
Dld
A Dynamic Link/Unlink Editor

Version 3.2.6.
Copyright c© 1991 W. Wilson Ho.

Copyright c© 1995 A. Jaffer.

by W. Wilson Ho

1

1 What is dld?

Dld is a library package of C functions that performs dynamic link editing. Programs that
use dld can add compiled object code to or remove such code from a process anytime during
its execution. Loading modules, searching libraries, resolving external references, and allocating
storage for global and static data structures are all performed at run time.

Dld is now available for VAX, Sun 3, SPARCstation, Sequent Symmetry, Atari ST, and Linux.

This text describes how the dld functions can be called and some technical details that should
be aware of. For the internals of dld and sample applications, please refer to An Approach to

Genuine Dynamic Linking, Software–Practice and Experirnce, Vol. 21(4), 375-390 (April 1991).
An early draft of that paper is included with the original distribution (prep.ai.mit.edu:pub/gnu/dld-
3.2.3.tar.gz).

1.1 Initializing Dld

To use any of the dld functions, you must include the header file ‘dld.h’ for declaration of the
functions and definition of the error code constants.

The function dld_init must be called before any other dld functions.

Functionint dld init (char *path)
where path is a string containing the path name of the executable file of the executing
process.

This function initializes internal data structures of dld and loads into memory symbol
definitions of the executing process. By doing so, other dynamically loaded functions
can reference symbols already defined or share functions already exist in the executing
process.

dld_init returns 0 when successful; otherwise, it returns an error code that is non-zero
(see Section 1.11 [Definition of Error Codes], page 8).

1.1.1 Locating the Executable File

The path name of the executing process as required by dld_init might not be easily obtained
all the time. Not all systems pass the entire path name of the executable file as the first argument
(argv[0]) to main. In order to obtain the full path of the executable file, the dld_find_executable
function can be used.

Functionchar *dld find executable (char *command)
dld_find_executable returns the absolute path name of the file that would be ex-
ecuted if command were given as a command. It looks up the environment variable
PATH, searches in each of the directory listed for command, and returns the absolute
path name for the first occurrence. Thus, it is advisable to invoke dld_init as:

main (int argc, char **argv)
{

. . .

if (dld_init (dld_find_executable (argv[0]))) {

2

. . .

}
. . .

}

Note: If the current process is executed using the execve call without
passing the correct path name as argument 0, dld_find_executable
(argv[0]) will also fail to locate the executable file.

dld_find_executable returns zero if command is not found in any of the directories
listed in PATH.

1.2 Dynamically Linking in New Modules

The function dld_link dynamically links in the named relocatable object or library file into
memory.

Functionint dld link (char *filename)
where filename is the path name of the file to be linked. Specifically, if the named
file is a relocatable object file, it is completely loaded into memory. If it is a library
file, only those modules defining an unresolved external reference are loaded. Since
a module in the library may itself reference other routines in the library, loading it
may generate more unresolved external references. Therefore, a library file is searched
repeatedly until a scan through all library members is made without having to load
any new modules.

Storage for the text and data of the dynamically linked modules is allocated using
malloc. In other words, they are kept in the heap of the executing process.

After all modules are loaded, dld_link resolves as many external references as possible.
Note that some symbols might still be undefined at this stage, because the modules
defining them have not yet been loaded.

If the specified module is linked successfully, dld_link returns 0; otherwise, it returns
a non-zero error code (see Section 1.11 [Definition of Error Codes], page 8).

1.3 Unlinking a Module

The major difference between dld and other dynamic linker is that dld allows object modules to
be removed from the process anytime during execution. Unlinking a module is simply the reverse
of the link operation (see Section 1.3 [Important Points in Using Unlink], page 2). The specified
module is removed and the memory allocated to it is reclaimed. Additionally, resolution of external
references must be undone.

There are two unlink functions:

Functionint dld unlink by file (char *path, int hard)
Functionint dld unlink by symbol (char *id, int hard)

The two unlink functions are basically the same except that dld_unlink_by_file

takes as argument the path name (path) of a file corresponding to a module previously
linked in by dld_link, but dld_unlink_by_symbol unlinks the module that defines
the specified symbol (id).

3

Both functions take a second argument hard. When hard is non-zero (hard unlink), the
specified module is removed from memory unconditionally. On the other hand, if hard
is zero (soft unlink), this module is removed from memory only if it is not referenced by
any other modules. Furthermore, if unlinking a module results in leaving some other
modules being unreferenced, these unreferenced modules are also removed.

Hard unlink is usually used when you want to explicitly remove a module and probably
replace it by a different module with the same name. For example, you may want to
replace the system’s printf by your own version. When you link in your version of
printf, dld will automatically redirect all references to printf to the new version.

Soft unlink should be used when you are not sure if the specified module is still needed.
If you just want to clean up unnecessary functions, it is always safe to use soft unlink.

Both unlink functions returns 0 if the specified object file or symbol is previously
loaded. Otherwise, they return a non-zero error code (see Section 1.11 [Definition of
Error Codes], page 8).

1.3.1 Important Points in Using Unlink

When a module is being unlinked, dld tries to clean up as much as it can to restore the executing
process to a state as if this module has never been linked. This clean up includes removing and
reclaiming the memory for storing the text and data segment of the module, and un-defining any
global symbols defined by this module.

However, side effects—such as modification of global variables, input/output operations, and
allocations of new memory blocks—caused by the execution of any function in this module are not
reversed. Thus, it is the responsibility of the programmer to explicitly carry out all necessary clean
up operations before unlinking a module.

1.4 Invoking Dynamically Linked Functions

Dynamically linked functions may still be invoked from modules (e.g., main) that do not contain
references to such functions.

Functionunsigned long dld_get_symbol (char *id)
Returns the entry point of the function named id if found, 0 if not found. Non-zero
returned values can be used as pointers to the functions.

Functionunsigned long dld_get_func (char *func)
Returns the address of the global variable named func if found, 0 if not found.

A typical use of dld_get_func would be:

{
void (*func) ();
int error_code;

. . .

/* First, link in the object file "my_object_file.o". Proceed
only if the link operation is successful, i.e. it returns 0.

4

"my_new_func" is a function defined in "my_object_file.o".
Set func to point at the entry point of this function and
then invoke it indirectly through func. */

if ((error_code = dld_link ("my_object_file.o")) == 0) {
if ((func = (void (*) ()) get_func ("my_new_func")) != 0)

(*func) ();
. . .

} else {

. . .

}
}

1.5 Determining If a Function is Executable

Since dld allows modules to be added to or removed from an executing process dynamically,
some global symbols may not be defined. As a result, an invocation of a function might reference
an undefined symbol. We say that a function is executable if and only if all its external references
have been fully resolved and all functions that it might call are executable.

Functionint dld function executable p (char *func)
The predicate function dld_function_executable_p helps solve this problem by trac-
ing the cross references between modules and returns non-zero only if the named func-
tion is executable.

Note that the implementation of dld_function_executable_p is not complete accord-
ing to the (recursive) definition of executability. External references through pointers
are not traced. That is, dld_function_executable_p will still return non-zero if the
named function uses a pointer to indirectly call another function which has already
been unlinked. Furthermore, if one external reference of a object module is unre-
solved, all functions defined in this module are considered unexecutable. Therefore,
dld_function_executable_p is usually too conservative.

However, it is advisable to use dld_function_executable_p to check if a function is
executable before its invocation. In such a dynamic environment where object modules
are being added and removed, a function that is executable at one point in time might
not be executable at another. Under most circumstances, dld_function_executable_
p is accurate. Also, the implementation of this function has been optimized and it is
relatively cheap to use.

1.6 Listing the Undefined Symbols

Functionchar **dld list undefined sym ()
The function dld_list_undefined_sym returns an array of undefined global symbol
names.

The list returned contains all the symbols that have been referenced by some modules
but have not been defined. This function is designed for debugging, especially in the

5

case when a function is found to be not executable but you do not know what the
missing symbols are.

The length of the array is given by the global variable dld_undefined_sym_count,
which always holds the current total number of undefined global symbols. Note that
all C symbols are listed in their internal representation—i.e., they are prefixed by the
underscore character ‘_’.

Storage for the array returned is allocated by malloc. It is the programmer’s respon-
sibility to release this storage by free when it is not needed anymore.

1.7 Explicitly Referencing a Symbol

Normally, a library module is loaded only when it defines one of more symbols that has been
referenced. To force a library routine to be loaded, one need to explicitly create a reference to a
symbol defined by that library routine. The function dld_create_reference is designed for this
purpose:

Functionint dld create reference (char *name)
Usually name is the name of the library routine that should be loaded, but it can be
any symbol defined by that routine. After such a reference has been created, linking
the appropriate library by dld_link would cause the required library routine to be
loaded.

If the call is successful, dld_create_reference returns 0; otherwise, it returns a non-
zero error code (see Section 1.11 [Definition of Error Codes], page 8).

The library routine loaded by this method can be unlinked by dld_unlink_by_symbol

(name). Once it has been unlinked, the corresponding reference created by dld_

create_reference is also removed so that this routine will not be loaded in again by
subsequent linking of the library.

1.8 Explicitly Defining a Symbol

Dld allows a programmer to explicitly define global symbols. That is, a programmer can force
a symbol to have storage assigned for it. This is especially useful in incremental program testing
where the function being tested needs to access some global variables which are defined by another
function not yet linked in (or even not yet written). There are two functions related to explicit
definition:

Functionint dld define sym (char *name, unsigned int size)
dld_define_sym forces dld to allocate size bytes for symbol name. It can be called
before or after a reference to name is made. If references to name already exist when
it is defined, all such references are directed to point to the correct address allocated
for name.

dld_define_sym returns 0 if successful. Otherwise, it returns a non-zero error code
(see Section 1.11 [Definition of Error Codes], page 8). The typical error is a multiple
definition of name.

Functionvoid dld remove defined symbol (char *name)
When the definition of name is no longer needed, it can be removed by dld_remove_

define_symbol.

6

1.9 C++ support

From: Thomas Hiller, Hiller@tu-harburg.d400.de

The original DLD supports only C function linking. When using C++ there is a problem with
the global constructors and destructors. The new DLD version contains code which mimics the
original collect2 supplied by gcc (see section “??” in The GNU Compiler Manual). The way GNU
ld (see section “??” in Binary Utilities) does this is better (more direct). But I’m not familiar
with the internals of GNU ld and DLD.

The file ‘gxxload.cc’ contains two C functions (dyn_load and dyn_unload), which function as
dld_load and dld_unload, but they take account that the C++ objects or libraries may contain
global constructors and destructors.

Functionvoid dyn load (char *name)
Behaves like dld_link(name) but constructors are called before control returns to the
program.

Functionvoid dyn unload (char *name)
Behaves like dld_unlink but the destructors are called before the unlink takes place.

Global Arraychar* dyn libraries[];
The caller needs to define the null terminated array of strings dyn_libraries. The
strings in the array dyn_libraries, give the pathnames of the files which should be
used to resolve link references after a call is made to dyn_load. As in the example
below, dyn_libraries might contain:

foo "/usr/lib/libg++.a"

foo "/usr/lib/libm.a"

foo "/usr/lib/libc.a"

A small demonstration program is included in the ‘test’ sub-directory’s files ‘gxxtest.cc’ and
‘sub.cc’. When invoked, gxxtest should print1 :

DLD function:
dyn_load:
Hello, this is A
dyn_unload:
Hello, this was A

The constructor (which prints the first ‘Hello’ message) is called by dyn_load. dyn_unload calls
the destructor (second ‘Hello’ message). The final ‘---’ message demonstrates that the destructor
is called by dyn_unload and not the exit() function.

sub.cc

1 Running this example on my machine does not print the Hello lines. But I don’t know enough
C++ to fix it.

7

#include <iostream.h>

class A {
public:
A() { cout<<"Hello, this is A"<<endl; }
~A() { cout<<"Hello, this was A"<<endl; }
};

A a;

gxxtest.cc

#include <iostream.h>

#include <dld.h>

char* dyn_libraries[] = {
"/usr/lib/libg++.a", /* link in libg++ */
"/usr/lib/libm.a", /* link in libm */
"/usr/lib/libc.a", /* link in libc */
LIBGCC, /* link in libgcc */
0
};

main()
{
cout<<"DLD function: "<<endl;
dld_link("sub.o");
dld_unlink_by_file("sub.o",0);
cout<<"dyn_load: "<<endl;
dyn_load("sub.o");
cout<<"dyn_unload: "<<endl;
dyn_unload("sub.o");
cout<<"---"<<endl;
}

1.10 Printing out the Error Messages

Functionvoid dld perror (char *user mesg)
where user mesg is a user-supplied string prepended to the error message. The function
dld_perror prints out a short message explaining the error returns by the last dld
functions.

Functionchar * dld_strerror (int code)
The function dld_strerror returns the error message string corresponding to the given
error code (from dld_errno).

8

1.11 Definition of Error Codes

The dld functions return a non-zero error code when they fail. The definitions of these error
codes are:

DLD_ENOFILE cannot open file.

DLD_EBADMAGIC bad magic number.

DLD_EBADHEADER failure reading header.

DLD_ENOTEXT premature eof in text section.

DLD_ENOSYMBOLS premature eof in symbols.

DLD_ENOSTRINGS bad string table.

DLD_ENOTXTRELOC premature eof in text relocation.

DLD_ENODATA premature eof in data section.

DLD_ENODATRELOC premature eof in data relocation.

DLD_EMULTDEFS multiple definitions of symbol.

DLD_EBADLIBRARY malformed library archive.

DLD_EBADCOMMON common block not supported.

DLD_EBADOBJECT malformed input file (not object file or archive).

DLD_EBADRELOC bad relocation info.

DLD_ENOMEMORY virtual memory exhausted.

DLD_EUNDEFSYM undefined symbol.

