribute to get.

storage - place to store the attribute.

NOTE

If you have many objects in your application, MUIM GetUData may take quite long.
You can limit the amount of time by performing the method not on the application
but on the window or even on the group/family your objects are place in.

SEE ALSO

MUIM SetUData, MUIM FindUData

22.4 MUIM KillNotify (V4)

SYNOPSIS

DoMethod(obj,MUIM KillNotify,ULONG TrigAttr);

FUNCTION

MUIM KillNotify kills previously given notifications on specific attributes.

INPUTS

TrigAttr - Attribute for which the notify was specified. If you set up more than
one notify for an attribute, only the first one will be killed.

EXAMPLE

DoMethod(button,MUIM_KillNotify,MUIA_Pressed);

SEE ALSO

MUIM Notify

22.5 MUIM MultiSet (V7)

SYNOPSIS

DoMethod(obj,MUIM MultiSet,ULONG attr, ULONG val, APTR obj, /∗ ... ∗/);

FUNCTION

Set an attribute for multiple objects. Receiving an attribute/value pair and a list
of objects, this method sets the new value for all the objects in the list. This is
especially useful for disabling/enabling lots of objects with one singe function call.

The object that executes this method isn’t affected!

NOTE

This method was implemented in version 7 of notify class.

22.6 MUIM NoNotifySet 109

INPUTS

attr attribute to set.

value new value for the attribute.

obj, ... list of MUI objects, terminated with a NULL pointer.

EXAMPLE

/* disable all the address related gadgets... */

DoMethod(xxx, MUIM_MultiSet, MUIA_Disabled, TRUE,

ST_Name, ST_Street, ST_City, ST_Country, ST_Phone, NULL);

/* note that the xxx object doesn’t get disabled! */

SEE ALSO

MUIM Set, MUIM Notify

22.6 MUIM NoNotifySet (V9)

SYNOPSIS

DoMethod(obj,MUIM NoNotifySet,ULONG attr, char ∗format, ULONG val, /∗ ...
∗/);

FUNCTION

Acts like MUIM Set but doesn’t trigger any notification. This can become useful to
avoid deadlocks with bi-directional connections.

INPUTS

attr attribute you want to set.

val value to set the attribute to.

EXAMPLE

DoMethod(editor,MUIM_Notify,EDIT_Top,MUIV_EveryTime,

sbar,3,MUIM_NoNotifySet,MUIA_Prop_First,MUIV_TriggerValue);

DoMethod(sbar,MUIM_Notify,MUIA_Prop_First,MUIV_EveryTime,

editor,3,MUIM_NoNotifySet,EDIT_Top,MUIV_TriggerValue);

SEE ALSO

MUIM Set

22.7 MUIM Notify (V4)

SYNOPSIS

DoMethod(obj,MUIM Notify,ULONG TrigAttr, ULONG TrigVal, APTR DestObj,
ULONG FollowParams, /∗ ... ∗/);

110 22 NOTIFY.MUI

FUNCTION

Add a notification event handler to an object. Notification is essential for every
MUI application.

A notification statement consists of a source object, an attribute/value pair, a
destination object and a notification method. The attribute/value pair belongs to
the source object and determines when the notification method will be executed on
the destination object.

Whenever the source object gets the given attribute set to the given value (this
can happen because of the user pressing some gadgets or because of your program
explicitly setting the attribute with SetAttrs()), the destination object will execute
the notification method.

With some special values, you can trigger the notification every time the attri-
bute is changing. In this case, you can include the triggering attributes value within
the notification method. See below.

One big problem with notification are endless loops. Imagine you have a
prop gadget and want to show its state with a gauge object. You connect
MUIA Prop First with MUIA Gauge Max and everything is fine, the gauge gets
updated when the user drags around the gadget. On the other hand, if your pro-
gram sets the gauge to a new value, you might want your prop gadget to immediately
show this change and connect MUIA Gauge Max width MUIA Prop First. Voila, a
perfect endless loop.

To avoid these conditions, MUI always checks new attribute values against the
current state and cancels notification when both values are equal. Thus, setting
MUIA Prop First to 42 if the prop gadgets first position is already 42 won’t trigger
any notification event.

INPUTS

TrigAttr attribute that triggers the notification.

TrigValue value that triggers the notification. The special value MUIV EveryTime
makes MUI execute the notification method every time when TrigAttr chan-
ges. In this case, the special value MUIV TriggerValue in the notification
method will be replaced with the value that TrigAttr has been set to. You can
use MUIV TriggerValue up to four times in one notification method. Since
version 8 of muimaster.library, you can also use MUIV NotTriggerValue here.
In this case, MUI will replace TRUE values with FALSE and FALSE values
with TRUE. This can become quite useful when you try to set ”negative”
attributes like MUIA Disabled.

DestObj object on which to perform the notification method. Either supply a
valid object pointer or one of the following special values (V10) which will be
resolved at the time the event occurs:

MUIV Notify Self - notifies the object itself.

MUIV Notify Window - notifies the object’s parent window.

MUIV Notify Application - notifies the object’s application.

FollowParams number of following parameters. If you e.g. have a notification
method with three parts (maybe MUIM Set,attr,val), you have to set Fol-
lowParams to 3. This allows MUI to copy the complete notification method
into a private buffer for later use.

... following is the notification method.

22.8 MUIM Set 111

EXAMPLE

/*

** Every time when the user releases a button

** (and the mouse is still over it), the button object

** gets its MUIA_Pressed attribute set to FALSE.

** Thats what a program can react on with notification,

** e.g. by openening another window.

*/

DoMethod(buttonobj,MUIM_Notify,

MUIA_Pressed, FALSE, /* attribute/value pair */

windowobj, /* destination object */

3, /* 3 following words */

MUIM_Set, MUIA_Window_Open, TRUE); /* notification method */

/*

** Lets say we want to show the current value of a

** prop gadget somewhere in a text field:

*/

DoMethod(propobj,MUIM_Notify, /* notification is triggered */

MUIA_Prop_First, MUIV_EveryTime /* every time the attr changes */

textobj /* destination object */

4, /* 4 following words */

MUIM_SetAsString, MUIA_Text_Contents,

"value is %ld !", MUIV_TriggerValue);

/* MUIV_TriggerValue will be replaced with the

current value of MUIA_Prop_First */

/*

** Inform our application when the user hits return

** in a string gadget:

*/

DoMethod(stringobj,MUIM_Notify,

MUIA_String_Acknowledge, MUIV_EveryTime,

MUIV_Notify_Application, 2, MUIM_Application_ReturnID, ID_FOOBAR);

22.8 MUIM Set (V4)

SYNOPSIS

DoMethod(obj,MUIM Set,ULONG attr, ULONG val);

FUNCTION

Set an attribute to a value. Normally, you would set attributes with intuition.library
SetAttrs() or with the OM SET method as with any other boopsi objects. But since
these calls need a complete tag list, not just a single attribute/value pair, they are
not useful within a MUIM Notify method.

INPUTS

attr attribute you want to set.

val value to set the attribute to.

112 22 NOTIFY.MUI

EXAMPLE

DoMethod(strobj,MUIM_Set,MUIA_String_Contents,"foobar");

and

SetAttrs(strobj,MUIA_String_Contents,"foobar",TAG_DONE);

are equal.

SEE ALSO

MUIM SetAsString, MUIM Notify, MUIM NoNotifySet

22.9 MUIM SetAsString (V4)

SYNOPSIS

DoMethod(obj,MUIM SetAsString,ULONG attr, char ∗format, ULONG val, /∗ ...
∗/);

FUNCTION

Set a (text kind) attribute to a string. This can be useful if you want to connect a
numeric attribute of an object with a text attribute of another object.

INPUTS

attr attribute to set.

format C like formatting string, remember to use ”%ld” !

val, ... one or more paremeters for the format string.

EXAMPLE

stand alone:

DoMethod(txobj,MUIM_SetAsString,MUIA_Text_Contents,

"My name is %s and I am %ld years old.",name,age);

within a notification statement:

DoMethod(propobj,MUIM_Notify,MUIA_Prop_First,MUIV_EveryTime,

txobj,4,MUIM_SetAsString,MUIA_Text_Contents,

"prop gadget shows %ld.",MUIV_TriggerValue);

SEE ALSO

MUIM Set, MUIM Notify

22.10 MUIM SetUData (V8)

SYNOPSIS

DoMethod(obj,MUIM SetUData,ULONG udata, ULONG attr, ULONG val);

22.11 MUIM WriteLong 113

FUNCTION

This method tests if the MUIA UserData of the object contains the given <uda-
ta> and sets <attr> to <val> for itself in this case.

Altough this is not very useful for single objects, performing this method on
objects that handle children can become very handy. In this case, all the children
(any maybe their children) are tested against <udata>and all matching objects will
get the attribute set.

If you e.g. want to clear several string gadgets in your applciation at once, you
simply give them the same MUIA UserData and use

DoMethod(app,MUIM SetUData,MyUDATA,MUIA String Contents,NULL);

INPUTS

udata - userdata to look for.

attr - attribute to set.

val - value to set attribute to.

NOTE

If you have many objects in your application, MUIM SetUData may take quite long.
You can limit the amount of time by performing the method not on the application
but on the window or even on the group your gadgets are place in.

SEE ALSO

MUIM GetUData, MUIM FindUData

22.11 MUIM WriteLong (V6)

SYNOPSIS

DoMethod(obj,MUIM WriteLong,ULONG val, ULONG ∗memory);

FUNCTION

This method simply writes a longword somewhere to memory. Although this seems
quite useless, it might become handy if used within a notify statement. For instance,
you could easily connect the current level of a slider with some member of your
programs data structures.

INPUTS

val - value to write

memory - location to write the value to

EXAMPLE

/* Let the slider automagically write its level to a variable */

static LONG level;

DoMethod(slider,MUIM_Notify,MUIA_Slider_Level,MUIV_EveryTime,

slider,3,MUIM_WriteLong,MUIV_TriggerValue,&level);

114 22 NOTIFY.MUI

SEE ALSO

MUIM WriteString, MUIM Notify

22.12 MUIM WriteString (V6)

SYNOPSIS

DoMethod(obj,MUIM WriteString,char ∗str, char ∗memory);

FUNCTION

This method simply copies a string somewhere to memory. Although this seems
quite useless, it might become handy if used within a notify statement. For instance,
you could easily connect the current contents of a string gadget with some member
of your programs data structures.

NOTE

The string is copied with strcpy(), you must assure that the destination points to
enough memory.

INPUTS

str - string to copy

memory - location to write the value to

EXAMPLE

static char buffer[256];

DoMethod(string,MUIM_Notify,MUIA_String_Contents,MUIV_EveryTime,

string,3,MUIM_WriteString,MUIV_TriggerValue,buffer);

SEE ALSO

MUIM WriteLong, MUIM Notify

22.13 MUIA AppMessage – (V5) [..G], struct AppMessage
∗

FUNCTION

When your window is an AppWindow, i.e. you have set the
MUIA Window AppWindow attribute to TRUE, you will be able to get AppMes-
sages by listening to MUIA AppMessage. Whenever an AppMessage arrives, this
attribute will be set to a pointer to that message.

MUIA AppMessage is object specific. You can e.g. set up different notifications
for different objects in your window, they will only get exectued when icons are
dropped over the specific object.

If you wait on MUIA AppMessage with a window object, your notify will always
get executed when icons are dropped on the window.

22.14 MUIA HelpFile 115

NOTE

• You should use the MUIM CallHook method to call a hook function when an
AppMessage arrives (see below). The pointer to the AppMessage is valid only
as long as the notification method is executed.

• AppWindows are only possible on the workench screen.

EXAMPLE

/* Call the AppMsgHook when an icon is dropped on a listview */

DoMethod(lvobj,MUIM_Notify,MUIA_AppMessage,MUIV_EveryTime,

lvobj,3,MUIM_CallHook,&AppMsgHook,MUIV_TriggerValue);

/* Call the AppMsgHook when an icon is dropped on the window */

DoMethod(winobj,MUIM_Notify,MUIA_AppMessage,MUIV_EveryTime,

winobj,3,MUIM_CallHook,&AppMsgHook,MUIV_TriggerValue);

SEE ALSO

MUIA Window AppWindow, MUIA Application DropObject, MUIM CallHook

22.14 MUIA HelpFile – (V4) [ISG], STRPTR (OBSOLETE)

FUNCTION

Since muimaster.library V8, this attribute is obsolete and replaced by
MUIA Application HelpFile.

SEE ALSO

MUIA Application HelpFile, MUIA HelpNode, MUIA HelpLine

22.15 MUIA HelpLine – (V4) [ISG], LONG

FUNCTION

Define a line in a help file specified with MUIA Application HelpFile.

SEE ALSO

MUIA Application HelpFile, MUIA HelpNode

22.16 MUIA HelpNode – (V4) [ISG], STRPTR

FUNCTION

Define a node in a help file specified with MUIA Application HelpFile.

SEE ALSO

MUIA Application HelpFile, MUIA HelpLine

116 22 NOTIFY.MUI

22.17 MUIA NoNotify – (V7) [.S.], BOOL

FUNCTION

If you set up a notify on an attibute to react on user input, you will also recogni-
ze events when you change this attribute under program control with SetAttrs().
Setting MUIA NoNotify together with your attribute will prevent this notification
from being triggered.

NOTE

MUIA NoNotify is a ”one time” attribute. Its only valid during the current SetAt-
trs() call!

EXAMPLE

SetAttrs(slider,MUIA_NoNotify,TRUE,MUIA_Slider_Level,26,TAG_DONE);

22.18 MUIA Revision – (V4) [..G], LONG

FUNCTION

Get the revision number of an objects class. Although MUIA Revision is documen-
ted at notify class, you will of course receive the revision number of the objects true
class.

EXAMPLE

strobj = MUI_NewObject(MUIC_String,...,TAG_DONE);

...

get(strobj,MUIA_Version ,&v);

get(strobj,MUIA_Revision,&r);

printf("String class version %ld.%ld\n",v,r);

SEE ALSO

MUIA Version

22.19 MUIA UserData – (V4) [ISG], ULONG

FUNCTION

A general purpose value to fill in any kind of information.

22.20 MUIA Version – (V4) [..G], LONG

FUNCTION

Get the version number of an objects class. Although MUIA Version is documented
at notify class, you will of course receive the version number of the objects true
class.

117

EXAMPLE

strobj = MUI_NewObject(MUIC_String,...,TAG_DONE);

...

get(strobj,MUIA_Version ,&v);

get(strobj,MUIA_Revision,&r);

printf("String class version %ld.%ld\n",v,r);

SEE ALSO

MUIA Revision

23 Palette.mui

Palette class generates a (big) group of objects, alltogether making up a powerful
palette requester. Due to the new color selection schemes of Kickstart 3.x, you won’t
get a ”traditional” palette requester with 2n̂ fields to fill in. These things really stop
making sense on nice 256 or true color screens.

Instead, MUI’s palette class allows defining a list of colors that the user should
be able to adjust. Within a public screen manager, this would e.g. be the DrawInfo
pens for a specific screen, within a terminal program maybe the eight ANSI colors.

Palette class uses a listview to let the user choose the desired color, a coloradjust
object to adjust this color and a colorfield object that always shows the current color.

The user will also be able to concatenate several colors in the list, defining a
single color for several entries.

23.1 MUIA Palette Entries – (V6) [I.G], struct
MUI Palette Entry ∗

FUNCTION

Specify the colors that the user should be able to adjust with this palette object.
You supply an array of MUI Palette Structures here, each entry defining one

color:

struct MUI_Palette_Entry

{

LONG mpe_ID;

ULONG mpe_Red;

ULONG mpe_Green;

ULONG mpe_Blue;

LONG mpe_Group;

};

mpe ID This entry is not used by palette class, you can put in whatever you
want, except the value MUIV Palette Entry End (==-1), which terminates
the array.

mpe Red 32-bit red component of the current color. This field will be changed by
palette class whenever the user edits the color.

mpe Green 32-bit green component of the current color. This field will be changed
by palette class whenever the user edits the color.

mpe Blue 32-bit blue component of the current color. This field will be changed
by palette class whenever the user edits the color.

118 23 PALETTE.MUI

mpe Group Entries with the same mpe Group value are concatenated. Whene-
ver a new color in the listview is selected, all other colors with the same
mpe Group get selected as well and get adjusted all at once. Entry concate-
nation can be changed by the user, as long as you don’t disable this feature
with the MUIA Palette Groupable attribute.

EXAMPLE

static struct MUI_Palette_Entry SystemDefaultPalette[] =

{

{ TEXTPEN ,0x00000000,0x00000000,0x00000000,0 },

{ SHINEPEN ,0xffffffff,0xffffffff,0xffffffff,1 },

{ SHADOWPEN ,0x00000000,0x00000000,0x00000000,0 },

{ FILLPEN ,0x66666666,0x88888888,0xbbbbbbbb,2 },

{ FILLTEXTPEN ,0xffffffff,0xffffffff,0xffffffff,1 },

{ BACKGROUNDPEN ,0xaaaaaaaa,0xaaaaaaaa,0xaaaaaaaa,3 },

{ HIGHLIGHTTEXTPEN,0xffffffff,0xffffffff,0xffffffff,1 },

{ BARDETAILPEN ,0x00000000,0x00000000,0x00000000,0 },

{ BARBLOCKPEN ,0xffffffff,0xffffffff,0xffffffff,1 },

{ BARTRIMPEN ,0x00000000,0x00000000,0x00000000,0 },

{ MUIV_Palette_Entry_End,0,0,0,0 },

};

SEE ALSO

MUIA Palette Names

23.2 MUIA Palette Groupable – (V6) [ISG], BOOL

FUNCTION

Enables/disables palette color grouping. Defaults to TRUE.

SEE ALSO

MUIA Palette Entries

23.3 MUIA Palette Names – (V6) [ISG], char ∗∗

FUNCTION

Specify the names of a palette objects color entries. Without names, the color list-
view just displays ”Color <n>” for each entry. If you supply an array of names here,
they are displayed instead. The names array must have as many entries as the array
of MUIA Palette Entry structures (without its terminator).

EXAMPLE

static struct MUI_Palette_Entry ColorEntries[] =

{

{ TEXTPEN ,0x00000000,0x00000000,0x00000000,2 },

{ SHINEPEN ,0xffffffff,0xffffffff,0xffffffff,4 },

{ SHADOWPEN ,0x00000000,0x00000000,0x00000000,5 },

{ FILLPEN ,0x66666666,0x88888888,0xbbbbbbbb,3 },

{ FILLTEXTPEN ,0xffffffff,0xffffffff,0xffffffff,6 },

119

{ BACKGROUNDPEN ,0x00000000,0x00000000,0x00000000,7 },

{ HIGHLIGHTTEXTPEN,0xffffffff,0xffffffff,0xffffffff,8 },

{ BARDETAILPEN ,0x00000000,0x00000000,0x00000000,9 },

{ BARBLOCKPEN ,0xffffffff,0xffffffff,0xffffffff,1 },

{ BARTRIMPEN ,0x00000000,0x00000000,0x00000000,0 },

{ MUIV_Palette_Entry_End,0,0,0,0 },

};

static const char *ColorNames[] =

{

"Text" ,

"Bright Edges" ,

"Dark Edges" ,

"Active Window Bars" ,

"Active Window Titles",

"Background" ,

"Important Text" ,

"Menu Text" ,

"Menu Background" ,

"Menu Line"

};

po = PaletteObject,

MUIA_Palette_Entries, ColorEntries,

MUIA_Palette_Names , ColorNames,

End;

SEE ALSO

MUIA Palette Entries

24 Popasl.mui

As a subclass of popstring class, popasl can be used to pop up any kinds of standard
system asl requesters. A seperate task is spawned to handle these requesters, the
application continues to run.

Using an asl popup class, you don’t need to worry about handling asl requesters.
MUI will automatically open one when the popup button is pressed and update
the corresponding string gadget when the user terminates the requester. From the
programmers point of view, all you have to do is to handle the string gadgets
contents.

IMPORTANT: At object creation time, you can use all ASL library tags as well.
They will be passed to the AllocAslRequest() call without further interpretation.

24.1 MUIA Popasl Active – (V7) [..G], BOOL

FUNCTION

Popasl creates asynchronous popups. Requesters are opened in a seperately spawned
task and don’t disturb the rest of the application. You can ask for the state of a
requester by querying the MUIA Popasl Active attribute. It will return TRUE when
the requester is currently open, FALSE otherwise.

Common use for this attribute is to prevent an application from being terminated
while a requester is open. If you try to dispose the popasl object with a currently
open requester, MUI will freeze your task as long as the requester stays there.

120 24 POPASL.MUI

EXAMPLE

case MUIV_Application_ReturnID_Quit:

{

LONG active;

get(pop1,MUIA_Popasl_Active,&active);

if (!active) get(pop2,MUIA_Popasl_Active,&active);

if (!active) get(pop3,MUIA_Popasl_Active,&active);

if (!active) get(pop4,MUIA_Popasl_Active,&active);

if (active)

MUI_Request(app,window,0,NULL,"OK",

"Cannot quit now, still some asl popups opened.");

else

running = FALSE;

}

break;

SEE ALSO

MUIA Popasl StartHook, MUIA Popasl StopHook, MUIA Popasl Type

24.2 MUIA Popasl StartHook – (V7) [ISG], struct Hook ∗

FUNCTION

Before popasl class opens the asl requester, it has to get some kind of parameters
describing its initial contents. A file popup would e.g. need to split the string gadgets
contents into path and file name part and pass these as ASLFR InititalFile and
ASLFR InitialDrawer to the requester.

The MUIA Popasl StartHook tag describes a hook function that will be called
immediately before the requester is opened. It will receive a pointer to itself in A0,
a pointer to the popasl object in A2 and a pointer to a taglist in A1. This taglist
already contains some tags:

ASLFR/FO/... Screen : parent screen
ASLFR/FO/... PrivateIDCMP : TRUE
ASLFR/FO/... InititalLeftEdge : left edge of popasl object
ASLFR/FO/... InititalTopEdge : bottom edge of popasl object
ASLFR/FO/... InititalWidth : width of popasl object, only present when

the popup is called for the first time.

You may add other tags to the list, but beware that the maximum allowed
number of tags is 15. If you need more, use the TAG MORE tag.

Since the asl requester will run in a seperate task, you should not change the
state of the ASLFR PrivateIDCMP tag!

If your hook returns TRUE, popasl class opens the requester with the given
taglist. A return value of FALSE should be used when something went wrong, no
requester will be opened in this case.

For file and font requester, popasl class will fall back to a default tag handling
when no start hook is specified. A file name is automatically split into path and file
part and passed to the requester a ASLFR InitialFile and ASLFR InitialDrawer.
A font requester splits a string like ”topaz/8” into font name and size for ASL-
FO InitialName and ASLFO InitialSize.

24.3 MUIA Popasl StopHook 121

SEE ALSO

MUIA Popasl StopHook, MUIA Popasl Type

24.3 MUIA Popasl StopHook – (V7) [ISG], struct Hook ∗

FUNCTION

When the requester terminates, MUIA Popasl StopHook will be called with a poin-
ter to itself in A0, a pointer to the popasl object in A2 and a pointer to the asl
requester structure in A1. The hook can then parse the requester structure and set
the string gadgets contents respectively.

For file and font requesters, a default handling is provided.

SEE ALSO

MUIA Popasl StartHook, MUIA Popasl Type

24.4 MUIA Popasl Type – (V7) [I.G], ULONG

FUNCTION

This tag allows to set the type of asl requester. Pass the same value you
would use for AllocAslRequest(), e.g. ASL FileRequest, ASL FontRequest or
ASL ScreenModeRequest.

For ASL FileRequest and ASL FontRequest, popasl class offers a a standard
start/stop handling. When a file requester is opened, MUI splits the string gad-
gets contents into a path and a file name and uses these as initial paremeters for
the requester. Font popups translate a font into a name/size pair, e.g. ”topaz/8”.
You can override these translations by specifying a MUIA Popasl StartHook and a
MUIA Popasl StopHook.

For ASL ScreenModeRequest, no standard handling is available. Using such a
popup without Start and Stop hooks won’t make much sense.

SEE ALSO

MUIA Popasl StartHook, MUIA Popasl StopHook

25 Poplist.mui

Poplist class simplifies creation of popups that contain just a simple list of predefined
gadget contents.

25.1 MUIA Poplist Array – (V8) [I..], char ∗∗

FUNCTION

A NULL terminated list of strings defining the contents of the poplist object.

26 Popobject.mui

Popobject class takes a MUI object as parameter uses this one as popup. You can
e.g. simply create a listview object with some entries and the popobject class will
create a window around it and display it when the user hits the popup button.

Using this class instead of creating the popup windows yourself prevents you
from having lots of problems. Think twice before deciding to make you own popups!

122 26 POPOBJECT.MUI

26.1 MUIA Popobject Follow – (V7) [ISG], BOOL

FUNCTION

Setting this attribute causes the popup window to follow its parent window when
its moved. Defaults to TRUE.

SEE ALSO

MUIA Popobject Light, MUIA Popobject Volatile.

26.2 MUIA Popobject Light – (V7) [ISG], BOOL

FUNCTION

This attribute causes the popup window to be border and titleless. Defaults to
TRUE

SEE ALSO

MUIA Popobject Follow, MUIA Popobject Volatile

26.3 MUIA Popobject Object – (V7) [I.G], Object ∗

FUNCTION

Specify the object to pop up. Usually this is a relatively simple thing like a single
listview, but you can of course use group class here and make rather complex popups.
As with all other MUI classes, the object here gets disposed when the popobject is
disposed.

EXAMPLE

pop = PopobjectObject,

MUIA_Popstring_String, KeyString(0,60,’n’),

MUIA_Popstring_Button, PopButton(MUII_PopUp),

MUIA_Popobject_StrObjHook, &StrObjHook,

MUIA_Popobject_ObjStrHook, &ObjStrHook,

MUIA_Popobject_Object, ListviewObject,

MUIA_Listview_List, ListObject,

InputListFrame,

MUIA_List_SourceArray, PopNames,

End,

End,

End;

SEE ALSO

MUIA Popobject StrObjHook, MUIA Popobject ObjStrHook,
MUIA Popobject Light

26.4 MUIA Popobject ObjStrHook – (V7) [ISG], struct
Hook ∗

FUNCTION

When a popup is closed, this hook is called. You can examine the state of your
MUIA Popobject Object and set the contents of the string gadget respectively. The

26.5 MUIA Popobject StrObjHook 123

hook receives a pointer to itself in A0, a pointer to your MUIA Popobject Object
in A2 and a pointer to the embedded string object in A1.

The hook will only be called when your popup is closed with a success value of
TRUE. Otherwise, MUI closes the popup without taking further actions, just as if
had never opened.

Since MUI doesn’t know anything about your MUIA Popobject Object, it’s your
task to tell when your popup is finished. You can terminate popups at anytime by
sending a MUIM Popstring Close method:

A double click terminates the popping list with a successful return
value.

DoMethod(plist,MUIM Notify,MUIA Listview DoubleClick,TRUE,
pop,2,MUIM Popstring Close,TRUE);

EXAMPLE

SAVEDS ASM VOID ObjStrFunc(REG(a2) Object *list,REG(a1) Object *str)

{

char *x;

DoMethod(list,MUIM_List_GetEntry,MUIV_List_GetEntry_Active,&x);

set(str,MUIA_String_Contents,x);

}

26.5 MUIA Popobject StrObjHook – (V7) [ISG], struct
Hook ∗

FUNCTION

Before the popup opens, this hook is called. You can use it to prepare your
MUIA Popobject Object according to the contents of the string gadget. The hook
receives a pointer to itself in A0, a pointer to your MUIA Popobject Object in A2
and a pointer to the embedded string object in A1.

Return TRUE if you want the popup to appear, FALSE otherwise.

EXAMPLE

SAVEDS ASM LONG StrObjFunc(REG(a2) Object *list,REG(a1) Object *str)

{

char *x,*s;

int i;

get(str,MUIA_String_Contents,&s);

for (i=0;;i++)

{

DoMethod(list,MUIM_List_GetEntry,i,&x);

if (!x)

{

set(list,MUIA_List_Active,MUIV_List_Active_Off);

break;

}

else if (!stricmp(x,s))

{

set(list,MUIA_List_Active,i);

break;

}

}

124 27 POPSTRING.MUI

return(TRUE);

}

SEE ALSO

MUIA Popobject ObjStrHook, MUIA Popobject Object,
MUIA Popobject WindowHook

26.6 MUIA Popobject Volatile – (V7) [ISG], BOOL

FUNCTION

Setting this attribute causes the popup window to disappear when the corresponding
popobject disappears, e.g. because its in a page group and the user toggled the page.
When the popobject appears again, the popup window appears also. Defaults to
TRUE.

SEE ALSO

MUIA Popobject Light, MUIA Popobject Follow

26.7 MUIA Popobject WindowHook – (V9) [ISG], struct
Hook ∗

FUNCTION

If specified, this hook is called immediately after the popups window objects has
been created but before this window is opened. You might e.g. want to add a cycle
chain for the popup window here.

The hook is called with a pointer to the pop object (MUIA Popobject Object)
in A2 and with a pointer to the window object that MUI generated to handle the
popup in A1.

EXAMPLE

/* pop is a simple listview, just set the windows

** default object to this to enable keyboard control */

SAVEDS ASM VOID WindowFunc(REG(a2) Object *pop,REG(a1) Object *win)

{

set(win,MUIA_Window_DefaultObject,pop);

}

SEE ALSO

MUIA Popobject ObjStrHook, MUIA Popobject Object

27 Popstring.mui

Popstring class is the base class for creating so called popup objects. Usually, a
popup consists of a string or text gadget, followed by a little button. Pressing this
button brings up a little window with a listview and lets the user choose an entry
with the mouse.

27.1 MUIM Popstring Close 125

Popstring class features the basic functions for creating such objects. Given a
string object and a button object, it places them horizontally and sets up some
notification. Whenever the popup button is pressed, a hook will be called which
itself should open and prepare the popup window.

The string and the button object are not created by popstring class, they have
to be supplied as attributes during object creation time. This makes popstring class
very flexible, one could e.g. use a text object instead of a string or a popup button
with some text in it.

However, creating simple popups with popstring class would be too much over-
head. Instead of using it directly, you should have a look at one of its subclasses.
They offer a more specialized set of popups and are a lot easier to use.

27.1 MUIM Popstring Close (V7)

SYNOPSIS

DoMethod(obj,MUIM Popstring Close,LONG result);

FUNCTION

This method closes the popup. In fact, it only calls the predefined
MUIA Popstring CloseHook with the supplied success parameter.

EXAMPLE

DoMethod(poplist,MUIM_Notify,MUIA_Listview_DoubeClick,TRUE,

popobj,2,MUIM_Popstring_Close,TRUE);

27.2 MUIM Popstring Open (V7)

SYNOPSIS

DoMethod(obj,MUIM Popstring Open,);

FUNCTION

This method opens the popup. In fact, it only calls the predefined
MUIA Popstring OpenHook and checks its return value. In case of TRUE, the po-
pup button object is disabled as long as MUIA Popstring Toggle is unset.

If the toggle mode is enabled, using MUIA Popstring Open on a currently ope-
ned popup will result in closing this popup (i.e. calling the close hook) with a success
value of FALSE.

EXAMPLE

DoMethod(popbutton,MUIM_Notify,MUIA_Pressed,FALSE,

popobj,1,MUIM_Popstring_Open);

27.3 MUIA Popstring Button – (V7) [I.G], Object ∗

FUNCTION

Specify the button object to be used in the popup. Depending on the type of
your popup, you should use an image button with MUII PopUp, MUII PopFile

126 27 POPSTRING.MUI

or MUII PopDrawer here. However, its also possible to have a button with some
text or other things in it.

When the popstring object is disposed, the string and the button objects are
disposed as well.

EXAMPLE

pop = PopstringObject,

MUIA_Popstring_String, KeyString(0,60,’n’),

MUIA_Popstring_Button, PopButton(MUII_PopUp),

MUIA_Popstring_OpenHook, &OpenHook,

MUIA_Popstring_CloseHook, &CloseHook,

End;

SEE ALSO

MUIA Popstring String, MUIA Popstring OpenHook, MUIA Popstring CloseHook

27.4 MUIA Popstring CloseHook – (V7) [ISG], struct Hook
∗

FUNCTION

Whenever the popup receives a MUIM Popstring Close method and the popup is
currently opened, this hook will be called. It will receive a pointer to itself in register
A0, a pointer to the complete popup object in A2 and a pointer to a

struct

{

Object *stringobject;

LONG success;

}

in A1. The success parameter is a copy of the methods success parameter and
indicates whether the popup was closed successfully (e.g. with a double click in a
listview) or was just cancelled (e.g. by pressing the popup button again for toggle
popups).

Due to internal message handling issues, calling the close hook is delayed un-
til the next MUIM HandleInput method is called. This allows you to remove and
dispose windows without danger.

SEE ALSO

MUIA Popstring OpenHook, MUIM Popstring Open, MUIM Popstring Close

27.5 MUIA Popstring OpenHook – (V7) [ISG], struct Hook
∗

FUNCTION

Whenever the popup receives a MUIM Popstring Open method, this hook will be
called. It will receive a pointer to itself in register A0, a pointer to the complete
popup object in A2 and a pointer to a pointer (!) to the string object contained in
the popup object in A1.

When this hook returns TRUE, MUI assumes the popup was opened succesfully
and will disabled the popup button (as long as MUIA Popstring Toggle is not set).

27.6 MUIA Popstring String 127

Return FALSE to indicate that something went wrong and the popup could not be
opened.

SEE ALSO

MUIA Popstring CloseHook, MUIM Popstring Open, MUIM Popstring Close

27.6 MUIA Popstring String – (V7) [I.G], Object ∗

FUNCTION

Specify the string object to be used in the popup. This does not necessarily need to
be a real string object, using text objects or even complete groups of other objects
is perfectly ok.

When the popstring object is disposed, the string and the button objects are
disposed as well.

EXAMPLE

pop = PopstringObject,

MUIA_Popstring_String, KeyString(0,60,’n’),

MUIA_Popstring_Button, PopButton(MUII_PopUp),

MUIA_Popstring_OpenHook, &OpenHook,

MUIA_Popstring_CloseHook, &CloseHook,

End;

SEE ALSO

MUIA Popstring Button, MUIA Popstring OpenHook,
MUIA Popstring CloseHook

27.7 MUIA Popstring Toggle – (V7) [ISG], BOOL

FUNCTION

Set/Clear the toggle mode for a popstring object. With toggling disabled, the popup
button will get disabled whenever the user hits it and the popup opens. With
toggling enabled, the popup button always stays enabled and can be used to cancel
(== close with a FALSE return value) the popup.

SEE ALSO

MUIA Popstring OpenHook

28 Prop.mui

Prop class generates the well known proportional gadgets. It offers the same attri-
butes as a usual boopsi gadget of propgclass. However, MUI’s prop gadgets allow
using any imagery for the knob and for the background.

28.1 MUIA Prop Entries – (V4) [ISG], LONG

FUNCTION

Set or get the total number of entries.

128 29 RADIO.MUI

SEE ALSO

MUIA Prop Horiz, MUIA Prop Visible, MUIA Prop First

28.2 MUIA Prop First – (V4) [ISG], LONG

FUNCTION

Set or get the number of the first entry.

SEE ALSO

MUIA Prop Horiz, MUIA Prop Visible, MUIA Prop Entries

28.3 MUIA Prop Horiz – (V4) [I.G], BOOL

FUNCTION

Determine if you want a horizontal or a vertical prop gadget.
Defaults to FALSE, i.e. vertical.

SEE ALSO

MUIA Prop Entries, MUIA Prop Visible, MUIA Prop First

28.4 MUIA Prop Slider – (V4) [ISG], BOOL

FUNCTION

Indicate that this prop gadget is used in a slider. MUI might then use different
imagery. Since you really should use the slider class when creating sliders, you
normally don’t need to care about this attribute.

28.5 MUIA Prop Visible – (V4) [ISG], LONG

FUNCTION

Set or get the number of visible entries.

SEE ALSO

MUIA Prop Horiz, MUIA Prop Entries, MUIA Prop First

29 Radio.mui

Radio class generates radio button gadgets. They do the same job as cycle gadgets
and eat up more window space, maybe that’s the reason why so few of them can
be found in existing applications.

29.1 MUIA Radio Active – (V4) [ISG], LONG

FUNCTION

This attributes defines the number of the active entry in the radio gadgets. Valid
range is from 0 for the first entry to NumEntries-1 for the last.

Setting MUIA Radio Active causes the gadget to be updated. On the other
hand, when the user plays around with the gadget, MUIA Radio Active will always
reflects the current state.

29.2 MUIA Radio Entries 129

EXAMPLE

set(radioobj,MUIA_Radio_Active,3);

SEE ALSO

MUIA Radio Entries

29.2 MUIA Radio Entries – (V4) [I..], STRPTR ∗

FUNCTION

Here you can define what entries shall be displayed in your radio gadget. You must
supply a pointer to a string array, containing one entry for each item and terminated
with a NULL.

Remember that radio gadget entries may contain any text formatting code such
as bold, italic or underlined characters.

EXAMPLE

static const char *RA_GroupTitleColor[] =

{

"normal",

"highlight",

"3-dimensional",

NULL

};

CY_Title = RadioObject,

MUIA_Radio_Entries, RA_GroupTitleColor,

End;

SEE ALSO

MUIA Radio Active, MUIA Text Contents

30 Rectangle.mui

Rectangle class seems kind of useless since it doesn’t define any attributes or me-
thods itself. However, objects of this type are frequently used in every application.
They allow insertion of space to control MUI’s layout process.

30.1 MUIA Rectangle HBar – (V7) [I.G], BOOL

FUNCTION

When set to TRUE, MUI draws a horizontal bar in the middle of the rectangle.
Such bars can be used instead of group frames to seperate objects in a window.

EXAMPLE

/* draw a two pixel high bar in the middle

of an 8 pixel high rectangle */

RectangleObject, MUIA_Rectangle_HBar, TRUE, MUIA_FixHeight, 8, End;

130 31 REGISTER.MUI

SEE ALSO

MUIA Rectangle VBar

30.2 MUIA Rectangle VBar – (V7) [I.G], BOOL

FUNCTION

When set to TRUE, MUI draws a vertical bar in the middle of the rectangle. Such
bars can be used instead of group frames to seperate objects in a window.

EXAMPLE

/* draw a two pixel wide bar in the middle

of an 8 pixel wide rectangle */

RectangleObject, MUIA_Rectangle_HBar, TRUE, MUIA_FixWidth, 8, End;

SEE ALSO

MUIA Rectangle HBar

31 Register.mui

Register class is a special class for handling multi page groups. Using this class, you
only have to supply an array of strings, describing the children’s titles. How these
titles are visualized, either with a cycle gadget of with a register-like group, is the
choice of the user.

31.1 MUIA Register Frame – (V7) [I.G], BOOL

FUNCTION

Specify TRUE if your want your group to be framed. If the user specified cycle
gadget looking, you will get a group frame, otherwise you won’t get any frame at
all since register groups are framed anyway.

SEE ALSO

MUIA Register Titles

31.2 MUIA Register Titles – (V7) [I.G], STRPTR ∗

FUNCTION

NULL terminated array of strings describing the titles of your groups children. This
array must contain exactly as many as entries as your group has children.

EXAMPLE

static const char *titles[] = { "Eyes", "Ears", "Noses", "Feet", NULL };

obj = RegisterGroup(title),

Child, ...,

Child, ...,

Child, ...,

131

Child, ...,

End;

32 Scale.mui

A Scale object generates a percentage scale running from 0% to 100%. A good place
for such an object is e.g. below a fuel gauge.

Depending on how much space is available, the scale will be more or less detailed.
Due to MUI’s automatic layout system, you don’t need to worry about it’s size.

When placed in a vertical group just below the object you want to scale, everything
is fine.

32.1 MUIA Scale Horiz – (V4) [ISG], BOOL

FUNCTION

Indicate whether you want a horizontal or a vertical scale.
Defaults to horizontal.
BUGS Currently, only the horizontal scale is implemented.

EXAMPLE

...

VGroup,

Child, GaugeObject, End,

Child, Scaleobject, End,

End,

...

/* and everythins is fine... */

33 Scrmodelist.mui

This is a private class and only used by the MUI preferences progam. Maybe it will
get public in a future release.

34 Scrollbar.mui

The Scrollbar class has no objects and attributes itself. It just connects a proportio-
nal gadget and two button gadgets with approriate imagery to make up a scrollbar.

Since Scrollbar class is a subclass of Group class, every attribute and method is
passed through to all of its children. Thus, you can talk and listen to a scrollbar as
if it was just a single prop gadget.

You can use the attribute MUIA Group Horiz as with any other group to deter-
mine if the scrollbar should be horizontal or vertical. By default, a vertical scrollbar
is generated.

35 Scrollgroup.mui

Scrollgroup objects can be used to supply virtual groups with scrollbars. These
scrollbars automatically adjust according to the virtual and display sizes of the

132 36 SLIDER.MUI

underlying virtual group. When scrolling is unnecessary (i.e. the virtual group is
completely visible), the scrollers get disabled.

35.1 MUIA Scrollgroup Contents – (V4) [I..], Object ∗

FUNCTION

You have to specify an object of Virtgroup class here.

35.2 MUIA Scrollgroup FreeHoriz – (V9) [I..], BOOL

FUNCTION

Specify if a scroll group should be horizontally moveable. Defaults to FALSE.

35.3 MUIA Scrollgroup FreeVert – (V9) [I..], BOOL

FUNCTION

Specify if a scroll group should be vertically moveable. Defaults to FALSE.

36 Slider.mui

The slider class generates a gui element that allows a user to adjust a numeric
value. The programmer has not very much influence on the slider’s outfit, there are
only very few tags available. Future versions of MUI will probably include some
preferences options to allow the user (not the programmer) to configure this outfit.

Note that since slider is a subclass of group class, you can get horizontal or verti-
cal sliders by simply using the MUIA Group Horiz attribute. Default is a horizontal
slider.

36.1 MUIA Slider Level – (V4) [ISG], LONG

FUNCTION

The current position of the slider knob. This value is guaranteed to be between
MUIA Slider Min and MUIA Slider Max.

EXAMPLE

/* vertical task priority slider */

SliderObject,

MUIA_Group_Horiz , FALSE,

MUIA_Slider_Min , -20,

MUIA_Slider_Max , 20,

MUIA_Slider_Level, 0,

End;

SEE ALSO

MUIA Slider Min, MUIA Slider Max

36.2 MUIA Slider Max – (V4) [ISG], LONG

FUNCTION

Adjust the maximum value for a slider object.

36.3 MUIA Slider Min 133

SEE ALSO

MUIA Slider Min, MUIA Slider Level

36.3 MUIA Slider Min – (V4) [ISG], LONG

FUNCTION

Adjust the minimum value for a slider object. Of course you can use negative num-
ber, e.g. for a slider to adjust task priority.

SEE ALSO

MUIA Slider Max, MUIA Slider Level

36.4 MUIA Slider Quiet – (V6) [I..], BOOL

FUNCTION

When set to TRUE, the slider doesn’t display it’s current level in a text object.

SEE ALSO

MUIA Slider Level

36.5 MUIA Slider Reverse – (V4) [ISG], BOOL

FUNCTION

Setting this attribute to TRUE will reverse the direction of the slider.

SEE ALSO

MUIA Slider Min, MUIA Slider Max, MUIA Slider Level

37 String.mui

String class generates standard string gadgets with all editing facilities (clear, undo,
etc.) enabled.

37.1 MUIA String Accept – (V4) [ISG], STRPTR

FUNCTION

A string containing characters allowed as input for the string gadget. Whenever the
user hits a character not found in MUIA String Accept, he will hear a beep and
gadgets contents won’t have changed.

EXAMPLE

StringObject,

MUIA_String_Accept, "0123456789-",

End,

SEE ALSO

MUIA String Reject

134 37 STRING.MUI

37.2 MUIA String Acknowledge – (V4) [..G], STRPTR

FUNCTION

This attribute will be set to the contents of the string whenever the user hits return
in the gadget. An application can listen with notification and take the appropriate
action.

Using the TAB key or a mouse click to deactivate the gadget will not trigger
MUIA String Acknowledge.

EXAMPLE

/* two string gadgets str1 and str2, the second should

/* become active after a return in the first: */

DoMethod(str1,MUIM_Notify,

MUIA_String_Acknowledge, MUIV_EveryTime,

windowobj, 3, MUIM_Set, MUIA_Window_ActiveObject, str2);

SEE ALSO

MUIA String Contents

37.3 MUIA String AttachedList – (V4) [I..], Object ∗

FUNCTION

This special attribute can be set to point to a valid MUI object of List or Listview
class. This enables controlling the lists cursor from within the string gadget, all
cursor key events will be forwarded.

SEE ALSO

MUIA String Contents, MUIA List Active

37.4 MUIA String BufferPos – (V4) [.SG], LONG

FUNCTION

MUIA String BufferPos can be used to get and set the position of the cursor in the
string gadget. This attribute is probably not very interesting.

SEE ALSO

MUIA String Contents, MUIA String DisplayPos

37.5 MUIA String Contents – (V4) [ISG], STRPTR

FUNCTION

Get and set a string gadgets contents. You may not modify the returned string.

MUIA String Contents gets updated every time when the contents of the string
gadget change. When you set up a notification on this attribute, you will hear about
every keystroke.

37.6 MUIA String DisplayPos 135

EXAMPLE

/* The given hook will be called after every change */

/* in the string gadget. It receives a pointer to */

/* a pointer to the current contents in register a1 */

/* (see MUIM_CallHook for details) */

DoMethod(str,MUIM_Notify,

MUIA_String_Contents, MUIV_EveryTime,

str, 3, MUIM_CallHook, &hook, MUIV_TriggerValue);

SEE ALSO

MUIA String Accept, MUIA String Reject, MUIA String MaxLen

37.6 MUIA String DisplayPos – (V4) [.SG], LONG

FUNCTION

MUIA String DisplayPos can be used to get and set the number of the first character
of the string to be displayed. This attribute is probably not very interesting.

SEE ALSO

MUIA String Contents, MUIA String BufferPos

37.7 MUIA String EditHook – (V7) [ISG], struct Hook ∗

FUNCTION

When specified, MUI calls this hook as if it was a real string edit hook in a real
string gadget. It receives a pointer to itself in A0, a pointer to a SGWork structure
in A2 and a pointer to the message in A1.

The hook will be called before MUI’s private edit hook, the result is unused.

37.8 MUIA String Format – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV String Format Left
MUIV String Format Center
MUIV String Format Right

FUNCTION

Used to adjust the alignment of the input string.

SEE ALSO

MUIA String BufferPos, MUIA String DispPos, MUIA String Contents

136 37 STRING.MUI

37.9 MUIA String Integer – (V4) [ISG], ULONG

FUNCTION

Useful for turning a string gadget into an integer gadget. Setting this attribute puts
the value with ”%ld” into the gadget, getting it returns a longword containing the
string gadgets contents as number.

You should set MUIA String Accept to ”0123456789” or something like that to
avoid wrong characters.

EXAMPLE

StringObject,

MUIA_String_Accept , "0123456879",

MUIA_String_Integer, 42,

End;

37.10 MUIA String MaxLen – (V4) [I.G], LONG

FUNCTION

Setup the maximum length for the string gadget. This attribute is only valid at
object creation time.

Default maximum length is 80.

NOTE

The maximum length includes the 0-byte at the end of the string. To let the user
enter e.g. 10 characters, you would have to specify a maxlen of 11.

SEE ALSO

MUIA String Contents

37.11 MUIA String Reject – (V4) [ISG], STRPTR

FUNCTION

A string containing characters that should not be accepted as input for the string
gadget. Whenever the user hits such a char, he will hear a beep and gadgets contents
won’t have changed.

SEE ALSO

MUIA String Accept

37.12 MUIA String Secret – (V4) [I.G], BOOL

FUNCTION

This attribute causes the string gadget to display only dots instead of the real
contents. Useful for password requesters.

SEE ALSO

MUIA String Contents

137

38 Text.mui

Text class allows generating objects that contain some kind of text. You can control
the outfit of your text with some special control characters, including italics, bold,
underline and color codes. Format codes align text either left, centered or right,
linefeeds allow multiline text fields.

38.1 MUIA Text Contents – (V4) [ISG], STRPTR

FUNCTION

String to be displayed in a text object.
If the string is larger than available display space, it will be clipped. Setting

MUIA Text Contents to NULL results in an empty text object.
The string is copied into a private buffer, you can destroy the original after using

this tag.
Whenever MUI prints strings, they may contain some special character sequences

defining format, color and style of the text.

’\n’ Start a new line. With this character you can e.g. create multi line buttons.

ESC - Disable text engine, following chars will be printed without further parsing.

ESC u Set the soft style to underline.

ESC b Set the soft style to bold.

ESC i Set the soft style to italic.

ESC n Set the soft style back to normal.

ESC <n> Use pen number n (2..9) as front pen. n must be a valid DrawInfo pen
as specified in ”intuition/screens.h”.

ESC c Center current (and following) line(s). This sequence is only valid at the
beginning of a string or after a newline character.

ESC r Right justify current (and following) line(s). This sequence is only valid at
the beginning of a string or after a newline character.

ESC l Left justify current (and following) line(s). This sequence is only valid at
the beginning of a string or after a newline character.

ESC I[s] Draw MUI image with specification <s>. See autodocs of image class for
image spec definition.

NOTE

These rules apply to all MUI strings, not only to a text objects contents. You can
e.g. format the columns of a listview or include images in a cycle gadgets entries.

EXAMPLE

...

MUIA_Text_Contents, "\33c\33bMUI\33n\nis magic"

...

would look like | MUI | <-- bold

| is magic | <-- normal

138 38 TEXT.MUI

SEE_ALSO

MUIA_Text_SetMin, MUIA_Text_SetMax, MUIA_Text_PreParse

38.2 MUIA Text HiChar – (V4) [I..], char

FUNCTION

If the character given here exists in the displayed string (no matter if upper or lower
case), it will be underlined. This makes it easy to create macros such as KeyButton()
that specify the control char and the underline char at the same time.

SEE ALSO

MUIA Text Contents, MUIA Control Char

38.3 MUIA Text PreParse – (V4) [ISG], STRPTR

FUNCTION

String containing format definitions to be parsed before the text from
MUIA Text Contents is printed.

Using this tag, you can easily define different formats, colors and styles without
modifying the original string.

EXAMPLE

...

MUIA_Text_PreParse, "\33c\33i", // centered and italics

MUIA_Text_Contents, "foobar",

...

SEE_ALSO

MUIA_Text_Contents

38.4 MUIA Text SetMax – (V4) [I..], BOOL

FUNCTION

Boolean value to indicate wether the objects maximal width shall be calculated to
fit the string given with MUIA Text Contents.

When set to FALSE, maximum width is not limited.
For a text object that needs to be updated (e.g. some information about your

programs status) you would probably set MUIA Text SetMax to FALSE to allow
resizing of this object.

For a label for one of your gadgets, you might want to give this tag a value of
TRUE to prevent MUI from inserting additional layout space.

Defaults to FALSE.

EXAMPLE

...

TX_Status = TextObject,

RecessedFrame,

MUIA_Background , MUII_BACKGROUND,

MUIA_Text_PreParse, "\33c",

38.5 MUIA Text SetMin 139

MUIA_Text_Contents, "running...",

End,

...

set(TX_Status,MUIA_Text_Contents,"reading...");

...

set(TX_Status,MUIA_Text_Contents,"writing...");

...

SEE_ALSO

MUIA_Text_SetMin, MUIA_Text_Contents

38.5 MUIA Text SetMin – (V4) [I..], BOOL

FUNCTION

Boolean value to indicate wether the objects minimal width shall be calculated to
fit the string given with MUIA Text Contents.

When set to FALSE, minimum width will be set to 0 and the displayed string
may be clipped.

Defaults to TRUE.

SEE ALSO MUIA Text SetMax, MUIA Text Contents

39 Virtgroup.mui

Virtgroup class generates special kinds of group objects whose children can be a lot
larger than the actual group. The group acts as a (small) window through which a
rectangle area of its contents is visible.

Layout of a virtual groups children doesn’t depend on the space available for
the virtual group object. The children will get as much room as they want, usually
their default size.

Virtual groups themselves don’t offer any scrollbars to allow user interaction.
These things are handled by scrollgroup class.

39.1 MUIA Virtgroup Height – (V6) [..G], LONG

FUNCTION

Read the virtual height of a virtual group.

NOTE

Currently you are unable to set the height, this might change in future releases.

SEE ALSO

MUIA Virtgroup Width, MUIA Virtgroup Left, MUIA Virtgroup Top

39.2 MUIA Virtgroup Left – (V6) [ISG], LONG

FUNCTION

Get/set the virtual left edge of a virtual group. The left edge will automatically be
clipped to be between 0 and (VirtualWidth-DisplayWidth).

140 41 WINDOW.MUI

SEE ALSO

MUIA Virtgroup Width, MUIA Virtgroup Height, MUIA Virtgroup Top

39.3 MUIA Virtgroup Top – (V6) [ISG], LONG

FUNCTION

Get/set the virtual top edge of a virtual group. The top edge will automatically be
clipped to be between 0 and (VirtualTop-DisplayTop).

SEE ALSO

MUIA Virtgroup Width, MUIA Virtgroup Height, MUIA Virtgroup Left

39.4 MUIA Virtgroup Width – (V6) [..G], LONG

FUNCTION

Read the virtual width of a virtual group.

NOTE

Currently you are unable to set the width, this might change in future releases.

SEE ALSO

MUIA Virtgroup Height, MUIA Virtgroup Left, MUIA Virtgroup Top

40 Volumelist.mui

Volumelist generates a list of all available volumes. Since you shouldn’t use your
own file requester in every application, this class is probably not of much use.

41 Window.mui

Objects of window class are used to generate windows and supply a place where
MUI gadgets feel well. It handles the complicated task of window resizing fully
automatic, you don’t need to worry about that.

Windows are children of an application, you cannot use a window object without
having a parent application object. On the other side, the gadgets in a window are
children of the window, you cannot use MUI gadgets without having a parent MUI
window.

Creating a window object does not mean to open it instantly. This is done later
by setting the window’s MUIA Window Open attribute. If your application has
several windows, the usual way is to create them all at once at startup time and
open/close it later just by setting MUIA Window Open.

There is no difference in talking to gadgets whether their parent window is open
or not. If you e.g. set the contents of a string gadget in an open window, the gadget
will refresh immediately. If the window is closed, the gadget just remembers its new
setting and displays it later.

41.1 MUIM Window GetMenuCheck 141

41.1 MUIM Window GetMenuCheck (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Window GetMenuCheck,ULONG MenuID);

FUNCTION

Ask whether a checkmark menu item has its checkmark set or cleared.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

SEE ALSO

MUIM Window SetMenuCheck, MUIA Window Menu

41.2 MUIM Window GetMenuState (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Window GetMenuState,ULONG MenuID);

FUNCTION

Ask whether a menu item is enabled or disabled.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

SEE ALSO

MUIM Window SetMenuState, MUIA Window Menu

41.3 MUIM Window ScreenToBack (V4)

SYNOPSIS

DoMethod(obj,MUIM Window ScreenToBack,);

FUNCTION

Put the window’s screen to back. This command is only valid when the window is
opened.

SEE ALSO

MUIM Window ScreenToFront, MUIM Window ToFront, MUIM Window ToBack

41.4 MUIM Window ScreenToFront (V4)

SYNOPSIS

DoMethod(obj,MUIM Window ScreenToFront,);

142 41 WINDOW.MUI

FUNCTION

Put the window’s screen to font. This command is only valid when the window is
opened.

SEE ALSO

MUIM Window ScreenToBack, MUIM Window ToFront, MUIM Window ToBack

41.5 MUIM Window SetCycleChain (V4)

SYNOPSIS

DoMethod(obj,MUIM Window SetCycleChain,Object ∗obj[1]);

FUNCTION

Set the cycle chain for a window. To make MUI’s keyboard control work, you need
to setup a chain of objects that should be activatable with the tab key. This can be
any objects you wish, MUI supports complete keyboard handling even for sliders or
listviews.

If you forget to set a cycle chain because you are a mouse-man, you certainly
will annoy some users of your application!

INPUTS

One or more objects, terminated with a NULL.

EXAMPLE

DoMethod(window,MUIM_Window_SetCycleChain,

str1,str2,slide1,list,radio,cycle1,cycle2,NULL);

SEE ALSO

MUIA Window ActiveObject

41.6 MUIM Window SetMenuCheck (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Window SetMenuCheck,ULONG MenuID, LONG stat);

FUNCTION

Set or clear the checkmark of a menu item.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

set - TRUE to set checkmark, FALSE to clear

SEE ALSO

MUIM Window GetMenuCheck, MUIA Window Menu,

41.7 MUIM Window SetMenuState 143

41.7 MUIM Window SetMenuState (V4) (OBSOLETE)

SYNOPSIS

DoMethod(obj,MUIM Window SetMenuState,ULONG MenuID, LONG stat);

FUNCTION

Enable or disable a menu item.

INPUTS

MenuID - the value you wrote into the UserData field of struct NewMenu.

set - TRUE to enable item, FALSE to disable.

SEE ALSO

MUIM Window GetMenuState, MUIA Window Menu,

41.8 MUIM Window ToBack (V4)

SYNOPSIS

DoMethod(obj,MUIM Window ToBack,);

FUNCTION

Put the window to back. When the window is not currently open, this command
does simply nothing.

SEE ALSO

MUIM Window ToFront, MUIM Window ScreenToFront,
MUIM Window ScreenToBack

41.9 MUIM Window ToFront (V4)

SYNOPSIS

DoMethod(obj,MUIM Window ToFront,);

FUNCTION

Put the window to front. When the window is not currently open, this command
does simply nothing.

SEE ALSO

MUIM Window ToBack, MUIM Window ScreenToFront,
MUIM Window ScreenToBack

144 41 WINDOW.MUI

41.10 MUIA Window Activate – (V4) [ISG], BOOL

FUNCTION

Setting this to TRUE will activate the window. Setting this to FALSE has no effect.
The attribute will change whenever the user activates/deactivates the window.

Specifying FALSE at object creation time will make the window open in an
inactive state.

41.11 MUIA Window ActiveObject – (V4) [.SG], Object ∗

SPECIAL INPUTS

MUIV Window ActiveObject None
MUIV Window ActiveObject Next
MUIV Window ActiveObject Prev

FUNCTION

Set the active object in a window as if the user would have activated it with the
tab key. The object has to be in the cycle chain for this command to work.

EXAMPLE

set(window,MUIA_Window_ActiveObject,okaybutton);

SEE ALSO

MUIM Window SetCycleChain

41.12 MUIA Window AltHeight – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window AltHeight MinMax(p)
MUIV Window AltHeight Visible(p)
MUIV Window AltHeight Screen(p)
MUIV Window AltHeight Scaled

FUNCTION

Specify the alternate (zoomed) height of a window. If not present, the alternate
height will be the minimum height.

SEE ALSO

MUIA Window Height, MUIA Window AltWidth

41.13 MUIA Window AltLeftEdge – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window AltLeftEdge Centered
MUIV Window AltLeftEdge Moused

41.14 MUIA Window AltTopEdge 145

MUIV Window AltLeftEdge NoChange

FUNCTION

Specify the alternate (zoomed) left position of a window. This defaults to the stan-
dard left position.

SEE ALSO

MUIA Window LeftEdge, MUIA Window AltTopEdge

41.14 MUIA Window AltTopEdge – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window AltTopEdge Centered
MUIV Window AltTopEdge Moused
MUIV Window AltTopEdge Delta(p)
MUIV Window AltTopEdge NoChange

FUNCTION

Specify the alternate (zoomed) top position of a window. This defaults to the stan-
dard top position.

SEE ALSO

MUIA Window TopEdge, MUIA Window AltLeftEdge

41.15 MUIA Window AltWidth – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window AltWidth MinMax(p)
MUIV Window AltWidth Visible(p)
MUIV Window AltWidth Screen(p)
MUIV Window AltWidth Scaled

FUNCTION

Specify the alternate (zoomed) width of a window. If not present, the alternate
width will be the minimum width.

SEE ALSO

MUIA Window Width, MUIA Window AltHeight

41.16 MUIA Window AppWindow – (V5) [I..], BOOL

FUNCTION

Setting this attribute to TRUE will make this window an AppWindow, the user
will be able to drop icons on it. You can hear about these events by listening to the
MUIA AppMessage attribute.

146 41 WINDOW.MUI

SEE ALSO

MUIA AppMessage, MUIA Application DropObject

41.17 MUIA Window Backdrop – (V4) [I..], BOOL

FUNCTION

Make the window a backdrop window.

41.18 MUIA Window Borderless – (V4) [I..], BOOL

FUNCTION

Make the window borderless.

41.19 MUIA Window CloseGadget – (V4) [I..], BOOL

FUNCTION

Set this to FALSE and your window will not have a close gadget.

41.20 MUIA Window CloseRequest – (V4) [..G], BOOL

FUNCTION

When the user hits a windows close gadget, the window isn’t closed immediately.
Instead MUI only sets this attribute to TRUE to allow your application to react.

Usually, you will setup a notification that automatically closes the window when
a close request appears, but you could e.g. pop up a confirmation requester or do
some other things first.

EXAMPLE

/* automagically close a window */

/* when the close gadget is pressed */

DoMethod(window,MUIM_Notify,

MUIA_Window_CloseRequest, TRUE,

window,3,MUIM_Set,MUIA_Window_Open,0);

SEE ALSO

MUIA Window Open

41.21 MUIA Window DefaultObject – (V4) [ISG], Object ∗

FUNCTION

The default object in a window receives keyboard input as long as no other object
is active. Good candidates for default objects are e.g. lonely listviews. Making such
a listview the default object will allow the user to control it immediately without
the need of several tab strokes for activation.

SEE ALSO

MUIA Window ActiveObject

41.22 MUIA Window DepthGadget 147

41.22 MUIA Window DepthGadget – (V4) [I..], BOOL

FUNCTION

Enable or disable the depth gadget. Defaults to TRUE. There is no good reason to
use this tag.

41.23 MUIA Window DragBar – (V4) [I..], BOOL

FUNCTION

Tell MUI to give your window a dragbar.
Defaults to TRUE.
There is no good reason to disable the dragbar!

41.24 MUIA Window FancyDrawing – (V8) [ISG], BOOL

FUNCTION

Usually, the only possible place to do some rendering is during a MUIM Draw
method. However, if you have a class that really requires very high graphi-
cal output speed (e.g. a module players scope or a game class), you can set
MUIA Window FancyDrawing to TRUE.

This allows your class to render anywhere between MUIM Show and
MUIM Hide, e.g. directly after an attribute change with OM SET or from a se-
perate task.

Note that your rastport etc. is only valid between MUIM Show and MUIM Hide.
Keep that in mind!

When drawing from a seperate task, you have to clone the RastPort and use the
copy for your rendering!

NOTE

Please use this attribute sparingly. It might prevent MUI from doing nice things
with your window, e.g. building an automatic virtual group when the screen is too
small.

MUIA Window FancyDrawing is really only necessary for very few types of ap-
plications. You should use the traditional way (MUIM Draw and MUI Redraw())
whenever and wherever possible!

41.25 MUIA Window Height – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window Height MinMax(p)
MUIV Window Height Visible(p)
MUIV Window Height Screen(p)
MUIV Window Height Scaled
MUIV Window Height Default

FUNCTION

Specify the height of a window. Usually, you won’t give a pixel value here but instead
use one of the following magic macros:

MUIV Window Height Default: calculated from objects default sizes.

148 41 WINDOW.MUI

MUIV Window Height MinMax(0..100): somewhere between the minimum
height (0) and the maximum height (100) of your window.

MUIV Window Height Visible(1..100): percentage of the screens visible
height.

MUIV Window Height Screen(1..100): percentage of the screens total height.

MUIV Window Height Scaled: height will be adjusted so that width : height
== minimum width : minimum height. Note that a windows width and height
may not both be scaled.

Default for this tag is MUIV Window Height Default.

As long as your window has a window id (MUIA Window ID), choosing a size
is not that important. MUI will always remember a windows last position and size
and these values will simply override your settings. Positioning and sizing should
be completely under user control, a programmer doesn’t need to worry about it.

SEE ALSO

MUIA Window Width, MUIA Window ID

41.26 MUIA Window ID – (V4) [ISG], ULONG

FUNCTION

For most of your windows, you should define a longword as id value. Only a window
with an id is able to remember its size and position.

Additionally, when you use an ascii id (e.g. ’MAIN’), your window can be con-
trolled from ARexx.

Of course all windows of your application must have unique ids.

SEE ALSO

MUIA Window LeftEdge

41.27 MUIA Window InputEvent – (V4) [..G], struct Inpu-
tEvent ∗

FUNCTION

This attribute gets set whenever your window receives a rawkey input event. You
can react on this by creating a notification event containing a standard commodi-
ties.library input description string.

EXAMPLE

DoMethod(window, MUIM_Notify,

MUIA_Window_InputEvent, "control p",

txobj, 3,

MUIM_Set, MUIA_Text_Contents, "user pressed ctrl p");

41.28 MUIA Window LeftEdge 149

41.28 MUIA Window LeftEdge – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window LeftEdge Centered
MUIV Window LeftEdge Moused

FUNCTION

Specify the left edge of a window. Usually, you shouldn’t define a pixel value here
but instead use one of the following macros:

MUIV Window LeftEdge Centered: window appears centered on the visible
area of screen.

MUIV Window LeftEdge Moused window appears centered under the mouse
pointer.

Default for this tag is MUIV Window LeftEdge Centered.
As long as your window has a window id (MUIA Window ID), choosing a po-

sition is not that important. MUI will always remember a windows last position
and size and these values will simply override your settings. Positioning and sizing
should be completely under user control, a programmer doesn’t need to worry about
it.

SEE ALSO

MUIA Window TopEdge, MUIA Window ID

41.29 MUIA Window Menu – (V4) [I..], struct NewMenu ∗
(OBSOLETE)

SPECIAL INPUTS

MUIV Window Menu NoMenu

FUNCTION

Obsolete, use MUIA Window Menustrip instead.

SEE ALSO

MUIA Window Menustrip

41.30 MUIA Window MenuAction – (V8) [ISG], ULONG

FUNCTION

Whenever a menu item is selected, this attribute will be set to the corresponding
UserData field of the gadtools NewMenu structure. This allows reacting on menu
items via broadcasting.

SEE ALSO

MUIA Window Menu

150 41 WINDOW.MUI

41.31 MUIA Window Menustrip – (V8) [I..], Object ∗

FUNCTION

Specify a menu strip object for this window. The object is treated as a child of the
window and will be disposed when the window is disposed.

Menustrip objects defined for a window will override an applications Menustrip
object.

MUIA Window Menustrip replaces the old and obsolete MUIA Window Menu
tag.

Usually, you will create the menu object with MUI’s builtin object library from
a gadtools NewMenu structure, but its also OK to define the menu tree ”by hand”
using the Family class.

If you have a global menu for all your applications windows but you want some
windows to have no menu, use the MUIA Window NoMenus tag.

SEE ALSO

MUIA Window NoMenus

41.32 MUIA Window MouseObject – (V10) [..G], Object *

FUNCTION

When MUIA Window NeedsMouseObject is enabled for this window, you can se-
tup notificationns on MUIA Window MouseObject to find out on which object the
mouse pointer is located.

SEE ALSO

MUIA Window NeedsMouseObject

41.33 MUIA Window NeedsMouseObject – (V10) [I..],
BOOL

FUNCTION

If you want to react on changes of the MUIA Window MouseObject attribute, you
have to set this to TRUE when creating your window.

SEE ALSO

MUIA Window MouseObject

41.34 MUIA Window NoMenus – (V4) [IS.], BOOL

FUNCTION

Temporarily disable the menu strip of a window.

SEE ALSO

MUIA Window Menu

41.35 MUIA Window Open 151

41.35 MUIA Window Open – (V4) [.SG], BOOL

FUNCTION

This little attribute can be used to open and close a window. When opening a win-
dow, MUI does lots of stuff to calculate sizes and positions of all gadgets. Minimum
and maximum window sizes will be adjusted automatically.

When the minimum size of a window is too big to fit on the screen, MUI tries
to reduce font sizes and does a new calculation. You should always design your
windows to fit on a 640∗200 screen with all fonts set to topaz/8.

When a window is closed (and you specified a MUIA Window ID), MUI remem-
bers its position and size and uses these values during the next opening.

After setting MUIA Window Open to TRUE, you should test if MUI was able
to open the window by getting the attribute again. If you don’t and if this was the
only window of your application, the user won’t be able to do any input and your
application will seem to hang.

EXAMPLE

set(window,MUIA_Window_Open,TRUE);

get(window,MUIA_Window_Open,&open);

if (!open)

{

MUI_Request(app,0,0,0,"Ok","Failed to open window.");

exit(20);

}

SEE ALSO

MUIA Window RootObject

41.36 MUIA Window PublicScreen – (V6) [ISG], STRPTR

FUNCTION

Force the window to appear on the public screen who’s name is specified by this
attribute. This tag overrides the user preferences setting and is overridden by
MUIA Window Screen.

Please use this tag sparely, overriding user prefs is not a good idea!

SEE ALSO

MUIA Window Screen

41.37 MUIA Window RefWindow – (V4) [IS.], Object ∗

FUNCTION

Setting MUIA Window RefWindow to another MUI window object will make
the left and top position relative to this reference window. Using the
MUIA Window Left(Top)Edge Centered tag, you can easily open one window wi-
thin another.

Note that if your window has an id, the window will remember its last position
and reopen there. Thus, this tag is only useful if you omit MUIA Window ID, maybe
for some small requester windows.

152 41 WINDOW.MUI

SEE ALSO

MUIA Window ID, MUIA Window LeftEdge

41.38 MUIA Window RootObject – (V4) [I..], Object ∗

FUNCTION

This is a pointer to a MUI object and defines the contents of your window. Usually,
this root object will be of class MUIC Group since you surely want to have more
than one gadget.

The root object is treated as child of a window and will be disposed when the
window is disposed. Note that windows can only have one child.

Although you may create a window without root object, you have to set one
before the window is openend!

EXAMPLE

win = WindowObject, MUIA_Window_RootObject,

VGroup,

Child, ...,

Child, ...,

End,

End;

SEE ALSO

MUIA Window Open

41.39 MUIA Window Screen – (V4) [ISG], struct Screen ∗

FUNCTION

You can get a pointer to the parent screen of a window by getting this attribute.
The result will be NULL when the window is currently closed.

Specifying MUIA Window Screen at object creation time or with a SetAttrs()
call allows you to explicitly tell MUI on which screen the window should be opened.
You normally won’t need this feature and leave the decision about screens to the
users preferences setting.

SEE ALSO

MUIA Window PublicScreen, MUIA Window Window

41.40 MUIA Window ScreenTitle – (V5) [ISG], STRPTR

FUNCTION

This text will appear in the screens title bar when the window is active.

SEE ALSO

MUIA Window Title

41.41 MUIA Window SizeGadget 153

41.41 MUIA Window SizeGadget – (V4) [I..], BOOL

FUNCTION

Tell MUI if you want a sizing gadget for this window. Usually you won’t need this
attribute since MUI will automatically disable the sizing gadget when your window
is not sizeable because of your gadget layout.

41.42 MUIA Window SizeRight – (V4) [I..], BOOL

FUNCTION

When set to TRUE, the size gadget will reside in the right window border.

41.43 MUIA Window Sleep – (V4) [.SG], BOOL

FUNCTION

This attribute can be used to put a window to sleep. The window gets disabled and
a busy pointer appears.

The attribute contains a nesting count, if you tell your window to sleep twice,
you will have to tell it to wake up twice too.

A sleeping window cannot be resized.

SEE ALSO

MUIA Application Sleep

41.44 MUIA Window Title – (V4) [ISG], STRPTR

FUNCTION

Specify the title of a window.

SEE ALSO

MUIA Window ScreenTitle

41.45 MUIA Window TopEdge – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window TopEdge Centered
MUIV Window TopEdge Moused
MUIV Window TopEdge Delta(p)

FUNCTION

Specify the top edge of a window. Usually, you shouldn’t define a pixel value here
but instead use one of the following macros:

MUIV Window TopEdge Centered: window appears centered on the visible
area of screen.

MUIV Window TopEdge Moused window appears centered under the mouse
pointer.

MUIV Window TopEdge Delta(p) window appears p pixels below the screens
title bar.

154 41 WINDOW.MUI

Default for this tag is MUIV Window TopEdge Centered.
As long as your window has a window id (MUIA Window ID), choosing a po-

sition is not that important. MUI will always remember a windows last position
and size and these values will simply override your settings. Positioning and sizing
should be completely under user control, a programmer doesn’t need to worry about
it.

SEE ALSO

MUIA Window LeftEdge, MUIA Window ID

41.46 MUIA Window Width – (V4) [I.G], LONG

SPECIAL INPUTS

MUIV Window Width MinMax(p)
MUIV Window Width Visible(p)
MUIV Window Width Screen(p)
MUIV Window Width Scaled
MUIV Window Width Default

FUNCTION

Specify the width of a window. Usually, you won’t give a pixel value here but instead
use one of the following magic macros:

MUIV Window Width Default: calculated from objects default sizes.

MUIV Window Width MinMax(0..100): somewhere between the minimum
width (0) and the maximum width (100) of your window.

MUIV Window Width Visible(1..100): percentage of the screens visible
width.

MUIV Window Width Screen(1..100): percentage of the screens total width.

MUIV Window Width Scaled: width will be adjusted so that width : height
== minimum width : minimum height. Note that a windows width and height
may not both be scaled.

Default for this tag is MUIV Window Width Default.
As long as your window has a window id (MUIA Window ID), choosing a size

is not that important. MUI will always remember a windows last position and size
and these values will simply override your settings. Positioning and sizing should
be completely under user control, a programmer doesn’t need to worry about it.

SEE ALSO

MUIA Window Height, MUIA Window ID

41.47 MUIA Window Window – (V4) [..G], struct Window
∗

FUNCTION

When your window is open, you can obtain a pointer to the intuition Window
structure with this tag and use it e.g. in an asl.library requester call.

Since the user can close your window any time (e.g. iconification), you must be
prepared to receive a NULL pointer as result.

41.47 MUIA Window Window 155

SEE ALSO

MUIA Window Screen

