
GNU dbm

A Database Manager

by Philip A. Nelson

Manual by Pierre Gaumond and Philip A. Nelson

Updated by Jason Downs

Edition 1.4.1

for GNU dbm, Version 1.7.3.

Copyright

c

 1993-94 Free Software Foundation, Inc.

This is Edition 1.4.1 of the GNU dbm Manual, for gdbm Version 1.7.3.

Last updated May 19, 1994

Published by the Free Software Foundation

675 Massachusetts Avenue,

Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided also that the entire resulting derived work is distributed under the

terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions, except that this permission notice may be stated

in a translation approved by the Free Software Foundation.

Chapter 1: Copying Conditions. 1

1 Copying Conditions.

This library is free; this means that everyone is free to use it and free to redistribute it on a free

basis. GNU dbm (gdbm) is not in the public domain; it is copyrighted and there are restrictions on

its distribution, but these restrictions are designed to permit everything that a good cooperating

citizen would want to do. What is not allowed is to try to prevent others from further sharing any

version of gdbm that they might get from you.

Speci�cally, we want to make sure that you have the right to give away copies gdbm, that you

receive source code or else can get it if you want it, that you can change these functions or use

pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of

these rights. For example, if you distribute copies gdbm, you must give the recipients all the rights

that you have. You must make sure that they, too, receive or can get the source code. And you

must tell them their rights.

Also, for our own protection, we must make certain that everyone �nds out that there is no

warranty for anything in the gdbm distribution. If these functions are modi�ed by someone else

and passed on, we want their recipients to know that what they have is not what we distributed,

so that any problems introduced by others will not re
ect on our reputation.

gdbm is currently distributed under the terms of the GNU General Public License, Version 2.

(NOT under the GNU General Library Public License.) A copy the GNU General Public License

is included with the distribution of gdbm.

Chapter 2: Introduction to GNU dbm. 2

2 Introduction toGNU dbm.

GNU dbm (gdbm)is a library of database functions that use extendible hashing and works similar

to the standard UNIX dbm functions. These routines are provided to a programmer needing to

create and manipulate a hashed database. (gdbm is NOT a complete database package for an end

user.)

The basic use of gdbm is to store key/data pairs in a data �le. Each key must be unique and

each key is paired with only one data item. The keys can not be directly accessed in sorted order.

The basic unit of data in gdbm is the structure:

typedef struct {

char *dptr;

int dsize;

} datum;

This structure allows for arbitrary sized keys and data items.

The key/data pairs are stored in a gdbm disk �le, called a gdbm database. An application must

open a gdbm database to be able manipulate the keys and data contained in the database. gdbm

allows an application to have multiple databases open at the same time. When an application

opens a gdbm database, it is designated as a reader or a writer. A gdbm database opened by at

most one writer at a time. However, many readers may open the database open simultaneously.

Readers and writers can not open the gdbm database at the same time.

Chapter 3: List of functions. 3

3 List of functions.

The following is a quick list of the functions contained in the gdbm library. The include �le

gdbm.h, that can be included by the user, contains a de�nition of these functions.

#include <gdbm.h>

GDBM_FILE gdbm_open(name, block_size, flags, mode, fatal_func);

void gdbm_close(dbf);

int gdbm_store(dbf, key, content, flag);

datum gdbm_fetch(dbf, key);

int gdbm_delete(dbf, key);

datum gdbm_firstkey(dbf);

datum gdbm_nextkey(dbf, key);

int gdbm_reorganize(dbf);

void gdbm_sync(dbf);

int gdbm_exists(dbf, key);

char *gdbm_strerror(errno);

int gdbm_setopt(dbf, option, value, size)

The gdbm.h include �le is often in the `/gnu/include' directory. (The actual location of gdbm.h

depends on your local installation of gdbm.)

Chapter 4: Opening the database. 4

4 Opening the database.

Initialize gdbm system. If the �le has a size of zero bytes, a �le initialization procedure is

performed, setting up the initial structure in the �le.

The procedure for opening a gdbm �le is:

GDBM_FILE dbf;

dbf = gdbm_open(name, block_size, flags, mode, fatal_func);

The parameters are:

char *name

The name of the �le (the complete name, gdbm does not append any characters to this

name).

int block size

It is used during initialization to determine the size of various constructs. It is the size

of a single transfer from disk to memory. This parameter is ignored if the �le has been

previously initialized. The minimum size is 512. If the value is less than 512, the �le

system blocksize is used, otherwise the value of block_size is used.

int
ags If flags is set to GDBM READER, the user wants to just read the database and any

call to gdbm_store or gdbm_delete will fail. Many readers can access the database

at the same time. If flags is set to GDBM WRITER, the user wants both read

and write access to the database and requires exclusive access. If flags is set to

GDBM WRCREAT, the user wants both read and write access to the database and if

the database does not exist, create a new one. If flags is set to GDBM NEWDB, the

user want a new database created, regardless of whether one existed, and wants

read and write access to the new database. For all writers (GDBM WRITER,

GDBM WRCREAT and GDBM NEWDB) the value GDBM FAST can be added

to the flags �eld using logical or. This option causes gdbm to write the database

without any disk �le synchronization. This allows faster writes, but may produce

an inconsistent database in the event of abnormal termination of the writer. Any

error detected will cause a return value of NULL and an appropriate value will be in

gdbm_errno (see Variables). If no errors occur, a pointer to the gdbm �le descriptor

will be returned.

int mode File mode (see chmod(2) and open(2) if the �le is created).

void (*fatal func) ()

A function for gdbm to call if it detects a fatal error. The only parameter of this function

is a string. If the value of NULL is provided, gdbm will use a default function.

The return value, dbf, is the pointer needed by all other functions to access that gdbm �le. If the

return is the NULL pointer, gdbm_open was not successful. The errors can be found in gdbm_errno

for gdbm errors and in errno for �le system errors (for error codes, see gdbm.h).

In all of the following calls, the parameter dbf refers to the pointer returned from gdbm_open.

Chapter 5: Closing the database. 5

5 Closing the database.

It is important that every �le opened is also closed. This is needed to update the reader/writer

count on the �le. This is done by:

gdbm_close(dbf);

The parameter is:

GDBM FILE dbf

The pointer returned by gdbm_open.

Closes the gdbm �le and frees all memory associated with the �le dbf.

Chapter 6: Inserting and replacing records in the database. 6

6 Inserting and replacing records in the database.

The function gdbm_store inserts or replaces records in the database.

ret = gdbm_store(dbf, key, content, flag);

The parameters are:

GDBM FILE dbf

The pointer returned by gdbm_open.

datum key

The key data.

datum content

The data to be associated with the key.

int
ag De�nes the action to take when the key is already in the database. The value

GDBM REPLACE (de�ned in gdbm.h) asks that the old data be replaced by the new

content. The value GDBM INSERT asks that an error be returned and no action

taken if the key already exists.

The values returned in ret are:

-1 The item was not stored in the database because the caller was not an o�cial writer or

either key or content have a NULL dptr �eld. Both key and content must have the

dptr �eld be a non-NULL value. Since a NULL dptr �eld is used by other functions to

indicate an error, a NULL �eld cannot be valid data.

+1 The item was not stored because the argument flag was GDBM INSERT and the key

was already in the database.

0 No error. content is keyed by key. The �le on disk is updated to re
ect the structure

of the new database before returning from this function.

If you store data for a key that is already in the data base, gdbm replaces the old data with the

new data if called with GDBM REPLACE. You do not get two data items for the same key and

you do not get an error from gdbm_store.

The size in gdbm is not restricted like dbm or ndbm. Your data can be as large as you want.

Chapter 7: Searching for records in the database. 7

7 Searching for records in the database.

Looks up a given key and returns the information associated with that key. The pointer in the

structure that is returned is a pointer to dynamically allocated memory block. To search for some

data:

content = gdbm_fetch(dbf, key);

The parameters are:

GDBM FILE dbf

The pointer returned by gdbm_open.

datum key

The key data.

The datum returned in content is a pointer to the data found. If the dptr is NULL, no data was

found. If dptr is not NULL, then it points to data allocated by malloc. gdbm does not automatically

free this data. The user must free this storage when done using it. This eliminates the need to

copy the result to save it for later use (you just save the pointer).

You may also search for a particular key without retrieving it, using:

ret = gdbm_exists(dbf, key);

The parameters are:

GDBM FILE dbf

The pointer returned by gdbm_open.

datum key

The key data.

Unlike gdbm_fetch, this routine does not allocate any memory, and simply returns true or false,

depending on whether the key exists, or not.

Chapter 8: Removing records from the database. 8

8 Removing records from the database.

To remove some data from the database:

ret = gdbm_delete(dbf, key);

The parameters are:

GDBM FILE dbf

The pointer returned by gdbm_open.

datum key

The key data.

The ret value is -1 if the item is not present or the requester is a reader. The ret value is 0 if

there was a successful delete.

gdbm_delete removes the keyed item and the key from the database dbf. The �le on disk is

updated to re
ect the structure of the new database before returning from this function.

Chapter 9: Sequential access to records. 9

9 Sequential access to records.

The next two functions allow for accessing all items in the database. This access is not key

sequential, but it is guaranteed to visit every key in the database once. The order has to do with

the hash values. gdbm_firstkey starts the visit of all keys in the database. gdbm_nextkey �nds

and reads the next entry in the hash structure for dbf.

key = gdbm_firstkey(dbf);

nextkey = gdbm_nextkey(dbf, key);

The parameters are:

GDBM FILE dbf

The pointer returned by gdbm_open.

datum key

datum nextkey

The key data.

The return values are both datum. If key.dptr or nextkey.dptr is NULL, there is no �rst key or

next key. Again notice that dptr points to data allocated by malloc and gdbm will not free it for

you.

These functions were intended to visit the database in read-only algorithms, for instance, to

validate the database or similar operations.

File visiting is based on a hash table. gdbm_delete re-arranges the hash table to make sure

that any collisions in the table do not leave some item un-findable. The original key order is

NOT guaranteed to remain unchanged in ALL instances. It is possible that some key will not be

visited if a loop like the following is executed:

key = gdbm_firstkey (dbf);

while (key.dptr) {

nextkey = gdbm_nextkey (dbf, key);

if (some condition) {

gdbm_delete (dbf, key);

free (key.dptr);

}

key = nextkey;

}

Chapter 10: Database reorganization. 10

10 Database reorganization.

The following function should be used very seldom.

ret = gdbm_reorganize(dbf);

The parameter is:

GDBM FILE dbf

The pointer returned by gdbm_open.

If you have had a lot of deletions and would like to shrink the space used by the gdbm �le, this

function will reorganize the database. gdbm will not shorten the length of a gdbm �le (deleted �le

space will be reused) except by using this reorganization.

This reorganization requires creating a new �le and inserting all the elements in the old �le dbf

into the new �le. The new �le is then renamed to the same name as the old �le and dbf is updated

to contain all the correct information about the new �le. If an error is detected, the return value

is negative. The value zero is returned after a successful reorganization.

Chapter 11: Database Synchronization 11

11 Database Synchronization

If your database was opened with the GDBM FAST
ag, gdbm does not wait for writes to the

disk to complete before continuing. This allows faster writing of databases at the risk of having a

corrupted database if the application terminates in an abnormal fashion. The following function

allows the programmer to make sure the disk version of the database has been completely updated

with all changes to the current time.

gdbm_sync(dbf);

The parameter is:

GDBM FILE dbf

The pointer returned by gdbm_open.

This would usually be called after a complete set of changes have been made to the database

and before some long waiting time. gdbm_close automatically calls the equivalent of gdbm_sync

so no call is needed if the database is to be closed immediately after the set of changes have been

made.

Chapter 12: Error strings. 12

12 Error strings.

To convert a gdbm error code into English text, use this routine:

ret = gdbm_strerror(errno)

The parameter is:

gdbm error errno

The gdbm error code, usually gdbm_errno.

The appropriate phrase for reading by humans is returned.

Chapter 13: Seting options. 13

13 Seting options.

Gdbm now supports the ability to set certain options on an already open database.

ret = gdbm_setopt(dbf, option, value, size)

The parameters are:

GDBM FILE dbf

The pointer returned by gdbm_open.

int option The option to be set.

int *value A pointer to the value to which option will be set.

int size The length of the data pointed to by value.

The valid options are currently:

GDBM CACHESIZE - Set the size of the internal bucket cache. This option may only be set

once on each GDBM FILE descriptor, and is set automatically to 100 upon the �rst access to the

database.

GDBM FASTMODE - Set fast mode to either on or o�. This allows fast mode to be toggled on

an already open and active database. value (see below) should be set to either TRUE or FALSE.

The return value will be -1 upon failure, or 0 upon success. The global variable gdbm_errno

will be set upon failure.

For instance, to set a database to use a cache of 10, after opening it with gdbm_open, but prior

to accessing it in any way, the following code could be used:

int value = 10;

ret = gdbm_setopt(dbf, GDBM_CACHESIZE, &value, sizeof(int));

Chapter 14: Two useful variables. 14

14 Two useful variables.

The following two variables are variables that may need to be used:

gdbm error gdbm errno

The variable that contains more information about gdbm errors (gdbm.h has the de�-

nitions of the error values).

const char * gdbm version

The string containing the version information.

Chapter 15: Compatibility with standard dbm and ndbm. 15

15 Compatibility with standard dbm and ndbm.

GNU dbm �les are not sparse. You can copy them with the UNIX cp command and they will

not expand in the copying process.

There is a compatibility mode for use with programs that already use UNIX dbm and UNIX

ndbm.

GNU dbm has compatibility functions for dbm. For dbm compatibility functions, you need the

include �le dbm.h.

In this compatibility mode, no gdbm �le pointer is required by the user, and Only one �le may

be opened at a time. All users in compatibility mode are assumed to be writers. If the gdbm �le is

a read only, it will fail as a writer, but will also try to open it as a reader. All returned pointers

in datum structures point to data that gdbm WILL free. They should be treated as static pointers

(as standard UNIX dbm does). The compatibility function names are the same as the UNIX dbm

function names. Their de�nitions follow:

int dbminit(name);

int store(key, content);

datum fetch(key);

int delete(key);

datum firstkey();

datum nextkey(key);

int dbmclose();

Standard UNIX dbm and GNU dbm do not have the same data format in the �le. You cannot

access a standard UNIX dbm �le with GNU dbm! If you want to use an old database with GNU

dbm, you must use the conv2gdbm program.

Also, GNU dbm has compatibility functions for ndbm. For ndbm compatibility functions, you

need the include �le ndbm.h.

Again, just like ndbm, any returned datum can be assumed to be static storage. You do not

have to free that memory, the ndbm compatibility functions will do it for you.

The functions are:

DBM *dbm_open(name, flags, mode);

void dbm_close(file);

datum dbm_fetch(file, key);

int dbm_store(file, key, content, flags);

int dbm_delete(file, key);

datum dbm_firstkey(file);

datum dbm_nextkey(file);

int dbm_error(file);

int dbm_clearerr(file);

int dbm_dirfno(file);

int dbm_pagfno(file);

int dbm_rdonly(file);

If you want to compile an old C program that used UNIX dbm or ndbm and want to use gdbm

�les, execute the following cc command:

cc ... -L /gnu/lib -lgdbm

Chapter 16: Converting dbm �les to gdbm format. 16

16 Converting dbm �les to gdbm format.

The program conv2gdbm has been provided to help you convert from dbm databases to gdbm.

The usage is:

conv2gdbm [-q] [-b block_size] dbm_file [gdbm_file]

The options are:

-q Causes conv2gdbm to work quietly.

block size Is the same as in gdbm_open.

dbm �le Is the name of the dbm �le without the .pag or .dir extensions.

gdbm �le Is the complete �le name. If not included, the gdbm �le name is the same as the

dbm �le name without any extensions. That is conv2gdbm dbmfile converts the �les

dbmfile.pag and dbmfile.dir into a gdbm �le called dbmfile.

Chapter 17: Problems and bugs. 17

17 Problems and bugs.

If you have problems with GNU dbm or think you've found a bug, please report it. Before

reporting a bug, make sure you've actually found a real bug. Carefully reread the documentation

and see if it really says you can do what you're trying to do. If it's not clear whether you should

be able to do something or not, report that too; it's a bug in the documentation!

Before reporting a bug or trying to �x it yourself, try to isolate it to the smallest possible input

�le that reproduces the problem. Then send us the input �le and the exact results gdbm gave you.

Also say what you expected to occur; this will help us decide whether the problem was really in

the documentation.

Once you've got a precise problem, send e-mail to:

Internet: `bug-gnu-utils@prep.ai.mit.edu'.

UUCP: `mit-eddie!prep.ai.mit.edu!bug-gnu-utils'.

Please include the version number of GNU dbm you are using. You can get this information by

printing the variable gdbm_version (see Variables).

Non-bug suggestions are always welcome as well. If you have questions about things that are

unclear in the documentation or are just obscure features, please report them too.

You may contact the author by:

e-mail: phil@cs.wwu.edu

us-mail: Philip A. Nelson

Computer Science Department

Western Washington University

Bellingham, WA 98226

You may contact the current maintainer by:

e-mail: downsj@CSOS.ORST.EDU

