
texinfo

texinfo ii

COLLABORATORS

TITLE :

texinfo

ACTION NAME DATE SIGNATURE

WRITTEN BY December 7, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

texinfo iii

Contents

1 texinfo 1

1.1 texinfo.guide . 1

1.2 texinfo.guide/Copying . 9

1.3 texinfo.guide/Overview . 9

1.4 texinfo.guide/Overview-Footnotes . 10

1.5 texinfo.guide/Using Texinfo . 10

1.6 texinfo.guide/Info Files . 11

1.7 texinfo.guide/Info Files-Footnotes . 12

1.8 texinfo.guide/Printed Books . 13

1.9 texinfo.guide/Printed Books-Footnotes . 14

1.10 texinfo.guide/Formatting Commands . 14

1.11 texinfo.guide/Formatting Commands-Footnotes . 15

1.12 texinfo.guide/Conventions . 15

1.13 texinfo.guide/Comments . 16

1.14 texinfo.guide/Minimum . 16

1.15 texinfo.guide/Six Parts . 18

1.16 texinfo.guide/Short Sample . 18

1.17 texinfo.guide/Acknowledgements . 21

1.18 texinfo.guide/Texinfo Mode . 21

1.19 texinfo.guide/Texinfo Mode Overview . 22

1.20 texinfo.guide/Emacs Editing . 22

1.21 texinfo.guide/Inserting . 23

1.22 texinfo.guide/Showing the Structure . 25

1.23 texinfo.guide/Updating Nodes and Menus . 26

1.24 texinfo.guide/Updating Commands . 26

1.25 texinfo.guide/Updating Requirements . 29

1.26 texinfo.guide/Other Updating Commands . 30

1.27 texinfo.guide/Info Formatting . 31

1.28 texinfo.guide/Printing . 32

1.29 texinfo.guide/Texinfo Mode Summary . 33

texinfo iv

1.30 texinfo.guide/Beginning a File . 35

1.31 texinfo.guide/Four Parts . 36

1.32 texinfo.guide/Sample Beginning . 36

1.33 texinfo.guide/Header . 38

1.34 texinfo.guide/First Line . 38

1.35 texinfo.guide/Start of Header . 39

1.36 texinfo.guide/setfilename . 39

1.37 texinfo.guide/settitle . 40

1.38 texinfo.guide/setchapternewpage . 41

1.39 texinfo.guide/paragraphindent . 42

1.40 texinfo.guide/End of Header . 42

1.41 texinfo.guide/Info Summary and Permissions . 43

1.42 texinfo.guide/Titlepage & Copyright Page . 43

1.43 texinfo.guide/titlepage . 44

1.44 texinfo.guide/titlepage-Footnotes . 45

1.45 texinfo.guide/titlefont center sp . 45

1.46 texinfo.guide/title subtitle author . 46

1.47 texinfo.guide/Copyright & Permissions . 47

1.48 texinfo.guide/end titlepage . 48

1.49 texinfo.guide/headings on off . 48

1.50 texinfo.guide/The Top Node . 49

1.51 texinfo.guide/Title of Top Node . 50

1.52 texinfo.guide/Master Menu Parts . 50

1.53 texinfo.guide/Software Copying Permissions . 51

1.54 texinfo.guide/Ending a File . 52

1.55 texinfo.guide/Printing Indices & Menus . 52

1.56 texinfo.guide/Contents . 54

1.57 texinfo.guide/File End . 55

1.58 texinfo.guide/Structuring . 55

1.59 texinfo.guide/Tree Structuring . 56

1.60 texinfo.guide/Structuring Command Types . 56

1.61 texinfo.guide/makeinfo top . 57

1.62 texinfo.guide/chapter . 57

1.63 texinfo.guide/unnumbered & appendix . 58

1.64 texinfo.guide/majorheading & chapheading . 58

1.65 texinfo.guide/section . 59

1.66 texinfo.guide/unnumberedsec appendixsec heading . 59

1.67 texinfo.guide/subsection . 60

1.68 texinfo.guide/unnumberedsubsec appendixsubsec subheading . 60

texinfo v

1.69 texinfo.guide/subsubsection . 61

1.70 texinfo.guide/Raise-lower sections . 61

1.71 texinfo.guide/Nodes . 62

1.72 texinfo.guide/Two Paths . 63

1.73 texinfo.guide/Node Menu Illustration . 63

1.74 texinfo.guide/node . 65

1.75 texinfo.guide/Node Names . 66

1.76 texinfo.guide/Writing a Node . 66

1.77 texinfo.guide/Node Line Tips . 67

1.78 texinfo.guide/Node Line Requirements . 67

1.79 texinfo.guide/First Node . 68

1.80 texinfo.guide/makeinfo top command . 69

1.81 line. 69

1.82 texinfo.guide/Top Node Summary . 69

1.83 texinfo.guide/makeinfo Pointer Creation . 70

1.84 texinfo.guide/Menus . 70

1.85 texinfo.guide/Menus-Footnotes . 71

1.86 texinfo.guide/Menu Location . 71

1.87 texinfo.guide/Writing a Menu . 72

1.88 texinfo.guide/Menu Parts . 72

1.89 texinfo.guide/Less Cluttered Menu Entry . 73

1.90 texinfo.guide/Menu Example . 73

1.91 texinfo.guide/Other Info Files . 74

1.92 texinfo.guide/Cross References . 75

1.93 texinfo.guide/References . 75

1.94 texinfo.guide/Cross Reference Commands . 76

1.95 texinfo.guide/Cross Reference Parts . 77

1.96 texinfo.guide/xref . 78

1.97 texinfo.guide/Reference Syntax . 78

1.98 texinfo.guide/One Argument . 79

1.99 texinfo.guide/Two Arguments . 80

1.100texinfo.guide/Three Arguments . 81

1.101texinfo.guide/Four and Five Arguments . 82

1.102texinfo.guide/Top Node Naming . 84

1.103texinfo.guide/ref . 84

1.104texinfo.guide/pxref . 85

1.105texinfo.guide/inforef . 86

1.106texinfo.guide/Marking Text . 87

1.107texinfo.guide/Indicating . 87

texinfo vi

1.108texinfo.guide/Useful Highlighting . 88

1.109texinfo.guide/code . 89

1.110texinfo.guide/kbd . 90

1.111texinfo.guide/key . 91

1.112texinfo.guide/samp . 92

1.113texinfo.guide/var . 93

1.114texinfo.guide/file . 94

1.115texinfo.guide/dfn . 94

1.116texinfo.guide/cite . 94

1.117texinfo.guide/Emphasis . 95

1.118texinfo.guide/emph & strong . 95

1.119texinfo.guide/Smallcaps . 96

1.120texinfo.guide/Fonts . 96

1.121texinfo.guide/Customized Highlighting . 97

1.122texinfo.guide/Customized Highlighting-Footnotes . 98

1.123texinfo.guide/Quotations and Examples . 99

1.124texinfo.guide/Block Enclosing Commands . 99

1.125texinfo.guide/quotation . 100

1.126texinfo.guide/example . 101

1.127texinfo.guide/noindent . 102

1.128texinfo.guide/Lisp Example . 103

1.129texinfo.guide/Lisp Example-Footnotes . 103

1.130texinfo.guide/smallexample & smalllisp . 103

1.131texinfo.guide/display . 104

1.132texinfo.guide/format . 104

1.133texinfo.guide/exdent . 104

1.134texinfo.guide/flushleft & flushright . 105

1.135texinfo.guide/cartouche . 106

1.136texinfo.guide/Lists and Tables . 106

1.137texinfo.guide/Introducing Lists . 107

1.138texinfo.guide/itemize . 108

1.139texinfo.guide/enumerate . 109

1.140texinfo.guide/Two-column Tables . 111

1.141texinfo.guide/table . 111

1.142texinfo.guide/ftable vtable . 112

1.143texinfo.guide/itemx . 112

1.144texinfo.guide/Indices . 113

1.145texinfo.guide/Index Entries . 113

1.146texinfo.guide/Predefined Indices . 114

texinfo vii

1.147texinfo.guide/Indexing Commands . 114

1.148texinfo.guide/Combining Indices . 116

1.149texinfo.guide/syncodeindex . 117

1.150texinfo.guide/synindex . 118

1.151texinfo.guide/New Indices . 118

1.152texinfo.guide/Insertions . 119

1.153texinfo.guide/Braces Atsigns Periods . 119

1.154texinfo.guide/Inserting An Atsign . 120

1.155texinfo.guide/Inserting Braces . 120

1.156texinfo.guide/Controlling Spacing . 120

1.157texinfo.guide/dmn . 121

1.158texinfo.guide/Dots Bullets . 122

1.159texinfo.guide/dots . 122

1.160texinfo.guide/bullet . 123

1.161texinfo.guide/TeX and copyright . 123

1.162texinfo.guide/tex . 123

1.163texinfo.guide/copyright symbol . 123

1.164texinfo.guide/minus . 124

1.165texinfo.guide/math . 124

1.166texinfo.guide/Glyphs . 124

1.167texinfo.guide/Glyphs Summary . 125

1.168texinfo.guide/result . 125

1.169texinfo.guide/expansion . 126

1.170texinfo.guide/Print Glyph . 127

1.171texinfo.guide/Error Glyph . 127

1.172texinfo.guide/Equivalence . 128

1.173texinfo.guide/Point Glyph . 128

1.174texinfo.guide/Breaks . 129

1.175texinfo.guide/Break Commands . 130

1.176texinfo.guide/Line Breaks . 130

1.177texinfo.guide/w . 131

1.178texinfo.guide/sp . 131

1.179texinfo.guide/page . 132

1.180texinfo.guide/group . 132

1.181texinfo.guide/need . 133

1.182texinfo.guide/Definition Commands . 133

1.183texinfo.guide/Def Cmd Template . 134

1.184texinfo.guide/Optional Arguments . 135

1.185texinfo.guide/deffnx . 136

texinfo viii

1.186texinfo.guide/Def Cmds in Detail . 136

1.187texinfo.guide/Functions Commands . 137

1.188texinfo.guide/Variables Commands . 138

1.189texinfo.guide/Typed Functions . 139

1.190texinfo.guide/Typed Variables . 141

1.191texinfo.guide/Abstract Objects . 142

1.192texinfo.guide/Data Types . 144

1.193texinfo.guide/Def Cmd Conventions . 145

1.194texinfo.guide/Sample Function Definition . 145

1.195texinfo.guide/Footnotes . 147

1.196texinfo.guide/Footnotes-Footnotes . 147

1.197texinfo.guide/Footnote Commands . 147

1.198texinfo.guide/Footnote Commands-Footnotes . 148

1.199texinfo.guide/Footnote Styles . 148

1.200texinfo.guide/Conditionals . 149

1.201texinfo.guide/Conditional Commands . 150

1.202texinfo.guide/Using Ordinary TeX Commands . 150

1.203texinfo.guide/set clear value . 151

1.204texinfo.guide/ifset ifclear . 151

1.205texinfo.guide/value . 153

1.206texinfo.guide/value Example . 154

1.207texinfo.guide/Format-Print Hardcopy . 155

1.208texinfo.guide/Use TeX . 156

1.209texinfo.guide/Format with tex-texindex . 156

1.210texinfo.guide/Format with tex-texindex-Footnotes . 157

1.211texinfo.guide/Format with texi2dvi . 157

1.212texinfo.guide/Print with lpr . 158

1.213texinfo.guide/Within Emacs . 158

1.214texinfo.guide/Texinfo Mode Printing . 159

1.215texinfo.guide/Compile-Command . 160

1.216texinfo.guide/Requirements Summary . 161

1.217texinfo.guide/Preparing for TeX . 161

1.218texinfo.guide/Overfull hboxes . 162

1.219texinfo.guide/smallbook . 163

1.220texinfo.guide/A4 Paper . 163

1.221texinfo.guide/Cropmarks and Magnification . 164

1.222texinfo.guide/Create an Info File . 165

1.223texinfo.guide/makeinfo advantages . 165

1.224texinfo.guide/Invoking makeinfo . 166

texinfo ix

1.225texinfo.guide/makeinfo options . 166

1.226texinfo.guide/makeinfo options-Footnotes . 168

1.227texinfo.guide/Pointer Validation . 169

1.228texinfo.guide/makeinfo in Emacs . 169

1.229texinfo.guide/texinfo-format commands . 170

1.230texinfo.guide/Batch Formatting . 171

1.231texinfo.guide/Tag and Split Files . 172

1.232texinfo.guide/Install an Info File . 173

1.233texinfo.guide/Directory file . 173

1.234texinfo.guide/New Info File . 174

1.235texinfo.guide/Other Info Directories . 175

1.236texinfo.guide/Command List . 176

1.237texinfo.guide/Tips . 189

1.238texinfo.guide/Sample Texinfo File . 195

1.239texinfo.guide/Sample Permissions . 196

1.240texinfo.guide/Inserting Permissions . 197

1.241texinfo.guide/ifinfo Permissions . 198

1.242texinfo.guide/Titlepage Permissions . 198

1.243texinfo.guide/Include Files . 199

1.244texinfo.guide/Using Include Files . 199

1.245texinfo.guide/texinfo-multiple-files-update . 200

1.246texinfo.guide/Include File Requirements . 201

1.247texinfo.guide/Sample Include File . 202

1.248texinfo.guide/Include Files Evolution . 203

1.249texinfo.guide/Headings . 203

1.250texinfo.guide/Headings Introduced . 204

1.251texinfo.guide/Heading Format . 204

1.252texinfo.guide/Heading Choice . 205

1.253texinfo.guide/Custom Headings . 206

1.254texinfo.guide/Catching Mistakes . 208

1.255texinfo.guide/makeinfo preferred . 208

1.256texinfo.guide/Debugging with Info . 209

1.257texinfo.guide/Debugging with TeX . 210

1.258texinfo.guide/Using texinfo-show-structure . 212

1.259texinfo.guide/Using occur . 213

1.260texinfo.guide/Running Info-Validate . 214

1.261texinfo.guide/Using Info-validate . 214

1.262texinfo.guide/Unsplit . 215

1.263texinfo.guide/Tagifying . 216

texinfo x

1.264texinfo.guide/Splitting . 216

1.265texinfo.guide/Refilling Paragraphs . 217

1.266texinfo.guide/Refilling Paragraphs-Footnotes . 218

1.267texinfo.guide/Command Syntax . 218

1.268texinfo.guide/Obtaining TeX . 219

1.269texinfo.guide/New Features . 220

1.270texinfo.guide/New Texinfo Mode Commands . 220

1.271texinfo.guide/New Commands . 223

1.272texinfo.guide/Command and Variable Index . 227

1.273texinfo.guide/Concept Index . 231

texinfo 1 / 239

Chapter 1

texinfo

1.1 texinfo.guide

Texinfo

Texinfo is a documentation system that uses a single source file to
produce both on-line information and printed output.

The first part of this master menu lists the major nodes in this Info
document, including the @-command and concept indices. The rest of the
menu lists all the lower level nodes in the document.

This is Edition 2.21 of the Texinfo documentation, 7 June 1995, for
Texinfo Version Three.

Copying Your rights.
Overview Texinfo in brief.
Texinfo Mode How to use Texinfo mode.
Beginning a File What is at the beginning of a Texinfo file?
Ending a File What is at the end of a Texinfo file?
Structuring How to create chapters, sections, subsections,

appendices, and other parts.
Nodes How to write nodes.
Menus How to write menus.
Cross References How to write cross references.
Marking Text How to mark words and phrases as code,

keyboard input, meta-syntactic
variables, and the like.

Quotations and Examples How to write quotations, examples, etc.
Lists and Tables How to write lists and tables.
Indices How to create indices.
Insertions How to insert @-signs, braces, etc.
Glyphs How to indicate results of evaluation,

expansion of macros, errors, etc.
Breaks How to force and prevent line and page breaks.
Definition Commands How to describe functions and the like

in a uniform manner.
Footnotes How to write footnotes.
Conditionals How to specify text for either TeX or Info.

texinfo 2 / 239

Format-Print Hardcopy How to convert a Texinfo file to a file
for printing and how to print that file.

Create an Info File Convert a Texinfo file into an Info file.
Install an Info File Make an Info file accessible to users.
Command List All the Texinfo @-commands.
Tips Hints on how to write a Texinfo document.
Sample Texinfo File A sample Texinfo file to look at.
Sample Permissions Tell readers they have the right to copy

and distribute.
Include Files How to incorporate other Texinfo files.
Headings How to write page headings and footings.
Catching Mistakes How to find formatting mistakes.
Refilling Paragraphs All about paragraph refilling.
Command Syntax A description of @-Command syntax.
Obtaining TeX How to Obtain TeX.
New Features Texinfo second edition features.
Command and Variable Index A menu containing commands and variables.
Concept Index A menu covering many topics.

-- The Detailed Node Listing --

Overview of Texinfo

Using Texinfo Create a conventional printed book
or an Info file.

Info Files What is an Info file?
Printed Books Characteristics of a printed book or manual.
Formatting Commands @-commands are used for formatting.
Conventions General rules for writing a Texinfo file.
Comments How to write comments and mark regions that

the formatting commands will ignore.
Minimum What a Texinfo file must have.
Six Parts Usually, a Texinfo file has six parts.
Short Sample A short sample Texinfo file.
Acknowledgements

Using Texinfo Mode

Texinfo Mode Overview How Texinfo mode can help you.
Emacs Editing Texinfo mode adds to GNU Emacs’ general

purpose editing features.
Inserting How to insert frequently used @-commands.
Showing the Structure How to show the structure of a file.
Updating Nodes and Menus How to update or create new nodes and menus.
Info Formatting How to format for Info.
Printing How to format and print part or all of a file.
Texinfo Mode Summary Summary of all the Texinfo mode commands.

Updating Nodes and Menus

Updating Commands Five major updating commands.
Updating Requirements How to structure a Texinfo file for

using the updating command.
Other Updating Commands How to indent descriptions, insert

missing nodes lines, and update
nodes in sequence.

texinfo 3 / 239

Beginning a Texinfo File

Four Parts Four parts begin a Texinfo file.
Sample Beginning Here is a sample beginning for a Texinfo file.
Header The very beginning of a Texinfo file.
Info Summary and Permissions Summary and copying permissions for Info.
Titlepage & Copyright Page Creating the title and copyright pages.
The Top Node Creating the ‘Top’ node and master menu.
Software Copying Permissions Ensure that you and others continue to

have the right to use and share software.

The Texinfo File Header

First Line The first line of a Texinfo file.
Start of Header Formatting a region requires this.
setfilename Tell Info the name of the Info file.
settitle Create a title for the printed work.
setchapternewpage Start chapters on right-hand pages.
paragraphindent An option to specify paragraph indentation.
End of Header Formatting a region requires this.

The Title and Copyright Pages

titlepage Create a title for the printed document.
titlefont center sp The @titlefont, @center,

and @sp commands.
title subtitle author The @title, @subtitle,

and @author commands.
Copyright & Permissions How to write the copyright notice and

include copying permissions.
end titlepage Turn on page headings after the title and

copyright pages.
headings on off An option for turning headings on and off

and double or single sided printing.

The ‘Top’ Node and Master Menu

Title of Top Node Sketch what the file is about.
Master Menu Parts A master menu has three or more parts.

Ending a Texinfo File

Printing Indices & Menus How to print an index in hardcopy and
generate index menus in Info.

Contents How to create a table of contents.
File End How to mark the end of a file.

Chapter Structuring

Tree Structuring A manual is like an upside down tree ...
Structuring Command Types How to divide a manual into parts.
makeinfo top The @top command, part of the ‘Top’ node.
chapter
unnumbered & appendix
majorheading & chapheading
section
unnumberedsec appendixsec heading

texinfo 4 / 239

subsection
unnumberedsubsec appendixsubsec subheading
subsubsection Commands for the lowest level sections.
Raise-lower sections How to change commands’ hierarchical level.

Nodes

Two Paths Different commands to structure
Info output and printed output.

Node Menu Illustration A diagram, and sample nodes and menus.
node How to write a node, in detail.
makeinfo Pointer Creation How to create node pointers with makeinfo.

The @node Command

Node Names How to choose node and pointer names.
Writing a Node How to write an @node line.
Node Line Tips Keep names short.
Node Line Requirements Keep names unique, without @-commands.
First Node How to write a ‘Top’ node.
makeinfo top command How to use the @top command.
Top Node Summary Write a brief description for readers.

Menus

Menu Location Put a menu in a short node.
Writing a Menu What is a menu?
Menu Parts A menu entry has three parts.
Less Cluttered Menu Entry Two part menu entry.
Menu Example Two and three part menu entries.
Other Info Files How to refer to a different Info file.

Cross References

References What cross references are for.
Cross Reference Commands A summary of the different commands.
Cross Reference Parts A cross reference has several parts.
xref Begin a reference with ‘See’ ...
Top Node Naming How to refer to the beginning of another file.
ref A reference for the last part of a sentence.
pxref How to write a parenthetical cross reference.
inforef How to refer to an Info-only file.

@xref

Reference Syntax What a reference looks like and requires.
One Argument @xref with one argument.
Two Arguments @xref with two arguments.
Three Arguments @xref with three arguments.
Four and Five Arguments @xref with four and five arguments.

Marking Words and Phrases

Indicating How to indicate definitions, files, etc.
Emphasis How to emphasize text.

Indicating Definitions, Commands, etc.

texinfo 5 / 239

Useful Highlighting Highlighting provides useful information.
code How to indicate code.
kbd How to show keyboard input.
key How to specify keys.
samp How to show a literal sequence of characters.
var How to indicate a metasyntactic variable.
file How to indicate the name of a file.
dfn How to specify a definition.
cite How to refer to a book that is not in Info.

Emphasizing Text

emph & strong How to emphasize text in Texinfo.
Smallcaps How to use the small caps font.
Fonts Various font commands for printed output.
Customized Highlighting How to define highlighting commands.

Quotations and Examples

Block Enclosing Commands Use different constructs for
different purposes.

quotation How to write a quotation.
example How to write an example in a fixed-width font.
noindent How to prevent paragraph indentation.
Lisp Example How to illustrate Lisp code.
smallexample & smalllisp Forms for the @smallbook option.
display How to write an example in the current font.
format How to write an example that does not narrow

the margins.
exdent How to undo the indentation of a line.
flushleft & flushright How to push text flushleft or flushright.
cartouche How to draw cartouches around examples.

Making Lists and Tables

Introducing Lists Texinfo formats lists for you.
itemize How to construct a simple list.
enumerate How to construct a numbered list.
Two-column Tables How to construct a two-column table.

Making a Two-column Table

table How to construct a two-column table.
ftable vtable How to construct a two-column table

with automatic indexing.
itemx How to put more entries in the first column.

Creating Indices

Index Entries Choose different words for index entries.
Predefined Indices Use different indices for different kinds

of entry.
Indexing Commands How to make an index entry.
Combining Indices How to combine indices.
New Indices How to define your own indices.

texinfo 6 / 239

Combining Indices

syncodeindex How to merge two indices, using @code
font for the merged-from index.

synindex How to merge two indices, using the
default font of the merged-to index.

Special Insertions

Braces Atsigns Periods How to insert braces, @ and periods.
dmn How to format a dimension.
Dots Bullets How to insert dots and bullets.
TeX and copyright How to insert the TeX logo

and the copyright symbol.
minus How to insert a minus sign.
math How to format a mathematical expression.

Inserting @, Braces, and Periods

Inserting An Atsign
Inserting Braces How to insert { and }
Controlling Spacing How to insert the right amount of space

after punctuation within a sentence.

Inserting Ellipsis, Dots, and Bullets

dots How to insert dots ...
bullet How to insert a bullet.

Inserting TeX and the Copyright Symbol

tex How to insert the TeX logo.
copyright symbol How to use @copyright {}.

Glyphs for Examples

Glyphs Summary
result How to show the result of expression.
expansion How to indicate an expansion.
Print Glyph How to indicate printed output.
Error Glyph How to indicate an error message.
Equivalence How to indicate equivalence.
Point Glyph How to indicate the location of point.

Making and Preventing Breaks

Break Commands Cause and prevent splits.
Line Breaks How to force a single line to use two lines.
w How to prevent unwanted line breaks.
sp How to insert blank lines.
page How to force the start of a new page.
group How to prevent unwanted page breaks.
need Another way to prevent unwanted page breaks.

Definition Commands

Def Cmd Template How to structure a description using a

texinfo 7 / 239

definition command.
Optional Arguments How to handle optional and repeated arguments.
deffnx How to group two or more ‘first’ lines.
Def Cmds in Detail All the definition commands.
Def Cmd Conventions Conventions for writing definitions.
Sample Function Definition

The Definition Commands

Functions Commands Commands for functions and similar entities.
Variables Commands Commands for variables and similar entities.
Typed Functions Commands for functions in typed languages.
Typed Variables Commands for variables in typed languages.
Abstract Objects Commands for object-oriented programming.
Data Types The definition command for data types.

Footnotes

Footnote Commands How to write a footnote in Texinfo.
Footnote Styles Controlling how footnotes appear in Info.

Conditionally Visible Text

Conditional Commands How to specify text for Info or TeX.
Using Ordinary TeX Commands You can use any and all TeX commands.
set clear value How to designate which text to format (for

both Info and TeX); and how to set a
flag to a string that you can insert.

@set, @clear, and @value

ifset ifclear Format a region if a flag is set.
value Replace a flag with a string.
value Example An easy way to update edition information.

Format and Print Hardcopy

Use TeX Use TeX to format for hardcopy.
Format with tex-texindex How to format in a shell.
Format with texi2dvi A simpler way to use the shell.
Print with lpr How to print.
Within Emacs How to format and print from an Emacs shell.
Texinfo Mode Printing How to format and print in Texinfo mode.
Compile-Command How to print using Emacs’s compile command.
Requirements Summary TeX formatting requirements summary.
Preparing for TeX What you need to do to use TeX.
Overfull hboxes What are and what to do with overfull hboxes.
smallbook How to print small format books and manuals.
A4 Paper How to print on European A4 paper.
Cropmarks and Magnification How to print marks to indicate the size

of pages and how to print scaled up output.

Creating an Info File

makeinfo advantages makeinfo provides better error checking.
Invoking makeinfo How to run makeinfo from a shell.
makeinfo options Specify fill-column and other options.

texinfo 8 / 239

Pointer Validation How to check that pointers point somewhere.
makeinfo in Emacs How to run makeinfo from Emacs.
texinfo-format commands Two Info formatting commands written

in Emacs Lisp are an alternative
to makeinfo.

Batch Formatting How to format for Info in Emacs Batch mode.
Tag and Split Files How tagged and split files help Info

to run better.

Installing an Info File

Directory file The top level menu for all Info files.
New Info File Listing a new info file.
Other Info Directories How to specify Info files that are

located in other directories.

Sample Permissions

Inserting Permissions How to put permissions in your document.
ifinfo Permissions Sample ifinfo copying permissions.
Titlepage Permissions Sample Titlepage copying permissions.

Include Files

Using Include Files How to use the @include command.
texinfo-multiple-files-update How to create and update nodes and

menus when using included files.
Include File Requirements What texinfo-multiple-files-update expects.
Sample Include File A sample outer file with included files

within it; and a sample included file.
Include Files Evolution How use of the @include command

has changed over time.

Page Headings

Headings Introduced Conventions for using page headings.
Heading Format Standard page heading formats.
Heading Choice How to specify the type of page heading.
Custom Headings How to create your own headings and footings.

Formatting Mistakes

makeinfo preferred makeinfo finds errors.
Debugging with Info How to catch errors with Info formatting.
Debugging with TeX How to catch errors with TeX formatting.
Using texinfo-show-structure How to use texinfo-show-structure.
Using occur How to list all lines containing a pattern.
Running Info-Validate How to find badly referenced nodes.

Finding Badly Referenced Nodes

Using Info-validate How to run Info-validate.
Unsplit How to create an unsplit file.
Tagifying How to tagify a file.
Splitting How to split a file manually.

Second Edition Features

texinfo 9 / 239

New Texinfo Mode Commands The updating commands are especially useful.
New Commands Many newly described @-commands.

1.2 texinfo.guide/Copying

Texinfo Copying Conditions

The programs currently being distributed that relate to Texinfo
include portions of GNU Emacs, plus other separate programs (including
makeinfo, info, texindex, and texinfo.tex). These programs are
free; this means that everyone is free to use them and free to
redistribute them on a free basis. The Texinfo-related programs are
not in the public domain; they are copyrighted and there are
restrictions on their distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do.
What is not allowed is to try to prevent others from further sharing
any version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give
away copies of the programs that relate to Texinfo, that you receive
source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know
you can do these things.

To make sure that everyone has such rights, we have to forbid you to
deprive anyone else of these rights. For example, if you distribute
copies of the Texinfo related programs, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds
out that there is no warranty for the programs that relate to Texinfo.
If these programs are modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed,
so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently
being distributed that relate to Texinfo are found in the General Public
Licenses that accompany them.

1.3 texinfo.guide/Overview

Overview of Texinfo

Texinfo (1)Overview-Footnotes is a documentation system that uses a
single source file to produce both on-line information and printed

texinfo 10 / 239

output. This means that instead of writing two different documents,
one for the on-line help or other on-line information and the other for
a typeset manual or other printed work, you need write only one
document. When the work is revised, you need revise only one document.
(You can read the on-line information, known as an Info file, with an
Info documentation-reading program.)

Using Texinfo Create a conventional printed book
or an Info file.

Info Files What is an Info file?
Printed Books Characteristics of a printed book or manual.
Formatting Commands @-commands are used for formatting.
Conventions General rules for writing a Texinfo file.
Comments How to write comments and mark regions that

the formatting commands will ignore.
Minimum What a Texinfo file must have.
Six Parts Usually, a Texinfo file has six parts.
Short Sample A short sample Texinfo file.
Acknowledgements

1.4 texinfo.guide/Overview-Footnotes

(1) Note that the first syllable of "Texinfo" is pronounced like
"speck", not "hex". This odd pronunciation is derived from, but is not
the same as, the pronunciation of TeX. In the word TeX, the X is
actually the Greek letter "chi" rather than the English letter "ex".
Pronounce TeX as if the X were the last sound in the name ‘Bach’; but
pronounce Texinfo as if the x were a ‘k’. Spell "Texinfo" with a
capital "T" and write the other letters in lower case.

1.5 texinfo.guide/Using Texinfo

Using Texinfo
=============

Using Texinfo, you can create a printed document with the normal
features of a book, including chapters, sections, cross references, and
indices. From the same Texinfo source file, you can create a
menu-driven, on-line Info file with nodes, menus, cross references, and
indices. You can, if you wish, make the chapters and sections of the
printed document correspond to the nodes of the on-line information;
and you use the same cross references and indices for both the Info
file and the printed work. ‘The GNU Emacs Manual’ is a good example of
a Texinfo file, as is this manual.

To make a printed document, you process a Texinfo source file with the
TeX typesetting program. This creates a dvi file that you can typeset
and print as a book or report. (Note that the Texinfo language is
completely different from TeX’s usual language, PlainTeX, which Texinfo

texinfo 11 / 239

replaces.) If you do not have TeX, but do have troff or nroff, you can
use the texi2roff program instead.

To make an Info file, you process a Texinfo source file with the
makeinfo utility or Emacs’s texinfo-format-buffer command; this
creates an Info file that you can install on-line.

TeX and texi2roff work with many types of printer; similarly, Info
works with almost every type of computer terminal. This power makes
Texinfo a general purpose system, but brings with it a constraint,
which is that a Texinfo file may contain only the customary
"typewriter" characters (letters, numbers, spaces, and punctuation
marks) but no special graphics.

A Texinfo file is a plain ascii file containing text and @-commands
(words preceded by an @) that tell the typesetting and formatting
programs what to do. You may edit a Texinfo file with any text editor;
but it is especially convenient to use GNU Emacs since that editor has
a special mode, called Texinfo mode, that provides various
Texinfo-related features. (See Texinfo Mode.)

Before writing a Texinfo source file, you should become familiar with
the Info documentation reading program and learn about nodes, menus,
cross references, and the rest. (See info, for more information.)

You can use Texinfo to create both on-line help and printed manuals;
moreover, Texinfo is freely redistributable. For these reasons, Texinfo
is the format in which documentation for GNU utilities and libraries is
written.

1.6 texinfo.guide/Info Files

Info files
==========

An Info file is a Texinfo file formatted so that the Info
documentation reading program can operate on it. (makeinfo and
texinfo-format-buffer are two commands that convert a Texinfo file
into an Info file.)

Info files are divided into pieces called nodes, each of which
contains the discussion of one topic. Each node has a name, and
contains both text for the user to read and pointers to other nodes,
which are identified by their names. The Info program displays one node
at a time, and provides commands with which the user can move to other
related nodes.

See info, for more information about using Info.

Each node of an Info file may have any number of child nodes that
describe subtopics of the node’s topic. The names of child nodes are
listed in a menu within the parent node; this allows you to use certain
Info commands to move to one of the child nodes. Generally, an Info
file is organized like a book. If a node is at the logical level of a

texinfo 12 / 239

chapter, its child nodes are at the level of sections; likewise, the
child nodes of sections are at the level of subsections.

All the children of any one parent are linked together in a
bidirectional chain of ‘Next’ and ‘Previous’ pointers. The ‘Next’
pointer provides a link to the next section, and the ‘Previous’ pointer
provides a link to the previous section. This means that all the nodes
that are at the level of sections within a chapter are linked together.
Normally the order in this chain is the same as the order of the
children in the parent’s menu. Each child node records the parent node
name as its ‘Up’ pointer. The last child has no ‘Next’ pointer, and the
first child has the parent both as its ‘Previous’ and as its ‘Up’
pointer.(1)Info Files-Footnotes

The book-like structuring of an Info file into nodes that correspond
to chapters, sections, and the like is a matter of convention, not a
requirement. The ‘Up’, ‘Previous’, and ‘Next’ pointers of a node can
point to any other nodes, and a menu can contain any other nodes.
Thus, the node structure can be any directed graph. But it is usually
more comprehensible to follow a structure that corresponds to the
structure of chapters and sections in a printed book or report.

In addition to menus and to ‘Next’, ‘Previous’, and ‘Up’ pointers,
Info provides pointers of another kind, called references, that can be
sprinkled throughout the text. This is usually the best way to
represent links that do not fit a hierarchical structure.

Usually, you will design a document so that its nodes match the
structure of chapters and sections in the printed output. But there
are times when this is not right for the material being discussed.
Therefore, Texinfo uses separate commands to specify the node structure
for the Info file and the section structure for the printed output.

Generally, you enter an Info file through a node that by convention is
called Top. This node normally contains just a brief summary of the
file’s purpose, and a large menu through which the rest of the file is
reached. From this node, you can either traverse the file
systematically by going from node to node, or you can go to a specific
node listed in the main menu, or you can search the index menus and
then go directly to the node that has the information you want.

If you want to read through an Info file in sequence, as if it were a
printed manual, you can get the whole file with the advanced Info
command g* RET. (See Advanced Info commands.)

The dir file in the info directory serves as the departure point for
the whole Info system. From it, you can reach the ‘Top’ nodes of each
of the documents in a complete Info system.

1.7 texinfo.guide/Info Files-Footnotes

(1) In some documents, the first child has no ‘Previous’ pointer.
Occasionally, the last child has the node name of the next following
higher level node as its ‘Next’ pointer.

texinfo 13 / 239

1.8 texinfo.guide/Printed Books

Printed Books
=============

A Texinfo file can be formatted and typeset as a printed book or
manual. To do this, you need TeX, a powerful, sophisticated typesetting
program written by Donald Knuth.(1)Printed Books-Footnotes

A Texinfo-based book is similar to any other typeset, printed work: it
can have a title page, copyright page, table of contents, and preface,
as well as chapters, numbered or unnumbered sections and subsections,
page headers, cross references, footnotes, and indices.

You can use Texinfo to write a book without ever having the intention
of converting it into on-line information. You can use Texinfo for
writing a printed novel, and even to write a printed memo, although
this latter application is not recommended since electronic mail is so
much easier.

TeX is a general purpose typesetting program. Texinfo provides a
file called texinfo.tex that contains information (definitions or
macros) that TeX uses when it typesets a Texinfo file.
(texinfo.tex tells TeX how to convert the Texinfo @-commands to TeX
commands, which TeX can then process to create the typeset document.)
texinfo.tex contains the specifications for printing a document.

Most often, documents are printed on 8.5 inch by 11 inch pages (216mm
by 280mm; this is the default size), but you can also print for 7 inch
by 9.25 inch pages (178mm by 235mm; the @smallbook size) or on
European A4 size paper (@afourpaper). (See Printing .
Also, see See Printing on A4 Paper.)

By changing the parameters in texinfo.tex, you can change the size of
the printed document. In addition, you can change the style in which
the printed document is formatted; for example, you can change the
sizes and fonts used, the amount of indentation for each paragraph, the
degree to which words are hyphenated, and the like. By changing the
specifications, you can make a book look dignified, old and serious, or
light-hearted, young and cheery.

TeX is freely distributable. It is written in a dialect of Pascal
called WEB and can be compiled either in Pascal or (by using a
conversion program that comes with the TeX distribution) in C. (See
TeX Mode, for information about TeX.)

TeX is very powerful and has a great many features. Because a
Texinfo file must be able to present information both on a
character-only terminal in Info form and in a typeset book, the
formatting commands that Texinfo supports are necessarily limited.

See How to Obtain TeX.

texinfo 14 / 239

1.9 texinfo.guide/Printed Books-Footnotes

(1) You can also use the texi2roff program if you do not have TeX;
since Texinfo is designed for use with TeX, texi2roff is not described
here. texi2roff is part of the standard GNU distribution.

1.10 texinfo.guide/Formatting Commands

==========

In a Texinfo file, the commands that tell TeX how to typeset the
printed manual and tell makeinfo and texinfo-format-buffer how to
create an Info file are preceded by @; they are called @-commands.
For example, @node is the command to indicate a node and @chapter is
the command to indicate the start of a chapter.

Please note: All the @-commands, with the exception of the @TeX{}
command, must be written entirely in lower case.

The Texinfo @-commands are a strictly limited set of constructs. The
strict limits make it possible for Texinfo files to be understood both
by TeX and by the code that converts them into Info files. You can
display Info files on any terminal that displays alphabetic and numeric
characters. Similarly, you can print the output generated by TeX on a
wide variety of printers.

Depending on what they do or what
arguments(1)Formatting Commands-Footnotes
they take, you need to write @-commands on lines of their own or as
part of sentences:

* Write a command such as @noindent at the beginning of a line as
the only text on the line. (@noindent prevents the beginning of
the next line from being indented as the beginning of a paragraph.)

* Write a command such as @chapter at the beginning of a line
followed by the command’s arguments, in this case the chapter
title, on the rest of the line. (@chapter creates chapter
titles.)

* Write a command such as @dots{} wherever you wish but usually
within a sentence. (@dots{} creates dots ...)

* Write a command such as @code{SAMPLE-CODE} wherever you wish (but
usually within a sentence) with its argument, SAMPLE-CODE in this
example, between the braces. (@code marks text as being code.)

* Write a command such as @example at the beginning of a line of
its own; write the body-text on following lines; and write the

texinfo 15 / 239

matching @end command, @end example in this case, at the
beginning of a line of its own after the body-text. (@example ...
@end example indents and typesets body-text as an example.)

As a general rule, a command requires braces if it mingles among other
text; but it does not need braces if it starts a line of its own. The
non-alphabetic commands, such as @:, are exceptions to the rule; they
do not need braces.

As you gain experience with Texinfo, you will rapidly learn how to
write the different commands: the different ways to write commands make
it easier to write and read Texinfo files than if all commands followed
exactly the same syntax. (For details about @-command syntax, see See
@-Command Syntax.)

1.11 texinfo.guide/Formatting Commands-Footnotes

(1) The word argument comes from the way it is used in mathematics
and does not refer to a disputation between two people; it refers to the
information presented to the command. According to the ‘Oxford English
Dictionary’, the word derives from the Latin for to make clear, prove;
thus it came to mean ‘the evidence offered as proof’, which is to say,
‘the information offered’, which led to its mathematical meaning. In
its other thread of derivation, the word came to mean ‘to assert in a
manner against which others may make counter assertions’, which led to
the meaning of ‘argument’ as a disputation.

1.12 texinfo.guide/Conventions

General Syntactic Conventions
=============================

All ascii printing characters except @, { and } can appear in a
Texinfo file and stand for themselves. @ is the escape character
which introduces commands. { and } should be used only to surround
arguments to certain commands. To put one of these special characters
into the document, put an @ character in front of it, like this: @@,
, and @}.

It is customary in TeX to use doubled single-quote characters to
begin and end quotations: ‘ ‘ and ’ ’ (but without a space between the
two single-quote characters). This convention should be followed in
Texinfo files. TeX converts doubled single-quote characters to left-
and right-hand doubled quotation marks and Info converts doubled
single-quote characters to ascii double-quotes: ‘ ‘ and ’ ’ to " .

Use three hyphens in a row, ---, for a dash--like this. In TeX, a
single or even a double hyphen produces a printed dash that is shorter
than the usual typeset dash. Info reduces three hyphens to two for
display on the screen.

texinfo 16 / 239

To prevent a paragraph from being indented in the printed manual, put
the command @noindent on a line by itself before the paragraph.

If you mark off a region of the Texinfo file with the @iftex and
@end iftex commands, that region will appear only in the printed

copy; in that region, you can use certain commands borrowed from
PlainTeX that you cannot use in Info. Likewise, if you mark off a
region with the @ifinfo and @end ifinfo commands, that region will
appear only in the Info file; in that region, you can use Info commands
that you cannot use in TeX. (See Conditionals.)

Caution: Do not use tabs in a Texinfo file! TeX uses
variable-width fonts, which means that it cannot predefine a tab
to work in all circumstances. Consequently, TeX treats tabs like
single spaces, and that is not what they look like.

To avoid this problem, Texinfo mode causes GNU Emacs to insert
multiple spaces when you press the TAB key.

Also, you can run untabify in Emacs to convert tabs in a region to
multiple spaces.

1.13 texinfo.guide/Comments

Comments
========

You can write comments in a Texinfo file that will not appear in
either the Info file or the printed manual by using the @comment
command (which may be abbreviated to @c). Such comments are for the
person who reads the Texinfo file. All the text on a line that follows
either @comment or @c is a comment; the rest of the line does not
appear in either the Info file or the printed manual. (Often, you can
write the @comment or @c in the middle of a line, and only the text
that follows after the @comment or @c command does not appear; but
some commands, such as @settitle and @setfilename, work on a whole
line. You cannot use @comment or @c in a line beginning with such a
command.)

You can write long stretches of text that will not appear in either
the Info file or the printed manual by using the @ignore and @end
ignore commands. Write each of these commands on a line of its own,
starting each command at the beginning of the line. Text between these
two commands does not appear in the processed output. You can use
applies to the Texinfo source file of a document, but not to the Info
or printed version of the document.

1.14 texinfo.guide/Minimum

texinfo 17 / 239

What a Texinfo File Must Have
=============================

By convention, the names of Texinfo files end with one of the
extensions .texinfo, .texi, or .tex. The longer extension is preferred
since it describes more clearly to a human reader the nature of the
file. The shorter extensions are for operating systems that cannot
handle long file names.

In order to be made into a printed manual and an Info file, a Texinfo
file must begin with lines like this:

\input texinfo
@setfilename INFO-FILE-NAME
@settitle NAME-OF-MANUAL

The contents of the file follow this beginning, and then you must end a
Texinfo file with a line like this:

@bye

The \input texinfo line tells TeX to use the texinfo.tex file, which
tells TeX how to translate the Texinfo @-commands into TeX typesetting
commands. (Note the use of the backslash, \ ; this is correct for
TeX.) The @setfilename line provides a name for the Info file and the
@settitle line specifies a title for the page headers (or footers)

of the printed manual.

The @bye line at the end of the file on a line of its own tells the
formatters that the file is ended and to stop formatting.

Usually, you will not use quite such a spare format, but will include
mode setting and start-of-header and end-of-header lines at the
beginning of a Texinfo file, like this:

\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename INFO-FILE-NAME
@settitle NAME-OF-MANUAL
@c %**end of header

In the first line, -*-texinfo-*- causes Emacs to switch into Texinfo
mode when you edit the file.

The @c lines which surround the @setfilename and @settitle lines
are optional, but you need them in order to run TeX or Info on just
part of the file. (See Start of Header, for more information.)

Furthermore, you will usually provide a Texinfo file with a title
page, indices, and the like. But the minimum, which can be useful for
short documents, is just the three lines at the beginning and the one
line at the end.

texinfo 18 / 239

1.15 texinfo.guide/Six Parts

Six Parts of a Texinfo File
===========================

Generally, a Texinfo file contains more than the minimal beginning
and end--it usually contains six parts:

1. Header
The Header names the file, tells TeX which definitions’ file to
use, and performs other "housekeeping" tasks.

2. Summary Description and Copyright
The Summary Description and Copyright segment describes the
document and contains the copyright notice and copying permissions
for the Info file. The segment must be enclosed between @ifinfo
and @end ifinfo commands so that the formatters place it only in
the Info file.

3. Title and Copyright
The Title and Copyright segment contains the title and copyright
pages and copying permissions for the printed manual. The segment
must be enclosed between @titlepage and @end titlepage commands.
The title and copyright page appear only in the printed manual.

4. ‘Top’ Node and Master Menu
The Master Menu contains a complete menu of all the nodes in the
whole Info file. It appears only in the Info file, in the ‘Top’
node.

5. Body
The Body of the document may be structured like a traditional book
or encyclopedia or it may be free form.

6. End
The End contains commands for printing indices and generating the
table of contents, and the @bye command on a line of its own.

1.16 texinfo.guide/Short Sample

A Short Sample Texinfo File
===========================

Here is a complete but very short Texinfo file, in 6 parts. The first
three parts of the file, from \input texinfo through to @end
titlepage, look more intimidating than they are. Most of the
material is standard boilerplate; when you write a manual, simply
insert the names for your own manual in this segment. (See
Beginning a File.)

In the following, the sample text is indented; comments on it are not.
The complete file, without any comments, is shown in See
Sample Texinfo File.

texinfo 19 / 239

Part 1: Header

The header does not appear in either the Info file or the
printed output. It sets various parameters, including the
name of the Info file and the title used in the header.

\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename sample.info
@settitle Sample Document
@c %**end of header

@setchapternewpage odd

Part 2: Summary Description and Copyright

The summary description and copyright segment does not
appear in the printed document.

@ifinfo
This is a short example of a complete Texinfo file.

Copyright @copyright{} 1990 Free Software Foundation, Inc.
@end ifinfo

Part 3: Titlepage and Copyright

The titlepage segment does not appear in the Info file.

@titlepage
@sp 10
@comment The title is printed in a large font.
@center @titlefont{Sample Title}

@c The following two commands start the copyright page.
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1990 Free Software Foundation, Inc.
@end titlepage

Part 4: ‘Top’ Node and Master Menu

The ‘Top’ node contains the master menu for the Info file.
Since a printed manual uses a table of contents rather than
a menu, the master menu appears only in the Info file.

@node Top, First Chapter, (dir), (dir)
@comment node-name, next, previous, up

@menu

* First Chapter:: The first chapter is the
only chapter in this sample.

texinfo 20 / 239

* Concept Index:: This index has two entries.
@end menu

Part 5: The Body of the Document

The body segment contains all the text of the document, but not the
indices or table of contents. This example illustrates a node and a
chapter containing an enumerated list.

@node First Chapter, Concept Index, Top, Top
@comment node-name, next, previous, up
@chapter First Chapter
@cindex Sample index entry

This is the contents of the first chapter.
@cindex Another sample index entry

Here is a numbered list.

@enumerate
@item
This is the first item.

@item
This is the second item.
@end enumerate

The @code{makeinfo} and @code{texinfo-format-buffer}
commands transform a Texinfo file such as this into
an Info file; and @TeX{} typesets it for a printed
manual.

Part 6: The End of the Document

The end segment contains commands both for generating an index in a node
and unnumbered chapter of its own and for generating the table of
contents; and it contains the @bye command that marks the end of the
document.

@node Concept Index, , First Chapter, Top
@comment node-name, next, previous, up
@unnumbered Concept Index

@printindex cp

@contents
@bye

The Results

Here is what the contents of the first chapter of the sample look
like:

This is the contents of the first chapter.

texinfo 21 / 239

Here is a numbered list.

1. This is the first item.

2. This is the second item.

The makeinfo and texinfo-format-buffer commands transform a
Texinfo file such as this into an Info file; and TeX typesets it
for a printed manual.

1.17 texinfo.guide/Acknowledgements

Acknowledgements
================

Richard M. Stallman wrote Edition 1.0 of this manual.
Robert J. Chassell revised and extended it, starting with Edition 1.1.

Our thanks go out to all who helped improve this work, particularly to
Francois Pinard and David D. Zuhn, who tirelessly recorded and reported
mistakes and obscurities; our special thanks go to Melissa Weisshaus
for her frequent and often tedious reviews of nearly similar editions.
Our mistakes are our own.

Please send suggestions and corrections to:

Internet address:
bug-texinfo@prep.ai.mit.edu

Please include the manual’s edition number in your messages.

1.18 texinfo.guide/Texinfo Mode

Using Texinfo Mode

You may edit a Texinfo file with any text editor you choose. A
Texinfo file is no different from any other ascii file. However, GNU
Emacs comes with a special mode, called Texinfo mode, that provides
Emacs commands and tools to help ease your work.

This chapter describes features of GNU Emacs’ Texinfo mode but not any
features of the Texinfo formatting language. If you are reading this
manual straight through from the beginning, you may want to skim through
this chapter briefly and come back to it after reading succeeding
chapters which describe the Texinfo formatting language in detail.

Texinfo Mode Overview How Texinfo mode can help you.

texinfo 22 / 239

Emacs Editing Texinfo mode adds to GNU Emacs’ general
purpose editing features.

Inserting How to insert frequently used @-commands.
Showing the Structure How to show the structure of a file.
Updating Nodes and Menus How to update or create new nodes and menus.
Info Formatting How to format for Info.
Printing How to format and print part or all of a file.
Texinfo Mode Summary Summary of all the Texinfo mode commands.

1.19 texinfo.guide/Texinfo Mode Overview

Texinfo Mode Overview
=====================

Texinfo mode provides special features for working with Texinfo files:

* Insert frequently used @-commands.

* Automatically create @node lines.

* Show the structure of a Texinfo source file.

* Automatically create or update the ‘Next’,
‘Previous’, and ‘Up’ pointers of a node.

* Automatically create or update menus.

* Automatically create a master menu.

* Format a part or all of a file for Info.

* Typeset and print part or all of a file.

Perhaps the two most helpful features are those for inserting
frequently used @-commands and for creating node pointers and menus.

1.20 texinfo.guide/Emacs Editing

The Usual GNU Emacs Editing Commands
====================================

In most cases, the usual Text mode commands work the same in Texinfo
mode as they do in Text mode. Texinfo mode adds new editing commands
and tools to GNU Emacs’ general purpose editing features. The major
difference concerns filling. In Texinfo mode, the paragraph separation
variable and syntax table are redefined so that Texinfo commands that
should be on lines of their own are not inadvertently included in
paragraphs. Thus, the M-q (fill-paragraph) command will refill a
paragraph but not mix an indexing command on a line adjacent to it into
the paragraph.

texinfo 23 / 239

In addition, Texinfo mode sets the page-delimiter variable to the
value of texinfo-chapter-level-regexp; by default, this is a regular
expression matching the commands for chapters and their equivalents,
such as appendices. With this value for the page delimiter, you can
jump from chapter title to chapter title with the C-x] (forward-page)
and C-x [(backward-page) commands and narrow to a chapter with the C-x
p (narrow-to-page) command. (See Pages, for details about the page
commands.)

You may name a Texinfo file however you wish, but the convention is to
end a Texinfo file name with one of the three extensions .texinfo,
.texi, or .tex. A longer extension is preferred, since it is
explicit, but a shorter extension may be necessary for operating
systems that limit the length of file names. GNU Emacs automatically
enters Texinfo mode when you visit a file with a .texinfo or .texi
extension. Also, Emacs switches to Texinfo mode when you visit a file
that has -*-texinfo-*- in its first line. If ever you are in another
mode and wish to switch to Texinfo mode, type M-x texinfo-mode.

Like all other Emacs features, you can customize or enhance Texinfo
mode as you wish. In particular, the keybindings are very easy to
change. The keybindings described here are the default or standard
ones.

1.21 texinfo.guide/Inserting

Inserting Frequently Used Commands
==================================

Texinfo mode provides commands to insert various frequently used
keystrokes.

The insert commands are invoked by typing C-c twice and then the
first letter of the @-command:

C-c C-c c
M-x texinfo-insert-@code

Insert @code{} and put the cursor between the braces.

C-c C-c d
M-x texinfo-insert-@dfn

Insert @dfn{} and put the cursor between the braces.

C-c C-c e
M-x texinfo-insert-@end

Insert @end and attempt to insert the correct following word,
such as example or table. (This command does not handle nested
lists correctly, but inserts the word appropriate to the
immediately preceding list.)

C-c C-c i
M-x texinfo-insert-@item

Insert @item and put the cursor at the beginning of the next line.

texinfo 24 / 239

C-c C-c k
M-x texinfo-insert-@kbd

Insert @kbd{} and put the cursor between the braces.

C-c C-c n
M-x texinfo-insert-@node

Insert @node and a comment line listing the sequence for the
‘Next’, ‘Previous’, and ‘Up’ nodes. Leave point after the @node.

C-c C-c o
M-x texinfo-insert-@noindent

Insert @noindent and put the cursor at the beginning of the next
line.

C-c C-c s
M-x texinfo-insert-@samp

Insert @samp{} and put the cursor between the braces.

C-c C-c t
M-x texinfo-insert-@table

Insert @table followed by a SPC and leave the cursor after the
SPC.

C-c C-c v
M-x texinfo-insert-@var

Insert @var{} and put the cursor between the braces.

C-c C-c x
M-x texinfo-insert-@example

Insert @example and put the cursor at the beginning of the next
line.

C-c C-c {
M-x texinfo-insert-braces

Insert {} and put the cursor between the braces.

C-c C-c }
C-c C-c]
M-x up-list

Move from between a pair of braces forward past the closing brace.
Typing C-c C-c] is easier than typing C-c C-c }, which is,
however, more mnemonic; hence the two keybindings. (Also, you can
move out from between braces by typing C-f.)

To put a command such as @code{...} around an existing word,
position the cursor in front of the word and type C-u 1 C-c C-c c.
This makes it easy to edit existing plain text. The value of the
prefix argument tells Emacs how many words following point to include
between braces--1 for one word, 2 for two words, and so on. Use a
negative argument to enclose the previous word or words. If you do not
specify a prefix argument, Emacs inserts the @-command string and
positions the cursor between the braces. This feature works only for
those @-commands that operate on a word or words within one line, such
as @kbd and @var.

This set of insert commands was created after analyzing the frequency

texinfo 25 / 239

with which different @-commands are used in the ‘GNU Emacs Manual’ and
the ‘GDB Manual’. If you wish to add your own insert commands, you can
bind a keyboard macro to a key, use abbreviations, or extend the code
in texinfo.el.

C-c C-c C-d (texinfo-start-menu-description) is an insert command
that works differently from the other insert commands. It inserts a
node’s section or chapter title in the space for the description in a
menu entry line. (A menu entry has three parts, the entry name, the
node name, and the description. Only the node name is required, but a
description helps explain what the node is about. See
The Parts of a Menu.)

To use texinfo-start-menu-description, position point in a menu entry
line and type C-c C-c C-d. The command looks for and copies the title
that goes with the node name, and inserts the title as a description;
it positions point at beginning of the inserted text so you can edit
it. The function does not insert the title if the menu entry line
already contains a description.

This command is only an aid to writing descriptions; it does not do
the whole job. You must edit the inserted text since a title tends to
use the same words as a node name but a useful description uses
different words.

1.22 texinfo.guide/Showing the Structure

Showing the Section Structure of a File
=======================================

You can show the section structure of a Texinfo file by using the C-c
C-s command (texinfo-show-structure). This command shows the section
structure of a Texinfo file by listing the lines that begin with the
amounts to a table of contents. These lines are displayed in another
buffer called the *Occur* buffer. In that buffer, you can position the
cursor over one of the lines and use the C-c C-c command
(occur-mode-goto-occurrence), to jump to the corresponding spot in
the Texinfo file.

C-c C-s
M-x texinfo-show-structure

Show the @chapter, @section, and such lines of a Texinfo file.

C-c C-c
M-x occur-mode-goto-occurrence

Go to the line in the Texinfo file corresponding to the line under
the cursor in the *Occur* buffer.

If you call texinfo-show-structure with a prefix argument by typing
C-u C-c C-s, it will list not only those lines with the @-commands
for @chapter, @section, and the like, but also the @node lines.
(This is how the texinfo-show-structure command worked without an
argument in the first version of Texinfo. It was changed because @node
lines clutter up the *Occur* buffer and are usually not needed.) You

texinfo 26 / 239

can use texinfo-show-structure with a prefix argument to check whether
the ‘Next’, ‘Previous’, and ‘Up’ pointers of an @node line are correct.

Often, when you are working on a manual, you will be interested only
in the structure of the current chapter. In this case, you can mark
off the region of the buffer that you are interested in by using the
C-x n n (narrow-to-region) command and texinfo-show-structure will
work on only that region. To see the whole buffer again, use C-x n w
(widen). (See Narrowing, for more information about the narrowing
commands.)

In addition to providing the texinfo-show-structure command, Texinfo
mode sets the value of the page delimiter variable to match the
chapter-level @-commands. This enables you to use the C-x]
(forward-page) and C-x [(backward-page) commands to move forward
and backward by chapter, and to use the C-x p (narrow-to-page) command
to narrow to a chapter. See Pages, for more information about the page
commands.

1.23 texinfo.guide/Updating Nodes and Menus

Updating Nodes and Menus
========================

Texinfo mode provides commands for automatically creating or updating
menus and node pointers. The commands are called "update" commands
because their most frequent use is for updating a Texinfo file after
you have worked on it; but you can use them to insert the ‘Next’,
‘Previous’, and ‘Up’ pointers into an @node line that has none and to
create menus in a file that has none.

If you do not use the updating commands, you need to write menus and
node pointers by hand, which is a tedious task.

Updating Commands Five major updating commands.
Updating Requirements How to structure a Texinfo file for

using the updating command.
Other Updating Commands How to indent descriptions, insert

missing nodes lines, and update
nodes in sequence.

1.24 texinfo.guide/Updating Commands

The Updating Commands

You can use the updating commands

* to insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a

texinfo 27 / 239

node,

* to insert or update the menu for a section, and

* to create a master menu for a Texinfo source file.

You can also use the commands to update all the nodes and menus in a
region or in a whole Texinfo file.

The updating commands work only with conventional Texinfo files, which
are structured hierarchically like books. In such files, a structuring
command line must follow closely after each @node line, except for the
‘Top’ @node line. (A structuring command line is a line beginning
with @chapter, @section, or other similar command.)

You can write the structuring command line on the line that follows
immediately after an @node line or else on the line that follows after
a single @comment line or a single @ifinfo line. You cannot
interpose more than one line between the @node line and the
structuring command line; and you may interpose only an @comment line
or an @ifinfo line.

Commands which work on a whole buffer require that the ‘Top’ node be
followed by a node with an @chapter or equivalent-level command. Note
that the menu updating commands will not create a main or master menu
for a Texinfo file that has only @chapter-level nodes! The menu
updating commands only create menus within nodes for lower level nodes.
To create a menu of chapters, you must provide a ‘Top’ node.

The menu updating commands remove menu entries that refer to other
Info files since they do not refer to nodes within the current buffer.
This is a deficiency. Rather than use menu entries, you can use cross
references to refer to other Info files. None of the updating commands
affect cross references.

Texinfo mode has five updating commands that are used most often: two
are for updating the node pointers or menu of a single node (or a
region); two are for updating every node pointer and menu in a file;
and one, the texinfo-master-menu command, is for creating a master menu
for a complete file, and optionally, for updating every node and menu
in the whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-c C-u m
M-x texinfo-master-menu

Create or update a master menu that includes all the other menus
(incorporating the descriptions from pre-existing menus, if any).

With an argument (prefix argument, C-u, if interactive), first
create or update all the nodes and all the regular menus in the
buffer before constructing the master menu. (See
The Top Node and Master Menu, for more about a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a
‘Top’ node and at least one subsequent node.

texinfo 28 / 239

After extensively editing a Texinfo file, you can type the
following:

C-u M-x texinfo-master-menu
or

C-u C-c C-u m

This updates all the nodes and menus completely and all at once.

The other major updating commands do smaller jobs and are designed for
the person who updates nodes and menus as he or she writes a Texinfo
file.

The commands are:

C-c C-u C-n
M-x texinfo-update-node

Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node that
point is within (i.e., for the @node line preceding point). If
the @node line has pre-existing ‘Next’, ‘Previous’, or ‘Up’
pointers in it, the old pointers are removed and new ones inserted.
With an argument (prefix argument, C-u, if interactive), this
command updates all @node lines in the region (which is the text
between point and mark).

C-c C-u C-m
M-x texinfo-make-menu

Create or update the menu in the node that point is within. With
an argument (C-u as prefix argument, if interactive), the command
makes or updates menus for the nodes which are either within or a
part of the region.

Whenever texinfo-make-menu updates an existing menu, the
descriptions from that menu are incorporated into the new menu.
This is done by copying descriptions from the existing menu to the
entries in the new menu that have the same node names. If the
node names are different, the descriptions are not copied to the
new menu.

C-c C-u C-e
M-x texinfo-every-node-update

Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for
every node in the buffer.

C-c C-u C-a
M-x texinfo-all-menus-update

Create or update all the menus in the buffer. With an argument
(C-u as prefix argument, if interactive), first insert or
update all the node pointers before working on the menus.

If a master menu exists, the texinfo-all-menus-update command
updates it; but the command does not create a new master menu if
none already exists. (Use the texinfo-master-menu command for
that.)

When working on a document that does not merit a master menu, you
can type the following:

texinfo 29 / 239

C-u C-c C-u C-a
or

C-u M-x texinfo-all-menus-update

This updates all the nodes and menus.

The texinfo-column-for-description variable specifies the column to
which menu descriptions are indented. By default, the value is 32
although it is often useful to reduce it to as low as 24. You can set
the variable with the M-x edit-options command (see
Editing Variable Values) or with the M-x set-variable command (see
Examining and Setting Variables).

Also, the texinfo-indent-menu-description command may be used to
indent existing menu descriptions to a specified column. Finally, if
you wish, you can use the texinfo-insert-node-lines command to insert
missing @node lines into a file. (See Other Updating Commands, for
more information.)

1.25 texinfo.guide/Updating Requirements

Updating Requirements

To use the updating commands, you must organize the Texinfo file
hierarchically with chapters, sections, subsections, and the like.
When you construct the hierarchy of the manual, do not ‘jump down’ more
than one level at a time: you can follow the ‘Top’ node with a chapter,
but not with a section; you can follow a chapter with a section, but
not with a subsection. However, you may ‘jump up’ any number of levels
at one time--for example, from a subsection to a chapter.

Each @node line, with the exception of the line for the ‘Top’ node,
must be followed by a line with a structuring command such as

Each @node line/structuring-command line combination must look
either like this:

@node Comments, Minimum, Conventions, Overview
@comment node-name, next, previous, up
@section Comments

or like this (without the @comment line):

@node Comments, Minimum, Conventions, Overview
@section Comments

In this example, ‘Comments’ is the name of both the node and the
section. The next node is called ‘Minimum’ and the previous node is
called ‘Conventions’. The ‘Comments’ section is within the ‘Overview’
node, which is specified by the ‘Up’ pointer. (Instead of an @comment
line, you can write an @ifinfo line.)

If a file has a ‘Top’ node, it must be called top or Top and be the

texinfo 30 / 239

first node in the file.

The menu updating commands create a menu of sections within a chapter,
a menu of subsections within a section, and so on. This means that you
must have a ‘Top’ node if you want a menu of chapters.

Incidentally, the makeinfo command will create an Info file for a
hierarchically organized Texinfo file that lacks ‘Next’, ‘Previous’ and
‘Up’ pointers. Thus, if you can be sure that your Texinfo file will be
formatted with makeinfo, you have no need for the ‘update node’
commands. (See Creating an Info File, for more information about
makeinfo.) However, both makeinfo and the texinfo-format-...
commands require that you insert menus in the file.

1.26 texinfo.guide/Other Updating Commands

Other Updating Commands

In addition to the five major updating commands, Texinfo mode
possesses several less frequently used updating commands:

M-x texinfo-insert-node-lines
Insert @node lines before the @chapter, @section, and other
sectioning commands wherever they are missing throughout a region
in a Texinfo file.

With an argument (C-u as prefix argument, if interactive), the
texinfo-insert-node-lines command not only inserts @node
lines but also inserts the chapter or section titles as the names
of the corresponding nodes. In addition, it inserts the titles as
node names in pre-existing @node lines that lack names. Since
node names should be more concise than section or chapter titles,
you must manually edit node names so inserted.

For example, the following marks a whole buffer as a region and
inserts @node lines and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines

(Note that this command inserts titles as node names in @node
lines; the texinfo-start-menu-description command (see
Inserting Frequently Used Commands) inserts titles as descriptions
in menu entries, a different action. However, in both cases, you
need to edit the inserted text.)

M-x texinfo-multiple-files-update
Update nodes and menus in a document built from several separate
files. With C-u as a prefix argument, create and insert a master
menu in the outer file. With a numeric prefix argument, such as
C-u 2, first update all the menus and all the ‘Next’,
‘Previous’, and ‘Up’ pointers of all the included files before
creating and inserting a master menu in the outer file. The
texinfo-multiple-files-update command is described in the

texinfo 31 / 239

appendix on @include files. See texinfo-multiple-files-update.

M-x texinfo-indent-menu-description
Indent every description in the menu following point to the
specified column. You can use this command to give yourself more
space for descriptions. With an argument (C-u as prefix argument,
if interactive), the texinfo-indent-menu-description command
indents every description in every menu in the region. However,
this command does not indent the second and subsequent lines of a
multi-line description.

M-x texinfo-sequential-node-update
Insert the names of the nodes immediately following and preceding
the current node as the ‘Next’ or ‘Previous’ pointers regardless
of those nodes’ hierarchical level. This means that the ‘Next’
node of a subsection may well be the next chapter. Sequentially
ordered nodes are useful for novels and other documents that you
read through sequentially. (However, in Info, the g* RET command
lets you look through the file sequentially, so sequentially
ordered nodes are not strictly necessary.) With an argument
(prefix argument, if interactive), the
texinfo-sequential-node-update command sequentially updates
all the nodes in the region.

1.27 texinfo.guide/Info Formatting

Formatting for Info
===================

Texinfo mode provides several commands for formatting part or all of a
Texinfo file for Info. Often, when you are writing a document, you
want to format only part of a file--that is, a region.

You can use either the texinfo-format-region or the makeinfo-region
command to format a region:

C-c C-e C-r
M-x texinfo-format-region
C-c C-m C-r
M-x makeinfo-region

Format the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer
command to format a whole buffer:

C-c C-e C-b
M-x texinfo-format-buffer
C-c C-m C-b
M-x makeinfo-buffer

Format the current buffer for Info.

For example, after writing a Texinfo file, you can type the following:

C-u C-c C-u m

texinfo 32 / 239

or
C-u M-x texinfo-master-menu

This updates all the nodes and menus. Then type the following to create
an Info file:

C-c C-m C-b
or

M-x makeinfo-buffer

For the Info formatting commands to work, the file must include a
line that has @setfilename in its header.

Not all systems support the makeinfo-based formatting commands.

See Create an Info File, for details about Info formatting.

1.28 texinfo.guide/Printing

Formatting and Printing
=======================

Typesetting and printing a Texinfo file is a multi-step process in
which you first create a file for printing (called a dvi file), and then
print the file. Optionally, you may also create indices. To do this,
you must run the texindex command after first running the tex
typesetting command; and then you must run the tex command again. Or
else run the texi2dvi command which automatically creates indices as
needed.

Often, when you are writing a document, you want to typeset and print
only part of a file to see what it will look like. You can use the
texinfo-tex-region and related commands for this purpose. Use the
texinfo-tex-buffer command to format all of a buffer.

C-c C-t C-b
M-x texinfo-tex-buffer

Run texi2dvi on the buffer. In addition to running TeX on the
buffer, this command automatically creates or updates indices as
needed.

C-c C-t C-r
M-x texinfo-tex-region

Run TeX on the region.

C-c C-t C-i
M-x texinfo-texindex

Run texindex to sort the indices of a Texinfo file formatted with
texinfo-tex-region. The texinfo-tex-region command does not
run texindex automatically; it only runs the tex typesetting
command. You must run the texinfo-tex-region command a second
time after sorting the raw index files with the texindex command.
(Usually, you do not format an index when you format a region,
only when you format a buffer. Now that the texi2dvi command

texinfo 33 / 239

exists, there is no little need for this command.)

C-c C-t C-p
M-x texinfo-tex-print

Print the file (or the part of the file) previously formatted with
texinfo-tex-buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must
start with a \input texinfo line and must include an @settitle line.
The file must end with @bye on a line by itself. (When you use
texinfo-tex-region, you must surround the @settitle line with
start-of-header and end-of-header lines.)

See Format-Print Hardcopy, for a description of the other TeX related
commands, such as tex-show-print-queue.

1.29 texinfo.guide/Texinfo Mode Summary

Texinfo Mode Summary
====================

In Texinfo mode, each set of commands has default keybindings that
begin with the same keys. All the commands that are custom-created for
Texinfo mode begin with C-c. The keys are somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the
first letter of the @-command to be inserted. (It might make more
sense mnemonically to use C-c C-i, for ‘custom insert’, but C-c C-c is
quick to type.)

C-c C-c c Insert @code.
C-c C-c d Insert @dfn.
C-c C-c e Insert @end.
C-c C-c i Insert @item.
C-c C-c n Insert @node.
C-c C-c s Insert @samp.
C-c C-c v Insert @var.
C-c C-c { Insert braces.
C-c C-c]
C-c C-c } Move out of enclosing braces.

C-c C-c C-d Insert a node’s section title
in the space for the description
in a menu entry line.

Show Structure

The texinfo-show-structure command is often used within a narrowed
region.

texinfo 34 / 239

C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be
used to update every node and menu in a file as well.

C-c C-u m
M-x texinfo-master-menu

Create or update a master menu.

C-u C-c C-u m With C-u as a prefix argument, first
create or update all nodes and regular
menus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then
either C-n for texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either
C-m for texinfo-make-menu or C-a for texinfo-all-menus-update.
To update both nodes and menus at the same time, precede C-c C-u C-a
with C-u.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all
menus in a buffer.

C-u C-c C-u C-a With C-u as a prefix argument,
first create or update all nodes and
then create or update all menus.

Format for Info

The Info formatting commands that are written in Emacs Lisp are
invoked by typing C-c C-e and then either C-r for a region or C-b for
the whole buffer.

The Info formatting commands that are written in C and based on the
makeinfo program are invoked by typing C-c C-m and then either C-r
for a region or C-b for the whole buffer.

Use the texinfo-format... commands:

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

texinfo 35 / 239

Use makeinfo:

C-c C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-l Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TeX typesetting and printing commands are invoked by typing C-c
C-t and then another control command: C-r for texinfo-tex-region, C-b
for texinfo-tex-buffer, and so on.

C-c C-t C-r Run TeX on the region.
C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-i Run texindex.
C-c C-t C-p Print the dvi file.
C-c C-t C-q Show the print queue.
C-c C-t C-d Delete a job from the print queue.
C-c C-t C-k Kill the current TeX formatting job.
C-c C-t C-x Quit a currently stopped TeX formatting job.
C-c C-t C-l Recenter the output buffer.

Other Updating Commands

The ‘other updating commands’ do not have standard keybindings because
they are rarely used.

M-x texinfo-insert-node-lines
Insert missing @node lines in region.
With C-u as a prefix argument,
use section titles as node names.

M-x texinfo-multiple-files-update
Update a multi-file document.
With C-u 2 as a prefix argument,
create or update all nodes and menus
in all included files first.

M-x texinfo-indent-menu-description
Indent descriptions.

M-x texinfo-sequential-node-update
Insert node pointers in strict sequence.

1.30 texinfo.guide/Beginning a File

Beginning a Texinfo File

Certain pieces of information must be provided at the beginning of a

texinfo 36 / 239

Texinfo file, such as the name of the file and the title of the
document.

Four Parts Four parts begin a Texinfo file.
Sample Beginning Here is a sample beginning for a Texinfo file.
Header The very beginning of a Texinfo file.
Info Summary and Permissions Summary and copying permissions for Info.
Titlepage & Copyright Page Creating the title and copyright pages.
The Top Node Creating the ‘Top’ node and master menu.
Software Copying Permissions Ensure that you and others continue to

have the right to use and share software.

1.31 texinfo.guide/Four Parts

Four Parts Begin a File
=======================

Generally, the beginning of a Texinfo file has four parts:

1. The header, delimited by special comment lines, that includes the
commands for naming the Texinfo file and telling TeX what
definitions’ file to use when processing the Texinfo file.

2. A short statement of what the file is about, with a copyright
notice and copying permissions. This is enclosed in @ifinfo and
@end ifinfo commands so that the formatters place it only in the
Info file.

3. A title page and copyright page, with a copyright notice and
copying permissions. This is enclosed between @titlepage and
@end titlepage commands. The title and copyright page appear only
in the printed manual.

4. The ‘Top’ node that contains a menu for the whole Info file. The
contents of this node appear only in the Info file.

Also, optionally, you may include the copying conditions for a program
and a warranty disclaimer. The copying section will be followed by an
introduction or else by the first chapter of the manual.

Since the copyright notice and copying permissions for the Texinfo
document (in contrast to the copying permissions for a program) are in
parts that appear only in the Info file or only in the printed manual,
this information must be given twice.

1.32 texinfo.guide/Sample Beginning

Sample Texinfo File Beginning
=============================

texinfo 37 / 239

The following sample shows what is needed.

\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename NAME-OF-INFO-FILE
@settitle NAME-OF-MANUAL
@setchapternewpage odd
@c %**end of header

@ifinfo
This file documents ...

Copyright YEAR COPYRIGHT-OWNER

Permission is granted to ...
@end ifinfo

@c This title page illustrates only one of the
@c two methods of forming a title page.

@titlepage
@title NAME-OF-MANUAL-WHEN-PRINTED
@subtitle SUBTITLE-IF-ANY
@subtitle SECOND-SUBTITLE
@author AUTHOR

@c The following two commands
@c start the copyright page.
@page
@vskip 0pt plus 1filll
Copyright @copyright{} YEAR COPYRIGHT-OWNER

Published by ...

Permission is granted to ...
@end titlepage

@node Top, Overview, (dir), (dir)

@ifinfo
This document describes ...

This document applies to version ...
of the program named ...
@end ifinfo

@menu

* Copying:: Your rights and freedoms.

* First Chapter:: Getting started ...

* Second Chapter:: ...
...
...

@end menu

@node First Chapter, Second Chapter, top, top
@comment node-name, next, previous, up

texinfo 38 / 239

@chapter First Chapter
@cindex Index entry for First Chapter

1.33 texinfo.guide/Header

The Texinfo File Header
=======================

Texinfo files start with at least three lines that provide Info and
TeX with necessary information. These are the \input texinfo line, the
@settitle line, and the @setfilename line. If you want to run

TeX on just a part of the Texinfo File, you must write the @settitle
and @setfilename lines between start-of-header and end-of-header lines.

Thus, the beginning of a Texinfo file looks like this:

\input texinfo @c -*-texinfo-*-
@setfilename sample.info
@settitle Sample Document

or else like this:

\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename sample.info
@settitle Sample Document
@c %**end of header

First Line The first line of a Texinfo file.
Start of Header Formatting a region requires this.
setfilename Tell Info the name of the Info file.
settitle Create a title for the printed work.
setchapternewpage Start chapters on right-hand pages.
paragraphindent An option to specify paragraph indentation.
End of Header Formatting a region requires this.

1.34 texinfo.guide/First Line

The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TeX must begin
with a line that looks like this:

\input texinfo @c -*-texinfo-*-

This line serves two functions:

1. When the file is processed by TeX, the \input texinfo command

texinfo 39 / 239

tells TeX to load the macros needed for processing a Texinfo file.
These are in a file called texinfo.tex, which is usually located
in the /usr/lib/tex/macros directory. TeX uses the backslash, \ ,
to mark the beginning of a command, just as Texinfo uses @. The
texinfo.tex file causes the switch from \ to @; before the
switch occurs, TeX requires \ , which is why it appears at the
beginning of the file.

2. When the file is edited in GNU Emacs, the -*-texinfo-*- mode
specification tells Emacs to use Texinfo mode.

1.35 texinfo.guide/Start of Header

Start of Header

Write a start-of-header line on the second line of a Texinfo file.
Follow the start-of-header line with @setfilename and @settitle lines
and, optionally, with other command lines, such as @smallbook or

With these lines, you can format part of a Texinfo file for Info or
typeset part for printing.

A start-of-header line looks like this:

@c %**start of header

The odd string of characters, %**, is to ensure that no other comment
is accidentally taken for a start-of-header line.

1.36 texinfo.guide/setfilename

@setfilename

In order to be made into an Info file, a Texinfo file must contain a
line that looks like this:

@setfilename INFO-FILE-NAME

Write the @setfilename command at the beginning of a line and follow
it on the same line by the Info file name. Do not write anything else
on the line; anything on the line after the command is considered part
of the file name, including a comment.

The @setfilename line specifies the name of the Info file to be
generated. This name should be different from the name of the Texinfo
file. The convention is to write a name with a .info extension, to
produce an Info file name such as texinfo.info.

Some operating systems cannot handle long file names. You can run

texinfo 40 / 239

into a problem even when the file name you specify is itself short
enough. This occurs because the Info formatters split a long Info file
into short indirect subfiles, and name them by appending ‘-1’, ‘-2’,
..., ‘-10’, ‘-11’, and so on, to the original file name. (See
Tag Files and Split Files.) The subfile name texinfo.info-10, for
example, is too long for some systems; so the Info file name for this
document is actually texinfo rather than texinfo.info.

The Info formatting commands ignore everything written before the
\input line) does not need to be commented out. The @setfilename
line is ignored when you typeset a printed manual.

1.37 texinfo.guide/settitle

@settitle

In order to be made into a printed manual, a Texinfo file must contain
a line that looks like this:

@settitle TITLE

Write the @settitle command at the beginning of a line and follow it
on the same line by the title. This tells TeX the title to use in a
header or footer. Do not write anything else on the line; anything on
the line after the command is considered part of the title, including a
comment.

Conventionally, when TeX formats a Texinfo file for double-sided
output, the title is printed in the left-hand (even-numbered) page
headings and the current chapter title is printed in the right-hand
(odd-numbered) page headings. (TeX learns the title of each chapter
from each @chapter command.) Page footers are not printed.

Even if you are printing in a single-sided style, TeX looks for an
heading.

The @settitle command should precede everything that generates
actual output in TeX.

Although the title in the @settitle command is usually the same as
the title on the title page, it does not affect the title as it appears
on the title page. Thus, the two do not need not match exactly; and
the title in the @settitle command can be a shortened or expanded
version of the title as it appears on the title page. (See @titlepage.)

TeX prints page headings only for that text that comes after the
for more information.)

You may, if you wish, create your own, customized headings and
footings. See Page Headings, for a detailed discussion of this process.

texinfo 41 / 239

1.38 texinfo.guide/setchapternewpage

@setchapternewpage

In a book or a manual, text is usually printed on both sides of the
paper, chapters start on right-hand pages, and right-hand pages have
odd numbers. But in short reports, text often is printed only on one
side of the paper. Also in short reports, chapters sometimes do not
start on new pages, but are printed on the same page as the end of the
preceding chapter, after a small amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to
specify how TeX should start chapters and whether it should typeset
pages for printing on one or both sides of the paper (single-sided or
double-sided printing).

Write the @setchapternewpage command at the beginning of a line
followed by its argument.

For example, you would write the following to cause each chapter to
start on a fresh odd-numbered page:

@setchapternewpage odd

You can specify one of three alternatives with the
@setchapternewpage off

Cause TeX to typeset a new chapter on the same page as the last
chapter, after skipping some vertical whitespace. Also, cause TeX
to format page headers for single-sided printing. (You can
override the headers format with the @headings double command; see
See The @headings Command.)

@setchapternewpage on
Cause TeX to start new chapters on new pages and to typeset page
headers for single-sided printing. This is the form most often
used for short reports.

This alternative is the default.

@setchapternewpage odd
Cause TeX to start new chapters on new, odd-numbered pages
(right-handed pages) and to typeset for double-sided printing.
This is the form most often used for books and manuals.

Texinfo does not have an @setchapternewpage even command.

(You can countermand or modify an @setchapternewpage command with an
At the beginning of a manual or book, pages are not numbered--for

example, the title and copyright pages of a book are not numbered. By
convention, table of contents pages are numbered with roman numerals
and not in sequence with the rest of the document.

Since an Info file does not have pages, the @setchapternewpage
command has no effect on it.

texinfo 42 / 239

Usually, you do not write an @setchapternewpage command for
single-sided printing, but accept the default which is to typeset for
single-sided printing and to start new chapters on new pages. Usually,
you write an @setchapternewpage odd command for double-sided printing.

1.39 texinfo.guide/paragraphindent

Paragraph Indenting

The Info formatting commands may insert spaces at the beginning of the
first line of each paragraph, thereby indenting that paragraph. You
can use the @paragraphindent command to specify the indentation.
Write an @paragraphindent command at the beginning of a line followed
by either asis or a number. The template is:

@paragraphindent INDENT

The Info formatting commands indent according to the value of INDENT:

* If the value of INDENT is asis, the Info formatting commands do
not change the existing indentation.

* If the value of INDENT is 0, the Info formatting commands delete
existing indentation.

* If the value of INDENT is greater than 0, the Info formatting
commands indent the paragraph by that number of spaces.

The default value of INDENT is asis.

Write the @paragraphindent command before or shortly after the
end-of-header line at the beginning of a Texinfo file. (If you write
the command between the start-of-header and end-of-header lines, the
region formatting commands indent paragraphs as specified.)

A peculiarity of the texinfo-format-buffer and texinfo-format-region
commands is that they do not indent (nor fill) paragraphs that contain
description of what goes on.

1.40 texinfo.guide/End of Header

End of Header

Follow the header lines with an end-of-header line. An end-of-header
line looks like this:

@c %**end of header

texinfo 43 / 239

If you include the @setchapternewpage command between the
start-of-header and end-of-header lines, TeX will typeset a region as
that command specifies. Similarly, if you include an @smallbook
command between the start-of-header and end-of-header lines, TeX will
typeset a region in the "small" book format.

The reason for the odd string of characters (%**) is so that the
texinfo-tex-region command does not accidentally find something
that it should not when it is looking for the header.

The start-of-header line and the end-of-header line are Texinfo mode
variables that you can change.

1.41 texinfo.guide/Info Summary and Permissions

Summary and Copying Permissions for Info
==

The title page and the copyright page appear only in the printed copy
of the manual; therefore, the same information must be inserted in a
section that appears only in the Info file. This section usually
contains a brief description of the contents of the Info file, a
copyright notice, and copying permissions.

The copyright notice should read:

Copyright YEAR COPYRIGHT-OWNER

and be put on a line by itself.

Standard text for the copyright permissions is contained in an
appendix to this manual; see See ifinfo Copying Permissions, for the
complete text.

The permissions text appears in an Info file before the first node.
This mean that a reader does not see this text when reading the file
using Info, except when using the advanced Info command g *.

1.42 texinfo.guide/Titlepage & Copyright Page

The Title and Copyright Pages
=============================

A manual’s name and author are usually printed on a title page.
Sometimes copyright information is printed on the title page as well;
more often, copyright information is printed on the back of the title
page.

The title and copyright pages appear in the printed manual, but not
in the Info file. Because of this, it is possible to use several

texinfo 44 / 239

slightly obscure TeX typesetting commands that cannot be used in an
Info file. In addition, this part of the beginning of a Texinfo file
contains the text of the copying permissions that will appear in the
printed manual.

See Titlepage Copying Permissions, for the standard text for the
copyright permissions.

titlepage Create a title for the printed document.
titlefont center sp The @titlefont, @center,

and @sp commands.
title subtitle author The @title, @subtitle,

and @author commands.
Copyright & Permissions How to write the copyright notice and

include copying permissions.
end titlepage Turn on page headings after the title and

copyright pages.
headings on off An option for turning headings on and off

and double or single sided printing.

1.43 texinfo.guide/titlepage

@titlepage

Start the material for the title page and following copyright page
with @titlepage on a line by itself and end it with @end titlepage on
a line by itself.

The @end titlepage command starts a new page and turns on page
numbering. (See Page Headings, for details about how to generate of
page headings.) All the material that you want to appear on unnumbered
pages should be put between the @titlepage and @end titlepage
commands. By using the @page command you can force a page break
within the region delineated by the @titlepage and @end titlepage
commands and thereby create more than one unnumbered page. This is how
the copyright page is produced. (The @titlepage command might perhaps
have been better named the @titleandadditionalpages command, but that
would have been rather long!)

When you write a manual about a computer program, you should write the
version of the program to which the manual applies on the title page.
If the manual changes more frequently than the program or is
independent of it, you should also include an edition
number(1)titlepage-Footnotes for the
manual. This helps readers keep track of which manual is for which
version of the program. (The ‘Top’ node should also contain this
information; see See @top.)

Texinfo provides two methods for creating a title page. One method
uses the @titlefont, @sp, and @center commands to generate a title
page in which the words on the page are centered.

texinfo 45 / 239

The second method uses the @title, @subtitle, and @author commands
to create a title page with black rules under the title and author
lines and the subtitle text set flush to the right hand side of the
page. With this method, you do not specify any of the actual
formatting of the title page. You specify the text you want, and
Texinfo does the formatting. You may use either method.

1.44 texinfo.guide/titlepage-Footnotes

(1) We have found that it is helpful to refer to versions of manuals
as ‘editions’ and versions of programs as ‘versions’; otherwise, we
find we are liable to confuse each other in conversation by referring
to both the documentation and the software with the same words.

1.45 texinfo.guide/titlefont center sp

@titlefont, @center, and @sp

You can use the @titlefont, @sp, and @center commands to create a
title page for a printed document. (This is the first of the two
methods for creating a title page in Texinfo.)

Use the @titlefont command to select a large font suitable for the
title itself.

For example:

@titlefont{Texinfo}

Use the @center command at the beginning of a line to center the
remaining text on that line. Thus,

@center @titlefont{Texinfo}

centers the title, which in this example is "Texinfo" printed in the
title font.

Use the @sp command to insert vertical space. For example:

@sp 2

This inserts two blank lines on the printed page. (See @sp, for more
information about the @sp command.)

A template for this method looks like this:

@titlepage
@sp 10
@center @titlefont{NAME-OF-MANUAL-WHEN-PRINTED}

texinfo 46 / 239

@sp 2
@center SUBTITLE-IF-ANY
@sp 2
@center AUTHOR
...
@end titlepage

The spacing of the example fits an 8 1/2 by 11 inch manual.

1.46 texinfo.guide/title subtitle author

@title, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create
a title page in which the vertical and horizontal spacing is done for
you automatically. This contrasts with the method described in the
previous section, in which the @sp command is needed to adjust
vertical spacing.

Write the @title, @subtitle, or @author commands at the beginning
of a line followed by the title, subtitle, or author.

The @title command produces a line in which the title is set flush
to the left-hand side of the page in a larger than normal font. The
title is underlined with a black rule.

The @subtitle command sets subtitles in a normal-sized font flush to
the right-hand side of the page.

The @author command sets the names of the author or authors in a
middle-sized font flush to the left-hand side of the page on a line
near the bottom of the title page. The names are underlined with a
black rule that is thinner than the rule that underlines the title.
(The black rule only occurs if the @author command line is followed by
an @page command line.)

There are two ways to use the @author command: you can write the
name or names on the remaining part of the line that starts with an

@author by Jane Smith and John Doe

or you can write the names one above each other by using two (or more)
@author Jane Smith
@author John Doe

(Only the bottom name is underlined with a black rule.)

A template for this method looks like this:

@titlepage
@title NAME-OF-MANUAL-WHEN-PRINTED
@subtitle SUBTITLE-IF-ANY
@subtitle SECOND-SUBTITLE
@author AUTHOR

texinfo 47 / 239

@page
...
@end titlepage

Contrast this form with the form of a title page written using the
@titlepage
@sp 10
@center @titlefont{Name of Manual When Printed}
@sp 2
@center Subtitle, If Any
@sp 1
@center Second subtitle
@sp 2
@center Author
@page
...
@end titlepage

1.47 texinfo.guide/Copyright & Permissions

Copyright Page and Permissions

By international treaty, the copyright notice for a book should be
either on the title page or on the back of the title page. The
copyright notice should include the year followed by the name of the
organization or person who owns the copyright.

When the copyright notice is on the back of the title page, that page
is customarily not numbered. Therefore, in Texinfo, the information on
the copyright page should be within @titlepage and @end titlepage
commands.

Use the @page command to cause a page break. To push the copyright
notice and the other text on the copyright page towards the bottom of
the page, you can write a somewhat mysterious line after the @page
command that reads like this:

@vskip 0pt plus 1filll

This is a TeX command that is not supported by the Info formatting
commands. The @vskip command inserts whitespace. The 0pt plus 1filll
means to put in zero points of mandatory whitespace, and as much
optional whitespace as needed to push the following text to the bottom
of the page. Note the use of three ls in the word filll; this is the
correct usage in TeX.

In a printed manual, the @copyright{} command generates a c inside a
circle. (In Info, it generates (C).) The copyright notice itself has
the following legally defined sequence:

Copyright (C) YEAR COPYRIGHT-OWNER

It is customary to put information on how to get a manual after the

texinfo 48 / 239

copyright notice, followed by the copying permissions for the manual.

Note that permissions must be given here as well as in the summary
segment within @ifinfo and @end ifinfo that immediately follows the
header since this text appears only in the printed manual and the
ifinfo text appears only in the Info file.

See Sample Permissions, for the standard text.

1.48 texinfo.guide/end titlepage

Heading Generation

An @end titlepage command on a line by itself not only marks the end
of the title and copyright pages, but also causes TeX to start
generating page headings and page numbers.

To repeat what is said elsewhere, Texinfo has two standard page
heading formats, one for documents which are printed on one side of
each sheet of paper (single-sided printing), and the other for
documents which are printed on both sides of each sheet (double-sided
printing). (See @setchapternewpage.) You can specify these formats in
different ways:

* The conventional way is to write an @setchapternewpage command
before the title page commands, and then have the @end titlepage
command start generating page headings in the manner desired.
(See @setchapternewpage.)

* Alternatively, you can use the @headings command to prevent page
headings from being generated or to start them for either single or
double-sided printing. (Write an @headings command immediately
after the @end titlepage command. See The @headings Command, for
more information.)

* Or, you may specify your own page heading and footing format. See
Page Headings, for detailed information about page headings and
footings.

Most documents are formatted with the standard single-sided or
double-sided format, using @setchapternewpage odd for double-sided
printing and no @setchapternewpage command for single-sided printing.

1.49 texinfo.guide/headings on off

The @headings Command

The @headings command is rarely used. It specifies what kind of

texinfo 49 / 239

page headings and footings to print on each page. Usually, this is
controlled by the @setchapternewpage command. You need the @headings
command only if the @setchapternewpage command does not do what you
want, or if you want to turn off pre-defined page headings prior to
defining your own. Write an @headings command immediately after the

There are four ways to use the @headings command:

@headings off
Turn off printing of page headings.

@headings single
Turn on page headings appropriate for single-sided printing.

@headings double
@headings on

Turn on page headings appropriate for double-sided printing. The
two commands, @headings on and @headings double, are synonymous.

For example, suppose you write @setchapternewpage off before the
as the end of the last chapter. This command also causes TeX to
typeset page headers for single-sided printing. To cause TeX to
typeset for double sided printing, write @headings double after the

You can stop TeX from generating any page headings at all by writing
containing the @end titlepage command, like this:

@end titlepage
@headings off

The @headings off command overrides the @end titlepage command, which
would otherwise cause TeX to print page headings.

You can also specify your own style of page heading and footing. See
Page Headings, for more information.

1.50 texinfo.guide/The Top Node

The ‘Top’ Node and Master Menu
==============================

The ‘Top’ node is the node from which you enter an Info file.

A ‘Top’ node should contain a brief description of the Info file and
an extensive, master menu for the whole Info file. This helps the
reader understand what the Info file is about. Also, you should write
the version number of the program to which the Info file applies; or,
at least, the edition number.

The contents of the ‘Top’ node should appear only in the Info file;
none of it should appear in printed output, so enclose it between
you are not required to enclose these parts between @ifinfo and @end
ifinfo, but it is simplest to do so. See Conditionally Visible Text.)

Title of Top Node Sketch what the file is about.

texinfo 50 / 239

Master Menu Parts A master menu has three or more parts.

1.51 texinfo.guide/Title of Top Node

‘Top’ Node Title

Sometimes, you will want to place an @top sectioning command line
containing the title of the document immediately after the @node Top
line (see The @top Sectioning Command, for more information).

For example, the beginning of the Top node of this manual contains an
@top sectioning command, a short description, and edition and

version information. It looks like this:

...
@end titlepage

@ifinfo
@node Top, Copying, (dir), (dir)
@top Texinfo

Texinfo is a documentation system...

This is edition...
...
@end ifinfo

@menu

* Copying:: Texinfo is freely
redistributable.

* Overview:: What is Texinfo?
...
@end menu

In a ‘Top’ node, the ‘Previous’, and ‘Up’ nodes usually refer to the
top level directory of the whole Info system, which is called (dir).
The ‘Next’ node refers to the first node that follows the main or master
menu, which is usually the copying permissions, introduction, or first
chapter.

1.52 texinfo.guide/Master Menu Parts

Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a file.

A master menu is enclosed in @menu and @end menu commands and does
not appear in the printed document.

texinfo 51 / 239

Generally, a master menu is divided into parts.

* The first part contains the major nodes in the Texinfo file: the
nodes for the chapters, chapter-like sections, and the appendices.

* The second part contains nodes for the indices.

* The third and subsequent parts contain a listing of the other,
lower level nodes, often ordered by chapter. This way, rather
than go through an intermediary menu, an inquirer can go directly
to a particular node when searching for specific information.
These menu items are not required; add them if you think they are a
convenience.

Each section in the menu can be introduced by a descriptive line. So
long as the line does not begin with an asterisk, it will not be
treated as a menu entry. (See Writing a Menu, for more information.)

For example, the master menu for this manual looks like the following
(but has many more entries):

@menu

* Copying:: Texinfo is freely
redistributable.

* Overview:: What is Texinfo?

* Texinfo Mode:: Special features in GNU Emacs.
...
...

* Command and Variable Index::
An entry for each @-command.

* Concept Index:: An entry for each concept.

--- The Detailed Node Listing ---

Overview of Texinfo

* Info Files:: What is an Info file?

* Printed Manuals:: Characteristics of
a printed manual.

...

...

Using Texinfo Mode

* Info on a Region:: Formatting part of a file
for Info.

...

...
@end menu

1.53 texinfo.guide/Software Copying Permissions

texinfo 52 / 239

Software Copying Permissions
============================

If the Texinfo file has a section containing the "General Public
License" and the distribution information and a warranty disclaimer for
the software that is documented, this section usually follows the ‘Top’
node. The General Public License is very important to Project GNU
software. It ensures that you and others will continue to have a right
to use and share the software.

The copying and distribution information and the disclaimer are
followed by an introduction or else by the first chapter of the manual.

Although an introduction is not a required part of a Texinfo file, it
is very helpful. Ideally, it should state clearly and concisely what
the file is about and who would be interested in reading it. In
general, an introduction would follow the licensing and distribution
information, although sometimes people put it earlier in the document.
Usually, an introduction is put in an @unnumbered section. (See
The @unnumbered and @appendix Commands.)

1.54 texinfo.guide/Ending a File

Ending a Texinfo File

The end of a Texinfo file should include the commands that create
indices and generate detailed and summary tables of contents. And it
must include the @bye command that marks the last line processed by
TeX.

For example:

@node Concept Index, , Variables Index, Top
@c node-name, next, previous, up
@unnumbered Concept Index

@printindex cp

@contents
@bye

Printing Indices & Menus How to print an index in hardcopy and
generate index menus in Info.

Contents How to create a table of contents.
File End How to mark the end of a file.

1.55 texinfo.guide/Printing Indices & Menus

texinfo 53 / 239

Index Menus and Printing an Index
=================================

To print an index means to include it as part of a manual or Info
file. This does not happen automatically just because you use @cindex
or other index-entry generating commands in the Texinfo file; those
just cause the raw data for the index to be accumulated. To generate
an index, you must include the @printindex command at the place in the
document where you want the index to appear. Also, as part of the
process of creating a printed manual, you must run a program called
texindex (see Format-Print Hardcopy) to sort the raw data to
produce a sorted index file. The sorted index file is what is actually
used to print the index.

Texinfo offers six different types of predefined index: the concept
index, the function index, the variables index, the keystroke index, the
program index, and the data type index (see Predefined Indices). Each
index type has a two-letter name: cp, fn, vr, ky, pg, and tp. You may
merge indices, or put them into separate sections (see
Combining Indices); or you may define your own indices (see
Defining New Indices).

The @printindex command takes a two-letter index name, reads the
corresponding sorted index file and formats it appropriately into an
index.

The @printindex command does not generate a chapter heading for the
index. Consequently, you should precede the @printindex command with
a suitable section or chapter command (usually @unnumbered) to supply
the chapter heading and put the index into the table of contents.
Precede the @unnumbered command with an @node line.

For example:

@node Variable Index, Concept Index, Function Index, Top
@comment node-name, next, previous, up
@unnumbered Variable Index

@printindex vr

@node Concept Index, , Variable Index, Top
@comment node-name, next, previous, up
@unnumbered Concept Index

@printindex cp

@summarycontents
@contents
@bye

(Readers often prefer that the concept index come last in a book, since
that makes it easiest to find.)

texinfo 54 / 239

1.56 texinfo.guide/Contents

Generating a Table of Contents
==============================

The @chapter, @section, and other structuring commands supply the
information to make up a table of contents, but they do not cause an
actual table to appear in the manual. To do this, you must use the
@contents

Generate a table of contents in a printed manual, including all
chapters, sections, subsections, etc., as well as appendices and
unnumbered chapters. (Headings generated by the @heading series
of commands do not appear in the table of contents.) The
@contents command should be written on a line by itself.

@shortcontents
@summarycontents

(@summarycontents is a synonym for @shortcontents; the two
commands are exactly the same.)

Generate a short or summary table of contents that lists only the
chapters (and appendices and unnumbered chapters). Omit sections,
subsections and subsubsections. Only a long manual needs a short
table of contents in addition to the full table of contents.

Write the @shortcontents command on a line by itself right before
the @contents command.

The table of contents commands automatically generate a chapter-like
heading at the top of the first table of contents page. Write the table
of contents commands at the very end of a Texinfo file, just before the
@bye command, following any index sections--anything in the

Texinfo file after the table of contents commands will be omitted from
the table of contents.

When you print a manual with a table of contents, the table of
contents are printed last and numbered with roman numerals. You need
to place those pages in their proper place, after the title page,
yourself. (This is the only collating you need to do for a printed
manual. The table of contents is printed last because it is generated
after the rest of the manual is typeset.)

Here is an example of where to write table of contents commands:

INDICES...
@shortcontents
@contents
@bye

Since an Info file uses menus instead of tables of contents, the Info
formatting commands ignore the @contents and @shortcontents commands.

texinfo 55 / 239

1.57 texinfo.guide/File End

@bye File Ending
=================

An @bye command terminates TeX or Info formatting. None of the
formatting commands see any of the file following @bye. The @bye
command should be on a line by itself.

If you wish, you may follow the @bye line with notes. These notes
will not be formatted and will not appear in either Info or a printed
manual; it is as if text after @bye were within @ignore ... @end
ignore. Also, you may follow the @bye line with a local variables
list. See Using Local Variables and the Compile Command, for more
information.

1.58 texinfo.guide/Structuring

Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of
chapters, sections, subsections, and subsubsections. These commands
generate large headings; they also provide information for the table of
contents of a printed manual (see Generating a Table of Contents).

The chapter structuring commands do not create an Info node structure,
so normally you should put an @node command immediately before each
chapter structuring command (see Nodes). The only time you are likely
to use the chapter structuring commands without using the node
structuring commands is if you are writing a document that contains no
cross references and will never be transformed into Info format.

It is unlikely that you will ever write a Texinfo file that is
intended only as an Info file and not as a printable document. If you
do, you might still use chapter structuring commands to create a
heading at the top of each node--but you don’t need to.

Tree Structuring A manual is like an upside down tree ...
Structuring Command Types How to divide a manual into parts.
makeinfo top The @top command, part of the ‘Top’ node.
chapter
unnumbered & appendix
majorheading & chapheading
section
unnumberedsec appendixsec heading
subsection
unnumberedsubsec appendixsubsec subheading
subsubsection Commands for the lowest level sections.
Raise-lower sections How to change commands’ hierarchical level.

texinfo 56 / 239

1.59 texinfo.guide/Tree Structuring

Tree Structure of Sections
==========================

A Texinfo file is usually structured like a book with chapters,
sections, subsections, and the like. This structure can be visualized
as a tree (or rather as an upside-down tree) with the root at the top
and the levels corresponding to chapters, sections, subsection, and
subsubsections.

Here is a diagram that shows a Texinfo file with three chapters, each
of which has two sections.

Top
|

| | |

Chapter 1 Chapter 2 Chapter 3
| | |

-------- -------- --------
| | | | | |

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2
looks like this:

@node Chapter 2, Chapter 3, Chapter 1, top
@chapter Chapter 2

The chapter structuring commands are described in the sections that
follow; the @node and @menu commands are described in following
chapters. (See Nodes, and see See Menus.)

1.60 texinfo.guide/Structuring Command Types

Types of Structuring Command
============================

The chapter structuring commands fall into four groups or series, each
of which contains structuring commands corresponding to the
hierarchical levels of chapters, sections, subsections, and
subsubsections.

The four groups are the @chapter series, the @unnumbered series,
the @appendix series, and the @heading series.

Each command produces titles that have a different appearance on the
printed page or Info file; only some of the commands produce titles
that are listed in the table of contents of a printed book or manual.

* The @chapter and @appendix series of commands produce numbered

texinfo 57 / 239

or lettered entries both in the body of a printed work and in its
table of contents.

* The @unnumbered series of commands produce unnumbered entries
both in the body of a printed work and in its table of contents.
The @top command, which has a special use, is a member of this
series (see @top).

* The @heading series of commands produce unnumbered headings that
do not appear in a table of contents. The heading commands never
start a new page.

* The @majorheading command produces results similar to using the
@chapheading command but generates a larger vertical whitespace
before the heading.

* When an @setchapternewpage command says to do so, the @chapter,
@unnumbered, and @appendix commands start new pages in the
printed manual; the @heading commands do not.

Here are the four groups of chapter structuring commands:

No new pages
Numbered Unnumbered Lettered and numbered Unnumbered
In contents In contents In contents Not in contents

@top @majorheading
@chapter @unnumbered @appendix @chapheading
@section @unnumberedsec @appendixsec @heading
@subsection @unnumberedsubsec @appendixsubsec @subheading
@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

1.61 texinfo.guide/makeinfo top

@top
=====

The @top command is a special sectioning command that you use only
after an @node Top line at the beginning of a Texinfo file. The @top
command tells the makeinfo formatter which node is the ‘Top’ node. It
has the same typesetting effect as @unnumbered (see @unnumbered). For
detailed information, see See The @top Command.

1.62 texinfo.guide/chapter

@chapter
=========

@chapter identifies a chapter in the document. Write the command at
the beginning of a line and follow it on the same line by the title of

texinfo 58 / 239

the chapter.

For example, this chapter in this manual is entitled "Chapter
Structuring"; the @chapter line looks like this:

@chapter Chapter Structuring

In TeX, the @chapter command creates a chapter in the document,
specifying the chapter title. The chapter is numbered automatically.

In Info, the @chapter command causes the title to appear on a line
by itself, with a line of asterisks inserted underneath. Thus, in
Info, the above example produces the following output:

Chapter Structuring

1.63 texinfo.guide/unnumbered & appendix

@unnumbered, @appendix
========================

Use the @unnumbered command to create a chapter that appears in a
printed manual without chapter numbers of any kind. Use the @appendix
command to create an appendix in a printed manual that is labelled by
letter instead of by number.

For Info file output, the @unnumbered and @appendix commands are
equivalent to @chapter: the title is printed on a line by itself with
a line of asterisks underneath. (See @chapter.)

To create an appendix or an unnumbered chapter, write an @appendix
or @unnumbered command at the beginning of a line and follow it on the
same line by the title, as you would if you were creating a chapter.

1.64 texinfo.guide/majorheading & chapheading

@majorheading, @chapheading
=============================

The @majorheading and @chapheading commands put chapter-like
headings in the body of a document.

However, neither command causes TeX to produce a numbered heading or
an entry in the table of contents; and neither command causes TeX to
start a new page in a printed manual.

In TeX, an @majorheading command generates a larger vertical
whitespace before the heading than an @chapheading command but is
otherwise the same.

texinfo 59 / 239

In Info, the @majorheading and @chapheading commands are equivalent
to @chapter: the title is printed on a line by itself with a line of
asterisks underneath. (See @chapter.)

1.65 texinfo.guide/section

@section
=========

In a printed manual, an @section command identifies a numbered
section within a chapter. The section title appears in the table of
contents. In Info, an @section command provides a title for a segment
of text, underlined with =.

This section is headed with an @section command and looks like this
in the Texinfo file:

@section @code{@@section}

To create a section, write the @section command at the beginning of
a line and follow it on the same line by the section title.

Thus,

@section This is a section

produces

This is a section
=================

in Info.

1.66 texinfo.guide/unnumberedsec appendixsec heading

@unnumberedsec, @appendixsec, @heading
===

The @unnumberedsec, @appendixsec, and @heading commands are,
respectively, the unnumbered, appendix-like, and heading-like
equivalents of the @section command. (See @section.)

@unnumberedsec
The @unnumberedsec command may be used within an unnumbered
chapter or within a regular chapter or appendix to provide an
unnumbered section.

@appendixsec
@appendixsection

texinfo 60 / 239

@appendixsection is a longer spelling of the @appendixsec
command; the two are synonymous.

Conventionally, the @appendixsec or @appendixsection command is
used only within appendices.

@heading
You may use the @heading command anywhere you wish for a
section-style heading that will not appear in the table of
contents.

1.67 texinfo.guide/subsection

The @subsection Command
========================

Subsections are to sections as sections are to chapters. (See
@section.) In Info, subsection titles are underlined with -. For
example,

@subsection This is a subsection

produces

This is a subsection

In a printed manual, subsections are listed in the table of contents
and are numbered three levels deep.

1.68 texinfo.guide/unnumberedsubsec appendixsubsec subheading

The @subsection-like Commands
==============================

The @unnumberedsubsec, @appendixsubsec, and @subheading commands
are, respectively, the unnumbered, appendix-like, and heading-like
equivalents of the @subsection command. (See @subsection.)

In Info, the @subsection-like commands generate a title underlined
with hyphens. In a printed manual, an @subheading command produces a
heading like that of a subsection except that it is not numbered and
does not appear in the table of contents. Similarly, an
subsection and an @appendixsubsec command produces a subsection-like
heading labelled with a letter and numbers; both of these commands
produce headings that appear in the table of contents.

texinfo 61 / 239

1.69 texinfo.guide/subsubsection

The ‘subsub’ Commands
=====================

The fourth and lowest level sectioning commands in Texinfo are the
‘subsub’ commands. They are:

@subsubsection
Subsubsections are to subsections as subsections are to sections.
(See @subsection.) In a printed manual, subsubsection titles
appear in the table of contents and are numbered four levels deep.

@unnumberedsubsubsec
Unnumbered subsubsection titles appear in the table of contents of
a printed manual, but lack numbers. Otherwise, unnumbered
subsubsections are the same as subsubsections. In Info, unnumbered
subsubsections look exactly like ordinary subsubsections.

@appendixsubsubsec
Conventionally, appendix commands are used only for appendices and
are lettered and numbered appropriately in a printed manual. They
also appear in the table of contents. In Info, appendix
subsubsections look exactly like ordinary subsubsections.

@subsubheading
The @subsubheading command may be used anywhere that you need a
small heading that will not appear in the table of contents. In
Info, subsubheadings look exactly like ordinary subsubsection
headings.

In Info, ‘subsub’ titles are underlined with periods. For example,

@subsubsection This is a subsubsection

produces

This is a subsubsection
.......................

1.70 texinfo.guide/Raise-lower sections

@raisesections and @lowersections
===================================

The @raisesections and @lowersections commands raise and lower the
hierarchical level of chapters, sections, subsections and the like.
The @raisesections command changes sections to chapters, subsections
to sections, and so on. The @lowersections command changes chapters
to sections, sections to subsections, and so on.

An @lowersections command is useful if you wish to include text that
is written as an outer or standalone Texinfo file in another Texinfo

texinfo 62 / 239

file as an inner, included file. If you write the command at the
beginning of the file, all your @chapter commands are formatted as if
they were @section commands, all your @section command are formatted
as if they were @subsection commands, and so on.

@raisesections raises a command one level in the chapter structuring
hierarchy:

Change To

@subsection @section,
@section @chapter,
@heading @chapheading,

etc.

@lowersections lowers a command one level in the chapter structuring
hierarchy:

Change To

@chapter @section,
@subsection @subsubsection,
@heading @subheading,

etc.

An @raisesections or @lowersections command changes only those
structuring commands that follow the command in the Texinfo file.
Write an @raisesections or @lowersections command on a line of its
own.

An @lowersections command cancels an @raisesections command, and
vice versa.

Repeated use of the commands continue to raise or lower the
hierarchical level a step at a time.

An attempt to raise above ‘chapters’ reproduces chapter commands; an
attempt to lower below ‘subsubsections’ reproduces subsubsection
commands.

1.71 texinfo.guide/Nodes

Nodes

Nodes are the primary segments of a Texinfo file. They do not
themselves impose a hierarchic or any other kind of structure on a file.
Nodes contain node pointers that name other nodes, and can contain
menus which are lists of nodes. In Info, the movement commands
can carry you to a pointed-to node or to a node listed in a menu. Node
pointers and menus provide structure for Info files just as chapters,
sections, subsections, and the like, provide structure for printed
books.

texinfo 63 / 239

Two Paths Different commands to structure
Info output and printed output.

Node Menu Illustration A diagram, and sample nodes and menus.
node How to write a node, in detail.
makeinfo Pointer Creation How to create node pointers with makeinfo.

1.72 texinfo.guide/Two Paths

Two Paths
=========

The node and menu commands and the chapter structuring commands are
independent of each other:

* In Info, node and menu commands provide structure. The chapter
structuring commands generate headings with different kinds of
underlining--asterisks for chapters, hyphens for sections, and so
on; they do nothing else.

* In TeX, the chapter structuring commands generate chapter and
section numbers and tables of contents. The node and menu
commands provide information for cross references; they do nothing
else.

You can use node pointers and menus to structure an Info file any way
you want; and you can write a Texinfo file so that its Info output has a
different structure than its printed output. However, most Texinfo
files are written such that the structure for the Info output
corresponds to the structure for the printed output. It is not
convenient to do otherwise.

Generally, printed output is structured in a tree-like hierarchy in
which the chapters are the major limbs from which the sections branch
out. Similarly, node pointers and menus are organized to create a
matching structure in the Info output.

1.73 texinfo.guide/Node Menu Illustration

Node and Menu Illustration
==========================

Here is a copy of the diagram shown earlier that illustrates a Texinfo
file with three chapters, each of which contains two sections.

Note that the "root" is at the top of the diagram and the "leaves"
are at the bottom. This is how such a diagram is drawn conventionally;
it illustrates an upside-down tree. For this reason, the root node is
called the ‘Top’ node, and ‘Up’ node pointers carry you closer to the
root.

texinfo 64 / 239

Top
|

| | |

Chapter 1 Chapter 2 Chapter 3
| | |

-------- -------- --------
| | | | | |

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

Write the beginning of the node for Chapter 2 like this:

@node Chapter 2, Chapter 3, Chapter 1, top
@comment node-name, next, previous, up

This @node line says that the name of this node is "Chapter 2", the
name of the ‘Next’ node is "Chapter 3", the name of the ‘Previous’ node
is "Chapter 1", and the name of the ‘Up’ node is "Top".

Please Note: ‘Next’ refers to the next node at the same
hierarchical level in the manual, not necessarily to the next node
within the Texinfo file. In the Texinfo file, the subsequent node
may be at a lower level--a section-level node may follow a
chapter-level node, and a subsection-level node may follow a
section-level node. ‘Next’ and ‘Previous’ refer to nodes at the
same hierarchical level. (The ‘Top’ node contains the
exception to this rule. Since the ‘Top’ node is the only node at
that level, ‘Next’ refers to the first following node, which is
almost always a chapter or chapter-level node.)

To go to Sections 2.1 and 2.2 using Info, you need a menu inside
Chapter 2. (See Menus.) You would write the menu just before the
beginning of Section 2.1, like this:

@menu

* Sect. 2.1:: Description of this section.

* Sect. 2.2::
@end menu

Write the node for Sect. 2.1 like this:

@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2
@comment node-name, next, previous, up

In Info format, the ‘Next’ and ‘Previous’ pointers of a node usually
lead to other nodes at the same level--from chapter to chapter or from
section to section (sometimes, as shown, the ‘Previous’ pointer points
up); an ‘Up’ pointer usually leads to a node at the level above (closer
to the ‘Top’ node); and a ‘Menu’ leads to nodes at a level below (closer
to ‘leaves’). (A cross reference can point to a node at any level; see
See Cross References.)

Usually, an @node command and a chapter structuring command are used
in sequence, along with indexing commands. (You may follow the @node
line with a comment line that reminds you which pointer is which.)

texinfo 65 / 239

Here is the beginning of the chapter in this manual called "Ending a
Texinfo File". This shows an @node line followed by a comment line,
an @chapter line, and then by indexing lines.

@node Ending a File, Structuring, Beginning a File, Top
@comment node-name, next, previous, up
@chapter Ending a Texinfo File
@cindex Ending a Texinfo file
@cindex Texinfo file ending
@cindex File ending

1.74 texinfo.guide/node

The @node Command
==================

A node is a segment of text that begins at an @node command and
continues until the next @node command. The definition of node is
different from that for chapter or section. A chapter may contain
sections and a section may contain subsections; but a node cannot
contain subnodes; the text of a node continues only until the next
structuring command, the one that follows the @node line. On the
other hand, in printed output nodes are used only for cross references,
so a chapter or section may contain any number of nodes. Indeed, a
chapter usually contains several nodes, one for each section,
subsection, and subsubsection.

To create a node, write an @node command at the beginning of a line,
and follow it with four arguments, separated by commas, on the rest of
the same line. These arguments are the name of the node, and the names
of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order. You may
insert spaces before each pointer if you wish; the spaces are ignored.
You must write the name of the node, and the names of the ‘Next’,
‘Previous’, and ‘Up’ pointers, all on the same line. Otherwise, the
formatters fail. (See info, for more information about nodes in Info.)

Usually, you write one of the chapter-structuring command lines
immediately after an @node line--for example, an @section or

Please note: The GNU Emacs Texinfo mode updating commands work
only with Texinfo files in which @node lines are followed by
chapter structuring lines. See Updating Requirements.

TeX uses @node lines to identify the names to use for cross
references. For this reason, you must write @node lines in a Texinfo
file that you intend to format for printing, even if you do not intend
to format it for Info. (Cross references, such as the one at the end
of this sentence, are made with @xref and its related commands; see
See Cross References.)

Node Names How to choose node and pointer names.
Writing a Node How to write an @node line.
Node Line Tips Keep names short.

texinfo 66 / 239

Node Line Requirements Keep names unique, without @-commands.
First Node How to write a ‘Top’ node.
makeinfo top command How to use the @top command.
Top Node Summary Write a brief description for readers.

1.75 texinfo.guide/Node Names

Choosing Node and Pointer Names

The name of a node identifies the node. The pointers enable you to
reach other nodes and consist of the names of those nodes.

Normally, a node’s ‘Up’ pointer contains the name of the node whose
menu mentions that node. The node’s ‘Next’ pointer contains the name
of the node that follows that node in that menu and its ‘Previous’
pointer contains the name of the node that precedes it in that menu.
When a node’s ‘Previous’ node is the same as its ‘Up’ node, both node
pointers name the same node.

Usually, the first node of a Texinfo file is the ‘Top’ node, and its
‘Up’ and ‘Previous’ pointers point to the dir file, which contains the
main menu for all of Info.

The ‘Top’ node itself contains the main or master menu for the manual.
Also, it is helpful to include a brief description of the manual in the
‘Top’ node. See First Node, for information on how to write the first
node of a Texinfo file.

1.76 texinfo.guide/Writing a Node

How to Write an @node Line

The easiest way to write an @node line is to write @node at the
beginning of a line and then the name of the node, like this:

@node NODE-NAME

If you are using GNU Emacs, you can use the update node commands
provided by Texinfo mode to insert the names of the pointers; or you
can leave the pointers out of the Texinfo file and let makeinfo insert
node pointers into the Info file it creates. (See Texinfo Mode, and
See makeinfo Pointer Creation.)

Alternatively, you can insert the ‘Next’, ‘Previous’, and ‘Up’
pointers yourself. If you do this, you may find it helpful to use the
Texinfo mode keyboard command C-c C-c n. This command inserts @node
and a comment line listing the names of the pointers in their proper
order. The comment line helps you keep track of which arguments are

texinfo 67 / 239

for which pointers. This comment line is especially useful if you are
not familiar with Texinfo.

The template for a node line with ‘Next’, ‘Previous’, and ‘Up’
pointers looks like this:

@node NODE-NAME, NEXT, PREVIOUS, UP

If you wish, you can ignore @node lines altogether in your first
draft and then use the texinfo-insert-node-lines command to create
is better to name the node itself at the same time that you write a
segment so you can easily make cross references. A large number of
cross references are an especially important feature of a good Info
file.

After you have inserted an @node line, you should immediately write
an @-command for the chapter or section and insert its name. Next (and
this is important!), put in several index entries. Usually, you will
find at least two and often as many as four or five ways of referring
to the node in the index. Use them all. This will make it much easier
for people to find the node.

1.77 texinfo.guide/Node Line Tips

@node Line Tips

Here are three suggestions:

* Try to pick node names that are informative but short.

In the Info file, the file name, node name, and pointer names are
all inserted on one line, which may run into the right edge of the
window. (This does not cause a problem with Info, but is ugly.)

* Try to pick node names that differ from each other near the
beginnings of their names. This way, it is easy to use automatic
name completion in Info.

* By convention, node names are capitalized just as they would be for
section or chapter titles--initial and significant words are
capitalized; others are not.

1.78 texinfo.guide/Node Line Requirements

@node Line Requirements

Here are several requirements for @node lines:

texinfo 68 / 239

* All the node names for a single Info file must be unique.

Duplicates confuse the Info movement commands. This means, for
example, that if you end every chapter with a summary, you must
name each summary node differently. You cannot just call each one
"Summary". You may, however, duplicate the titles of chapters,
sections, and the like. Thus you can end each chapter in a book
with a section called "Summary", so long as the node names for
those sections are all different.

* A pointer name must be the name of a node.

The node to which a pointer points may come before or after the
node containing the pointer.

* You cannot use any of the Texinfo @-commands in a node name;
@-commands confuse Info.

Thus, the beginning of the section called @chapter looks like
this:

@node chapter, unnumbered & appendix, makeinfo top, Structuring
@comment node-name, next, previous, up
@section @code{@@chapter}
@findex chapter

* You cannot use commas, colons, or apostrophes within a node name;
these confuse TeX or the Info formatters.

For example, the following is a section title:

@code{@@unnumberedsec}, @code{@@appendixsec}, @code{@@heading}

The corresponding node name is:

unnumberedsec appendixsec heading

* Case is significant.

1.79 texinfo.guide/First Node

The First Node

The first node of a Texinfo file is the ‘Top’ node, except in an
included file (see Include Files).

The ‘Top’ node (which must be named top or Top) should have as its
‘Up’ and ‘Previous’ nodes the name of a node in another file, where
there is a menu that leads to this file. Specify the file name in
parentheses. If the file is to be installed directly in the Info
directory file, use (dir) as the parent of the ‘Top’ node; this is
short for (dir)top, and specifies the ‘Top’ node in the dir file, which
contains the main menu for Info. For example, the @node Top line of

texinfo 69 / 239

this manual looks like this:

@node Top, Overview, (dir), (dir)

(You may use the Texinfo updating commands or the makeinfo utility to
insert these ‘Next’ and (dir) pointers automatically.)

See Install an Info File, for more information about installing an
Info file in the info directory.

The ‘Top’ node contains the main or master menu for the document.

1.80 texinfo.guide/makeinfo top command

The @top Sectioning Command

A special sectioning command, @top, has been created for use with
the @node Top line. The @top sectioning command tells makeinfo that
it marks the ‘Top’ node in the file. It provides the information that
makeinfo needs to insert node pointers automatically. Write the

1.81 line.

as the @top command.

In Info, the @top sectioning command causes the title to appear on a
line by itself, with a line of asterisks inserted underneath.

In TeX and texinfo-format-buffer, the @top sectioning command is
merely a synonym for @unnumbered. Neither of these formatters require
an @top command, and do nothing special with it. You can use
these formatters. Also, you can use @chapter or @unnumbered when you
use the Texinfo updating commands to create or update pointers and
menus.

1.82 texinfo.guide/Top Node Summary

The ‘Top’ Node Summary

You can help readers by writing a summary in the ‘Top’ node, after the
@top line, before the main or master menu. The summary should

briefly describe the document. In Info, this summary will appear just
before the master menu. In a printed manual, this summary will appear
on a page of its own.

If you do not want the summary to appear on a page of its own in a

texinfo 70 / 239

printed manual, you can enclose the whole of the ‘Top’ node, including
the @node Top line and the @top sectioning command line or other
sectioning command line between @ifinfo and @end ifinfo. This
prevents any of the text from appearing in the printed output. (see
Conditionally Visible Text). You can repeat the brief description from
the ‘Top’ node within @iftex ... @end iftex at the beginning of the
first chapter, for those who read the printed manual. This saves paper
and may look neater.

You should write the version number of the program to which the manual
applies in the summary. This helps the reader keep track of which
manual is for which version of the program. If the manual changes more
frequently than the program or is independent of it, you should also
include an edition number for the manual. (The title page should also
contain this information: see See @titlepage.)

1.83 texinfo.guide/makeinfo Pointer Creation

Creating Pointers with makeinfo
===============================

The makeinfo program has a feature for automatically creating node
pointers for a hierarchically organized file that lacks them.

When you take advantage of this feature, you do not need to write the
‘Next’, ‘Previous’, and ‘Up’ pointers after the name of a node.
However, you must write a sectioning command, such as @chapter or
You cannot write a comment line after a node line; the section line
must follow it immediately.

In addition, you must follow the ‘Top’ @node line with a line
beginning with @top to mark the ‘Top’ node in the file. See @top.

Finally, you must write the name of each node (except for the ‘Top’
node) in a menu that is one or more hierarchical levels above the
node’s hierarchical level.

This node pointer insertion feature in makeinfo is an alternative to
the menu and pointer creation and update commands in Texinfo mode.
(See Updating Nodes and Menus.) It is especially helpful to people who
do not use GNU Emacs for writing Texinfo documents.

1.84 texinfo.guide/Menus

Menus

Menus contain pointers to subordinate nodes.(1)Menus-Footnotes In
Info, you use menus to go to such nodes. Menus have no effect in
printed manuals and do not appear in them.

texinfo 71 / 239

By convention, a menu is put at the end of a node since a reader who
uses the menu may not see text that follows it.

A node that has a menu should not contain much text. If you have a
lot of text and a menu, move most of the text into a new subnode--all
but a few lines.

Menu Location Put a menu in a short node.
Writing a Menu What is a menu?
Menu Parts A menu entry has three parts.
Less Cluttered Menu Entry Two part menu entry.
Menu Example Two and three part menu entries.
Other Info Files How to refer to a different Info file.

1.85 texinfo.guide/Menus-Footnotes

(1) Menus can carry you to any node, regardless of the hierarchical
structure; even to nodes in a different Info file. However, the GNU
Emacs Texinfo mode updating commands work only to create menus of
subordinate nodes. Conventionally, cross references are used to refer
to other nodes.

1.86 texinfo.guide/Menu Location

Menus Need Short Nodes
======================

A reader can easily see a menu that is close to the beginning of the
node. The node should be short. As a practical matter, you should
locate a menu within 20 lines of the beginning of the node. Otherwise,
a reader with a terminal that displays only a few lines may miss the
menu and its associated text.

The short text before a menu may look awkward in a printed manual. To
avoid this, you can write a menu near the beginning of its node and
follow the menu by an @node line, and then an @heading line located
within @ifinfo and @end ifinfo. This way, the menu, @node line, and
title appear only in the Info file, not the printed document.

For example, the preceding two paragraphs follow an Info-only menu,
@menu

* Menu Location:: Put a menu in a short node.

* Writing a Menu:: What is a menu?

* Menu Parts:: A menu entry has three parts.

* Less Cluttered Menu Entry:: Two part menu entry.

* Menu Example:: Two and three part entries.

* Other Info Files:: How to refer to a different
Info file.

texinfo 72 / 239

@end menu

@node Menu Location, Writing a Menu, , Menus
@ifinfo
@heading Menus Need Short Nodes
@end ifinfo

The Texinfo file for this document contains more than a dozen
examples of this procedure. One is at the beginning of this chapter;
another is at the beginning of the "Cross References" chapter.

1.87 texinfo.guide/Writing a Menu

Writing a Menu
==============

A menu consists of an @menu command on a line by itself followed by
menu entry lines or menu comment lines and then by an @end menu
command on a line by itself.

A menu looks like this:

@menu
Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing
several files at once.

@end menu

In a menu, every line that begins with an * is a menu entry. (Note
the space after the asterisk.) A line that does not start with an *
may also appear in a menu. Such a line is not a menu entry but is a
menu comment line that appears in the Info file. In the example above,
the line Larger Units of Text is a menu comment line; the two lines
starting with * are menu entries.

1.88 texinfo.guide/Menu Parts

The Parts of a Menu
===================

A menu entry has three parts, only the second of which is required:

1. The menu entry name.

2. The name of the node (required).

3. A description of the item.

texinfo 73 / 239

The template for a menu entry looks like this:

* MENU-ENTRY-NAME: NODE-NAME. DESCRIPTION

Follow the menu entry name with a single colon and follow the node
name with tab, comma, period, or newline.

In Info, a user selects a node with the m (Info-menu) command. The
menu entry name is what the user types after the m command.

The third part of a menu entry is a descriptive phrase or sentence.
Menu entry names and node names are often short; the description
explains to the reader what the node is about. The description, which
is optional, can spread over two or more lines. A useful description
complements the node name rather than repeats it.

1.89 texinfo.guide/Less Cluttered Menu Entry

Less Cluttered Menu Entry
=========================

When the menu entry name and node name are the same, you can write
the name immediately after the asterisk and space at the beginning of
the line and follow the name with two colons.

For example, write

* Name:: DESCRIPTION

instead of

* Name: Name. DESCRIPTION

You should use the node name for the menu entry name whenever
possible, since it reduces visual clutter in the menu.

1.90 texinfo.guide/Menu Example

A Menu Example
==============

A menu looks like this in Texinfo:

@menu

* menu entry name: Node name. A short description.

* Node name:: This form is preferred.
@end menu

This produces:

texinfo 74 / 239

* menu:

* menu entry name: Node name. A short description.

* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

@menu
Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing
several files at once.

@end menu

This produces:

* menu:
Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing
several files at once.

In this example, the menu has two entries. Files is both a menu
entry name and the name of the node referred to by that name.
Multiples is the menu entry name; it refers to the node named
Buffers. The line Larger Units of Text is a comment; it appears in
the menu, but is not an entry.

Since no file name is specified with either Files or Buffers, they
must be the names of nodes in the same Info file (see
Referring to Other Info Files).

1.91 texinfo.guide/Other Info Files

Referring to Other Info Files
=============================

You can create a menu entry that enables a reader in Info to go to a
node in another Info file by writing the file name in parentheses just
before the node name. In this case, you should use the three-part menu
entry format, which saves the reader from having to type the file name.

The format looks like this:

@menu

* FIRST-ENTRY-NAME:(FILENAME)NODENAME. DESCRIPTION

* SECOND-ENTRY-NAME:(FILENAME)SECOND-NODE. DESCRIPTION
@end menu

For example, to refer directly to the Outlining and Rebinding nodes
in the ‘Emacs Manual’, you would write a menu like this:

texinfo 75 / 239

@menu

* Outlining: (emacs)Outline Mode. The major mode for
editing outlines.

* Rebinding: (emacs)Rebinding. How to redefine the
meaning of a key.

@end menu

If you do not list the node name, but only name the file, then Info
presumes that you are referring to the ‘Top’ node.

The dir file that contains the main menu for Info has menu entries
that list only file names. These take you directly to the ‘Top’ nodes
of each Info document. (See Install an Info File.)

For example:

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting
text editor.

(The dir top level directory for the Info system is an Info file, not a
Texinfo file, but a menu entry looks the same in both types of file.)

Note that the GNU Emacs Texinfo mode menu updating commands only work
with nodes within the current buffer, so you cannot use them to create
menus that refer to other files. You must write such menus by hand.

1.92 texinfo.guide/Cross References

Cross References

Cross references are used to refer the reader to other parts of the
same or different Texinfo files. In Texinfo, nodes are the places to
which cross references can refer.

References What cross references are for.
Cross Reference Commands A summary of the different commands.
Cross Reference Parts A cross reference has several parts.
xref Begin a reference with ‘See’ ...
Top Node Naming How to refer to the beginning of another file.
ref A reference for the last part of a sentence.
pxref How to write a parenthetical cross reference.
inforef How to refer to an Info-only file.

1.93 texinfo.guide/References

What References Are For
=======================

texinfo 76 / 239

Often, but not always, a printed document should be designed so that
it can be read sequentially. People tire of flipping back and forth to
find information that should be presented to them as they need it.

However, in any document, some information will be too detailed for
the current context, or incidental to it; use cross references to
provide access to such information. Also, an on-line help system or a
reference manual is not like a novel; few read such documents in
sequence from beginning to end. Instead, people look up what they
need. For this reason, such creations should contain many cross
references to help readers find other information that they may not
have read.

In a printed manual, a cross reference results in a page reference,
unless it is to another manual altogether, in which case the cross
reference names that manual.

In Info, a cross reference results in an entry that you can follow
using the Info f command. (See Some advanced Info commands.)

The various cross reference commands use nodes to define cross
reference locations. This is evident in Info, in which a cross
reference takes you to the specified node. TeX also uses nodes to
define cross reference locations, but the action is less obvious. When
TeX generates a dvi file, it records nodes’ page numbers and uses the
page numbers in making references. Thus, if you are writing a manual
that will only be printed, and will not be used on-line, you must
nonetheless write @node lines to name the places to which you make
cross references.

1.94 texinfo.guide/Cross Reference Commands

Different Cross Reference Commands
==================================

There are four different cross reference commands:

@xref
Used to start a sentence in the printed manual saying ‘See ...’ or
an Info cross-reference saying *Note NAME: NODE..

@ref
Used within or, more often, at the end of a sentence; same as
@xref for Info; produces just the reference in the printed manual
without a preceding ‘See’.

@pxref
Used within parentheses to make a reference that suits both an Info
file and a printed book. Starts with a lower case ‘see’ within the
printed manual. (p is for ‘parenthesis’.)

@inforef
Used to make a reference to an Info file for which there is no

texinfo 77 / 239

printed manual.

(The @cite command is used to make references to books and manuals for
which there is no corresponding Info file and, therefore, no node to
which to point. See @cite.)

1.95 texinfo.guide/Cross Reference Parts

Parts of a Cross Reference
==========================

A cross reference command requires only one argument, which is the
name of the node to which it refers. But a cross reference command may
contain up to four additional arguments. By using these arguments, you
can provide a cross reference name for Info, a topic description or
section title for the printed output, the name of a different Info
file, and the name of a different printed manual.

Here is a simple cross reference example:

@xref{Node name}.

which produces

*Note Node name::.

and

See Section NNN [Node name], page PPP.

Here is an example of a full five-part cross reference:

@xref{Node name, Cross Reference Name, Particular Topic,
info-file-name, A Printed Manual}, for details.

which produces

*Note Cross Reference Name: (info-file-name)Node name,
for details.

in Info and

See section "Particular Topic" in A Printed Manual, for details.

in a printed book.

The five possible arguments for a cross reference are:

1. The node name (required). This is the node to which the cross
reference takes you. In a printed document, the location of the
node provides the page reference only for references within the
same document.

2. The cross reference name for the Info reference, if it is to be

texinfo 78 / 239

different from the node name. If you include this argument, it
argument becomes the first part of the cross reference. It is
usually omitted.

3. A topic description or section name. Often, this is the title of
the section. This is used as the name of the reference in the
printed manual. If omitted, the node name is used.

4. The name of the Info file in which the reference is located, if it
is different from the current file.

5. The name of a printed manual from a different Texinfo file.

The template for a full five argument cross reference looks like this:

@xref{NODE-NAME, CROSS-REFERENCE-NAME, TITLE-OR-TOPIC,
INFO-FILE-NAME, PRINTED-MANUAL-TITLE}.

Cross references with one, two, three, four, and five arguments are
described separately following the description of @xref.

Write a node name in a cross reference in exactly the same way as in
the @node line, including the same capitalization; otherwise, the
formatters may not find the reference.

You can write cross reference commands within a paragraph, but note
how Info and TeX format the output of each of the various commands:
write @xref at the beginning of a sentence; write @pxref only within
parentheses, and so on.

1.96 texinfo.guide/xref

@xref
======

The @xref command generates a cross reference for the beginning of a
sentence. The Info formatting commands convert it into an Info cross
reference, which the Info f command can use to bring you directly to
another node. The TeX typesetting commands convert it into a page
reference, or a reference to another book or manual.

Reference Syntax What a reference looks like and requires.
One Argument @xref with one argument.
Two Arguments @xref with two arguments.
Three Arguments @xref with three arguments.
Four and Five Arguments @xref with four and five arguments.

1.97 texinfo.guide/Reference Syntax

texinfo 79 / 239

What a Reference Looks Like and Requires
--

Most often, an Info cross reference looks like this:

*Note NODE-NAME::.

or like this

*Note CROSS-REFERENCE-NAME: NODE-NAME.

In TeX, a cross reference looks like this:

See Section SECTION-NUMBER [NODE-NAME], page PAGE.

or like this

See Section SECTION-NUMBER [TITLE-OR-TOPIC], page PAGE.

The @xref command does not generate a period or comma to end the
cross reference in either the Info file or the printed output. You
must write that period or comma yourself; otherwise, Info will not
recognize the end of the reference. (The @pxref command works
differently. See @pxref.)

Please note: A period or comma must follow the closing brace of an
@xref. It is required to terminate the cross reference.

This period or comma will appear in the output, both in the Info
file and in the printed manual.

@xref must refer to an Info node by name. Use @node to define the
node (see Writing a Node).

@xref is followed by several arguments inside braces, separated by
commas. Whitespace before and after these commas is ignored.

A cross reference requires only the name of a node; but it may contain
up to four additional arguments. Each of these variations produces a
cross reference that looks somewhat different.

Please note: Commas separate arguments in a cross reference; avoid
including them in the title or other part lest the formatters
mistake them for separators.

1.98 texinfo.guide/One Argument

@xref with One Argument

The simplest form of @xref takes one argument, the name of another
node in the same Info file. The Info formatters produce output that
the Info readers can use to jump to the reference; TeX produces output
that specifies the page and section number for you.

texinfo 80 / 239

For example,

@xref{Tropical Storms}.

produces

*Note Tropical Storms::.

and

See Section 3.1 [Tropical Storms], page 24.

(Note that in the preceding example the closing brace is followed by a
period.)

You can write a clause after the cross reference, like this:

@xref{Tropical Storms}, for more info.

which produces

*Note Tropical Storms::, for more info.

See Section 3.1 [Tropical Storms], page 24, for more info.

(Note that in the preceding example the closing brace is followed by a
comma, and then by the clause, which is followed by a period.)

1.99 texinfo.guide/Two Arguments

@xref with Two Arguments

With two arguments, the second is used as the name of the Info cross
reference, while the first is still the name of the node to which the
cross reference points.

The template is like this:

@xref{NODE-NAME, CROSS-REFERENCE-NAME}.

For example,

@xref{Electrical Effects, Lightning}.

produces:

*Note Lightning: Electrical Effects.

and

See Section 5.2 [Electrical Effects], page 57.

texinfo 81 / 239

(Note that in the preceding example the closing brace is followed by a
period; and that the node name is printed, not the cross reference
name.)

You can write a clause after the cross reference, like this:

@xref{Electrical Effects, Lightning}, for more info.

which produces

*Note Lightning: Electrical Effects, for more info.

and

See Section 5.2 [Electrical Effects], page 57, for more info.

(Note that in the preceding example the closing brace is followed by a
comma, and then by the clause, which is followed by a period.)

1.100 texinfo.guide/Three Arguments

@xref with Three Arguments

A third argument replaces the node name in the TeX output. The third
argument should be the name of the section in the printed output, or
else state the topic discussed by that section. Often, you will want to
use initial upper case letters so it will be easier to read when the
reference is printed. Use a third argument when the node name is
unsuitable because of syntax or meaning.

Remember to avoid placing a comma within the title or topic section of
a cross reference, or within any other section. The formatters divide
cross references into arguments according to the commas; a comma within
a title or other section will divide it into two arguments. In a
reference, you need to write a title such as "Clouds, Mist, and Fog"
without the commas.

Also, remember to write a comma or period after the closing brace of a
@xref to terminate the cross reference. In the following

examples, a clause follows a terminating comma.

The template is like this:

@xref{NODE-NAME, CROSS-REFERENCE-NAME, TITLE-OR-TOPIC}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning},
for details.

produces

*Note Lightning: Electrical Effects, for details.

texinfo 82 / 239

and

See Section 5.2 [Thunder and Lightning], page 57, for details.

If a third argument is given and the second one is empty, then the
third argument serves both. (Note how two commas, side by side, mark
the empty second argument.)

@xref{Electrical Effects, , Thunder and Lightning},
for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.

and

See Section 5.2 [Thunder and Lightning], page 57, for details.

As a practical matter, it is often best to write cross references with
just the first argument if the node name and the section title are the
same, and with the first and third arguments if the node name and title
are different.

Here are several examples from ‘The GAWK Manual’:

@xref{Sample Program}.
@xref{Glossary}.
@xref{Case-sensitivity, ,Case-sensitivity in Matching}.
@xref{Close Output, , Closing Output Files and Pipes},

for more information.
@xref{Regexp, , Regular Expressions as Patterns}.

1.101 texinfo.guide/Four and Five Arguments

@xref with Four and Five Arguments

In a cross reference, a fourth argument specifies the name of another
Info file, different from the file in which the reference appears, and
a fifth argument specifies its title as a printed manual.

Remember that a comma or period must follow the closing brace of an
examples, a clause follows a terminating comma.

The template is:

@xref{NODE-NAME, CROSS-REFERENCE-NAME, TITLE-OR-TOPIC,
INFO-FILE-NAME, PRINTED-MANUAL-TITLE}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

texinfo 83 / 239

produces

*Note Lightning: (weather)Electrical Effects, for details.

The name of the Info file is enclosed in parentheses and precedes the
name of the node.

In a printed manual, the reference looks like this:

See section "Thunder and Lightning" in An Introduction to
Meteorology, for details.

The title of the printed manual is typeset in italics; and the
reference lacks a page number since TeX cannot know to which page a
reference refers when that reference is to another manual.

Often, you will leave out the second argument when you use the long
version of @xref. In this case, the third argument, the topic
description, will be used as the cross reference name in Info.

The template looks like this:

@xref{NODE-NAME, , TITLE-OR-TOPIC, INFO-FILE-NAME,
PRINTED-MANUAL-TITLE}, for details.

which produces

*Note TITLE-OR-TOPIC: (INFO-FILE-NAME)NODE-NAME, for details.

and

See section TITLE-OR-TOPIC in PRINTED-MANUAL-TITLE, for details.

For example,

@xref{Electrical Effects, , Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

produces

*Note Thunder and Lightning: (weather)Electrical Effects,
for details.

and

See section "Thunder and Lightning" in An Introduction to
Meteorology, for details.

On rare occasions, you may want to refer to another Info file that is
within a single printed manual--when multiple Texinfo files are
incorporated into the same TeX run but make separate Info files. In
this case, you need to specify only the fourth argument, and not the
fifth.

texinfo 84 / 239

1.102 texinfo.guide/Top Node Naming

Naming a ‘Top’ Node
===================

In a cross reference, you must always name a node. This means that in
order to refer to a whole manual, you must identify the ‘Top’ node by
writing it as the first argument to the @xref command. (This is
different from the way you write a menu entry; see See
Referring to Other Info Files.) At the same time, to provide a
meaningful section topic or title in the printed cross reference
(instead of the word ‘Top’), you must write an appropriate entry for
the third argument to the @xref command.

Thus, to make a cross reference to ‘The GNU Make Manual’, write:

@xref{Top, , Overview, make, The GNU Make Manual}.

which produces

*Note Overview: (make)Top.

and

See section "Overview" in The GNU Make Manual.

In this example, Top is the name of the first node, and Overview is the
name of the first section of the manual.

1.103 texinfo.guide/ref

@ref
=====

@ref is nearly the same as @xref except that it does not generate a
‘See’ in the printed output, just the reference itself. This makes it
useful as the last part of a sentence.

For example,

For more information, see @ref{Hurricanes}.

produces

For more information, see *Note Hurricanes.

and

For more information, see Section 8.2 [Hurricanes], page 123.

The @ref command sometimes leads writers to express themselves in a
manner that is suitable for a printed manual but looks awkward in the
Info format. Bear in mind that your audience will be using both the

texinfo 85 / 239

printed and the Info format.

For example,

Sea surges are described in @ref{Hurricanes}.

produces

Sea surges are described in Section 6.7 [Hurricanes], page 72.

in a printed document, and the following in Info:

Sea surges are described in *Note Hurricanes::.

Caution: You must write a period or comma immediately after an
@ref command with two or more arguments. Otherwise, Info will not
find the end of the cross reference entry and its attempt to
follow the cross reference will fail. As a general rule, you
should write a period or comma after every @ref command. This
looks best in both the printed and the Info output.

1.104 texinfo.guide/pxref

@pxref
=======

The parenthetical reference command, @pxref, is nearly the same as
comma or period after the command’s closing brace. The command differs
from @xref in two ways:

1. TeX typesets the reference for the printed manual with a lower case
‘see’ rather than an upper case ‘See’.

2. The Info formatting commands automatically end the reference with a
closing colon or period.

Because one type of formatting automatically inserts closing
punctuation and the other does not, you should use @pxref only inside
parentheses as part of another sentence. Also, you yourself should not
insert punctuation after the reference, as you do with @xref.

@pxref is designed so that the output looks right and works right
between parentheses both in printed output and in an Info file. In a
printed manual, a closing comma or period should not follow a cross
reference within parentheses; such punctuation is wrong. But in an
Info file, suitable closing punctuation must follow the cross reference
so Info can recognize its end. @pxref spares you the need to use
complicated methods to put a terminator into one form of the output and
not the other.

With one argument, a parenthetical cross reference looks like this:

... storms cause flooding (@pxref{Hurricanes}) ...

texinfo 86 / 239

which produces

... storms cause flooding (*Note Hurricanes::) ...

and

... storms cause flooding (see Section 6.7 [Hurricanes], page 72)

...

With two arguments, a parenthetical cross reference has this template:

... (@pxref{NODE-NAME, CROSS-REFERENCE-NAME}) ...

which produces

... (*Note CROSS-REFERENCE-NAME: NODE-NAME.) ...

and

... (see Section NNN [NODE-NAME], page PPP) ...

@pxref can be used with up to five arguments just like @xref (see
@xref).

Please note: Use @pxref only as a parenthetical reference. Do
not try to use @pxref as a clause in a sentence. It will look
bad in either the Info file, the printed output, or both.

Also, parenthetical cross references look best at the ends of
sentences. Although you may write them in the middle of a
sentence, that location breaks up the flow of text.

1.105 texinfo.guide/inforef

@inforef
=========

@inforef is used for cross references to Info files for which there
are no printed manuals. Even in a printed manual, @inforef generates
a reference directing the user to look in an Info file.

The command takes either two or three arguments, in the following
order:

1. The node name.

2. The cross reference name (optional).

3. The Info file name.

Separate the arguments with commas, as with @xref. Also, you must
terminate the reference with a comma or period after the }, as you do
with @xref.

texinfo 87 / 239

The template is:

@inforef{NODE-NAME, CROSS-REFERENCE-NAME, INFO-FILE-NAME},

Thus,

@inforef{Expert, Advanced Info commands, info},
for more information.

produces

*Note Advanced Info commands: (info)Expert,
for more information.

and

See Info file info, node Expert, for more information.

Similarly,

@inforef{Expert, , info}, for more information.

produces

*Note (info)Expert::, for more information.

and

See Info file info, node Expert, for more information.

The converse of @inforef is @cite, which is used to refer to
printed works for which no Info form exists. See @cite.

1.106 texinfo.guide/Marking Text

Marking Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The
Texinfo formatters use this information to determine how to highlight
the text. You can specify, for example, whether a word or phrase is a
defining occurrence, a metasyntactic variable, or a symbol used in a
program. Also, you can emphasize text.

Indicating How to indicate definitions, files, etc.
Emphasis How to emphasize text.

1.107 texinfo.guide/Indicating

texinfo 88 / 239

Indicating Definitions, Commands, etc.
======================================

Texinfo has commands for indicating just what kind of object a piece
of text refers to. For example, metasyntactic variables are marked by
commands that tell what kind of object they are, it is easy to change
the way the Texinfo formatters prepare such text. (Texinfo is an
intentional formatting language rather than a typesetting
formatting language.)

For example, in a printed manual, code is usually illustrated in a
typewriter font; @code tells TeX to typeset this text in this font.
But it would be easy to change the way TeX highlights code to use
another font, and this change would not effect how keystroke examples
are highlighted. If straight typesetting commands were used in the body
of the file and you wanted to make a change, you would need to check
every single occurrence to make sure that you were changing code and
not something else that should not be changed.

Useful Highlighting Highlighting provides useful information.
code How to indicate code.
kbd How to show keyboard input.
key How to specify keys.
samp How to show a literal sequence of characters.
var How to indicate a metasyntactic variable.
file How to indicate the name of a file.
dfn How to specify a definition.
cite How to refer to a book that is not in Info.

1.108 texinfo.guide/Useful Highlighting

Highlighting Commands are Useful

The highlighting commands can be used to generate useful information
from the file, such as lists of functions or file names. It is
possible, for example, to write a program in Emacs Lisp (or a keyboard
macro) to insert an index entry after every paragraph that contains
words or phrases marked by a specified command. You could do this to
construct an index of functions if you had not already made the entries.

The commands serve a variety of purposes:

@code{SAMPLE-CODE}
Indicate text that is a literal example of a piece of a program.

@kbd{KEYBOARD-CHARACTERS}
Indicate keyboard input.

@key{KEY-NAME}
Indicate the conventional name for a key on a keyboard.

texinfo 89 / 239

@samp{TEXT}
Indicate text that is a literal example of a sequence of
characters.

@var{METASYNTACTIC-VARIABLE}
Indicate a metasyntactic variable.

@file{FILE-NAME}
Indicate the name of a file.

@dfn{TERM}
Indicate the introductory or defining use of a term.

@cite{REFERENCE}
Indicate the name of a book.

1.109 texinfo.guide/code

@code {SAMPLE-CODE}

Use the @code command to indicate text that is a piece of a program
and which consists of entire syntactic tokens. Enclose the text in
braces.

Thus, you should use @code for an expression in a program, for the
name of a variable or function used in a program, or for a keyword.
Also, you should use @code for the name of a program, such as diff,
that is a name used in the machine. (You should write the name of a
program in the ordinary text font if you regard it as a new English
word, such as ‘Emacs’ or ‘Bison’.)

Use @code for environment variables such as TEXINPUTS, and other
variables.

Use @code for command names in command languages that resemble
programming languages, such as Texinfo or the shell. For example,

Note, however, that you should not use @code for shell options such
as -c when such options stand alone. (Use @samp.) Also, an entire
shell command often looks better if written using @samp rather than

It is incorrect to alter the case of a word inside an @code command
when it appears at the beginning of a sentence. Most computer
languages are case sensitive. In C, for example, Printf is different
from the identifier printf, and most likely is a misspelling of it.
Even in languages which are not case sensitive, it is confusing to a
human reader to see identifiers spelled in different ways. Pick one
spelling and always use that. If you do not want to start a sentence
with a command written all in lower case, you should rearrange the
sentence.

Do not use the @code command for a string of characters shorter than
a syntactic token. If you are writing about TEXINPU, which is just a
part of the name for the TEXINPUTS environment variable, you should use
@samp.

texinfo 90 / 239

In particular, you should not use the @code command when writing
about the characters used in a token; do not, for example, use @code
when you are explaining what letters or printable symbols can be used
in the names of functions. (Use @samp.) Also, you should not use
input is written in a language that is like a programming language.
For example, you should not use @code for the keystroke commands of
GNU Emacs (use @kbd instead) although you may use @code for the names
of the Emacs Lisp functions that the keystroke commands invoke.

In the printed manual, @code causes TeX to typeset the argument in a
typewriter face. In the Info file, it causes the Info formatting
commands to use single quotation marks around the text.

For example,

Use @code{diff} to compare two files.

produces this in the printed manual:

Use diff to compare two files.

1.110 texinfo.guide/kbd

@kbd {KEYBOARD-CHARACTERS}

Use the @kbd command for characters of input to be typed by users.
For example, to refer to the characters M-a, write

@kbd{M-a}

and to refer to the characters M-x shell, write

@kbd{M-x shell}

The @kbd command has the same effect as @code in Info, but may
produce a different font in a printed manual.

You can embed another @-command inside the braces of an @kbd
command. Here, for example, is the way to describe a command that
would be described more verbosely as "press an r and then press the RET
key":

@kbd{r @key{RET}}

This produces: r RET

You also use the @kbd command if you are spelling out the letters
you type; for example:

To give the @code{logout} command,
type the characters @kbd{l o g o u t @key{RET}}.

texinfo 91 / 239

This produces:

To give the logout command, type the characters l o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you
really want to mention a space character as one of the characters of
input, write @key{SPC} for it.)

1.111 texinfo.guide/key

@key {KEY-NAME}

Use the @key command for the conventional name for a key on a
keyboard, as in:

@key{RET}

You can use the @key command within the argument of an @kbd command
when the sequence of characters to be typed includes one or more keys
that are described by name.

For example, to produce C-x ESC you would type:

@kbd{C-x @key{ESC}}

Here is a list of the recommended names for keys; they are all in
upper case:

SPC
Space

RET
Return

LFD
Linefeed

TAB
Tab

BS
Backspace

ESC
Escape

DEL
Delete

SFT
Shift

CTL

texinfo 92 / 239

Control

META
Meta

There are subtleties to handling words like ‘meta’ or ‘ctl’ that are
names of shift keys. When mentioning a character in which the shift
key is used, such as Meta-a, use the @kbd command alone; do not use
the @key command; but when you are referring to the shift key in
isolation, use the @key command. For example, write @kbd{Meta-a} to
produce Meta-a and @key{META} to produce META. This is because Meta-a
refers to keys that you press on a keyboard, but META refers to a key
without implying that you press it. In short, use @kbd for what you
do, and use @key for what you talk about: "Press @kbd{M-a} to move
point to the beginning of the sentence. The @key{META} key is often
in the lower left of the keyboard."

1.112 texinfo.guide/samp

@samp {TEXT}

Use the @samp command to indicate text that is a literal example or
‘sample’ of a sequence of characters in a file, string, pattern, etc.
Enclose the text in braces. The argument appears within single
quotation marks in both the Info file and the printed manual; in
addition, it is printed in a fixed-width font.

To match @samp{foo} at the end of the line,
use the regexp @samp{foo$}.

produces

To match foo at the end of the line, use the regexp foo$.

Any time you are referring to single characters, you should use
of command-line options. Also, you may use @samp for entire
statements in C and for entire shell commands--in this case, @samp
often looks better than @code. Basically, @samp is a catchall for
whatever is not covered by @code, @kbd, or @key.

Only include punctuation marks within braces if they are part of the
string you are specifying. Write punctuation marks outside the braces
if those punctuation marks are part of the English text that surrounds
the string. In the following sentence, for example, the commas and
period are outside of the braces:

In English, the vowels are @samp{a}, @samp{e},
@samp{i}, @samp{o}, @samp{u}, and sometimes
@samp{y}.

This produces:

In English, the vowels are a, e, i, o, u, and sometimes y.

texinfo 93 / 239

1.113 texinfo.guide/var

@var {METASYNTACTIC-VARIABLE}

Use the @var command to indicate metasyntactic variables. A
metasyntactic variable is something that stands for another piece of
text. For example, you should use a metasyntactic variable in the
documentation of a function to describe the arguments that are passed
to that function.

Do not use @var for the names of particular variables in programming
languages. These are specific names from a program, so @code is
correct for them. For example, the Lisp variable texinfo-tex-command
is not a metasyntactic variable; it is properly formatted using @code.

The effect of @var in the Info file is to change the case of the
argument to all upper case; in the printed manual, to italicize it.

For example,

To delete file @var{filename},
type @code{rm @var{filename}}.

produces

To delete file FILENAME, type rm FILENAME.

(Note that @var may appear inside @code, @samp, @file, etc.)

Write a metasyntactic variable all in lower case without spaces, and
use hyphens to make it more readable. Thus, the Texinfo source for the
illustration of how to begin a Texinfo manual looks like this:

\input texinfo
@@setfilename @var{info-file-name}
@@settitle @var{name-of-manual}

This produces:

\input texinfo
@setfilename INFO-FILE-NAME
@settitle NAME-OF-MANUAL

In some documentation styles, metasyntactic variables are shown with
angle brackets, for example:

..., type rm <filename>

However, that is not the style that Texinfo uses. (You can, of course,
modify the sources to TeX and the Info formatting commands to output
the <...> format if you wish.)

texinfo 94 / 239

1.114 texinfo.guide/file

@file {FILE-NAME}

Use the @file command to indicate text that is the name of a file,
buffer, or directory, or is the name of a node in Info. You can also
use the command for file name suffixes. Do not use @file for symbols
in a programming language; use @code.

Currently, @file is equivalent to @samp in its effects. For
example,

The @file{.el} files are in
the @file{/usr/local/emacs/lisp} directory.

produces

The .el files are in the /usr/local/emacs/lisp directory.

1.115 texinfo.guide/dfn

@dfn {TERM}

Use the @dfn command to identify the introductory or defining use of
a technical term. Use the command only in passages whose purpose is to
introduce a term which will be used again or which the reader ought to
know. Mere passing mention of a term for the first time does not
deserve @dfn. The command generates italics in the printed manual,
and double quotation marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.

produces

Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a
term should be a definition of the term. The sentence does not need to
say explicitly that it is a definition, but it should contain the
information of a definition--it should make the meaning clear.

1.116 texinfo.guide/cite

texinfo 95 / 239

@cite {REFERENCE}

Use the @cite command for the name of a book that lacks a companion
Info file. The command produces italics in the printed manual, and
quotation marks in the Info file.

(If a book is written in Texinfo, it is better to use a cross
reference command since a reader can easily follow such a reference in
Info. See @xref.)

1.117 texinfo.guide/Emphasis

Emphasizing Text
================

Usually, Texinfo changes the font to mark words in the text according
to what category the words belong to; an example is the @code command.
Most often, this is the best way to mark words. However, sometimes you
will want to emphasize text without indicating a category. Texinfo has
two commands to do this. Also, Texinfo has several commands that
specify the font in which TeX will typeset text. These commands have
no affect on Info and only one of them, the @r command, has any
regular use.

emph & strong How to emphasize text in Texinfo.
Smallcaps How to use the small caps font.
Fonts Various font commands for printed output.
Customized Highlighting How to define highlighting commands.

1.118 texinfo.guide/emph & strong

@emph {TEXT} and @strong {TEXT}

The @emph and @strong commands are for emphasis; @strong is
stronger. In printed output, @emph produces italics and @strong
produces bold.

For example,

@quotation
@strong{Caution:} @code{rm * .[^.]*} removes @emph{all}
files in the directory.
@end quotation

produces:

texinfo 96 / 239

Caution: ‘rm * .[^.]*’ removes *all*
files in the directory.

The @strong command is seldom used except to mark what is, in
effect, a typographical element, such as the word ‘Caution’ in the
preceding example.

In the Info file, both @emph and @strong put asterisks around the
text.

Caution: Do not use @emph or @strong with the word Note; Info
will mistake the combination for a cross reference. Use a phrase
such as Please note or Caution instead.

1.119 texinfo.guide/Smallcaps

@sc {TEXT}: The Small Caps Font

Use the @sc command to set text in the printed output in a small
caps font and set text in the Info file in upper case letters.

Write the text between braces in lower case, like this:

The @sc{acm} and @sc{ieee} are technical societies.

This produces:

The acm and ieee are technical societies.

TeX typesets the small caps font in a manner that prevents the
letters from ‘jumping out at you on the page’. This makes small caps
text easier to read than text in all upper case. The Info formatting
commands set all small caps text in upper case.

If the text between the braces of an @sc command is upper case, TeX
typesets in full-size capitals. Use full-size capitals sparingly.

You may also use the small caps font for a jargon word such as ato (a
nasa word meaning ‘abort to orbit’).

There are subtleties to using the small caps font with a jargon word
such as cdr, a word used in Lisp programming. In this case, you should
use the small caps font when the word refers to the second and
subsequent elements of a list (the cdr of the list), but you should use
@code when the word refers to the Lisp function of the same

spelling.

1.120 texinfo.guide/Fonts

texinfo 97 / 239

Fonts for Printing, Not Info

Texinfo provides four font commands that specify font changes in the
printed manual but have no effect in the Info file. @i requests
italic font (in some versions of TeX, a slanted font is used),
@b requests bold face, @t requests the fixed-width,

typewriter-style font used by @code, and @r requests a roman font,
which is the usual font in which text is printed. All four commands
apply to an argument that follows, surrounded by braces.

Only the @r command has much use: in example programs, you can use
the @r command to convert code comments from the fixed-width font to a
roman font. This looks better in printed output.

For example,

@lisp
(+ 2 2) ; @r{Add two plus two.}
@end lisp

produces

(+ 2 2) ; Add two plus two.

If possible, you should avoid using the other three font commands. If
you need to use one, it probably indicates a gap in the Texinfo
language.

1.121 texinfo.guide/Customized Highlighting

Customized Highlighting

You can use regular TeX commands inside of @iftex ... @end iftex
to create your own customized highlighting commands for Texinfo. The
easiest way to do this is to equate your customized commands with
pre-existing commands, such as those for italics. Such new commands
work only with TeX.

You can use the @definfoenclose command inside of @ifinfo ... @end
ifinfo to define commands for Info with the same names as new commands
for TeX. @definfoenclose creates new commands for Info that mark text
by enclosing it in strings that precede and follow the text.
(1)Customized Highlighting-Footnotes

Here is how to create a new @-command called @phoo that causes TeX
to typeset its argument in italics and causes Info to display the
argument between // and \ .

For TeX, write the following to equate the @phoo command with the
existing @i italics command:

texinfo 98 / 239

@iftex
@global@let@phoo=@i
@end iftex

This defines @phoo as a command that causes TeX to typeset the
argument to @phoo in italics. @global@let tells TeX to equate the
next argument with the argument that follows the equals sign.

For Info, write the following to tell the Info formatters to enclose
the argument between // and \ :

@ifinfo
@definfoenclose phoo, //, \
@end ifinfo

Write the @definfoenclose command on a line and follow it with three
arguments separated by commas (commas are used as separators in an

* The first argument to @definfoenclose is the @-command name
without the @;

* the second argument is the Info start delimiter string; and,

* the third argument is the Info end delimiter string.

The latter two arguments enclose the highlighted text in the Info file.
A delimiter string may contain spaces. Neither the start nor end
delimiter is required. However, if you do not provide a start
delimiter, you must follow the command name with two commas in a row;
otherwise, the Info formatting commands will misinterpret the end
delimiter string as a start delimiter string.

After you have defined @phoo both for TeX and for Info, you can then
write @phoo{bar} to see //bar\ in Info and see bar in italics in
printed output.

Note that each definition applies to its own formatter: one for TeX,
the other for Info.

Here is another example:

@ifinfo
@definfoenclose headword, , :
@end ifinfo
@iftex
@global@let@headword=@b
@end iftex

This defines @headword as an Info formatting command that inserts
nothing before and a colon after the argument and as a TeX formatting
command to typeset its argument in bold.

1.122 texinfo.guide/Customized Highlighting-Footnotes

texinfo 99 / 239

(1) Currently, @definfoenclose works only with
texinfo-format-buffer and texinfo-format-region, not with
makeinfo.

1.123 texinfo.guide/Quotations and Examples

Quotations and Examples

Quotations and examples are blocks of text consisting of one or more
whole paragraphs that are set off from the bulk of the text and treated
differently. They are usually indented.

In Texinfo, you always begin a quotation or example by writing an
an @end command that is also at the beginning of a line by itself.
For instance, you begin an example by writing @example by itself at
the beginning of a line and end the example by writing @end example on
a line by itself, at the beginning of that line.

Block Enclosing Commands Use different constructs for
different purposes.

quotation How to write a quotation.
example How to write an example in a fixed-width font.
noindent How to prevent paragraph indentation.
Lisp Example How to illustrate Lisp code.
smallexample & smalllisp Forms for the @smallbook option.
display How to write an example in the current font.
format How to write an example that does not narrow

the margins.
exdent How to undo the indentation of a line.
flushleft & flushright How to push text flushleft or flushright.
cartouche How to draw cartouches around examples.

1.124 texinfo.guide/Block Enclosing Commands

The Block Enclosing Commands
============================

Here are commands for quotations and examples:

@quotation
Indicate text that is quoted. The text is filled, indented, and
printed in a roman font by default.

@example
Illustrate code, commands, and the like. The text is printed in a
fixed-width font, and indented but not filled.

texinfo 100 / 239

@lisp
Illustrate Lisp code. The text is printed in a fixed-width font,
and indented but not filled.

@smallexample
Illustrate code, commands, and the like. Similar to @example,
except that in TeX this command typesets text in a smaller font
for the smaller @smallbook format than for the 8.5 by 11 inch
format.

@smalllisp
Illustrate Lisp code. Similar to @lisp, except that in TeX this
command typesets text in a smaller font for the smaller
@smallbook format than for the 8.5 by 11 inch format.

@display
Display illustrative text. The text is indented but not filled,
and no font is specified (so, by default, the font is roman).

@format
Print illustrative text. The text is not indented and not filled
and no font is specified (so, by default, the font is roman).

The @exdent command is used within the above constructs to undo the
indentation of a line.

The @flushleft and @flushright commands are used to line up the
left or right margins of unfilled text.

The @noindent command may be used after one of the above constructs
to prevent the following text from being indented as a new paragraph.

You can use the @cartouche command within one of the above
constructs to highlight the example or quotation by drawing a box with
rounded corners around it. (The @cartouche command affects only the
printed manual; it has no effect in the Info file; see See
Drawing Cartouches Around Examples.)

1.125 texinfo.guide/quotation

@quotation
===========

The text of a quotation is processed normally except that:

* the margins are closer to the center of the page, so the whole of
the quotation is indented;

* the first lines of paragraphs are indented no more than other
lines;

* in the printed output, interparagraph spacing is reduced.

This is an example of text written between an @quotation command

texinfo 101 / 239

and an @end quotation command. An @quotation command is most
often used to indicate text that is excerpted from another (real
or hypothetical) printed work.

Write an @quotation command as text on a line by itself. This line
will disappear from the output. Mark the end of the quotation with a
line beginning with and containing only @end quotation. The @end
quotation line will likewise disappear from the output. Thus, the
following,

@quotation
This is
a foo.
@end quotation

produces

This is a foo.

1.126 texinfo.guide/example

@example
=========

The @example command is used to indicate an example that is not part
of the running text, such as computer input or output.

This is an example of text written between an
@example command

and an @end example command.
The text is indented but not filled.

In the printed manual, the text is typeset in a
fixed-width font, and extra spaces and blank lines are
significant. In the Info file, an analogous result is
obtained by indenting each line with five spaces.

Write an @example command at the beginning of a line by itself.
This line will disappear from the output. Mark the end of the example
with an @end example command, also written at the beginning of a line
by itself. The @end example will disappear from the output.

For example,

@example
mv foo bar
@end example

produces

mv foo bar

Since the lines containing @example and @end example will
disappear, you should put a blank line before the @example and another

texinfo 102 / 239

blank line after the @end example. (Remember that blank lines between
the beginning @example and the ending @end example will appear in the
output.)

Caution: Do not use tabs in the lines of an example (or anywhere
else in Texinfo, for that matter)! TeX treats tabs as single
spaces, and that is not what they look like. This is a problem
with TeX. (If necessary, in Emacs, you can use M-x untabify to
convert tabs in a region to multiple spaces.)

Examples are often, logically speaking, "in the middle" of a
paragraph, and the text continues after an example should not be
indented. The @noindent command prevents a piece of text from being
indented as if it were a new paragraph. (See noindent.)

(The @code command is used for examples of code that are embedded
within sentences, not set off from preceding and following text. See
@code.)

1.127 texinfo.guide/noindent

@noindent
==========

An example or other inclusion can break a paragraph into segments.
Ordinarily, the formatters indent text that follows an example as a new
paragraph. However, you can prevent this by writing @noindent at the
beginning of a line by itself preceding the continuation text.

For example:

@example
This is an example
@end example

@noindent
This line is not indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
@code{@@display} and @code{@@end display}.)

produces

This is an example

This line is not indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
@display and @end display.)

To adjust the number of blank lines properly in the Info file output,
remember that the line containing @noindent does not generate a blank
line, and neither does the @end example line.

texinfo 103 / 239

In the Texinfo source file for this manual, each line that says
‘produces’ is preceded by a line containing @noindent.

Do not put braces after an @noindent command; they are not
necessary, since @noindent is a command used outside of paragraphs
(see Command Syntax).

1.128 texinfo.guide/Lisp Example

@lisp
======

The @lisp command is used for Lisp code. It is synonymous with the
This is an example of text written between an
@lisp command and an @end lisp command.

Use @lisp instead of @example so as to preserve information
regarding the nature of the example. This is useful, for example, if
you write a function that evaluates only and all the Lisp code in a
Texinfo file. Then you can use the Texinfo file as a Lisp
library.(1)Lisp Example-Footnotes

Mark the end of @lisp with @end lisp on a line by itself.

1.129 texinfo.guide/Lisp Example-Footnotes

(1) It would be straightforward to extend Texinfo to work in a
similar fashion for C, fortran, or other languages.

1.130 texinfo.guide/smallexample & smalllisp

@smallexample and @smalllisp
==============================

In addition to the regular @example and @lisp commands, Texinfo has
two other "example-style" commands. These are the @smallexample and
@smallbook command that causes TeX to produce a printed manual in

a 7 by 9.25 inch format rather than the regular 8.5 by 11 inch format.

In TeX, the @smallexample and @smalllisp commands typeset text in a
smaller font for the smaller @smallbook format than for the 8.5 by 11
inch format. Consequently, many examples containing long lines fit in
a narrower, @smallbook page without needing to be shortened. Both
commands typeset in the normal font size when you format for the 8.5 by
11 inch size; indeed, in this situation, the @smallexample and

In Info, the @smallexample and @smalllisp commands are equivalent

texinfo 104 / 239

to the @example and @lisp commands, and work exactly the same.

Mark the end of @smallexample or @smalllisp with @end smallexample
or @end smalllisp, respectively.

This is an example of text written between @smallexample and
@end smallexample. In Info and in an 8.5 by 11 inch manual,

this text appears in its normal size; but in a 7 by 9.25 inch manual,
this text appears in a smaller font.

The @smallexample and @smalllisp commands make it easier to prepare
smaller format manuals without forcing you to edit examples by hand to
fit them onto narrower pages.

As a general rule, a printed document looks better if you write all
the examples in a chapter consistently in @example or in

See Printing , for more information about the

1.131 texinfo.guide/display

@display
=========

The @display command begins a kind of example. It is like the
select the fixed-width font. In fact, it does not specify the font at
all, so that the text appears in the same font it would have appeared
in without the @display command.

This is an example of text written between an @display command
and an @end display command. The @display command
indents the text, but does not fill it.

1.132 texinfo.guide/format

@format
========

The @format command is similar to @example except that, in the
printed manual, @format does not select the fixed-width font and does
not narrow the margins.

This is an example of text written between an @format command
and an @end format command. As you can see
from this example,
the @format command does not fill the text.

1.133 texinfo.guide/exdent

texinfo 105 / 239

@exdent: Undoing a Line’s Indentation
======================================

The @exdent command removes any indentation a line might have. The
command is written at the beginning of a line and applies only to the
text that follows the command that is on the same line. Do not use
braces around the text. In a printed manual, the text on an @exdent
line is printed in the roman font.

@exdent is usually used within examples. Thus,

@example
This line follows an @@example command.
@exdent This line is exdented.
This line follows the exdented line.
The @@end example comes on the next line.
@end group

produces

This line follows an @example command.
This line is exdented.

This line follows the exdented line.
The @end example comes on the next line.

In practice, the @exdent command is rarely used. Usually, you
un-indent text by ending the example and returning the page to its
normal width.

1.134 texinfo.guide/flushleft & flushright

@flushleft and @flushright
============================

The @flushleft and @flushright commands line up the ends of lines
on the left and right margins of a page, but do not fill the text. The
commands are written on lines of their own, without braces. The

For example,

@flushleft
This text is
written flushleft.
@end flushleft

produces

This text is
written flushleft.

Flushright produces the type of indentation often used in the return
address of letters.

For example,

texinfo 106 / 239

@flushright
Here is an example of text written
flushright. The @code{@flushright} command
right justifies every line but leaves the
left end ragged.
@end flushright

produces

Here is an example of text written
flushright. The @flushright command

right justifies every line but leaves the
left end ragged.

1.135 texinfo.guide/cartouche

Drawing Cartouches Around Examples
==================================

In a printed manual, the @cartouche command draws a box with rounded
corners around its contents. You can use this command to further
highlight an example or quotation. For instance, you could write a
manual in which one type of example is surrounded by a cartouche for
emphasis.

The @cartouche command affects only the printed manual; it has no
effect in the Info file.

For example,

@example
@cartouche
% pwd
/usr/local/lib/emacs/info
@end cartouche
@end example

surrounds the two-line example with a box with rounded corners, in the
printed manual.

1.136 texinfo.guide/Lists and Tables

Making Lists and Tables

Texinfo has several ways of making lists and two-column tables.
Lists can be bulleted or numbered, while two-column tables can
highlight the items in the first column.

texinfo 107 / 239

Introducing Lists Texinfo formats lists for you.
itemize How to construct a simple list.
enumerate How to construct a numbered list.
Two-column Tables How to construct a two-column table.

1.137 texinfo.guide/Introducing Lists

Introducing Lists
=================

Texinfo automatically indents the text in lists or tables, and numbers
an enumerated list. This last feature is useful if you modify the
list, since you do not need to renumber it yourself.

Numbered lists and tables begin with the appropriate @-command at the
beginning of a line, and end with the corresponding @end command on a
line by itself. The table and itemized-list commands also require that
you write formatting information on the same line as the beginning

Begin an enumerated list, for example, with an @enumerate command
and end the list with an @end enumerate command. Begin an itemized
list with an @itemize command, followed on the same line by a
formatting command such as @bullet, and end the list with an @end
itemize command.

Precede each element of a list with an @item or @itemx command.

Here is an itemized list of the different kinds of table and lists:

* Itemized lists with and without bullets.

* Enumerated lists, using numbers or letters.

* Two-column tables with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.

2. Enumerated lists, using numbers or letters.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:

@itemize
Itemized lists with and without bullets.

@enumerate
Enumerated lists, using numbers or letters.

@table
@ftable
@vtable

texinfo 108 / 239

Two-column tables with highlighting.

1.138 texinfo.guide/itemize

Making an Itemized List
=======================

The @itemize command produces sequences of indented paragraphs, with
a bullet or other mark inside the left margin at the beginning of each
paragraph for which such a mark is desired.

Begin an itemized list by writing @itemize at the beginning of a
line. Follow the command, on the same line, with a character or a
Texinfo command that generates a mark. Usually, you will write
or any special symbol that results in a single character in the Info
file. (When you write @bullet or @minus after an @itemize command,
you may omit the {}.)

Write the text of the indented paragraphs themselves after the
Before each paragraph for which a mark in the margin is desired, write

a line that says just @item. Do not write any other text on this line.

Usually, you should put a blank line before an @item. This puts a
blank line in the Info file. (TeX inserts the proper interline
whitespace in either case.) Except when the entries are very brief,
these blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it
produces. Note that @bullet produces an * in Info and a round dot in
TeX.

@itemize @bullet
@item
Some text for foo.

@item
Some text
for bar.
@end itemize

This produces:

* Some text for foo.

* Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a
list marked with dashes embedded in a list marked with bullets:

@itemize @bullet
@item
First item.

@itemize @minus

texinfo 109 / 239

@item
Inner item.

@item
Second inner item.
@end itemize

@item
Second outer item.
@end itemize

This produces:

* First item.

- Inner item.

- Second inner item.

* Second outer item.

1.139 texinfo.guide/enumerate

Making a Numbered or Lettered List
==================================

@enumerate is like @itemize except that the marks in the left
margin contain successive integers or letters. (See @itemize.)

Write the @enumerate command at the beginning of a line. The
command does not require an argument, but accepts either a number or a
letter as an option. Without an argument, @enumerate starts the list
with the number 1. With a numeric argument, such as 3, the command
starts the list with that number. With an upper or lower case letter,
such as a or A, the command starts the list with that letter.

Write the text of the enumerated list in the same way you write an
itemized list: put @item on a line of its own before the start of each
paragraph that you want enumerated. Do not write any other text on the
line beginning with @item.

You should put a blank line between entries in the list. This
generally makes it easier to read the Info file.

Here is an example of @enumerate without an argument:

@enumerate
@item
Underlying causes.

@item
Proximate causes.
@end enumerate

texinfo 110 / 239

This produces:

1. Underlying causes.

2. Proximate causes.

Here is an example with an argument of 3:

@enumerate 3
@item
Predisposing causes.

@item
Precipitating causes.

@item
Perpetuating causes.
@end enumerate

This produces:

3. Predisposing causes.

4. Precipitating causes.

5. Perpetuating causes.

Here is a brief summary of the alternatives. The summary is
constructed using @enumerate with an argument of a.

a. @enumerate

Without an argument, produce a numbered list, starting with the
number 1.

b. @enumerate POSITIVE-INTEGER

With a (positive) numeric argument, start a numbered list with that
number. You can use this to continue a list that you interrupted
with other text.

c. @enumerate UPPER-CASE-LETTER

With an upper case letter as argument, start a list in which each
item is marked by a letter, beginning with that upper case letter.

d. @enumerate LOWER-CASE-LETTER

With a lower case letter as argument, start a list in which each
item is marked by a letter, beginning with that lower case letter.

You can also nest enumerated lists, as in an outline.

texinfo 111 / 239

1.140 texinfo.guide/Two-column Tables

Making a Two-column Table
=========================

@table is similar to @itemize, but the command allows you to
specify a name or heading line for each item. (See @itemize.) The
useful for glossaries and explanatory exhibits.

table How to construct a two-column table.
ftable vtable How to construct a two-column table

with automatic indexing.
itemx How to put more entries in the first column.

1.141 texinfo.guide/table

Using the @table Command

Use the @table command to produce two-column tables.

Write the @table command at the beginning of a line and follow it on
the same line with an argument that is a Texinfo command such as
usually followed by arguments in braces, in this case you use the
command name without an argument because @item will supply the
argument. This command will be applied to the text that goes into the
first column of each item and determines how it will be highlighted.
For example, @samp will cause the text in the first column to be
highlighted with an @samp command.

You may also choose to use the @asis command as an argument to
after @table, TeX and the Info formatting commands output the first
column entries without added highlighting (‘as is’).

(The @table command may work with other commands besides those
listed here. However, you can only use commands that normally take
arguments in braces.)

Begin each table entry with an @item command at the beginning of a
line. Write the first column text on the same line as the @item
command. Write the second column text on the line following the @item
line and on subsequent lines. (You do not need to type anything for an
empty second column entry.) You may write as many lines of supporting
text as you wish, even several paragraphs. But only text on the same
line as the @item will be placed in the first column.

Normally, you should put a blank line before an @item line. This
puts a blank like in the Info file. Except when the entries are very
brief, a blank line looks better.

The following table, for example, highlights the text in the first
column with an @samp command:

texinfo 112 / 239

@table @samp
@item foo
This is the text for
@samp{foo}.

@item bar
Text for @samp{bar}.
@end table

This produces:

foo
This is the text for foo.

bar
Text for bar.

If you want to list two or more named items with a single block of
text, use the @itemx command. (See @itemx.)

1.142 texinfo.guide/ftable vtable

@ftable and @vtable

The @ftable and @vtable commands are the same as the @table
command except that @ftable automatically enters each of the items in
the first column of the table into the index of functions and @vtable
automatically enters each of the items in the first column of the table
into the index of variables. This simplifies the task of creating
indices. Only the items on the same line as the @item commands are
indexed, and they are indexed in exactly the form that they appear on
that line. See Creating Indices, for more information about indices.

Begin a two-column table using @ftable or @vtable by writing the
argument that is a Texinfo command such as @code, exactly as you would
for an @table command; and end the table with an @end ftable or @end
vtable command on a line by itself.

1.143 texinfo.guide/itemx

@itemx

Use the @itemx command inside a table when you have two or more
first column entries for the same item, each of which should appear on
a line of its own. Use @itemx for all but the first entry. The
generate extra vertical space above the first column text.

texinfo 113 / 239

For example,

@table @code
@item upcase
@itemx downcase
These two functions accept a character or a string as
argument, and return the corresponding upper case (lower
case) character or string.
@end table

This produces:

upcase
downcase

These two functions accept a character or a string as argument,
and return the corresponding upper case (lower case) character or
string.

(Note also that this example illustrates multi-line supporting text in
a two-column table.)

1.144 texinfo.guide/Indices

Creating Indices

Using Texinfo, you can generate indices without having to sort and
collate entries manually. In an index, the entries are listed in
alphabetical order, together with information on how to find the
discussion of each entry. In a printed manual, this information
consists of page numbers. In an Info file, this information is a menu
entry leading to the first node referenced.

Texinfo provides several predefined kinds of index: an index for
functions, an index for variables, an index for concepts, and so on.
You can combine indices or use them for other than their canonical
purpose. If you wish, you can define your own indices.

Index Entries Choose different words for index entries.
Predefined Indices Use different indices for different kinds

of entry.
Indexing Commands How to make an index entry.
Combining Indices How to combine indices.
New Indices How to define your own indices.

1.145 texinfo.guide/Index Entries

Making Index Entries
====================

texinfo 114 / 239

When you are making index entries, it is good practice to think of the
different ways people may look for something. Different people do not
think of the same words when they look something up. A helpful index
will have items indexed under all the different words that people may
use. For example, one reader may think it obvious that the two-letter
names for indices should be listed under "Indices, two-letter names",
since the word "Index" is the general concept. But another reader may
remember the specific concept of two-letter names and search for the
entry listed as "Two letter names for indices". A good index will have
both entries and will help both readers.

Like typesetting, the construction of an index is a highly skilled,
professional art, the subtleties of which are not appreciated until you
need to do it yourself.

See Printing Indices & Menus, for information about printing an index
at the end of a book or creating an index menu in an Info file.

1.146 texinfo.guide/Predefined Indices

Predefined Indices
==================

Texinfo provides six predefined indices:

* A concept index listing concepts that are discussed.

* A function index listing functions (such as entry points of
libraries).

* A variables index listing variables (such as global variables of
libraries).

* A keystroke index listing keyboard commands.

* A program index listing names of programs.

* A data type index listing data types (such as structures defined in
header files).

Not every manual needs all of these, and most manuals use two or three
of them. This manual has two indices: a concept index and an @-command
index (that is actually the function index but is called a command
index in the chapter heading). Two or more indices can be combined
into one using the @synindex or @syncodeindex commands. See
Combining Indices.

1.147 texinfo.guide/Indexing Commands

texinfo 115 / 239

Defining the Entries of an Index
================================

The data to make an index come from many individual indexing commands
scattered throughout the Texinfo source file. Each command says to add
one entry to a particular index; after formatting, the index will give
the current page number or node name as the reference.

An index entry consists of an indexing command at the beginning of a
line followed, on the rest of the line, by the entry.

For example, this section begins with the following five entries for
the concept index:

@cindex Defining indexing entries
@cindex Index entries
@cindex Entries for an index
@cindex Specifying index entries
@cindex Creating index entries

Each predefined index has its own indexing command-- @cindex for the
concept index, @findex for the function index, and so on.

Concept index entries consist of text. The best way to write an index
is to choose entries that are terse yet clear. If you can do this, the
index often looks better if the entries are not capitalized, but
written just as they would appear in the middle of a sentence.
(Capitalize proper names and acronyms that always call for upper case
letters.) This is the case convention we use in most GNU manuals’
indices.

If you don’t see how to make an entry terse yet clear, make it longer
and clear--not terse and confusing. If many of the entries are several
words long, the index may look better if you use a different convention:
to capitalize the first word of each entry. But do not capitalize a
case-sensitive name such as a C or Lisp function name or a shell
command; that would be a spelling error.

Whichever case convention you use, please use it consistently!

Entries in indices other than the concept index are symbol names in
programming languages, or program names; these names are usually
case-sensitive, so use upper and lower case as required for them.

By default, entries for a concept index are printed in a small roman
font and entries for the other indices are printed in a small @code
font. You may change the way part of an entry is printed with the
usual Texinfo commands, such as @file for file names and @emph for
emphasis (see Marking Text).

The six indexing commands for predefined indices are:

@cindex CONCEPT
Make an entry in the concept index for CONCEPT.

@findex FUNCTION

texinfo 116 / 239

Make an entry in the function index for FUNCTION.

@vindex VARIABLE
Make an entry in the variable index for VARIABLE.

@kindex KEYSTROKE
Make an entry in the key index for KEYSTROKE.

@pindex PROGRAM
Make an entry in the program index for PROGRAM.

@tindex DATA TYPE
Make an entry in the data type index for DATA TYPE.

Caution: Do not use a colon in an index entry. In Info, a colon
separates the menu entry name from the node name. An extra colon
confuses Info. See The Parts of a Menu, for more information
about the structure of a menu entry.

If you write several identical index entries in different places in a
Texinfo file, the index in the printed manual will list all the pages to
which those entries refer. However, the index in the Info file will
list only the node that references the first of those index entries.
Therefore, it is best to write indices in which each entry refers to
only one place in the Texinfo file. Fortunately, this constraint is a
feature rather than a loss since it means that the index will be easy
to use. Otherwise, you could create an index that lists several pages
for one entry and your reader would not know to which page to turn. If
you have two identical entries for one topic, change the topics
slightly, or qualify them to indicate the difference.

You are not actually required to use the predefined indices for their
canonical purposes. For example, suppose you wish to index some C
preprocessor macros. You could put them in the function index along
with actual functions, just by writing @findex commands for them;
then, when you print the "Function Index" as an unnumbered chapter, you
could give it the title ‘Function and Macro Index’ and all will be
consistent for the reader. Or you could put the macros in with the
data types by writing @tindex commands for them, and give that index a
suitable title so the reader will understand. (See
Printing Indices & Menus.)

1.148 texinfo.guide/Combining Indices

Combining Indices
=================

Sometimes you will want to combine two disparate indices such as
functions and concepts, perhaps because you have few enough of one of
them that a separate index for them would look silly.

You could put functions into the concept index by writing @cindex
commands for them instead of @findex commands, and produce a
consistent manual by printing the concept index with the title

texinfo 117 / 239

‘Function and Concept Index’ and not printing the ‘Function Index’ at
all; but this is not a robust procedure. It works only if your
document is never included as part of another document that is designed
to have a separate function index; if your document were to be included
with such a document, the functions from your document and those from
the other would not end up together. Also, to make your function names
appear in the right font in the concept index, you would need to
enclose every one of them between the braces of @code.

syncodeindex How to merge two indices, using @code
font for the merged-from index.

synindex How to merge two indices, using the
default font of the merged-to index.

1.149 texinfo.guide/syncodeindex

@syncodeindex

When you want to combine functions and concepts into one index, you
should index the functions with @findex and index the concepts with
index entries into the concept index.

The @syncodeindex command takes two arguments; they are the name of
the index to redirect, and the name of the index to redirect it to.
The template looks like this:

@syncodeindex FROM TO

For this purpose, the indices are given two-letter names:

cp
concept index

fn
function index

vr
variable index

ky
key index

pg
program index

tp
data type index

Write an @syncodeindex command before or shortly after the
end-of-header line at the beginning of a Texinfo file. For example, to
merge a function index with a concept index, write the following:

texinfo 118 / 239

@syncodeindex fn cp

This will cause all entries designated for the function index to merge
in with the concept index instead.

To merge both a variables index and a function index into a concept
index, write the following:

@syncodeindex vr cp
@syncodeindex fn cp

The @syncodeindex command puts all the entries from the ‘from’ index
(the redirected index) into the @code font, overriding whatever
default font is used by the index to which the entries are now
directed. This way, if you direct function names from a function index
into a concept index, all the function names are printed in the @code
font as you would expect.

1.150 texinfo.guide/synindex

@synindex

The @synindex command is nearly the same as the @syncodeindex
command, except that it does not put the ‘from’ index entries into the
@code font; rather it puts them in the roman font. Thus, you use
See Printing Indices & Menus, for information about printing an index

at the end of a book or creating an index menu in an Info file.

1.151 texinfo.guide/New Indices

Defining New Indices
====================

In addition to the predefined indices, you may use the @defindex and
@defcodeindex commands to define new indices. These commands

create new indexing @-commands with which you mark index entries. The
@defindex NAME

The name of an index should be a two letter word, such as au. For
example:

@defindex au

This defines a new index, called the au index. At the same time, it
creates a new indexing command, @auindex, that you can use to make
index entries. Use the new indexing command just as you would use a
predefined indexing command.

For example, here is a section heading followed by a concept index

texinfo 119 / 239

entry and two au index entries.

@section Cognitive Semantics
@cindex kinesthetic image schemas
@auindex Johnson, Mark
@auindex Lakoff, George

(Evidently, au serves here as an abbreviation for "author".) Texinfo
constructs the new indexing command by concatenating the name of the
index with index; thus, defining an au index leads to the automatic
creation of an @auindex command.

Use the @printindex command to print the index, as you do with the
predefined indices. For example:

@node Author Index, Subject Index, , Top
@unnumbered Author Index

@printindex au

The @defcodeindex is like the @defindex command, except that, in
the printed output, it prints entries in an @code font instead of a
roman font. Thus, it parallels the @findex command rather than the

You should define new indices within or right after the end-of-header
line of a Texinfo file, before any @synindex or @syncodeindex
commands (see Header).

1.152 texinfo.guide/Insertions

Special Insertions

Texinfo provides several commands for formatting dimensions, for
inserting single characters that have special meaning in Texinfo, such
as braces, and for inserting special graphic symbols that do not
correspond to characters, such as dots and bullets.

Braces Atsigns Periods How to insert braces, @ and periods.
dmn How to format a dimension.
Dots Bullets How to insert dots and bullets.
TeX and copyright How to insert the TeX logo

and the copyright symbol.
minus How to insert a minus sign.
math How to format a mathematical expression.

1.153 texinfo.guide/Braces Atsigns Periods

Inserting @, Braces, and Periods
=================================

texinfo 120 / 239

@ and curly braces are special characters in Texinfo. To insert
these characters so they appear in text, you must put an @ in front of
these characters to prevent Texinfo from misinterpreting them.

Periods are also special. Depending on whether the period is inside
or at the end of a sentence, less or more space is inserted after a
period in a typeset manual. Since it is not always possible for
Texinfo to determine when a period ends a sentence and when it is used
in an abbreviation, special commands are needed in some circumstances.
(Usually, Texinfo can guess how to handle periods, so you do not need
to use the special commands; you just enter a period as you would if
you were using a typewriter, which means you put two spaces after the
period, question mark, or exclamation mark that ends a sentence.)

Do not put braces after any of these commands; they are not necessary.

Inserting An Atsign
Inserting Braces How to insert { and }
Controlling Spacing How to insert the right amount of space

after punctuation within a sentence.

1.154 texinfo.guide/Inserting An Atsign

Inserting @ with @@

@@ stands for a single @ in either printed or Info output.

Do not put braces after an @@ command.

1.155 texinfo.guide/Inserting Braces

Inserting { and }with @{ and @}

stands for a single { in either printed or Info output.

@} stands for a single } in either printed or Info output.

Do not put braces after either an or an @} command.

1.156 texinfo.guide/Controlling Spacing

texinfo 121 / 239

Spacing After Colons and Periods

Use the @: command after a period, question mark, exclamation mark,
or colon that should not be followed by extra space. For example, use
sentences. @: has no effect on the Info file output.

For example,

The s.o.p.@: has three parts ...
The s.o.p. has three parts ...

produces

The s.o.p. has three parts ...
The s.o.p. has three parts ...

@: has no effect on the Info output. (s.o.p is an acronym for
"Standard Operating Procedure".)

Use @. instead of a period at the end of a sentence that ends with
a single capital letter. Otherwise, TeX will think the letter is an
abbreviation and will not insert the correct end-of-sentence spacing.
Here is an example:

Give it to M.I.B. and to M.E.W@. Also, give it to R.J.C@.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

produces

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

In the Info file output, @. is equivalent to a simple ..

The meanings of @: and @. in Texinfo are designed to work well
with the Emacs sentence motion commands. This made it necessary for
them to be incompatible with some other formatting systems that use

Do not put braces after either an @: or an @. command.

1.157 texinfo.guide/dmn

@dmn {DIMENSION}: Format a Dimension
=====================================

At times, you may want to write 12pt or 8.5in with little or no space
between the number and the abbreviation for the dimension. You can use
the @dmn command to do this. On seeing the command, TeX inserts just
enough space for proper typesetting; the Info formatting commands
insert no space at all, since the Info file does not require it.

To use the @dmn command, write the number and then follow it
immediately, with no intervening space, by @dmn, and then by the

texinfo 122 / 239

dimension within braces.

For example,

A4 paper is 8.27@dmn{in} wide.

produces

A4 paper is 8.27in wide.

Not everyone uses this style. Instead of writing 8.27@dmn{in} in the
Texinfo file, you may write 8.27 in. or 8.27 inches. (In these cases,
the formatters may insert a line break between the number and the
dimension. Also, if you write a period after an abbreviation within a
sentence, you should write @: after the period to prevent TeX from
inserting extra whitespace. See Spacing After Colons and Periods.)

1.158 texinfo.guide/Dots Bullets

Inserting Ellipsis, Dots, and Bullets
=====================================

An ellipsis (a line of dots) is not typeset as a string of periods,
so a special command is used for ellipsis in Texinfo. The @bullet
command is special, too. Each of these commands is followed by a pair
of braces, {}, without any whitespace between the name of the command
and the braces. (You need to use braces with these commands because
you can use them next to other text; without the braces, the formatters
would be confused. See @-Command Syntax, for further information.)

dots How to insert dots ...
bullet How to insert a bullet.

1.159 texinfo.guide/dots

@dots {}

Use the @dots{} command to generate an ellipsis, which is three dots
in a row, appropriately spaced, like this: ‘...’. Do not simply write
three periods in the input file; that would work for the Info file
output, but would produce the wrong amount of space between the periods
in the printed manual.

Similarly, the @enddots{} command helps you correctly set an
end-of-sentence ellipsis (four dots).

texinfo 123 / 239

1.160 texinfo.guide/bullet

@bullet {}

Use the @bullet{} command to generate a large round dot, or the
closest possible thing to one. In Info, an asterisk is used.

Here is a bullet: *

When you use @bullet in @itemize, you do not need to type the
braces, because @itemize supplies them. (See @itemize.)

1.161 texinfo.guide/TeX and copyright

Inserting TeX and the Copyright Symbol
======================================

The logo ‘TeX’ is typeset in a special fashion and it needs an
these commands is followed by a pair of braces, {}, without any
whitespace between the name of the command and the braces.

tex How to insert the TeX logo.
copyright symbol How to use @copyright {}.

1.162 texinfo.guide/tex

@TeX {}

Use the @TeX{} command to generate ‘TeX’. In a printed manual, this
is a special logo that is different from three ordinary letters. In
Info, it just looks like TeX. The @TeX{} command is unique among
Texinfo commands in that the T and the X are in upper case.

1.163 texinfo.guide/copyright symbol

@copyright {}

Use the @copyright{} command to generate ‘(C)’. In a printed
manual, this is a c inside a circle, and in Info, this is (C).

texinfo 124 / 239

1.164 texinfo.guide/minus

@minus {}: Inserting a Minus Sign
==================================

Use the @minus{} command to generate a minus sign. In a fixed-width
font, this is a single hyphen, but in a proportional font, the symbol
is the customary length for a minus sign--a little longer than a hyphen.

You can compare the two forms:

- is a minus sign generated with @minus{},

‘-’ is a hyphen generated with the character -.

In the fixed-width font used by Info, @minus{} is the same as a hyphen.

You should not use @minus{} inside @code or @example because the
width distinction is not made in the fixed-width font they use.

When you use @minus to specify the mark beginning each entry in an
itemized list, you do not need to type the braces (see @itemize.)

1.165 texinfo.guide/math

@math: Inserting Mathematical Expressions
==

You can write a short mathematical expression with the @math
command. Write the mathematical expression between braces, like this:

@math{(a + b)(a + b) = a^2 + 2ab + b^2}

This produces the following in Info:

(a + b)(a + b) = a^2 + 2ab + b^2

The @math command has no effect on the Info output. Currently, it
has limited effect on typeset output. However, this may change since
TeX itself is designed for mathematical typesetting and does a splendid
job.

Certainly, for complex mathematical expressions, you could use TeX
directly. See Using Ordinary TeX Commands. When you use TeX directly,
remember to write the mathematical expression between one or two $
(dollar-signs) as appropriate.

1.166 texinfo.guide/Glyphs

texinfo 125 / 239

Glyphs for Examples

In Texinfo, code is often illustrated in examples that are delimited
by @example and @end example, or by @lisp and @end lisp. In such
examples, you can indicate the results of evaluation or an expansion
using => or ==>. Likewise, there are commands to insert glyphs to
indicate printed output, error messages, equivalence of expressions,
and the location of point.

The glyph-insertion commands do not need to be used within an
example, but most often they are. Every glyph-insertion command is
followed by a pair of left- and right-hand braces.

Glyphs Summary
result How to show the result of expression.
expansion How to indicate an expansion.
Print Glyph How to indicate printed output.
Error Glyph How to indicate an error message.
Equivalence How to indicate equivalence.
Point Glyph How to indicate the location of point.

1.167 texinfo.guide/Glyphs Summary

Glyphs Summary
==============

Here are the different glyph commands:

=>
@result{} points to the result of an expression.

==>
@expansion{} shows the results of a macro expansion.

-|
@print{} indicates printed output.

error-->
@error{} indicates that the following text is an error message.

==
@equiv{} indicates the exact equivalence of two forms.

-!-
@point{} shows the location of point.

1.168 texinfo.guide/result

texinfo 126 / 239

=>: Indicating Evaluation
=========================

Use the @result{} command to indicate the result of evaluating an
expression.

The @result{} command is displayed as => in Info and as a double
stemmed arrow in the printed output.

Thus, the following,

(cdr ’(1 2 3))
=> (2 3)

may be read as "(cdr ’(1 2 3)) evaluates to (2 3)".

1.169 texinfo.guide/expansion

==>: Indicating an Expansion
============================

When an expression is a macro call, it expands into a new expression.
You can indicate the result of the expansion with the @expansion{}
command.

The @expansion{} command is displayed as ==> in Info and as a long
arrow with a flat base in the printed output.

For example, the following

@lisp
(third ’(a b c))

@expansion{} (car (cdr (cdr ’(a b c))))
@result{} c

@end lisp

produces

(third ’(a b c))
==> (car (cdr (cdr ’(a b c))))
=> c

which may be read as:

(third ’(a b c)) expands to (car (cdr (cdr ’(a b c)))); the result
of evaluating the expression is c.

Often, as in this case, an example looks better if the @expansion{}
and @result{} commands are indented five spaces.

texinfo 127 / 239

1.170 texinfo.guide/Print Glyph

-|: Indicating Printed Output
=============================

Sometimes an expression will print output during its execution. You
can indicate the printed output with the @print{} command.

The @print{} command is displayed as -| in Info and similarly, as a
horizontal dash butting against a vertical bar, in the printed output.

In the following example, the printed text is indicated with -|, and
the value of the expression follows on the last line.

(progn (print ’foo) (print ’bar))
-| foo
-| bar
=> bar

In a Texinfo source file, this example is written as follows:

@lisp
(progn (print ’foo) (print ’bar))

@print{} foo
@print{} bar
@result{} bar

@end lisp

1.171 texinfo.guide/Error Glyph

error-->: Indicating an Error Message
=====================================

A piece of code may cause an error when you evaluate it. You can
designate the error message with the @error{} command.

The @error{} command is displayed as error--> in Info and as the
word ‘error’ in a box in the printed output.

Thus,

@lisp
(+ 23 ’x)
@error{} Wrong type argument: integer-or-marker-p, x
@end lisp

produces

(+ 23 ’x)
error--> Wrong type argument: integer-or-marker-p, x

This indicates that the following error message is printed when you
evaluate the expression:

texinfo 128 / 239

Wrong type argument: integer-or-marker-p, x

Note that error--> itself is not part of the error message.

1.172 texinfo.guide/Equivalence

==: Indicating Equivalence
==========================

Sometimes two expressions produce identical results. You can
indicate the exact equivalence of two forms with the @equiv{} command.

The @equiv{} command is displayed as == in Info and as a three
parallel horizontal lines in the printed output.

Thus,

@lisp
(make-sparse-keymap) @equiv{} (list ’keymap)
@end lisp

produces

(make-sparse-keymap) == (list ’keymap)

This indicates that evaluating (make-sparse-keymap) produces identical
results to evaluating (list ’keymap).

1.173 texinfo.guide/Point Glyph

Indicating Point in a Buffer
============================

Sometimes you need to show an example of text in an Emacs buffer. In
such examples, the convention is to include the entire contents of the
buffer in question between two lines of dashes containing the buffer
name.

You can use the @point{} command to show the location of point in
the text in the buffer. (The symbol for point, of course, is not part
of the text in the buffer; it indicates the place between two
characters where point is located.)

The @point{} command is displayed as -!- in Info and as a small five
pointed star in the printed output.

The following example shows the contents of buffer foo before and
after evaluating a Lisp command to insert the word changed.

texinfo 129 / 239

---------- Buffer: foo ----------
This is the -!-contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
=> nil

---------- Buffer: foo ----------
This is the changed -!-contents of foo.
---------- Buffer: foo ----------

In a Texinfo source file, the example is written like this:

@example
---------- Buffer: foo ----------
This is the @point{}contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
@result{} nil

---------- Buffer: foo ----------
This is the changed @point{}contents of foo.
---------- Buffer: foo ----------
@end example

1.174 texinfo.guide/Breaks

Making and Preventing Breaks

Usually, a Texinfo file is processed both by TeX and by one of the
Info formatting commands. Line, paragraph, or page breaks sometimes
occur in the ‘wrong’ place in one or other form of output. You must
ensure that text looks right both in the printed manual and in the Info
file.

For example, in a printed manual, page breaks may occur awkwardly in
the middle of an example; to prevent this, you can hold text together
using a grouping command that keeps the text from being split across
two pages. Conversely, you may want to force a page break where none
would occur normally. Fortunately, problems like these do not often
arise. When they do, use the break, break prevention, or pagination
commands.

Break Commands Cause and prevent splits.
Line Breaks How to force a single line to use two lines.
w How to prevent unwanted line breaks.
sp How to insert blank lines.
page How to force the start of a new page.
group How to prevent unwanted page breaks.
need Another way to prevent unwanted page breaks.

texinfo 130 / 239

1.175 texinfo.guide/Break Commands

The Break Commands
==================

The break commands create line and paragraph breaks:

@*
Force a line break.

@sp N
Skip N blank lines.

The line-break-prevention command holds text together all on one line:

@w{TEXT}
Prevent TEXT from being split and hyphenated across two lines.

The pagination commands apply only to printed output, since Info
files do not have pages.

@page
Start a new page in the printed manual.

@group
Hold text together that must appear on one printed page.

@need MILS
Start a new printed page if not enough space on this one.

1.176 texinfo.guide/Line Breaks

@*: Generate Line Breaks
=========================

The @* command forces a line break in both the printed manual and in
Info.

For example,

This line @* is broken @*in two places.

produces

This line
is broken

in two places.

(Note that the space after the first @* command is faithfully carried
down to the next line.)

The @* command is often used in a file’s copyright page:

texinfo 131 / 239

This is edition 2.0 of the Texinfo documentation,@*
and is for ...

In this case, the @* command keeps TeX from stretching the line across
the whole page in an ugly manner.

Please note: Do not write braces after an @* command; they are
not needed.

Do not write an @refill command at the end of a paragraph
containing an @* command; it will cause the paragraph to be
refilled after the line break occurs, negating the effect of the
line break.

1.177 texinfo.guide/w

@w {TEXT}: Prevent Line Breaks
===============================

@w{TEXT} outputs TEXT and prohibits line breaks within TEXT.

You can use the @w command to prevent TeX from automatically
hyphenating a long name or phrase that accidentally falls near the end
of a line.

You can copy GNU software from @w{@file{prep.ai.mit.edu}}.

produces

You can copy GNU software from prep.ai.mit.edu.

In the Texinfo file, you must write the @w command and its argument
(all the affected text) all on one line.

Caution: Do not write an @refill command at the end of a
paragraph containing an @w command; it will cause the paragraph
to be refilled and may thereby negate the effect of the @w
command.

1.178 texinfo.guide/sp

@sp N: Insert Blank Lines
==========================

A line beginning with and containing only @sp N generates N blank
lines of space in both the printed manual and the Info file. @sp also
forces a paragraph break. For example,

@sp 2

texinfo 132 / 239

generates two blank lines.

The @sp command is most often used in the title page.

1.179 texinfo.guide/page

@page: Start a New Page
========================

A line containing only @page starts a new page in a printed manual.
The command has no effect on Info files since they are not paginated.
An @page command is often used in the @titlepage section of a Texinfo
file to start the copyright page.

1.180 texinfo.guide/group

@group: Prevent Page Breaks
============================

The @group command (on a line by itself) is used inside an @example
or similar construct to begin an unsplittable vertical group, which
will appear entirely on one page in the printed output. The group is
terminated by a line containing only @end group. These two lines
produce no output of their own, and in the Info file output they have
no effect at all.

Although @group would make sense conceptually in a wide variety of
contexts, its current implementation works reliably only within
have in common is that each line of input produces a line of output.)
In other contexts, @group can cause anomalous vertical spacing.

This formatting requirement means that you should write:

@example
@group
...
@end group
@end example

with the @group and @end group commands inside the @example and
The @group command is most often used to hold an example together on

one page. In this Texinfo manual, more than 100 examples contain text
that is enclosed between @group and @end group.

If you forget to end a group, you may get strange and unfathomable
error messages when you run TeX. This is because TeX keeps trying to
put the rest of the Texinfo file onto the one page and does not start
to generate error messages until it has processed considerable text.
It is a good rule of thumb to look for a missing @end group if you get
incomprehensible error messages in TeX.

texinfo 133 / 239

1.181 texinfo.guide/need

@need MILS: Prevent Page Breaks
================================

A line containing only @need N starts a new page in a printed manual
if fewer than N mils (thousandths of an inch) remain on the current
page. Do not use braces around the argument N. The @need command has
no effect on Info files since they are not paginated.

This paragraph is preceded by an @need command that tells TeX to
start a new page if fewer than 800 mils (eight-tenths inch) remain on
the page. It looks like this:

@need 800
This paragraph is preceded by ...

The @need command is useful for preventing orphans (single lines at
the bottoms of printed pages).

1.182 texinfo.guide/Definition Commands

Definition Commands

The @deffn command and the other definition commands enable you to
describe functions, variables, macros, commands, user options, special
forms and other such artifacts in a uniform format.

In the Info file, a definition causes the entity
category--‘Function’, ‘Variable’, or whatever--to appear at the
beginning of the first line of the definition, followed by the entity’s
name and arguments. In the printed manual, the command causes TeX to
print the entity’s name and its arguments on the left margin and print
the category next to the right margin. In both output formats, the
body of the definition is indented. Also, the name of the entity is
entered into the appropriate index: @deffn enters the name into the
index of functions, @defvr enters it into the index of variables, and
so on.

A manual need not and should not contain more than one definition for
a given name. An appendix containing a summary should use @table
rather than the definition commands.

Def Cmd Template How to structure a description using a
definition command.

Optional Arguments How to handle optional and repeated arguments.
deffnx How to group two or more ‘first’ lines.

texinfo 134 / 239

Def Cmds in Detail All the definition commands.
Def Cmd Conventions Conventions for writing definitions.
Sample Function Definition

1.183 texinfo.guide/Def Cmd Template

The Template for a Definition
=============================

The @deffn command is used for definitions of entities that resemble
functions. To write a definition using the @deffn command, write the
line by the category of the entity, the name of the entity itself, and
its arguments (if any). Then write the body of the definition on
succeeding lines. (You may embed examples in the body.) Finally, end
the definition with an @end deffn command written on a line of its
own. (The other definition commands follow the same format.)

The template for a definition looks like this:

@deffn CATEGORY NAME ARGUMENTS...
BODY-OF-DEFINITION
@end deffn

For example,

@deffn Command forward-word count
This command moves point forward @var{count} words
(or backward if @var{count} is negative). ...
@end deffn

produces

- Command: forward-word COUNT
This function moves point forward COUNT words (or backward if
COUNT is negative). ...

Capitalize the category name like a title. If the name of the
category contains spaces, as in the phrase ‘Interactive Command’, write
braces around it. For example:

@deffn {Interactive Command} isearch-forward
...
@end deffn

Otherwise, the second word will be mistaken for the name of the entity.

Some of the definition commands are more general than others. The
functions and the like--for entities that may take arguments. When you
use this command, you specify the category to which the entity belongs.
The @deffn command possesses three predefined, specialized
variations, @defun, @defmac, and @defspec, that specify the category
for you: "Function", "Macro", and "Special Form" respectively. The
variations for describing particular kinds of variables.

texinfo 135 / 239

The template for a specialized definition, such as @defun, is
similar to the template for a generalized definition, except that you
do not need to specify the category:

@defun NAME ARGUMENTS...
BODY-OF-DEFINITION
@end defun

Thus,

@defun buffer-end flag
This function returns @code{(point-min)} if @var{flag}
is less than 1, @code{(point-max)} otherwise.
...
@end defun

produces

- Function: buffer-end FLAG
This function returns (point-min) if FLAG is less than 1,
(point-max) otherwise. ...

See Sample Function Definition, for a more detailed example of a
function definition, including the use of @example inside the
definition.

The other specialized commands work like @defun.

1.184 texinfo.guide/Optional Arguments

Optional and Repeated Arguments
===============================

Some entities take optional or repeated arguments, which may be
specified by a distinctive glyph that uses square brackets and
ellipses. For example, a special form often breaks its argument list
into separate arguments in more complicated ways than a straightforward
function.

An argument enclosed within square brackets is optional. Thus,
[OPTIONAL-ARG] means that OPTIONAL-ARG is optional. An argument
followed by an ellipsis is optional and may be repeated more than once.
Thus, REPEATED-ARGS... stands for zero or more arguments. Parentheses
are used when several arguments are grouped into additional levels of
list structure in Lisp.

Here is the @defspec line of an example of an imaginary special form:

- Special Form: foobar (VAR [FROM TO [INC]]) BODY...

In this example, the arguments FROM and TO are optional, but must both
be present or both absent. If they are present, INC may optionally be
specified as well. These arguments are grouped with the argument VAR
into a list, to distinguish them from BODY, which includes all

texinfo 136 / 239

remaining elements of the form.

In a Texinfo source file, this @defspec line is written like this
(except it would not be split over two lines, as it is in this example).

@defspec foobar (@var{var} [@var{from} @var{to}
[@var{inc}]]) @var{body}@dots{}

The function is listed in the Command and Variable Index under foobar.

1.185 texinfo.guide/deffnx

Two or More ‘First’ Lines
=========================

To create two or more ‘first’ or header lines for a definition, follow
the first @deffn line by a line beginning with @deffnx. The @deffnx
command works exactly like @deffn except that it does not generate
extra vertical white space between it and the preceding line.

For example,

@deffn {Interactive Command} isearch-forward
@deffnx {Interactive Command} isearch-backward
These two search commands are similar except ...
@end deffn

produces

- Interactive Command: isearch-forward
- Interactive Command: isearch-backward

These two search commands are similar except ...

Each of the other definition commands has an ‘x’ form: @defunx,
The ‘x’ forms work just like @itemx; see See @itemx.

1.186 texinfo.guide/Def Cmds in Detail

The Definition Commands
=======================

Texinfo provides more than a dozen definition commands, all of which
are described in this section.

The definition commands automatically enter the name of the entity in
the appropriate index: for example, @deffn, @defun, and @defmac
enter function names in the index of functions; @defvr and @defvar
enter variable names in the index of variables.

Although the examples that follow mostly illustrate Lisp, the commands

texinfo 137 / 239

can be used for other programming languages.

Functions Commands Commands for functions and similar entities.
Variables Commands Commands for variables and similar entities.
Typed Functions Commands for functions in typed languages.
Typed Variables Commands for variables in typed languages.
Abstract Objects Commands for object-oriented programming.
Data Types The definition command for data types.

1.187 texinfo.guide/Functions Commands

Functions and Similar Entities

This section describes the commands for describing functions and
similar entities:

@deffn CATEGORY NAME ARGUMENTS...
The @deffn command is the general definition command for
functions, interactive commands, and similar entities that may take
arguments. You must choose a term to describe the category of
entity being defined; for example, "Function" could be used if the
entity is a function. The @deffn command is written at the
beginning of a line and is followed on the same line by the
category of entity being described, the name of this particular
entity, and its arguments, if any. Terminate the definition with
@end deffn on a line of its own.

For example, here is a definition:

@deffn Command forward-char nchars
Move point forward @var{nchars} characters.
@end deffn

This shows a rather terse definition for a "command" named
forward-char with one argument, NCHARS.

@deffn prints argument names such as NCHARS in italics or upper
case, as if @var had been used, because we think of these names
as metasyntactic variables--they stand for the actual argument
values. Within the text of the description, write an argument name
explicitly with @var to refer to the value of the argument. In
the example above, we used @var{nchars} in this way.

The template for @deffn is:

@deffn CATEGORY NAME ARGUMENTS...
BODY-OF-DEFINITION
@end deffn

@defun NAME ARGUMENTS...
The @defun command is the definition command for functions.
@defun is equivalent to @deffn Function

texinfo 138 / 239

For example,

@defun set symbol new-value
Change the value of the symbol @var{symbol}
to @var{new-value}.
@end defun

shows a rather terse definition for a function set whose arguments
are SYMBOL and NEW-VALUE. The argument names on the @defun line
automatically appear in italics or upper case as if they were
enclosed in @var. Terminate the definition with @end defun on a
line of its own.

The template is:

@defun FUNCTION-NAME ARGUMENTS...
BODY-OF-DEFINITION
@end defun

@defun creates an entry in the index of functions.

@defmac NAME ARGUMENTS...
The @defmac command is the definition command for macros.
@defmac is equivalent to @deffn Macro ... and works like @defun.

@defspec NAME ARGUMENTS...
The @defspec command is the definition command for special forms.
(In Lisp, a special form is an entity much like a function.)
@defspec is equivalent to @deffn {Special Form} ... and works
like @defun.

1.188 texinfo.guide/Variables Commands

Variables and Similar Entities

Here are the commands for defining variables and similar entities:

@defvr CATEGORY NAME
The @defvr command is a general definition command for something
like a variable--an entity that records a value. You must choose
a term to describe the category of entity being defined; for
example, "Variable" could be used if the entity is a variable.
Write the @defvr command at the beginning of a line and followed
it on the same line by the category of the entity and the name of
the entity.

Capitalize the category name like a title. If the name of the
category contains spaces, as in the name ‘User Option’, write
braces around it. Otherwise, the second word will be mistaken for
the name of the entity, for example:

@defvr {User Option} fill-column

texinfo 139 / 239

This buffer-local variable specifies
the maximum width of filled lines.
...
@end defvr

Terminate the definition with @end defvr on a line of its own.

The template is:

@defvr CATEGORY NAME
BODY-OF-DEFINITION
@end defvr

@defvr creates an entry in the index of variables for NAME.

@defvar NAME
The @defvar command is the definition command for variables.
@defvar is equivalent to @defvr Variable

For example:

@defvar kill-ring
...
@end defvar

The template is:

@defvar NAME
BODY-OF-DEFINITION
@end defvar

@defvar creates an entry in the index of variables for NAME.

@defopt NAME
The @defopt command is the definition command for user options.
@defopt is equivalent to @defvr {User Option} ... and works like
@defvar.

1.189 texinfo.guide/Typed Functions

Functions in Typed Languages

The @deftypefn command and its variations are for describing
functions in C or any other language in which you must declare types of
variables and functions.

@deftypefn CATEGORY DATA-TYPE NAME ARGUMENTS...
The @deftypefn command is the general definition command for
functions and similar entities that may take arguments and that are
typed. The @deftypefn command is written at the beginning of a
line and is followed on the same line by the category of entity
being described, the type of the returned value, the name of this
particular entity, and its arguments, if any.

texinfo 140 / 239

For example,

@deftypefn {Library Function} int foobar
(int @var{foo}, float @var{bar})

...
@end deftypefn

(where the text before the "...", shown above as two lines, would
actually be a single line in a real Texinfo file) produces the
following in Info:

-- Library Function: int foobar (int FOO, float BAR)
...

This means that foobar is a "library function" that returns an
int, and its arguments are FOO (an int) and BAR (a float).

The argument names that you write in @deftypefn are not subject
to an implicit @var--since the actual names of the arguments in
@deftypefn are typically scattered among data type names and
keywords, Texinfo cannot find them without help. Instead, you
must write @var explicitly around the argument names. In the
example above, the argument names are foo and bar.

The template for @deftypefn is:

@deftypefn CATEGORY DATA-TYPE NAME ARGUMENTS ...
BODY-OF-DESCRIPTION
@end deftypefn

Note that if the CATEGORY or DATA TYPE is more than one word then
it must be enclosed in braces to make it a single argument.

If you are describing a procedure in a language that has packages,
such as Ada, you might consider using @deftypefn in a manner
somewhat contrary to the convention described in the preceding
paragraphs.

For example:

@deftypefn stacks private push
(@var{s}:in out stack;
@var{n}:in integer)

...
@end deftypefn

(The @deftypefn arguments are shown split into three lines, but
would be a single line in a real Texinfo file.)

In this instance, the procedure is classified as belonging to the
package stacks rather than classified as a ‘procedure’ and its
data type is described as private. (The name of the procedure is
push, and its arguments are S and N.)

@deftypefn creates an entry in the index of functions for NAME.

texinfo 141 / 239

@deftypefun DATA-TYPE NAME ARGUMENTS...
The @deftypefun command is the specialized definition command for
functions in typed languages. The command is equivalent to
@deftypefn Function

Thus,

@deftypefun int foobar (int @var{foo}, float @var{bar})
...
@end deftypefun

produces the following in Info:

-- Function: int foobar (int FOO, float BAR)
...

The template is:

@deftypefun TYPE NAME ARGUMENTS...
BODY-OF-DESCRIPTION
@end deftypefun

@deftypefun creates an entry in the index of functions for NAME.

1.190 texinfo.guide/Typed Variables

Variables in Typed Languages

Variables in typed languages are handled in a manner similar to
functions in typed languages. See Typed Functions. The general
definition command @deftypevr corresponds to @deftypefn and the
specialized definition command @deftypevar corresponds to @deftypefun.

@deftypevr CATEGORY DATA-TYPE NAME
The @deftypevr command is the general definition command for
something like a variable in a typed language--an entity that
records a value. You must choose a term to describe the category
of the entity being defined; for example, "Variable" could be used
if the entity is a variable.

The @deftypevr command is written at the beginning of a line and
is followed on the same line by the category of the entity being
described, the data type, and the name of this particular entity.

For example:

@deftypevr {Global Flag} int enable
...
@end deftypevr

produces the following in Info:

-- Global Flag: int enable

texinfo 142 / 239

...

The template is:

@deftypevr CATEGORY DATA-TYPE NAME
BODY-OF-DESCRIPTION
@end deftypevr

@deftypevr creates an entry in the index of variables for NAME.

@deftypevar DATA-TYPE NAME
The @deftypevar command is the specialized definition command for
variables in typed languages. @deftypevar is equivalent to
@deftypevr Variable

For example:

@deftypevar int fubar
...
@end deftypevar

produces the following in Info:

-- Variable: int fubar
...

The template is:

@deftypevar DATA-TYPE NAME
BODY-OF-DESCRIPTION
@end deftypevar

@deftypevar creates an entry in the index of variables for NAME.

1.191 texinfo.guide/Abstract Objects

Object-Oriented Programming

Here are the commands for formatting descriptions about abstract
objects, such as are used in object-oriented programming. A class is a
defined type of abstract object. An instance of a class is a
particular object that has the type of the class. An instance variable
is a variable that belongs to the class but for which each instance has
its own value.

In a definition, if the name of a class is truly a name defined in the
programming system for a class, then you should write an @code around
it. Otherwise, it is printed in the usual text font.

@defcv CATEGORY CLASS NAME
The @defcv command is the general definition command for
variables associated with classes in object-oriented programming.
The @defcv command is followed by three arguments: the category of

texinfo 143 / 239

thing being defined, the class to which it belongs, and its name.
Thus,

@defcv {Class Option} Window border-pattern
...
@end defcv

illustrates how you would write the first line of a definition of
the border-pattern class option of the class Window.

The template is

@defcv CATEGORY CLASS NAME
...
@end defcv

@defcv creates an entry in the index of variables.

@defivar CLASS NAME
The @defivar command is the definition command for instance
variables in object-oriented programming. @defivar is equivalent
to @defcv {Instance Variable} ...

The template is:

@defivar CLASS INSTANCE-VARIABLE-NAME
BODY-OF-DEFINITION
@end defivar

@defivar creates an entry in the index of variables.

@defop CATEGORY CLASS NAME ARGUMENTS...
The @defop command is the general definition command for entities
that may resemble methods in object-oriented programming. These
entities take arguments, as functions do, but are associated with
particular classes of objects.

For example, some systems have constructs called wrappers that are
associated with classes as methods are, but that act more like
macros than like functions. You could use @defop Wrapper to
describe one of these.

Sometimes it is useful to distinguish methods and operations. You
can think of an operation as the specification for a method.
Thus, a window system might specify that all window classes have a
method named expose; we would say that this window system defines
an expose operation on windows in general. Typically, the
operation has a name and also specifies the pattern of arguments;
all methods that implement the operation must accept the same
arguments, since applications that use the operation do so without
knowing which method will implement it.

Often it makes more sense to document operations than methods. For
example, window application developers need to know about the
expose operation, but need not be concerned with whether a
given class of windows has its own method to implement this
operation. To describe this operation, you would write:

texinfo 144 / 239

@defop Operation windows expose

The @defop command is written at the beginning of a line and is
followed on the same line by the overall name of the category of
operation, the name of the class of the operation, the name of the
operation, and its arguments, if any.

The template is:

@defop CATEGORY CLASS NAME ARGUMENTS...
BODY-OF-DEFINITION
@end defop

@defop creates an entry, such as ‘expose on windows’, in the
index of functions.

@defmethod CLASS NAME ARGUMENTS...
The @defmethod command is the definition command for methods in
object-oriented programming. A method is a kind of function that
implements an operation for a particular class of objects and its
subclasses. In the Lisp Machine, methods actually were functions,
but they were usually defined with defmethod.

@defmethod is equivalent to @defop Method The command is
written at the beginning of a line and is followed by the name of
the class of the method, the name of the method, and its
arguments, if any.

For example,

@defmethod bar-class bar-method argument
...
@end defmethod

illustrates the definition for a method called bar-method of the
class bar-class. The method takes an argument.

The template is:

@defmethod CLASS METHOD-NAME ARGUMENTS...
BODY-OF-DEFINITION
@end defmethod

@defmethod creates an entry, such as ‘bar-method on bar-class’,
in the index of functions.

1.192 texinfo.guide/Data Types

Data Types

Here is the command for data types:

texinfo 145 / 239

@deftp CATEGORY NAME ATTRIBUTES...
The @deftp command is the generic definition command for data
types. The command is written at the beginning of a line and is
followed on the same line by the category, by the name of the type
(which is a word like int or float), and then by names of
attributes of objects of that type. Thus, you could use this
command for describing int or float, in which case you could use
data type as the category. (A data type is a category of
certain objects for purposes of deciding which operations can be
performed on them.)

In Lisp, for example, pair names a particular data type, and an
object of that type has two slots called the car and the cdr.
Here is how you would write the first line of a definition of pair.

@deftp {Data type} pair car cdr
...
@end deftp

The template is:

@deftp CATEGORY NAME-OF-TYPE ATTRIBUTES...
BODY-OF-DEFINITION
@end deftp

@deftp creates an entry in the index of data types.

1.193 texinfo.guide/Def Cmd Conventions

Conventions for Writing Definitions
===================================

When you write a definition using @deffn, @defun, or one of the
other definition commands, please take care to use arguments that
indicate the meaning, as with the COUNT argument to the forward-word
function. Also, if the name of an argument contains the name of a
type, such as INTEGER, take care that the argument actually is of that
type.

1.194 texinfo.guide/Sample Function Definition

A Sample Function Definition
============================

A function definition uses the @defun and @end defun commands. The
name of the function follows immediately after the @defun command and
it is followed, on the same line, by the parameter list.

Here is a definition from ‘The GNU Emacs Lisp Reference Manual’.
(See Calling Functions.)

texinfo 146 / 239

- Function: apply FUNCTION &rest ARGUMENTS
apply calls FUNCTION with ARGUMENTS, just like funcall but
with one difference: the last of ARGUMENTS is a list of
arguments to give to FUNCTION, rather than a single argument.
We also say that this list is appended to the other
arguments.

apply returns the result of calling FUNCTION. As with
funcall, FUNCTION must either be a Lisp function or
a primitive function; special forms and macros do not make
sense in apply.

(setq f ’list)
=> list

(apply f ’x ’y ’z)
error--> Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))

=> 10
(apply ’+ ’(1 2 3 4))

=> 10

(apply ’append ’((a b c) nil (x y z) nil))
=> (a b c x y z)

An interesting example of using apply is found in the
description of mapcar.

In the Texinfo source file, this example looks like this:

@defun apply function &rest arguments

@code{apply} calls @var{function} with
@var{arguments}, just like @code{funcall} but with one
difference: the last of @var{arguments} is a list of
arguments to give to @var{function}, rather than a single
argument. We also say that this list is @dfn{appended}
to the other arguments.

@code{apply} returns the result of calling
@var{function}. As with @code{funcall},
@var{function} must either be a Lisp function or a
primitive function; special forms and macros do not make
sense in @code{apply}.

@example
(setq f ’list)

@result{} list
(apply f ’x ’y ’z)
@error{} Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))

@result{} 10
(apply ’+ ’(1 2 3 4))

@result{} 10

(apply ’append ’((a b c) nil (x y z) nil))
@result{} (a b c x y z)

texinfo 147 / 239

@end example

An interesting example of using @code{apply} is found
in the description of @code{mapcar}.@refill
@end defun

In this manual, this function is listed in the Command and Variable
Index under apply.

Ordinary variables and user options are described using a format like
that for functions except that variables do not take arguments.

1.195 texinfo.guide/Footnotes

Footnotes

A footnote is for a reference that documents or elucidates the
primary text.(1)Footnotes-Footnotes

Footnote Commands How to write a footnote in Texinfo.
Footnote Styles Controlling how footnotes appear in Info.

1.196 texinfo.guide/Footnotes-Footnotes

(1) A footnote should complement or expand upon the primary text,
but a reader should not need to read a footnote to understand the
primary text. For a thorough discussion of footnotes, see ‘The Chicago
Manual of Style’, which is published by the University of Chicago Press.

1.197 texinfo.guide/Footnote Commands

Footnote Commands
=================

In Texinfo, footnotes are created with the @footnote command. This
command is followed immediately by a left brace, then by the text of
the footnote, and then by a terminating right brace. The template is:

@footnote{TEXT}

Footnotes may be of any length, but are usually short.

For example, this clause is followed by a sample
footnote(1)Footnote Commands-Footnotes;
in the Texinfo source, it looks like this:

texinfo 148 / 239

...a sample footnote @footnote{Here is the sample
footnote.}; in the Texinfo source...

Warning: Don’t use footnotes in the argument of the @item command
for a @table table. This doesn’t work; because of limitations of TeX,
there is no way to fix it. To avoid the problem, move the footnote
into the body text of the table.

In a printed manual or book, the reference mark for a footnote is a
small, superscripted number; the text of the footnote appears at the
bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses
with the footnote number between them, like this: (1).

1.198 texinfo.guide/Footnote Commands-Footnotes

(1) Here is the sample footnote.

1.199 texinfo.guide/Footnote Styles

Footnote Styles
===============

Info has two footnote styles, which determine where the text of the
footnote is located:

* In the ‘End’ node style, all the footnotes for a single node are
placed at the end of that node. The footnotes are separated from
the rest of the node by a line of dashes with the word Footnotes
within it. Each footnote begins with an (N) reference mark.

Here is an example of a single footnote in the end of node style:

--------- Footnotes ---------

(1) Here is a sample footnote.

* In the ‘Separate’ node style, all the footnotes for a single node
are placed in an automatically constructed node of their own. In
this style, a "footnote reference" follows each (N) reference
mark in the body of the node. The footnote reference is actually
a cross reference which you use to reach the footnote node.

The name of the node containing the footnotes is constructed by
appending -Footnotes to the name of the node that contains the
footnotes. (Consequently, the footnotes’ node for the Footnotes
node is Footnotes-Footnotes!) The footnotes’ node has an ‘Up’
node pointer that leads back to its parent node.

texinfo 149 / 239

Here is how the first footnote in this manual looks after being
formatted for Info in the separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) Note that the first syllable of "Texinfo" is
pronounced like "speck", not "hex". ...

A Texinfo file may be formatted into an Info file with either footnote
style.

Use the @footnotestyle command to specify an Info file’s footnote
style. Write this command at the beginning of a line followed by an
argument, either end for the end node style or separate for the
separate node style.

For example,

@footnotestyle end

or
@footnotestyle separate

Write an @footnotestyle command before or shortly after the
end-of-header line at the beginning of a Texinfo file. (If you include
the @footnotestyle command between the start-of-header and
end-of-header lines, the region formatting commands will format
footnotes as specified.)

If you do not specify a footnote style, the formatting commands use
their default style. Currently, texinfo-format-buffer and
texinfo-format-region use the ‘separate’ style and makeinfo uses
the ‘end’ style.

This chapter contains two footnotes.

1.200 texinfo.guide/Conditionals

Conditionally Visible Text

Sometimes it is good to use different text for a printed manual and
its corresponding Info file. In this case, you can use the conditional
commands to specify which text is for the printed manual and which is
for the Info file.

Conditional Commands How to specify text for Info or TeX.
Using Ordinary TeX Commands You can use any and all TeX commands.
set clear value How to designate which text to format (for

both Info and TeX); and how to set a
flag to a string that you can insert.

texinfo 150 / 239

1.201 texinfo.guide/Conditional Commands

Using @ifinfo and @iftex
==========================

@ifinfo begins segments of text that should be ignored by TeX when it
typesets the printed manual. The segment of text appears only in the
Info file. The @ifinfo command should appear on a line by itself; end
the Info-only text with a line containing @end ifinfo by itself. At
the beginning of a Texinfo file, the Info permissions are contained
within a region marked by @ifinfo and @end ifinfo. (See
Info Summary and Permissions.)

The @iftex and @end iftex commands are similar to the @ifinfo and
the printed manual but not in the Info file.

For example,

@iftex
This text will appear only in the printed manual.
@end iftex

@ifinfo
However, this text will appear only in Info.
@end ifinfo

The preceding example produces the following line:

However, this text will appear only in Info.

Note how you only see one of the two lines, depending on whether you
are reading the Info version or the printed version of this manual.

The @titlepage command is a special variant of @iftex that is used
for making the title and copyright pages of the printed manual. (See
@titlepage.)

1.202 texinfo.guide/Using Ordinary TeX Commands

Using Ordinary TeX Commands
===========================

Inside a region delineated by @iftex and @end iftex, you can embed
some PlainTeX commands. Info will ignore these commands since they are
only in that part of the file which is seen by TeX. You can write the
TeX commands as you would write them in a normal TeX file, except that
you must replace the \ used by TeX with an @. For example, in the
Info to ignore the region automatically, as it does with the @iftex
command.)

texinfo 151 / 239

However, many features of PlainTeX will not work, as they are
overridden by features of Texinfo.

You can enter PlainTeX completely, and use \ in the TeX commands, by
delineating a region with the @tex and @end tex commands. (The @tex
command also causes Info to ignore the region, like the @iftex
command.)

For example, here is a mathematical expression written in PlainTeX:

@tex
$$ \chi^2 = \sum_{i=1}^N

\left (y_i - (a + b x_i)
\over \sigma_i\right)^2 $$

@end tex

The output of this example will appear only in a printed manual. If
you are reading this in Info, you will not see anything after this
paragraph.

1.203 texinfo.guide/set clear value

@set, @clear, and @value
===========================

You can direct the Texinfo formatting commands to format or ignore
parts of a Texinfo file with the @set, @clear, @ifset, and @ifclear
commands.

In addition, you can use the @set FLAG command to set the value of
FLAG to a string of characters; and use @value{FLAG} to insert that
string. You can use @set, for example, to set a date and use @value
to insert the date in several places in the Texinfo file.

ifset ifclear Format a region if a flag is set.
value Replace a flag with a string.
value Example An easy way to update edition information.

1.204 texinfo.guide/ifset ifclear

@ifset and @ifclear

When a FLAG is set, the Texinfo formatting commands format text
between subsequent pairs of @ifset FLAG and @end ifset commands.
When the FLAG is cleared, the Texinfo formatting commands do not format
the text.

texinfo 152 / 239

Use the @set FLAG command to turn on, or set, a FLAG; a flag can be
any single word. The format for the command looks like this:

@set FLAG

Write the conditionally formatted text between @ifset FLAG and @end
ifset commands, like this:

@ifset FLAG
CONDITIONAL-TEXT
@end ifset

For example, you can create one document that has two variants, such
as a manual for a ‘large’ and ‘small’ model:

You can use this machine to dig up shrubs
without hurting them.

@set large

@ifset large
It can also dig up fully grown trees.
@end ifset

Remember to replant promptly ...

In the example, the formatting commands will format the text between
Use the @clear FLAG command to turn off, or clear, a flag. Clearing

a flag is the opposite of setting a flag. The command looks like this:

@clear FLAG

Write the command on a line of its own.

When FLAG is cleared, the Texinfo formatting commands do not format
the text between @ifset FLAG and @end ifset; that text is ignored and
does not appear in either printed or Info output.

For example, if you clear the flag of the preceding example by writing
an @clear large command after the @set large command (but before the
conditional text), then the Texinfo formatting commands ignore the text
between the @ifset large and @end ifset commands. In the formatted
output, that text does not appear; in both printed and Info output, you
see only the lines that say, "You can use this machine to dig up shrubs
without hurting them. Remember to replant promptly ...".

If a flag is cleared with an @clear FLAG command, then the
formatting commands format text between subsequent pairs of @ifclear
and @end ifclear commands. But if the flag is set with @set FLAG,
then the formatting commands do not format text between an @ifclear
and an @end ifclear command; rather, they ignore that text. An

@ifclear FLAG

In brief, the commands are:

@set FLAG
Tell the Texinfo formatting commands that FLAG is set.

texinfo 153 / 239

@clear FLAG
Tell the Texinfo formatting commands that FLAG is cleared.

@ifset FLAG
If FLAG is set, tell the Texinfo formatting commands to format the
text up to the following @end ifset command.

If FLAG is cleared, tell the Texinfo formatting commands to ignore
text up to the following @end ifset command.

@ifclear FLAG
If FLAG is set, tell the Texinfo formatting commands to ignore the
text up to the following @end ifclear command.

If FLAG is cleared, tell the Texinfo formatting commands to format
the text up to the following @end ifclear command.

1.205 texinfo.guide/value

@value

You can use the @set command to specify a value for a flag, which is
expanded by the @value command. The value is a string a characters.

Write the @set command like this:

@set foo This is a string.

This sets the value of foo to "This is a string."

The Texinfo formatters replace an @value{FLAG} command with the
string to which FLAG is set.

Thus, when foo is set as shown above, the Texinfo formatters convert

@value{foo}
to

This is a string.

You can write an @value command within a paragraph; but you must
write an @set command on a line of its own.

If you write the @set command like this:

@set foo

without specifying a string, the value of foo is an empty string.

If you clear a previously set flag with an @clear FLAG command, a
subsequent @value{flag} command is invalid and the string is replaced
with an error message that says {No value for "FLAG"}.

texinfo 154 / 239

For example, if you set foo as follows:

@set how-much very, very, very

then the formatters transform

It is a @value{how-much} wet day.
into

It is a very, very, very wet day.

If you write

@clear how-much

then the formatters transform

It is a @value{how-much} wet day.
into

It is a {No value for "how-much"} wet day.

1.206 texinfo.guide/value Example

@value Example

You can use the @value command to limit the number of places you
need to change when you record an update to a manual. Here is how it
is done in ‘The GNU Make Manual’:

Set the flags:

@set EDITION 0.35 Beta
@set VERSION 3.63 Beta
@set UPDATED 14 August 1992
@set UPDATE-MONTH August 1992

Write text for the first @ifinfo section, for people reading the
Texinfo file:

This is Edition @value{EDITION},
last updated @value{UPDATED},
of @cite{The GNU Make Manual},
for @code{make}, Version @value{VERSION}.

Write text for the title page, for people reading the printed manual:

@title GNU Make
@subtitle A Program for Directing Recompilation
@subtitle Edition @value{EDITION}, ...
@subtitle @value{UPDATE-MONTH}

(On a printed cover, a date listing the month and the year looks less
fussy than a date listing the day as well as the month and year.)

texinfo 155 / 239

Write text for the Top node, for people reading the Info file:

This is Edition @value{EDITION}
of the @cite{GNU Make Manual},
last updated @value{UPDATED}
for @code{make} Version @value{VERSION}.

After you format the manual, the text in the first @ifinfo section
looks like this:

This is Edition 0.35 Beta, last updated 14 August 1992,
of ‘The GNU Make Manual’, for ‘make’, Version 3.63 Beta.

When you update the manual, change only the values of the flags; you
do not need to rewrite the three sections.

1.207 texinfo.guide/Format-Print Hardcopy

Format and Print Hardcopy

There are three major shell commands for making a printed manual from
a Texinfo file: one for converting the Texinfo file into a file that
will be printed, a second for sorting indices, and a third for printing
the formatted document. When you use the shell commands, you can either
work directly in the operating system shell or work within a shell
inside GNU Emacs.

If you are using GNU Emacs, you can use commands provided by Texinfo
mode instead of shell commands. In addition to the three commands to
format a file, sort the indices, and print the result, Texinfo mode
offers key bindings for commands to recenter the output buffer, show the
print queue, and delete a job from the print queue.

Use TeX Use TeX to format for hardcopy.
Format with tex-texindex How to format in a shell.
Format with texi2dvi A simpler way to use the shell.
Print with lpr How to print.
Within Emacs How to format and print from an Emacs shell.
Texinfo Mode Printing How to format and print in Texinfo mode.
Compile-Command How to print using Emacs’s compile command.
Requirements Summary TeX formatting requirements summary.
Preparing for TeX What you need to do to use TeX.
Overfull hboxes What are and what to do with overfull hboxes.
smallbook How to print small format books and manuals.
A4 Paper How to print on European A4 paper.
Cropmarks and Magnification How to print marks to indicate the size

of pages and how to print scaled up output.

texinfo 156 / 239

1.208 texinfo.guide/Use TeX

Use TeX
=======

The typesetting program called TeX is used for formatting a Texinfo
file. TeX is a very powerful typesetting program and, if used right,
does an exceptionally good job. See How to Obtain TeX, for information
on how to obtain TeX.

The makeinfo, texinfo-format-region, and texinfo-format-buffer
commands read the very same @-commands in the Texinfo file as does TeX,
but process them differently to make an Info file; see See
Create an Info File.

1.209 texinfo.guide/Format with tex-texindex

Format using tex and texindex
=============================

Format the Texinfo file with the shell command tex followed by the
name of the Texinfo file. This command produces a formatted dvi file
as well as several auxiliary files containing indices, cross
references, etc. The dvi file (for DeVice Independent file) can be
printed on a wide variety of printers.

The tex formatting command itself does not sort the indices; it
writes an output file of unsorted index data. This is a misfeature of
TeX. (The texi2dvi command automatically generates indices; see See
Format using texi2dvi.) To generate a printed index after running the
tex command, you first need a sorted index to work from. The
texindex command sorts indices. (The source file texindex.c comes
as part of the standard GNU distribution and is usually installed when
Emacs is installed.)

The tex formatting command outputs unsorted index files under names
that obey a standard convention. These names are the name of your main
input file to the tex formatting command, with everything after the
first period thrown away, and the two letter names of indices added at
the end. For example, the raw index output files for the input file
foo.texinfo would be foo.cp, foo.vr, foo.fn, foo.tp, foo.pg and
foo.ky. Those are exactly the arguments to give to texindex.

Or else, you can use ?? as "wild-cards" and give the command in this
form:

texindex foo.??

This command will run texindex on all the unsorted index files,
including any that you have defined yourself using @defindex or
similarly named files with two letter extensions that are not index
files, such as foo.el. The texindex command reports but otherwise
ignores such files.)

texinfo 157 / 239

For each file specified, texindex generates a sorted index file whose
name is made by appending s to the input file name. The @printindex
command knows to look for a file of that name. texindex does not alter
the raw index output file.

After you have sorted the indices, you need to rerun the tex
formatting command on the Texinfo file. This regenerates a formatted
dvi file with up-to-date index
entries.(1)Format with tex-texindex-Footnotes

To summarize, this is a three step process:

1. Run the tex formatting command on the Texinfo file. This
generates the formatted dvi file as well as the raw index files
with two letter extensions.

2. Run the shell command texindex on the raw index files to sort
them. This creates the corresponding sorted index files.

3. Rerun the tex formatting command on the Texinfo file. This
regenerates a formatted dvi file with the index entries in the
correct order. This second run also corrects the page numbers for
the cross references. (The tables of contents are always correct.)

You need not run texindex each time after you run the tex formatting.
If you do not, on the next run, the tex formatting command will use
whatever sorted index files happen to exist from the previous use of
texindex. This is usually ok while you are debugging.

1.210 texinfo.guide/Format with tex-texindex-Footnotes

(1) If you use more than one index and have cross references to an
index other than the first, you must run tex three times to get correct
output: once to generate raw index data; again (after texindex) to
output the text of the indices and determine their true page numbers;
and a third time to output correct page numbers in cross references to
them. However, cross references to indices are rare.

1.211 texinfo.guide/Format with texi2dvi

Format using texi2dvi
=====================

The texi2dvi command is a shell script that automatically runs both
tex and texindex as needed to produce a dvi file with up-to-date,
sorted indices. It simplifies the tex--texindex--tex sequence
described in the previous section.

The syntax for texi2dvi is like this (where % is the shell prompt):

texinfo 158 / 239

% texi2dvi FILENAME...

1.212 texinfo.guide/Print with lpr

Shell Print Using lpr -d
========================

You can print a dvi file with the dvi print command. The precise
printing command to use depends on your system; lpr -d is common. The
dvi print command may require a file name without any extension or
with a .dvi extension.

The following commands, for example, sort the indices, format, and
print the ‘Bison Manual’ (where % is the shell prompt):

% tex bison.texinfo
% texindex bison.??
% tex bison.texinfo
% lpr -d bison.dvi

(Remember that the shell commands may be different at your site; but
these are commonly used versions.)

Using the texi2dvi shell script, you simply need type:

% texi2dvi bison.texinfo
% lpr -d bison.dvi

1.213 texinfo.guide/Within Emacs

From an Emacs Shell ...
=======================

You can give formatting and printing commands from a shell within GNU
Emacs. To create a shell within Emacs, type M-x shell. In this shell,
you can format and print the document. See Format and Print Hardcopy,
for details.

You can switch to and from the shell buffer while tex is running and
do other editing. If you are formatting a long document on a slow
machine, this can be very convenient.

You can also use texi2dvi from an Emacs shell. For example, here is
how to use texi2dvi to format and print ‘Using and Porting GNU CC’ from
a shell within Emacs (where % is the shell prompt):

% texi2dvi gcc.texinfo
% lpr -d gcc.dvi

texinfo 159 / 239

See Texinfo Mode Printing, for more information about formatting and
printing in Texinfo mode.

1.214 texinfo.guide/Texinfo Mode Printing

Formatting and Printing in Texinfo Mode
=======================================

Texinfo mode provides several predefined key commands for TeX
formatting and printing. These include commands for sorting indices,
looking at the printer queue, killing the formatting job, and
recentering the display of the buffer in which the operations occur.

C-c C-t C-b
M-x texinfo-tex-buffer

Run texi2dvi on the current buffer.

C-c C-t C-r
M-x texinfo-tex-region

Run TeX on the current region.

C-c C-t C-i
M-x texinfo-texindex

Sort the indices of a Texinfo file formatted with
texinfo-tex-region.

C-c C-t C-p
M-x texinfo-tex-print

Print a dvi file that was made with texinfo-tex-region or
texinfo-tex-buffer.

C-c C-t C-q
M-x tex-show-print-queue

Show the print queue.

C-c C-t C-d
M-x texinfo-delete-from-print-queue

Delete a job from the print queue; you will be prompted for the job
number shown by a preceding C-c C-t C-q command
(texinfo-show-tex-print-queue).

C-c C-t C-k
M-x tex-kill-job

Kill the currently running TeX job started by texinfo-tex-region
or texinfo-tex-buffer, or any other process running in the Texinfo
shell buffer.

C-c C-t C-x
M-x texinfo-quit-job

Quit a TeX formatting job that has stopped because of an error by
sending an x to it. When you do this, TeX preserves a record of
what it did in a .log file.

C-c C-t C-l

texinfo 160 / 239

M-x tex-recenter-output-buffer
Redisplay the shell buffer in which the TeX printing and formatting
commands are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as
follows (with comments to the right):

C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-p Print the dvi file.
C-c C-t C-q Display the printer queue.

The Texinfo mode TeX formatting commands start a subshell in Emacs
called the *tex-shell*. The texinfo-tex-command,
texinfo-texindex-command, and tex-dvi-print-command commands are
all run in this shell.

You can watch the commands operate in the *tex-shell* buffer, and you
can switch to and from and use the *tex-shell* buffer as you would any
other shell buffer.

The formatting and print commands depend on the values of several
variables. The default values are:

Variable Default value

texinfo-texi2dvi-command "texi2dvi"
texinfo-tex-command "tex"
texinfo-texindex-command "texindex"
texinfo-delete-from-print-queue-command "lprm"
texinfo-tex-trailer "@bye"
tex-start-of-header "%**start"
tex-end-of-header "%**end"
tex-dvi-print-command "lpr -d"
tex-show-queue-command "lpq"

You can change the values of these variables with the M-x
edit-options command (see Editing Variable Values), with the M-x
set-variable command (see Examining and Setting Variables), or with
your .emacs initialization file (see Init File).

1.215 texinfo.guide/Compile-Command

Using the Local Variables List
==============================

Yet another way to apply the TeX formatting command to a Texinfo file
is to put that command in a local variables list at the end of the
Texinfo file. You can then specify the tex or texi2dvi commands as a
compile-command and have Emacs run it by typing M-x compile. This
creates a special shell called the *compilation* buffer in which Emacs
runs the compile command. For example, at the end of the gdb.texinfo
file, after the @bye, you could put the following:

@c Local Variables:

texinfo 161 / 239

@c compile-command: "texi2dvi gdb.texinfo"
@c End:

This technique is most often used by programmers who also compile
programs this way; see See Compilation.

1.216 texinfo.guide/Requirements Summary

TeX Formatting Requirements Summary
===================================

Every Texinfo file that is to be input to TeX must begin with a
\input command and contain an @settitle command:

\input texinfo
@settitle NAME-OF-MANUAL

The first command instructs TeX to load the macros it needs to process
a Texinfo file and the second command specifies the title of printed
manual.

Every Texinfo file must end with a line that terminates TeX
processing and forces out unfinished pages:

@bye

Strictly speaking, these three lines are all a Texinfo file needs for
TeX, besides the body. (The @setfilename line is the only line that a
Texinfo file needs for Info formatting.)

Usually, the file’s first line contains an @c -*-texinfo-*- comment
that causes Emacs to switch to Texinfo mode when you edit the file. In
addition, the beginning usually includes an @setfilename for Info
formatting, an @setchapternewpage command, a title page, a copyright
page, and permissions. Besides an @bye, the end of a file usually
includes indices and a table of contents.

For more information, see
See @setchapternewpage,
See Page Headings,
See Titlepage & Copyright Page,
See Printing Indices & Menus, and
See Contents.

1.217 texinfo.guide/Preparing for TeX

Preparing to Use TeX
====================

TeX needs to know where to find the texinfo.tex file that you have told

texinfo 162 / 239

it to input with the \input texinfo command at the beginning of the
first line. The texinfo.tex file tells TeX how to handle @-commands.
(texinfo.tex is included in the standard GNU distributions.)

Usually, the texinfo.tex file is put in the default directory that
contains TeX macros (the /usr/lib/tex/macros directory) when GNU Emacs
or other GNU software is installed. In this case, TeX will find the
file and you do not need to do anything special. Alternatively, you
can put texinfo.tex in the directory in which the Texinfo source file
is located, and TeX will find it there.

However, you may want to specify the location of the \input file
yourself. One way to do this is to write the complete path for the file
after the \input command. Another way is to set the TEXINPUTS
environment variable in your .cshrc or .profile file. The TEXINPUTS
environment variable will tell TeX where to find the texinfo.tex file
and any other file that you might want TeX to use.

Whether you use a .cshrc or .profile file depends on whether you use
csh, sh, or bash for your shell command interpreter. When you use
csh, it looks to the .cshrc file for initialization information,
and when you use sh or bash, it looks to the .profile file.

In a .cshrc file, you could use the following csh command sequence:

setenv TEXINPUTS .:/usr/me/mylib:/usr/lib/tex/macros

In a .profile file, you could use the following sh command sequence:

TEXINPUTS=.:/usr/me/mylib:/usr/lib/tex/macros
export TEXINPUTS

This would cause TeX to look for \input file first in the current
directory, indicated by the ., then in a hypothetical user’s me/mylib
directory, and finally in the system library.

1.218 texinfo.guide/Overfull hboxes

Overfull "hboxes"
=================

TeX is sometimes unable to typeset a line without extending it into
the right margin. This can occur when TeX comes upon what it
interprets as a long word that it cannot hyphenate, such as an
electronic mail network address or a very long title. When this
happens, TeX prints an error message like this:

Overfull \hbox (20.76302pt too wide)

(In TeX, lines are in "horizontal boxes", hence the term, "hbox". The
backslash, \ , is the TeX equivalent of @.)

TeX also provides the line number in the Texinfo source file and the
text of the offending line, which is marked at all the places that TeX

texinfo 163 / 239

knows how to hyphenate words. See Catching Errors with TeX Formatting,
for more information about typesetting errors.

If the Texinfo file has an overfull hbox, you can rewrite the sentence
so the overfull hbox does not occur, or you can decide to leave it. A
small excursion into the right margin often does not matter and may not
even be noticeable.

However, unless told otherwise, TeX will print a large, ugly, black
rectangle beside the line that contains the overful hbox. This is so
you will notice the location of the problem if you are correcting a
draft.

To prevent such a monstrosity from marring your final printout, write
the following in the beginning of the Texinfo file on a line of its own,
before the @titlepage command:

@finalout

1.219 texinfo.guide/smallbook

Printing "Small" Books
======================

By default, TeX typesets pages for printing in an 8.5 by 11 inch
format. However, you can direct TeX to typeset a document in a 7 by
9.25 inch format that is suitable for bound books by inserting the
following command on a line by itself at the beginning of the Texinfo
file, before the title page:

@smallbook

(Since regular sized books are often about 7 by 9.25 inches, this
command might better have been called the @regularbooksize command,
but it came to be called the @smallbook command by comparison to the
8.5 by 11 inch format.)

If you write the @smallbook command between the start-of-header and
end-of-header lines, the Texinfo mode TeX region formatting command,
texinfo-tex-region, will format the region in "small" book size
(see Start of Header).

The Free Software Foundation distributes printed copies of ‘The GNU
Emacs Manual’ and other manuals in the "small" book size. See
@smallexample and @smalllisp, for information about commands that make
it easier to produce examples for a smaller manual.

1.220 texinfo.guide/A4 Paper

texinfo 164 / 239

Printing on A4 Paper
====================

You can tell TeX to typeset a document for printing on European size
A4 paper with the @afourpaper command. Write the command on a line by
itself between @iftex and @end iftex lines near the beginning of the
Texinfo file, before the title page:

For example, this is how you would write the header for this manual:

\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename texinfo
@settitle Texinfo
@syncodeindex vr fn
@iftex
@afourpaper
@end iftex
@c %**end of header

1.221 texinfo.guide/Cropmarks and Magnification

Cropmarks and Magnification
===========================

You can attempt to direct TeX to print cropmarks at the corners of
pages with the @cropmarks command. Write the @cropmarks command on a
line by itself between @iftex and @end iftex lines near the beginning
of the Texinfo file, before the title page, like this:

@iftex
@cropmarks
@end iftex

This command is mainly for printers that typeset several pages on one
sheet of film; but you can attempt to use it to mark the corners of a
book set to 7 by 9.25 inches with the @smallbook command. (Printers
will not produce cropmarks for regular sized output that is printed on
regular sized paper.) Since different printing machines work in
different ways, you should explore the use of this command with a
spirit of adventure. You may have to redefine the command in the
texinfo.tex definitions file.

You can attempt to direct TeX to typeset pages larger or smaller than
usual with the \mag TeX command. Everything that is typeset is scaled
proportionally larger or smaller. (\mag stands for "magnification".)
This is not a Texinfo @-command, but is a PlainTeX command that is
prefixed with a backslash. You have to write this command between

Follow the \mag command with an = and then a number that is 1000
times the magnification you desire. For example, to print pages at 1.2
normal size, write the following near the beginning of the Texinfo
file, before the title page:

texinfo 165 / 239

@tex
\mag=1200
@end tex

With some printing technologies, you can print normal-sized copies
that look better than usual by using a larger-than-normal master.

Depending on your system, \mag may not work or may work only at
certain magnifications. Be prepared to experiment.

1.222 texinfo.guide/Create an Info File

Creating an Info File

makeinfo is a utility that converts a Texinfo file into an Info file;
texinfo-format-region and texinfo-format-buffer are GNU Emacs
functions that do the same.

A Texinfo file must possess an @setfilename line near its beginning,
otherwise the Info formatting commands will fail.

For information on installing the Info file in the Info system, see
See Install an Info File.

makeinfo advantages makeinfo provides better error checking.
Invoking makeinfo How to run makeinfo from a shell.
makeinfo options Specify fill-column and other options.
Pointer Validation How to check that pointers point somewhere.
makeinfo in Emacs How to run makeinfo from Emacs.
texinfo-format commands Two Info formatting commands written

in Emacs Lisp are an alternative
to makeinfo.

Batch Formatting How to format for Info in Emacs Batch mode.
Tag and Split Files How tagged and split files help Info

to run better.

1.223 texinfo.guide/makeinfo advantages

makeinfo Preferred
==================

The makeinfo utility creates an Info file from a Texinfo source file
more quickly than either of the Emacs formatting commands and provides
better error messages. We recommend it. makeinfo is a C program that
is independent of Emacs. You do not need to run Emacs to use makeinfo,
which means you can use makeinfo on machines that are too small to run
Emacs. You can run makeinfo in any one of three ways: from an operating
system shell, from a shell inside Emacs, or by typing a key command in

texinfo 166 / 239

Texinfo mode in Emacs.

The texinfo-format-region and the texinfo-format-buffer commands are
useful if you cannot run makeinfo. Also, in some circumstances, they
format short regions or buffers more quickly than makeinfo.

1.224 texinfo.guide/Invoking makeinfo

Running makeinfo from a Shell
=============================

To create an Info file from a Texinfo file, type makeinfo followed by
the name of the Texinfo file. Thus, to create the Info file for Bison,
type the following at the shell prompt (where % is the prompt):

% makeinfo bison.texinfo

(You can run a shell inside Emacs by typing M-x shell.)

Sometimes you will want to specify options. For example, if you wish
to discover which version of makeinfo you are using, type:

% makeinfo --version

See makeinfo options, for more information.

1.225 texinfo.guide/makeinfo options

Options for makeinfo
====================

The makeinfo command takes a number of options. Most often, options
are used to set the value of the fill column and specify the footnote
style. Each command line option is a word preceded by --
(1)makeinfo options-Footnotes or
a letter preceded by -. You can use abbreviations for the option names
as long as they are unique.

For example, you could use the following command to create an Info
file for bison.texinfo in which each line is filled to only 68 columns
(where % is the prompt):

% makeinfo --fill-column=68 bison.texinfo

You can write two or more options in sequence, like this:

% makeinfo --no-split --fill-column=70 ...

This would keep the Info file together as one possibly very long file
and would also set the fill column to 70.

texinfo 167 / 239

The options are:

-D VAR
Cause VAR to be defined. This is equivalent to @set VAR in the
Texinfo file.

--error-limit LIMIT
Set the maximum number of errors that makeinfo will report before
exiting (on the assumption that continuing would be useless). The
default number of errors that can be reported before makeinfo
gives up is 100.

--fill-column WIDTH
Specify the maximum number of columns in a line; this is the
right-hand edge of a line. Paragraphs that are filled will be
filled to this width. (Filling is the process of breaking up and
connecting lines so that lines are the same length as or shorter
than the number specified as the fill column. Lines are broken
between words.) The default value for fill-column is 72.

--footnote-style STYLE
Set the footnote style to STYLE, either end for the end node style
or separate for the separate node style. The value set by this
option overrides the value set in a Texinfo file by an
@footnotestyle command. When the footnote style is separate,
makeinfo makes a new node containing the footnotes found in
the current node. When the footnote style is end, makeinfo places
the footnote references at the end of the current node.

-I DIR
Add dir to the directory search list for finding files that are
included using the @include command. By default, makeinfo
searches only the current directory.

--no-headers
Do not include menus or node lines in the output. This results in
an ascii file that you cannot read in Info since it does not
contain the requisite nodes or menus; but you can print such a
file in a single, typewriter-like font and produce acceptable
output.

--no-split
Suppress the splitting stage of makeinfo. Normally, large output
files (where the size is greater than 70k bytes) are split into
smaller subfiles, each one approximately 50k bytes. If you specify
--no-split, makeinfo will not split up the output file.

--no-pointer-validate
--no-validate

Suppress the pointer-validation phase of makeinfo. Normally,
after a Texinfo file is processed, some consistency checks are
made to ensure that cross references can be resolved, etc. See
Pointer Validation.

--no-warn
Suppress the output of warning messages. This does not suppress

texinfo 168 / 239

the output of error messages, only warnings. You might want this
if the file you are creating has examples of Texinfo cross
references within it, and the nodes that are referenced do not
actually exist.

--no-number-footnotes
Suppress automatic footnote numbering. By default, makeinfo
numbers each footnote sequentially in a single node, resetting the
current footnote number to 1 at the start of each node.

--output FILE
-o FILE

Specify that the output should be directed to FILE and not to the
file name specified in the @setfilename command found in the
Texinfo source. FILE can be the special token -, which specifies
standard output.

--paragraph-indent INDENT
Set the paragraph indentation style to INDENT. The value set by
this option overrides the value set in a Texinfo file by an
@paragraphindent command. The value of INDENT is interpreted as
follows:

* If the value of INDENT is asis, do not change the existing
indentation at the starts of paragraphs.

* If the value of INDENT is zero, delete any existing
indentation.

* If the value of INDENT is greater than zero, indent each
paragraph by that number of spaces.

--reference-limit LIMIT
Set the value of the number of references to a node that makeinfo
will make without reporting a warning. If a node has more than
this number of references in it, makeinfo will make the references
but also report a warning.

-U VAR
Cause VAR to be undefined. This is equivalent to @clear VAR in
the Texinfo file.

--verbose
Cause makeinfo to display messages saying what it is doing.
Normally, makeinfo only outputs messages if there are errors or
warnings.

--version
Report the version number of this copy of makeinfo.

1.226 texinfo.guide/makeinfo options-Footnotes

(1) -- has replaced +, the old introductory character, to maintain
POSIX.2 compatibility without losing long-named options.

texinfo 169 / 239

1.227 texinfo.guide/Pointer Validation

Pointer Validation
==================

If you do not suppress pointer-validation, makeinfo will check the
validity of the final Info file. Mostly, this means ensuring that
nodes you have referenced really exist. Here is a complete list of what
is checked:

1. If a ‘Next’, ‘Previous’, or ‘Up’ node reference is a reference to a
node in the current file and is not an external reference such as
to (dir), then the referenced node must exist.

2. In every node, if the ‘Previous’ node is different from the ‘Up’
node, then the ‘Previous’ node must also be pointed to by a ‘Next’
node.

3. Every node except the ‘Top’ node must have an ‘Up’ pointer.

4. The node referenced by an ‘Up’ pointer must contain a reference to
the current node in some manner other than through a ‘Next’
reference. This includes menu entries and cross references.

5. If the ‘Next’ reference of a node is not the same as the ‘Next’
reference of the ‘Up’ reference, then the node referenced by the
‘Next’ pointer must have a ‘Previous’ pointer that points back to
the current node. This rule allows the last node in a section to
point to the first node of the next chapter.

1.228 texinfo.guide/makeinfo in Emacs

Running makeinfo inside Emacs
=============================

You can run makeinfo in GNU Emacs Texinfo mode by using either the
makeinfo-region or the makeinfo-buffer commands. In Texinfo mode,
the commands are bound to C-c C-m C-r and C-c C-m C-b by default.

C-c C-m C-r
M-x makeinfo-region

Format the current region for Info.

C-c C-m C-b
M-x makeinfo-buffer

Format the current buffer for Info.

When you invoke either makeinfo-region or makeinfo-buffer, Emacs
prompts for a file name, offering the name of the visited file as the

texinfo 170 / 239

default. You can edit the default file name in the minibuffer if you
wish, before typing RET to start the makeinfo process.

The Emacs makeinfo-region and makeinfo-buffer commands run the
makeinfo program in a temporary shell buffer. If makeinfo finds
any errors, Emacs displays the error messages in the temporary buffer.

You can parse the error messages by typing C-x ‘ (next-error). This
causes Emacs to go to and position the cursor on the line in the
Texinfo source that makeinfo thinks caused the error. See
Running make or Compilers Generally, for more information about using
the next-error command.

In addition, you can kill the shell in which the makeinfo command is
running or make the shell buffer display its most recent output.

C-c C-m C-k
M-x makeinfo-kill-job

Kill the current running makeinfo job created by makeinfo-region
or makeinfo-buffer.

C-c C-m C-l
M-x makeinfo-recenter-output-buffer

Redisplay the makeinfo shell buffer to display its most recent
output.

(Note that the parallel commands for killing and recentering a TeX job
are C-c C-t C-k and C-c C-t C-l. See Texinfo Mode Printing.)

You can specify options for makeinfo by setting the makeinfo-options
variable with either the M-x edit-options or the M-x set-variable
command, or by setting the variable in your .emacs initialization file.

For example, you could write the following in your .emacs file:

(setq makeinfo-options
"--paragraph-indent=0 --no-split
--fill-column=70 --verbose")

For more information, see
See Editing Variable Values,
See Examining and Setting Variables,
See Init File, and
See Options for makeinfo.

1.229 texinfo.guide/texinfo-format commands

The texinfo-format... Commands
==============================

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo
file with the texinfo-format-region command. This formats the current
region and displays the formatted text in a temporary buffer called

Info Region.

texinfo 171 / 239

Similarly, you can format a buffer with the texinfo-format-buffer
command. This command creates a new buffer and generates the Info file
in it. Typing C-x C-s will save the Info file under the name specified
by the @setfilename line which must be near the beginning of the
Texinfo file.

C-c C-e C-r
texinfo-format-region

Format the current region for Info.

C-c C-e C-b
texinfo-format-buffer

Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide
you with some error checking, and other functions can provide you with
further help in finding formatting errors. These procedures are
described in an appendix; see See Catching Mistakes. However, the
makeinfo program is often faster and provides better error checking
(see makeinfo in Emacs).

1.230 texinfo.guide/Batch Formatting

Batch Formatting
================

You can format Texinfo files for Info using batch-texinfo-format and
Emacs Batch mode. You can run Emacs in Batch mode from any shell,
including a shell inside of Emacs. (See
Command Line Switches and Arguments.)

Here is the command to format all the files that end in .texinfo in
the current directory (where % is the shell prompt):

% emacs -batch -funcall batch-texinfo-format *.texinfo

Emacs processes all the files listed on the command line, even if an
error occurs while attempting to format some of them.

Run batch-texinfo-format only with Emacs in Batch mode as shown; it
is not interactive. It kills the Batch mode Emacs on completion.

batch-texinfo-format is convenient if you lack makeinfo and want to
format several Texinfo files at once. When you use Batch mode, you
create a new Emacs process. This frees your current Emacs, so you can
continue working in it. (When you run texinfo-format-region or
texinfo-format-buffer, you cannot use that Emacs for anything else
until the command finishes.)

texinfo 172 / 239

1.231 texinfo.guide/Tag and Split Files

Tag Files and Split Files
=========================

If a Texinfo file has more than 30,000 bytes, texinfo-format-buffer
automatically creates a tag table for its Info file; makeinfo always
creates a tag table. With a tag table, Info can jump to new nodes more
quickly than it can otherwise.

In addition, if the Texinfo file contains more than about 70,000
bytes, texinfo-format-buffer and makeinfo split the large Info file
into shorter indirect subfiles of about 50,000 bytes each. Big files
are split into smaller files so that Emacs does not need to make a
large buffer to hold the whole of a large Info file; instead, Emacs
allocates just enough memory for the small, split off file that is
needed at the time. This way, Emacs avoids wasting memory when you run
Info. (Before splitting was implemented, Info files were always kept
short and include files were designed as a way to create a single,
large printed manual out of the smaller Info files. See Include Files,
for more information. Include files are still used for very large
documents, such as ‘The Emacs Lisp Reference Manual’, in which each
chapter is a separate file.)

When a file is split, Info itself makes use of a shortened version of
the original file that contains just the tag table and references to
the files that were split off. The split off files are called indirect
files.

The split off files have names that are created by appending -1, -2,
-3 and so on to the file name specified by the @setfilename
command. The shortened version of the original file continues to have
the name specified by @setfilename.

At one stage in writing this document, for example, the Info file was
saved as test-texinfo and that file looked like this:

Info file: test-texinfo, -*-Text-*-
produced by texinfo-format-buffer
from file: new-texinfo-manual.texinfo

^_
Indirect:
test-texinfo-1: 102
test-texinfo-2: 50422
test-texinfo-3: 101300
^_^L
Tag table:
(Indirect)
Node: overview^?104
Node: info file^?1271
Node: printed manual^?4853
Node: conventions^?6855
...

(But test-texinfo had far more nodes than are shown here.) Each of the

texinfo 173 / 239

split off, indirect files, test-texinfo-1, test-texinfo-2, and
test-texinfo-3, is listed in this file after the line that says
Indirect:. The tag table is listed after the line that says Tag
table:.

In the list of indirect files, the number following the file name
records the cumulative number of bytes in the preceding indirect files,
not counting the file list itself, the tag table, or the permissions
text in each file. In the tag table, the number following the node name
records the location of the beginning of the node, in bytes from the
beginning.

If you are using texinfo-format-buffer to create Info files, you may
want to run the Info-validate command. (The makeinfo command does such
a good job on its own, you do not need Info-validate.) However, you
cannot run the M-x Info-validate node-checking command on indirect
files. For information on how to prevent files from being split and
how to validate the structure of the nodes, see See Using Info-validate.

1.232 texinfo.guide/Install an Info File

Installing an Info File

Info files are usually kept in the info directory. You can read Info
files using the standalone Info program or the Info reader built into
Emacs. (See info, for an introduction to Info.)

Directory file The top level menu for all Info files.
New Info File Listing a new info file.
Other Info Directories How to specify Info files that are

located in other directories.

1.233 texinfo.guide/Directory file

The dir File
============

For Info to work, the info directory must contain a file that serves
as a top level directory for the Info system. By convention, this file
is called dir. (You can find the location of this file within Emacs by
typing C-h i to enter Info and then typing C-x C-f to see the pathname
to the info directory.)

The dir file is itself an Info file. It contains the top level menu
for all the Info files in the system. The menu looks like this:

* Menu:

texinfo 174 / 239

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting
text editor.

* Texinfo: (texinfo). With one source file, make
either a printed manual using
TeX or an Info file.

...

Each of these menu entries points to the ‘Top’ node of the Info file
that is named in parentheses. (The menu entry does not need to specify
the ‘Top’ node, since Info goes to the ‘Top’ node if no node name is
mentioned. See Nodes in Other Info Files.)

Thus, the Info entry points to the ‘Top’ node of the info file and
the Emacs entry points to the ‘Top’ node of the emacs file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers
back to the dir file. For example, the line for the ‘Top’ node of the
Emacs manual looks like this in Info:

File: emacs Node: Top, Up: (DIR), Next: Distrib

(Note that in this case, the dir file name is written in upper case
letters--it can be written in either upper or lower case. Info has a
feature that it will change the case of the file name to lower case if
it cannot find the name as written.)

1.234 texinfo.guide/New Info File

Listing a New Info File
=======================

To add a new Info file to your system, write a menu entry for it in
the menu in the dir file in the info directory. Also, move the new
Info file itself to the info directory. For example, if you were
adding documentation for GDB, you would write the following new entry:

* GDB: (gdb). The source-level C debugger.

The first part of the menu entry is the menu entry name, followed by a
colon. The second part is the name of the Info file, in parentheses,
followed by a period. The third part is the description.

Conventionally, the name of an Info file has a .info extension.
Thus, you might list the name of the file like this:

* GDB: (gdb.info). The source-level C debugger.

However, Info will look for a file with a .info extension if it does
not find the file under the name given in the menu. This means that
you can refer to the file gdb.info as gdb, as shown in the first
example. This looks better.

texinfo 175 / 239

1.235 texinfo.guide/Other Info Directories

Info Files in Other Directories
===============================

If an Info file is not in the info directory, there are three ways to
specify its location:

* Write the pathname in the dir file as the second part of the menu.

* If you are using Emacs, list the name of the file in a second dir
file, in its directory; and then add the name of that directory to
the Info-directory-list variable in your personal or site
initialization file.

This tells Emacs’s Info reader reader where to look for dir files.
Emacs merges the files named dir from each of the listed
directories. (In Emacs Version 18, you can set the Info-directory
variable to the name of only one directory.)

* Specify the info directory name in an environment variable in your
.profile or .cshrc initialization file. (Only you and others
who set this environment variable will be able to find Info files
whose location is specified this way.)

For example, to reach a test file in the ~bob/manuals directory, you
could add an entry like this to the menu in the dir file:

* Test: (/usr/bob/manuals/info-test). Bob’s own test file.

In this case, the absolute file name of the info-test file is written
as the second part of the menu entry.

Alternatively, you could write the following in your .emacs file:

(setq Info-directory-list
’("/usr/bob/manuals"

"/usr/local/emacs/info"))

This tells Emacs to merge the dir file from the /usr/bob/manuals
directory with the dir file from the "/usr/local/emacs/info" directory.
Info will list the /usr/bob/manuals/info-test file as a menu entry in
the /usr/bob/manuals/dir file.

Finally, you can tell Info where to look by setting the INFOPATH
environment variable in your .cshrc or .profile file.

If you use sh or bash for your shell command interpreter, you must
set the INFOPATH environment variable in the .profile initialization
file; but if you use csh, you must set the variable in the .cshrc
initialization file. The two files require slightly different command
formats.

* In a .cshrc file, you could set the INFOPATH variable as follows:

setenv INFOPATH .:~bob/manuals:/usr/local/emacs/info

texinfo 176 / 239

* In a .profile file, you would achieve the same effect by writing:

INFOPATH=.:~bob/manuals:/usr/local/emacs/info
export INFOPATH

The . indicates the current directory. Emacs uses the INFOPATH
environment variable to initialize the value of Emacs’s own
Info-directory-list variable.

1.236 texinfo.guide/Command List

Here is an alphabetical list of the @-commands in Texinfo. Square
brackets, [], indicate optional arguments; an ellipsis, ...,
indicates repeated text.

@*
Force a line break. Do not end a paragraph that uses @* with an
@refill command. See Line Breaks.

@.
Stands for a period that really does end a sentence (usually after
an end-of-sentence capital letter). See Controlling Spacing.

@:
Indicate to TeX that an immediately preceding period, question
mark, exclamation mark, or colon does not end a sentence. Prevent
TeX from inserting extra whitespace as it does at the end of a
sentence. The command has no effect on the Info file output. See
Controlling Spacing.

@@
Stands for @. See Inserting @.

Stands for a left-hand brace, {.
See Inserting @ braces and periods.

@}
Stands for a right-hand brace, }.
See Inserting @ braces and periods.

@appendix TITLE
Begin an appendix. The title appears in the table of contents of
a printed manual. In Info, the title is underlined with
asterisks. See The @unnumbered and @appendix Commands.

@appendixsec TITLE
@appendixsection TITLE

Begin an appendix section within an appendix. The section title
appears in the table of contents of a printed manual. In Info,
the title is underlined with equal signs. @appendixsection is a

texinfo 177 / 239

longer spelling of the @appendixsec command. See
Section Commands.

@appendixsubsec TITLE
Begin an appendix subsection within an appendix. The title appears
in the table of contents of a printed manual. In Info, the title
is underlined with hyphens. See Subsection Commands.

@appendixsubsubsec TITLE
Begin an appendix subsubsection within a subappendix. The title
appears in the table of contents of a printed manual. In Info, the
title is underlined with periods. See The ‘subsub’ Commands.

@asis
Used following @table, @ftable, and @vtable to print the
table’s first column without highlighting ("as is"). See
Making a Two-column Table.

@author AUTHOR
Typeset AUTHOR flushleft and underline it. See
The @title and @author Commands.

@b{TEXT}
Print TEXT in bold font. No effect in Info. See Fonts.

@bullet{}
Generate a large round dot, or the closest possible thing to one.
See @bullet.

@bye
Stop formatting a file. The formatters do not see the contents of
a file following an @bye command. See Ending a File.

@c COMMENT
Begin a comment in Texinfo. The rest of the line does not appear
in either the Info file or the printed manual. A synonym for
@comment. See Comments.

@cartouche
Highlight an example or quotation by drawing a box with rounded
corners around it. Pair with @end cartouche. No effect in Info.
See Drawing Cartouches Around Examples.)

@center LINE-OF-TEXT
Center the line of text following the command. See @center.

@lowersections
Change subsequent chapters to sections, sections to subsections,
and so on. See @raisesections and @lowersections.

@chapheading TITLE
Print a chapter-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined
with asterisks. See @majorheading and @chapheading.

@chapter TITLE
Begin a chapter. The chapter title appears in the table of

texinfo 178 / 239

contents of a printed manual. In Info, the title is underlined
with asterisks. See @chapter.

@cindex ENTRY
Add ENTRY to the index of concepts. See
Defining the Entries of an Index.

@cite{REFERENCE}
Highlight the name of a book or other reference that lacks a
companion Info file. See @cite.

@clear FLAG
Unset FLAG, preventing the Texinfo formatting commands from
formatting text between subsequent pairs of @ifset FLAG and @end
ifset commands, and preventing @value{FLAG} from expanding to the
value to which FLAG is set. See @set @clear @value.

@code{SAMPLE-CODE}
Highlight text that is an expression, a syntactically complete
token of a program, or a program name. See @code.

@comment COMMENT
Begin a comment in Texinfo. The rest of the line does not appear
in either the Info file or the printed manual. A synonym for @c.
See Comments.

@contents
Print a complete table of contents. Has no effect in Info, which
uses menus instead. See Generating a Table of Contents.

@copyright{}
Generate a copyright symbol. See @copyright.

@defcodeindex INDEX-NAME
Define a new index and its indexing command. Print entries in an
@code font. See Defining New Indices.

@defcv CATEGORY CLASS NAME
Format a description for a variable associated with a class in
object-oriented programming. Takes three arguments: the category
of thing being defined, the class to which it belongs, and its
name. See Definition Commands.

@deffn CATEGORY NAME ARGUMENTS...
Format a description for a function, interactive command, or
similar entity that may take arguments. @deffn takes as
arguments the category of entity being described, the name of this
particular entity, and its arguments, if any. See
Definition Commands.

@defindex INDEX-NAME
Define a new index and its indexing command. Print entries in a
roman font. See Defining New Indices.

@definfoenclose NEW-COMMAND, BEFORE, AFTER,
Create new @-command for Info that marks text by enclosing it in
strings that precede and follow the text. Write definition inside

texinfo 179 / 239

of @ifinfo ... @end ifinfo. See Customized Highlighting.

@defivar CLASS INSTANCE-VARIABLE-NAME
This command formats a description for an instance variable in
object-oriented programming. The command is equivalent to @defcv
{Instance Variable} See Definition Commands.

@defmac MACRO-NAME ARGUMENTS...
Format a description for a macro. The command is equivalent to
@deffn Macro See Definition Commands.

@defmethod CLASS METHOD-NAME ARGUMENTS...
Format a description for a method in object-oriented programming.
The command is equivalent to @defop Method Takes as
arguments the name of the class of the method, the name of the
method, and its arguments, if any. See Definition Commands.

@defop CATEGORY CLASS NAME ARGUMENTS...
Format a description for an operation in object-oriented
programming. @defop takes as arguments the overall name of the
category of operation, the name of the class of the operation, the
name of the operation, and its arguments, if any. See
Definition Commands.

@defopt OPTION-NAME
Format a description for a user option. The command is equivalent
to @defvr {User Option} See Definition Commands.

@defspec SPECIAL-FORM-NAME ARGUMENTS...
Format a description for a special form. The command is
equivalent to @deffn {Special Form} See Definition Commands.

@deftp CATEGORY NAME-OF-TYPE ATTRIBUTES...
Format a description for a data type. @deftp takes as arguments
the category, the name of the type (which is a word like int or
float), and then the names of attributes of objects of that
type. See Definition Commands.

@deftypefn CLASSIFICATION DATA-TYPE NAME ARGUMENTS...
Format a description for a function or similar entity that may take
arguments and that is typed. @deftypefn takes as arguments the
classification of entity being described, the type, the name of
the entity, and its arguments, if any. See Definition Commands.

@deftypefun DATA-TYPE FUNCTION-NAME ARGUMENTS...
Format a description for a function in a typed language. The
command is equivalent to @deftypefn Function See
Definition Commands.

@deftypevr CLASSIFICATION DATA-TYPE NAME
Format a description for something like a variable in a typed
language--an entity that records a value. Takes as arguments the
classification of entity being described, the type, and the name of
the entity. See Definition Commands.

@deftypevar DATA-TYPE VARIABLE-NAME
Format a description for a variable in a typed language. The

texinfo 180 / 239

command is equivalent to @deftypevr Variable See
Definition Commands.

@defun FUNCTION-NAME ARGUMENTS...
Format a description for functions. The command is equivalent to
@deffn Function See Definition Commands.

@defvar VARIABLE-NAME
Format a description for variables. The command is equivalent to
@defvr Variable See Definition Commands.

@defvr CATEGORY NAME
Format a description for any kind of variable. @defvr takes as
arguments the category of the entity and the name of the entity.
See Definition Commands.

@dfn{TERM}
Highlight the introductory or defining use of a term. See @dfn.

@display
Begin a kind of example. Indent text, do not fill, do not select a
new font. Pair with @end display. See @display.

@dmn{DIMENSION}
Format a dimension. Cause TeX to insert a narrow space before
DIMENSION. No effect in Info. Use for writing a number followed
by an abbreviation of a dimension name, such as 12pt, written as
12@dmn{pt}, with no space between the number and the @dmn
command. See @dmn.

@dots{}
Insert an ellipsis: See @dots.

@emph{TEXT}
Highlight TEXT; text is displayed in italics in printed output,
and surrounded by asterisks in Info. See Emphasizing Text.

@enumerate [NUMBER-OR-LETTER]
Begin a numbered list, using @item for each entry. Optionally,
start list with NUMBER-OR-LETTER. Pair with @end enumerate. See
@enumerate.

@equiv{}
Indicate to the reader the exact equivalence of two forms with a
glyph: ==. See Equivalence.

@error{}
Indicate to the reader with a glyph that the following text is an
error message: error-->. See Error Glyph.

@evenfooting [LEFT] @| [CENTER] @| [RIGHT]
Specify page footings for even-numbered (left-hand) pages. Not
relevant to Info. See How to Make Your Own Headings.

@evenheading [LEFT] @| [CENTER] @| [RIGHT]
Specify page headings for even-numbered (left-hand) pages. Not
relevant to Info. See How to Make Your Own Headings.

texinfo 181 / 239

@everyfooting [LEFT] @| [CENTER] @| [RIGHT]
Specify page footings for every page. Not relevant to Info. See
How to Make Your Own Headings.

@everyheading [LEFT] @| [CENTER] @| [RIGHT]
Specify page headings for every page. Not relevant to Info. See
How to Make Your Own Headings.

@example
Begin an example. Indent text, do not fill, and select
fixed-width font. Pair with @end example. See @example.

@exdent LINE-OF-TEXT
Remove any indentation a line might have. See
Undoing the Indentation of a Line.

@expansion{}
Indicate the result of a macro expansion to the reader with a
special glyph: ==>. See ==> Indicating an Expansion.

@file{FILENAME}
Highlight the name of a file, buffer, node, or directory. See
@file.

@finalout
Prevent TeX from printing large black warning rectangles beside
over-wide lines. See Overfull hboxes.

@findex ENTRY
Add ENTRY to the index of functions. See
Defining the Entries of an Index.

@flushleft
Left justify every line but leave the right end ragged. Leave
font as is. Pair with @end flushleft. See
@flushleft and @flushright.

@flushright
Right justify every line but leave the left end ragged. Leave
font as is. Pair with @end flushright. See
@flushleft and @flushright.

@footnote{TEXT-OF-FOOTNOTE}
Enter a footnote. Footnote text is printed at the bottom of the
page by TeX; Info may format in either ‘End’ node or ‘Separate’
node style. See Footnotes.

@footnotestyle STYLE
Specify an Info file’s footnote style, either end for the end node
style or separate for the separate node style. See Footnotes.

@format
Begin a kind of example. Like @example or @display, but do not
narrow the margins and do not select the fixed-width font. Pair
with @end format. See @example.

texinfo 182 / 239

@ftable FORMATTING-COMMAND
Begin a two-column table, using @item for each entry.
Automatically enter each of the items in the first column into the
index of functions. Pair with @end ftable. The same as @table,
except for indexing. See @ftable and @vtable.

@group
Hold text together that must appear on one printed page. Pair with
@end group. Not relevant to Info. See @group.

@heading TITLE
Print an unnumbered section-like heading in the text, but not in
the table of contents of a printed manual. In Info, the title is
underlined with equal signs. See Section Commands.

@headings ON-OFF-SINGLE-DOUBLE
Turn page headings on or off, or specify single-sided or
double-sided page headings for printing. @headings on is
synonymous with @headings double. See The @headings Command.

@i{TEXT}
Print TEXT in italic font. No effect in Info. See Fonts.

@ifclear FLAG
If FLAG is cleared, the Texinfo formatting commands format text
between @ifclear FLAG and the following @end ifclear command.
See @set @clear @value.

@ifinfo
Begin a stretch of text that will be ignored by TeX when it
typesets the printed manual. The text appears only in the Info
file. Pair with @end ifinfo. See Conditionally Visible Text.

@ifset FLAG
If FLAG is set, the Texinfo formatting commands format text
between @ifset FLAG and the following @end ifset command. See
@set @clear @value.

@iftex
Begin a stretch of text that will not appear in the Info file, but
will be processed only by TeX. Pair with @end iftex. See
Conditionally Visible Text.

@ignore
Begin a stretch of text that will not appear in either the Info
file or the printed output. Pair with @end ignore. See
Comments and Ignored Text.

@include FILENAME
Incorporate the contents of the file FILENAME into the Info file
or printed document. See Include Files.

@inforef{NODE-NAME, [ENTRY-NAME], INFO-FILE-NAME}
Make a cross reference to an Info file for which there is no
printed manual. See Cross references using @inforef.

\input MACRO-DEFINITIONS-FILE

texinfo 183 / 239

Use the specified macro definitions file. This command is used
only in the first line of a Texinfo file to cause TeX to make use
of the texinfo macro definitions file. The backslash in \input is
used instead of an @ because TeX does not properly recognize @
until after it has read the definitions file. See
The Texinfo File Header.

@item
Indicate the beginning of a marked paragraph for @itemize and
@enumerate; indicate the beginning of the text of a first column
entry for @table, @ftable, and @vtable. See Lists and Tables.

@itemize MARK-GENERATING-CHARACTER-OR-COMMAND
Produce a sequence of indented paragraphs, with a mark inside the
left margin at the beginning of each paragraph. Pair with @end
itemize. See @itemize.

@itemx
Like @item but do not generate extra vertical space above the
item text. See @itemx.

@kbd{KEYBOARD-CHARACTERS}
Indicate text that consists of characters of input to be typed by
users. See @kbd.

@key{KEY-NAME}
Highlight KEY-NAME, a conventional name for a key on a keyboard.
See @key.

@kindex ENTRY
Add ENTRY to the index of keys. See
Defining the Entries of an Index.

@global@letNEW-COMMAND=EXISTING-COMMAND
Equate a new highlighting command with an existing one. Only for
TeX. Write definition inside of @iftex ... @end iftex. See
Customized Highlighting.

@lisp
Begin an example of Lisp code. Indent text, do not fill, and
select fixed-width font. Pair with @end lisp. See @lisp.

@majorheading TITLE
Print a chapter-like heading in the text, but not in the table of
contents of a printed manual. Generate more vertical whitespace
before the heading than the @chapheading command. In Info, the
chapter heading line is underlined with asterisks. See
@majorheading and @chapheading.

@math{MATHEMATICAL-EXPRESSION}
Format a mathematical expression. See
@math: Inserting Mathematical Expressions.

@menu
Mark the beginning of a menu of nodes in Info. No effect in a
printed manual. Pair with @end menu. See Menus.

texinfo 184 / 239

@minus{}
Generate a minus sign. See @minus.

@need N
Start a new page in a printed manual if fewer than N mils
(thousandths of an inch) remain on the current page. See @need.

@node NAME, NEXT, PREVIOUS, UP
Define the beginning of a new node in Info, and serve as a locator
for references for TeX. See @node.

@noindent
Prevent text from being indented as if it were a new paragraph.
See @noindent.

@oddfooting [LEFT] @| [CENTER] @| [RIGHT]
Specify page footings for odd-numbered (right-hand) pages. Not
relevant to Info. See How to Make Your Own Headings.

@oddheading [LEFT] @| [CENTER] @| [RIGHT]
Specify page headings for odd-numbered (right-hand) pages. Not
relevant to Info. See How to Make Your Own Headings.

@page
Start a new page in a printed manual. No effect in Info. See
@page.

@paragraphindent INDENT
Indent paragraphs by INDENT number of spaces; delete indentation
if the value of INDENT is 0; and do not change indentation if
INDENT is asis. See Paragraph Indenting.

@pindex ENTRY
Add ENTRY to the index of programs. See
Defining the Entries of an Index.

@point{}
Indicate the position of point in a buffer to the reader with a
glyph: -!-. See Indicating Point in a Buffer.

@print{}
Indicate printed output to the reader with a glyph: -|. See
Print Glyph.

@printindex INDEX-NAME
Print an alphabetized two-column index in a printed manual or
generate an alphabetized menu of index entries for Info. See
Printing Indices & Menus.

@pxref{NODE-NAME, [ENTRY], [TOPIC-OR-TITLE], [INFO-FILE], [MANUAL]}
Make a reference that starts with a lower case ‘see’ in a printed
manual. Use within parentheses only. Do not follow command with a
punctuation mark. The Info formatting commands automatically
insert terminating punctuation as needed, which is why you do not
need to insert punctuation. Only the first argument is mandatory.
See @pxref.

texinfo 185 / 239

@quotation
Narrow the margins to indicate text that is quoted from another
real or imaginary work. Write command on a line of its own. Pair
with @end quotation. See @quotation.

@r{TEXT}
Print TEXT in roman font. No effect in Info. See Fonts.

@raisesections
Change subsequent sections to chapters, subsections to sections,
and so on. See @raisesections and @lowersections.

@ref{NODE-NAME, [ENTRY], [TOPIC-OR-TITLE], [INFO-FILE], [MANUAL]}
Make a reference. In a printed manual, the reference does not
start with a ‘See’. Follow command with a punctuation mark. Only
the first argument is mandatory. See @ref.

@refill
In Info, refill and indent the paragraph after all the other
processing has been done. No effect on TeX, which always refills.
This command is no longer needed, since all formatters now
automatically refill. See Refilling Paragraphs.

@result{}
Indicate the result of an expression to the reader with a special
glyph: =>. See @result.

@samp{TEXT}
Highlight TEXT that is a literal example of a sequence of
characters. Used for single characters, for statements, and often
for entire shell commands. See @samp.

@sc{TEXT}
Set TEXT in a printed output in the small caps font and set text
in the Info file in uppercase letters. See Smallcaps.

@section TITLE
Begin a section within a chapter. In a printed manual, the section
title is numbered and appears in the table of contents. In Info,
the title is underlined with equal signs. See @section.

@set FLAG [STRING]
Make FLAG active, causing the Texinfo formatting commands to
format text between subsequent pairs of @ifset FLAG and @end
ifset commands. Optionally, set value of FLAG to STRING. See
@set @clear @value.

@setchapternewpage ON-OFF-ODD
Specify whether chapters start on new pages, and if so, whether on
odd-numbered (right-hand) new pages. See @setchapternewpage.

@setfilename INFO-FILE-NAME
Provide a name to be used by the Info file. See @setfilename.

@settitle TITLE
Provide a title for page headers in a printed manual. See
@settitle.

texinfo 186 / 239

@shortcontents
Print a short table of contents. Not relevant to Info, which uses
menus rather than tables of contents. A synonym for
@summarycontents. See Generating a Table of Contents.

@smallbook
Cause TeX to produce a printed manual in a 7 by 9.25 inch format
rather than the regular 8.5 by 11 inch format. See
Printing Small Books. Also, see See @smallexample and @smalllisp.

@smallexample
Indent text to indicate an example. Do not fill, select
fixed-width font. In @smallbook format, print text in a smaller
font than with @example. Pair with @end smallexample. See
@smallexample and @smalllisp.

@smalllisp
Begin an example of Lisp code. Indent text, do not fill, select
fixed-width font. In @smallbook format, print text in a smaller
font. Pair with @end smalllisp. See
@smallexample and @smalllisp.

@sp N
Skip N blank lines. See @sp.

@strong TEXT
Emphasize TEXT by typesetting it in a bold font for the printed
manual and by surrounding it with asterisks for Info. See
Emphasizing Text.

@subheading TITLE
Print an unnumbered subsection-like heading in the text, but not in
the table of contents of a printed manual. In Info, the title is
underlined with hyphens. See
@unnumberedsubsec @appendixsubsec @subheading.

@subsection TITLE
Begin a subsection within a section. In a printed manual, the
subsection title is numbered and appears in the table of contents.
In Info, the title is underlined with hyphens. See @subsection.

@subsubheading TITLE
Print an unnumbered subsubsection-like heading in the text, but
not in the table of contents of a printed manual. In Info, the
title is underlined with periods. See The ‘subsub’ Commands.

@subsubsection TITLE
Begin a subsubsection within a subsection. In a printed manual,
the subsubsection title is numbered and appears in the table of
contents. In Info, the title is underlined with periods. See
The ‘subsub’ Commands.

@subtitle TITLE
In a printed manual, set a subtitle in a normal sized font flush to
the right-hand side of the page. Not relevant to Info, which does
not have title pages. See @title @subtitle and @author Commands.

texinfo 187 / 239

@summarycontents
Print a short table of contents. Not relevant to Info, which uses
menus rather than tables of contents. A synonym for
@shortcontents. See Generating a Table of Contents.

@syncodeindex FROM-INDEX INTO-INDEX
Merge the index named in the first argument into the index named in
the second argument, printing the entries from the first index in
@code font. See Combining Indices.

@synindex FROM-INDEX INTO-INDEX
Merge the index named in the first argument into the index named in
the second argument. Do not change the font of FROM-INDEX
entries. See Combining Indices.

@t{TEXT}
Print TEXT in a fixed-width, typewriter-like font. No effect in
Info. See Fonts.

@table FORMATTING-COMMAND
Begin a two-column table, using @item for each entry. Write each
first column entry on the same line as @item. First column
entries are printed in the font resulting from FORMATTING-COMMAND.
Pair with @end table. See Making a Two-column Table. Also see
See @ftable and @vtable, and See @itemx.

@TeX{}
Insert the logo TeX. See Inserting TeX and (C).

@tex
Enter TeX completely. Pair with @end tex. See
Using Ordinary TeX Commands.

@thischapter
In a heading or footing, stands for the number and name of the
current chapter, in the format ‘Chapter 1: Title’. See
How to Make Your Own Headings.

@thischaptername
In a heading or footing, stands for the name of the current
chapter. See How to Make Your Own Headings.

@thisfile
In a heading or footing, stands for the name of the current
@include file. Does not insert anything if not within an
@include file. See How to Make Your Own Headings.

@thispage
In a heading or footing, stands for the current page number. See
How to Make Your Own Headings.

@thistitle
In a heading or footing, stands for the name of the document, as
specified by the @settitle command. See
How to Make Your Own Headings.

texinfo 188 / 239

@tindex ENTRY
Add ENTRY to the index of data types. See
Defining the Entries of an Index.

@title TITLE
In a printed manual, set a title flush to the left-hand side of the
page in a larger than normal font and underline it with a black
rule. Not relevant to Info, which does not have title pages. See
The @title @subtitle and @author Commands.

@titlefont{TEXT}
In a printed manual, print TEXT in a larger than normal font. Not
relevant to Info, which does not have title pages. See
The @titlefont @center and @sp Commands.

@titlepage
Indicate to Texinfo the beginning of the title page. Write
command on a line of its own. Pair with @end titlepage. Nothing
between @titlepage and @end titlepage appears in Info. See
@titlepage.

@today{}
Insert the current date, in ‘1 Jan 1900’ style. See
How to Make Your Own Headings.

@top TITLE
In a Texinfo file to be formatted with makeinfo, identify the
topmost @node line in the file, which must be written on the line
immediately preceding the @top command. Used for makeinfo’s node
pointer insertion feature. The title is underlined with
asterisks. Both the @node line and the @top line normally
should be enclosed by @ifinfo and @end ifinfo. In TeX and
texinfo-format-buffer, the @top command is merely a synonym
for @unnumbered. See Creating Pointers with makeinfo.

@unnumbered TITLE
In a printed manual, begin a chapter that appears without chapter
numbers of any kind. The title appears in the table of contents
of a printed manual. In Info, the title is underlined with
asterisks. See @unnumbered and @appendix.

@unnumberedsec TITLE
In a printed manual, begin a section that appears without section
numbers of any kind. The title appears in the table of contents
of a printed manual. In Info, the title is underlined with equal
signs. See Section Commands.

@unnumberedsubsec TITLE
In a printed manual, begin an unnumbered subsection within a
chapter. The title appears in the table of contents of a printed
manual. In Info, the title is underlined with hyphens. See
@unnumberedsubsec @appendixsubsec @subheading.

@unnumberedsubsubsec TITLE
In a printed manual, begin an unnumbered subsubsection within a
chapter. The title appears in the table of contents of a printed
manual. In Info, the title is underlined with periods. See

texinfo 189 / 239

The ‘subsub’ Commands.

@value{FLAG}
Replace FLAG with the value to which it is set by @set FLAG. See
@set @clear @value.

@var{METASYNTACTIC-VARIABLE}
Highlight a metasyntactic variable, which is something that stands
for another piece of text. See Indicating Metasyntactic Variables.

@vindex ENTRY
Add ENTRY to the index of variables. See
Defining the Entries of an Index.

@vskip AMOUNT
In a printed manual, insert whitespace so as to push text on the
remainder of the page towards the bottom of the page. Used in
formatting the copyright page with the argument 0pt plus 1filll.
(Note spelling of filll.) @vskip may be used only in contexts
ignored for Info. See The Copyright Page and Printed Permissions.

@vtable FORMATTING-COMMAND
Begin a two-column table, using @item for each entry.
Automatically enter each of the items in the first column into the
index of variables. Pair with @end vtable. The same as @table,
except for indexing. See @ftable and @vtable.

@w{TEXT}
Prevent TEXT from being split across two lines. Do not end a
paragraph that uses @w with an @refill command. In the Texinfo
file, keep TEXT on one line. See @w.

@xref{NODE-NAME, [ENTRY], [TOPIC-OR-TITLE], [INFO-FILE], [MANUAL]}
Make a reference that starts with ‘See’ in a printed manual.
Follow command with a punctuation mark. Only the first argument is
mandatory. See @xref.

1.237 texinfo.guide/Tips

Tips and Hints

Here are some tips for writing Texinfo documentation:

* Write in the present tense, not in the past or the future.

* Write actively! For example, write "We recommend that ..." rather
than "It is recommended that ...".

* Use 70 or 72 as your fill column. Longer lines are hard to read.

* Include a copyright notice and copying permissions.

Index, index, index!

texinfo 190 / 239

....................

Write many index entries, in different ways. Readers like indices;
they are helpful and convenient.

Although it is easiest to write index entries as you write the body of
the text, some people prefer to write entries afterwards. In either
case, write an entry before the paragraph to which it applies. This
way, an index entry points to the first page of a paragraph that is
split across pages.

Here are more hints we have found valuable:

* Write each index entry differently, so each entry refers to a
different place in the document. The index of an Info file lists
only one location for each entry.

* Write index entries only where a topic is discussed significantly.
For example, it is not useful to index "debugging information" in
a chapter on reporting bugs. Someone who wants to know about
debugging information will certainly not find it in that chapter.

* Consistently capitalize the first word of every concept index
entry, or else consistently use lower case. Terse entries often
call for lower case; longer entries for capitalization. Whichever
case convention you use, please use one or the other consistently!
Mixing the two styles looks bad.

* Always capitalize or use upper case for those words in an index for
which this is proper, such as names of countries or acronyms.
Always use the appropriate case for case-sensitive names, such as
those in C or Lisp.

* Write the indexing commands that refer to a whole section
immediately after the section command, and write the indexing
commands that refer to the paragraph before the paragraph.

In the example that follows, a blank line comes after the index
entry for "Leaping":

@section The Dog and the Fox
@cindex Jumping, in general
@cindex Leaping

@cindex Dog, lazy, jumped over
@cindex Lazy dog jumped over
@cindex Fox, jumps over dog
@cindex Quick fox jumps over dog
The quick brown fox jumps over the lazy dog.

(Note that the example shows entries for the same concept that are
written in different ways--Lazy dog, and Dog, lazy--so readers can
look up the concept in different ways.)

Blank lines
...........

texinfo 191 / 239

* Insert a blank line between a sectioning command and the first
following sentence or paragraph, or between the indexing commands
associated with the sectioning command and the first following
sentence or paragraph, as shown in the tip on indexing.
Otherwise, a formatter may fold title and paragraph together.

* Always insert a blank line before an @table command and after an
@end table command; but never insert a blank line after an @table
command or before an @end table command.

For example,

Types of fox:

@table @samp
@item Quick
Jump over lazy dogs.

@item Brown
Also jump over lazy dogs.
@end table
@noindent
On the other hand, ...

Insert blank lines before and after @itemize ... @end itemize
and @enumerate ... @end enumerate in the same way.

Complete phrases
................

Complete phrases are easier to read than ...

* Write entries in an itemized list as complete sentences; or at
least, as complete phrases. Incomplete expressions ... awkward
... like this.

* Write the prefatory sentence or phrase for a multi-item list or
table as a complete expression. Do not write "You can set:";
instead, write "You can set these variables:". The former
expression sounds cut off.

Editions, dates and versions
............................

Write the edition and version numbers and date in three places in
every manual:

1. In the first @ifinfo section, for people reading the Texinfo file.

2. In the @titlepage section, for people reading the printed manual.

3. In the ‘Top’ node, for people reading the Info file.

Also, it helps to write a note before the first @ifinfo section to
explain what you are doing.

For example:

texinfo 192 / 239

@c ===> NOTE! <==
@c Specify the edition and version numbers and date
@c in *three* places:
@c 1. First ifinfo section 2. title page 3. top node
@c To find the locations, search for !!set

@ifinfo
@c !!set edition, date, version
This is Edition 4.03, January 1992,
of the @cite{GDB Manual} for GDB Version 4.3.
...

--or use @set and @value (see @value Example).

Definition Commands
...................

Definition commands are @deffn, @defun, @defmac, and the like, and
enable you to write descriptions in a uniform format.

* Write just one definition command for each entity you define with a
definition command. The automatic indexing feature creates an
index entry that leads the reader to the definition.

* Use @table ... @end table in an appendix that contains a summary
of functions, not @deffn or other definition commands.

Capitalization
..............

* Capitalize Texinfo; it is a name. Do not write the x or i in
upper case.

* Capitalize Info; it is a name.

* Write TeX using the @TeX{} command. Note the uppercase T and X.
This command causes the formatters to typeset the name according
to the wishes of Donald Knuth, who wrote TeX.

Spaces
......

Do not use spaces to format a Texinfo file, except inside of
For example, TeX fills the following:

@kbd{C-x v}
@kbd{M-x vc-next-action}

Perform the next logical operation
on the version-controlled file
corresponding to the current buffer.

so it looks like this:

‘C-x v’ ‘M-x vc-next-action’ Perform the next logical operation on
the version-controlled file corresponding to the current buffer.

texinfo 193 / 239

In this case, the text should be formatted with @table, @item, and
...........................

* Use @code around Lisp symbols, including command names. For
example,

The main function is @code{vc-next-action}, ...

* Avoid putting letters such as s immediately after an @code. Such
letters look bad.

* Use @var around meta-variables. Do not write angle brackets
around them.

* Use three hyphens in a row, ---, to indicate a long dash. TeX
typesets these as a long dash and the Info formatters reduce three
hyphens to two.

Periods Outside of Quotes
.........................

Place periods and other punctuation marks outside of quotations,
unless the punctuation is part of the quotation. This practice goes
against convention, but enables the reader to distinguish between the
contents of the quotation and the whole passage.

For example, you should write the following sentence with the period
outside the end quotation marks:

Evidently, au is an abbreviation for ‘‘author’’.

since au does not serve as an abbreviation for author. (with a period
following the word).

Introducing New Terms
.....................

* Introduce new terms so that a user who does not know them can
understand them from context; or write a definition for the term.

For example, in the following, the terms "check in", "register" and
"delta" are all appearing for the first time; the example sentence
should be rewritten so they are understandable.

The major function assists you in checking in a file to your
version control system and registering successive sets of
changes to it as deltas.

* Use the @dfn command around a word being introduced, to indicate
that the user should not expect to know the meaning already, and
should expect to learn the meaning from this passage.

......

Absolutely never use @pxref except in the special context for which
it is designed: inside parentheses, with the closing parenthesis
following immediately after the closing brace. One formatter

texinfo 194 / 239

automatically inserts closing punctuation and the other does not. This
means that the output looks right both in printed output and in an Info
file, but only when the command is used inside parentheses.

Invoking from a Shell
.....................

You can invoke programs such as Emacs, GCC, and GAWK from a shell.
The documentation for each program should contain a section that
describes this. Unfortunately, if the node names and titles for these
sections are all different, readers find it hard to search for the
section.

Name such sections with a phrase beginning with the word
‘Invoking ...’, as in ‘Invoking Emacs’; this way users can find the
section easily.

ansi c Syntax
.............

When you use @example to describe a C function’s calling
conventions, use the ansi c syntax, like this:

void dld_init (char *@var{path});

And in the subsequent discussion, refer to the argument values by
writing the same argument names, again highlighted with @var.

Avoid the obsolete style that looks like this:

#include <dld.h>

dld_init (path)
char *path;

Also, it is best to avoid writing #include above the declaration just
to indicate that the function is declared in a header file. The
practice may give the misimpression that the #include belongs near the
declaration of the function. Either state explicitly which header file
holds the declaration or, better yet, name the header file used for a
group of functions at the beginning of the section that describes the
functions.

Bad Examples
............

Here are several examples of bad writing to avoid:

In this example, say, " ... you must @dfn {check in} the new
version." That flows better.

When you are done editing the file, you must perform a @dfn
{check in}.

In the following example, say, "... makes a unified interface such as
VC mode possible."

texinfo 195 / 239

SCCS, RCS and other version-control systems all perform similar
functions in broadly similar ways (it is this resemblance which
makes a unified control mode like this possible).

And in this example, you should specify what ‘it’ refers to:

If you are working with other people, it assists in coordinating
everyone’s changes so they do not step on each other.

And Finally ...
...............

* Pronounce TeX as if the X were a Greek ‘chi’, as the last sound in
the name ‘Bach’. But pronounce Texinfo as in ‘speck’: teckinfo.

* Write notes for yourself at the very end of a Texinfo file after
the @bye. None of the formatters process text after the @bye;
it is as if the text were within @ignore ... @end ignore.

1.238 texinfo.guide/Sample Texinfo File

A Sample Texinfo File

Here is a complete, short sample Texinfo file, without any commentary.
You can see this file, with comments, in the first chapter. See
A Short Sample Texinfo File.

\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename sample.info
@settitle Sample Document
@c %**end of header

@setchapternewpage odd

@ifinfo
This is a short example of a complete Texinfo file.

Copyright 1990 Free Software Foundation, Inc.
@end ifinfo

@titlepage
@sp 10
@comment The title is printed in a large font.
@center @titlefont{Sample Title}

@c The following two commands start the copyright page.
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1990 Free Software Foundation, Inc.
@end titlepage

@node Top, First Chapter, (dir), (dir)

texinfo 196 / 239

@comment node-name, next, previous, up

@menu

* First Chapter:: The first chapter is the
only chapter in this sample.

* Concept Index:: This index has two entries.
@end menu

@node First Chapter, Concept Index, Top, Top
@comment node-name, next, previous, up
@chapter First Chapter
@cindex Sample index entry

This is the contents of the first chapter.
@cindex Another sample index entry

Here is a numbered list.

@enumerate
@item
This is the first item.

@item
This is the second item.
@end enumerate

The @code{makeinfo} and @code{texinfo-format-buffer}
commands transform a Texinfo file such as this into
an Info file; and @TeX{} typesets it for a printed
manual.

@node Concept Index, , First Chapter, Top
@comment node-name, next, previous, up
@unnumbered Concept Index

@printindex cp

@contents
@bye

1.239 texinfo.guide/Sample Permissions

Sample Permissions

Texinfo files should contain sections that tell the readers that they
have the right to copy and distribute the Texinfo file, the Info file,
and the printed manual.

Also, if you are writing a manual about software, you should explain
that the software is free and either include the GNU General Public
License (GPL) or provide a reference to it. See Distribution, for an
example of the text that could be used in the software "Distribution",
"General Public License", and "NO WARRANTY" sections of a document.

texinfo 197 / 239

See Texinfo Copying Conditions, for an example of a brief explanation
of how the copying conditions provide you with rights.

Inserting Permissions How to put permissions in your document.
ifinfo Permissions Sample ifinfo copying permissions.
Titlepage Permissions Sample Titlepage copying permissions.

1.240 texinfo.guide/Inserting Permissions

Inserting Permissions
=====================

In a Texinfo file, the first @ifinfo section usually begins with a
line that says what the file documents. This is what a person reading
the unprocessed Texinfo file or using the advanced Info command g *
sees first. See Advanced Info commands, for more information. (A
reader using the regular Info commands usually starts reading at the
first node and skips this first section, which is not in a node.)

In the @ifinfo section, the summary sentence is followed by a
copyright notice and then by the copying permission notice. One of the
copying permission paragraphs is enclosed in @ignore and @end ignore
commands. This paragraph states that the Texinfo file can be processed
through TeX and printed, provided the printed manual carries the proper
copying permission notice. This paragraph is not made part of the Info
file since it is not relevant to the Info file; but it is a mandatory
part of the Texinfo file since it permits people to process the Texinfo
file in TeX and print the results.

In the printed manual, the Free Software Foundation copying permission
notice follows the copyright notice and publishing information and is
located within the region delineated by the @titlepage and @end
titlepage commands. The copying permission notice is exactly the same
as the notice in the @ifinfo section except that the paragraph
enclosed in @ignore and @end ignore commands is not part of the
notice.

To make it simple to insert a permission notice into each section of
the Texinfo file, sample permission notices for each section are
reproduced in full below.

Note that you may need to specify the correct name of a section
mentioned in the permission notice. For example, in ‘The GDB Manual’,
the name of the section referring to the General Public License is
called the "GDB General Public License", but in the sample shown below,
that section is referred to generically as the "GNU General Public
License". If the Texinfo file does not carry a copy of the General
Public License, leave out the reference to it, but be sure to include
the rest of the sentence.

texinfo 198 / 239

1.241 texinfo.guide/ifinfo Permissions

ifinfo Copying Permissions
==========================

In the @ifinfo section of a Texinfo file, the standard Free Software
Foundation permission notice reads as follows:

This file documents ...

Copyright 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

@ignore
Permission is granted to process this file through TeX
and print the results, provided the printed document
carries a copying permission notice identical to this
one except for the removal of this paragraph (this
paragraph not being relevant to the printed manual).

@end ignore
Permission is granted to copy and distribute modified
versions of this manual under the conditions for
verbatim copying, provided also that the sections
entitled ‘‘Copying’’ and ‘‘GNU General Public License’’
are included exactly as in the original, and provided
that the entire resulting derived work is distributed
under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute
translations of this manual into another language,
under the above conditions for modified versions,
except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

1.242 texinfo.guide/Titlepage Permissions

Titlepage Copying Permissions
=============================

In the @titlepage section of a Texinfo file, the standard Free
Software Foundation copying permission notice follows the copyright
notice and publishing information. The standard phrasing is as follows:

Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified

texinfo 199 / 239

versions of this manual under the conditions for
verbatim copying, provided also that the sections
entitled ‘‘Copying’’ and ‘‘GNU General Public License’’
are included exactly as in the original, and provided
that the entire resulting derived work is distributed
under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute
translations of this manual into another language,
under the above conditions for modified versions,
except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

1.243 texinfo.guide/Include Files

Include Files

When TeX or an Info formatting command sees an @include command in a
Texinfo file, it processes the contents of the file named by the
command and incorporates them into the dvi or Info file being created.
Index entries from the included file are incorporated into the indices
of the output file.

Include files let you keep a single large document as a collection of
conveniently small parts.

Using Include Files How to use the @include command.
texinfo-multiple-files-update How to create and update nodes and

menus when using included files.
Include File Requirements What texinfo-multiple-files-update expects.
Sample Include File A sample outer file with included files

within it; and a sample included file.
Include Files Evolution How use of the @include command

has changed over time.

1.244 texinfo.guide/Using Include Files

How to Use Include Files
========================

To include another file within a Texinfo file, write the @include
command at the beginning of a line and follow it on the same line by
the name of a file to be included. For example:

@include buffers.texi

An included file should simply be a segment of text that you expect to

texinfo 200 / 239

be included as is into the overall or outer Texinfo file; it should not
contain the standard beginning and end parts of a Texinfo file. In
particular, you should not start an included file with a line saying
\input texinfo; if you do, that phrase is inserted into the output
file as is. Likewise, you should not end an included file with an

In the past, you were required to write an @setfilename line at the
beginning of an included file, but no longer. Now, it does not matter
whether you write such a line. If an @setfilename line exists in an
included file, it is ignored.

Conventionally, an included file begins with an @node line that is
followed by an @chapter line. Each included file is one chapter.
This makes it easy to use the regular node and menu creating and
updating commands to create the node pointers and menus within the
included file. However, the simple Emacs node and menu creating and
updating commands do not work with multiple Texinfo files. Thus you
cannot use these commands to fill in the ‘Next’, ‘Previous’, and ‘Up’
pointers of the @node line that begins the included file. Also, you
cannot use the regular commands to create a master menu for the whole
file. Either you must insert the menus and the ‘Next’, ‘Previous’, and
‘Up’ pointers by hand, or you must use the GNU Emacs Texinfo mode
command, texinfo-multiple-files-update, that is designed for @include
files.

1.245 texinfo.guide/texinfo-multiple-files-update

texinfo-multiple-files-update
=============================

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update
command. This command creates or updates ‘Next’, ‘Previous’, and ‘Up’
pointers of included files as well as those in the outer or overall
Texinfo file, and it creates or updates a main menu in the outer file.
Depending whether you call it with optional arguments, the command
updates only the pointers in the first @node line of the included
files or all of them:

M-x texinfo-multiple-files-update
Called without any arguments:

- Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of
the first @node line in each file included in an outer or
overall Texinfo file.

- Create or update the ‘Top’ level node pointers of the outer or
overall file.

- Create or update a main menu in the outer file.

C-u M-x texinfo-multiple-files-update
Called with C-u as a prefix argument:

- Create or update pointers in the first @node line in each
included file.

texinfo 201 / 239

- Create or update the ‘Top’ level node pointers of the outer
file.

- Create and insert a master menu in the outer file. The
master menu is made from all the menus in all the included
files.

C-u 8 M-x texinfo-multiple-files-update
Called with a numeric prefix argument, such as C-u 8:

- Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers
of all the included files.

- Create or update all the menus of all the included files.

- Create or update the ‘Top’ level node pointers of the outer or
overall file.

- And then create a master menu in the outer file. This is
similar to invoking texinfo-master-menu with an argument when
you are working with just one file.

Note the use of the prefix argument in interactive use: with a regular
prefix argument, just C-u, the texinfo-multiple-files-update command
inserts a master menu; with a numeric prefix argument, such as C-u 8,
the command updates every pointer and menu in all the files and then
inserts a master menu.

1.246 texinfo.guide/Include File Requirements

Include File Requirements
=========================

If you plan to use the texinfo-multiple-files-update command, the
outer Texinfo file that lists included files within it should contain
nothing but the beginning and end parts of a Texinfo file, and a number
of @include commands listing the included files. It should not even
include indices, which should be listed in an included file of their
own.

Moreover, each of the included files must contain exactly one highest
level node (conventionally, @chapter or equivalent), and this node
must be the first node in the included file. Furthermore, each of
these highest level nodes in each included file must be at the same
hierarchical level in the file structure. Usually, each is an
each included file contains one, and only one, chapter or
equivalent-level node.

The outer file should contain only one node, the ‘Top’ node. It
should not contain any nodes besides the single ‘Top’ node. The
texinfo-multiple-files-update command will not process them.

texinfo 202 / 239

1.247 texinfo.guide/Sample Include File

Sample File with @include
==========================

Here is an example of a complete outer Texinfo file with @include
files within it before running texinfo-multiple-files-update, which
would insert a main or master menu:

\input texinfo @c -*-texinfo-*-
@setfilename include-example.info
@settitle Include Example

@setchapternewpage odd
@titlepage
@sp 12
@center @titlefont{Include Example}
@sp 2
@center by Whom Ever

@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1990 Free Software Foundation, Inc.
@end titlepage

@ifinfo
@node Top, First, (dir), (dir)
@top Master Menu
@end ifinfo

@include foo.texinfo
@include bar.texinfo
@include concept-index.texinfo

@summarycontents
@contents

@bye

An included file, such as foo.texinfo, might look like this:

@node First, Second, , Top
@chapter First Chapter

Contents of first chapter ...

The full contents of concept-index.texinfo might be as simple as this:

@node Concept Index, , Second, Top
@unnumbered Concept Index

@printindex cp

The outer Texinfo source file for ‘The GNU Emacs Lisp Reference
Manual’ is named elisp.texi. This outer file contains a master menu
with 417 entries and a list of 41 @include files.

texinfo 203 / 239

1.248 texinfo.guide/Include Files Evolution

Evolution of Include Files
==========================

When Info was first created, it was customary to create many small
Info files on one subject. Each Info file was formatted from its own
Texinfo source file. This custom meant that Emacs did not need to make
a large buffer to hold the whole of a large Info file when someone
wanted information; instead, Emacs allocated just enough memory for the
small Info file that contained the particular information sought. This
way, Emacs could avoid wasting memory.

References from one file to another were made by referring to the file
name as well as the node name. (See Referring to Other Info Files.
Also, see See @xref with Four and Five Arguments.)

Include files were designed primarily as a way to create a single,
large printed manual out of several smaller Info files. In a printed
manual, all the references were within the same document, so TeX could
automatically determine the references’ page numbers. The Info
formatting commands used include files only for creating joint indices;
each of the individual Texinfo files had to be formatted for Info
individually. (Each, therefore, required its own @setfilename line.)

However, because large Info files are now split automatically, it is
no longer necessary to keep them small.

Nowadays, multiple Texinfo files are used mostly for large documents,
such as ‘The GNU Emacs Lisp Reference Manual’, and for projects in
which several different people write different sections of a document
simultaneously.

In addition, the Info formatting commands have been extended to work
with the @include command so as to create a single large Info file
that is split into smaller files if necessary. This means that you can
write menus and cross references without naming the different Texinfo
files.

1.249 texinfo.guide/Headings

Page Headings

Most printed manuals contain headings along the top of every page
except the title and copyright pages. Some manuals also contain
footings. (Headings and footings have no meaning to Info, which is not
paginated.)

texinfo 204 / 239

Headings Introduced Conventions for using page headings.
Heading Format Standard page heading formats.
Heading Choice How to specify the type of page heading.
Custom Headings How to create your own headings and footings.

1.250 texinfo.guide/Headings Introduced

Headings Introduced
===================

Texinfo provides standard page heading formats for manuals that are
printed on one side of each sheet of paper and for manuals that are
printed on both sides of the paper. Usually, you will use one or other
of these formats, but you can specify your own format, if you wish.

In addition, you can specify whether chapters should begin on a new
page, or merely continue the same page as the previous chapter; and if
chapters begin on new pages, you can specify whether they must be
odd-numbered pages.

By convention, a book is printed on both sides of each sheet of paper.
When you open a book, the right-hand page is odd-numbered, and chapters
begin on right-hand pages--a preceding left-hand page is left blank if
necessary. Reports, however, are often printed on just one side of
paper, and chapters begin on a fresh page immediately following the end
of the preceding chapter. In short or informal reports, chapters often
do not begin on a new page at all, but are separated from the preceding
text by a small amount of whitespace.

The @setchapternewpage command controls whether chapters begin on
new pages, and whether one of the standard heading formats is used. In
addition, Texinfo has several heading and footing commands that you can
use to generate your own heading and footing formats.

In Texinfo, headings and footings are single lines at the tops and
bottoms of pages; you cannot create multiline headings or footings.
Each header or footer line is divided into three parts: a left part, a
middle part, and a right part. Any part, or a whole line, may be left
blank. Text for the left part of a header or footer line is set
flushleft; text for the middle part is centered; and, text for the
right part is set flushright.

1.251 texinfo.guide/Heading Format

Standard Heading Formats
========================

Texinfo provides two standard heading formats, one for manuals printed
on one side of each sheet of paper, and the other for manuals printed

texinfo 205 / 239

on both sides of the paper.

By default, nothing is specified for the footing of a Texinfo file,
so the footing remains blank.

The standard format for single-sided printing consists of a header
line in which the left-hand part contains the name of the chapter, the
central part is blank, and the right-hand part contains the page number.

A single-sided page looks like this:

| |
| chapter page number |
| |
| Start of text ... |
| ... |
| |

The standard format for two-sided printing depends on whether the page
number is even or odd. By convention, even-numbered pages are on the
left- and odd-numbered pages are on the right. (TeX will adjust the
widths of the left- and right-hand margins. Usually, widths are
correct, but during double-sided printing, it is wise to check that
pages will bind properly--sometimes a printer will produce output in
which the even-numbered pages have a larger right-hand margin than the
odd-numbered pages.)

In the standard double-sided format, the left part of the left-hand
(even-numbered) page contains the page number, the central part is
blank, and the right part contains the title (specified by the
page contains the name of the chapter, the central part is blank, and
the right part contains the page number.

Two pages, side by side as in an open book, look like this:

_______________________ _______________________
page number title		chapter page number
Start of text ...		More text ...
...		...

The chapter name is preceded by the word Chapter, the chapter number
and a colon. This makes it easier to keep track of where you are in
the manual.

1.252 texinfo.guide/Heading Choice

Specifying the Type of Heading
==============================

TeX does not begin to generate page headings for a standard Texinfo

texinfo 206 / 239

file until it reaches the @end titlepage command. Thus, the title and
copyright pages are not numbered. The @end titlepage command causes
TeX to begin to generate page headings according to a standard format
specified by the @setchapternewpage command that precedes the

There are four possibilities:

No @setchapternewpage command
Cause TeX to specify the single-sided heading format, with chapters
on new pages. This is the same as @setchapternewpage on.

@setchapternewpage on
Specify the single-sided heading format, with chapters on new
pages.

@setchapternewpage off
Cause TeX to start a new chapter on the same page as the last page
of the preceding chapter, after skipping some vertical whitespace.
Also cause TeX to typeset for single-sided printing. (You can
override the headers format with the @headings double command; see
See The @headings Command.)

@setchapternewpage odd
Specify the double-sided heading format, with chapters on new
pages.

Texinfo lacks an @setchapternewpage even command.

1.253 texinfo.guide/Custom Headings

How to Make Your Own Headings
=============================

You can use the standard headings provided with Texinfo or specify
your own.

Texinfo provides six commands for specifying headings and footings.
The @everyheading command and @everyfooting command generate page
headers and footers that are the same for both even- and odd-numbered
pages. The @evenheading command and @evenfooting command generate
headers and footers for even-numbered (left-hand) pages; and the
footers for odd-numbered (right-hand) pages.

Write custom heading specifications in the Texinfo file immediately
after the @end titlepage command. Enclose your specifications between
@iftex and @end iftex commands since the texinfo-format-buffer

command may not recognize them. Also, you must cancel the predefined
heading commands with the @headings off command before defining your
own specifications.

Here is how to tell TeX to place the chapter name at the left, the
page number in the center, and the date at the right of every header
for both even- and odd-numbered pages:

@iftex

texinfo 207 / 239

@headings off
@everyheading @thischapter @| @thispage @| @today{}
@end iftex

You need to divide the left part from the central part and the central
part from the right had part by inserting @| between parts.
Otherwise, the specification command will not be able to tell where the
text for one part ends and the next part begins.

Each part can contain text or @-commands. The text is printed as if
the part were within an ordinary paragraph in the body of the page.
The @-commands replace themselves with the page number, date, chapter
name, or whatever.

Here are the six heading and footing commands:

@everyheading LEFT @| CENTER @| RIGHT
@everyfooting LEFT @| CENTER @| RIGHT

The ‘every’ commands specify the format for both even- and
odd-numbered pages. These commands are for documents that are
printed on one side of each sheet of paper, or for documents in
which you want symmetrical headers or footers.

@evenheading LEFT @| CENTER @| RIGHT
@oddheading LEFT @| CENTER @| RIGHT
@evenfooting LEFT @| CENTER @| RIGHT
@oddfooting LEFT @| CENTER @| RIGHT

The ‘even’ and ‘odd’ commands specify the format for even-numbered
pages and odd-numbered pages. These commands are for books and
manuals that are printed on both sides of each sheet of paper.

Use the @this... series of @-commands to provide the names of
chapters and sections and the page number. You can use the @this...
commands in the left, center, or right portions of headers and footers,
or anywhere else in a Texinfo file so long as they are between @iftex
and @end iftex commands.

Here are the @this... commands:

@thispage
Expands to the current page number.

@thischaptername
Expands to the name of the current chapter.

@thischapter
Expands to the number and name of the current chapter, in the
format ‘Chapter 1: Title’.

@thistitle
Expands to the name of the document, as specified by the
@settitle command.

@thisfile
For @include files only: expands to the name of the current
@include file. If the current Texinfo source file is not an
@include file, this command has no effect. This command does not

texinfo 208 / 239

provide the name of the current Texinfo source file unless it is
an @include file. (See Include Files, for more information about
@include files.)

You can also use the @today{} command, which expands to the current
date, in ‘1 Jan 1900’ format.

Other @-commands and text are printed in a header or footer just as
if they were in the body of a page. It is useful to incorporate text,
particularly when you are writing drafts:

@iftex
@headings off
@everyheading @emph{Draft!} @| @thispage @| @thischapter
@everyfooting @| @| Version: 0.27: @today{}
@end iftex

Beware of overlong titles: they may overlap another part of the
header or footer and blot it out.

1.254 texinfo.guide/Catching Mistakes

Formatting Mistakes

Besides mistakes in the content of your documentation, there are two
kinds of mistake you can make with Texinfo: you can make mistakes with
and chapters.

Emacs has two tools for catching the @-command mistakes and two for
catching structuring mistakes.

For finding problems with @-commands, you can run TeX or a region
formatting command on the region that has a problem; indeed, you can
run these commands on each region as you write it.

For finding problems with the structure of nodes and chapters, you
can use C-c C-s (texinfo-show-structure) and the related occur command
and you can use the M-x Info-validate command.

makeinfo preferred makeinfo finds errors.
Debugging with Info How to catch errors with Info formatting.
Debugging with TeX How to catch errors with TeX formatting.
Using texinfo-show-structure How to use texinfo-show-structure.
Using occur How to list all lines containing a pattern.
Running Info-Validate How to find badly referenced nodes.

1.255 texinfo.guide/makeinfo preferred

texinfo 209 / 239

makeinfo Find Errors
====================

The makeinfo program does an excellent job of catching errors and
reporting them--far better than texinfo-format-region or
texinfo-format-buffer. In addition, the various functions for
automatically creating and updating node pointers and menus remove many
opportunities for human error.

If you can, use the updating commands to create and insert pointers
and menus. These prevent many errors. Then use makeinfo (or its
Texinfo mode manifestations, makeinfo-region and makeinfo-buffer) to
format your file and check for other errors. This is the best way to
work with Texinfo. But if you cannot use makeinfo, or your problem is
very puzzling, then you may want to use the tools described in this
appendix.

1.256 texinfo.guide/Debugging with Info

Catching Errors with Info Formatting
====================================

After you have written part of a Texinfo file, you can use the
texinfo-format-region or the makeinfo-region command to see whether
the region formats properly.

Most likely, however, you are reading this section because for some
reason you cannot use the makeinfo-region command; therefore, the rest
of this section presumes that you are using texinfo-format-region.

If you have made a mistake with an @-command, texinfo-format-region
will stop processing at or after the error and display an error
message. To see where in the buffer the error occurred, switch to the

Info Region buffer; the cursor will be in a position that is
after the location of the error. Also, the text will not be formatted
after the place where the error occurred (or more precisely, where it
was detected).

For example, if you accidentally end a menu with the command @end
menus with an ‘s’ on the end, instead of with @end menu, you will see
an error message that says:

@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs,
or not long after it. The buffer will look like this:

---------- Buffer: *Info Region* ----------

* Menu:

* Using texinfo-show-structure:: How to use
‘texinfo-show-structure’
to catch mistakes.

texinfo 210 / 239

* Running Info-Validate:: How to check for
unreferenced nodes.

@end menus
-!-
---------- Buffer: *Info Region* ----------

The texinfo-format-region command sometimes provides slightly odd
error messages. For example, the following cross reference fails to
format:

(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace
but displays a message that says Unbalanced parentheses rather than
Unbalanced braces. This is because the formatting command looks
for mismatches between braces as if they were parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For
example, in the following, the closing brace is swapped with the
closing parenthesis:

(@xref{Catching Mistakes), for more info.}

Formatting produces:
(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the
reference should have looked like this:

(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f RET
(Info-follow-reference), you will generate an error message that
says:

No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the first
cross reference in this node and if you type a RET immediately after
typing the Info f command, Info will attempt to go to the referenced
node. If you type f catch TAB RET, Info will complete the node name of
the correctly written example and take you to the ‘Catching Mistakes’
node. (If you try this, you can return from the ‘Catching Mistakes’
node by typing l (Info-last).)

1.257 texinfo.guide/Debugging with TeX

Catching Errors with TeX Formatting
===================================

You can also catch mistakes when you format a file with TeX.

Usually, you will want to do this after you have run
texinfo-format-buffer (or, better, makeinfo-buffer) on the same

texinfo 211 / 239

file, because texinfo-format-buffer sometimes displays error messages
that make more sense than TeX. (See Debugging with Info, for more
information.)

For example, TeX was run on a Texinfo file, part of which is shown
here:

---------- Buffer: texinfo.texi ----------
name of the Texinfo file as an extension. The
@samp{??} are ‘wildcards’ that cause the shell to
substitute all the raw index files. (@xref{sorting
indices, for more information about sorting
indices.)@refill
---------- Buffer: texinfo.texi ----------

(The cross reference lacks a closing brace.) TeX produced the following
output, after which it stopped:

---------- Buffer: *tex-shell* ----------
Runaway argument?
{sorting indices, for more information about sorting
indices.) @refill @ETC.
! Paragraph ended before @xref was complete.
<to be read again>

@par
l.27

?
---------- Buffer: *tex-shell* ----------

In this case, TeX produced an accurate and understandable error
message:

Paragraph ended before @xref was complete.

@par is an internal TeX command of no relevance to Texinfo. l.27
means that TeX detected the problem on line 27 of the Texinfo file.
The ? is the prompt TeX uses in this circumstance.

Unfortunately, TeX is not always so helpful, and sometimes you must
truly be a Sherlock Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of
three things.

1. You can tell TeX to continue running and ignore just this error by
typing RET at the ? prompt.

2. You can tell TeX to continue running and to ignore all errors as
best it can by typing r RET at the ? prompt.

This is often the best thing to do. However, beware: the one error
may produce a cascade of additional error messages as its
consequences are felt through the rest of the file. (To stop TeX
when it is producing such an avalanche of error messages, type C-d
(or C-c C-d, if you are running a shell inside Emacs.))

texinfo 212 / 239

3. You can tell TeX to stop this run by typing x RET at the ? prompt.

Please note that if you are running TeX inside Emacs, you need to
switch to the shell buffer and line at which TeX offers the ? prompt.

Sometimes TeX will format a file without producing error messages even
though there is a problem. This usually occurs if a command is not
ended but TeX is able to continue processing anyhow. For example, if
you fail to end an itemized list with the @end itemize command, TeX
will write a dvi file that you can print out. The only error message
that TeX will give you is the somewhat mysterious comment that

(@end occurred inside a group at level 1)

However, if you print the dvi file, you will find that the text of the
file that follows the itemized list is entirely indented as if it were
part of the last item in the itemized list. The error message is the
way TeX says that it expected to find an @end command somewhere in the
file; but that it could not determine where it was needed.

Another source of notoriously hard-to-find errors is a missing @end
group command. If you ever are stumped by incomprehensible errors,
look for a missing @end group command first.

If the Texinfo file lacks header lines, TeX may stop in the beginning
of its run and display output that looks like the following. The *
indicates that TeX is waiting for input.

This is TeX, Version 2.0 for Berkeley UNIX
(preloaded format=plain-cm 87.10.25)
(test.texinfo [1])

*

In this case, simply type \end RET after the asterisk. Then write the
header lines in the Texinfo file and run the TeX command again. (Note
the use of the backslash, \ . TeX uses \ instead of @; and in this
circumstance, you are working directly with TeX, not with Texinfo.)

1.258 texinfo.guide/Using texinfo-show-structure

Using texinfo-show-structure
============================

It is not always easy to keep track of the nodes, chapters, sections,
and subsections of a Texinfo file. This is especially true if you are
revising or adding to a Texinfo file that someone else has written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command
lists all the lines that begin with the @-commands that specify the
structure: @chapter, @section, @appendix, and so on. With an
argument (C-u as prefix argument, if interactive), the command also
shows the @node lines. The texinfo-show-structure command is bound to
C-c C-s in Texinfo mode, by default.

texinfo 213 / 239

The lines are displayed in a buffer called the *Occur* buffer,
indented by hierarchical level. For example, here is a part of what was
produced by running texinfo-show-structure on this manual:

Lines matching "^@\(chapter \|sect\|subs\|subh\|
unnum\|major\|chapheading \|heading \|appendix\)"
in buffer texinfo.texi.
...
4177:@chapter Nodes
4198: @heading Two Paths
4231: @section Node and Menu Illustration
4337: @section The @code{@@node} Command
4393: @subheading Choosing Node and Pointer Names
4417: @subsection How to Write an @code{@@node} Line
4469: @subsection @code{@@node} Line Tips
...

This says that lines 4337, 4393, and 4417 of texinfo.texi begin with
the @section, @subheading, and @subsection commands respectively.
If you move your cursor into the *Occur* window, you can position the
cursor over one of the lines and use the C-c C-c command
(occur-mode-goto-occurrence), to jump to the corresponding spot in
the Texinfo file. See Using Occur, for more information about
occur-mode-goto-occurrence.

The first line in the *Occur* window describes the regular expression
specified by TEXINFO-HEADING-PATTERN. This regular expression is the
pattern that texinfo-show-structure looks for. See
Using Regular Expressions, for more information.

When you invoke the texinfo-show-structure command, Emacs will
display the structure of the whole buffer. If you want to see the
structure of just a part of the buffer, of one chapter, for example,
use the C-x n n (narrow-to-region) command to mark the region. (See
Narrowing.) This is how the example used above was generated. (To see
the whole buffer again, use C-x n w (widen).)

If you call texinfo-show-structure with a prefix argument by typing
C-u C-c C-s, it will list lines beginning with @node as well as
the lines beginning with the @-sign commands for @chapter, @section,
and the like.

You can remind yourself of the structure of a Texinfo file by looking
at the list in the *Occur* window; and if you have mis-named a node or
left out a section, you can correct the mistake.

1.259 texinfo.guide/Using occur

Using occur
===========

Sometimes the texinfo-show-structure command produces too much
information. Perhaps you want to remind yourself of the overall
structure of a Texinfo file, and are overwhelmed by the detailed list

texinfo 214 / 239

produced by texinfo-show-structure. In this case, you can use the occur
command directly. To do this, type

M-x occur

and then, when prompted, type a regexp, a regular expression for the
pattern you want to match. (See Regular Expressions.) The occur
command works from the current location of the cursor in the buffer to
the end of the buffer. If you want to run occur on the whole buffer,
place the cursor at the beginning of the buffer.

For example, to see all the lines that contain the word @chapter in
them, just type @chapter. This will produce a list of the chapters.
It will also list all the sentences with @chapter in the middle of the
line.

If you want to see only those lines that start with the word
see all the lines that end with a word or phrase, end the last word
with a $; for example, catching mistakes$. This can be helpful when
you want to see all the nodes that are part of the same chapter or
section and therefore have the same ‘Up’ pointer.

See Using Occur, for more information.

1.260 texinfo.guide/Running Info-Validate

Finding Badly Referenced Nodes
==============================

You can use the Info-validate command to check whether any of the
‘Next’, ‘Previous’, ‘Up’ or other node pointers fail to point to a
node. This command checks that every node pointer points to an
existing node. The Info-validate command works only on Info files, not
on Texinfo files.

The makeinfo program validates pointers automatically, so you do not
need to use the Info-validate command if you are using makeinfo. You
only may need to use Info-validate if you are unable to run makeinfo
and instead must create an Info file using texinfo-format-region or
texinfo-format-buffer, or if you write an Info file from scratch.

Using Info-validate How to run Info-validate.
Unsplit How to create an unsplit file.
Tagifying How to tagify a file.
Splitting How to split a file manually.

1.261 texinfo.guide/Using Info-validate

texinfo 215 / 239

Running Info-validate

To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

(Note that the Info-validate command requires an upper case ‘I’. You
may also need to create a tag table before running Info-validate. See
Tagifying.)

If your file is valid, you will receive a message that says "File
appears valid". However, if you have a pointer that does not point to
a node, error messages will be displayed in a buffer called *problems in
info file*.

For example, Info-validate was run on a test file that contained only
the first node of this manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

This meant that the node called Overview had a ‘Next’ pointer that did
not point to anything (which was true in this case, since the test file
had only one node in it).

Now suppose we add a node named Texinfo Mode to our test case but we
do not specify a ‘Previous’ for this node. Then we will get the
following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because every ‘Next’ pointer should be matched by a ‘Previous’
(in the node where the ‘Next’ points) which points back.

Info-validate also checks that all menu entries and cross references
point to actual nodes.

Note that Info-validate requires a tag table and does not work with
files that have been split. (The texinfo-format-buffer command
automatically splits large files.) In order to use Info-validate on a
large file, you must run texinfo-format-buffer with an argument so that
it does not split the Info file; and you must create a tag table for
the unsplit file.

1.262 texinfo.guide/Unsplit

Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag
table. The command will not work on the indirect subfiles that are
generated when a master file is split. If you have a large file
(longer than 70,000 bytes or so), you need to run the

texinfo 216 / 239

texinfo-format-buffer or makeinfo-buffer command in such a way that
it does not create indirect subfiles. You will also need to create a
tag table for the Info file. After you have done this, you can run
Info-validate and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent
texinfo-format-buffer from splitting a Texinfo file into smaller
Info files, give a prefix to the M-x texinfo-format-buffer command:

C-u M-x texinfo-format-buffer

or else

C-u C-c C-e C-b

When you do this, Texinfo will not split the file and will not create a
tag table for it.

1.263 texinfo.guide/Tagifying

Tagifying a File

After creating an unsplit Info file, you must create a tag table for
it. Visit the Info file you wish to tagify and type:

M-x Info-tagify

(Note the upper case I in Info-tagify.) This creates an Info file with
a tag table that you can validate.

The third step is to validate the Info file:

M-x Info-validate

(Note the upper case I in Info-validate.) In brief, the steps are:

C-u M-x texinfo-format-buffer
M-x Info-tagify
M-x Info-validate

After you have validated the node structure, you can rerun
texinfo-format-buffer in the normal way so it will construct a tag
table and split the file automatically, or you can make the tag table
and split the file manually.

1.264 texinfo.guide/Splitting

Splitting a File Manually

texinfo 217 / 239

You should split a large file or else let the texinfo-format-buffer
or makeinfo-buffer command do it for you automatically. (Generally you
will let one of the formatting commands do this job for you. See
Create an Info File.)

The split-off files are called the indirect subfiles.

Info files are split to save memory. With smaller files, Emacs does
not have make such a large buffer to hold the information.

If an Info file has more than 30 nodes, you should also make a tag
table for it. See Using Info-validate, for information about creating a
tag table. (Again, tag tables are usually created automatically by the
formatting command; you only need to create a tag table yourself if you
are doing the job manually. Most likely, you will do this for a large,
unsplit file on which you have run Info-validate.)

Visit the Info file you wish to tagify and split and type the two
commands:

M-x Info-tagify
M-x Info-split

(Note that the I in Info is upper case.)

When you use the Info-split command, the buffer is modified into a
(small) Info file which lists the indirect subfiles. This file should
be saved in place of the original visited file. The indirect subfiles
are written in the same directory the original file is in, with names
generated by appending - and a number to the original file name.

The primary file still functions as an Info file, but it contains just
the tag table and a directory of subfiles.

1.265 texinfo.guide/Refilling Paragraphs

Refilling Paragraphs

The @refill command refills and, optionally, indents the first line
of a paragraph.(1)Refilling Paragraphs-Footnotes The @refill command
is no longer important, but we describe it here because you once needed
it. You will see it in many old Texinfo files.

Without refilling, paragraphs containing long @-constructs may look
bad after formatting because the formatter removes @-commands and
shortens some lines more than others. In the past, neither the
texinfo-format-region command nor the texinfo-format-buffer command
refilled paragraphs automatically. The @refill command had to be
written at the end of every paragraph to cause these formatters to fill
them. (Both TeX and makeinfo have always refilled paragraphs
automatically.) Now, all the Info formatters automatically fill and
indent those paragraphs that need to be filled and indented.

texinfo 218 / 239

The @refill command causes texinfo-format-region and
texinfo-format-buffer to refill a paragraph in the Info file after
all the other processing has been done. For this reason, you can not
use @refill with a paragraph containing either @* or @w{ ... } since
the refilling action will override those two commands.

The texinfo-format-region and texinfo-format-buffer commands now
automatically append @refill to the end of each paragraph that should
be filled. They do not append @refill to the ends of paragraphs that
contain @* or @w{ ...} and therefore do not refill or indent them.

1.266 texinfo.guide/Refilling Paragraphs-Footnotes

(1) Perhaps the command should have been called the
chosen before indenting was possible.

1.267 texinfo.guide/Command Syntax

The character @ is used to start special Texinfo commands. (It has
the same meaning that \ has in PlainTeX.) Texinfo has four types of
1. Non-alphabetic commands.

These commands consist of an @ followed by a punctuation mark or
other character that is not part of the alphabet. Non-alphabetic
commands are almost always part of the text within a paragraph,
and never take any argument. The two characters (@ and the other
one) are complete in themselves; none is followed by braces. The
non-alphabetic commands are: @., @:, @*, @@, , and @}.

2. Alphabetic commands that do not require arguments.
These commands start with @ followed by a word followed by left-
and right-hand braces. These commands insert special symbols in
the document; they do not require arguments. For example,
@dots{} => ..., @equiv{} => ==, @TeX{} => ‘TeX’, and
@bullet{} => *.

3. Alphabetic commands that require arguments within braces.
These commands start with @ followed by a letter or a word,
followed by an argument within braces. For example, the command
@dfn indicates the introductory or defining use of a term; it is
used as follows: In Texinfo, @@-commands are @dfn{mark-up}
commands.

4. Alphabetic commands that occupy an entire line.
These commands occupy an entire line. The line starts with @,
followed by the name of the command (a word); for example, @center
or @cindex. If no argument is needed, the word is followed by
the end of the line. If there is an argument, it is separated from

texinfo 219 / 239

the command name by a space. Braces are not used.

Thus, the alphabetic commands fall into classes that have different
argument syntaxes. You cannot tell to which class a command belongs by
the appearance of its name, but you can tell by the command’s meaning:
if the command stands for a glyph, it is in class 2 and does not
require an argument; if it makes sense to use the command together with
other text as part of a paragraph, the command is in class 3 and must
be followed by an argument in braces; otherwise, it is in class 4 and
uses the rest of the line as its argument.

The purpose of having a different syntax for commands of classes 3 and
4 is to make Texinfo files easier to read, and also to help the GNU
Emacs paragraph and filling commands work properly. There is only one
exception to this rule: the command @refill, which is always used at
the end of a paragraph immediately following the final period or other
punctuation character. @refill takes no argument and does not require
braces. @refill never confuses the Emacs paragraph commands because
it cannot appear at the beginning of a line.

1.268 texinfo.guide/Obtaining TeX

How to Obtain TeX

TeX is freely redistributable. You can obtain TeX for Unix systems
via anonymous ftp or on tape or CD-ROM. The core material consists of
Karl Berry’s web2c TeX package.

On-line retrieval instructions are in ftp.cs.umb.edu [158.121.104.33]
in pub/tex/unixtex.ftp

The Free Software Foundation provides a core distribution on its
Source Code CD-ROM; the University of Washington maintains and supports
a tape distribution.

For the FSF Source Code CD-ROM, please contact:

Free Software Foundation, Inc.
59 Temple Place Suite 330
Boston, MA 02111-1307
USA

Telephone: +1-617-542-5942
Fax: (including Japan) +1-617-542-2652
Free Dial Fax (in Japan):

0031-13-2473 (KDD)
0066-3382-0158 (IDC)

Electronic mail: gnu@prep.ai.mit.edu

To order a full distribution from the University of Washington on
either a 1/4inch 4-track QIC-24 cartridge or a 4mm DAT cartridge, send
$210.00 to:

texinfo 220 / 239

Pierre A. MacKay
Department of Classics
DH-10, Denny Hall 218
University of Washington
Seattle, WA 98195
USA

Telephone: +1-206-543-2268
Electronic mail: mackay@cs.washington.edu

Please make checks payable to the University of Washington. Checks
must be in U.S. dollars, drawn on a U.S. bank.

Prepaid orders are the only orders that can now be handled. Overseas
sites: please add to the base cost, if desired, $20.00 for shipment via
air parcel post, or $30.00 for shipment via courier.

Please check with the above for current prices and formats.

1.269 texinfo.guide/New Features

Second Edition Features

The second edition of the Texinfo manual describes more than 20 new
Texinfo mode commands and more than 50 previously undocumented Texinfo
edition.

Here is a brief description of the new commands.

New Texinfo Mode Commands The updating commands are especially useful.
New Commands Many newly described @-commands.

1.270 texinfo.guide/New Texinfo Mode Commands

New Texinfo Mode Commands
=========================

Texinfo mode provides commands and features especially designed for
working with Texinfo files. More than 20 new commands have been added,
including commands for automatically creating and updating both nodes
and menus. This is a tedious task when done by hand.

The keybindings are intended to be somewhat mnemonic.

Update all nodes and menus

The texinfo-master-menu command is the primary command:

texinfo 221 / 239

C-c C-u m
M-x texinfo-master-menu

Create or update a master menu. With C-u as a prefix argument,
first create or update all nodes and regular menus.

Update Pointers

Create or update ‘Next’, ‘Previous’, and ‘Up’ node pointers.

See Updating Nodes and Menus.

C-c C-u C-n
M-x texinfo-update-node

Update a node.

C-c C-u C-e
M-x texinfo-every-node-update

Update every node in the buffer.

Update Menus

Create or update menus.

See Updating Nodes and Menus.

C-c C-u C-m
M-x texinfo-make-menu

Make or update a menu.

C-c C-u C-a
M-x texinfo-all-menus-update

Make or update all the menus in a buffer. With C-u as a prefix
argument, first update all the nodes.

Insert Title as Description

Insert a node’s chapter or section title in the space for the
description in a menu entry line; position point so you can edit the
insert. (This command works somewhat differently than the other
insertion commands, which insert only a predefined string.)

See Inserting Frequently Used Commands.

C-c C-c C-d
Insert title.

Format for Info

Provide keybindings both for the Info formatting commands that are
written in Emacs Lisp and for makeinfo that is written in C.

See Info Formatting.

texinfo 222 / 239

Use the Emacs lisp texinfo-format... commands:

C-c C-e C-r
Format the region.

C-c C-e C-b
Format the buffer.

Use makeinfo:

C-c C-m C-r
Format the region.

C-c C-m C-b
Format the buffer.

C-c C-m C-l
Recenter the makeinfo output buffer.

C-c C-m C-k
Kill the makeinfo formatting job.

Typeset and Print

Typeset and print Texinfo documents from within Emacs.

See Printing.

C-c C-t C-b
Run texi2dvi on the buffer.

C-c C-t C-r
Run TeX on the region.

C-c C-t C-i
Run texindex.

C-c C-t C-p
Print the dvi file.

C-c C-t C-q
Show the print queue.

C-c C-t C-d
Delete a job from the print queue.

C-c C-t C-k
Kill the current TeX formatting job.

C-c C-t C-x
Quit a currently stopped TeX formatting job.

C-c C-t C-l
Recenter the output buffer.

texinfo 223 / 239

Other Updating Commands

The "other updating commands" do not have standard keybindings because
they are used less frequently.

See Other Updating Commands.

M-x texinfo-insert-node-lines
Insert missing @node lines using section titles as node names.

M-x texinfo-multiple-files-update
Update a multi-file document. With a numeric prefix, such as C-u
8, update every pointer and menu in all the files and then
insert a master menu.

M-x texinfo-indent-menu-description
Indent descriptions in menus.

M-x texinfo-sequential-node-update
Insert node pointers in strict sequence.

1.271 texinfo.guide/New Commands

New Texinfo @-Commands
======================

The second edition of the Texinfo manual describes more than 50
commands that were not described in the first edition. A third or so
of these commands existed in Texinfo but were not documented in the
manual; the others are new. Here is a listing, with brief descriptions
of them:

Indexing

Create your own index, and merge indices.

See Indices.

@defindex INDEX-NAME
Define a new index and its indexing command. See also the
@defcodeindex command.

@synindex FROM-INDEX INTO-INDEX
Merge the FROM-INDEX index into the INTO-INDEX index. See also
the @syncodeindex command.

Definitions

Describe functions, variables, macros, commands, user options, special
forms, and other such artifacts in a uniform format.

texinfo 224 / 239

See Definition Commands.

@deffn CATEGORY NAME ARGUMENTS...
Format a description for functions, interactive commands, and
similar entities.

@defvr, @defop, ...
15 other related commands.

Glyphs

Indicate the results of evaluation, expansion, printed output, an error
message, equivalence of expressions, and the location of point.

See Glyphs.

@equiv{}
==

Equivalence:

@error{}
error-->

Error message

@expansion{}
==>

Macro expansion

@point{}
-!-

Position of point

@print{}
-|

Printed output

@result{}
=>

Result of an expression

Page Headings

Customize page headings.

See Headings.

@headings ON-OFF-SINGLE-DOUBLE
Headings on or off, single, or double-sided.

@evenfooting [LEFT] @| [CENTER] @| [RIGHT]
Footings for even-numbered (left-hand) pages.

@evenheading, @everyheading, @oddheading, ...
Five other related commands.

texinfo 225 / 239

@thischapter
Insert name of chapter and chapter number.

@thischaptername, @thisfile, @thistitle, @thispage
Related commands.

Formatting

Format blocks of text.

See Quotations and Examples, and
See Making Lists and Tables.

@cartouche
Draw rounded box surrounding text (not in Info).

@enumerate OPTIONAL-ARG
Enumerate a list with letters or numbers.

@exdent LINE-OF-TEXT
Remove indentation.

@flushleft
Left justify.

@flushright
Right justify.

@format
Do not narrow nor change font.

@ftable FORMATTING-COMMAND
@vtable FORMATTING-COMMAND

Two-column table with indexing.

@lisp
For an example of Lisp code.

@smallexample
@smalllisp

Like @table and @lisp but for @smallbook.

Conditionals

Conditionally format text.

See @set @clear @value.

@set FLAG [STRING]
Set a flag. Optionally, set value of FLAG to STRING.

@clear FLAG
Clear a flag.

@value{FLAG}

texinfo 226 / 239

Replace with value to which FLAG is set.

@ifset FLAG
Format, if FLAG is set.

@ifclear FLAG
Ignore, if FLAG is set.

Produce unnumbered headings that do not appear in a table of contents.

See Structuring.

@heading TITLE
Unnumbered section-like heading not listed in the table of
contents of a printed manual.

@chapheading, @majorheading, @subheading, @subsubheading
Related commands.

Font commands

See Smallcaps, and
See Fonts.

@r{TEXT}
Print in roman font.

@sc{TEXT}
Print in small caps font.

Miscellaneous

See See @title @subtitle and @author Commands,
see See Customized Highlighting,
see See Overfull hboxes,
see See Footnotes,
see See Format a Dimension,
see See @raisesections and @lowersections,
see See @math: Inserting Mathematical Expressions.
see See Inserting a Minus Sign,
see See Paragraph Indenting,
see See Cross Reference Commands,
see See @title @subtitle and @author, and
see See How to Make Your Own Headings.

@author AUTHOR
Typeset author’s name.

@definfoenclose NEW-COMMAND, BEFORE, AFTER,
Define a highlighting command for Info. (Info only.)

@finalout
Produce cleaner printed output.

texinfo 227 / 239

@footnotestyle END-OR-SEPARATE
Specify footnote style.

@dmn{DIMENSION}
Format a dimension.

@global@letNEW-CMD=EXISTING-CMD
Define a highlighting command for TeX. (TeX only.)

@lowersections
Reduce hierarchical level of sectioning commands.

@math{MATHEMATICAL-EXPRESSION}
Format a mathematical expression.

@minus{}
Generate a minus sign.

@paragraphindent ASIS-OR-NUMBER
Specify paragraph indentation.

@raisesections
Raise hierarchical level of sectioning commands.

@ref{NODE-NAME, [ENTRY], [TOPIC-OR-TITLE], [INFO-FILE], [MANUAL]}
Make a reference. In the printed manual, the reference does not
start with the word ‘see’.

@title TITLE
Typeset TITLE in the alternative title page format.

@subtitle SUBTITLE
Typeset SUBTITLE in the alternative title page format.

@today{}
Insert the current date.

1.272 texinfo.guide/Command and Variable Index

Command and Variable Index

This is an alphabetical list of all the @-commands and several
variables. To make the list easier to use, the commands are listed
without their preceding @.

* (force line break) Line Breaks
. (true end of sentence) Controlling Spacing
: (suppress widening) Controlling Spacing
@ (single @) Inserting An Atsign
@definfoenclose Customized Highlighting

texinfo 228 / 239

@lowersections Raise-lower sections
@raisesections Raise-lower sections
{ (single {) Inserting Braces
} (single }) Inserting Braces
afourpaper A4 Paper
appendix unnumbered & appendix
appendixsec unnumberedsec appendixsec heading
appendixsection unnumberedsec appendixsec heading
appendixsubsec unnumberedsubsec appendixsubsec ←↩

subheading
appendixsubsubsec subsubsection
apply Sample Function Definition
author title subtitle author
b (bold font) Fonts
buffer-end Def Cmd Template
bullet bullet
bye <1> Ending a File
bye File End
c (comment) Comments
cartouche cartouche
center titlefont center sp
chapheading majorheading & chapheading
chapter chapter
cindex Indexing Commands
cite cite
clear ifset ifclear
code code
comment Comments
contents Contents
copyright <1> Copyright & Permissions
copyright copyright symbol
cropmarks Cropmarks and Magnification
defcodeindex New Indices
defcv Abstract Objects
deffn Functions Commands
deffnx deffnx
defindex New Indices
defivar Abstract Objects
defmac Functions Commands
defmethod Abstract Objects
defop Abstract Objects
defopt Variables Commands
defspec Functions Commands
deftp Data Types
deftypefn Typed Functions
deftypefun Typed Functions
deftypevar Typed Variables
deftypevr Typed Variables
defun Functions Commands
defvar Variables Commands
defvr Variables Commands
dfn dfn
display display
dmn dmn
dots dots
emph emph & strong
end <1> Introducing Lists

texinfo 229 / 239

end Quotations and Examples
end titlepage end titlepage
enumerate enumerate
evenfooting Custom Headings
evenheading Custom Headings
everyfooting Custom Headings
everyheading Custom Headings
example example
exdent exdent
file file
filll Copyright & Permissions
finalout Overfull hboxes
findex Indexing Commands
flushleft flushleft & flushright
flushright flushleft & flushright
foobar Optional Arguments
footnote Footnotes
footnotestyle Footnote Styles
format format
forward-word Def Cmd Template
ftable ftable vtable
group group
heading unnumberedsec appendixsec heading
headings headings on off
i (italic font) Fonts
ifclear ifset ifclear
ifinfo Conditionals
ifset ifset ifclear
iftex Conditionals
ignore Comments
include Using Include Files
Info-directory-list Other Info Directories
Info-validate Running Info-Validate
INFOPATH Other Info Directories
inforef inforef
input (TeX command) Minimum
isearch-backward deffnx
isearch-forward deffnx
item <1> table
item itemize
itemize itemize
itemx itemx
kbd kbd
key key
kindex Indexing Commands
lisp Lisp Example
lpr (dvi print command) Print with lpr
mag (TeX command) Cropmarks and Magnification
majorheading majorheading & chapheading
makeinfo-buffer makeinfo in Emacs
makeinfo-kill-job makeinfo in Emacs
makeinfo-recenter-output-buffer makeinfo in Emacs
makeinfo-region makeinfo in Emacs
math math
menu Menus
minus minus
need need

texinfo 230 / 239

next-error makeinfo in Emacs
noindent noindent
occur Using occur
occur-mode-goto-occurrence Showing the Structure
oddfooting Custom Headings
oddheading Custom Headings
page page
page-delimiter Showing the Structure
paragraphindent paragraphindent
pindex Indexing Commands
printindex Printing Indices & Menus
pxref pxref
quotation quotation
r (Roman font) Fonts
ref ref
refill Refilling Paragraphs
samp samp
sc (small caps font) Smallcaps
section section
set ifset ifclear
setchapternewpage setchapternewpage
setfilename setfilename
settitle settitle
shortcontents Contents
smallbook smallbook
smallexample smallexample & smalllisp
smalllisp smallexample & smalllisp
sp (line spacing) sp
sp (titlepage line spacing) titlefont center sp
strong emph & strong
subheading unnumberedsubsec appendixsubsec ←↩

subheading
subsection subsection
subsubheading subsubsection
subsubsection subsubsection
subtitle title subtitle author
summarycontents Contents
syncodeindex syncodeindex
synindex synindex
t (typewriter font) Fonts
table Two-column Tables
tex Using Ordinary TeX Commands
tex (command) tex
texi2dvi (shell script) Format with texi2dvi
texindex <1> Format-Print Hardcopy
texindex Format with tex-texindex
texinfo-all-menus-update Updating Commands
texinfo-every-node-update Updating Commands
texinfo-format-buffer <1> Info Formatting
texinfo-format-buffer texinfo-format commands
texinfo-format-region <1> texinfo-format commands
texinfo-format-region Info Formatting
texinfo-indent-menu-description Other Updating Commands
texinfo-insert-@code Inserting
texinfo-insert-@dfn Inserting
texinfo-insert-@end Inserting
texinfo-insert-@example Inserting

texinfo 231 / 239

texinfo-insert-@item Inserting
texinfo-insert-@kbd Inserting
texinfo-insert-@node Inserting
texinfo-insert-@noindent Inserting
texinfo-insert-@samp Inserting
texinfo-insert-@table Inserting
texinfo-insert-@var Inserting
texinfo-insert-braces Inserting
texinfo-insert-node-lines Other Updating Commands
texinfo-make-menu Updating Commands
texinfo-master-menu Updating Commands
texinfo-multiple-files-update texinfo-multiple-files-update
texinfo-multiple-files-update (in brief) Other Updating Commands
texinfo-sequential-node-update Other Updating Commands
texinfo-show-structure <1> Showing the Structure
texinfo-show-structure Using texinfo-show-structure
texinfo-start-menu-description Inserting
texinfo-tex-buffer Printing
texinfo-tex-print Printing
texinfo-tex-region Printing
texinfo-update-node Updating Commands
TEXINPUTS Preparing for TeX
thischapter Custom Headings
thischaptername Custom Headings
thisfile Custom Headings
thispage Custom Headings
thistitle Custom Headings
tindex Indexing Commands
title title subtitle author
titlefont titlefont center sp
titlepage titlepage
today Custom Headings
top (@-command) makeinfo top command
unnumbered unnumbered & appendix
unnumberedsec unnumberedsec appendixsec heading
unnumberedsubsec unnumberedsubsec appendixsubsec ←↩

subheading
unnumberedsubsubsec subsubsection
up-list Inserting
value value
var var
vindex Indexing Commands
vskip Copyright & Permissions
vtable ftable vtable
w (prevent line break) w
xref xref

1.273 texinfo.guide/Concept Index

Concept Index

@-command in nodename Node Line Requirements
@-command list Command List

texinfo 232 / 239

@-command syntax Command Syntax
@-commands Formatting Commands
.cshrc initialization file Preparing for TeX
.profile initialization file Preparing for TeX
@include file sample Sample Include File
@menu parts Menu Parts
@node line writing Writing a Node
makeinfo inside Emacs makeinfo in Emacs
makeinfo options makeinfo options
TEXINPUTS environment variable Preparing for TeX
dir directory for Info installation Install an Info File
dir file listing New Info File
End node footnote style Footnote Styles
Separate footnote style Footnote Styles
Top node The Top Node
Top node is first First Node
Top node naming for references Top Node Naming
Top node summary Top Node Summary
hboxes, overfull Overfull hboxes
ifinfo permissions ifinfo Permissions
TeX commands, using ordinary Using Ordinary TeX Commands
TeX index sorting Format-Print Hardcopy
TeX input initialization Preparing for TeX
TeX, how to obtain Obtaining TeX
‘Enclosure’ command for Info Customized Highlighting
A4 paper, printing on A4 Paper
Abbreviations for keys key
Adding a new info file New Info File
Alphabetical @-command list Command List
Another Info directory Other Info Directories
Apostrophe in nodename Node Line Requirements
Arguments, repeated and optional Optional Arguments
Automatic pointer creation with makeinfo makeinfo Pointer Creation
Automatically insert nodes, menus Updating Nodes and Menus
Badly referenced nodes Running Info-Validate
Batch formatting for Info Batch Formatting
Beginning a Texinfo file Beginning a File
Beginning line of a Texinfo file First Line
Black rectangle in hardcopy Overfull hboxes
Blank lines sp
Book characteristics, printed Printed Books
Book, printing small smallbook
Box with rounded corners cartouche
Braces and argument syntax Command Syntax
Braces, inserting Braces Atsigns Periods
Braces, when to use Formatting Commands
Breaks in a line Line Breaks
Buffer formatting and printing Printing
Bullets, inserting Dots Bullets
Case in nodename Node Line Requirements
Catching errors with TeX formatting Debugging with TeX
Catching errors with Info formatting Debugging with Info
Catching mistakes Catching Mistakes
Chapter structuring Structuring
Characteristics, printed books or manuals Printed Books
Checking for badly referenced nodes Running Info-Validate
Colon in nodename Node Line Requirements

texinfo 233 / 239

Combining indices Combining Indices
Comma in nodename Node Line Requirements
Command definitions Sample Function Definition
Commands to insert single characters Braces Atsigns Periods
Commands using ordinary TeX Using Ordinary TeX Commands
Commands, inserting them Inserting
Comments Comments
Compile command for formatting Compile-Command
Conditionally visible text Conditionals
Conditions for copying Texinfo Copying
Contents, Table of Contents
Contents-like outline of file structure Showing the Structure
Conventions for writing definitions Def Cmd Conventions
Conventions, syntactic Conventions
Copying conditions Copying
Copying permissions Sample Permissions
Copying software Software Copying Permissions
Copyright page Copyright & Permissions
Correcting mistakes Catching Mistakes
Create nodes, menus automatically Updating Nodes and Menus
Creating an Info file Create an Info File
Creating an unsplit file Unsplit
Creating index entries Indexing Commands
Creating indices Indices
Creating pointers with makeinfo makeinfo Pointer Creation
Cropmarks for printing Cropmarks and Magnification
Cross reference parts Cross Reference Parts
Cross references Cross References
Cross references using @inforef inforef
Cross references using @pxref pxref
Cross references using @ref ref
Cross references using @xref xref
Customized highlighting Customized Highlighting
Debugging the Texinfo structure Catching Mistakes
Debugging with TeX formatting Debugging with TeX
Debugging with Info formatting Debugging with Info
Defining indexing entries Indexing Commands
Defining new indices New Indices
Definition commands Definition Commands
Definition conventions Def Cmd Conventions
Definition template Def Cmd Template
Definitions grouped together deffnx
Description for menu, start Inserting
Different cross reference commands Cross Reference Commands
Dimension formatting dmn
Display formatting display
Distribution Software Copying Permissions
Dots, inserting <1> dots
Dots, inserting Dots Bullets
Double-colon menu entries Less Cluttered Menu Entry
DVI file Format with tex-texindex
Ellipsis, inserting Dots Bullets
Emacs Texinfo Mode
Emacs shell, format, print from Within Emacs
Emphasizing text Emphasis
Emphasizing text, font for emph & strong
End of header line End of Header

texinfo 234 / 239

End titlepage starts headings end titlepage
Ending a Texinfo file Ending a File
Entries for an index Indexing Commands
Entries, making index Index Entries
Enumeration enumerate
Equivalence, indicating it Equivalence
Error message, indicating it Error Glyph
Errors, parsing makeinfo in Emacs
European A4 paper A4 Paper
Evaluation glyph result
Example for a small book smallexample & smalllisp
Example menu Menu Example
Examples, formatting them example
Expansion, indicating it expansion
File beginning Beginning a File
File ending Ending a File
File section structure, showing it Showing the Structure
Filling paragraphs Refilling Paragraphs
Final output Overfull hboxes
Finding badly referenced nodes Running Info-Validate
First line of a Texinfo file First Line
First node First Node
Fonts for indices syncodeindex
Fonts for printing, not for Info Fonts
Footings Headings
Footnotes Footnotes
Format a dimension dmn
Format and print hardcopy Format-Print Hardcopy
Format and print in Texinfo mode Texinfo Mode Printing
Format with the compile command Compile-Command
Format, print from Emacs shell Within Emacs
Formatting a file for Info Create an Info File
Formatting commands Formatting Commands
Formatting examples example
Formatting for Info Info Formatting
Formatting for printing Printing
Formatting headings and footings Headings
Formatting requirements Requirements Summary
Formatting with tex and texindex Format with tex-texindex
Frequently used commands, inserting Inserting
Function definitions Sample Function Definition
General syntactic conventions Conventions
Generating menus with indices Printing Indices & Menus
Glyphs Glyphs
GNU Emacs Texinfo Mode
GNU Emacs shell, format, print from Within Emacs
Going to other Info files’ nodes Other Info Files
Group (hold text together vertically) group
Grouping two definitions together deffnx
Hardcopy, printing it Format-Print Hardcopy
Header for Texinfo files Header
Header of a Texinfo file First Line
Headings Headings
Headings, page, begin to appear end titlepage
Highlighting text Indicating
Highlighting, customized Customized Highlighting
Hints Tips

texinfo 235 / 239

Holding text together vertically group
If text conditionally visible Conditionals
Ignored text Comments
Include file requirements Include File Requirements
Include file sample Sample Include File
Include files Include Files
Indentation undoing exdent
Indenting paragraphs paragraphindent
Index entries Indexing Commands
Index entries, making Index Entries
Index entry writing Indexing Commands
Index font types Indexing Commands
Indexing commands, predefined Indexing Commands
Indexing table entries automatically ftable vtable
Indicating commands, definitions, etc. Indicating
Indicating evaluation result
Indices Indices
Indices, combining them Combining Indices
Indices, defining new New Indices
Indices, printing and menus Printing Indices & Menus
Indices, sorting Format-Print Hardcopy
Indices, two letter names syncodeindex
Indirect subfiles Tag and Split Files
Info batch formatting Batch Formatting
Info file installation Install an Info File
Info file requires @setfilename setfilename
Info file, listing new one New Info File
Info file, splitting manually Splitting
Info files Info Files
Info formatting Info Formatting
Info installed in another directory Other Info Directories
Info validating a large file Using Info-validate
Info, creating an on-line file Create an Info File
Info; other files’ nodes Other Info Files
Initialization file for TeX input Preparing for TeX
Insert nodes, menus automatically Updating Nodes and Menus
Inserting @, braces, and periods Braces Atsigns Periods
Inserting dots <1> dots
Inserting dots Dots Bullets
Inserting ellipsis Dots Bullets
Inserting frequently used commands Inserting
Inserting special characters and symbols Insertions
Installing an Info file Install an Info File
Installing Info in another directory Other Info Directories
Introduction, as part of file Software Copying Permissions
Itemization itemize
Keys, recommended names key
Larger or smaller pages Cropmarks and Magnification
Less cluttered menu entry Less Cluttered Menu Entry
License agreement Software Copying Permissions
Line breaks Line Breaks
Line breaks, preventing w
Line spacing sp
Lisp example Lisp Example
Lisp example for a small book smallexample & smalllisp
List of @-commands Command List
Listing a new info file New Info File

texinfo 236 / 239

Lists and tables, making them Lists and Tables
Local variables Compile-Command
Location of menus Menu Location
Looking for badly referenced nodes Running Info-Validate
Macro definitions Sample Function Definition
Magnified printing Cropmarks and Magnification
Making a printed manual Format-Print Hardcopy
Making a tag table automatically Tag and Split Files
Making a tag table manually Unsplit
Making cross references Cross References
Making line and page breaks Breaks
Making lists and tables Lists and Tables
Manual characteristics, printed Printed Books
Marking text within a paragraph Marking Text
Marking words and phrases Marking Text
Master menu The Top Node
Master menu parts Master Menu Parts
Mathematical expressions <1> Using Ordinary TeX Commands
Mathematical expressions math
Menu description, start Inserting
Menu entries with two colons Less Cluttered Menu Entry
Menu example Menu Example
Menu location Menu Location
Menu parts Menu Parts
Menu writing Writing a Menu
Menus Menus
Menus generated with indices Printing Indices & Menus
META key key
Meta-syntactic chars for arguments Optional Arguments
Minimal Texinfo file (requirements) Minimum
Mistakes, catching Catching Mistakes
Mode, using Texinfo Texinfo Mode
Must have in Texinfo file Minimum
Names for indices syncodeindex
Names recommended for keys key
Naming a ‘Top’ Node in references Top Node Naming
Need space at page bottom need
New index defining New Indices
New info file, listing it in dir file New Info File
Node line requirements Node Line Requirements
Node line writing Writing a Node
Node, ‘Top’ The Top Node
Node, defined node
Nodename must be unique Node Line Requirements
Nodename, cannot contain Node Line Requirements
Nodes for menus are short Menu Location
Nodes in other Info files Other Info Files
Nodes, catching mistakes Catching Mistakes
Nodes, checking for badly referenced Running Info-Validate
Obtaining TeX Obtaining TeX
Occurrences, listing with @occur Using occur
Optional and repeated arguments Optional Arguments
Options for makeinfo makeinfo options
Ordinary TeX commands, using Using Ordinary TeX Commands
Other Info files’ nodes Other Info Files
Outline of file structure, showing it Showing the Structure
Overfull hboxes Overfull hboxes

texinfo 237 / 239

Overview of Texinfo Overview
Page breaks page
Page delimiter in Texinfo mode Showing the Structure
Page headings Headings
Page numbering Headings
Page sizes for books smallbook
Pages, starting odd setchapternewpage
Paper size, European A4 A4 Paper
Paragraph indentation paragraphindent
Paragraph, marking text within Marking Text
Parsing errors makeinfo in Emacs
Part of file formatting and printing Printing
Parts of a cross reference Cross Reference Parts
Parts of a master menu Master Menu Parts
Parts of a menu Menu Parts
Periods, inserting Braces Atsigns Periods
Permissions Sample Permissions
Permissions, printed Copyright & Permissions
PlainTeX Using Ordinary TeX Commands
Point, indicating it in a buffer Point Glyph
Pointer creation with makeinfo makeinfo Pointer Creation
Pointer validation with makeinfo Pointer Validation
Predefined indexing commands Indexing Commands
Predefined names for indices syncodeindex
Preparing to use TeX Preparing for TeX
Preventing line and page breaks Breaks
Print and format in Texinfo mode Texinfo Mode Printing
Print, format from Emacs shell Within Emacs
Printed book and manual characteristics Printed Books
Printed output, indicating it Print Glyph
Printed permissions Copyright & Permissions
Printing a region or buffer Printing
Printing an index Printing Indices & Menus
Printing cropmarks Cropmarks and Magnification
Problems, catching Catching Mistakes
Quotations quotation
Raising and lowering sections Raise-lower sections
Recommended names for keys key
Rectangle, ugly, black in hardcopy Overfull hboxes
References Cross References
References using @inforef inforef
References using @pxref pxref
References using @ref ref
References using @xref xref
Referring to other Info files Other Info Files
Refilling paragraphs Refilling Paragraphs
Region formatting and printing Printing
Region printing in Texinfo mode Texinfo Mode Printing
Repeated and optional arguments Optional Arguments
Required in Texinfo file Minimum
Requirements for formatting Requirements Summary
Requirements for include files Include File Requirements
Requirements for updating commands Updating Requirements
Result of an expression result
Running Info-validate Using Info-validate
Running makeinfo in Emacs makeinfo in Emacs
Running an Info formatter Info Formatting

texinfo 238 / 239

Sample @include file Sample Include File
Sample function definition Sample Function Definition
Sample Texinfo file Short Sample
Sample Texinfo file, no comments Sample Texinfo File
Section structure of a file, showing it Showing the Structure
Sections, raising and lowering Raise-lower sections
Shell formatting with tex and texindex Format with tex-texindex
Shell, format, print from Within Emacs
Shell, running makeinfo in makeinfo in Emacs
Short nodes for menus Menu Location
Showing the section structure of a file Showing the Structure
Showing the structure of a file Using texinfo-show-structure
Single characters, commands to insert Braces Atsigns Periods
Size of printed book smallbook
Small book example smallexample & smalllisp
Small book size smallbook
Small caps font Smallcaps
Software copying permissions Software Copying Permissions
Sorting indices Format-Print Hardcopy
Spaces (blank lines) sp
Special insertions Insertions
Special typesetting commands Dots Bullets
Specifying index entries Indexing Commands
Splitting an Info file manually Splitting
Start of header line Start of Header
Starting chapters setchapternewpage
Structure of a file, showing it Showing the Structure
Structure, catching mistakes in Catching Mistakes
Structuring of chapters Structuring
Subsection-like commands unnumberedsubsec appendixsubsec ←↩

subheading
Subsub commands subsubsection
Syntactic conventions Conventions
Syntax, optional & repeated arguments Optional Arguments
Table of contents Contents
Tables and lists, making them Lists and Tables
Tables with indexes ftable vtable
Tables, making two-column Two-column Tables
Tabs; don’t use! Conventions
Tag table, making automatically Tag and Split Files
Tag table, making manually Unsplit
Template for a definition Def Cmd Template
Texinfo file beginning Beginning a File
Texinfo file ending Ending a File
Texinfo file header Header
Texinfo file minimum Minimum
Texinfo file section structure, showing it Showing the Structure
Texinfo mode Texinfo Mode
Texinfo overview Overview
Texinfo printed book characteristics Printed Books
Text, conditionally visible Conditionals
Thin space between number, dimension dmn
Tips Tips
Title page titlepage
Titlepage end starts headings end titlepage
Titlepage permissions Titlepage Permissions
Tree structuring Tree Structuring

texinfo 239 / 239

Two ‘First’ Lines for @deffn deffnx
Two letter names for indices syncodeindex
Two named items for @table itemx
Two part menu entry Less Cluttered Menu Entry
Typesetting commands for dots, etc. Dots Bullets
Uncluttered menu entry Less Cluttered Menu Entry
Unique nodename requirement Node Line Requirements
Unprocessed text Comments
Unsplit file creation Unsplit
Updating nodes and menus Updating Nodes and Menus
Updating requirements Updating Requirements
Usage tips Tips
Validating a large file Using Info-validate
Validation of pointers Pointer Validation
Value of an expression, indicating result
Vertical whitespace (vskip) Copyright & Permissions
Vertically holding text together group
Visibility of conditional text Conditionals
Words and phrases, marking them Marking Text
Writing a menu Writing a Menu
Writing an @node line Writing a Node
Writing index entries Indexing Commands

	texinfo
	texinfo.guide
	texinfo.guide/Copying
	texinfo.guide/Overview
	texinfo.guide/Overview-Footnotes
	texinfo.guide/Using Texinfo
	texinfo.guide/Info Files
	texinfo.guide/Info Files-Footnotes
	texinfo.guide/Printed Books
	texinfo.guide/Printed Books-Footnotes
	texinfo.guide/Formatting Commands
	texinfo.guide/Formatting Commands-Footnotes
	texinfo.guide/Conventions
	texinfo.guide/Comments
	texinfo.guide/Minimum
	texinfo.guide/Six Parts
	texinfo.guide/Short Sample
	texinfo.guide/Acknowledgements
	texinfo.guide/Texinfo Mode
	texinfo.guide/Texinfo Mode Overview
	texinfo.guide/Emacs Editing
	texinfo.guide/Inserting
	texinfo.guide/Showing the Structure
	texinfo.guide/Updating Nodes and Menus
	texinfo.guide/Updating Commands
	texinfo.guide/Updating Requirements
	texinfo.guide/Other Updating Commands
	texinfo.guide/Info Formatting
	texinfo.guide/Printing
	texinfo.guide/Texinfo Mode Summary
	texinfo.guide/Beginning a File
	texinfo.guide/Four Parts
	texinfo.guide/Sample Beginning
	texinfo.guide/Header
	texinfo.guide/First Line
	texinfo.guide/Start of Header
	texinfo.guide/setfilename
	texinfo.guide/settitle
	texinfo.guide/setchapternewpage
	texinfo.guide/paragraphindent
	texinfo.guide/End of Header
	texinfo.guide/Info Summary and Permissions
	texinfo.guide/Titlepage & Copyright Page
	texinfo.guide/titlepage
	texinfo.guide/titlepage-Footnotes
	texinfo.guide/titlefont center sp
	texinfo.guide/title subtitle author
	texinfo.guide/Copyright & Permissions
	texinfo.guide/end titlepage
	texinfo.guide/headings on off
	texinfo.guide/The Top Node
	texinfo.guide/Title of Top Node
	texinfo.guide/Master Menu Parts
	texinfo.guide/Software Copying Permissions
	texinfo.guide/Ending a File
	texinfo.guide/Printing Indices & Menus
	texinfo.guide/Contents
	texinfo.guide/File End
	texinfo.guide/Structuring
	texinfo.guide/Tree Structuring
	texinfo.guide/Structuring Command Types
	texinfo.guide/makeinfo top
	texinfo.guide/chapter
	texinfo.guide/unnumbered & appendix
	texinfo.guide/majorheading & chapheading
	texinfo.guide/section
	texinfo.guide/unnumberedsec appendixsec heading
	texinfo.guide/subsection
	texinfo.guide/unnumberedsubsec appendixsubsec subheading
	texinfo.guide/subsubsection
	texinfo.guide/Raise-lower sections
	texinfo.guide/Nodes
	texinfo.guide/Two Paths
	texinfo.guide/Node Menu Illustration
	texinfo.guide/node
	texinfo.guide/Node Names
	texinfo.guide/Writing a Node
	texinfo.guide/Node Line Tips
	texinfo.guide/Node Line Requirements
	texinfo.guide/First Node
	texinfo.guide/makeinfo top command
	line.
	texinfo.guide/Top Node Summary
	texinfo.guide/makeinfo Pointer Creation
	texinfo.guide/Menus
	texinfo.guide/Menus-Footnotes
	texinfo.guide/Menu Location
	texinfo.guide/Writing a Menu
	texinfo.guide/Menu Parts
	texinfo.guide/Less Cluttered Menu Entry
	texinfo.guide/Menu Example
	texinfo.guide/Other Info Files
	texinfo.guide/Cross References
	texinfo.guide/References
	texinfo.guide/Cross Reference Commands
	texinfo.guide/Cross Reference Parts
	texinfo.guide/xref
	texinfo.guide/Reference Syntax
	texinfo.guide/One Argument
	texinfo.guide/Two Arguments
	texinfo.guide/Three Arguments
	texinfo.guide/Four and Five Arguments
	texinfo.guide/Top Node Naming
	texinfo.guide/ref
	texinfo.guide/pxref
	texinfo.guide/inforef
	texinfo.guide/Marking Text
	texinfo.guide/Indicating
	texinfo.guide/Useful Highlighting
	texinfo.guide/code
	texinfo.guide/kbd
	texinfo.guide/key
	texinfo.guide/samp
	texinfo.guide/var
	texinfo.guide/file
	texinfo.guide/dfn
	texinfo.guide/cite
	texinfo.guide/Emphasis
	texinfo.guide/emph & strong
	texinfo.guide/Smallcaps
	texinfo.guide/Fonts
	texinfo.guide/Customized Highlighting
	texinfo.guide/Customized Highlighting-Footnotes
	texinfo.guide/Quotations and Examples
	texinfo.guide/Block Enclosing Commands
	texinfo.guide/quotation
	texinfo.guide/example
	texinfo.guide/noindent
	texinfo.guide/Lisp Example
	texinfo.guide/Lisp Example-Footnotes
	texinfo.guide/smallexample & smalllisp
	texinfo.guide/display
	texinfo.guide/format
	texinfo.guide/exdent
	texinfo.guide/flushleft & flushright
	texinfo.guide/cartouche
	texinfo.guide/Lists and Tables
	texinfo.guide/Introducing Lists
	texinfo.guide/itemize
	texinfo.guide/enumerate
	texinfo.guide/Two-column Tables
	texinfo.guide/table
	texinfo.guide/ftable vtable
	texinfo.guide/itemx
	texinfo.guide/Indices
	texinfo.guide/Index Entries
	texinfo.guide/Predefined Indices
	texinfo.guide/Indexing Commands
	texinfo.guide/Combining Indices
	texinfo.guide/syncodeindex
	texinfo.guide/synindex
	texinfo.guide/New Indices
	texinfo.guide/Insertions
	texinfo.guide/Braces Atsigns Periods
	texinfo.guide/Inserting An Atsign
	texinfo.guide/Inserting Braces
	texinfo.guide/Controlling Spacing
	texinfo.guide/dmn
	texinfo.guide/Dots Bullets
	texinfo.guide/dots
	texinfo.guide/bullet
	texinfo.guide/TeX and copyright
	texinfo.guide/tex
	texinfo.guide/copyright symbol
	texinfo.guide/minus
	texinfo.guide/math
	texinfo.guide/Glyphs
	texinfo.guide/Glyphs Summary
	texinfo.guide/result
	texinfo.guide/expansion
	texinfo.guide/Print Glyph
	texinfo.guide/Error Glyph
	texinfo.guide/Equivalence
	texinfo.guide/Point Glyph
	texinfo.guide/Breaks
	texinfo.guide/Break Commands
	texinfo.guide/Line Breaks
	texinfo.guide/w
	texinfo.guide/sp
	texinfo.guide/page
	texinfo.guide/group
	texinfo.guide/need
	texinfo.guide/Definition Commands
	texinfo.guide/Def Cmd Template
	texinfo.guide/Optional Arguments
	texinfo.guide/deffnx
	texinfo.guide/Def Cmds in Detail
	texinfo.guide/Functions Commands
	texinfo.guide/Variables Commands
	texinfo.guide/Typed Functions
	texinfo.guide/Typed Variables
	texinfo.guide/Abstract Objects
	texinfo.guide/Data Types
	texinfo.guide/Def Cmd Conventions
	texinfo.guide/Sample Function Definition
	texinfo.guide/Footnotes
	texinfo.guide/Footnotes-Footnotes
	texinfo.guide/Footnote Commands
	texinfo.guide/Footnote Commands-Footnotes
	texinfo.guide/Footnote Styles
	texinfo.guide/Conditionals
	texinfo.guide/Conditional Commands
	texinfo.guide/Using Ordinary TeX Commands
	texinfo.guide/set clear value
	texinfo.guide/ifset ifclear
	texinfo.guide/value
	texinfo.guide/value Example
	texinfo.guide/Format-Print Hardcopy
	texinfo.guide/Use TeX
	texinfo.guide/Format with tex-texindex
	texinfo.guide/Format with tex-texindex-Footnotes
	texinfo.guide/Format with texi2dvi
	texinfo.guide/Print with lpr
	texinfo.guide/Within Emacs
	texinfo.guide/Texinfo Mode Printing
	texinfo.guide/Compile-Command
	texinfo.guide/Requirements Summary
	texinfo.guide/Preparing for TeX
	texinfo.guide/Overfull hboxes
	texinfo.guide/smallbook
	texinfo.guide/A4 Paper
	texinfo.guide/Cropmarks and Magnification
	texinfo.guide/Create an Info File
	texinfo.guide/makeinfo advantages
	texinfo.guide/Invoking makeinfo
	texinfo.guide/makeinfo options
	texinfo.guide/makeinfo options-Footnotes
	texinfo.guide/Pointer Validation
	texinfo.guide/makeinfo in Emacs
	texinfo.guide/texinfo-format commands
	texinfo.guide/Batch Formatting
	texinfo.guide/Tag and Split Files
	texinfo.guide/Install an Info File
	texinfo.guide/Directory file
	texinfo.guide/New Info File
	texinfo.guide/Other Info Directories
	texinfo.guide/Command List
	texinfo.guide/Tips
	texinfo.guide/Sample Texinfo File
	texinfo.guide/Sample Permissions
	texinfo.guide/Inserting Permissions
	texinfo.guide/ifinfo Permissions
	texinfo.guide/Titlepage Permissions
	texinfo.guide/Include Files
	texinfo.guide/Using Include Files
	texinfo.guide/texinfo-multiple-files-update
	texinfo.guide/Include File Requirements
	texinfo.guide/Sample Include File
	texinfo.guide/Include Files Evolution
	texinfo.guide/Headings
	texinfo.guide/Headings Introduced
	texinfo.guide/Heading Format
	texinfo.guide/Heading Choice
	texinfo.guide/Custom Headings
	texinfo.guide/Catching Mistakes
	texinfo.guide/makeinfo preferred
	texinfo.guide/Debugging with Info
	texinfo.guide/Debugging with TeX
	texinfo.guide/Using texinfo-show-structure
	texinfo.guide/Using occur
	texinfo.guide/Running Info-Validate
	texinfo.guide/Using Info-validate
	texinfo.guide/Unsplit
	texinfo.guide/Tagifying
	texinfo.guide/Splitting
	texinfo.guide/Refilling Paragraphs
	texinfo.guide/Refilling Paragraphs-Footnotes
	texinfo.guide/Command Syntax
	texinfo.guide/Obtaining TeX
	texinfo.guide/New Features
	texinfo.guide/New Texinfo Mode Commands
	texinfo.guide/New Commands
	texinfo.guide/Command and Variable Index
	texinfo.guide/Concept Index

