
Rayshade User's Guide and Reference Manual

Craig E. Kolb

Draft 0.4
January 10, 1992

Preface ii

1 Introduction 1

1.1 Getting Started : 1
1.2 A Simple Example : 2

2 Running Rayshade 3
2.1 The Input File : 4
2.2 Images : 5
2.3 Statistics Reporting : 7
2.4 Antialiasing : 7
2.5 The Ray Tree : 9

3 Specifying a View 11

3.1 Camera Position : 12
3.2 Field of View : 12
3.3 Depth of Field : 13
3.4 Stereo Rendering : 14

4 Light Sources 15
4.1 Light Source Types : 16
4.2 Shadows : 18

5 Object De�nition 20
5.1 The World Object : 20
5.2 Primitives : 21
5.3 Aggregate Objects : 24
5.4 Constructive Solid Geometry : : : : : : : : : : : : : : : : : : 25

5.4.1 CSG in Rayshade : 26

i

5.4.2 Potential CSG Problems : : : : : : : : : : : : : : : : : 26
5.5 Named Objects : 28

6 Surfaces and Atmospheric E�ects 29
6.1 Surface Description : 29
6.2 Atmospheric E�ects : 32
6.3 The Default Medium : 32
6.4 Surface Speci�cation : 33

7 Transformations 36

8 Texturing 38

8.1 Texturing Functions : 39
8.2 Image Texturing : 41
8.3 Mapping Functions : 43

A Options 45

B Animation 51

C Height Field Files 54

ii

Rayshade is a program for creating ray-traced images. It reads a description
of a scene to be rendered and produces a color image corresponding to the
description. Rayshade was designed to make it easy to create nice pictures.
It was also meant to be
exible, easy to modify, and relatively fast.

The �rst version of rayshade was written in 1987-1988 at Princeton Uni-
versity with help and encouragement from David Dobkin and David Ho�-
man. That version was heavily based on a public-domain \introductory"
ray tracer written by Roman Kuchkuda. Changes to rayshade from that
point until version 4.0 were evolutionary in nature. The current version is
to a large extent a re-write, and an attempt has been made to remove some
of the fundamental problems present in previous incarnations.

I wish to thank the many people who have made contributions to the
development of rayshade during the past four years. Thanks to Marc An-
dreessen, Ray Bellis, Dominique Boisvert, William Bouma, Allen Brauns-
dorf, Je� Butterworth, Nick Carriero, Nancy Everson, Tom Friedel, Robert
Funchess, David Gelernter, Mike Gigante, Ed Herderick, John Knuston,
Raphael Manfredi, Lee Moore, Dietmar Saupe, Brian Wyvill, and the hun-
dreds of others who have provided bug-�xes, suggestions, input �les, encour-
agement, support, and other feedback.

David Dobkin �rst suggested that an extensible ray tracer would be a
worthwhile project. Gavin Bell, David Ho�man, Lefteris Koutso�os, and
Steven North were the �rst users of the original rayshade , and their feed-
back showed that the project might indeed have a future. In the Fall of
1988, Przemyslaw Prusinkiewicz encouraged me to develop rayshade fur-
ther, and was, as always, full of \insanely great" ideas. The resulting version
of rayshade was released on Usenet in 1989. Allan Snider was particularly

iii

helpful in �nding bugs in version 3.0 and in making valuable suggestions as
to how the program might be improved.

Rayshade version 4.0 was written by Craig Kolb and Rod Bogart during
1990-1991, with contributions of ideas and code made by many others. Pat
Hanrahan's OOGL provided the spirit, if not the letter, of the modularity
of the version 4.0. Thanks to Pat and to Mark VandeWettering for the \net
tracer" conversations and for the inspiration to do something to clean up
rayshade . Eric Haines saved the day on more than one occasion by suggest-
ing improvements, �nding bugs, and saying nice things about rayshade when
I was all but ready to throw in the towel. Robert Skinner was kind enough
to provide the Noise(), DNoise(), and other texturing functions and to allow
them to be redistributed. Mark Podlipec provided the blob object and torus
object, which uses Jochen Schwarze's cubic and quartic root-�nding func-
tions. Major Thanks to Rod Bogart for being willing to take the plunge and
play such a large role in the development of version 4.0. I am most grateful
to Benoit Mandelbrot for his support of this project and the inspiration he
provided.

C. Kolb
January 10, 1992

iv

This document describes rayshade in enough detail to enable the technical-
minded to sit down and render some images. In its current form, it is truly a
draft, and even then more of a reference manual than a proper user's guide.

This document does not provide any kind of thorough introduction to the
basics of computer graphics or ray tracing. There are many other excellent
sources for this kind of information. The technical and coding details of
rayshade and its libraries will be documented elsewhere.

1.1 Getting Started

The best way to learn how to use rayshade is to dive right in and start
making pictures. Study the example input �les that are packaged with
rayshade . Run them through rayshade to see what the images they produce
look like. Change the input �les; move the camera, change the �eld of view,
modify surface properties, and see what di�erences your changes make, all
the while referring to the appropriate portions of this document. Browse
through the individual chapters to see what rayshade can and cannot do.
The rayshade quick reference guide may also help you sort out syntactical
nasties.

Throughout this text, the typewriter type style is used to indicate
keywords and other items that should be passed directly to rayshade . Where

1

appropriate, items in an italic style indicate places where you should provide
an appropriate number or string.

Vectors, which consist of three numerical values, are indicated by an

arrow over a name written in italic type style, e.g.,
���!
vector . Items enclosed

between [and] characters indicate that specifying those items is optional.
Complex constructions that are described elsewhere in the text, such as
surface or object speci�cation, are denoted by enclosing descriptive text
between < and > characters.

1.2 A Simple Example

Because rayshade provides a default camera description, surface properties,
and a default light source, it is easy to construct short input �les that
allow you to experiment with objects, textures, and transformations. If you
haven't already run rayshade on one of the example input �les, you might
want to try producing an image using the following input:

sphere 2 0 0 0

If you are running rayshade on a UNIX1-like machine, the command:

echo "sphere 2 0 0 0" | rayshade > sphere.rle

should produce an image of a sphere.

a

1UNIX is a trademark of AT&T Bell Laboratories

2

Rayshade can take anywhere from seconds to weeks to render an image. The
exact time required is a function of the speed of the machine(s) on which
you're working, the complexity of the scene, and how \good" you want the
�nal image to be. 1

Creating a �nished ray-traced image is an iterative process. Usually,
many test renderings are made at low resolution and with non-essential
features turned o�. After each test image is created, surface de�nitions
might be modi�ed, the eye or look positions may be slightly changed, or the
intensity of a light source changed.

This chapter describes the basic operation of rayshade and some of the
options that control that operation. Setting these options properly can
greatly reduce rendering time, improve the quality of your images, and make
you a better person.

Rayshade usually works as a �lter, reading a description from the stan-
dard input and writing an image �le to the standard output. As it is working,
rayshade reports on the progress of the rendering by writing messages to the
standard error.
a

1Appendix D describes some simple ways to accelerate the rendering process.

3

a

a

a

Operator
a

Use
a

Operation
a
a

a

a

^
a

a ^ b
a

Exponentiation
a
a

a

-
a

-a
a

Negation
a

a

a

*
a

a * b
a

Multiplication
a

a

a

/
a

a / b
a

Division
a

a

a

%
a

a % b
a

Remainder
a

a

a

+
a

a + b
a

Addition
a

a

a

-
a

a - b
a

Subtraction
a
a

a

Table 2.1: Operators, in order of decreasing precedence.

2.1 The Input File

The scene description read by rayshade consists of a number of keywords,
each followed by a set of arguments. These keywords can be thought of as
commands that direct rayshade to do various things, such as create objects,
set the eye's position, and change an object's appearance.

Many of the keywords have related command-line options for turning on
special features and setting values. These options override the values given
in the input �le, and are explained in detail in Appendix A.

Rayshade is \case sensitive," which means that typing SPHERE or Sphere
instead of sphere won't work. Rayshade keywords are all lower-case. Many
people choose to capitalize the �rst letter of names that they give to objects
or surfaces in order to make then \stand out" in an input �le.

Keywords, numbers and strings in the input �le are separated by spaces,
tabs, or new lines (carriage returns). These \whitespace" characters are han-
dled identically by rayshade , which means that you can separate keywords
from keywords, key words from arguments, and arguments from arguments
using any combination of whitespace characters that you choose.

Numbers may be entered directly as reals or as parenthesized expressions.
Reals may be written in exponential notation if you wish, and integers may
be written with or without a trailing decimal point. When an integer value
is called for and a real is given, the real value is truncated and the resulting
integer is used. Table 2.1 lists the available operators available for use in
expressions, in order of decreasing precedence.

4

The upshot of all this is that the strings 42, 42., (20 + 22), and (7^2

- 7) mean the same thing to rayshade .

Variables may also be de�ned and used in expressions. Several built-in
functions are also provided. See Appendix B for further details.

Rayshade will automatically run the input it receives through the C pre-
processor if it is available. This allows you to use C preprocessor directives,
such as #include, #define, and #ifdef when designing your input �les.

Comments may be included in rayshade input �les by enclosing text
between the strings /* and */, as in the C programming language.

2.2 Images

The end result of running rayshade is an image �le. Depending upon how it
was installed, rayshade writes images in either the Utah Raster RLE format
or a generic but easily-manipulated mtv format used by Mark VandeWet-
tering in his mtv ray tracer. The mtv format consists of a header giving
the resolution of the image followed by interleaved red-green-blue values for
each pixel. The RLE format supports an arbitrary number of color channels,
an alpha channel, comments, a history �eld, and the ability to treat images
as windows into a larger image. As a result of this
exibility, a number of
rayshade 's features are not supported if the mtv format is being used. You
are thus strongly encouraged to obtain a copy of the Utah Raster Toolkit.

If the mtv format is used, the image will (and must) consist of three
eight-bit color channels. If the RLE format is used, the image �le consists
of three eight-bit color channels plus an eight-bit alpha channel. Rayshade
also documents in the RLE header the command line and gamma value used
in creating the image.

If more than one frame is rendered, the resulting images are appended
in turn to the image �le. The various utilities provided by the Utah Raster
Toolkit can be used to manipulate the resulting \movie" �les. If the Toolkit
is not being used, you will probably need to write utility programs to handle
the decidedly non-standard multi-image mtv format �les.

By default, rayshade writes the computed image to the standard output.
The image �le may be written to a �le instead by specifying a �le name in

5

the input stream.

outfile �lename
Write the computed image to the named �le.

The output �le name may also be speci�ed on the command line by using
the -O option.

The size of the output image is measured in pixels. The x size is the
number of pixels left-to-right, while the y size is the number of pixels bottom-
to-top.

screen xsize ysize
Use a screen xsize pixels wide by ysize pixels high.

The screen size may also be set on the command line through the -R option.
The default screen size is 512 by 512 pixels.

When rendering an image, it is often advantageous to split the image
into a number of disjoint windows, each of which is rendered on a di�erent
machine. One then combines the images corresponding to the windows into
a �nal image.

window minx maxx miny maxy
Render the image in the given window.

The window must be properly contained within the screen, i.e., minx and
miny must be greater than or equal to zero, while maxx and maxy must
be less than xsize and ysize, respectively. The Utah Raster tool rlecomp is
useful for reconstructing the full image from sub-images. By default, the
window is equivalent to the entire screen.

It is also convenient to be able to render a small portion of the window
by specifying a subregion using normalized coordinates.

crop left right bottom top
Crop the rendering window.

6

The rendering window is cropped by rendering the screen area that falls
within minx+ left(maxx�minx) and minx+ right(maxx�minx) in the
X direction, and similarly for the Y direction. Left and bottom must be
greater than or equal to zero. Right and top must be less than or equal to
one. If left is greater than right, the two values are swapped, and similarly
for bottom and top.

Gamma correction may also be applied to the three output color chan-
nels. See Appendix A for more details.

2.3 Statistics Reporting

As it is working, rayshade informs you of its progress by writing messages to
a \report �le". By default, the report �le is the standard error. The report
itself consists of a number of progress report lines consisting of the number
of eye rays traced, the total elapsed time, and the elapsed time since the
last progress report. The end of the report contains detailed statistics about
intersection tests performed, the number of rays traced, and the like.

report [verbose] [quiet] [freq] [�le]
Specify the kind of information included in the report and to which
�le it should be written. If verbose is speci�ed, the report will also
include a listing of the options selected, the bounding volumes of each
aggregate, and the total number of primitives in each aggregate. quiet
causes warning messages to be suppressed. freq speci�es the frequency,
in scanlines rendered, that progress reports are made. If given, �le
names a �le to which the report will be written.

By default, a non-verbose, non-quiet report is written to the standard error
once every 10 lines. The -V option may also be used to direct the report to
a named �le.

2.4 Antialiasing

Given a screen of a �xed size, creating an image is accomplished by sam-
pling each pixel one or more times in order to determine what can be seen

7

\through" that pixel by the camera. A pixel thus covers a square area of
the image plane, not just a single point.

If a pixel is not sampled at the proper rate, aliasing will result. Aliasing
usually appears as \jaggies" or \stair steps" in the image. In order to reduce
these and other artifacts, rayshade provides an adaptive jittered antialiasing
scheme that attempts to detect where increased sampling rates are needed.
In jittered sampling, the location at which a sample is taken is perturbed by
a random amount. This perturbation reduces aliasing but adds noise to the
image. Appendix B describes how jittered time sampling is implemented in
rayshade .

The adaptive sampling scheme implemented in rayshade begins by sam-
pling each pixel on the current scanline once. For each pixel on the scanline,
the contrast between it and its four immediate neighbors is computed. If
this contrast is greater than a user-speci�ed maximum in any color chan-
nel, the pixel and its neighbors are all supersampled by �ring an additional
numsamples2 � 1 rays through those pixels that have not already been su-
persampled. This process is repeated for the current scanline until a pass is
made without any pixel being supersampled.

contrast redcont greencont bluecont
Set the maximum allowed contrast between four color samples when
adaptive supersampling is used. The contrast test is applied to each
color channel separately.

The default maximum contrast values for the red, green, and blue channels
are 0.25, 0.2, and 0.4, respectively.

sample n [nojitter]
Use n2 samples when performing jittered sampling. The maximum
legal value is 5. If nojitter is speci�ed, sample locations and times
will not be jittered.

By default, 32 jittered samples are taken.

A given set of sample values must be �ltered in order to assign a color
to a pixel. Ideally, when performing �ltering for a speci�c pixel, the �lter
will consider samples from neighboring regions. In rayshade , the �ltering

8

applied to a pixel makes use of samples taken for that pixel alone. However,
one may increase the size of the �lter that is applied in order to approximate
the results a more robust �ltering scheme.

filter type [width]
Use the indicated �lter type with the given width, in pixels. Supported
�lter types are gauss (Gaussian) and box (the default).

The default �lter width is 1.0 for a box �lter, 1.8 for a Gaussian �lter. The
�lter and pixel centers always coincide. When sampling a pixel, samples are
taken over the area of the pixel �lter, which is not necessarily the same as
the area of the pixel itself.

Jittered sampling is used in rayshade to sample extended light sources
as well. A total of samples2 samples are taken of each extended light source
in order to determine the extent of shadowing.

2.5 The Ray Tree

When ray tracing a scene, re
ected or transmitted rays may strike other
re
ective or transparent objects. Further re
ected or transmitted rays will
be spawned, and so on. Taken together, such a family of rays is termed the
ray tree. Care must be taken to control the depth of this tree: If it is allowed
to grow too deeply, one may spend a great deal of time computing rays that
contribute little to the �nal picture; if it is not allowed to grow far enough,
this premature tree pruning may be evident in the image.

Rayshade provides two complementary methods for controlling the depth
of the ray tree. One method sets an absolute maximum for the tree. The
other allows one to adaptively prune a tree as it grows so that \unimportant"
rays are not spawned.

maxdepth level
Do not spawn rays deeper than those at the given level.

Rays from the eye are of depth zero. The default value for level is 15. This
depth may also be set from the command line through the -D option.

9

cutoff threshold
Do not spawn rays whose contribution to the �nal color of the eye ray
is less than threshold for each color channel. Threshold may be given
as a single
oating-point value, or as a red-green-blue triple.

The default value is 0.002. This threshold may also be set from the command
line through the -T option.

10

When designing a rayshade input �le, there are two main issues that must
be considered. The �rst and more complex is the selection of the objects
to be rendered and the appearances they should be assigned. The second
and usually easier issue is the choice of viewing parameters. This chapter
deals with the latter problem; the majority of the following chapters discuss
aspects of objects and their appearances.

Rayshade uses a camera model to describe the geometric relationship
between the objects to be rendered and the image that is produced. This
relationship describes a perspective projection from world space onto the
image plane.

The geometry of the perspective projection may be thought of as an
in�nite pyramid, known as the viewing frustum. The apex of the frustum
is de�ned by the camera's position, and the main axis of the frustum by
a \look" vector. The four sides of the pyramid are di�erentiated by their
relationship to a reference \up" vector from the camera's position.

The image ultimately produced by rayshade may then be thought of as
the projection of the objects closest to the eye onto a rectangular screen
formed by the intersection of the pyramid with a plane orthogonal to the
pyramid's axis. The overall shape of the frustum (the lengths of the top and
bottom sides compared to left and right) is described by the horizontal and
vertical �elds of view.

11

3.1 Camera Position

The three basic camera properties are its position, the direction in which it
is pointing, and its orientation. The keywords for specifying these values are
described below. The default values are designed to provide a reasonable
view of a sphere of radius 2 located at origin. If these default values are
used, the origin is projected onto the center of the image plane, with the
world x axis running left-to-right, the z axis bottom-to-top, and the y axis
going \into" the screen.

eyep �!pos
Place the virtual camera at the given position.

The default camera position is (0, -8, 0).

lookp �!pos
Point the virtual camera toward the given position.

The default look point is the origin (0, 0, 0). The look point and camera
position must not be coincident.

up
�����!
direction
The \up" vector from the camera point is set to the given direction.

This up vector need not be orthogonal to the view vector, nor need it be
normalized. The default up direction is (0, 0, 1).

Another popular standard viewing geometry, with the x axis running
left-to-right, the y axis bottom-to-top, and the z axis pointing out of the
screen, may be obtained by setting the up vector to (0, 1, 0) and by placing
the camera on the positive z axis.

3.2 Field of View

Another important choice to be made is that of the �eld of view of the
camera. The size of this �eld describes the angles between the left and right
sides and top and bottom sides of the frustum.

12

fov hfov [vfov]
Specify the horizontal and vertical �eld of view, in degrees.

The default horizontal �eld of view is 45 degrees. If vfov is omitted, as is the
general practice, the vertical �eld of view is computed using the horizontal
�eld of view, the output image resolution, and the assumption that a pixel
samples a square area. Thus, the values passed via the screen keyword
de�ne the shape of the �nal image. If you are displaying on a non-square
pixeled device, you must set the vertical �eld of view to compensate for the
\squashing" that will result.

3.3 Depth of Field

Under many circumstances, it is desirable to render objects in the image
such that they are in sharp focus on the image plane. This is achieved by
using the default \pinhole' camera. In this mode, the camera's aperture is
a single point, and all light rays are focused on the image plane.

Alternatively, one may widen the aperture in order to simulate depth
of �eld. In this case, rays are cast from various places on the aperture
disk towards a point whose distance from the camera is equal to the focus
distance. Objects that lay in the focal plane will be in sharp focus. The
farther an object is from the image plane, the more out-of-focus it will appear
to be. A wider aperture will lead to a greater blurring of objects that do
not lay in the focal plane. When using a non-zero aperture radius, it is best
to use jittered sampling in order to reduce aliasing.

aperture radius
Use an aperture with the given radius.

The default radius is zero, resulting in a pinhole camera model.

focaldist distance
Set the focal plane to be distance units from the camera.

By default, the focal distance is equal to the distance from the camera to
the look point.

13

3.4 Stereo Rendering

Producing a stereo pair is a relatively simple process; rather than simply
rendering a single image, one creates two related images which may then
be viewed on a stereo monitor, in a stereo slide viewer, or by using colored
glasses and an appropriate display �lter.

Rayshade facilitates the rendering of stereo pairs by allowing you to
specify the distance between the camera positions used in creating the two
images. The camera position given in the rayshade input �le de�nes the
midpoint between the two camera positions used to generate the images.
Generally, the remainder of the viewing parameters are kept constant.

eyesep separation
Speci�es the camera separation to be used in rendering stereo pairs.

There is no default value. The separation may also be speci�ed on the
command line through the -E option. The view to be rendered (left or
right) must be speci�ed on the command line by using the -l or -r options.

There are several things to keep in mind when generating stereo pairs.
Firstly, those objects that lie in from of the focal plane will appear to pro-
trude from the screen when viewed in stereo, while objects farther than the
focal plane will recede into the screen. As it is usually easier to look at
stereo images that recede into the screen, you will usually want to place the
look point closer to the camera than the object of primary interest.

The degree of stereo e�ect is a function of the camera separation and
the distance from the camera to the look point. Too large a separation will
result in a hyperstereo e�ect that will be hard to resolve, while too little a
value will result in no stereo e�ect at all. A separation equal to one tenth
the distance from the camera to the look point is often a good choice.

14

The lighting in a scene is determined by the number, type, and nature of
the light sources de�ned in the input �le. Available light sources range
from simple directional sources to more realistic but computationally costly
quadrilateral area light sources. Typically, you will want to use point or
directional light sources while developing images. When �nal renderings are
made, these simple light sources may be replaced by the more complex ones.

No matter what kind of light source you use, you will need to specify
its intensity. In this chapter, an Intensity is either a red-green-blue triple
indicating the color of the light source, or a single value that is interpreted
as the intensity of a \white" light. In the current version of rayshade, the
intensity of a light does not decrease as one moves farther from it.

If you do not de�ne a light source, rayshade will create a directional light
source of intensity 1.0 de�ned by the vector (1., -1., 1.). This default light
source is designed to work well when default viewing parameters and surface
values are being used.

You may de�ne any number of light sources, but keep in mind that it
will require more time to render images that include many light sources. It
should also be noted that the light sources themselves will not appear in the
image, even if they are placed in frame.

15

4.1 Light Source Types

The amount of ambient light present in a scene is controlled by a pseudo
light source of type ambient.

light Intensity ambient
De�ne the amount of ambient light present in the entire scene.

There is only one ambient light source; its default intensity is 1, 1, 1.
If more than one ambient light source is de�ned, only the last instance is
used. A surface's ambient color is multiplied by the intensity of the ambient
source to give the total ambient light re
ected from the surface.

Directional sources are described by a direction alone, and are useful
for modeling light sources that are e�ectively in�nitely far away from the
objects they illuminate.

light Intensity directional
�����!
direction

De�ne a light source with the given intensity that is de�ned to be in
the given direction from every point it illuminates. The direction need
not be normalized.

Point sources are de�ned as a single point in space. They produce shad-
ows with sharp edges and are a good replacement for extended and other
computationally expensive light source.

light Intensity point �!pos
Place a point light source with the given intensity at the given position.

Spotlights are useful for creating dramatic localized lighting e�ects. They
are de�ned by their position, the direction in which they are pointing, and
the width of the beam of light they produce.

light Intensity spot �!pos �!to � [�in �out]

Place a spotlight at�!pos , oriented as to be pointing at �!to . The intensity
of the light falls o� as (cosine�)�, where � is the angle between the

16

spotlight's main axis and the vector from the spotlight to the point
being illuminated. �in and �out may be used to control the radius of
the cone of light produced by the spotlight.

�in is the the angle at which the light source begins to be attenuated. At
�out, the spotlight intensity is zero. This a�ords control over how \fuzzy" the
edges of the spotlight are. If neither angle is given, they both are e�ectively
set to 180 degrees.

Extended sources are meant to model spherical light sources. Unlike
point sources, extended sources actually possess a radius, and as such are
capable or producing shadows with fuzzy edges (penumbrae). If you do not
speci�cally desire penumbrae in your image, use a point source instead.

light Intensity extended radius �!pos
Create an extended light source at the given position and with the
given radius.

The shadows cast by extended sources are modeled by taking samples of
the source at di�erent locations on its surface. When the source is partially
hidden from a given point in space, that point is in partial shadow with
respect to the extended source, and the sampling process is usually able to
determine this fact.

Quadrilateral light sources are computationally more expensive than ex-
tended light sources, but are more
exible and produce more realistic results.
This is due to the fact that an area source is approximated by a number of
point sources whose positions are jittered to reduce aliasing. Because each
of these point sources has shading calculations performed individually, area
sources may be placed relatively close to the objects it illuminates, and a
reasonable image will result.

light Intensity area
�!
p1
�!
p2 usamp

�!
p3 vsamp

Create a quadrilateral area light source. The u axis is de�ned by the

vector from
�!
p1 to

�!
p2 . Along this axis a total of usamp samples will

be taken. The v axis of the light source is de�ned by the vector from�!
p1 to

�!
p3 . Along this axis a total of vsamp samples will be taken.

17

The values of usamp and vsamp are usually chosen to be proportional to the
lengths of the u and v axes. Choosing a relatively high number of samples
will result in a good approximation to a \real" quadrilateral source. How-
ever, because complete lighting calculations are performed for each sample,
the computational cost is directly proportional to the product of usamp and
vsamp.

4.2 Shadows

In order to determine the color of a point on the surface of any object, it
is necessary to determine if that point is in shadow with respect to each
de�ned light source. If the point is totally in shadow with respect to a light
source, then the light source makes no contribution to the point's �nal color.

This shadowing determination is made by tracing rays from the point
of intersection to each light source. These \shadow feeler" rays can add
substantially to the overall rendering time. This is especially true if extended
or area light sources are used. If at any point you wish to disable shadow
determination on a global scale, there is a command-line option (-n) that
allows you to do so. It is also possible to disable the casting of shadows
onto given objects through the use of the noshadow keyword in surface
descriptions. In addition, the noshadow keyword may be given following the
de�nition of a light source, causing the light source to cast no shadows onto
any surface.

Determining if a point is in shadow with respect to a light source is
relatively simple if all the objects in a scene are opaque. In this case, one
simply traces a ray from the point to the light source. If the ray hits an
object before it reaches the light source, then the point is in shadow.

Shadow determination becomes more complicated if there are one or
more objects with non-zero transparency between the point and the light
source. Transparent objects may not completely block the light from a
source, but merely attenuate it. In such cases, it is necessary to compute
the amount of attenuation at each intersection and to continue the shadow
ray until it either reaches the light source or until the light is completely
attenuated.

By default, rayshade computes shadow attenuation by assuming that

18

the index of refraction of the transparent object is the same as that of the
medium through which the ray is traveling. To disable partial shadow-
ing due to transparent objects, the shadowtransp keyword should be given
somewhere in the input �le.

shadowtransp

The intensity of light striking a point is not a�ected by intervening
transparent objects.

If you enclose an object behind a transparent surface, and you wish the inner
object to be illuminated, you must not use the shadowtransp keyword or
the -o option.

19

Objects in rayshade are composed of relatively simple primitive objects.
These primitives may be used by themselves, or they may be combined to
form more complex objects known as aggregates. A special family of aggre-
gate objects, Constructive Solid Geometry or CSG objects, are the result of
a boolean operations applied to primitive, aggregate, or CSG objects.

This chapter describes objects from a strictly geometric point of view.
Later chapters on surfaces, textures, and shading describe how object ap-
pearances are de�ned.

An instance is an object that has optionally been transformed and tex-
tured. They are the entities that are actually rendered by rayshade ; when
you specify that, for example, a textured sphere is to be rendered, you are
said to be instantiating the textured sphere. An instance is speci�ed as a
primitive, aggregate, or CSG object that is followed by optional transforma-
tion and texturing information. Transformations and textures are described
in Chapters 7 and 8 respectively.

5.1 The World Object

Writing a rayshade input �le is principally a matter of de�ning a special
aggregate object, the World object, which is a list of the objects in the
scene. When writing a rayshade input �le, all objects that are instantiated

20

outside of object-de�nition blocks are added to the World object; you need
not (nor should you) de�ne the World object explicitly in the input �le.

5.2 Primitives

Primitive objects are the building box with which other objects are created.
Each primitive type has associated with it specialized methods for creation,
intersection with a ray, bounding box calculation, surface normal calculation,
ray enter/exit classi�cation, and for the computation 2D texture coordinates
termed u-v coordinates. This latter method is often referred to as the inverse
mapping method.

While most of these methods should be of little concern to you, the in-
verse mapping methods will a�ect the way in which certain textures are
applied to primitives. Inverse mapping is a matter of computing normalized
u and v coordinates for a given point on the surface of the primitive. For
planar objects, the u and v coordinates of a point are computed by linear in-
terpolation based upon the u and v coordinates assigned to vertices or other
known points on the primitive. For non-planar objects, uv computation can
be considerably more involved.

This section brie
y describes each primitive and the syntax that should
be used to create an instance of the primitive. It also describes the inverse
mapping method, if any, for each type.

blob thresh st r �!p [st r �!p : : :]
De�nes a blob with consisting of a threshold equal to thresh, and a
group of one or more metaballs. Each metaball is de�ned by its posi-
tion �!p , radius r, and strength st.

The metaballs a�ect each other according to a superimposed density distri-
bution:

F (x; y; z) =
nX
i=0

bie
�di � T = 0

There is no inverse mapping method for blobs.

box
�����!
corner1

�����!
corner2

21

Creates an axis-aligned box which has
�����!
corner1 and

�����!
corner2 as opposite

corners.

Transformations may be applied to the box if a non-axis-aligned instance is
required. There is no inverse mapping method for boxes.

sphere radius
���!
center

Creates a sphere with the given radius and centered at the given po-
sition.

Note that ellipsoids may be created by applying the proper scaling to a
sphere. Inverse mapping on the sphere is accomplished by computing the
longitude and latitude of the point on the sphere, with the u value corre-
sponding to longitude and v to latitude. On an untransformed sphere, the z
axis de�nes the poles, and the x axis intersects the sphere at u = 0, v = 0:5.
There are degeneracies at the poles: the south pole contains all points of
latitude 0., the north all points of latitude 1.

torus rmajor rminor
���!
center �!up

Creates a torus centered at
���!
center by rotating a circle with the given

minor radius around the center point at a distance equal to the major
radius.

In tori inverse mapping, the u value is computed using the angle of rotation
about the up vector, and the v value is computing the angle of rotation
around the tube, with v = 0 occuring on the innermost point of the tube.

triangle
�!
p1
�!
p2
�!
p3

Creates a triangle with the given vertices.

triangle
�!
p1
�!
n1
�!
p2
�!
n2
�!
p3
�!
n3

Creates a Phong-shaded triangle with the given vertices and vertex
normals.

For both Phong- and
at-shaded triangles, the u axis is the vector from
�!
p1

to
�!
p2 , and the v axis the vector from

�!
p1 to

�!
p3 . There is a degeneracy at

22

�!
p3 , which contains all points with v = 1:0. This default mapping may be
modi�ed using the triangleuv primitive described below.

triangleuv
�!
p1
�!
n1
�!
uv1

�!
p2
�!
n2
�!
uv2

�!
p3
�!
n3
�!
uv3

Creates a Phong-shaded triangle with the given vertices, vertex nor-
mals. When performing texturing, the uv given for each vertex are
used instead of the default values.

When computing uv coordinates within the interior of the triangle, linear
interpolation of the coordinates associated with each triangle vertex is used.

poly
�!
p1
�!
p2
�!
p3 [

�!
p4 : : :]

Creates a polygon with the given vertices. The vertices should be
given in counter-clockwise order as one is looking at the \front" side
of the polygon. The number of vertices in a polygon is limited only
by available memory.

Inverse mapping for arbitrary polygons is problematical. Rayshade punts
and equates u with the x coordinate of the point of intersection, and v with
the y coordinate.

heightfield �le
Creates a height �eld de�ned by the altitude data stored in the named
�le. The height �eld is based upon perturbations of the unit square
in the z = 0 plane, and is rendered as a surface tessellated by right
isosceles triangles.

See Appendix C for a discussion of the format of a height �eld �le. Height
�eld inverse mapping is straight-forward: u is the x coordinate of the point
of intersection, v the y coordinate.

plane
���!
point

����!
normal

Creates a plane that passes through the given point and has the spec-
i�ed normal.

Inverse mapping on the plane is identical to polygonal inverse mapping.

23

cylinder radius
����!
bottom

�!
top

Creates a cylinder that extends from
����!
bottom to

�!
top and has the indi-

cated radius. Cylinders are rendered without endcaps.

The cylinder's axis de�nes the v axis. The u axis wraps around the cylinder,
with u = 0 dependent upon the orientation of the cylinder.

cone radbottom
����!
bottom radtop

�!
top

Creats a (truncated) cone that extends from
����!
bottom to

�!
top . The cone

will have a radius of radbottom at
����!
bottom and a radius of radtop at

�!
top .

Cones are rendered without endcaps.

Cone inverse mapping is analogous to cylinder mapping.

disc radius �!pos ����!normal
Creates a disc centered at the given position and with the indicated
surface normal.

Discs are useful for placing endcaps on cylinders and cones. Inverse mapping
for the disc is based on the computation of the normalized polar coordinates
of the point of intersection. The normalized radius of the point of intersec-
tion is assigned to u, while the normalized angle from a reference vector is
assigned to v.

5.3 Aggregate Objects

An aggregate is a collection of primitives, aggregate, and CSG objects. An
aggregate, once de�ned, may be instantiated at will, which means that copies
that are optionally transformed and textured may be made. If a scene calls
for the presence of many geometrically identical objects, only one such object
need be de�ned; the one de�ned object may then be instantiatedmany times.

An aggregate is one of several possible types. These aggregate types
are di�erentiated by the type of ray/aggregate intersection algorithm (often
termed an acceleration technique or e�ciency scheme) that is used.

24

Aggregates are de�ned by giving a keyword that de�nes the type of the
aggregate, followed by a series of object instantiations and surface de�ni-
tions, and terminated using the end keyword. If a de�ned object contains
no instantiations, a warning message is printed.

The most basic type of aggregate, the list, performs intersection testing
in the simplest possible way: Each object in the list is tested for intersection
with the ray in turn, and the closest intersection is returned.

list : : :end

Create a List object containing those objects instantiated between the
list/end pair.

The grid aggregate divides the region of space it occupies into a number
of discrete box-shaped voxels. Each of these voxels contains a list of the
objects that intersect the voxel. This discretization makes it possible to
restrict the objects tested for intersection to those that are likely to hit the
ray, and to test the objects in nearly \closest-�rst" order.

grid xvox yvox zvox : : :end
Create a Grid objects composed of xvox by yvox by zvox voxels con-
taining those objects instantiated between the grid/end pair.

It is usually only worthwhile to \engrid" rather large, complex collections
of objects. Grids also use a great deal more memory than List objects.

5.4 Constructive Solid Geometry

Constructive Solid Geometry is the process of building solid objects from
other solids. The three CSG operators are Union, Intersection, and Di�er-
ence. Each operator acts upon two objects and produces a single object
result. By combining multiple levels of CSG operators, complex objects can
be produced from simple primitives.

The union of two objects results in an object that encloses the space
occupied by the two given objects. Intersection results in an object that
encloses the space where the two given objects overlap. Di�erence is an
order dependent operator; it results in the �rst given object minus the space
where the second intersected the �rst.

25

5.4.1 CSG in Rayshade

CSG in rayshade will generally operate properly when applied to conjunction
with on boxes, spheres, tori, and blobs. These primitives are by nature
consistent, as they all enclose a portion of space (no hole from the \inside"
to the \outside"), have surface normals which point outward (they are not
\inside-out"), and do not have any extraneous surfaces.

CSG objects may also be constructed from aggregate objects. These
aggregates contain whatever is listed inside, and may therefore be incon-
sistent. For example, an object which contains a single triangle will not
produce correct results in CSG models, because the triangle does not en-
close space. However, a collection of four triangles which form a pyramid
does enclose space, and if the triangle normals are oriented correctly, the
CSG operators should work correctly on the pyramid.

CSG objects are speci�ed by surrounding the objects upon which to op-
erate, as well as any associated surface-binding commands, by the operator
verb on one side and the end keyword on the other:

union <Object> <Object> [<Object> : : :] end
Specify a new object de�ned as the union of the given objects.

difference <Object> <Object> [<Object> : : :] end
Specify a new object de�ned as the di�erence of the given objects.

intersect <Object> <Object> [<Object> : : :] end
Specify a new object de�ned as the intersection of the given objects.

Note that the current implementation does not support more that two
objects in a CSG list (but it is planned for a future version).

5.4.2 Potential CSG Problems

A consistent CSG model is one which is made up of solid objects with no dan-
gling surfaces. In rayshade , it is quite easy to construct inconsistent models,
which will usually appear incorrect in the �nal images. In rayshade , CSG is
implemented by maintaining the tree structure of the CSG operations. This

26

tree is traversed, and the operators therein applied, on a per-ray basis. It is
therefore di�cult to verify the consistency of the model \on the
y."

One class of CSG problems occur when surfaces of objects being operated
upon coincide. For example, when subtracting a box from another box to
make a square cup, the result will be wrong if the tops of the two boxes
coincide. To correct this, the inner box should be made slightly taller than
the outer box. A related problem that must be avoided occurs when two
coincident surfaces are assigned di�erent surface properties.

It may seem that the union operator is unnecessary, since listing two
objects together in an aggregate results in an image that appears to be the
same. While the result of such a short-cut may appear the same on the
exterior, the interior of the resulting object will contain extraneous surfaces.
The following examples show this quite clearly.

difference

box -2 0 -3 2 3 3

union /* change to list; note bad internal surfaces */

sphere 2 1 0 0

sphere 2 -1 0 0

end

end rotate 1 0 0 -40 rotate 0 0 1 50

The visual evidence of an inconsistent CSG object varies depending upon
the operator being used. When subtracting a consistent object from and in-
consistent one, the resulting object will appear to be the union of the two
objects, but the shading will be incorrect. It will appear to be inside-out
in places, while correct in other places. The inside-out sections indicate the
areas where the problems occur. Such problems are often caused by poly-
gons with incorrectly speci�ed normals, or by surfaces that exactly coincide
(which appear as partial \Swiss cheese" objects).

The following example illustrates an attempt to subtract a sphere from a
pyramid de�ned using an incorrectly facing triangle. Note that the resulting
image obviously points to which triangle is reversed.

name pyramid list

triangle 1 0 0 0 1 0 0 0 1

27

triangle 1 0 0 0 0 0 0 1 0

triangle 0 1 0 0 0 0 0 0 1

triangle 0 0 1 1 0 0 0 0 0 /* wrong order */

end

difference

object pyramid scale 3 3 3 rotate 0 0 1 45

rotate 1 0 0 -30 translate 0 -3.5 0

sphere 2.4 0 0 0

end

By default, cylinders and cones do not have end caps, and thus are not
consistent primitives. One must usually add endcaps by listing the cylinder
or cone with (correctly-oriented) endcap discs in an aggregate.

5.5 Named Objects

A name may be associated with any primitive, aggregate, or CSG object
through the use of the name keyword:

name objname <Instance>
Associate objname with the given object. The speci�ed object is not
actually instantiated; it is only stored under the given name.

An object thus named may then be instantiated (with possible additional
transforming and texturing) via the object keyword:

object objname [<Transformations>] [<Textures>]
Instantiate a copy of the object associated with objname. If given, the
transformations and textures are composed with any already associ-
ated with the object being instantiated.

28

Surfaces are used to control the interaction between light sources and ob-
jects. A surface speci�cation consists of information about how the light
interacts with both the exterior and interior of an object . For non-closed
objects, such as polygons, the \interior" of an object is the \other side" of
the object's surface relative to the origin of a ray.

Rayshade usually ensures that a primitive's surface normal is pointing
towards the origin of the incident ray when performing shading calculations.
Exceptions to this rule are transparent primitives, for which rayshade uses
the direction of the surface normal to determine if the incident ray is enter-
ing or exiting the object. All non-transparent primitives will, in e�ect, be
double-sided.

6.1 Surface Description

A surface de�nition consists of a number of component keywords, each of
which is usually followed by either a single number or a red-green-blue color
triple. Each of the values in the color triple are normalized, with zero
indicating zero intensity, and one indicating full intensity.

If any surface component is left unspeci�ed, its value defaults to zero,

29

with the exception of the index of refraction, which is assigned the default
index of refraction (normally 1.0).

Surface descriptions are used in rayshade to compute the color of a ray

that strikes the surface at a point
�!
P . The normal to the surface at

�!
P ,
�!
N ,

is also computed.

ambient
��!
color

Use the given color to approximate those surface-surface interactions
(e.g., di�use interre
ection) not modeled by the ray tracing process.

A surface's ambient color is always applied to a ray. The color applied is
computed by multiplying the ambient color by the intensity of the ambient
light source.

If
�!
P is in shadow with respect to a given light source, that light source

makes no contribution to the shading of
�!
P .

diffuse
��!
color

Speci�es the di�use color.

The di�use contribution from each non-shadowed light source at
�!
P is equal

to the di�use color of the surface scaled by the cosine of the angle between
�!
N and the vector from

�!
P to the light source.

specular
��!
color

Speci�es the base color of specular re
ections.

specpow exponent
Controls the size of the specular highlight. The larger the exponent,
the smoother the apparent �nish.

The intensity of specular highlights from light sources are scaled by the
specular color of the surface.

30

reflect re
ectivity
Speci�es the specular re
ectivity of the surface. If non-zero, re
ected
rays will be spawned.

The intensity of specularly re
ected rays will be proportional to the specular
color of the surface scaled by the re
ectivity.

transp transparency
Speci�es the specular transmissivity of the surface. If non-zero, trans-
mitted (refracted) rays will be spawned.

body
��!
color
Speci�es the body color of the object. The body color a�ects the color
of rays that are transmitted through the object.

extinct coe�cient
Speci�es the extinction coe�cient of the interior of the object.

The extinction coe�cient is raised to a power equal to the distance the
transmitted ray travels through the object. The overall intensity of specu-
larly transmitted rays will be proportional to this factor multiplied by the
surface's body color multiplied by the transparency of the object.

index N
Speci�es the index of refraction. The default value is equal to the
index of refraction of the atmosphere surrounding the eye.

translucency translu
��!
color stexp

Speci�es the translucency, di�usely transmitted color, and Phong ex-
ponent for transmitted specular highlights.

If a light source illuminates a translucent surface from the side opposite
that from which a ray approaches, illumination computations are performed,
using the given color as the surface's di�use color, and the given exponent
as the Phong highlight exponent. The resulting color is then scaled by the
surface's translucency.

31

6.2 Atmospheric E�ects

Any number of atmospheric e�ects may be associated with the default
medium (\air").

fog
��!
color

�����!
thinness

Add exponential fog with the speci�ed thinness and color.

Fog is simulated by blending the color of the fog with the color of each ray.
The amount of fog color blended into a ray color is an exponential function
of the distance from the ray origin to the point of intersection divided by the
speci�ed thinness for each color channel. If the distance is equal to thinness,
a ray's new color will be half of the fog color plus half its original color.

mist
��!
color

�����!
thinness zero scale

Add global low-altitude mist of the speci�ed color. The color of a
ray is modulated by a fog with density that varies linearly with the
di�erence in z coordinate1 between the ray origin and the point of
intersection. The thinness values specify the transmissivity of the fog
for each color channel. The base altitude of the mist is given by zero,
and the apparent height of the mist can be modulated using scale,
which scales the di�erence in altitude used to compute the fog.

fogdeck altitude o�set
��!
scale chaoscale

��!
color

�����!
thinness

Add low-altitude fog, with transmissivity modulated by a chaotic func-
tion.

6.3 The Default Medium

The default medium is the medium which surrounds and encompasses all
of the objects in the scene; it is the \air" through which eye rays usually
travel before hitting an object. The properties of the default medium may
be modi�ed through the use of the atmosphere keyword.
a

1This all but assumes that the default up vector (0, 0, 1) is being used.

32

atmosphere [N] [atmospheric e�ects]
If given, N speci�es the index of refraction of the default medium. The
default is 1.0. Any atmospheric e�ects listed are applied to rays that
are exterior to every object in the scene (e.g., rays emanating from the
camera).

/*

* Red sphere on a grey plane, with fog.

*/

eyep 0. -10. 2.

atmosphere fog .8 .8 .8 14. 14. 14.

plane 0 0 0 0 0 1

sphere diffuse 0.8 0 0 1.5 0 0 1.5

6.4 Surface Speci�cation

Rayshade provides a number of ways to de�ne surfaces and to bind these
surfaces to objects. The most straight-forward method of surface speci�ca-
tion is to simply list the surface properties to be used. Alternatively, one
may associate a name with a given surface. This name may subsequently
be used to refer to that surface.

surface name <Surface De�nition>
Associate the given collection of surface attributes with the given
name.

The binding of a collection of surface properties to a given object is ac-
complished in a bottom-up manner; the surface that \closest" in the mod-
eling tree to the primitive being rendered is the one that is used to give the
primitive its appearance.

An object that has no surface bound to it is assigned a default surface
that gives the appearance of white plastic.

The most direct way to bind a surface to a primitive is to specify the
surface when the the primitive instantiated. This is accomplished by insert-
ing a list of surface attributes or a surface name after the primitive's type
keyword and before the actual primitive data.

33

/*

* A red 'mud' colored sphere reseting on a

* white sphere. To the right is a sphere with

* default surface attributes.

*/

surface mud ambient .03 0. 0. diffuse .7 .3 0.

sphere ambient .05 .05 .05 diffuse .7 .7 .7 1. 0 0 0

sphere mud 1. 0 0 2

sphere 1. 1.5 0 0

Here, we de�ne a red surface named \mud". We then instantiate a
sphere, which has a di�use white surface bound to it. The next line instan-
tiates a sphere with the de�ned \mud" surface bound to it. The last line
instantiates a sphere with no surface bound to it; it is assigned the default
surface by rayshade .

The applysurf keyword may be used to set the default surface charac-
teristics for the aggregate object currently being de�ned.

applysurf <Surface Speci�cation>
The speci�ed surface is applied to all following instantiated objects
that do not have surfaces associated with them. The scope of this
keyword is limited to the aggregate currently being de�ned.

/*

* Mirrored ball and cylinder sitting on 'default' plane.

*/

surface mirror ambient .01 .01 .01

diffuse .05 .05 .05

specular .8 .8 .8 specpow 20 reflect 0.95

plane 0 0 0 0 0 1

applysurf mirror

sphere 1 0 0 0

cylinder 1 3 0 0 3 0 3

For convenience, the name cursurf may be used to refer to the current
default surface.

34

The utility of bottom-up binding of surfaces lies in the fact that one
may be as adamant or as noncommittal about surface binding as one sees
�t when de�ning objects. For example, one could de�ne a king chess piece
consisting of triangles that have no surface bound to them, save for the cross
on top, which has a gold-colored surface associated with it. One may then
instantiate the king twice, once applying a black surface, and once applying
a white surface. The result: a black king and a white king, each adorned
with a golden cross.

surface white ...

surface black ...

surface gold ...

...

define cross

box x y z x y z

...

defend

define king

triangle x y z x y z x y z

...

object gold cross

defend

object white king translate 1. 0 0

object black king

35

Rayshade supports the application of linear transformations to objects and
textures. If more than one transformation is speci�ed, the total resulting
transformation is computed and applied.

translate
��!
delta

Translate (move) by delta.

rotate
��!
axis �

Rotate counter-clockwise about the given axis by � degrees.

scale �!v
Scale by v.

All three scaling components must be non-zero, else degenerate matrices will
result.

transform
��!
row1

��!
row2

��!
row3 [

��!
delta]

Apply the given 3-by-3 transformation matrix. If given, delta speci�es
a translation vector.

Transformations should be speci�ed in the order in which they are to be
applied immediately following the item to be transformed. For example:

36

/*

* Ellipsoid, rotated cube

*/

sphere 1. 0 0 0 scale 2. 1. 1. translate 0 0 -2.5

box 0 0 0 .5 .5 .5

rotate 0 0 1 45 rotate 1 0 0 45 translate 0 0 2.5

Transformations may also be applied to textures:

plane 0 0 -4 0 0 1

texture checker red scale 2 2 2 rotate 0 0 1 45

Note that transformation parameters may be speci�ed using animated
expressions, causing the transformations themselves to be animated. See
Appendix B for further details.

37

Textures are used to modify the appearance of an object through the use
of procedural functions. A texture may modify any surface characteristic,
such as di�use color, re
ectivity, or transparency, or it may modify the
surface normal (\bump mapping") in order to give the appearance of a
rough surface.

Any number of textures may be associated with an object. If more than
one texture is speci�ed, they are applied in the order given. This allows
one to compose texturing functions and create, for example a tiled marble
ground plane using the checker and marble textures.

Textures are associated with objects by following the object speci�cation
by a number of lines of the form:

texture name <Texturing Arguments> [Transformations]

Transformations may be applied to the texture in order to, for example,
shrink or grow feature size, change the orientation of features, and change
the position of features.

Several of the texturing functions take the name of a colormap as an
argument. A colormap is 256-line ASCII �le, with each line containing
three space-separated values ranging from 0 to 255. Each line gives the red,
green, and blue values for a single entry in the colormap.

38

8.1 Texturing Functions

blotch BlendFactor surface
Produces a mildly interesting blotchy-looking surface. BlendFactor is
used to control the interpolation between the default surface character-
istics and the characteristics of the given surface. A value of 0 results
in a roughly 50-50 mix of the two surfaces. Higher values result in a
great portion of the default surface characteristics.

bump scale
Apply a random bump map. The point of intersection is passed to
DNoise(). The returned normalized vector is weighted by scale and
the result is added to the normal vector at the point of intersection.

Using an image texture applied to the \bump" component o�ers a more
direct way to control the modi�cation of surface normals (see below).

checker <Surface>
Applies a 3D checkerboard texture. Every point that falls within an
\even" unit cube will be assigned the characteristics of the named
surface applied to it, while points that fall within \odd" cubes will
have its usual surface characteristics. Be wary of strange e�ects due
to roundo� error that occur when a planar checkered surface lies in a
plane of constant integral value (e.g., z = 0) in texture space. In such
cases, simply translate the texture to ensure that the planar surface is
not coincident with an integral plane in texture space (e.g., translate
0 0 0.1).

cloud scale H � octaves cthresh lthresh tscale
This texture is a variant on Geo� Gardner's ellipsoid-texturing al-
gorithm. It should be applied to unit spheres centered at the ori-
gin. These spheres may, of course, be transformed at will to form the
appropriately-shaped cloud or tree.

A sample of normalized fBm (see the fbm texture) is generated at
the point of intersection. This sample is used to modulate the surface
transparency. The �nal transparency if a function of the sample value,
the the proximity of the point of intersection to the edge of the sphere

39

(as seen from the ray origin), and three parameters to control the
overall \density." The proximity of the point to the sphere edge is
determined by evaluating a limb function, which varies from 0 on the
limb to 1 at the center of the sphere.

transp = 1:� fBm� cthresh � (lthresh � cthresh)(1� limb)
a

tscale

fbm o�set scale H � octaves thresh [colormap]
Generate a sample of discretized fractional Brownian motion (fBm)
and uses it to scale the di�use and ambient component of an object's
surface. Scale is used to scale the value returned by the fBm function.
O�set allows one to control the minimum value of the fBm function.
H is the Holder exponent used in the fBm function (a value of 0.5
works well). � is used to control lacunarity, and speci�es the the fre-
quency di�erence between successive samples of the fBm basis function
(a value of 2.0 will su�ce). Octaves speci�es the number of octaves
(samples) to take of the fBm basis function (in this case, Noise()).
Between �ve and seven octaves usually works well. Thresh is used to
specify a lower bound onthe output of the fBm function. Any value
lower than thresh is set to zero.

If a colormap is named, a 256-entry colormap is read from the named
�le, and the sample of fBm is scaled by 255 and is used as an index
into the colormap. The resulting colormap entry is used to scale the
ambient and di�use components of the object's surface.

fbmbump o�set scale H � octaves
Similar to the fbm texture. Rather than modifying the color of a
surface, this texture acts as a bump map.

gloss glossiness
Gives re
ective surfaces a glossy appearance. This texture perturbs
the object's surface normal such that the normal \samples" a cone
of unit height with radius 1: � glossiness. A value of 1 results in
perfect mirror-like re
ections, while a value of 0 results in extremely
fuzzy re
ections. For best results, jittered sampling should be used to
render scenes that make use of this texture.

40

marble [colormap]
Gives a surface a marble-like appearance. The texture is implemented
as roughly parallel alternating veins of marble, each of which is sep-
arated by 1/7 of a unit and runs perpendicular to the Z axis. If a
colormap is named, the surface's ambient and di�use colors will be
scaled using the RGB values in the colormap. If no colormap is given,
the di�use and ambient components are simply scaled by the value of
the marble function. One may transform the texture to control the
density and orientation of the marble veins.

sky scale H � octaves cthresh ltresh
Similar to the fbm texture. Rather than modifying the color of a
surface, this texture modulates its transparency. cthresh is the value
of the fBm function above which the surface is totally opaque. Below
lthresh, the surface is totally transparent.

stripe <Surface> size bump <Mapping>
Apply a \raised" stripe pattern to the surface. The surface properties
used to color the stripe are those of the given surface. The width of
the stripe, as compared to the unit interval, is given by size. The
magnitude of bump controls the extent to which the bump appears to
be displaced from the rest of the surface. If negative, the stripe will
appear to sink into the surface; if positive, it will appear to stand out
of the surface.

Mapping functions are described below.

wood

Gives a surface a wood-like appearance. The feature size of this texture
is approximately 0:01 of a unit, making it often necessary to scale the
texture in order to achieve the desired appearance.

8.2 Image Texturing

Rayshade also supports an image texture. This texture allows you to use
images to modify the characteristics of a surface. You can use three-channel

41

images to modify the any or all of the ambient, di�use, and specular colors
of a surface. If you are using the Utah Raster Toolkit, you can also use
single-channel images to modify surface re
ectance, transparency, and the
specular exponent. You can also use a single-channel image to apply a bump
map to a surface.

In all but the bump-mapping case, a component is modi�ed by multiply-
ing the given value by the value computed by the texturing function. When
using the Utah Raster Toolkit, surface characteristics are modi�ed in pro-
portion to the value of the alpha channel in the image. If there is no alpha
channel, or you are not using the Utah Raster Toolkit, alpha is assumed to
be everywhere equal to 1.

component <Component>
The named component will be modi�ed.

Possible surface components are: ambient (modify ambient color), diffuse
(modify di�use color), specular (modify specular color), specpow, (modify
specular exponent), reflect, (modify re
ectivity), transp (modify trans-
parency), bump, (modify surface normal). The specpow, reflect, transp,
and bump components require the use of a single-channel image.

range high low
Specify the range of values to which the values in the image should be
mapped. An value of 1 will be mapped high, 0 to low. Intermediate
values will be linearly interpolated.

smooth

When given, pixel averaging will be performed in order to smooth the
sampled image. If not speci�ed, no averaging will occur.

textsurf <Surface Speci�cation>
For use when modifying surface colors, this keyword speci�es that the
given surface should be used as the base to be modi�ed when the
alpha value in the image is non-zero. When alpha is zero, the object's
unmodi�ed default surface characteristics are retained.

The usual behavior is for the object's default surface properties to be used.

42

tile un vn
Specify how the image should be tiled (repeated) along the u and
v axes. If positive, the value of un gives the number of times the
image should be repeated along the u axis, starting from the origin
of the texture, and positive vn gives the number of times it should be
repeated along the v axis. If either value is zero, the image is repeated
in�nitely along the appropriate axis.

Tiling is usually only a concern when planar mapping is being used, though
it may also be used if image textures are being scaled. By default un and
vn are both zero.

A mapping function may also be associated with an image texture.

8.3 Mapping Functions

Mapping functions are used to apply two-dimensional textures to surfaces.
Each mapping functions de�nes a di�erent method of transforming a three
dimensional point of intersection to a two dimensional u � v pair termed
texturing coordinates. Typically, the arguments to a mapping method de-
�ne a center of a projection and two non-parallel axes that de�ne a local
coordinate system.

The default mapping method is termed u � v mapping or inverse map-
ping. Normally, there is a di�erent inverse mapping method for each prim-
itive type (see chapter 5). When inverse mapping is used, the point of
intersection is passed to the uv method for the primitive that was hit.

map uv

Use the uv (inverse mapping) method associated with the object that
was intersected in order to map from 3D to determine texturing coor-
dinates.

The inverse mapping method for each primitive is described in Chapter 5.

map planar [
���!
origin

���!
vaxis

���!
uaxis]

Use a planar mapping method. The 2D texture is transformed so that

43

its u axis is given by
���!
uaxis and its v axis by vaxis. The texture is

projected along the vector de�ned by the cross product of the u and

v axes, with the (0,0) in texture space mapped to
���!
origin.

map cylindrical [
���!
origin

���!
vaxis

���!
uaxis]

Use a cylindrical mapping method. The point of intersection is pro-
jected onto an imaginary cylinder, and the location of the projected

point is used to determine the texture coordinates. If given,
���!
origin

and
���!
vaxis de�ne the cylinder's axis, and

���!
uaxis de�nes where u = 0 is

located.

See the description of the inverse mapping method for the cylinder in Chap-
ter 5. By default, the point of intersection is projected onto a cylinder that

runs through the origin along the z axis, with
���!
uaxis equal to the x axis.

map spherical [
���!
origin

���!
vaxis

���!
uaxis]

Use a spherical mapping method. The intersection point is projected
onto an imaginary sphere, and the location of the projected point is
used to determine the texturing coordinates in a manner identical to
that used in the inverse mapping method for the sphere primitive. If

given, the center of the projection is
���!
origin ,

���!
vaxis de�nes the sphere

axis, and the point where the non-parallel
���!
uaxis intersects the sphere

de�nes where u = 0 is located.

By default, a spherical mapping projects points towards the origin, with
���!
vaxis de�ned to be the z axis and

���!
uaxis de�ned to be the x axis.

44

This appendix describes the command-line arguments accepted by rayshade .
These options override defaults as well as any values or
ags given in the
input �le, and are thus useful for generating test and other unusual, \non-
standard" renderings.

The general form of a rayshade command line is:

rayshade [Options] [�lename]

If given, the input �le is read from �lename. By default, the input �le
is read from the standard input. Recall that, by default, the image �le
is written to the standard output; you will need to redirect the standard
output if you have not chosen to write the image to a �le directly. The
name of the input �le may be given anywhere on the command line.

Command-line options fall into two broad categories: those that set
numerical or other values and thus must be followed by further arguments,
and those that simply turn features on and o�. Rayshade 's convention is to
denote the value-setting arguments using capital letters, and feature-toggling
arguments using lower-case letters.

-A frame
Begin rendering (action) on the given frame.

The default starting frame is number zero.

45

-a

Toggle writing of alpha channel.

This option is only available when the Utah Raster Toolkit is being used.

-C R G B
Set the adaptive ray tree pruning color. If all channel contributions
falls below the given cuto� values, no further rays are spawned.

Overrides the value speci�ed via the cutoff keyword.

-c

Continue an interrupted rendering.

When given, this option indicates that the image �le being written to con-
tains a partially-completed image. Rayshade will read the image to deter-
mine the scanline from which to continue the rendering. This option is only
available with the Utah Raster Toolkit. The -O option must also be used.

-D depth
Set maximum ray tree depth.

Overrides the value speci�ed in the input �le via the maxdepth keyword.

-E separation
Set eye separation for rendering of stereo pairs.

Overrides the value speci�ed via the eyesep keyword.

-e

Write exponential RLE �le.

This option is only available for use with the Utah Raster Toolkit. See the
Utah Raster Toolkit's unexp manual page for details on exponential RLE
�les.

46

-F freq
Set frequency of status report.

Overrides the value given using the report keyword.

-f

Flip all computed polygon (and triangle) normals.

This option should be used when rendering polygons de�ned by vertices
given in clockwise order, rather than counter-clockwise order as expected by
rayshade .

-G gamma
Use given gamma correction exponent writing writing color informa-
tion to the image �le.

The default value for gamma is 1.0.

-g

Use a Gaussian pixel �lter.

Overrides the �lter selected through the use of the filter keyword.

-h

Print a short use message.

-j

Toggle the use of jittered sampling to perform antialiasing. If disabled,
a �xed sampling pattern is used.

-l

Render the left stereo pair image.

-m

Write a sampling map to the alpha channel.

47

Rather than containing coverage information, the alpha channel values will
be restricted to zero, indicating no supersampling, and full intensity, indicat-
ing supersampling. This option is only available if the Utah Raster Toolkit
is being used.

-N frames
Set the total number of frames to be rendered.

This option overrides any value speci�ed through the use of the frames

keyword. By default, a single frame is rendered.

-n

Do not render shadows.

-O out�le
Write the image to the named �le.

This option overrides the name given with the outfile keyword, if any, in
the input �le.

-o

Toggle the e�ect of object opacity on shadows.

This option is equivalent to specifying shadowtransp in the input �le. By
default, rayshade traces shadow rays through non-opaque objects.

-P cpp-arguments
Specify the options that should be passed to the C preprocessor.

The C preprocessor, if available, is applied to all of the input passed to
rayshade.

-p

Perform preview-quality rendering.

This option is equivalent to -n -S 1 -D 0.

48

-q

Do not print warning messages.

-R xsize ysize
Produce an image xsize pixels wide by ysize pixels high.

This option overrides any screen size set by use of the screen keyword.

-r

Render the right stereo pair image.

-S samples
Use samples2 jittered samples.

This option overrides any value set through the use of the samples keyword
in the input �le.

-s

Disable caching of shadowing information.

It should never be necessary to use this option.

-T r g b
Set the contrast threshold in the three color channels for use in adap-
tive supersampling.

This option overrides any value given through the use of the contrast key-
word.

-u

Toggle the use of the C preprocessor.

Rayshade usually feeds its input through a C preprocessor if one is available
on your system. If this option is given, unadulterated input �les will be
used.

49

-V �lename
Write verbose output to the named �le.

This option overrides any �le named through the use of the report keyword.

-v

Write verbose output.

When given, this option causes information about the options selected and
the objects de�ned to be included in the report �le.

-W minx maxx miny maxy
Render the speci�ed window.

The window must be properly contained within the screen. This option
overrides any window speci�ed using the window keyword in the input �le.

-X left right bottom top
Crop the rendering window using the given normalized values.

This option is provided to facilitate changing and/or examining a small
portion of an image without having to re-render the entire image.

50

Rayshade provides basic animation animation support by allowing time-
varying transformations to be associated with primitives and aggregate ob-
jects. Commands are provided for controlling the amount of time between
each frame, the speed of the camera shutter, and the total number of frames
to be rendered.

By default, rayshade renders a single frame, with the shutter open for an
instant (0 units of time, in fact). The shutter speed in no way changes the
light-gathering properties of the camera, i.e., frames rendered using a longer
exposure will not appear brighter than those with a shorter exposure. The
only change will be in the potential amount of movement that the frame
\sees" during the time that the shutter is open.

Each ray cast by rayshade samples a particular moment in time. The
time value assigned to a ray ranges from the starting time of the current
frame to the starting time plus the amount of time the shutter is open.
When a ray encounters an object or texture that possesses an animated
transformation, the transformed entity is moved into whatever position is
appropriate for the ray's current time value before intersection, shading, or
texturing computations are performed.

The starting time of the current frame is computed using the length
of each frame the current frame number, and the starting time of the �rst
frame.

51

shutter t
Speci�es that the shutter is open for t units of time for each exposure.

A larger value of t will lead to more motion blur in the �nal image. Note
that t may be greater than the actual length of a frame. By default, t is
zero, which prevents all motion blur.

framelength frameinc
Speci�es the time increment between frames.

The default time between frames is 1 unit.

starttime time
Speci�es the starting time of the �rst frame.

By default, time is zero.

Variables may be de�ned thorugh the use of the define keyword:

define name value
Associate name with the given value. Value may be a constant or a
parenthesized expression.

The variable name may thereafter be used in expressions in the input �le.

An animated transformation is one for which animated expressions have
been used to de�ne one or more of its parameters (e.g. the angle through
which a rotation occurs). An animated expression is one that makes use of
a time-varying (\animated") variable or function.

There are two supported animated variables. The �rst, time, is equal
to the current time. When a ray encounters an animated transformation
de�ned using an expression containing time, the ray substitutes its time
value into the expression before evaluation. Using the time variable in an
animated expression is the most basic way to create blur-causing motion.

The second animated variable, frame, is equal to the current frame num-
ber. Unlike the time variable, frame takes on a single value for the duration

52

of each frame. Thus, transforms animated through the use of the frame

variable will not exhibit motion blurring.

Also supported is the linear function. This function uses time implic-
itly to interplate between two values.

linear (Stime, Sval, Etime, Eval)
Linearly interpolate between Sval at time Stime and Eval at time
Etime. If the current time is less than Stime, the function returns
Sval. If the current time is greater than Etime, Eval is returned.

The following example shows the use of the time variable to animate a
sphere by translating it downwards over �ve frames. Note thet the shutter
keyword is used to set the shutter duration in order to induce motion blur-
ring.

frames 5

shutter 1

sphere 1 0 0 2 translate 0 0 (-time)

Further examples of animation may be found in the Examples directory
of the rayshade distribution.

53

This appendix describes the format of the �les that store data for the height
�eld primitive. The format is an historical relic; a better format is needed.

Height �eld data is stored in binary form. The �rst record in the �le is
a 32-bit integer giving the square root of number of data points in the �le.
We'll call this number the size of the height �eld.

The size is followed by altitude (z) values stored as 32-bit
oating point
values. The 0th value in the �le speci�es the z coordinate of the lower-
left corner of the height �eld (0, 0). The next speci�es the Z coordinate
for (1=(size � 1); 0). The last speci�es the coordinate for (1:; 1:). In other
words, the ith value in the height�eld �le speci�es the z coordinate for the
point whose x coordinate is (i%size)=(size� 1), and whose y coordinate is
(i=size)=(size� 1). Non-square height �elds may be rendered by specifying
altitude values less than or equal to the magic value �1000. Triangles that
have any vertex less than or equal in altitude to this value are not rendered.

While this �le format is compact, it sacri�ces portability for ease of
use. While creating and handling height �eld �les is simple, transporting
a height �eld from one machine to another is problematical due to the fact
that di�erences in byte order and
oating-point format between machines is
not taken into account.

These problems could be circumvented by writing the height �eld �le in
a �xed-point format, taking care to write the bytes that encode a given value
in a consistent way from machine to machine. An even better idea would be

54

to write a set of tools for manipulating arbitrary 2D arrays of
oating-point
values in a compact, portable way, allowing for comments and the like in
the �le: : :

55

