
Yak

Yak ii

COLLABORATORS

TITLE :

Yak

ACTION NAME DATE SIGNATURE

WRITTEN BY July 27, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Yak iii

Contents

1 Yak 1

1.1 Yak v1.52 Documentation . 1

1.2 Copyright . 1

1.3 Current users: Notez-bien . 2

1.4 Introduction . 2

1.5 Jokes . 3

1.6 Limitations . 4

1.7 Starting Yak . 4

1.8 Changing Yak’s settings . 5

1.9 Toggles . 6

1.10 AutoPoint . 6

1.11 AutoPopToFront . 6

1.12 RMB Activate . 6

1.13 Key Activate . 7

1.14 Click To Front . 7

1.15 Click To Back . 7

1.16 Screen To Back . 7

1.17 Screen Activate . 7

1.18 Wild star . 8

1.19 Inclusion Patterns . 8

1.20 AutoScreens . 8

1.21 ClickScreens . 8

1.22 PopWindows . 8

1.23 ClickWindows . 8

1.24 TimeOut Settings . 8

1.25 Miscellaneous Settings . 9

1.26 ClickVolume . 9

1.27 ScreenTimeOut . 9

1.28 MouseTimeOut . 9

1.29 MouseBlank Method . 9

Yak iv

1.30 Defining Yak Hotkeys . 9

1.31 Hotkey Actions . 10

1.32 Dos Command . 11

1.33 Close Window . 11

1.34 Zip Window . 11

1.35 Shrink Window . 12

1.36 Expand Window . 12

1.37 Cycle Windows . 12

1.38 Open Palette . 12

1.39 Screen to Front . 12

1.40 Screen to Back . 13

1.41 Activate Workbench . 13

1.42 Center Screen . 13

1.43 Blank Display . 13

1.44 Insert Text . 13

1.45 Insert Date . 14

1.46 Show Yak Interface . 14

1.47 AmigaDos Patterns . 14

1.48 Date format strings . 16

1.49 Problems . 16

1.50 Program History . 17

1.51 Compiling Yak . 20

1.52 Credits . 21

1.53 Contacting the Author . 21

1.54 More on HotKeys . 22

1.55 Localization . 25

Yak 1 / 26

Chapter 1

Yak

1.1 Yak v1.52 Documentation

Yak Version 1.52
by Gaël Marziou

TABLE OF CONTENTS

Copyright and Distribution
Current users: Notez-bien
Introduction
Limitations
Starting Yak
Changing Yak’s settings

Toggles Patterns TimeOut Miscellaneous Hotkeys
Hotkey Actions
More on Hotkeys
AmigaDos Patterns
Date format strings
Problems

Localization
Program History
Compiling Yak
Credits and Thanks
Contacting the Author

1.2 Copyright

Yak (the binary, sources and documentation) is
Copyright © 1992, 1993 Martin W. Scott & Gaël Marziou. All Rights reserved.

Yak is freely redistributable. The source is included, and you are
permitted to modify it for personal use, but any modifications made must
NOT be distributed. If you have made changes you think others would like,
send them to me and I’ll include them in future versions.

Since Yak is free, it comes with NO WARRANTIES. The author is not
responsible for any loss or damage arising from the use of Yak; the user

Yak 2 / 26

takes all such responsibility.

No charge may be made for Yak, other than a nominal copy fee. Yak may not
be distributed with a commercial product without the author’s prior
consent. Yak must be distributed with all documentation intact and
unaltered, and preferably with source too. Permission is expressly granted
to Fred Fish to distribute on his fine collection of disks.

Although Yak is freeware, DONATIONS WOULD BE GLADLY ACCEPTED, either money
or stuff you’ve written yourself. See Contacting the Author .

1.3 Current users: Notez-bien

Yak’s preference file format has changed again, with preferences being
split into two files, "S:Yak.prefs" and "S:Yak.hotkeys". A Convert program
is supplied to create the 1.5 preference files from a 1.3/1.4 preference
file. There are two flaws in the conversion: you must reenter the
PopCommand and DateFormat strings using the new Hotkey Definition window
(see section Hotkeys for details on how to do this); the other flaw is that
a hotkey will be created to "Show settings window", which is probably
superfluous, given the discussion on CX_POPKEY below.

There are some important changes between v1.4 and 1.5 of Yak. Most
importantly, the stack requirement has been increased to 4500 bytes, so do
remember to change the stack size in the icon you use to start Yak.

Secondly, the AppIcon is by default OFF, and should be explicitly enabled
using the APPICON=TRUE tooltype. This tooltype replaces the NOICON
tooltype.

Thirdly, the CX_POPKEY tooltype is used to determine the hotkey which opens
Yak’s settings window, and this key cannot be altered or overridden within
the Hotkey definition window (unlike in previous versions); however, you
can create other hotkeys which also open Yak’s window.

Fourthly, Yak has been localized and supports now english as built-in language
and french with a french catalog provided. If you want to localize Yak into
your own language, please contact me (see section Contacting the author
and Localization.

Of course, there have been many other changes, and you should browse
through this document to accustomise yourself with them.

1.4 Introduction

Yak stands for "Yet Another Kommodity" (never was any good at speling - see
Jokes), and is a mouse/window manipulation program along the same lines as

DMouse, MightyMouse etc.

Why write another one? None of the others (and I’ve looked at almost all
of them) were quite right for me. Yak has the following features:

Yak 3 / 26

o AutoPoint (sunmouse) that only activates when mouse stops
can also specify which screens to include/exclude.
(Compatible with popup-menu type programs)

o AutoPop windows (bring them to front) when they’re
auto-activated;

o KeyActivate windows (when key pressed);

o Activate windows when menu button pressed;

o Click windows to front or back; may also specify which
screens/windows to include/exclude.

o Cycle screens with mouse;

o Mouse and Screen blanking (hotkey blanking too);

o Extensible hotkey system (like FKey’s) with actions to:

Execute a Dos Command;
Insert text (with embedded hotkeys);
Insert date (in custom format if locale present);
Close/Zip/Shrink/Enlarge windows;
Cycle screens and windows;
Activate Workbench;
Center frontmost screen;
Blank display;
Pop up a palette on front screen (needs reqtools);

o KeyClick with adjustable volume;

o Wildstar option (like StarBurst) lets you use ’*’ as wildcard.

o Optional on-screen AppIcon to bring up preferences window.

o Nice gadtools settings window;

Look familiar? It’s a combination of the AutoPoint, ClickToFront, Blanker
and IHelp/FKey standard commodities (on the Extras disk) with a hint of
KCommodity and DMouse thrown in.

And it’s quite small: it takes up about 30K on disk, and about the same
when running. It achieves this memory efficiency by using overlays; the
settings window code is only loaded when needed.

1.5 Jokes

These might be old, but they’re good:

Q. What’s the difference between a goldfish and a goat?
A. A goldfish mucks around in fountains!

And if you got that one, you’ll definitely get this one...

Yak 4 / 26

Q. What’s the difference between a magic wand and a truncheon (baton).
A. A magic wand is used for cunning stunts.

(I *always* say that last answer wrong)

1.6 Limitations

Yak only has a plain screen-blanker. Since the introduction of OS 2.0,
there has been a profusion of fancy screen blankers, such as Spliner,
ASwarm (various incarnations), FracBlank and more. I think most people
have their own favourite fancy blanker, so I didn’t include one in Yak.

There is no mouse-acceleration. The system default one (settable via the
Input preferences) is more than adequate as far as I am concerned. If I
get enough requests, I’ll add faster acceleration (so far, hardly any
received).

1.7 Starting Yak

Yak is designed to be run from the sys:WBStartup drawer, but may be ’run’
from the Shell (not recommended, as it will use significantly more memory).
All Yak settings are stored in two files, a prefs-file, "S:Yak.prefs", and
a hotkey file, "S:Yak.hotkeys". The best thing to do is to use the
installation script then when you first use Yak, configure it the
way you like, then save that configuration for later invocations.

NB: Yak needs a stack size of 4500 bytes. You should set this in Yak’s
icon, or if starting it from the Shell, use the following commands:

stack 4500
run >nil: yak

The only tooltypes that Yak takes are the standard Workbench ones (such as
DONOTWAIT), the standard Commodities ones (such as CX_POPUP) and the
AppIcon ones. Those tooltypes are:

ToolType Category Description Default

CX_POPKEY HOTKEY Key to show settings window RCommand Help
CX_PRIORITY INTEGER Priority of this commodity 0
CX_POPUP BOOLEAN Show settings window on startup NO

APPICON BOOLEAN If TRUE, an AppIcon is made FALSE
ICONNAME STRING Name of AppIcon "Yak!"
ICONXPOS INTEGER x-coordinate of AppIcon floating
ICONYPOS INTEGER y-coordinate of AppIcon floating

You should also have the tooltype "DONOTWAIT" set if you want to start Yak
from your SYS:WBStartup drawer.

The AppIcon facility is optional, and by default is off. Specify

Yak 5 / 26

APPICON=TRUE if you want it. If you do, Yak puts an AppIcon onto the
Workbench screen, and when it is double-clicked, the Settings Window is
opened. The icon imagery is obtained from the icon Yak was started from,
which allows you to customise the AppIcon to your colours/resolution simply
by changing Yak’s icon.

The CX_PRIORITY may be useful in enabling Yak and other commodities to work
better together. See, for example, notes on the RMB Activate toggle below.

1.8 Changing Yak’s settings

All of Yak’s settings may be modified by means of it’s settings window.
Once Yak is started, you may bring up this window by the following means:

Pressing RCommand Help (i.e. the Right Amiga key and the Help key).
This key-sequence is configurable (via the CX_POPKEY tooltype);

Double-clicking Yak’s AppIcon (if this feature is set);

Start Yak again (from Workbench tool icon);

Via the Commodities Exchange (on the Extras disk).

The window then opened contains many gadgets, grouped into classes. These
classes are:

Toggles
Patterns
Miscellaneous
TimeOut
Hotkeys

Remember that you must press the RETURN, ENTER or TAB key once you have
edited a string gadget, so that the change is registered. Simply clicking
outside it will lose the changes. (The TAB key activates the next string
gadget for text entry).

Also (and this applies particularly to the hotkey window), Intuition by
default does not let you cut and paste between string gadgets, but if you
want this, you should get "NewEdit" by Uwe Roehm, which adds clipboard
copying and pasting (it’s on a Fish disk and ftp sites).

Additionally, the two gadgets "Hide" and "Quit" perform the standard
commodity operations respectively of hiding the settings window and
terminating Yak. Clicking the window’s close-gadget is equivalent to
hiding the interface rather than ending Yak.

The settings window also has a menu with "Hide" and "Quit" items (which
operate as the gadgets of the same name), plus items "Load" and "Save".
All changes to Yak’s settings will be lost unless you select the "Save"
item. If you wish to restore you’re last-saved settings, you may use the
"Load" item.

Yak 6 / 26

1.9 Toggles

The following toggles are available:

AutoPoint
AutoPopToFront
Key Activate
Click To Front
Click To Back
Screen To Back
Screen Activate
RMB Activate
Wild star

1.10 AutoPoint

Activate window under mouse. This behaves almost exactly like Commodore’s
AutoPoint commodity, in that it only activates a window when the mouse
stops. AutoPoint is compatible with popup-menu type programs such as the
excellent MagicMenu.

Note that the AutoPoint and AutoPopToFront functions only take place when
NO qualifier (mouse or keyboard) is pressed. Not only does this avoid
conflict with other programs, it provides a way of preventing
activation/popping when it’s not desired.

See also: AutoPopToFront AutoScreens

1.11 AutoPopToFront

Only operative when AutoPoint is set, this tells Yak to bring windows to
the front as well as activating them. The exception is when the window
under the mouse has a requester showing.

See also: AutoPoint AutoScreens PopWindows

1.12 RMB Activate

When selected, the window under the mouse will be activated when the right
mouse button is pressed, regardless of the status of AutoPoint. This is
useful in getting the menu you want without either waiting for AutoPoint to
activate the window or clicking into the window to make it active.

For instance, when using the screen depth gadgets, the new front screen is
not activated, but with this toggle set, clicking the RMB will get the
correct menus.

Note 1: If there is no window under the mouse, the first window on the
screen will be activated.

Yak 7 / 26

Note 2: To work properly with popupmenu-type programs, Yak’s CX_PRIORITY
may need to be higher than the popupmenu program’s CX_PRIORITY.

1.13 Key Activate

Activates window under mouse when key is pressed. You should only need one
of AutoPoint or KeyActivate.

1.14 Click To Front

Lets you bring a window to the front of others by double-clicking over it.

As with AutoActivate/AutoPopToFront features, clicking to front and back is
disabled whilst a keyboard qualifier is pressed.

See also: ClickScreens ClickWindows

1.15 Click To Back

Lets you push a window to the back of others by pressing and holding the
left mousebutton, then clicking the right mousebutton.

As with AutoActivate/AutoPopToFront features, clicking to front and back is
disabled whilst a keyboard qualifier is pressed.

See also: ClickScreens

1.16 Screen To Back

Using the same mouse sequence as Click To Back, move a screen to the back
of others if:

either the window under the mouse is a backdrop
window (like the main Workbench window)

or there is only one window on the screen.

See also: Click To Back

1.17 Screen Activate

When checked, Yak will activate screens that it shuffles by hotkeys (i.e.
Screen Cycle hotkey and LCommand m hotkey). This is a toggle because
conflicts arise with some programs. This is similar (but not identical) to
Steve Tibbet’s WindX. By activating screens I mean that it activates the
window under the mouse-pointer of the new front screen.

Yak 8 / 26

1.18 Wild star

When on, enables the use of * as an AmigaDos pattern-matching character
(like MSDOS and UNIX *). (This is what the StarBurst program does.)

1.19 Inclusion Patterns

The pattern gadgets allow you to specify which screens and windows are
affected by various features of Yak. All patterns are inclusion patterns,
i.e. the title of the window or screen must MATCH the pattern for the
relevant feature to work. All patterns are standard AmigaDos Patterns.

The following patterns are available:

AutoScreens
ClickScreens
PopWindows
ClickWindows

1.20 AutoScreens

AutoPoint will work on screens whose title matches this pattern.

1.21 ClickScreens

Click To Front and Click To Back will work on screens whose title
matches this pattern.

1.22 PopWindows

AutoPopToFront will work on windows whose title matches this pattern.

1.23 ClickWindows

Click To Front will work on windows whose title matches this pattern.

1.24 TimeOut Settings

With this gadgets, you can set up timeout for screen and mouse blanking.

ScreenTimeOut
MouseTimeOut

Yak 9 / 26

1.25 Miscellaneous Settings

Yak has a few other features controlled by these gadgets. They are:

ClickVolume
MouseBlank Method

1.26 ClickVolume

Controls the volume of the KeyClick (the sound made when you press a key).
A volume of zero means ’no click’ (yes, that’s obvious, but when set to
zero, the audio device won’t be opened at all). Maximum volume is 64.

1.27 ScreenTimeOut

If no user input (mouse or keyboard) occurs over this period (of seconds),
the screen will blank. Set it to 0 to disable screen blanking altogether.
The blanking is performed by opening a 2-color screen with the same
displaymode as the frontmost screen.

1.28 MouseTimeOut

If mouse isn’t moved in the period specified, the mouse pointer will blank.
This is only operational if the MouseBlank Method is not set to "None".

1.29 MouseBlank Method

This gadget determines the method by which the mouse pointer is blanked.
"None" disables mouse-blanking altogether, "Sprites" means blank mouse by
disabling (all) sprites, and "Copper" means blank mouse by modifying copper
list. This latter option only disables sprite 0 (the mouse-pointer), so
terminal programs using a sprite for the cursor work okay, but the method
is a bit less robust (the mouse occasionally comes back on).

See also: Problems

1.30 Defining Yak Hotkeys

Clicking on the "Hotkeys..." gadget opens up a new window which lets you
create, edit and delete hotkeys. Making a key a hotkey means that when the
key is pressed, Yak performs some action (of which there are many to choose
from). Hotkeys are defined using a hotkey description string, which is a
very flexible method of defining input events. For details on creating
hotkey descriptions, see More on Hotkeys.

Yak 10 / 26

You can have as many hotkeys as you like, and each action may pertain to
more than one hotkey.

There are two lists in the Hotkey Definition window; the left-hand one
lists the available actions, and the other lists the hotkeys currently
defined for the selected action.

To add a new hotkey, first select the action you wish it to perform (by
clicking its name in the left-hand list). Then click on the Add gadget
below the Hotkey list. The string gadget below this list will become
active, and you should type in the hotkey description string.

For certain actions, other gadgets will become active. The Options gadget
(the cycle gadget below the Actions list) determines what happens to
screens when the hotkey is pressed. Currently, the options are to do
nothing, to bring the Workbench to the front, and to bring the default
public screen to the front. Typically this will be used in Dos Command
hotkeys to automatically show the screen a window opens on.

The Argument gadget is a string gadget which becomes active for certain
Action types, and provides a means of setting a string to be attached to
the Hotkey.

You can edit an existing hotkey by selecting it and editing the necessary
gadgets. And of course the Delete gadget deletes a hotkey from Yak’s list.

When you’re finished editing hotkeys, click on the "Return..." gadget to
return to the main settings window, or the close gadget to ’hide’ Yak.
Remember to save your changes using the "Save" menu item of the main
settings window.

See Hotkey Actions

1.31 Hotkey Actions

The many actions available are:

Dos Command
Close Window
Zip Window
Shrink Window
Expand Window
Cycle Windows
Open Palette
Screen to Front
Screen to Back
Activate Workbench
Center Screen
Blank Display
Insert Text
Insert Date
Show Yak Interface

Yak 11 / 26

1.32 Dos Command

Argument: command to execute

Executes the Dos command as specified in the Argument string. Note that
you may use the Options gadget to bring the Workbench or default public
screen to the front (useful if the command causes a window to open).

The command is executed asynchronously, so there is no need to prepend a
run command. Also, if the command generates any output (or requires
input), a console window will open. You can of course specify redirection
(as in the shell).

Examples:

A hotkey to open a shell:

This is traditionally attached to the hotkey "lcommand esc", and mine
is set up to run the command

"NewShell CON:79/177/582/78/AmigaShell/CLOSE/ALT2/58/660/197"

Note the use of the ALT flag in the console specification, which is
poorly documented (read "not mentioned"). I actually use two hotkeys,
one to start a normal shell, and one to start a CShell.

A hotkey to free unused memory:

SAS/C uses shared libraries that can often fill precious chip memory.
I have a hotkey set up with the command "avail >nil: flush" which frees
this memory.

A hotkey to list contents of each disk inserted:

Set the hotkey to "diskinserted", and the Argstring to "Dir df0:".

See also: Problems More on Hotkeys

1.33 Close Window

Argument: NONE

Close the currently active window (this is equivalent to clicking on the
window’s close gadget).

1.34 Zip Window

Argument: NONE

Zip the currently active window (this is equivalent to clicking on the
window’s "Toggle size" gadget).

Yak 12 / 26

1.35 Shrink Window

Argument: NONE

Make the currently active window as small as possible.

1.36 Expand Window

Argument: NONE

Make the currently active window as large as possible.

1.37 Cycle Windows

Argument: NONE

Bring the rearmost window to the front. Useful for getting at deeply
’buried’ windows.

1.38 Open Palette

Argument: NONE

Open a palette on the frontmost screen. The palette is run asynchronously,
and you can open as many as you want (subject to memory). However, Yak
cannot be terminated while palettes remain open. The Options gadget is
enabled for this command (so you can open a palette specifically on the
Workbench screen, if you so wish.

NOTE: You must have reqtools.library installed on your system for this
action to work.

WARNING: Always close the palette window before causing the screen it’s on
to close, otherwise you’ll at least be left with an open screen, and at
worst crash the system.

1.39 Screen to Front

Argument: NONE

Bring the rearmost screen to front.

See also: ScreenActivate

Yak 13 / 26

1.40 Screen to Back

Argument: NONE

Push the front screen behind all others.

See also: ScreenActivate

1.41 Activate Workbench

Argument: NONE

Activate a Workbench window (and if necessary, bring the Workbench screen
to the front). This enables you to access the Workbench menus without
having to find a Workbench window to activate (if, for instance, you had a
shell window the size of the screen).

1.42 Center Screen

Argument: NONE

Center horizontally the front screen.

1.43 Blank Display

Argument: NONE

Immediately blank the display.

See also: ScreenTimeOut .

1.44 Insert Text

Argument: text to be inserted

Inserts the text specified in the Argument string into the read stream.
This string is preprocessed as follows:

\n converted to carriage-return
\r converted to carriage-return
\t converted to tab
\ converted to backslash \
<hotkey desc> converted to specified hotkey
\< converted to <

Because of this preprocessing, insertion strings can perform many useful
tasks. For example, I have a hotkey set up to insert my name and the date,

Yak 14 / 26

using the argument string (without the quotes):

"Martin W Scott, <lcommand d>"

Here, the hotkey "lcommand d" is another Yak hotkey I have set up to insert
the date. By using more complicated strings, you can create simple macros
for other programs.

CAVEAT: Embedded hotkey strings, though useful, should be used with care.
In particular, you must avoid recursive definitions, e.g.

f1 insert text "<f2>"
f2 insert text "<f1>"

Pressing f1 or f2 results in an endless loop. If you are silly enough to
do this, start the Commodities exchange and make Yak inactive. Then select
the Exchange’s Show Interface gadget and delete/redefine the offending
hotkey(s).

Another thing to be aware of is that strings that call other hotkeys (e.g.
the date insertion example above) may not work as you might think. Suppose
the Argument string was "<lcommand d>\n". This would actually create a
carriage return and THEN the date, because by the time Yak gets the
"lcommand d" hotkey, the carriage return has gone through the input handler
and been sent to the active window.

1.45 Insert Date

Argument: date format string

Insert the date into the read-stream (and so into the currently active
window). If you are running AmigaDos 2.1 or above, you may customise the
format of the date inserted. This format is specified in the Argument
string. See Date format strings. If you are unlucky
enough to be running AmigaDos 2.0, the date is in standard DD-MMM-YY
format.

Example: the format "%e %B %Y" generates dates of the form "1 May 1993".

1.46 Show Yak Interface

Argument: NONE

Show Yak’s settings window (if necessary by bringing the Workbench screen
to the front and opening the window). This is the same function that the
CX_POPKEY hotkey performs.

1.47 AmigaDos Patterns

Yak 15 / 26

AmigaDos patterns are used to include/exclude a list of named
screens/windows for a particular feature. These pattern specifications aid
in compatibility with other programs you may use.

Pattern matching is case-sensitive. "Amiga" is not the same as "AMIGA".
The standard AmigaDos patterns available are:

? Matches a single character.
Matches the following expression 0 or more times.
(ab|cd) Matches any one of the items separated by ’|’.
~ Negates the following expression. It matches all strings

that do not match the expression (aka ~(foo) matches all
strings that are not exactly "foo"

[abc] Character class: matches any of the characters in the class.
a-z Character range (only within character classes).
% Matches 0 characters always (useful in "(foo|bar|%)").

* Synonym for "#?", not available by default. Available if
Wild star option is set.

If you’re not used to patterns, you may find all of that quite daunting.
Consult your system manual for further details. There are two basic things
you’ll want: either a finite list of names that the feature should be
enabled on, or a finite list for which it should be disabled. To ENABLE a
feature on all objects (be they screens or windows, as appropriate) use the
"#?" pattern (matches everything). To enable a feature on N objects named
"name1" to "nameN", use

(name1|name2| ... |nameN)

and to DISABLE the feature for these names, prepend a tilde ~, viz.

~(name1|name2| ... |nameN)

An example: I don’t want AutoPopToFront popping the Workbench window or any
Protext (WP from Arnor) window, so exclude them with the pattern

~(Workbench|#?Arnor#?)

Note that the second ’name’ is actually a pattern, which matches any title
with the text "Arnor" in it.

Another example: I don’t want AutoActivation on Directory Opus’s screen.
It doesn’t show its title in the program so I have to use ARTM or Xoper to
find the screen’s name, and find that it’s "DOPUS.1". Figuring that the
"1" would bump to "2" if I ran two copies, I decide to exclude all DOpus
screens using

~(DOPUS#?)

Note 1: Specifying the Workbench screen in a pattern is a bit tricky, as
it’s title keeps changing, depending on what window is active. For most
purposes, a pattern such as "#?Workbench#?" will match, but some
applications set the Workbench title to a descriptive string of their
application.

Yak 16 / 26

Note 2: Screens or windows with titles that are unset (i.e. are NULL)
always pass the patterns.

1.48 Date format strings

For date-insertion hotkeys, you must specify a locale-style date format
string (and need to be running AmigaDos 2.1 or higher). The available
formatting options under locale.library are as follows:

%a - abbreviated weekday name
%A - weekday name
%b - abbreviated month name
%B - month name
%c - same as "%a %b %d %H:%M:%S %Y"
%C - same as "%a %b %e %T %Z %Y"
%d - day number with leading 0s
%D - same as "%m/%d/%y"
%e - day number with leading spaces
%h - abbreviated month name
%H - hour using 24-hour style with leading 0s
%I - hour using 12-hour style with leading 0s
%j - julian date
%m - month number with leading 0s
%M - the number of minutes with leading 0s
%n - insert a linefeed
%p - AM or PM strings
%q - hour using 24-hour style
%Q - hour using 12-hour style
%r - same as "%I:%M:%S %p"
%R - same as "%H:%M"
%S - number of seconds with leadings 0s
%t - insert a tab character
%T - same as "%H:%M:%S"
%U - week number, taking Sunday as first day of week
%w - weekday number
%W - week number, taking Monday as first day of week
%x - same as "%m/%d/%y"
%X - same as "%H:%M:%S"
%y - year using two digits with leading 0s
%Y - year using four digits with leading 0s

That list is pretty exhaustive, and should handle most needs; you can
insert your own text freely in the format string. Some examples:

"The time is %X" gives (e.g.) "The time is 20:44:16"
"Have a nice %A!" gives (e.g.) "Have a nice Monday!"

If you need more details, consult the AutoDocs on locale.library if you
have them.

1.49 Problems

Yak 17 / 26

There are a few problems that I am currently aware of. Firstly, a shell
created by a Dos Command hotkey doesn’t have the stack or current directory
as set at boot-time (in the Startup-Sequence). It DOES retain your path,
though. Your Shell-Startup file should set the CD and the stack you need.
By default, processes started in this way have the system boot disk (SYS:)
as their current directory.

The Close window hotkey doesn’t work for shell windows. This is because
they handle intuition events differently from other windows.

If you’re not happy with Yak’s mouse-blanking, you could try the Commodore
MouseBlank commodity (WB3.0), which should blank the mouse on all displays
correctly.

NOTE FOR AMOS USERS: I hate AMOS (that’s enough of my opinion), partly
because it is so system unfriendly. It completely steals the input stream,
so that mouse blankers (in programs like Yak) kick-in, thinking there’s
been no input, and the mouse isn’t restored, because there’s no mousemoves
to unblank it. Because Yak uses a rather bad blanking method, problems can
occur (mouse vanishes and won’t come back). Two solutions:

1) Use ’Copper’ blanking.
2) Set MouseBlankTime to zero. You’ll still have key blank,

but no timed blank.

Then the AMOS problem of the pointer disappearing should be solved.

1.50 Program History

(* = new feature)

v1.52 * Added localization and french catalog.

* Added installer script.

- New version numbering to use RCS archiving.

- Fixed a little bug in NewMenus rendering in 3.0.

- Cosmetic changes to documentation and interface.

- Now compiled with SAS C 6.3

v1.5a - Stack requirement increased (may have been outgrowing previous
stack size).

- NOICON tooltype removed, APPICON tooltype added in its place.

- Further tweaking of new Hotkey system.

v1.5 * Extensible hotkey system added.

* Revamped GUI.

Yak 18 / 26

* Documentation now in AmigaGuide format (oh really??).

* Date insertion now also works on 2.0 machines.

- New preference file format, and now also uses a hotkey file.
Prefs files for earlier versions cannot be loaded.

v1.4a * Added RMB Activate toggle - window under mouse is activated when
right mouse button pressed.

* New improved mouse-blanking: Method ’Sprites’ is same as before,
but method ’Copper’ has been completely rewritten; it still only
blanks sprite 0, but is now compatible with LacePointer.

- Now compiled with SAS/C 6.2.

v1.4 - Range-checking now performed on number-gadgets.

- NewLookMenus for WB 3.0.

v1.3f * Settings window now font-sensitive (uses screen font).

* ScreenToBack by mouse-clicks now activates first window on front
screen when no window is under mouse (this helps programs like
MagicMenu).

* Screen blanking now opens screen with same displaymode as front
one.

- Further mouse-blanking bug removed.

- Conflicts between window-cycle hotkey and key activation
resolved, although they don’t really go well together.

- Window-cycle (via hotkey) now also cycles Workbench windows; when
initially written, Yak emulated IHelp’s (CBM OS2.0) function of
cycling application windows only, but I get so many reports from
people saying that this function doesn’t work, I figured folks
really want to cycle ALL windows.

- More enforcer-hits removed (oh I wish I had an 030 etc., then I
could fix these all by myself, instead of relying on others
informing me).

v1.3e - Version string added.

- Now a choice of mouse-blanking method (so quit the flames...).

v1.3d - Fixed bug in KeyActivate routine (was losing first keystroke).

v1.3c - Fixed small enforcer hit which may have caused Window cycle to
fail.

Yak 19 / 26

v1.3b * New ClickWindows pattern, allows you to specify which windows may
be clicked-to-front (n.b. has no effect on click-to-back).

* Mouse-blank timeout may now be specified.

- [Click volume now specified via integer gadget].

v1.3a - Now all Intuition calls are outside the input-handler to avoid
possible deadlocks (thanks to Eddy Carroll for reporting this).

* New hotkey: Screen to back. Previously, this was hardcoded to
LCommand m, but can now be changed.

* New hotkey: Blank display. Instant screen-blank.

* Can now click screens to back in the titlebar (previously not
permitted due to system conflicts).

* Palette runs asynchronously now, and you can have as many open as
you like. They MUST be closed before their parent screen closes,
and before Yak is terminated.

- Now a disk-insertion halts screen-blanking.

- Centering of screens via hotkey adjusted by 1 pixel, to be
consistent with Display, AutoCentre etc. (i.e. I was wrong...)

- If started from Workbench (the usual way) Yak now sets it’s
current directory to SYS:; this is then inherited by shells
created with PopCommand.

- Some more mouse-blanking problems fixed. Also, screen-blanking
mouse-flicker fixed - hardly anyone uses Yak’s blanker, so it
went unnoticed.

- Fixed small bug in channel allocation priority.

- Bug fixed in hotkey cancellation (by clearing string gadget).
Previously used to cancel a hotkey only for current session, and
still continue to show old key definition. How do I miss these
things?

v1.3 * Executable is now overlayed. Now uses less memory than earlier
versions, even with new features!

* Can now specify which screens AutoActivate and ClickToFront/Back
operate on, by means of a standard AmigaDos pattern.

* Date insertion uses locale.library-style format specification.
(Unfortunately, date insertion feature now requires WB 2.1).

* AutoPopToFront feature added.

* Improved mouse-blanking: now Yak only blanks sprite 0, so

Yak 20 / 26

programs that use other sprites are unaffected.

* PopCommand now retains paths (but not directory/stack in
startup-sequence).

- Auto-activation and key-activation now works more sensibly.

- Somehow managed to remove volume check for clicking. Now a volume
of zero means that no click will be attempted.

- Date insertion now inserts key-up events to aid compatibility
with other programs.

- Window cycling (via hotkey) now works on all screens (previously
just on WB, but I didn’t mention it in the docs).

NB - Contention code in v1.2c was rather severe in cases, and
unnecessary if I changed the way Yak AutoActivated. Now Yak only
AutoActivates (and AutoPops) when no qualifier or mouse-button is
pressed. Contention-checking code has therefore been removed.

Should be no problems with well-behaved programs.

NB - Settings file changed; now uses S:Yak.prefs instead of
S:Yak.config; this is because format of that file changed. A
’Convert’ program is supplied to create a 1.3 file from existing
1.2 file.

- [Changed prefs window layout; looks nicer now (I think).]

v1.2c - Inclusion of HotKey documentation (adapted from Stefan Becker’s
ToolManager documentation).

- Enforcer hit removed. (But there may be more).

- Improved contention-checking; now Yak’s AutoActivate works with
Dragit V2, for instance.

v1.2b - maximum length of hotkey definitions increased from 29 to 49
characters to allow (almost) all possible definitions.

v1.2a - small bug crept into v1.2; wasn’t removing old hotkey when
changing existing definition.

<history for v1.2 and below has been omitted>

1.51 Compiling Yak

Yak has been written to compile under SAS/C, and as from v1.4a, using SAS/C
version 6.2. The code passes cleanly with ANSI checking, so users of other
ANSI-compliant compilers should have little problem recompiling - the only
places changes may be needed are in SAS-specific keywords (like __saveds).

Yak 21 / 26

Yak uses overlays, but this can be compiled out by removing the definition
USE_OVERLAYS in SCOPTIONS.

GTB 2.0b was used to generate the user-interface. The generated code
(popup.c, popup.h) needs only minimal modification, specifically to use
NewLookMenus under WB3.0 and above; changes are indicated by comments
beginning with four asterisks, e.g. /**** ADDED */.

1.52 Credits

Yak is written entirely in C, and compiled with SAS/C 6.3. Thanks to Reza
Elghazi for help in the transition to 6.2.

The Settings window gadgetry was created using the excellent (apart from
the v2.0 glitch:) GadToolsBox v2.0b, from Jaba Development.

Yak makes use of reqtools.library, which is Copyright Nico François.
Thanks must also go to Mike Meyer et. al. for Mg3, Steve Koren for SKsh,
Matt Dillon for DMouse (which answered many of my how-to questions), and
Kai Iske for KCommodity, which is where the KeyClick sound was ’borrowed’.
Yak also uses WB2CLI, a very useful little link-module by Mike Sinz.
Thanks also to Heinz Wrobel for his wonderful port of RCS to the Amiga, to
Pierre Carette and Sylvain Rougier for BrowserII, Martin Korndörfer for his
MagicMenu and to my friends of the french Amiga mailing list who helped me
for the french localization of Yak.

The HotKey definition documentation is taken from the ToolsManager
distribution, by kind permission of Stefan Becker.

Thanks to Stefan Sticht for his public domain MouseBlanker commodity - this
is where I pinched the ’Copper’ mouse-blanking method.

And a big thank-you to all those people who have written to me about Yak
with suggestions and bug reports.

And last but not least, thanks to Martin Scott which has created Yak.

1.53 Contacting the Author

I can be reached with comments, suggestions, bug reports, praise, money etc.
at the following addresses:

Gaël Marziou
Cidex 103
38920 CROLLES
FRANCE

OR BY EMAIL (preferred): gael@gnlab030.grenoble.hp.com

Yak 22 / 26

1.54 More on HotKeys

This information is adapted from the ToolManager V2 documentation, and
is reproduced with kind permission of that program’s author, Stefan
Becker.

How to define a Hot Key
=======================

This chapter describes how to define a Hot Key as an Input
Description String, which is then parsed by Commodities. Each time a
Hot Key is activated Commodities generates an event which is used by
a Commodity in the chain. A description string has the following
syntax:

[<class>] {[-][<qualifier>]} [-][upstroke] [<key code>]

All keywords are case insensitive.

‘class’ describes the InputEvent class. This parameter is optional
and if it is missing the default ‘rawkey’ is used. See InputEvent
classes.

Qualifiers are "signals" that must be set or cleared by the time the
Hot Key is activated; otherwise no event will be generated. For each
qualifier that must be set you supply its keyword. All other qualifiers
are expected to be cleared by default. If you want to ignore a
qualifier, just set a ‘-’ before its keyword. See Qualifiers.

Normally a Hot Key event is generated when a key is pressed. If the
event should be generated when the key is released, supply the keyword
‘upstroke’. When both press and release of the key should generate an
event, use ‘-upstroke’.

The key code is depending on the InputEvent class. See Key codes.

Note: Choose your hot keys *carefully*, because Commodities has a
high priority in the InputEvent handler chain (i.e. will override
existing definitions).

InputEvent classes
===================

Commodities supports most of the InputEvent classes that are
generated by the input.device. This section describes those classes
that are most useful for Hot Keys.

‘rawkey’
This is the default class and covers all keyboard events. For
example ‘rawkey a’ or ‘a’ creates an event every time when the key
"a" is pressed. You must specify a key code for this class. See
rawkey key codes.

‘rawmouse’

Yak 23 / 26

This class describes all mouse button events. You must specify a
key code for this class. See rawmouse key codes.

‘diskinserted’
Events of this class are generated when a disk is inserted in a
drive. This class has no key codes.

‘diskremoved’
Events of this class are generated when a disk is removed from a
drive. This class has no key codes.

Qualifiers
===========

Some keyword synonyms were added to Commodities V38. These are
marked with an ‘*’.

‘lshift’, ‘left_shift’ *
Left shift key.

‘rshift’, ‘right_shift’ *
Right shift key.

‘shift’
Either shift key.

‘capslock’, ‘caps_lock’ *
Caps lock key.

‘caps’
Either shift key or caps lock key.

‘control’, ‘ctrl’ *
Control key.

‘lalt’, ‘left_alt’ *
Left alt key.

‘ralt’, ‘right_alt’ *
Right alt key.

‘alt’
Either alt key.

‘lcommand’, ‘lamiga’ *, ‘left_amiga’ *, ‘left_command’ *
Left Amiga/Command key.

‘rcommand’, ‘ramiga’ *, ‘right_amiga’ *, ‘right_command’ *
Right Amiga/Command key.

‘numericpad’, ‘numpad’ *, ‘num_pad’ *, ‘numeric_pad’ *
This keyword *must* be used for any key on the numeric pad.

‘leftbutton’, ‘lbutton’ *, ‘left_button’ *
Left mouse button. See note below.

Yak 24 / 26

‘midbutton’, ‘mbutton’ *, ‘middlebutton’ *, ‘middle_button’ *
Middle mouse button. See note below.

‘rbutton’, ‘rightbutton’ *, ‘right_button’ *
Right mouse button. See note below.

‘repeat’
This qualifier is set when the keyboard repeat is active. Only
useful for InputEvent class ‘rawkey’.

Note: Commodities V37 has a bug which prevents the use of
‘leftbutton’, ‘midbutton’ and ‘rbutton’ as qualifiers. This bug is
fixed in V38.

Key codes
==========

Each InputEvent class has its own key codes:

Key codes for InputEvent class ‘rawkey’
--

Some keywords and synonyms were added to Commodities V38. These are
marked with an ‘*’.

‘a’-‘z’, ‘0’-‘9’, ...
ASCII characters.

‘f1’, ‘f2’, ..., ‘f10’, ‘f11’ *, ‘f12’ *
Function keys.

‘up’, ‘cursor_up’ *, ‘down’, ‘cursor_down’ *
‘left’, ‘cursor_left’ *, ‘right’, ‘cursor_right’ *

Cursor keys.

‘esc’, ‘escape’ *, ‘backspace’, ‘del’, ‘help’
‘tab’, ‘comma’, ‘return’, ‘space’, ‘spacebar’ *

Special keys.

‘enter’, ‘insert’ *, ‘delete’ *
‘page_up’ *, ‘page_down’ *, ‘home’ *, ‘end’ *

Numeric Pad keys. Each of these key codes *must* be used with the
‘numericpad’ qualifier keyword!

Key codes for InputEvent class ‘rawmouse’
--

These keywords were added to Commodities V38. They are not available
in V37.

‘mouse_leftpress’
Press left mouse button.

‘mouse_middlepress’

Yak 25 / 26

Press middle mouse button.

‘mouse_rightpress’
Press right mouse button.

Note: To use one of these key codes, you must also set the
corresponding qualifier keyword, e.g.

rawmouse leftbutton mouse_leftpress

Examples for Hot Keys
======================

‘ralt t’
Hold right Alt key and press "t"

‘ralt lalt t’
Hold left *and* right Alt key and press "t"

‘alt t’
Hold either Alt key and press "t"

‘rcommand f2’
Hold right Amiga key and press the second function key

‘numericpad enter’
Press the Enter key on the numeric pad

‘rawmouse midbutton leftbutton mouse_leftpress’
Hold middle mouse button and press the the left mouse button

‘diskinserted’
Insert a disk in any drive.

1.55 Localization

Yak is now localized. It currently only supports english as built-in language
and french with a supplied catalog. If you are willing to localize Yak to your
own language, then you’re welcome. There’s no need to be a developper to make
a translation, the only requisite is to know very well your language :-)
A german translation is currently under work.

Be aware that there are several things that can be translated :

Yak itself by writing a catalog.
The installer script.
The amigaguide documentation.

You can translate part of this or the whole as you want.

In the source directory, you will find a file named popup.ct which contains the
strings used by Yak interface.
It is ready to be translated, let’s take an example :

Yak 26 / 26

MISCELLANEOUS_STRING

; Miscellaneous;

So, if you want to translate "Miscellaneous" into french, you should put its
translation on the empty line as this :

MISCELLANEOUS_STRING
Divers
; Miscellaneous;

There are 5 lines of credits in Yak menu reserved to the translator so don’t
hesitate to put your name here and your address.

	Yak
	Yak v1.52 Documentation
	Copyright
	Current users: Notez-bien
	Introduction
	Jokes
	Limitations
	Starting Yak
	Changing Yak's settings
	Toggles
	AutoPoint
	AutoPopToFront
	RMB Activate
	Key Activate
	Click To Front
	Click To Back
	Screen To Back
	Screen Activate
	Wild star
	Inclusion Patterns
	AutoScreens
	ClickScreens
	PopWindows
	ClickWindows
	TimeOut Settings
	Miscellaneous Settings
	ClickVolume
	ScreenTimeOut
	MouseTimeOut
	MouseBlank Method
	Defining Yak Hotkeys
	Hotkey Actions
	Dos Command
	Close Window
	Zip Window
	Shrink Window
	Expand Window
	Cycle Windows
	Open Palette
	Screen to Front
	Screen to Back
	Activate Workbench
	Center Screen
	Blank Display
	Insert Text
	Insert Date
	Show Yak Interface
	AmigaDos Patterns
	Date format strings
	Problems
	Program History
	Compiling Yak
	Credits
	Contacting the Author
	More on HotKeys
	Localization

