
GadLayout

GadLayout ii

COLLABORATORS

TITLE :

GadLayout

ACTION NAME DATE SIGNATURE

WRITTEN BY July 27, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

GadLayout iii

Contents

1 GadLayout 1

1.1 gadlayout.doc . 1

1.2 gadlayout/FreeLayoutGadgets . 1

1.3 gadlayout/GadgetArrayIndex . 1

1.4 gadlayout/GL_SetGadgetAttrsA . 2

1.5 gadlayout/LayoutGadgetsA . 3

GadLayout 1 / 7

Chapter 1

GadLayout

1.1 gadlayout.doc

FreeLayoutGadgets()
GadgetArrayIndex()
GL_SetGadgetAttrsA()
LayoutGadgetsA()

1.2 gadlayout/FreeLayoutGadgets

NAME
FreeLayoutGadgets -- Frees gadgets laid out with LayoutGadgets().

SYNOPSIS
FreeLayoutGadgets(gad_info);
VOID FreeLayoutGadgets(APTR);

FUNCTION
Frees all resources used in creating and laying out gadgets with
LayoutGadgets(). This frees all gadgets as well as other
resources used. Generally this will be called after a call to
CloseWindow() in Intuition.

INPUTS
gad_info - The pointer returned by LayoutGadgets().

SEE ALSO
LayoutGadgetsA()

1.3 gadlayout/GadgetArrayIndex

NAME
GadgetArrayIndex -- Get a gadget’s index in the LayoutGadget array.

SYNOPSIS
i = GadgetArrayIndex(gad_id, gadgets)

GadLayout 2 / 7

WORD GadgetArrayIndex(WORD, struct LayoutGadget *)

FUNCTION
Given a gadget ID, returns the index of that gadget’s definition
in the LayoutGadget array. For example, in cases where you need
to know a gadget’s Gadget structure (eg. if you wanted to use
the Intuition function ActivateGadget() to make a string or an
integer gadget active), you would need to lookup the lg_Gadget
field in the LayoutGadget array. You MUST NOT GIVE THE ARRAY
INDEX YOURSELF, THIS IS NOT GUARUNTEED TO REMAIN VALID! Instead,
pass the id of the gadget that you want and this function will
return the array index for you.

INPUTS
gad_id - The ID of the gadget you want to find.
gadgets - The LayoutGadget array that this gadget is defined in.

RESULT
i - The index into the LayoutGadget array of the entry of the

gadget ID you asked for.

1.4 gadlayout/GL_SetGadgetAttrsA

NAME
GL_SetGadgetAttrsA -- Change attributes of a GadLayout gadget.
GL_SetGadgetAttrs -- Varargs stub for GL_SetGadgetAttrsA.

SYNOPSIS
GL_SetGadgetAttrsA(gad_info, gad, win, req, taglist)
VOID GL_SetGadgetAttrsA(APTR, struct Gadget *, struct Window *,

struct Requester *, struct TagItem *)

GL_SetGadgetAttrs(gad_info, gad, win, req, firsttag, ...)
VOID GL_SetGadgetAttrs(APTR, struct Gadget *, struct Window *,

struct Requester *, Tag *, ...)

FUNCTION
Changes attributes for one of the GadLayout gadget kinds according
according to the attributes chosen in the tag list.

INPUTS
gad_info - The value returned by LayoutGadgetsA().
gad - Pointer to the gadget in question.
win - Pointer to the window containing the gadget.
req - Pointer to the requester containing the gadget, or NULL if

not in a requester. (Not implemented yet, use NULL.)
taglist - Pointer to a TagItem list.

TAGS
IMAGEBUTTON_KIND:
GLIM_Image (struct Image *) - Changes the image displayed in the

gadget.

BUGS
This function is not compatable with itself in versions releases

GadLayout 3 / 7

1.5 and lower, because of the new pi parameter! ALL OLD CODE
WILL HAVE TO BE CHANGED!!!

Attributes not pertaining to a specific gadget kind will not
always be ignored, so you will need to be careful that you only
try to change attributes that are valid for the gadget’s kind.

1.5 gadlayout/LayoutGadgetsA

NAME
LayoutGadgetsA -- Formats an array of GadTools gadgets.
LayoutGadgets -- Varargs stub for LayoutGadgetsA().

SYNOPSIS
gad_info = LayoutGadgetsA(gad_list, gadgets, screen, taglist)
APTR LayoutGadgetsA(struct Gadget **, struct LayoutGadget *,

struct Screen *, struct TagItem *)

gad_info = LayoutGadgets(gad_list, gadgets, screen, firsttag, ...)
APTR LayoutGadgets(struct Gadget **, struct LayoutGadget *,

struct Screen *, Tag *, ...)

FUNCTION
Creates a laid-out gadget list from a LayoutGadget array, which
describes each gadget you want to create. Gadgets you create
can be any of the gadget kinds supported by GadTools, as well
as any of the extended gadget kinds provided by GadLayout.
Gadgets can easily be defined so that the automatically adjust
their sizes and positions to accomodate fonts of any size
(including proportional fonts) and also to adapt to different
locale strings. The real power of GadLayout is that allows you
to create a gadget layout that dynamically adjusts to different
user’s environments.

INPUTS
gad_list - Pointer to the gadget list pointer, this will be

ready to pass to OpenWindowTags() or AddGList().

gadgets - An array of LayoutGadget structures. Each element
in the array describes one of the gadgets that you will
be creating. Each LayoutGadget structure in the array
should be initialized as follows:

lg_GadgetID - The ID for this gadget.
lg_LayoutTags - A taglist consisting of the following tags:

GL_GadgetKind (ULONG) - Which gadget kind to use. This
may be any of the GadTools gadget kinds (defined in
libraries/gadtools.h), or one of the additional kinds
provided by GadLayout, which are:
IMAGEBUTTON_KIND : A button gadget with that uses an

Intuition Image structure for its
contents. The image will be centred
automatically.

DRAWER_KIND : A drawer button gadget. Use this to
allow the user to use the ASL file

GadLayout 4 / 7

requester to select a path.
FILE_KIND : A file button gadget. Use this to allow

the user to use the ASL file requester
to select a file.

Additional kinds may be added in the future.
GL_Width (WORD) - Absolute gadget width, in pixels.
GL_DupeWidth (UWORD) - Duplicate the width of another

gadget.
GL_AutoWidth (WORD) - Set width according to length of

text label + ti_Data. Note that this function
does not take into account the amount of space any
gadget imagery might take within the gadgets area.

GL_Columns (UWORD) - Set width of gadget so that
approximately ti_Data columns of text with the
gadget’s font will fit. This will only be an
approximation, because with proportional fonts the
width of character varies. Note that this function
does not take into account the amount of space any
gadget imagery might take within the gadgets area.

GL_AddWidth (WORD) - Add some value to the total width
calculation.

GL_MinWidth (WORD) - Make sure that the final width of
the gadget is at least this.

GL_MaxWidth (WORD) - Make sure that the final width of
the gadget is at most this.

GL_Height (WORD) - Absolute gadget width.
GL_HeightFactor (UWORD) - Make the gadget height a multiple

of the font height (useful for LISTVIEW_KIND gadgets).
GL_AutoHeight (WORD) - Set height according to height of

text font + ti_Data.
GL_AddHeight (WORD) - Add some value to the total height

calculation.
GL_MinHeight (WORD) - Make sure that the final height of

the gadget is at least this.
GL_MaxHeight (WORD) - Make sure that the final height of

the gadget is at most this.
GL_Top (WORD) - Absolute top edge.
GL_TopRel (UWORD) - Top edge relative to bottom edge of

another gadget (specified by its gadget ID).
GL_AdjustTop (WORD) - ADD the height of the text font +

ti_Data to the top edge (often used to to properrly
position gadgets that have their label above).

GL_AddTop (WORD) - Add some value to the final top edge
calculation.

GL_Bottom (WORD) - Absolute bottom edge.
GL_BottomRel (UWORD) - Bottom edge relative to top edge of

another gadget (specified by its gadget ID).
GL_AddBottom (WORD) - Add some value to the final bottom edge

calculation.
GL_Left (WORD) - Absolute left edge.
GL_LeftRel (UWORD) - Left edge relative to right edge of

another gadget (specified by its gadget ID).
GL_AdjustLeft (WORD) - ADD the width of the text label +

ti_Data to the left edge.
GL_AlignLeft (UWORD) - Align the left edge of the gadget

with the left edge of another gadget (specified by its
gadget ID).

GadLayout 5 / 7

GL_AddLeft (WORD) - Add some value to the final left edge
calculation.

GL_Right (WORD) - Absolute right edge.
GL_RightRel (UWORD) - Right edge relative to left edge of

another gadget (specified by its gadget ID).
GL_AlignRight (UWORD) - Align the right edge of the gadget

with the right edge of another gadget (specified by its
gadget ID).

GL_AddRight (WORD) - Add some value to the final right edge
calculation.

GL_GadgetText (STRPTR) - Gadget text label.
GL_TextAttr (struct TextAttr *) - Desired font for gadget

label, will override the GL_DefTextAttr if used.
GL_Flags - (ULONG) Gadget flags.
GL_UserData (VOID *)- Gadget UserData.
GL_LocaleText - Gadget label taken from a locale catalog,

you supply the locale string ID. If you use this tag
you MUST have used GL_AppStrings in your call to
LayoutGadgets().

If you’ve specified one of GadLayout’s own gadget kinds
with GL_GadgetKind, the following tags are available for
defining attributes of those gadgets:

GLIM_Image (struct Image *) - Provide a pointer to the
Image structure to to be used in an IMAGEBUTTON_KIND
structure. This pointer only need be valid when
LayoutGadgets() is called.

GLIM_ReadOnly (BOOL) - Specifies that the gadget is read-
only. It will get a recessed border and will not be
highlighted when clicked on.

Generally you need only specify the tags when the data
has changed from the previously gadget. This gets a
little tricky when you use the relation tags like
GL_TopRel, as this means that gadgets will not be
processed in sequential order necessarily.

lg_GadToolsTags - When defining a GadTools gadgets, you
can pass a GadTools taglist to set options for that
gadget. This would be the same set of tags that you
might pass to CreateGadgetA() if you were using GadTools
directly.

lg_Gadget - The pointer to the Gadget structure created for
this gadget will be placed here. You should initialize
this field to NULL. WARNING: The gadget structure
created READ-ONLY!

screen - A pointer to the screen that the gadgets will be
created for. The is required so that the layout routines
can get display info about the screen, no rendering will
be done.

taglist - Pointer to a TagItem list (see below for allowed tags)

TAGS
GL_RightExtreme (LONG *) - A pointer to a LONG where GadLayout

GadLayout 6 / 7

will put the co-ordinate of the rightmost point where any
imagery of the laid-out gadgets will be drawn. Use this to
open a window exactly big enough to hold all your gadgets.
Use this value alone with the WA_InnerWidth window tag and
NOT WA_Width, since you do not know how big the window
border will be.

GL_LowerExtreme (LONG *) - A pointer to a LONG where GadLayout
will put the co-ordinate of the lowermost point where any
imagery of the laid-out gadget will be drawn. Use this to open
a window exactly big enough to hold all your gadgets.
Use this value alone with the WA_InnerHeight window tag and
NOT WA_Height, since you do not know how big the window
border will be.

GL_DefTextAttr (struct TextAttr *) - Instead of having to indicate
a TextAttr for each gadget, you can specify a font to be used
by default for all your gadgets.

GL_Catalog (struct Catalog *) - Specify the locale catalog to use
to get your strings from. If you wish to localize your gadget
string via GL_LocaleText you MUST use this tag as well as
GL_AppStrings. You must also make certain that locale.library
has been opened successfully with LocaleBase pointing to the
library base.

GL_AppStrings (struct AppString **) - If you wish to make your
gadgets localized, you you must pass a list of strings and
their IDs. The format of these strings is an array of
structures, with a LONG that contains the ID and a STRPTR
pointing to the string, i.e.:

struct AppString
{

LONG as_ID;
STRPTR as_Str;

};
These strings serve as the default language for the gadgets.
See locale.library documentation for more information on
localizing applications. You MUST use this tag in addition to
GL_Catalog if you wish to use GL_LocaleText to localize your
gadgets.

GL_NoCreate (BOOL) - Set to TRUE if you don’t want the layout
routine to actually create any gadgets. This is used when
you want to use the GL_RightExtreme and GL_LowerExtreme tags
to find out how much space your gadgets will take, but don’t
actually want to create the gadgets just yet.

GL_BorderTop (UWORD) - The size of the top border of your window.
If your window does not have the WFLG_GIMMEZEROZERO flag set,
it will be necessary to pass the size of the window borders.
This value can be gotten either from the Window structure of
your window (if it is already open), or from the Screen
structure of your screen (see intuition/screens.h for details
about this). NOTE: This value is NOT added to the value
returned by GL_LowerExtreme!

GL_BorderLeft (UWORD) - The size of the left border of your window.
If your window does not have the WFLG_GIMMEZEROZERO flag set,
it will be necessary to pass the size of the window borders.
This value can be gotten either from the Window structure of
your window (if it is already open), or from the Screen
structure of your screen (see intuition/screens.h for details
about this). NOTE: This value is NOT added to the value

GadLayout 7 / 7

returned by GL_RightExtreme.

RESULT
gad_info - A pointer to a private structure. You must keep this

value and pass it to FreeLayoutGadgets() later on in order to
free up all resources used by your gadgets.

NOTES
You must be careful with the taglist in the lg_LayoutTags field.
Tags are processed sequentally in the order you give them in, and
if a tag references another gadget (eg. the GL_TopRel tag), then
processing of the current gadget halts while the referenced gadget
is processed (if it has not already been processed). Problems can
arise if this gadget refers back to the original gadget that
referenced it, if it is referring to a field that has not yet been
processed in that gadget. For example, gadget GAD_BUTTON1 may use
the GL_TopRel tag to refer to GAD_BUTTON2, which may subsequently
make use of GL_LeftRel to refer back to GAD_BUTTON1. The gadgets
left edge must already be defined in GAD_BUTTON1 (i.e. a tag such
as GL_Left MUST appear before the GL_TopRel tag) if GAD_BUTTON2 is
to get the left edge desired.

BUGS
Doesn’t do any checking to make sure gadgets don’t overlap.
Essentially assumes you know what you’re doing with the layout.

Bad things will happen if you provide an IMAGEBUTTON_KIND gadget
with an image too big to fit within the dimensions you’ve provided
for the gadget.

SEE ALSO
FreeLayoutGadgets(), gadlayout/gadlayout.h, libraries/gadtools.h,
GadTools documentation.

	GadLayout
	gadlayout.doc
	gadlayout/FreeLayoutGadgets
	gadlayout/GadgetArrayIndex
	gadlayout/GL_SetGadgetAttrsA
	gadlayout/LayoutGadgetsA

