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Chapter 1

Introduction

1.1 Overview

In the past twenty years or so, computer graphics techniques for simulating the interaction of

light with matter has progressed to the point where photorealistic quality images can be produced

quite e�ciently. While earlier algorithms considered direct lighting only, solutions to the global

illumination problem with indirect lighting, surface to surface interre
ections, and shadows are

now tractable. The two major algorithmic approaches that have arisen to solve this problem

are ray tracing and radiosity. This thesis will examine the radiosity method and provide an

implementation of important advances in this method.

The current state of workstation graphics hardware and software o�ers rendering of objects

that are directly illuminated by light sources. Usually objects can have surfaces that have di�use or

specular properties, and polygons may be rendered using 
at shading, linearly interpolated shading

[Gour71] or with highlighting [Phong75]. Though large numbers of surfaces can be rendered at high

speeds (roughly 25,000 polygons per second), the resulting images can still be easily recognized

as computer generated simulations. The major problem is the fact that these renderings do not

consider the e�ect of interactions between surfaces in the environment, that is, indirect light. In

the real world, surfaces are lit both directly by light sources and indirectly from re
ections o�

other surfaces. Even though these e�ects are di�cult to simulate, they are of great importance

for realistic image synthesis.

Realistic simulations depend to a large extent on the global re
ection model at each surface
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in the environment. This model de�nes the outgoing intensities in any direction as a function of

incoming energy, (the global illumination), from all directions.

In recent years two methods, ray tracing and radiosity, have been able to simulate global

illumination e�ects in a tractable manner, but both are still restrictive. Ray tracing has become

the preferred method for environments that have predominantly specular surfaces, using discrete

sampling methods, to give results that are dependent on the position from which the environment

is viewed (view dependent). The radiosity method, performs well for di�use scenes, using discrete

models of the environment, and giving results that are view independent.

The introduction of the radiosity method has led to a loosening of a number of image synthesis

constraints. The method provides a separation of the simulation of light inter-re
ection, and

rendering of the �nal image. This has allowed for computation of the illumination once, with

di�erent views of the environment only requiring recomputation of the rendering step. Standard

graphics hardware pipelines on many of todays graphics workstations allow for dynamic sequences

of these images to be displayed. In addition, more accurate solutions can be achieved giving e�ects

such as \colour bleeding", complex shading / shadow e�ects, and simulation of area light sources.

The radiosity method has since evolved to allow for more physical accuracy, faster computation

and less storage cost, incorporation of more complex physical models, and increased usability

through pre (model generation) and post (rendering) processes.

1.2 The Radiosity Method

The basic radiosity method is based on principles from the �eld of thermal engineering. The under-

lying theory can be found inmost radiative heat transfer texts ([Siegel81] [Sparrow63] [Sparrow78]).

In general we are dealing with a number of surfaces which form an enclosure. Each of these sur-

faces, and the volume enclosed have both radiative and geometric properties associated with them.

The aim of the radiosity method is to compute the radiosity for every surface, where the radiosity

is basically the energy per unit time, per unit area leaving a surface due to the original energy of

the surface plus any impinging energy that is re
ected o� of it. In order to compute impinging

energy, geometrical relations called form-factors need to be computed between pairs of surfaces,

for surface-volume, or for volume-volume interactions to determine the amount of energy that ar-

rives at a surface from other surfaces or volumes, either directly or indirectly. For surface-surface

interactions, form-factors are based on the shape, area, and orientation of each surface, the dis-
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tance between them, and the portion of each surface visible to the other. If a volume is involved,

then attenuation or enhancement of radiosity transport due to volumetric properties must also be

considered.

The assumption that the enclosure encloses a vacuum, and thus volume interactions are not

involved, has been used by most of the current research into determining solutions. For this case

the fundamental equation for computing surface radiosity is:

Radiosity

i

= Emission

i

+

X

j

Reflectance

ij

(Radiosity

j

� FormFactor

i�j

) (1:1)

where single subscript i denotes surface i, and ij denotes i with respect to j. The equation

basically says that the radiosity of some surface i is equal to the original emission of that surface

plus the sum of any re
ected impinging energy from every other surface j in the environment (See

Figure 1.1a). The impinging energy is dependent upon the radiosity of all surfaces j (Radiosity

j

)

and the form-factor (FormFactor

i�j

) which determines the fraction of the radiosity of surface j

that arrives at surface i.

Radiosity i

Emission i

Total Reflected Energy for i

Total impinging Energy

Surface i

Input Model

Form Factor

Computation

Radiosity

Computation

Render 
Image

Radiosity values

Form factor values

Geometric and Radiative Properties

For

all

surfaces:

Figure 1.1: a) Geometry for radiosity of a surface (i) b) Flowchart of basic radiosity method.

Examining equation (1.1), note that the radiosity of a surface i is dependent on the radiosity

of every other surface j resulting in a system of linear equations of the form of equation (1.1)

being required, with one equation for each of the surfaces. The task of calculating the global

illumination is thus reduced to solving the form-factors between every pair of surfaces, and then

solving the resulting set of linear equations to �nd the radiosity values for all surfaces i. Once

computed, images may be rendered. A basic outline of the method is given in Figure 1.1b.
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1.3 Motivation

Currently there are few articles that go beyond a simple survey of one or more areas involved in

the radiosity method ([Cohen86], [Pueyo91]) to perform a comparative examination of all areas

to any great depth. Our �rst aim is to help to �ll this void. The major areas of research covered

in our survey includes modeling, form-factor computation, radiosity computation, rendering, and

parallelization. Since the most computationally expensive part of the process is computing form-

factors, it has received the most research attention. Much of the remaining research has gone into

computing solutions with less restrictive illumination models. As such, a major part of the survey

concentrates on these two areas.

In order to examine these areas more closely, an implementation of some of the more impor-

tant advances in the radiosity method is given. There are currently a number of publicly available

implementations using the ray tracing method (e.g. RayTrace [Kolb], Radiance [Watt], and

DKBTrace [Buck]). Part of our motivation is to provide a publicly available general implemen-

tation using the radiosity method, which is currently lacking. We also hope to provide some

comparative experimental results using previous separately tested techniques in conjunction with

one another.

For continuity, our discussion will cover the main constituents of a radiosity method in a step-

by-step manner, starting with initial model creation, then simulation to compute radiosity values,

and �nally rendering of images. For each part of the process, issues such as computational cost,

use of coherence, assumptions, compatibility, and physical accuracy will be addressed.

1.4 Outline of Thesis

This thesis is composed of three main parts. The �rst part will provide background for those

unfamiliar with the heat transfer principles that underly the radiosity method. The second part

will contain a careful examination of various issues related to important areas of research into the

radiosity method. The third will be an implementation of some important results. Chapters 2

and 3 contain heat transfer background. Chapter 4 contains our survey, Chapter 5 our radiosity

implementation, and Chapter 6 initial experimental results comparing the various techniques used.

Chapter 7 provides some closing remarks, looking at outstanding issues, and future directions.

Appendix A contains experimental statistics, Appendix B a glossary of some common terms used

in this thesis, and Appendix C an example of using techniques given in Chapter 4.
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Chapter 2

Thermal Engineering Concepts

2.1 Introduction

Various heat transfer principles within the �eld of thermal engineering have been used as the

basis of the radiosity method in computer graphics. In this chapter some important material will

be summarized from this area. This material can be found in most radiative heat transfer texts

([Saro�m67], [Sparrow78], [Sparrow68], [Siegel81], [Chapman89] ).

2.2 Radiation Heat Transfer

There are basically three modes of heat transfer between objects: conduction, convection, and

radiation. We are interested in radiation. The basic idea behind radiation is that when part or

all of body is hotter than it's surroundings it tends to cool with time, by emitting energy in all

directions. Part of this energy may be re
ected, transmitted, and / or absorbed.

More succinctly, electromagnetic radiation is observed to be emitted at the surface of a body

which has been thermally excited, such that the following rules hold:

� There is usually an exchange of energy from a hotter to a cooler body.

� The net exchange of energy is zero.

� The exchange is size, shape, and relative orientation dependent.

If the energy exchange can occur without a medium of transport present, then the mechanism
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involved is thermal radiation.

In the sections to follow, thermal radiation energy transport will be discussed in some detail.

The �rst part of the discussion will explain some basic principles and terminology. Our focus will

then be on the direct exchange of energy between two bodies using the concept of a form-factor.

Lastly, the total exchange of energy in environments with certain radiative characteristics will be

considered.

2.3 Geometric, Surface and Radiative Properties

This section will outline some basic de�nitions and relations for various geometric, surface, and

radiative properties, that will be needed later on.

Before starting, some terms that are used to categorize surface and radiative properties are

given:

� If a radiative or surface property is wavelength dependent then there is a spectral dependency.

Amonochromatic property is one that is applicable at one wavelength, A total property is one

that is evaluated over the entire applicable wavelength spectrum. Monochromatic properties

will be denoted by subscript �.

� A property that has directional dependencies, may be applicable only in a single direction,

or be a value summed over all directions above a surface (hemispherical). If applicable to a

single direction, a property will be accompanied by some directional coordinates.

2.3.1 Basic De�nitions

P
r

d

φ

θ

θ

dφ

Np

(b)

β

dA

r

n

P

dA’

(a)

Figure 2.1: Di�erential solid angle geometry: a) In terms of di�erential projected area, and b) In

terms of polar coordinates of a hemisphere.
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Terms

� A solid angle (!) is the angle of the apex of a cone, and is measured in terms of the area on a

hemisphere intercepted by a cone whose apex is at the hemispheres center P . A solid angle

is measured in terms of a steradian (sr) which is the solid angle of a cone that intercepts an

area equal to the square of the hemisphere's radius r. There are 2� steradian per hemisphere.

An alternative way to view a solid angle is as follows: The solid angle subtended by a surface,

is the area (A) of a surface projected down onto the hemisphere centered at some point P ,

divided by the square of the hemisphere's radius. Thus, the di�erential solid angle subtended

by a di�erential area dA located distance r from P is:

d! =

dA

0

r

2

=

cos�dA

r

2

(2:1)

where dA

0

is the projection of dA normal to r and � is the angle between r and normal

drawn to dA.

In terms of polar angle � and azimuth angle � (longitude), a di�erential solid angle is given

as:

d! =

dA

0

r

2

=

(rd�)(rsin�d�)

r

2

= sin�d�d� (2:2)

(See Figure 2.1).

� energy 
ux (q) is the general term for the rate at which energy is emitted

� energy 
ux density (dq) is the energy leaving a surface per unit time and unit area, contained

within a di�erential solid angle (d!), in a given direction (�) measured from the surface

normal to the axis of the solid angle.

dq = I cos �d! (2:3)

� Radiance (I) or intensity of radiation is the directional distribution of energy to or from a

surface (by emission or re
ection) per unit area normal to the solid angle, per di�erential

solid angle, per unit time. From the de�nition for dq (Equation 2.3), I is given as:

I =

dq

cos �d!

(2:4)

� Emissive power (E) is the emitted thermal energy leaving a surface, per unit time, per unit

area of a surface, and may be spectrally and directionally dependent. It is original emission

from a surface, not the re
ected energy. E is dependent on the temperature, substance, and

structure (e.g. roughness) of the emitting surface,

� Radiosity (B) is the radiation leaving a surface per unit time and unit area. This value

includes both re
ected energy and original emission.

� Irradiation (H) is the rate per unit area, at which thermal energy is incident on a surface

(fromall directions). Irradiation results from emissions and re
ections from all other surfaces,

and may be spectrally dependent.

� Re
ectivity (�) gives the amount of the radiation incident to the surface of a body that is

re
ected by the body.
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� Absorptivity (�) gives the amount of the radiation incident to the surface of a body that is

absorbed by the body.

� Transmissivity (� ) gives the amount of the radiation incident to the surface of a body that

is transmitted through the body.

φ

θ

dA

dw

N

I_i

φ

θ

dw

dA

N

I_(e+r)

Figure 2.2: a) Radiosity geometry b) Irradiation geometry

Formulations

For the most part, formulas for total properties will be presented. It is straight-forward to de-

rive the formulas for monochromatic properties, since monochromatic properties are simply total

properties which apply to a single wavelength band. Figure 2.2 will be used in our derivations.

The energy 
ux from the surface into the unit hemisphere above the surface can be found by

integrating equation (2.3) over the entire hemisphere:

q =

Z

hemisphere

I cos �d! (2:5)

where

Z

hemisphere

=

Z

2�

0

Z

�=2

0

(2:6)

Using equation (2.2) for a di�erential solid angle, the above integration becomes:

q =

Z

2�

0

Z

�=2

0

I cos �(sin �d�d�) (2:7)

If energy is independent of direction, then I is termed uniform, and the radiation is termed
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di�use. In this case the above equation reduces to:

q = I� (2:8)

If I is uniform, from equations (2.1) and (2.3), the energy 
ux varies as cos�, and inversely as r

2

,

which is just Lambert's law for di�use radiation [Siegel81].

For the above formulation all of the energy leaving a surface in an outward direction was

considered. If considering only the original emission leaving a surface, the 
ux is the hemispherical

emissive power E and the associated radiance is labeled I

e

. Therefore:

E =

Z

2�

0

Z

�=2

0

I

e

cos �(sin �d�d�) (2:9)

If a surface is a di�use emitter (i.e. I

e

is uniform), then

E = �I

e

(2:10)

For radiosity, which considers the original energy plus the re
ected energy from a surface, with

the associated radiance being labeled (I

e+r

), the de�nition for B is:

B =

Z

2�

0

Z

�=2

0

I

(e+r)

cos �(sin �d�d�) (2:11)

If a surface is a di�use emitter and a di�use re
ector, then

B = �I

e+r

(2:12)

Next, the incoming energy is considered. If (I

i

) gives the rate of energy incident upon a surface,

per unit area of intercepting surface, normal to the direction (�; �), per unit solid angle, then the

same relations (2.2) (2.5) apply where I

i

replaces I. Thus irradiation is given as:

H =

Z

2�

0

Z

�=2

0

I

i

cos �(sin �d�d�) (2:13)

and di�use irradiation is given as:

H = �I

i

(2:14)
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2.3.2 Relations

� Using the the Theory of energy conservation [Siegel81] and the above de�nitions, the

following interrelations hold for the monochromatic and total properties:

�

�

+ �

�

+ �

�

= 1:0 (2:15)

�+ �+ � = 1:0 (2:16)

Most gases have high � and low � and �, while for opaque objects: � + � = 1.

� From previous de�nitions for E, B and H properties, the following relation holds:

B = E + �H (2:17)

2.4 Black and Graybody Radiation

A perfect black body will absorb all incident radiation regardless of spectral distribution or di-

rectional character (� = 1). That is, only original emission leaves a surface. According to the

Stefan-Boltzmann Law for Blackbody Emissive Power ([Sparrow78]), the blackbody emissive power

(E

b

) depends on temperature only. To simulate a blackbody environment, imagine an enclosure

at thermal equilibrium. E

b

is independent of orientation, and is equal to the irradiation (H),

(which is constant in all places since it is all absorbed). The radiance of blackbody radiation (I

b

)

is uniform, and from equation (2.10) the blackbody radiation is:

E

b

= �I

b

(2:18)

When considering radiation for more realistic non-black surfaces, at a given temperature, the

emissive power (E

�

) may di�er in amount and spectral distribution from that for a black body

at the same temperature. That is, not all energy may be absorbed, and the emissive power may

depend on the wavelength of the incident radiation. As such these types of surfaces may exhibit

non-di�use behavior such that the emission or re
ected energy may not be constant.

Black and non-black surfaces are related by surface emissivity and absorptivity. The monochro-

matic emissivity (�

�

) of a surface is de�ned as the non-blackbody emission divided by the blackbody

emission

�

�

=

E

�

E

b

(2:19)

The monochromatic absorptivity (�) of a surface is the integral of absorbed irradiation divided by
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the total incident energy.

An ideal gray body is a special type of non-black surface, where the emissivity is independent of

wavelength, or in other words, the ratio of E

�

to E

b

is same for all wavelengths of emitted energy

at a given temperature. Wavelength independence applying to absorption as well, the following

relations are obtained:

� = �

�

(2:20)

� = �

�

(2:21)

According toKircho�'s Law [Sparrow78], at thermal equilibrium and in an isothermal enclosure,

the absorbed and emitted energies are equal, and, absorptivity equals the emissivity:

� = � (2:22)

as long as a gray surface is assumed, or surfaces are idealized as being gray.

2.5 Direct Interchange Between Surfaces

In this section the direct interchange of energy between two surfaces will be discussed, using the

concept of a form-factor. This concept will be used again when discussing the total interchange

of energy between all surfaces of an environment.

To start, a de�nition of the environment is required. The concept of an enclosure, is thus

introduced. An enclosure is de�ned by a set of surfaces enclosing a space, such that one or

more surfaces may or may not be material surfaces (e.g. an open window), and each of these

surfaces has radiation properties and surface temperatures associated with them. Assuming an

enclosure, a form-factor (F ) de�nes the fraction of energy leaving a given surface that arrives at a

second surface directly, and is found by determining the exchange between two di�erential areas

on each surface and then integrating over both surfaces. If Lambertian surfaces are assumed, then

a form-factor is dependent solely on geometry.

Referring to Figure 2.3, let us assume there are two surfaces i and j, with respective areas A

i

and A

j

, and respective di�erential areas on each surface dA

i

and dA

j

. From equations (2.1) and

(2.3),

d! =

cos�

j

dA

j

r

2

(2:23)
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dAj

dAi

Area j

Area i

Normal j

Normal i

j

i

θ

θ

r

Figure 2.3: Form-factor geometry

dq = I

i

cos�

i

d! (2:24)

the fraction of 
ux subtended by dA

j

, as seen from dA

i

is

dq =

I

i

cos�

i

cos �

j

dA

j

r

2

(2:25)

Since dq is the portion of 
ux from dA

i

intercepted by dA

j

, it can be rewritten as:

dq = dq

i�j

=dA

i

(2:26)

where q

i�j

is the energy leaving all of A

i

that strikes all of A

j

. Therefore q

i�j

is found by

integrating over both areas of i and j

q

i�j

=

Z

A

i

Z

A

j

I

i

�

cos�

i

cos �

j

r

2

�

dA

j

dA

i

(2:27)

If the radiosity of the originating surface (B

i

) is uniform over that surface, the total energy leaving

A

i

which strikes A

j

is

F

i�j

=

q

i�j

A

i

B

i

(2:28)
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If the radiant energy is di�use then I

i

is uniform, and from equation (2.12) which states: B

i

= �I

i

,

F

i�j

=

1

A

i

Z

A

i

Z

A

j

�

cos�

i

cos �

j

�r

2

�

dA

i

dA

j

(2:29)

F

i�j

is called the di�use form-factor or con�guration factor. Note that equation (2.29) applies

only for di�use surfaces, while equation (2.28) is generally applicable. Also, F

i�j

in general is not

equal to F

j�i

which is given as:

F

j�i

=

1

A

j

Z

A

j

Z

A

i

�

cos�

j

cos �

i

�r

2

�

dA

i

dA

j

(2:30)

using a similar derivation as the one given for F

i�j

.

2.5.1 Properties of Form-Factors

Assume that the interior of an enclosed space is subdivided into n �nite surfaces with areas A

1

,

A

2

to A

n

. In this section, a surface i will be called the receiving surface and a surface j the

transmitting surface. Let surface i with area A

i

be divisible into subareas A

i

1

; A

i

2

; ::: to A

i

n

where

P

A

i

n

= A

i

. Each of these subareas may be of di�erential size, denoted dA.

1. Reciprocity Property : From equations (2.29) and (2.30), the following equalities may be

derived:

A

i

F

i�j

= A

j

F

j�i

(2:31)

A

i

F

i�dj

= dA

j

F

dj�i

(2:32)

and

dA

i

F

di�dj

= dA

j

F

dj�di

(2:33)

This is provided the 
ux distribution is di�use, and for �nite surfaces, the magnitude of the


ux does not vary along the surface.

2. Additive Property : From equations (2.29) and (2.28) the following relation is obtained:

A

i

F

i�j

=

X

n

A

i

n

F

i

n

�j

(2:34)

From reciprocity the following is derived:

A

j

F

j�i

=

X

n

A

j

F

j�i

n

(2:35)
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which implies that

F

j�i

=

X

n

F

j�i

n

(2:36)

If the transmitting surface is subdivided, the form-factor for that surface with respect to

the receiving surface is not the sum of the individual form-factors, as is the case when the

receiver is subdivided. If both surfaces are subdivided into n and m parts respectively, then

A

i

F

i�j

=

X

n

X

m

A

i

n

F

i

n

�j

m

(2:37)

3. Enclosure property: This property states that from our assumptions, n equations of the

following form may be written, one for each surface:

n

X

j=1

F

i�j

= 1 (2:38)

for i = 1; 2:::; n. The above equation implies that no energy is lost in the enclosure. Note

that some of the surfaces may 'see' themselves if they are concave (i.e. F

i�i

6= 0 for some

surface i), and conversely if the surface is convex F

i�i

= 0.

2.5.2 Calculating the Form-Factor

The calculation of form-factors for a pair of surfaces labeled i and j involves the following steps:

� The setup of a coordinate system of reference for each surface, and the location of dA

i

and

dA

j

on the surfaces in terms of these coordinates.

� Calculating the angles and distance between the di�erential areas.

� The areas themselves are represented in terms of di�erentials of their coordinate system,

which implies a two fold integral for each of the double integrals, implying a four-fold integral

to solve.

For even the simplest geometries, the evaluation of the 4-fold integral is quite complicated.

Currently, there are sets of form-factors already calculated for certain speci�c geometries of surfaces

(e.g. [Siegel81]). By using some of the properties mentioned above, it is sometimes possible to

reduce to these simpler cases to solve more complicated geometries. As well, mathematicalmethods

such as contour integration has been used to solve the integrals (e.g. [Saro�m67]).

2.6 Radiation Exchange Among Gray Body Surfaces

The �rst type of environment to consider is one containing surfaces with graybody characteristics,

which will be called surfaces with di�use characteristics.

Assuming that a set of surfaces forms a complete enclosure, the following model is presented:
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1. Each surface is isothermal, or are surfaces subdivided into sub-surfaces that are small enough

to be isothermal. Also each surface is a di�use emitter, and re
ector.

2. Emitted and re
ected radiation are directionally indistinguishable, therefore there is no need

to treat them separately.

3. For a thermally opaque surface i, the radiosity is equal to the original emission from the

surface plus any re
ected incident radiation.

B

i

= E

i

+ �

i

H

i

(2:39)

Radiosity is constant along any surface, and thus form-factors are independent of the mag-

nitude, and surface distribution of the radiant energy 
ux.

Σ

Σ

Surface i

Bi (radiosity)
Ei (emission)

(Total impinging energy per unit area)
Bj Fij 

pi     Bj Fij (total reflected energy per unit area)

Figure 2.4: Radiosity for Gray Body Surfaces

In this model, the incident radiant 
ux H

i

is given as

H

i

=

N

X

j=1

B

j

F

i�j

(2:40)

and therefore the radiosity of surface i is

B

i

= E

i

+ �

i

N

X

j=1

B

j

F

i�j

(2:41)

(See Figure 2.4).
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Rarely, if ever will there be uniform radiosity on each surface, but this assumption is not

required if di�erential surface areas are used to perform the computation. This allows for a

continuous variation of radiosity, of surface temperature (hence emittance) and thus surface heat


ux. The radiosity equation is rede�ned as:

B

i

(x

i

; y

i

) = E

i

(x

i

; y

i

) + �

i

(x

i

; y

i

)H

i

(x

i

; y

i

) (2:42)

such that surface position (x

i

; y

i

) is now included. Using the corresponding replacement for H

i

:

H

i

(x

i

; y

i

) =

n

X

j=1

Z

A

j

B

j

(x

j

; y

j

)F

di�dj

(2:43)

the radiosity at any point (x

i

; y

i

) on surface i is

B

i

(x

i

; y

i

) = E

i

(x

i

; y

i

) + �

i

(x

i

; y

i

)

0

@

n

X

j=1

Z

A

j

B

j

(x

j

; y

j

)F

di�dj

1

A

(2:44)

The total radiosity may be found by integrating over all points (x

i

; y

i

) on the surface i.

Equations like (2.41) and (2.44) are written for each of the n surfaces of the enclosure, to

obtain a set of linear inhomogeneous equations of a general form given as:
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(2:45)

for the n unknown radiosities B

1

to B

n

, which was initially solved using matrix methods such as

Gaussian Elimination ([Saro�m67]).

2.6.1 Wavelength Dependent Properties

The gray body model given is close to being realistic if con�ned to a certain wavelength level,

but will give errors if it encompasses di�erent wavelength spectrums. One way to make an exact

account of wavelength dependence of radiation properties is by performing interchange calculations

monochromatically, then integrating over the entire range of wavelengths. The problem is that

there is not enough spectral detail known for most materials and the computation time may

16



be lengthy. The commonly preferred choice is to break down the spectrum into �nite bands of

wavelength range, and then perform the calculations.
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Chapter 3

Extensions and Approximations

In this chapter extensions to the gray body model will be examined to include specular surfaces

and participating media, and some approximation methods for computing form-factors are given.

3.1 Radiation Exchange for Specular and Di�use Environ-

ments

The �rst extension is the incorporation of surfaces with directional or specular re
ective charac-

teristics, using the exchange factor equation ([Sparrow78]).

Basically, specular and di�use components of a surface are included by using an approxima-

tion of real hemispherical re
ection by splitting re
ection up into specular (�

s

) and di�use (�

d

)

components:

� = �

s

+ �

d

(3:1)

The radiosity equation, as before, is given as

B

i

= E

i

+ �

i

H

i

(3:2)

but H

i

is now split into components from di�use and specular surfaces as follows:

H

i

= H

i;diffuse

+H

i;specular

(3:3)
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Letting N

d

be the number of di�use surfaces out of n total surfaces:

H

i;diffuse

=

N

d

X

j=1

B

j

e

i�j

(3:4)

and

H

i;specular

=

n

X

j=N

d

+1

B

j

e

i�j

(3:5)

The exchange factor e

i�j

is given as

e

i�j

= f

0

+ �

s

1;1

f

1

+ �

s

1;2

�

s

2;2

f

2

+ �

s

1;n

:::�

s

n;n

f

n

(3:6)

where f

0

represents the direct transport of energy from surface i to surface j. In this model, e

i�j

in equation (3.4) is just f

0

where f

0

= F

i�j

. The rest of the terms represent the transport due

to specular interre
ections. In general a term like �

s

1;n

�

s

2;n

�

s

3;n

:::�

s

n;n

f

n

represents the fraction of

the radiant energy leaving surface i and arriving at surface j after going through n intervening

specular re
ections. �

k;n

gives the specular re
ectance of the surface in which the kth of the n

specular re
ections occurs, and the product of �

k;n

takes into account all specular re
ections.

Exchange factors have similar rules to form-factors:

1. A

i

e

i�j

= A

j

e

j�i

2. A

i

de

i�dj

= dA

j

e

dj�i

3. dA

i

de

di�dj

= dA

j

de

dj�di

The above rules apply only when the surfaces involved are gray.

3.2 Radiation Exchange in the Presence of Participating

Media

The last extension to the model will be the inclusion of participating media. Our discussion will

be restricted to gases. Gases may cause absorption, emission, or scattering of energy traveling

though them, resulting in the energy being attenuated, enhanced or redirected before exiting the

gas. Some new constructs are required to allow this change in energy to be taken into account.

First, some basic terminology is given:

� isotropic means independent of direction
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Figure 3.1: a) Surface to volume geometric factor b) Volume to volume geometric factor

� Volumetric absorption (�

a

) describes howmuch incident radiation is lost by traveling through

a volume of media, and usually depends on the density of the media, the wavelength of the

incident radiation, and the thermodynamic state of media.

� Volumetric scattering (�

s

) is de�ned as any change in the direction of incident energy travel-

ing through a media. Coherent scattering is assumed, wherein no change in the wavelength

of the energy results due to scattering.

� Extinction Coe�cient (�

t

) is given as the sum (�

s

+ �

a

).

� The scattering albedo (
), is the volume analog to the re
ectance (�) for surfaces and is the

ratio of �

s

to �

t

.

� Volumetric transmittance (T (s)) is the fraction of energy that is neither absorbed nor scat-

tered in traveling some distance s, through a volume of media.

� Volumetric emission (J) de�nes the original emission within the media.

There are various methods for solving this problem [Saro�m67] [Siegel81]. The zonal method

[Saro�m67], will be presented, which assumes that gases are discretized into volumes or zones of

gas. Each volume has isotropic volumetric emission, absorption, and scattering properties, and

non-gas surfaces have di�use surface emission and/or re
ection. Volume to volume, and volume

to / from surface radiosity exchange in this method will be outlined.

The equation for the radiosity at surface i with area A

i

, emission E

i

and re
ectance �

i

is given

as:

B

i

A

i

= E

i

A

i

+ �

i

0

@

s

X

j

B

j

S

i

S

j

+

v

X

k

B

k

V

k

S

i

1

A

(3:7)
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where s and v are the number of surfaces and volumes respectively, S

i

S

j

is the geometric factor

describing the exchange of energy between surfaces i and j, similar to the previously described

form-factors, and V

k

S

i

is a geometric factor describing the exchange of energy between volume k

and surface i. These factors are given as:

S

i

S

j

=

Z

A

i

Z

A

j

T (r

ij

) cos �

i

cos �

j

dA

i

dA

j

�r

2

ij

(3:8)

V
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=

Z

V

k

Z
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i

T (r

ki

)�

t

k

dV

k

cos �

i

dA

i

�r

2

ki

(3:9)

For a volume (k), with volume V

k

, radiosity B

k

, emittance E

k

, and albedo 


k

, the de�ning

equation for radiosity is:

4�

t

B

k

V

k

= 4�

a

E

k

V

k

+


k

0

@

s

X

j

B

j

V

k
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j

+

v

X

m

B
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V
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V

k

1

A

(3:10)

where V

m

V

k

is the geometric factor for two volumes, and is given as

V

m

V

k

=

Z

V

k

Z

V

m

T (r

mk

)�

t

m

�

t

k

dV

k

dV

m

�r

2

mk

(3:11)

The geometries for V

k

S

i

and V

m

V

k

are shown in Figure 3.1.

3.3 The Unit-Sphere Method

This method, developed by Nusselt [Nusselt78], gives an geometric equivalent to a form-factor.

The computation is as follows:

1. Place a hemisphere of radius r oriented around the normal of a di�erential area dA

i

, and

project a second di�erential area dA

j

, located distance s from dA

i

, onto the hemisphere to

get a projected area:

dA

0

j

=

dA

j

cos�

j

r

2

s

2

(3:12)

2. Orthographically project dA

0

j

onto the base of the hemisphere to get an area:

dA

00

j

= dA

0

j

cos�

i

=

dA

j

cos�

i

cos�

j

r

2

s

2

(3:13)
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Areas A, B, C, D, and E
all have the same form factor

A
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E

Figure 3.2: Nusselts Analog

3. The ratio of dA

00

j

to the base of the hemisphere is given as:

dA

00

j

�r

2

=

�

dA

j

cos�

i

cos�

j

r

2

s

2

��

1

�r

2

�

=

dA

j

cos�

i

cos�

j

�s

2

= F

d1�d2

(3:14)

which is the form-factor for two di�erential surfaces.

If the radius of the hemisphere (r) is 1, then the projected area dA

0

j

is the de�nition of a

di�erential solid angle (d!

i

) for surface i. Furthermore, all patches dA

j

have the same form-

factor if, when projected, they subtend the same solid angle d!

i

, when viewed from dA

i

and are

positioned at an angle �

i

with respect to the normal of dA

i

. This fact holds true for projections

onto any surrounding surface. Therefore, any surrounding surface may be used in place of a

hemisphere to derive the form-factor. This fact will be referred to as Nusselt's analog. (See Figure

3.2)

3.4 Monte Carlo Approach

Monte Carlo methods are statistical numerical methods [Sparrow78], that can be applied as a

sampling technique to reduce the number of samples required to compute a form-factor.

In this approach, energy exchange is modeled by following the progress of discrete amounts

(\bundles") of energy as they interact with various surfaces. The physical problem is modeled as a

probability function using random numbers to \play". Form-factors are computed as the fraction
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of the total number of energy bundles emitted from a surface that are incident upon a second

surface. The bundle paths and their histories are computed by a Monte Carlo method.

To demonstrate the ideas behind the approach a simple example from [Sparrow78] is given:

A surface i is selected to emit energy and a number N is selected for the number of

bundles to emit. Probability functions are used to determine the probability that a

bundle will be emitted from this surface, and of emitting in a given direction. Each

emitted bundle, has it's path traced. If a bundle strikes a second surface j the amount

of energy that is absorbed or re
ected is determined by picking random numbers from

a uniform distribution. Each bundle path is followed until the bundle is completely

absorbed. This process is followed for all other surfaces.

Note that this approach will require a large number of random numbers in order to give

statistically satis�able results, and even so it cannot guarantee convergence to the correct result.

3.5 The Image Method

Indirect transport
Direct transport

(xi,yi)
Surface i

Surface j
Imaginary

surface j’

Imaginary Surface i

Specular Surface k

(xj’,yj’) (xj,yj)

Figure 3.3: Image Method

The task of computing an exchange factor involves keeping track of the attenuation of original

emission from a surface i as it is re
ected o� a number of other surfaces, until it strikes a second

surface j. In this section, a method called the image method is presented for computing this

factor assuming that the re
ectance of all surfaces is ideal. Ideal re
ectance is when any incoming

directional irradiation is re
ected out in exactly one outgoing direction for each incoming direction.

Let us consider an environment like the one shown in Figure 3.3. There are two surfaces i, and
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j, that we wish to compute the energy exchange for. Direct transfer of energy can be accounted

for using the form-factor F

i�j

. However, some energy from j may re
ect o� a third surface k

before reaching i. To take this indirect energy into account, an imaginary world can be formed

(denoted by the dashed lines) which is the re
ection of the enclosure in surface k. To an observer

at point (x

i

; y

i

) on surface i, the energy appears to originate from point (x

j

; y

j

)

0

on the imaginary

surface j

0

. If the specular re
ectance of surface k is �

s

k

, then the e�ective energy from imaginary

surface j

0

is given as �

s

k

F

i�j

0

. Therefore the exchange factor equation from surface j to i may be

given as:

e

i�j

= F

i�j

+ �

s

k

F

i�j

0

(3:15)

For multiple specular re
ections, this idea may be extended. If the path of energy from some

original surface j is followed, for any intermediate specular surfaces the energy strikes, an image

world can be formed. The energy can be attenuated by the re
ectance of each specular surface

(�), by successively updating the form-factor by multiplying by each re
ectance.
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Chapter 4

Survey

4.1 Introduction

In recent years, there has been a growing interest, in the �eld of computer graphics, into using

various techniques to solve the global illumination problem using the radiosity method. The focus

of this chapter will be to provide a comparative examination of some of the more important aspects

of these techniques. Our discussion will be ordered along the lines of the steps required to produce

a model with physically based illumination starting with an initial environment description. A

basic outline of these steps is as follows:

1. Generate a model of the environment using applicable constraints. This includes identifying

the basic geometric unit, which, will loosely be called an \object" in our initial discussion.

2. Decide on the approaches for determining visibility between objects, and computing form-

factors.

3. Decide how to capture su�cient radiosity sampling density and distributions within the

restrictions imposed by the geometric model, and form-factor choices.

4. Choose the mechanism for propagating energy. These mechanisms will be referred to as

radiosity solutions.

5. Determine the scheme for rendering the model.

6. Take into account the possibility that objects in the environment may move, or that the

position that the model is viewed from may change.

7. Determine how to compute solutions in a parallel manner.
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This breakdown is only assumed so as to be roughly analogous to how radiosity values are

computed by heat transfer methods. Naturally, these points need not be performed sequentially,

as all choices may e�ect all other choices. To reduce overlap in our discussion, for the most part

mutual dependencies will only be presented in detail the �rst time they are discussed.

For each of the above steps, the following applicable points will be covered:

� Assumptions: Assumptions made concerning given aspects in the area.

� Cost: Computation and storage cost.

� Physical basis: Physical e�ects that can be simulated.

� Coherence: Use of appropriate coherence properties. Coherence is the extent to which parts

of an environment exhibit local similarities.

� Compatibility: Compatibility between algorithms from di�erent areas.

� Accuracy: How accurate are the solutions compared with physical simulations.

Appendix B contains brief explanations for some general terms that will be referred to in this

chapter. For more extensive descriptions, we refer you to the references given.

4.1.1 Assumptions and Generalizations

In the �eld of heat transfer, a larger class of problems is considered than what is considered for

current computer graphics implementation of the radiosity method. Some simplifying assumptions

are now introduced to focus our attention on the actual problem to solve.

In general the environment may not be an enclosure and hemispherical properties may not

always be upheld (i.e. the law of energy conservation may not hold with the environment). All

surface and radiative properties are independent of temperature, and such properties may be spec-

i�ed and computed using a discrete set of wavelength bands. Within each band, any wavelength

dependent properties are constant, and there is no interdependence between wavelength bands.

The bands will generally represent a colour space such as RGB. For rendering, computed radiosity

values are used as colour values.

Geometrically, surfaces have no thickness, and may be discretized into polygons of some �xed

shape and size, with uniform surface properties.
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4.2 Modeling

Before performing any radiosity algorithm on a given scene, the scene must be modeled. This

section will cover some techniques used to accomplish this modeling task. Included are techniques

to polygonalize a scene to produce boundary representations, including the use of space subdivision

and half-space subdivision. In addition, volume representations, and some non-polygonal surface

representations will be presented. The focus of the discussion will be on constraints that must be

enforced in a model due to the representations used, restrictions in the choice of representation

used due to the nature of the radiosity algorithm, and restrictions on the radiosity algorithm to

use due to the choice of representation. Our discussion will also examine some extensions that

have been introduced to handle shortcomings with using data structures that are not speci�cally

geared towards the radiosity problem.

The �rst constraints to examine are modeling constraints. That is, some important informa-

tion must be captured in order for our models to be complete. This not only means being able to

represent the scene in a geometrically consistent manner ([Mantyla88]), but also containing su�-

cient information to satisfy various algorithm requirements, such as for form-factor and radiosity

computation, and rendering.

Referring to Figure 4.1, the following are desirable modeling constraints for radiosity algo-

rithms:

� No T-vertices: If two adjacent polygons fail to share a vertex that lies along their common

edge, such a vertex is called a T-vertex. As shading discontinuities may result, they should

be removed.

� No light or shadow leakage : These are artifacts, due to interpolation of incorrect values

through a boundary, and should be removed.

� Normal consistency: If counting vertices of any surface in a given direction, the normal

should always point in a �xed direction with respect to the counting order.

� Well-shaped surfaces: The aspect ratio of the radius of the inscribed circle of a surface

to the radius of the circumscribed circle of a surface, is close to one ([Frey87]). Irregular-

shaped surfaces are not well-shaped.

Secondly, in terms of geometry, models should contain su�cient information, so that there are

no ambiguous points, and each surface has a unique front and back, with a unique outward normal

per surface. If normals are not given, normals should be derived in a consistent manner (normal

consistency). Cases of coplanar faces, and interpenetrating volumes require methods to handle

them.
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Figure 4.1: Mesh de�nitions: (from left to right) a) T-vertex: Circled vertex is not shared by

polygon on the left. b) Light leak: In 2-dimensions, the interpolated values along the line, be-

tween the grid point with value 0 and the boundary will be greater than one, which is incorrect.

Values between the boundary and the point with value 1 will have values that are too small due

to interpolation. c) Well-shaped: The best ratio is 1 to 1 for the inscribed and circumscribed

imaginary circles, respectively, for a given shape. The ratio is shown for an example polygon.

d) Normal consistency: For example polygons shown, counter-clockwise vertex counting gives the

same normal direction for all polygons.

Third, in terms of radiosity sampling concerns, to store radiosity values, a set or mesh of

sample points is usually used. Concerns include: a) discontinuities across surface boundaries, b)

maintainingwell shaped faces for su�cient sample density, c) appropriate sample density, resulting

from sample point distribution, d) explicit representations of intersecting objects to avoid light or

shadow leakage, and e) for each surface, whether only the exterior of the surface radiates energy,

or whether both sides are allowed to radiate energy must be determined.

Finally, in terms of display requirements, it is desirable to have no T-vertices via either meshing

on the same surface or between surfaces, and well-shaped faces to avoid display artifacts if using

Gouraud shading ([Hall89]).

4.2.1 Boundary Representations

Introduction

The �rst representation for modeling scenes, that will be examined, are boundary representations

or breps. This approach represents a model in terms of surface boundaries which are composed of

vertices, edges and faces. Often, boundary representations are used to produce approximations of

real surfaces, by discretizing surfaces into explicit representations in the form of polygonal meshes.

Before discussing any of the approaches to creating boundary representations, let us examine
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some basic problems with these representations. The �rst major problem, when dealing with

discretized surfaces, is obtaining a polygonal breakdown such that polygons have uniform radiosity.

Several guesses have been proposed for manually performing this task ([Goral84], [Cohen85]).

Unfortunately, an accurate �rst guess cannot be given since the breakdown desired is the geometry

that would ideally be derived after computing the solution. Generally, either a very �ne initial

mesh is given or a rough initial guess is given along with some adaptive mesh subdivision technique

for re�ning the mesh.

Other problems with this representation include the following:

1. Meshes may only be geometric approximations of real surface geometries.

2. Meshing is either manually done, or has problems when automated.

3. Restriction to convex or planar polygons, due to radiosity solution constraints.

4. Rendering artifacts may result if using interpolated shading.

5. Capturing rapidly changing gradients may require very �ne meshing.

6. Remeshing on changes in surface or geometric properties.

These problems will be examined in the next section.

Approaches

Cohen presented the �rst subdivision hierarchy to capture surface subdivision ([Cohen86]). In this

approach, objects are geometrically broken down into surfaces, patches, and elements. Surfaces are

polygonal meshes chosen as the breakdown of an object. These meshes are composed of elements

and patches. Elements are planar polygons, with uniform radiative properties, and may or may

not share a common normal. Patches are convex polygons composed of one or more elements, and

as such may have varying radiative properties. An example is shown in Figure 4.2. This method

of substructuring has the following characteristics associated with using a hierarchy:

1. Being able to work to a desired level of detail.

2. Sharing of information between levels.

3. Capturing radiosity gradients via patch and element subdivision.

4. Saving on storage space, by subdividing surfaces only where needed.

In order to maintain well-shaped surfaces, a quadtree ([Foley90]) may be used to implicitly

represent this hierarchy. For e�cient (constant time) adjacency searching with respect to edges,
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Figure 4.2: Substructuring: This diagram shows the structure hierarchy given in [Cohen86] con-

sisting of elements, patches, and surfaces.

a winged-edge data structure ([Foley90]) is typically used. A possible disadvantage is restricted

usage of other models, due to the inability to represent certain objects that can be represented

using other models (e.g. constructive solid geometry models ([Mantyla88])).

[Baum91] also uses a winged-edged structure for adjacency, but a tri-quad tree (triangle-

quadrilateral tree) is used to represent the subdivision hierarchy. Baum presents automatic mesh

creation techniques which incorporates various modeling constraints. Problems addressed in-

cluded: a) removing initial T-vertex discontinuities by joining surfaces that share edges (ziplock-

ing); b) computing explicit object intersections to avoid light or shadow \leaks"; and c) solving

the coplanar surface problem by dropping the surface with the smaller surface area. If surfaces are

not opaque, there are potential problems with removing a surface that will e�ect energy transfer.

In order to create the initial patch mesh, a quadrilateral grid with �xed subdivision length

is mapped to each surface, so that polygons will be well shaped without T-vertices. Meshes

are aligned with edges of a surface. There are problems with potential overmeshing, and mesh

alignment at surface boundaries (e.g. where a sphere intersects a cube). Since only geometric in-

formation is used to compute a uniformmesh, the appropriate mesh density may not be computed

where needed. The initial element mesh is created by computing pixel-level visibility between all

surfaces using a depth-bu�er. This may produce considerable overmeshing, and inaccurate split-

ting boundaries, though is computationally faster than its analytic counterpart ([Campbell90]).

For further subdivision of the original mesh, bilinear subdivision is used to subdivide quadar-

ilaterals and triangles, producing a tri-quad tree per surface. To maintain gradual mesh density
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changes subdivision is performed so that there is at most one level di�erence between nodes,

producing a balanced tree. Removal of T-vertices is achieved by anchoring, wherein neighbours

are split by connecting corners of neighbouring polygons to the T-vertex. Splitting is thus local-

ized to prevent excessive meshing. Both of these constraints have not been maintained by other

subdivision methods as seen in [Cohen86], [Campbell90], and [Hanrahan91].

[Haines92a] examines more realistic scenes, not just the axis-aligned box scenes usually given

as test cases in most research. Similar meshing solutions are presented for mesh point placement.

Various subdivision methods such as evenly spaced, constant distance, as well as research into

\ether meshing" is attempted. The �rst is hard to compute for complex surfaces causing potential

misalignment of mesh points at edges between polygons, the second may produce misaligned

meshes if taken from surface end points, and the third method produces arbitrary non-uniform

meshing.

4.2.2 Voxel Representations

For modeling volumes of space, a space subdivision scheme may be used. Space subdivision involves

subdividing the space of an environment either uniformly or non-uniformly, with various criteria

as to how granular the subdivision should be. A subdivided volume of space is de�ned as a voxel.

There is currently only one paper ([Rush87]) that uses this form of subdivision in order to model

participating media. In order to represent non-uniform volumetric breakdowns of gases, an octree

structure ([Samet90]) is used, wherein each non-empty voxel is equivalent to a volume of gas.

4.2.3 Space Subdivision

Space subdivision has also been used to exploit spatial coherence in environments.

Wang ([Wang90]) makes use of octrees to subdivide the scene until there is either one polygon

per voxel, or the size of the voxel is less than some tolerance (t

1

), or the size is less than some

second tolerance (t

2

) but more than one polygon is allowed per voxel. As opposed to [Rush87], the

aim of using an octree is not to capture the geometry of the scene, but instead for more e�cient

form-factor computation. As a result, polygons may be split into irregular shapes. What are good

subdivision tolerance values are never given, nor reasons why this subdivision scheme gives good

shadow subdivision or sharp object corners. Wang only assumes to interactively split surfaces

along shadow boundaries.

Airey ([Airey90]) notes that the complexity of an environment is independent of the complexity
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of shading and the amount of detail for the model. Suggested is the use of model space subdivision

to form cells such that each cell has a possible set of polygons visible to all viewpoints in the

cell. Binary subdivision planes are used to partition, based on the priority: (1/2 occl + 1/3

balance + 1/5 split), where occl is how much occlusion occurs, balance is how evenly the scene

is subdivided, and split is how many objects or surfaces would be split in the process. The

subdivision is only suitable for axis aligned boxes, and the subdivision criteria is based on a

experimental heuristic. From experimental results this method requires about 20 percent more

memory to store this visibility precomputation. Again, as in [Wang90], splitting may produce

irregular shaped polygons.

4.2.4 Half-space Subdivision

When subdividing a surface, subdivision edges should be aligned as close as possible to the surface

radiosity gradient. If bilinear subdivision is arbitrarily used for a surface or volume of space,

T-vertices, excessive meshing and only approximate solutions may result. An example is given in

Figure 4.3.

Appropriate Subdivision MeshingBilinear Subdivision Overmeshing

Subdivision"Shadow" Gradient

Figure 4.3: Subdivision incompatibility. Note excessive overmeshing if using bilinear subdivision

on the left, while only one subdivision split is required in the scheme on the right.

[Campbell90] addresses these problems by using shadow volumes to split surfaces. Binary

space partitioning trees (BSP trees) ([Foley90]) are used to compute visibility with respect to light

sources, and to perform splitting. This allows for more accurate radiosity boundaries in the sub-

division, and �xes light leaks at intersecting surfaces. BSP trees, in general, are computationally

expensive especially if the geometry of the scene changes. This method also retains the problem

of T-vertices, and may produce irregular shaped polygons due to plane cutting. Currently, there

is no good subdivision stopping criteria, resulting in possible overmeshing.
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4.2.5 Alternate Representations

To close this section, some outstanding issues are presented. First of all, there has been little

research into modeling enclosures, or at least enclosures that are not rectangular boxes. Haines

([Haines92a]) presents the question as to how to e�ectively simulate the sun. A meshed hemisphere

is suggested, similar to [Nishita86], which splits the hemisphere into longitudinal bands of constant

radiosity. These approaches may require a large number of extra steps to compute results, since

energy must be propagated from each mesh component.

Secondly, [Airey90] suggests to use either parametric representations or some other form of alge-

braic representation to represent surfaces as opposed to treating surfaces as independent polygonal

entities. [Heckbert90] proposed the usage of the original geometry of objects to avoid polygo-

nization altogether. In general using a higher order, less explicit representation may reduce the

computational complexity, by reducing the number of entities to compute with. For example, if

ray tracing is used, calculations such as ray-object intersection testing may be reduced. Ideas

along this line are explored in greater detail in the section on form-factor acceleration techniques

for ray tracing and in our implementation.

4.3 Form-Factors

The computation of form-factors is one of the most fundamental operations to perform in a

radiosity algorithm. As such, a great deal of research has gone into this problem. The task usually

involves a geometric computation to derive how much of one patch's energy will be transported

to the other. If the environment has objects that occlude other objects (complex environments),

then the visibility between applicable patches must also be determined. There is currently a lack

of research into algorithms geared towards determining surface-to-surface visibility accurately and

economically, as opposed to point-to-point visibility, which is used in the algorithms presented

here.

There are two basic categories of form-factor computations: Those that just determine the

amount of energy to propagate, and those that incorporate this computation as part of energy

propagation. Emphasis will be given to sampling visibility between a source and receiver patch,

and how physically accurate the form-factor computation is. The source patch is the patch that

is considered to be radiating energy to all other patches, which are the receiver patches.

Sections 4.3.1 to 4.3.5 will discuss the �rst category of form-factors, while section 4.3.6 will
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cover the second category from the viewpoint of a ray tracing methodology.

4.3.1 Pure Analytic Approaches

In this section approaches that compute form-factors using analytic methods, by basically com-

puting line or contour integrals, will be considered.

Goral ([Goral84]) performs contour integration to derive form-factors by using Stoke's Theorem.

This basic method can be found in most heat transfer texts ([Saro�m67], [Siegel81], [Sparrow78]),

and is only applicable to simple environments which do not contain occluded surfaces.

Line integration is used in [Nishita85]. The method computes umbra and penumbra volumes

to determine visibility as a preprocess, and then performs point to point sampling to compute the

form-factors. Important aspects of this method are:

� Separation of the visibility computation from the form-factor computation.

� Computation of form-factors at the vertices of patches using the normals at those positions,

for rendering purposes.

4.3.2 Depth-Bu�er Approaches

In this section, approaches that determine form-factors using depth-bu�er techniques will be con-

sidered. Included is the discussion of sampling problems associated with using a depth-bu�er, ap-

proaches to reduce the e�ects of these problems, use of coherence and other acceleration methods,

and how these approaches are able to capture both di�use and specular direct energy transport.

In the original hemicube method ([Cohen85]), a hemicube instead of a hemisphere is used to

compute form-factors, according to Nusselt's analog ([Nusselt78]), as shown in Figure 4.4. The

advantage is the ability to determinate visibility in complex environments by using depth-bu�er

techniques. Basically a unit size hemicube is positioned at the center of the front face of a patch,

such that the base of the hemicube is perpendicular to the normal of the patch. Delta form-

factors are precomputed and stored for each grid cell of the unit hemicube to reduce computation

time, though requires storage proportional to h

2

, where h is the the hemicube resolution. A delta

form-factor is the form-factor computed from the center of the base of the hemicube to a cell on

the grid of the hemicube. The technique involves determining what surfaces are visible through

a frustrum formed from the center of the patch with each face of the hemicube. To determine

which surface is visible at a given grid cell, item bu�ering ([Weghorst84]) is used, which records
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a patch's identi�er at a grid cell if the patch is visible. The form-factor from a patch i (on which

the hemicube resides) to any other visible patch j, is given as the sum of the delta form-factors

for any cells with patch j's identi�er recorded.

Center of patch

Projected

Area A (A2)

Area A

X

Y

Z (Aligned with normal of patch)

(Aligned with
normal of patch) Area A

Projected

Area A (A1)

Z

Figure 4.4: Hemicube Analog: Projected area A2 has the same form-factor as area A1 according

to Nusselt's analog.

Using a hemicube inherits the problems found in standard depth-bu�er visibility techniques,

as well as producing new problems, mainly due to the use of discrete uniform sampling through

the grid cells of the hemicube. These problems are as follows:

1. Since the grid resolution is non-adaptive either over or undersampling of the hemisphere

may occur.

2. Uniform grid sampling may cause aliasing due to under or over estimations of surface pro-

jections. An example given by Haines ([Haines91b]) is the following: Suppose, the original

projection of a polygon covers 6�6 cells. If the polygon is slightly o�set, it covers 7�7 cells.

There is thus a large change in projection size for a small change in position since whole grid

cells are counted.

This problem shows up as quite obvious artifacts for projections of small areas, in particular

emitters, since this technique is insensitive to where the viewer is positioned. For example,

imagine a door knob is lit with small emitter. The projection of the emitter may not cover

all the cell centers, therefore black patches may be seen from viewpoint of the eye if the knob

is viewed from a close distance ([Haines91b]).

3. The hemicube method performs its sampling from the center of a patch. This assumes that

the visibility from the center applies for the whole patch, which may be quite erroneous.

As noted in [Wallace89], form-factors may only be computed from �nite patches, and thus

cannot be computed using true surface normals at polygon vertices, where colour values are

used for rendering.

4. No one has addressed the problem of the size and position of the hemicube with respect

to the source patch. If the size or position of the hemicube is incorrect, surfaces that can

be seen may be clipped, and surfaces may be included that can not be seen at all. This is

especially true if concave patches are used.
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What then, are its advantages ? Most proponents of this method ([Immel86] [Chen89] [Rush90b]

[Baum90]) note that the method can use existing graphics hardware to perform computations

such as back-face culling, projections, geometric transformations, clipping, and depth-bu�ering

([Foley90]).

The hemicube method has been explored quite extensively, resulting in many extensions to

this technique. Some important extensions will be covered in the proceeding sections.

Form-Factor Approaches

The �rst extension was seen in [Cohen86], wherein form-factors are computed from elements to

patches, as opposed to from patch to patch. Using the additive property for form-factors, patch

form-factors are computed as area weighted averages of element form-factors. Cohen uses a full-

matrix (FM) radiosity solution method. ([Goral84]).

The second extension was seen in the iterative progressive re�nement (PR) radiosity solution

method presented in [Chen89]. Chen computes the propagation of energy from one patch to all

other patches and elements, instead of from all patches and elements to one patch. To maintain the

computational cost of one hemicube per iteration, reciprocity and enclosure rules for form-factors

are used.

1

5

Receiver

Source

1

a)
= Surface projection

= Pixels covered

UnderestimateOverestimate

c)

occluded

Surface 1

Surface 3

b)

Surface 2

Figure 4.5: a) Large elongated area source to smaller receiver. b) Surface 3 is missed due to

source undersampling at surface 1. c) Aliasing due to pixel counting of projections on uniform

grid. (After [Baum89])

Referring to Figure 4.5, the following problems, due to assumptions made in the progressive

re�nement method, were presented in [Baum89]:

1. For valid form-factors it is required that the area of the source be very small with respect to

the distance between the source and the receiver due to the use of the reciprocity property,

and the hemicube approximation. This proximity assumption is broken much more often
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using a PR method then when using a FM method, since form-factors are computed from

source patches to (smaller) element receivers. Also noted was that the ratio of the area of

the source to the receiver may be large, and sources may be elongated, giving less accurate

form-factor values.

2. Since sampling is performed from one point on the center of the source, objects that occlude

may be missed.

3. Area sources are reduced to point sources when computing patch to element form-factors.

4. FM and PR methods do not reach the same solution since one numerically integrates form-

factors from receivers to sources, and the second assumes a constant form-factor from sources

to receivers. This implies that no source subdivision is performed when shooting from

sources, except when the shooting patch is large or very close to the receiver. That is,

form-factor values become > 1, which is invalid.

5. Hemicube aliasing still exists.

[Baum89] provides some solutions by using an analytic contour integral form-factor approxima-

tion ([Saro�m67]) which considers the total area of the source and does not su�er if the distance

separating the source and receiver is small, or the area of the source is large. There is still a

problem in the fact that a hemicube is used to determine the visibility, and the projected areas

of receivers, which are then used to compute the analytic form-factor from receivers visible to the

source. Thus, any error associated with the hemicube projections is carried on to the form-factor

calculation.

Baum ([Baum89] suggests subdivision of sources until they are either completely visible or

non-visible from each receiver element in the environment, to avoid missing objects that occlude

the source from the receiver. As with [Campbell90], the aim is to have visibility between the

receiver and source accounted for, to avoid recomputing visibility upon subdivision.

From experiments, the solution is still only within 4 percent of a sample FM solution, as

opposed to roughly 20 percent for the original PR method ([Chen89]).

Anti-aliasing

Given that a uniform grid is used to sample the hemicube, methods are required to remove or

reduce artifacts due to aliasing. Suggested by Haines, Greenberg, Baum ([Haines91b], [SIG91],

[Baum91]) and others, is to use (hardware assisted) anti-aliasing via an accumulation bu�er or a-

bu�er [Haeb90]). This option has not been implemented. An alternative, suggested in [Airey90],

is to use a jittered hemicube which is implemented in [Chen91b], by jittering the direction of
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the surface normal used for the hemicube. This idea is similar to using a jittered viewing frus-

trum ([Wallace87]), and has the same advantage of maintaining the speed associated with depth-

bu�ering.

Coherence and Acceleration Techniques

Some techniques that have been presented to accelerate the computation of form-factors using

depth-bu�er techniques are now discussed.

The �rst methods, presented by Rushmeier, exploit spatial coherence and pixel coherence

([Rush90b]). Spatial coherence is exploited by using a user-de�ned �xed space subdivision to

reduce the number of polygons sent to check on the hemicube. If possible, they suggest exploiting

hardware by only sending shared vertices once per hemicube face, and to use hardware back-face

culling. Only the �rst idea is tested. Pixel coherence is exploited by computing cumulative form-

factors versus summing delta form-factors. Results of roughly 2:1 to 6:7 percent speedup are given,

as it is faster to perform integer comparisons versus summations. If the number of surfaces is kept

constant, the total suggested speedup is roughly proportionally to the hemicube resolution. From

experimental scenes, the use of hardware roughly increases the speed for computing form-factors

40 times, as opposed to only using software.

Recker ([Recker90]) accelerated the process by using a single plane approximationof a hemicube.

To su�ciently sample close to the normal of a patch, a two level uniform grid is used, with a �ner

grid centered around the normal. There is possible high perspective distortion (i.e. precision of

depth computation is decreased) causing aliasing, and the problem of discontinuities at the bound-

ary between the two levels of the grid. The claim is that there is a potential to save 80 percent in

memory for the storage of item bu�ers, depending on how �nely meshed the grid is, and the size

of the grid. Increased computation and storage time results from keeping track of errors due to

excluding form-factor computation through the sides, and larger areas to scan convert since the

frustrum formed by the plane is greater than 90 degrees now.

Finally, [Beran91] uses a tetrahedral shape variation, to reduce computation cost as well, but

with less perspective distortion than Recker's planar method. Basically, three planes are used

to reduce the number of projection, hidden surface, and clipping calculations, but this requires

slightly more storage for delta form-factors.
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Generalizing Surface Properties

The original hemicube method ([Cohen85]) is only able to capture ideal di�use direct transport.

Some extensions to incorporate less restricted energy transport mechanisms will now be examined.

Immel ([Immel86]) was the �rst to incorporate specular e�ects in his global cube method, which

uses a tesselated cube instead of a hemicube. Since the computation is done in world space as

opposed to the coordinate system of surface, as with the hemicube, precomputation of delta form-

factors is not possible. The worst aspect of this technique is that O(c

2

) storage of directional

re
ectance is required for every cube at every patch, c being the resolution of the grid for the

cube, resulting in a O(n

2

c

2

) matrix of form-factors to solve, n being the number of patches in

the scene. In the worst case, the resolution of the cube may be to pixel levels for highly specular

surfaces. Also, since sampling is performed at sparsely distanced points in the scene, sampling

artifacts in images produced are quite obvious.

Shao ([Shao88]) uses a similar approach to Immel's but modi�es the de�nition of a form-factor

such that F

i�j

stores incoming energy from all patches j to patch i in the hemicube. Unfortunately,

form-factors become dependent on the emitter or energy distribution, specular patches still need

to have very �nely meshed hemicubes, and in the worst case O(nh

2

) extra storage is required,

where h is the hemicube resolution, and n the number of specular patches.

Further extensions were seen in [Rush87], which uses a hemicube variation to compute the

transport of energy between surfaces and volumes when participating media is present. The

general formulation for these form-factors: SS, SV, and VV were given in Chapter 2. In [Rush86]

and [Rush90a], hemicubes are used on the back side of a surface to simulate planar translucency

e�ects, and the image method ([Sparrow78]) is used for ideal planar specular e�ects. Total e�ects

are derived by linearly combining values from each computation. These methods are restricted

to environments with planar surfaces, with only a small number of specular surfaces a�ecting

di�use surfaces. If the number of specular surfaces is large, the image method requires that the

environment be \re
ected" too many times.

Lastly, to incorporate \bumpy" surfaces, [ChenH90] used Blinn's idea ([Blinn78]) to perturb

the normal of the surface for which the hemicube computation is performed with. Unfortunately,

the formulation loses the information behind the perturbed hemicube, since it is assumed that

the hemisphere seen by a perturbed and unperturbed hemicube is the same. As the degree of

roughness is highly dependent on the meshing of the surfaces, this method only seems appropriate

for large scale texturing, without undue time for computing hemicubes at every mesh point.
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4.3.3 List-Priority Algorithms

As opposed to using a depth-bu�er algorithm, others have used list priority algorithms ([Foley90]).

For these algorithms, visibility is determined by considering objects in a front to back order,

with respect to some viewing position, and \discarding" parts of objects that are behind what is

currently visible.

Wang's technique ([Wang90]) computes an octant priority table as a preprocess, to determine

depth priority with respect to a voxel. If the geometry and subdivision of a scene is constant

this table need only be computed once. To determine visibility, a depth-sort algorithm ([Foley90])

is used, using the priority table to determine the sorting ordering of polygons. This approach,

as with other single plane algorithms reduces the amount of comparisons to determine visibility.

The shortcome of this approach is that the table is non-adaptive, due to the assumption that the

subdivision of patches is already along appropriate boundaries.

[Campbell90] uses a two-step approach of �rst computing visibility, and then using Wallace's

form-factor approximation ([Wallace89]). Initially, a volume is formed between the centroid of the

source and the edges of the receiver closest to the source. Subsequent receivers are subdivided by

this volume, which is successively re�ned as receivers are considered in a front to back order with

respect to the centroid of the source. That is, if there is partial occlusion, then receivers are split

along the planes de�ning the volume, and the planes of the volume are updated using the edges of

non-occluded parts of the receivers. The major advantages of this approach is that no objects are

missed and visibility boundaries are exact. The major drawbacks are computational complexity,

restriction to objects polygonalized into planar polygons, potentially excessive splitting of polygons

where such splitting is not required for capturing radiosity gradients, and other possible meshing

problems, mentioned in the section on modeling.

4.3.4 Ray cast and ray tracing variations

In this section, using ray casting or ray tracing to perform sampling for form-factor computations

will be considered. In general, ray casting / tracing has been used to provide a means for more


exible sampling. Before examining the research into this area, some sampling concerns to be

examined are given:

1. Determination of sampling density and distribution to su�ciently approximate the hemi-

spherical distribution required for computing accurate form-factors, considering surface ra-
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diative properties, and geometric relationships between sources and receivers.

2. Determination of a stopping criteria to halt traversal of a ray tree if ray tracing. The

commonly used tolerance has been to use some sort of form factor contribution fallo� as a

threshold.

3. Determining how to reuse information for rays shot when computing a single form-factor, be-

tween form-factor computations, and between iterations if a progressive re�nement technique

is used. That is, what sort of of coherence can be exploited to avoid recomputation.

In the following discussion, sampling concerns will be examined from three di�erent perspec-

tives: 1) from the view of su�cient sampling from a source patch, 2) from the view of su�cient

sampling at a receiver patch, and 3) from the view point of su�cient mutual sampling between

both sources and receivers.

Source to Receiver Sampling

In the following methods, the initial assumptions are that samples are taken from the center of the

source patch, and that the information obtained from these samples applies to the entire patch.

One of the earlier experiments uses ray casting through a uniform grid to compute form-

factors ([Maxwell86]). Maxwell notes, that a large number of random numbers is required for

good statistical results, if using a probability function for choosing directions to shoot rays in.

Malley ([Malley88]) attempts to reduce aliasing problems as a result of uniform sampling when

casting rays. The hemisphere above a patch is sampled such that the density of rays is proportional

to the cosine of the angle from the normal of the surface, since form-factor values drop o� as a

function of the cosine. Ray directions are jittered to anti-alias. Being oblivious to the geometry

of the scene, the problem with this type of approach is that if nothing interesting is hit by rays

tested at those angles, or if the directional emission does not match a cosine distribution, then

rays may be wasted in directions of little importance.

[Sillion89] tries to capture specular e�ects using extended form-factors. A planar grid is used

for ray tracing through, such that the grid consists of non-uniform cells, with a roughly constant

associated delta form-factor per cell. Advantages include only requiring sampling through a single

plane, and linear time retrieval of precalculated delta form-factors stored in Crow texture tables

([Crow84]) which contain summed area delta form-factors.

Visibility as opposed to intensity is used to determine adaptive sampling by using an idea based

on Warnock area subdivision ([Foley90]). Rays are shot from the center of the source through grid

points, distributing delta form-factors to ray trees produced. For each pair of rays along a grid
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edge the grid cell is subdivided and resampling occurs if the ray trees are di�erent. A potential

problem is that a very large amount of subdivision may be required in some cases to capture

visibility gradients. To save time, rays are stored for reuse if subdivision occurs. The factors

to weigh are storage cost versus recomputation cost, both of which are dependent on the grid

resolution.

Common to these methods is that they do not consider the sample locations required on the

receivers with respect to the source when sampling. Also, by sampling from a single point on the

source there is the potential to undersample the source.

Receiver to Source Sampling

[Wallace89] addresses these problems, by sampling from the receiver to the source, providing better

source sampling, and eliminating shooting rays that do not hit anything. Sampling from element

vertices allows the usage of the exact geometry of surfaces, and the degree of sampling is adjustable

based on the degree of accuracy desired, allowing a rough estimate of the number of rays required

to be precomputed.

If uniform sampling of the source is used then aliasing e�ects appear, which are especially

noticeable if the distance between source and a receiver is small, and the area of the source large.

Alternatives included: a) jittering sampling positions, to substitute large scale noise for aliasing; b)

�ltering samples by taking weighted averages of neighbour vertices; and c) adaptively subdividing

the source until the the radiosity impinging on a receiver vertex is less than some tolerance. This

is not implemented, but is the preferred choice to sample the source su�ciently.

The form-factor formulation is based on an analytic di�erential area (receiver vertex) to parallel

disc (source) approximation ([Siegel81]), with an associated degree of error when the source is not

a parallel disc. From experimental results, undersampling occurs for sources and receivers at right

angles to one another. This may require extensive subdivision to capture the resulting gradients.

Mutual Sampling

[Hanrahan91] takes a two-step approach to computing form-factors. Initial form-factor values are

computed assuming complete visibility, which are then re�ned later on by computing form-factors

with visibility. A jittered ray casting method based on [Thibault87] is used.

Hanrahan notes that form-factors are prone to error, and therefore need only be computed and

stored if the error is within a given tolerance. The di�erence in mutual form-factors between two
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patches is suggested as an error measure. This measure restricts size, distance and orientation

allowed between two patches, before a form-factor value is stored (interaction is allowed) between

them. What results is that the number of interactions for a given patch is restricted to a constant

amount with the total number of interactions proportional to the number of patches and elements.

As previous methods did not restrict interactions, O(n

2

) interactions needed to be stored as

opposed to O(n) in Hanrahan's method. n is the number of patches in the scene.

Visibility need only be calculated as accurately as required for form-factors within the error

tolerance, and roughly the same amount of work is done at each visibility test. Therefore the

amount of visibility testing is roughly proportional to number of form-factors interactions. Note

that if two patches are mutually visible or non-visible no further tests are required. It is noted that

this method works best for scenes with few large initial polygons with high radiosity gradients.

As Hanrahan restricts the number of visibility and form-factor interactions by using an error

measure, so may the amount of work for visibility testing also be restricted.

First, back-face culling ([Foley90]) with respect to the source and receiver planes may be used

to cull away objects to restrict the number of ray intersection tests. As noted in [Haines92a], care

must be taken to choose appropriate sample positions, as the case may be that the sample position

on the source can not be seen by the receiver, but other parts of the source may still be seen.

Haines and Wallace ([Wallace89]) also suggest using object intersection testing versus testing the

mesh representing the object.

In [Wallace89], hierarchical bounding volumes are used to reduce the number of intersection

tests per ray to a logarithmic amount with respect to the number of objects ([Weghorst84]). A

\good" hierarchy is a one where the increase in volume between any two levels of the hierarchy is

minimized in order to reduce the number of volumes that need to be checked per ray.

Haines ([Haines91a]) restricts the bounding volumes and objects to test by noting that the

visibility between two patches is restricted to a �nite volume de�ned by a shaft which is basically

the convex hull of the bounding volumes around the two objects. All bounding volumes or objects

outside this volume may be discarded by using back-face culling for each face of the shaft as

demonstrated in Figure 4.6). The e�ective savings of this technique is dependent on the ratio

of rays used per shaft, how tight the bounding volumes are, hence how tight the shaft is, the

meshing of the scene, the de�nition of an object, and the geometry of the scene. Tightness

means how closely a bounding volume matches the volume of space occupied by the object. This

implementation is only good for opaque surfaces, and the best bounding volume selection and best
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de�nition of an object are still unknown.
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Figure 4.6: Coherence: a) Hierarchical bounding volumes are shown (in 2D). Volumes E1 and E2

are contained in E, volumes E, D and F are contained in volume 2, and so forth. b) Culling: All

objects in volume E are culled by the planes that patch i and patch j lie on. Objects A, B1 and

B2 are culled by traversing the bounding volume tree. Object D is culled by the planes of the

shaft.

4.3.5 Form-Factor Storage Techniques

To conclude discussion on the �rst category of form-factors, the major steps that mark the pro-

gression in the amount of storage required for form-factors, will be examined.

In full matrix methods such as ([Goral84]), since all form-factors between all pairs of patches

must be stored for radiosity computation, O(n

2

) storage is required at all times, n being the

number of patches. In iterative storage methods, the storage cost is O(n) per iteration of a

progressive re�nement algorithm ([Chen89]). If form-factors are to be stored for future use, the

total storage for form-factors is still O(n

2

).

The number of patches may change during the execution of the program, and thus n may

change in value in both approaches. Also, if form-factors are computed between entities other

than patches (e.g. vertex to patch) then term n would represent the upperbound on the number

of entities, though the magnitude of storage would remain the same.

Lastly, [Hanrahan91], only stores form-factors between patches if the associated error is less
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than some tolerance. Total form-factor storage is reduced to being linear to the number of patches

(n), as only a constant number of form-factor values are stored per patch. The worst case is for

parallel surfaces and the best case of O(

p

n) total storage is for perpendicular surfaces.

4.3.6 A Ray Tracing Approach

The second category of form-factors, will now be examined. In particular, research into using

ray tracing to propagate energy as in a radiosity approach, will be looked at, where the aim of

such research has been to add surface-to-surface indirect energy transport to standard ray tracing

approaches. The basic di�erence between these methods and previous methods presented, is

that energy is propagated with each sample (ray) shot, as opposed to a separate computation of

form-factors before propagating energy. In general, the basic concepts are similar to the Monte

Carlo method of simulation presented in Chapter 3, where a form-factor is roughly equivalent to

the percentage of rays that reach some patch j from an original patch i. Emphasis will be on

examining relevant points of interest, rather than attempting to cover algorithms in detail.

Before discussing any of the algorithms, a few relevant ray tracing ideas will be examined.

Discussion of the algorithms will then follow.

Ideas From Ray Tracing

The �rst important idea is that of using an importance criteria to reduce the amount of sampling

to perform. [Kajiya86] uses an adaptive hierarchical sampling scheme, concentrating samples in

areas of high variance, where importance is based on the surface's re
ection model. A huge number

of directions still needs to be sampled if the re
ection model is complex ([Sillion89]).

Ward ([Ward88]) reduces the amount of sampling required by concentrating on sampling spec-

ular or rapidly varying e�ects, and computing fewer samples for slowly varying e�ects. This is

accomplished by computing new samples based on the density of previous samples. In addition,

samples are made independent of the surface geometry, by storing samples in an independent data

structure.

The last idea to examine is a common thread between radiosity and ray tracing as seen in

([Arvo86]). Arvo presents a technique called light ray tracing (LRT) where, for each emitter,

energy propagates via one or more specular surfaces to a di�use receiver. This is basically an

iteration in a progressive re�nement method. A major problem with this method was insu�cient

sampling for accurate reconstruction of radiosity gradients on receivers without undue cost.
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Ray Tracing Algorithms

We now turn our attention to discussing the ray tracing algorithms, previously mentioned.

The �rst algorithm to examine was presented in [Shinya89]. Shinya uses pencil tracing ([Arvo89])

from light sources to capture caustics, focuses, and dispersion e�ects. Caustics and focuses are

complex patterns of light concentrated on a surface due to refraction and re
ection. Important

ideas included sampling using a pyramid of rays from sources, shooting from source subdivision

points to better sample area sources, and �ltering of samples deposited as maps on receivers.

Watt ([Watt90]) used similar ideas in the form of beam tracing ([Heckbert84]), to also capture

caustic e�ects. The prevalent ideas presented in this paper are: a) to shoot energy from emitters

to vertices of specular objects �rst to allow for regions with rapidly changing e�ects to be sampled

more, and b) to use beam tracing to deposit better sample distributions on receivers. Unfortu-

nately, the method leaves samples that produce polygonalized gradients due to sampling at vertex

positions on specular objects.

For better specular sampling, Shirley ([Shirley90]) performs adaptive sampling of specular

objects. As in [Malley88], n random rays are shot in random directions from each source (non-

uniform sampling) to \�nd" specular surfaces �rst, before sampling further in directions where

specular surfaces are found. Shirley notes that if only close to ideal di�use values need be captured

using radiosity, then a \coarser" sampling of receivers may be used to compute these di�use values.

Overall, the technique is restricted to handling only near ideal or ideal di�use or specular surfaces.

In the above methods, as with [Arvo86], there may be receiver sampling density / distribution

problems since importance of sample positions on the receivers is not considered, and source

undersampling may occur since rays are shot from the center of the original area of a source, or

subdivided areas of the source without an appropriate source subdivision scheme being used.

Heckbert addresses some of these problems in [Heckbert90], which also uses light ray tracing

to distribute energy in cosine distributions from sources. Important aspects discussed were: a)

source subdivision and resampling on di�erences in visibility between rays; b) receiver subdivision

based on energy density; c) original source sampling density based on strati�ed sampling such

that the density is proportional to original radiosity; and d) original receiver subdivision based on

projections with respect to an eye position.

An alternate adaptive source sample density is used in [Airey90]. [Airey89] and [Airey90] note,

empirically at least, that at each iteration of a progressive re�nement algorithm, the amount of

unshot radiosity decreases as a negative exponent. This led to the idea of adapting the sampling
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density as a function of the amount of unshot radiosity at each step, in order to try to keep the

radiosity shot out roughly constant per ray.

4.4 Capturing Gradients

As important as capturing geometric visibility are sampling techniques to capture energy gradients

on surfaces. In the last section, the ray tracing view of \distributing" energy samples on receivers

from sources was seen. From a radiosity view, how to \collect" energy samples will now be

examined.

Basically, the use of subdivision to sample rapidly changing gradients on surfaces will be

examined. Areas of concern include: a) subdivision of receivers, and subdivision of sources, and

how well the two subdivision methods harmonize; b) selecting subdivision points, and what values

to assign at these points; c) when to halt subdivision; and d) maintaining an even distribution of

sample points on subdivision, by maintaining well-shaped surfaces and su�cient mesh density.

Most of the algorithms to be examined use bilinear subdivision, and assume monotonic change

along gradients, when assigning values at subdivision points. Unfortunately, if a surface is initially

insu�ciently subdivided, gradients on the surface may be missed due to undersampling.

An additional concern is what subdivision should be permanently stored. Since radiosity sam-

ples at receivers are used to represent radiosity gradients, it makes sense to store this subdivision

permanently, while since source subdivision is mainly performed to su�ciently sample the energy

distribution of sources it either need only be temporary, or stored separately from receiver sub-

division. \Receiver" and \source" labels only apply at a given time, as they may switch roles

at di�erent times. Con
icts may thus arise as how to treat a receiver patch at time t, when it

becomes a source at some other time u. A general assumption is that a source is de�ned at a

patch level, and not at an element level, which ignores energy distributions on the source.

The following discussion is broken up into two parts: First, consideration of capturing gradient

information at receivers will be examined. Secondly, how to su�ciently sample sources will be

looked at.

4.4.1 Receiver Gradients

The �rst usage of automatic adaptive subdivision is seen in [Cohen86]. Radiosity gradient infor-

mation is captured by using bilinear subdivision in areas with high radiosity gradients. This avoids
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overmeshing in areas with little change, thus avoiding the associated increase in mesh storage cost.

There are, however, a number of problems associated with this method. First of all, since inter-

polated values are used to identify gradients, and monotonic change is assumed along subdivision

edges, gradients may be incorrectly identi�ed, and / or missed. Also, if a gradient is not aligned

along the subdivision grid, then bilinear subdivision may require many levels of subdivision before

only reaching an approximation of this gradient. An example is shown in Figure 4.3. Lastly,

since an ad hoc tolerance threshold is used to halt subdivision, possible over or undermeshing may

result.

[Airey90] suggests to instead split along the radiosity gradient if possible. For quadrilaterals

this would mean a split along the diagonal joining the two vertices with the smallest di�erence in

radiosity values. If the di�erence is still too high, then quadrilaterals are split into four triangles.

As seen in Figure 4.7, a radiosity boundary may be missed by only using radiosity information

([Arvo91]). Additional subdivision based on a threshold di�erence of form-factor values between

sample points of a receiver is proposed in [Campbell90] and [Arvo91]. Campbell's method has some

additional points of note. First of all, receivers are split along their long axis to try to maintain

well shaped surfaces. If splitting is performed, then subdivision is performed after each receiver

is tested, versus after every iteration (all receivers tested) for faster image update. The method

also has the advantage of not requiring visibility to be rechecked when receivers are subdivided

since receivers have already been cut along visibility boundaries during visibility testing. Finally,

the subdivision mesh created during visibility testing provides more accurate �rst approximations

of radiosity boundaries on receivers than previous bilinear subdivision methods. Unfortunately,

since cuts are permanent, sample positions may be generated throughout the environment that

may not be along radiosity gradients.

As previously mentioned, a roughly equivalent numerical approach to Campbell's is used in

Baum ([Baum91]), where splitting is based on pixel level occlusion computed using a depth-bu�er.

Splitting may be excessive, and gives less accurate boundaries, since bilinear subdivision is used.

To avoid resampling, only the current source is reshot at new receiver sample points. To prevent

over or undersampling, a minimum and maximum polygon edge size is used. An alternative

minimum receiver size criteria of minimum re
ectance threshold is given in [Nishita85].

4.4.2 Source Sampling Techniques

We now turn our attention to sampling energy distributions on sources properly.
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intensity intensity

Sample position Sample position

Actual Gradient
Gradient computed from sample points

Sample points

Figure 4.7: Radiosity boundary is missed in example on left, though caught in the example on the

right. (After [Arvo91])

The �rst source sampling method to examine, in [Nishita85], handled source sampling by

sampling from receiver vertices to source vertices. Since this method is not adaptive, sources are

in e�ect simulated as uniformly distributed surface points, regardless of the energy distribution

across the surface.

To better capture these distributions an adaptive technique is required. The �rst adaptive

subdivision technique ([Chen89]) came about as a result of the requirement to maintain form-factor

relationships. That is, due to violations in the reciprocity assumption, the value of a form-factor

F

j�i

, where j and i are the receiver and source respectively, could become greater than one, which

is a physical impossibility. For such cases, bilinear subdivision was used to bilinearly subdivide

the source, and form-factors were recomputed.

To su�ciently sample sources, Wallace ([Wallace89]) adaptively bilinearly subdivides sources

when the radiosity received at a receiver vertex is greater than some maximum energy threshold.

Even if the sources have very strong radiosity, or a steep radiosity gradient across the surface,

they should not be undersampled, nor should small area sources be missed. Wallace suggests that

an e�cient way to compute the subdivision would be to prestore the source subdivision, perhaps

using a quadtree. When sampling, only tree traversal down to the appropriate level is necessary

to �nd the sample distribution required.

As with receiver subdivision, a size constraint may be imposed for sources. [Campbell90], along

the lines of [Wallace89], subdivides sources that are large or have strong radiosity with respect to

the distance to a receiver, but adds the condition of halting if source elements become too small.

To also avoid excessive source meshing, a condition of stopping after

1

2

of the radiosity has been

shot from the source, is used. This contribution is measured from the center of the current receiver.
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Finally, if the solid angle subtended by the emitter is too small, Campbell suggests approximating

it as point source.

In [Sillion91], the re
ectance functions for sources and receivers are used to weight samples,

and notes that energy distributions stored with elements of the source patch should be used. To

this end, Hanrahan ([Hanrahan91]) adaptively subdivides based on di�erences in values: B

i

F

i�j

and B

j

F

j�i

, where i and j are the current source and receiver, to consider both source and receiver

radiosity distributions. This method is called BF-re�nement.

Heckbert ([Heckbert90]) attempts to avoid meshing objects before results are known, by using

textures (stored as quadtrees) mapped to the original geometry of objects. Sources are bilinearly

subdivided before sampling if the power per quadrant is greater than some tolerance. On subdi-

vision, power is equally redistributed to each new quadrant created, and neighbours one level up

in the tree are also split, so as to maintain gradual energy gradients. To maintain uniform energy

distributions, both minimum and maximum subdivision levels are proposed.

4.5 Radiosity Solutions

With techniques for computing direct energy transport, consideration is now given to solving the

global illumination problem using radiosity solutions.

For a \standard" approach, (as shown in Chapter 1 and [Goral84]), following the computation

of form-factors, a set of n linear equations that compute the radiosity at each of the n patches

may be solved by direct or iterative matrix methods. The computation of each equation is akin

to \gathering" energy at a patch from all other patches. Algorithms using this approach will be

labeled full matrix or FM algorithms. Algorithms that solve the set of equations in a iterative

manner, as introduced in [Chen89], will be called progressive re�nement or PR algorithms.

Both FM and PR solutions are considered to be single pass algorithms, as solutions are com-

puted using a single pass of an algorithm. Multi-pass solutions use more than one algorithm, in

sequential order. Accordingly, solutions will be presented in two parts: 1) single pass solutions, and

2) multi-pass solutions. Where applicable, the manner in which transport of energy is achieved,

the illumination model(s) used, and the resulting global illumination e�ects, will be examined.

First, a list of terms and symbols to be used is given in Table 4.1. As an example, \LS

�

g

D

i

" will

mean light to zero or more general specular surfaces to ideal di�use surface transport. Following

the presentation of these solutions, the order in which energy is propagated, physical accuracy
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and other error measurements, and radiosity storage techniques will be discussed.

Symbol Description

E eye : current viewing position

L light : surface with non-zero original emission

S specular : surface with specular component to local illumination model

D diffuse : surface with diffuse component to local illumination model

j or

() grouping delimiter

[] optional

i

ideal properties

p

planar property

g

general property

�

zero or more

+

one or more

Term Description

FM full-matrix method (see [Goral84])

PR progressive refinement method (see [Chen89])

HC hemicube method (see [Cohen85])

RT ray tracing from eye to the scene (see [Whitted80a])

DRT Distributed ray tracing (see [Cook84])

MCPT Monte Carlo path tracing (see [Kajiya86])

BT beam tracing (see [Heckbert84])

BV bounding volume (see [Weghorst84])

LRT light ray tracing or backward ray tracing (see [Arvo86])

Table 4.1: Transport terms

4.5.1 Single Pass Methods

The �rst set of methods to consider are those that compute radiosity solutions using a single pass

of a radiosity computation. First FM solutions, then PR solutions will be covered.

Full matrix algorithms

To solve the system of previously mentioned equations, Gaussian elimination with partial pivoting

was originally used ([Goral84]). Since properties of the matrix containing re
ectance and form-

factor terms is not exploited, an O(n

3

) time complexity results, n being the number of patches in

the scene. By taking advantage of the strictly diagonally dominant nature of this matrix, Cohen

([Cohen85]) is able to use the Gauss-Seidel iterative method, taking the emission of the patches

as the initial guess. Time is reduced to O(n

2

).

By examining form-factor relationships, further reduction is realized in ([Cohen86]). For previ-

ous methods, a �xed sized matrix resulted from a �xed number of patches. If this number increases

the time and storage also increases. Cohen allowed the size of the matrix to be independent of

subdivision, by not storing element form-factors on subdivision, but instead taking area weighted

averages of element values as patch values. This gives a O(ne) solution, where n is the number of

patches, and e the number of elements.

These original methods achieved di�use to di�use transport, with the assumption of opaque

surfaces with ideal di�use re
ectance and / or emission. There have been a number of single pass
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extensions to include non-di�use e�ects. Physically-based e�ects are simulated in: [Immel86],

[Rush86], [Rush87] and [Rush90a]. Immel ([Immel86]) allowed arbitrary re
ectance functions,

and maintained conservation of energy, which is often overlooked. Testing with Phong ([Phong75])

and ideal specular re
ectance functions, computation time was unfortunately in the order of VAX

11/780 months to compute a single image. [Rush87] added participating media with wavelength-

independent isotropic emission, absorption, and scattering, and opaque surfaces with Lambertian

re
ection, and emission. [Rush86] and [Rush90a] allowed translucency for surfaces with the same

characteristics, but doubles the number of hemicubes required per translucent surface.

Implementation of empirically based e�ects have also resulted through the use of texture map-

ping. Texture mapping was �rst used in radiosity algorithms in [Cohen86]. The basic problem

with the method used is the assumption of constant re
ectance and radiosity per map during the

radiosity computation. To handle the \
atness" problem with texture mapping, bump mapping

was used in [ChenH90] by jittering the normals used for hemicube calculations to simulate rough

surfaces. A basic problem with this method is the sparseness and uniformity of the bumps.

In summary, general drawbacks of all full matrix solutions are the computational and storage

costs for the matrix, and that solutions cannot be adaptively re�ned ([Bergman85]).

Σ
i=1

N
Bi = Ei +       (   i F{ij} Bjρ

Bi Ei pi Fij Bj
x x x

x
x
x
x
x
x
x

x x x x x x x x

Patch i

Patches (j)

("Gathering")

Full-matrix Approach

where F{ji} = F{ij} (Ai / Aj)
ρFor all j: Bj = Bj + (   j Bi F{ji})

Bj
x
x
x
x
x
x
x
x

Patch i

Patches (j)

Progressive Refinement Approach

("Shooting")
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x
x
x
x
x
x
x
x

x
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x
x
x
x
x
x

Bi pj Fji

Figure 4.8: a) Full matrix method: All equations for B

i

must be solved simultaneously. b)

Progressive re�nement method: Solutions for B

j

may be updated iteratively.
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Progressive Re�nement Algorithms

The original progressive re�nement algorithm ([Chen89]) is an iterative method, using ideas very

similar to those of light ray tracing ([Arvo86]), and the Atherton-Weiler visible surface algorithm

([Foley90]), to simulate ideal di�use to ideal di�use transport (D

+

i

E). The form-factor computa-

tion from sources to receivers is the same as for a FM method, but the reciprocity property is used

to compute form-factors from receivers to the source, resulting in storage linear to the number

of receivers being required per iteration. Once form-factors are computed, the radiosity from the

current source to all applicable receivers can then be found. This process is akin to \shooting

energy" to the receivers.

For example, assuming that there are n patches in a scene, and patch i is the current \shooter"

with B

unshot

i

radiosity left to propagate. All patches B

j

for j = 1 to n may have their current

radiosity B

current

j

updated to B

new

j

as follows, due to patch i propagating energy to them:
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(4:1)

�

j

is the re
ectance of patch j, and F

j�i

is the form factor from j to i and is computed using the

reciprocity rule as follows:

F

j�i

= F

i�j

A

i

A

j

(4:2)

where A

i

is the area of patch i, and A

j

is the area of patch j. F

i�j

is computed using the hemicube

method for patch i.

By iteratively setting di�erent patches to be the source or the shooting patch, the radiosity for

other patches can be incrementally updated until a su�cient number of patches have \shot" their

energy.

To produce faster initial images, an ambient term based on form-factor and re
ectance approx-

imations, and the current radiosity is used, which decreases as the true solution is computed.

Due to reduced storage cost in this method, more complex scenes may be rendered, with

\faster" initial solutions, and smooth image re�nement to a complete solution. As such, there are

many single pass methods which use this progressive re�nement algorithm ([Cohen88], [Malley88],
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[Baum89], [Airey90], [Campbell90], [ChenH90], [Chen90], [Recker90], [Rush90a], [Rush90b], [Wang90],

[Baum91], [Dorsey91]).

4.5.2 Multi-pass Algorithms

The need for new approaches arises mainly due to excessive storage and computation time to

compute specular e�ects (e.g. [Immel86]). The main reason for ine�ciencies is that mechanisms,

best suited for capturing di�use transport, are extended to capture specular e�ects. In the same

manner, ray tracing approaches also become very expensive when extended to capture di�use

transport (e.g. [Kajiya86]). A natural progression is a hybrid radiosity-ray tracing approach, to

take advantage of the best aspects of each.

Relevant characteristics of radiosity methods are view-independent di�use interre
ections,

physically based solutions (i.e. no empirical ambient term), purely geometric form-factors (no

need to recompute on surface property changes), and ability to capture transport from sources

to di�use receivers well. Important characteristics of ray tracing methods are consideration of

viewing position, and e�cient computation of specular transport.

The �rst hybrid two pass method ([Wallace87]) performs a FM radiosity computation using

translucency and planar specular re
ectance methods from [Rush90a], for D

+

i

S

p

D

+

i

transport.

A ray tracing approximation second pass is used to capture D

�

i

S

�

E transport. Note that an

incomplete solution results from using a post-process or a pass to perform specular transport to the

direction of the viewer only. This is because only e�ects relevant to the current viewing position

are considered. This type of computation is more e�cient, though, than computing specular

transport to all directions in the scene. Also, the same transport mechanisms and illumination

model should be used in all passes, and all transport dependencies be considered otherwise the

incorrect results are computed. For Wallace's algorithm, due to oversimplifying transport into 4

mechanisms (D

i

to S

i

, S

i

to D

i

, S

i

to S

i

, and D

i

to D

i

transport), higher order e�ects that occur

when energy arrives at a surface via a path involving several interactions with several surfaces

where any of the mechanisms may be involved in any order are missed.

[Shao88] attempts to address the high cost of using the image method, and to achieve more

accurate di�use transport by considering di�use and specular impinging energy on a surface si-

multaneously, since outgoing energy is dependent on both of these terms. A �rst pass uses FM

radiosity and stores visibility for non-di�use surfaces found. The second pass recalculates (re-

samples) \form-factors" for non-di�use surfaces using FM radiosity. A ray tracing post process
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is used to �nd specular highlights. The main drawback of this method is that \form-factors" are

not purely geometric, requiring recomputation on spectral and spatial property changes as well as

surface geometry changes.

[Sillion89] uses a two-pass method of FM radiosity followed by a ray tracing pass to achieve

D

+

i

S

�

i

D

+

i

and D

+

i

S

�

I

E transport, ideal refraction, and non-planar specular e�ects. The �rst pass

uses extended form-factors to include non-planar specular e�ects. An eye pass interpolates ra-

diosity values from di�use surfaces instead of using shadow rays ([Arvo89]). For specular surfaces,

shadow rays still must be shot, since no energy is stored on specular surfaces. Since samples

are only kept per patch, source to specular to di�use patch contributions are not captured well.

Therefore the method is poor at capturing e�ects such as caustics.

[Watt90] uses roughly the same approach as in [Wallace87], except with a di�erent method for

di�use exchange (beam tracing). A �rst pass of LRT computes LS

i

D

i

transport and a second ray

tracing pass captures D

i

S

�

i

E transport. The major advantages of this method are better specular

surface sampling, and maintaining information about directions to specular surfaces that were

visited in the transport of energy to di�use surfaces. This information can be used in the second

pass, for better di�use reconstruction. This brings up another problem with most multi-pass

methods, that of reuse. Many either never mention how or if information common to di�erent

passes may be used, or exploit this information very little. Especially relevant is the reuse of ray

information, since many use ray tracing in more than one pass.

To take into account viewing position, [Heckbert90] uses a �rst pass of ray tracing from the eye

to ideal di�use surfaces to obtain a mapping from world to screen space to determine minimum

di�use sampling densities. The other two passes are LRT for point light sources, and RT passes

with only ideal di�use and specular re
ection considered. Due to the histogram storage method

used to store energy at surfaces, \blocky" gradients are seen in images produced.

[Shirley90] made a distinction between di�use to di�use, and light to di�use transport, using

di�erent mechanisms for each. A three pass solution of LRT, a FM radiosity for indirect energy

transport between non-emitters, and a DRT pass to the eye that includes shadow ray testing to

compute direct illumination at di�use surfaces, is given. This method seems to be one of the

most compete to date, with respect to transport mechanisms as it achieves LS

�

g

D

i

, D

+

i

S

�

g

D

+

i

,

(L

�

D

i

jS

�

g

)E transport. A proposed guess for time complexity for using MCPT is O(n), n being

the number of patches ([Shirley90], [Airey90]).

[Chen91] notes that due to the ordering of the passes, di�use interre
ection e�ects are found
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before computing strong specular e�ects, textures, etc in the ray tracing pass to the eye. As well,

the method is suited for only near ideal di�use or specular surfaces. Chen reorders the passes in a

three pass method. The �rst pass is a PR pass using extended form-factors ([Sillion89]) to obtain

di�use storage. Next is a \high frequency" pass of LRT to produce caustics or illumination maps,

and MCPT with coarse sampling to capture e�ects to the eye. A �nal \low frequency" pass of

MCPT or DRT to the eye is used to re�ne the images. A second shortcome of Shirley's algorithm

([Shirley90]) was the fact that only self-emitters were considered to be \light sources". To take

into account \secondary light sources", such as highly specular surfaces visible to lights, surfaces

were reclassi�ed after the PR pass.

When storing impinging energy samples on di�use surfaces or propagating energy most al-

gorithms assume ideal di�use properties, resulting in the inability to capture directional energy

distributions. [Sillion91] stores general re
ectance functions ([He91]) during a PR radiosity pass,

and computes ideal specular e�ects using the image method as applied to a PR algorithm. That is,

instead of re
ecting the scene to produce "virtual worlds", only the current shooter is re
ected. A

ray tracing pass is used for rendering. Directional emissivity of surfaces is included in [Dorsey91]

by using spatial weighting functions when computing outgoing radiosity.

4.5.3 Shooting Order Priority

Regardless of the means to propagate energy, some sort of propagation order must be imposed.

The order chosen will a�ect the the manner in which a scene will be lit, and thus the speed at

which parts of a scene will appear with their �nal illumination values in an image.

[Immel86] proposes to propagate from emitters �rst, since they have the most energy to propa-

gate to the scene. This idea is quite similar to Arvo's idea of shooting from lights ([Arvo86]). The

�rst shooting order implemented for PR radiosity algorithms ([Chen89]) sorts by how much en-

ergy has yet to be propagated from a patch. Di�erent priorities will be discussed when considering

solutions for dynamic environments.

4.5.4 Convergence and Error Measurements

When propagating energy, knowledge of when a \correct" solution has been reached is required,

thus requiring some sort of halting criteria and error measure. Many of the criteria given in research

has been based on experiments on speci�c computer models, and may not have any correlation to

physically measured results on a real world analog. Currently testing has been restricted to ideal
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di�use environments ([Meyer86]).

For full-matrix methods, convergence to a correct solution is assumed if the degree of error in

the matrix solution is less than some tolerance. [Immel86] adds the criterium of convergence if

the di�erence between successive radiosity values stored is below a tolerance.

For PR methods, Chen ([Chen89]) uses the criteria of halting when the percentage of the total

energy in the scene left to propagate is less than a tolerance. An RMS error of radiosities for

all elements in the scene is used to measure the rate of convergence with respect to the �nal PR

solution: Error

RMS

=

r

P

e

i=1

(B

�

i

�B

i

)

2

A

i

P

e

i=1

A

i

where e is the number of elements, B

i

is the current

radiosity, B

�

i

is the �nal radiosity, and A the area of an element. Algorithms using planar grids

to approximate a hemisphere, either lose energy forever ([Wang90]), or wait until the amount of

energy lost is greater than the unshot energy of the surface ([Recker90]). Experimental results

given show that the number of iterations until convergence is actually longer than PR methods

not using a planar grid, since there is the need for extra \lost energy" propagations.

From experimental results given in [Airey89], [Baum89] and [Greenberg91], after roughly 100

iterations, the rate of convergence to within a given error (roughly 20 percent) of a solution found

using a FM method, then converges slower than with a FM method. Unfortunately, accuracy

is only measured with respect the FM solution. [Baum89] also uses a FM solution to compute

accuracy using the error computation: jB

FM

� B

approx

j

2

=jB

FM

j

2

. jj

2

is the square root of the

squared radiosity over all colours and all emitters, subscript FM is for full-matrix and approx is

for their approximation. As mentioned, the solution is within 4 percent of a sample FM solution.

[Haines92a] notes that using the ratio of total unshot energy to total shot energy may give

a high initial convergence rate which may be very misleading, as the time to converge to a �nal

result may actually be slower. For example, imagine surfaces with high radiosity values that face

nothing. Shooting from them will give a high convergence rate, but the solution has not actually

converged. In general, it is noted that the rate of convergence is highly dependent on the nature

of the scene, and it is still unknown what is the best general criteria.

Most methods using Monte Carlo, or other distributed ray tracing algorithms to compute

di�use e�ects have not been measured in relation to other methods, and are still considered

intractable ([Greenberg91]).

Qualitatively, after about 100 iterations of a PR method, di�erences with respect to a con-

verged result are said to be visually indistinguishable ([Chen89], [Cohen88], [Greenberg91]). Haines

([Haines92a]) also notes that for the illusion of realism it is not necessary to have totally accurate
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colour bleeding or sharp shadows, as commonly seen in ray traced scenes. In fact, sharp shadows

may be interpreted as ambiguous \cuts" or \folds" in the scene.

4.5.5 Radiosity Storage Techniques

Having computed radiosity values, a storage mechanism is required. Factors to consider include

storage cost, accurately in capturing gradients and recovering values for rendering, and what

surface properties and illumination assumptions are used. Our discussion is split into two parts,

based on two general structures used: polygonal and map storage.

Explicit Storage in Scene Geometry

The �rst type of storage technique stores radiosity values at exact geometry points given in a

polygonal model. The two main choices have been per polygon, or per vertex.

The �rst choice assumes uniform values per polygon (e.g [Goral84] [Chen89] [Cohen88]). The

second choice stores values directly at vertices of a polygon allowing variations in gradients across

a polygon (e.g [Nishita85] [Wallace87] [Wallace89] [Sillion91]). [Wallace89] notes that multiple

values may be stored at a vertex position if the vertex is shared by more than one polygon.

Sillion ([Sillion91]) stores direction energy distributions in the form of splines. Advantages of

the representation include the fact that transformations of distributions are simple, continuous

representation of distributions, and that storage does not grow as samples are accumulated, as

with previous methods.

General problems with these techniques are that polygonization is used to store samples, re-

sulting in complications for meshing models, and rendering problems. The latter problems will be

discussed in sections forthcoming.

Mapping to Scene Geometry

The second type of storage is in texture maps ([Foley90]), where values are stored at given points

in a map associated with objects in a scene, rather then directly at surface mesh points.

Arvo's idea of storing textures per polygon is used by [Shirley90] and therefore su�ers the same

sampling problems due to storage in a regular grid ([Arvo86]). Maps are also used by [Watt90],

but in the form of a set of surface detail polygons ([Foley90]) for better sampling densities. Final

values are found by summing the values in each map present at a given location on a polygon. To

avoid jagged maps on receivers, Shinya ([Shinya89]) �lters the sample distributions deposited on
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receivers.

Rather than storing textures in association with the polygonal breakdown, Heckbert ([Heckbert90])

uses maps based on the original geometry of an object to allow smoother interpolation and inde-

pendent storage. Bilinear subdivision is used to adaptively sample. There may still be problems

with discontinuities within or between maps, and mapping textures to complex scenes.

For these methods, a very high degree of sampling may be required to su�ciently represent

the di�use radiosity gradients, which may also be polygonized.

4.6 Rendering

In order to be able to view the results of a simulation, the environment must be rendered. Two

basic approaches employed to render the scene will be examined: Gouraud shaded polygon scan

conversion (Gouraud shading), and ray tracing. Gouraud shading only renders the scene, without

performing any visible surface determination with respect to the viewer, while ray tracing computes

visibility as well as rendering.

Gouraud shading ([Gour71]) basically requires a set of intensity values given at vertices on a

polygonized object. An image is formed by projecting objects onto an image plane. To obtain

all values between a given set of vertices linear interpolation is performed. A basic ray tracing

algorithm requires sampling the scene through a regularly meshed image plane. Vectors or \rays"

are formed from the viewer through each grid cell. For the closest object that intersects the ray, the

intensity is computed for the cell using the illumination model at the intersection point. Further

rays may be sent out in speci�ed directions according to the illumination model to capture e�ects

such as re
ection, refraction, and shadows.

4.6.1 Gouraud shading

For most algorithms that polygonalize objects in the scene, Gouraud shading has been used to ren-

der the objects ([Goral84] [Cohen85] [Cohen86] [Rush87] [Cohen88] [Chen89] [Rush90a] [Rush90b]

etc). The main advantage for using this algorithm is it's speed and simplicity, as most of todays

graphics workstations can render tens of thousands of Gouraud shaded polygons per second using

algorithms incorporated into the hardware. For applications such as walk-throughs, and simula-

tion of dynamic scenes, where real-time interactive feedback is desired, this method is preferable,

Speed is also a�ected by the fact that Gouraud shading is used only to render the objects, and
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not perform any energy transport calculations. Thus for every image to draw, only a rendering

operation is required, as opposed to ray tracing algorithms which additionally compute energy

transport.

There are a number of problems with rendering a polygonized model though, as reconstruc-

tion of shading gradients is highly dependent on how well the polygonalization has captured the

radiosity gradients on surfaces. Many problems result from the fact that a radiosity algorithm

can produce large variations in radiosity within a polygon, which is rare in most previous uses of

hidden surface rendering.

Mesh Density and discontinuities

To capture rapidly changing e�ects, a very �ne mesh can be used, but this increases storage and

computation cost, Though the use of adaptive subdivision ([Cohen86]) addressed this problem, it

produces mesh discontinuities.

0.22

0.72

Shadow

0.0

0.0

1.0

1.0

bbb = non-interpolated values

aaa = interpolated values

Figure 4.9: Shading discontinuity seen due to T-vertex. Polygon on left has value of 0:22 at

shadow boundary, while polygon on right has value of 0.72

When interpolating values �rst order discontinuities may appear due to T-vertices (Figure 4.9),

and light or shadow leakage. The basic solution given for T-vertices is to add these vertices to the

polygons that do not share it originally. [Baum91] performs this when adaptively subdividing by

anchouring, while [Haines92a] adds vertex points before rendering, but does not resample. Light

/ shadow leaks have been handled by splitting intersecting surfaces along lines of intersection

([Segal88] [Baum91]) and non-bilinear subdivision ([Campbell90]). Gradual mesh density changes

has been addressed in [Heckbert90] and [Baum91] by not allowing mesh densities to di�er by more

than one level.
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Rendering shape

When rendering polygons, two choices for shape have been examined: quadrilaterals, and triangles.

Quadrilaterals are rotation variant (i.e. if rotated, shading changes), while triangles are rotation

invariant but the appearance may di�er depending on which diagonal of a quadrilateral is used

for splitting. For example Figure 4.10 shows the connection of the two white corners, and two

black corners of a quadrilateral. Connecting the corners with the smallest di�erence has been

suggested ([Airey90], [Haines92a]), as well as using a perspective warp function ([Wolberg90]), but

this function is not supported by most hardware. This function may be approximated by splitting

a polygon into a mesh of polygons, and interpolating new samples. This is slower, but gives better

quality. There is currently no general solution for shading arbitrarily shaped polygons (e.g. with

holes).

Figure 4.10: Gouraud shading: Left-most polygon is quadrilateral shading, middle is split along

one diagonal, and right is split along other diagonal.

Shading Reconstruction

To shade, a set of shading values is required, thus a means to reconstruct the shading gradient

is required. Unfortunately, information may be lost while reconstructing. For example, [Goral84]

computes vertex values by interpolating from patch values. The problem of interpolating from

insu�cient information is quite obvious when rapidly varying gradients are to be captured. Images

from [Immel86] show \washed-out" specular e�ects, for example. To avoid patch interpolation,

values are stored directly at vertex positions, and averaging is used if more than one value is stored

at a shared vertex ([Wallace89] [Arvo91]).

Haines ([Haines92a]) notes that if the rate of change between two polygons is di�erent, Mach

banding occurs ([Hall89]). This requires better shading reconstruction instead of bilinear interpo-

lation. Cubic interpolation using nearest neighbour information is suggested by Haines, which is
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good for uniform sample distributions, but unsuitable if adaptive subdivision is used. [Chen91]

suggests using a cone �lter to reconstruct gradient values.

Side-E�ects

Using Gouraud shading restricts choices for other techniques that can be used. This mainly results

from requiring polygonal models, such that sampling and storage must be performed at �xed points

on polygonized surfaces when computing form-factor and radiosity values. Additional overhead is

required to support the techniques to maintain geometric constraints so that rendering artifacts

do not appear ([Baum91] [Haines92a]).

4.6.2 Ray Tracing

In recent hybrid algorithms, the computation of rapidly changing e�ects has been separated from

that for slowly changing e�ects (e.g. [Wallace87] [Wallace89] [Shirley90] [Chen91]). Ray tracing

algorithms in general have been the preferred choice for capturing rapidly varying e�ects when

rendering with respect to a viewing position, and during computation of the radiosity simulation.

Using a ray tracing method for simulation and rendering has allowed for the use of separate

data structures for radiosity simulation and for rendering. This allows for more 
exibility in the

types of representations that may used for modeling, and sampling methods used for computing

form-factor and radiosity values, as less polygonization is required.

The complexity of the ray tracing algorithm will di�er depending on the types of e�ects to

capture, and the level of detail desired. The complexity may range from using a simple ray caster

to using complex Monte Carlo methods. Note that the algorithm used for simulation should match

the one used for rendering, otherwise the results will be incorrect. A major hurdle has been to

try and capture general energy distribution functions in an e�cient manner (due to their high

computational cost). In general some sort of distributed ray tracing approximation method has

been used ([Wallace87], [Wallace89], [Shirley90], [Chen91]).

The e�ects of the simulation are usually stored at di�use surfaces either in a polygonal model

or using textures. To incorporate these values when rendering, a mechanism is required to retrieve

them at ray-object intersection points. In general some sort of interpolation or �ltering is used to

retrieve values, which when weighted by the re
ectance at the intersection point, is used as the

\di�use component", instead of casting shadow rays (e.g [Sillion89] [Shirley90]).

Care should be taken, though, when using using multiple representations to compute shading
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values, as errors may be introduced due to the di�erences in assumptions between representations.

For example, if a polygonized model is used to store radiosity, a value at an intersection point

may include a ray traced value using the real normal at the point on the surface along with a

interpolated mesh value, which may ignore the geometry.

As this method is view-dependent, in terms of image production, regardless of the ray tracing

algorithm used, all pixels of the image plane must be computed before a complete view of the scene

is possible. Recomputation is also required at every frame, if the viewer moves. As previously

mentioned, ray tracing performs an energy transport computation which has not been standardized

in hardware implementations, and as such is slower than using hardware assisted Gouraud shading.

Due to these speed and view dependencies, its usage has not been presented in real-time interactive

applications for radiosity.

4.7 Changing Environments and Image Re�nement

If the scene changes or the viewpoint is moved, then a new set of issues, need be considered.

Environments where the geometry or properties of the objects may change will be called dynamic

environments, otherwise they will be called static environments. Walk-throughs involve moving

the viewing position with respect to the environment. In the following sections, issues for dynamic

environments, and image re�nement will be discussed.

4.7.1 Dynamic Environments

In dynamic environments, surface property and geometry changes may require recomputation of

surface radiosities for one or more surfaces. The most expensive changes are geometrical ones, as

form-factors, which are the most computationally expensive part of a radiosity simulation, need to

be recomputed. The basic strategy to minimize recomputation time has been to only recompute

values directly a�ected by any change, by exploiting temporal coherence (coherence over time).

Nishita and Nakamae ([Nishita85]) proposes to reduce the amount of recomputation of form-

factors on movement of objects by performing a shadow pass to determine visibility. On any

movement, they propose that less form-factors need be recomputed since not all geometric relations

between objects will change.

[Baum86] reduces computation per frame by using a construct called a back-bu�er. Object

coherence is exploited by taking advantage of geometry that remains constant over time. Tempo-
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ral coherence, is exploited by using prede�ned paths of object motion, and avoiding unnecessary

computation by culling polygons that can never be seen from the objects path. Basically, visi-

bility for each polygon that does not move in the scene is stored in bu�ers (back-bu�ers), taking

into account the positions of visible dynamic objects. When updating a frame no form-factor

computations are performed between static and dynamic objects, only between dynamic objects.

Disadvantages of this method are that prede�ned sweep volumes are required for dynamic objects,

plus preprocess and storage time for visibility calculations for all surfaces that may be occluded

by dynamic ones. Additionally, only environments with planar ideal di�use polygons are allowed.

[Sillion89] handled surface property changes by computing the e�ect of removing previous

energy propagated to a surface, and reshooting the current energy for that surface. A single

incremental radiosity value is computed to update surfaces e�ected. Propagation of energy is

accomplished by shooting this incremental radiosity.

[Chen90] contains a more complete solution to handle moving objects, as well as using ideas

from [Sillion89] for property changes. Chen does not attempt to prestore visibility in image space

([Baum86]), or in object space ([Buckalew89]), which both require a large amount of preprocessing

storage (O(n

2

) for [Buckalew89], n = number of surfaces). Instead, interactive computation with

non-predetermined changes are desired.

The �rst idea introduced was an incremental form-factor computation for geometric changes.

An incremental form-factor between every patch a�ected by the patches on a moving object is

computed based on old and new form-factors between these patches. Since visibility between

each pair of patches, or between the object and patches only a�ects a small part of the scene,

modeling coherence can be used to trivially discount objects. If ray tracing is used for computing

form-factors, hierarchical bounding volumes can be used to clip away objects, or a restricted size

hemicube can also be used if form-factors are computed using the hemicube method. The idea

of reusing visibility or form-factor computation by caching the most frequently used form-factors

is also suggested. To track geometry changes, a queue is used, with two basic actions being

allowed: addition and deletion of objects. The queue can be used to �nd unchanged and changed

patches, via the history of changes, and allows multiple changes to be compressed to save time.

The current implementation works for ideal di�use environments. Without space subdivision, a

modi�ed hemicube is used to handle geometry changes, and only interactive changes are allowed.

Some drawbacks include no mechanisms for handling adaptive subdivision, and the storage and

time for handling the queue for every patch in the scene.

64



With many changes occurring asynchronously, there is the problem of maintaining an up-to-

date energy distribution in the scene. The criteria for choosing shooting patch order has thus

been enhanced. Sillion [Sillion89] uses the absolute energy of a patch, while Chen [Chen90] adds

the additional criterium of a form-factor approximation (the area of the patch with respect to

the area of the world), and how much of the queue for the patch has been processed (i.e. the

most up to date one). The re
ectance of all patches the candidate is shooting to is ignored, by

assuming constant re
ectance. [George90] gives a shooting order criteria based on a form-factor

approximation of unoccluded project area from the center of the patch. This method is 
awed if

a) the distance between the source and receiver is small, b) the projected area of the new object

is roughly the same in all directions or c) there is occlusion. In general, this area has only been

examined lightly with no guarantee that the errors produced by changes will reduce rapidly.

4.7.2 Image Re�nement / Walk-throughs

Both during, and after our radiosity computations, some form of adaptive image feedback is desir-

able. Re�ning images has generally taken place when the viewer is stationary, with approximations

used when the viewing position is changing. How images are re�ned and speed of computation

will be examined.

Re�nement of Image

The �rst attempt at providing re�nement for radiosity solutions was in [Chen89]. Images are

re�ned after a shooting patch has propagated it's energy into the scene. A faster method, proposed

in [Campbell90], is to update on every receiver patch propagated to.

A proposal put forth in ([Wallace87]), is to only compute the di�use components of energy

transport while the viewer is moving through the scene. Only when the viewer is stationary is a

post-process of ray-tracing performed to capture specular e�ects. There may be the problem of

discontinuities in the e�ects seen in the image, when stopping and starting, and incorrect results.

[Airey90] performs post-processing when stationary, by retesselating patches along intensity

gradients and recomputing radiosity values for new patches. Speed in recomputation of visibil-

ity was addressed by precomputation of model space subdivision. Speed on change of surface

properties was addressed by precomputing the radiosity for 20 di�erent types of lights sources.

[Baum90] makes use of viewing parameters as hints as to which parts of the scene should have

their illumination calculations accelerated.
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Approximations for Faster Computation

In order to facilitate faster computation, several approximation techniques have been presented.

[Chen90] uses a scene property dependent ambient term to give better initial results (i.e. closer to

the �nal image). [Sillion90] uses adaptive hardware lighting for early results, for similar reasons.

Both [Sillion89] and [Recker90] use single plane hemisphere approximations for faster form-factor

computation. [Sillion89] also uses the technique of depth-bu�ering mirror images onto a frame

bu�er for fast planar mirror form-factor approximations. Finally, [Sillion90] uses negative light

shooting to allow interactive light changes, and includes the ability to alter surface meshes inter-

actively. Also presented was a set of interactive movements for the user to walk-through scenes.

4.8 Parallelization of Radiosity

In general there has not been much research into parallelizing solutions. Two radiosity solution

approaches, both of which use a hemicube form-factor method or some variation of it, and a VLSI

solution to computing di�use form-factors will be presented. Note that these approaches assume

ideal di�use surfaces, and that adaptive subdivision is not included.

4.8.1 Radiosity Solutions

Chen ([Chen89]) uses a local area network with a single master and a number of slave processors to

compute a progressive re�nement solution. Each slave computes a form-factor for a given shooting

patch at a time using a hemicube method utilizing hardware depth-bu�ers. The master coordinates

the radiosity solution, and display hardware, and assigns to each slave a patch to compute the

form-factor for, such that if there are n slaves, then n form-factors for n source patches may be

computed at any given time. Double bu�ering ([Foley90]), is used so that rendering of images

need not be synchronized as old images are simply overwritten with new images. Problems with

this solution are that a full geometry description of the scene is required at every slave, and

communications and server bottlenecks reducing the e�ective speed increase due to parallelizing.

The result is a less than linear increase in speed on a small number of slaves (less than 10), before

bottlenecks are encountered.

This method has been used by various others including [Airey90], [George90], [Recker90], and

[Sillion90],

An alternative solution for single multi-processor machines is given in [Baum90], via a walk-
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through and a radiosity program. For the radiosity program, the usage of a hardware frame bu�er

is split, so that N equal size blocks (item bu�ers) are dynamically scheduled to perform item

bu�ering. A ringed queue of data sets is shared between one producer and k consumer processes,

such that each set has it own item bu�ers, and possibly form-factors. In their implementation

a value of k = 2 is used, which is just double bu�ering. Each consumer computes form-factors

from item bu�er information and stores it in a local copy of a form-factor vector, for less access

contention.

They note that only one producer is su�cient to drive the graphics hardware to capacity. Since

the producer schedules the item bu�ers, and performs the projection of surfaces onto each bu�er,

most of the time is spent on rendering. This time is dependent on the number of hemicubes and

polygons, the rendering rate, and the read back rate from the bu�ers, which in turn depends on

the number of bu�ers, and the pixel resolution of the hemicubes. An interesting result is that it is

possible to perform an a priori calculation of optimal values for parameters based on the number

of polygons, hemicube resolution, and the number of consumer threads.

4.8.2 Form-factor Solutions

[Bu89] computes form-factors for planar di�use polygons by ray tracing through the grid cells of

a uniformly meshed hemicube. Every ray that strikes the interior of a polygon projected onto

the hemicube is given a weight of 1, and every cell that strikes an edge of a projected polygon

1

2

.

These weights are used to weigh associated delta form-factors at grid cells, in order to give better

projected area approximations. Intersection computations have been pipelined, and rays to trace

are computed in parallel.
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Chapter 5

Radiosity Implementation

5.1 Introduction

In this chapter an implementation of a radiosity algorithm will be presented. The choices of

techniques and ideas used are based on the analysis presented in the previous chapter, and imple-

mentation choices. First, a general overview of the implementation will be presented, followed by

details for each section of the algorithm. A summary of the complete algorithm is given at the

close of this chapter.

5.2 Overview

The basic aim of the algorithm is to provide an implementationwhich is useful on as many di�erent

hardware platforms as possible, with the emphasis on producing a simple usable application with

su�cient 
exibility to allow for further enhancement.

The basis of the algorithm has been taken from the following sources:

� Modeling uses ideas from [Cohen86] [Segal88] and [Baum91], and data produced by the

QuickModel modeling program [Alias89].

� Visibility computation uses ideas from [Amana87], [Goldsmith87], [Haines91a], [Hanrahan91],

[Arvo89].

� Form-factor computation uses ideas from [Wallace89] [Baum89] [Rush90b] and [Arvo91].

� The progressive re�nement method with the hemicube, and ray casting techniques, and

adaptive re�nement makes use of [Goral84] [Cohen85] [Cohen86] [Chen89] [Arvo91].
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� Rendering uses ideas from [Cohen86] [Wallace89] [Airey90] and [Sillion90].

The techniques are organized and incorporated in three basic parts:

1. A modeling part.

2. A radiosity simulation part.

3. A rendering and environment walk-through part.

The main reason for this particular breakdown is to treat the radiosity simulation as inde-

pendent of the modeling and rendering parts of the process. This allows for extensions to accept

various di�erent types of data formats for models, and di�erent renderers to be used for displaying

scenes. The radiosity part may then compute simulations that are roughly independent of input

model and output models, and any associated hardware required.

In general, modeling and rendering are treated as pre and post processing steps, in order to

emphasize the radiosity simulation part. The simulation is hierarchically broken down into a

top level progressive re�nement component, with form-factor computation, adaptive subdivision,

choice of shooting patch, and distribution of energy sub-components.

Figure 5.1 shows the basic breakdown of the entire system implemented.

As with the previous chapter on analysis, discussion sequentially follows the steps of modeling,

radiosity solution computation, and then rendering.

5.3 Modeling

5.3.1 The Environment

The environments considered will be restricted to those that are best suited for view-independent

walk-throughs. It is assumed that scenes are enclosures, (though not necessary), with ideal di�use

surface emittance and re
ectance, and no participating media. Geared towards usage on machines

that provide hardware-assisted polygonal rendering for speed, models have been restricted to being

polygonal. In particular, polygons are planar, and are either quadrilateral or triangular in shape.

Given these assumptions, the central aim is to incorporate, in an automated fashion, some of the

ideas presented in [Cohen86], [Segal88] and [Baum91] to produce models with various geometric,

radiosity simulation, and rendering constraints best suited for these models. It is assumed that

initial input models incorporate good modeling principles ([Mantyla88], [Samet90]).
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Figure 5.1: Breakdown of radiosity algorithm, mesh processors, and walk-through program.

5.3.2 Model Generation

An initial description of the scene is produced using a modeling program called QuickModel.

The program is commonly available for most Silicon Graphics IRIS graphics workstations, and

has a simple data format. The main features to take advantage of are:

1. A graphical interface for de�ning objects which are non-primitive meshes, and primi-

tives. Primitives include cones, cubes, cylinders, and spheres.

2. Mesh information is represented as line segments. Non-primitive meshes represent surfaces

of revolution, or extrusions.

3. De�nition of RGB colour information, for each primitive.

Drawbacks of this modeler includes the fact that only point light source de�nition is included,

which is unsuitable for our needs, surface properties are simplistic, and surface normal and polygon

information is not implicit.
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5.3.3 Model Enhancement

To handle some of these shortcomings, model preprocessing is performed. A preprocessor is used

to create data �les containing information for polygonally meshed spheres, cones, cylinders, and

cubes. The degree to which they match the real primitives geometry depends on the degree

of subdivision de�ned. Note that regardless of mesh resolution, upon display, objects may still

appear polygonized depending on the position the mesh is viewed from. Currently, a default

resolution that produces approximations that are fairly consistent with the actual geometry of the

primitive is used. These data �les are used for primitive instancing, in that each primitive has

only one de�nition, and instances may be made of the primitive which contain references to these

de�nitions. Additional preprocessing computes the following information from QuickModel data

�les:

1. In terms of geometric constraints, explicit polygons and unambiguous surface faces (which

way is out), and normal consistency is computed. Normals for polygons point \out" if

counting the vertices of that polygon in a counter-clockwise direction.

2. Well shaped polygons are formed by subdividing polygons either into rectangular or trian-

gular shaped polygons. A user de�ned level of subdivision of patches to elements is allowed.

3. Interpretation of RGB colour information as ideal di�use surface re
ectance. Ideal di�use

emission informationmust be manually set, as there is no piece of information in QuickModel

data �les suitable to use.

4. Implicit access to the previously mentioned data �les containing data for meshed spheres,

cones, cylinders, and cubes.

5. Mesh vertex alignment between surfaces for primitives is included if they do not inter-

penetrate.

Restrictions in the model include the fact that only the \exterior" of faces radiate energy, and

coplanar surfaces have not been removed except if they face each other, due to the lack of a good

criterium for the general case. Mesh misalignment has not been handled by either balancing or

anchouring ([Baum91]).

Following preprocessing, the basic output constructs are polygon normals, vertices, and radia-

tive properties, with vertex and normal to polygon, polygon to polygonal mesh, mesh to primitive,

and primitive to environment relationships.
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5.3.4 Model Storage and Filters

To use models stored in di�erent data formats, �lters may be used to translate to the appropriate

input format. An example �lter is currently provided for models stored inOFF format ([Rost86]).

5.4 Radiosity Structures

The output produced by the modeling process represents the input models for our radiosity pro-

gram, where additional preprocessing is performed to create a structure hierarchy, vertex tree and

space subdivision as shown in Figure 5.2.

A  B  C  D

Tri-quadtree
for Surface i1

Structure Hierarchy

Object i

Surface i2

a1  a2  a3  a4

Surface i1

Polygon / Object Bounding Volume
Hierarchy

BoxA BoxB BoxC

Box

Box

BoxD

i1

i

v0v4

Vertex Octree

PatchA

Patch B

Elem a4

Box

i1

D
C

BA

Surface i1

BoxA

v3

vo

Normal B

v0 v1

v2
v3a1 a2

a3 a4

Patch A Patch B

Counter-clockwise normal-consistency

Box i Object i

ExtrusionCubeCylinderConeSphere Surf. of revolution

Element a4

vo

v3v4

v5
a3 a4

a2a1

Patch Level

Surface Level

Element Level

Object Level

Figure 5.2: Breakdown and relationships for vertex octree, hierarchical bounding-volume trees,

and structure hierarchy

5.4.1 Structure Hierarchy

From the input models, a hierarchy of the form shown in Figure 5.2 is created. This hierar-

chy is maintained: a) for the sharing of information between levels, reduced storage costs, and
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maintaining consistency in the model; b) for adjacency information and geometric relationships;

and c) to allow working at the desired level of detail for di�erent algorithms, in particular for

form-factor calculations, and selection of source and receivers. Relationships maintained between

entities include:

1. Mesh to algebraic de�nition: Algebraic representations are kept for primitives (cones, spheres,

cylinders and cubes).

2. Patch to element: A tri-quadtree is used to capture surface subdivision, allowing sharing of

surface information and adaptive subdivision.

3. Patch to mesh to object: for sharing of surface property information, and geometric rela-

tionships.

4. Vertex to patch or element: To maintain adjacency information a vertex tree ([Baum91]) is

used. This is an octree of unique vertices, where each non-empty octant contains a vertex

de�nition. Uniqueness is determined by vertex position within a given tolerance volume.

Model-to-scene transformations, algebraic de�nition usage, and vertex tree usage are discussed

in later sections.

5.4.2 Object Coherence

To exploit spatial properties between objects in the scene, a hierarchical bounding-volume tree

([Weghorst84]) is used. This method has been mainly chosen for tightness of volumes with respect

to objects.

A bounding volume (BV) is a simple surface that is used to enclose one or more objects or

bounding volumes. Axis-aligned bounding boxes have been chosen for their simplicity, with respect

to culling, and ray-intersection testing. A hierarchical bounding-volume tree (HBV tree) may be

de�ned as containing nodes, such that a leaf node is either empty or an object and all other nodes

are bounding-volume trees.

A tree is automatically created, using the constraints in [Goldsmith87], by adding bounding

volumes for each object one at a time such that the location in the tree to insert the volume at

causes the minimal increase in \cost" to all ancestors of the newly created node. As noted by

Goldsmith, the area increase of a volume may be used as a measure of cost, as long as all volumes

have the same geometry. A two level hierarchy is actually created, the �rst being a tree of bounding

volumes for objects (object HBV), and the second being sub-trees containing bounding volumes

for polygons of each non-primitive object (polygon HBV). It is assumed that adding polygons in
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a hierarchy below an object node will have the least incremental cost. These two levels are used

so that work may be done at the desired level of detail. The reason as to why only meshes for

non-primitives are included will be given when discussing ray-intersection testing.

5.4.3 Surface Properties

The surface properties implemented cannot capture a number of di�erent e�ects, but are simple

and provide for fast computation. Ideally, properties should be independently de�ned in a con-

tinuous representation which requires low storage, and that can easily be mapped to calculation

points. For the most physical accuracy, Sillion's representation ([Sillion91]) using illumination

models such as [He91] [Cook82] or [Hall83] is suggested. Though less accurate, less expensive

ideas such as extensions of bump maps or texture mapping ([ChenH90] [Cohen86]) may be used.

5.5 Progressive Re�nement

In order to solve for di�use global illumination, a system of equations which gives the dependence

of energy leaving each surface on the impinging energy from every other surface needs to be solved.

Assuming ideal di�use properties for all surfaces, the energy leaving a surface i is given by:
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where
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= radiosities at surfaces i and j (energy per unit area)
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F
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= form-factor from surface j to surface i

In this formulation the energy at surface i is dependent upon all other surfaces j sending energy

to i before the energy at the surface may be updated.

In our implementation a progressive re�nement approach has been incorporated ([Chen89]).

In this method, the reciprocity rule for form-factors:
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(5:2)

is used to compute the energy contribution at all other surfaces j due to energy leaving surface i.
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For all surfaces j the following is computed:
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where F

j�i

is computed from equation (5.2).

An iteration of progressive re�nement consists of selecting a source patch or shooter (i), and

then computing B

j

for all receiver patches (j). From [Cohen88] the algorithm presented which

allows for adaptive subdivision of receivers, has been adopted. The basic di�erence is that energy is

propagated from a source patch to receiver elements as opposed to receiver patches. The radiosity

for receiver patches is found by taking area-weighted averages of it's element radiosities.

As noted by Cohen, only form-factor storage linear to the number of elements is required per

iteration, and that adaptive re�nement of images at every iteration is achieved.

5.5.1 Choosing the Shooting Patch

The shooting patch for a given iteration is the patch with the current maximum unshot energy.

If the environment is dynamic, then the absolute unshot energy may be used instead, with the

additionally criteria of choosing the least recently moved patch, or the most recently shadowed,

if the viewer is stationary ([Malley88], [Sillion89], [Chen90]). Otherwise, patches that e�ect what

viewer will see should be given higher priority ([Baum90]). Selection is only by maximum unshot

energy, as static environments are assumed.

To handle problems such as the fact that few or no objects may be visible to a shooter

([Haines91a]) the de�nition of a receiver must be re�ned, rather than naively assuming that all

patches that are not the shooter are receivers.

5.5.2 Choosing Receiver Patches

Once a shooter has been chosen, a list of receivers is required. This list is mainly kept to avoid

recomputing the possible receivers that are visible to the current source. That is, the identi�cation

of receivers does not need to be recomputed for each ray-visibility test, and each form factor

computation performed for the current shooter. In order to re�ne this list, both spatial and

surface properties, have been exploited.

When attempting to determine visibility between two surfaces, visibility is only considered

from the front face of each surface. Since planar patches are assumed, everything that is behind
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the plane the patch lies on is not visible, and therefore need not be considered (or is back-face

culled). Using this idea, the object hierarchical bounding-volume tree is used to �rst determine a

set of objects that may be visible to the shooter:

Step A. If the node is a bounding volume, then back-face culling is performed on this volume and

possible sub-volumes recursively, until a volume is found that is either partially or fully in

front of the shooter. Step B is then performed on the object for any volume found.

Step B. For tree nodes that are objects: If the object is a primitive and is behind the source patch,

then all patches on that object may be discounted, since all primitives are convex and the

shooter cannot be visible to any patch on that object. Otherwise, the object is added to a

list of possible object receivers we will call the object receiver list or OR-list.

As a second step, the OR-list is traversed to exclude patches or objects as follows:

1. Exclude objects that will not re
ect any of the radiosity from the source, in all wavelength

bands. A better method tolerance, may be to exclude those with an (energy � re
ectance)

value smaller than some minimal amount.

2. Back-face culling is used to remove any polygons that do not face the shooter, or are behind

the shooter.

3. Discount the shooter, and elements of the shooter.

If a patch is composed of elements, only elements of the patch that pass all constraints are

included. All receivers are kept in a receiver list (R-list).

At present, specular surfaces are not included. For specular surfaces, the above culling criteria

may still be applied iteratively for every bounce o� of a specular surface, wherein culling is per-

formed with respect to each specular surface encountered. A more complex, or di�erent scheme

would be required if objects are not opaque. An object is opaque if all impinging energy is either

absorbed or re
ected by the surfaces of that object.

5.5.3 Convergence Criteria

The current implementation uses the threshold given in [Chen89], of halting when a shooting

patch that has more than

1

1000

th of the original energy left to propagate cannot be found. This

tolerance may be rede�ned by the user. The simulation may also be halted after a speci�ed

number of iterations. By default, a maximum value of 100 iterations is assumed, according to

experimental results ([Chen89], [Cohen88], [Greenberg91]) though this value is highly dependent

on the geometry and surface properties in the scene.
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5.6 Form-factors

Three di�erent form-factor formulations from [Wallace89], [Baum89] and [Saro�m67], and [Siegel81]

will be examined with respect to visibility determination and form-factor computation. Adaptive

subdivision and progressive re�nement are accommodated, by sampling from element vertices to

source patches to compute form-factors. These techniques are applicable for opaque surfaces.

5.6.1 Formulations

Disc Formulation

(a) (b) (c)
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Figure 5.3: a) Numerical integration of form-factor from di�erential area j to �nite area i. Sampling

of source A

i

from4A

i

s

sample areas using form-factor geometry shown in c). b) Di�erential area

to parallel disc geometry. c) Di�erential area to arbitrarily oriented disc geometry.

Wallace's form-factor approximation ([Wallace89]) is chosen for its appropriateness for polygonal

or non-polygonalized models, ability to sample using real surface geometry, adequate sampling of

sources, adaptive sampling, and simple formulation. In this method a source (i) is subdivided into

a number of sample areas (4A

i

s

), with a sample point located within each sample area. For every

vertex of every receiver (j), the form-factor for each sample s is given as:
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where
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= di�erential area at the vertex of the receiver
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V IS = 1 if the sample point is visible to the vertex, 0 if occluded

To �nd the form-factor from the whole source to each vertex an area weighted average may be

performed.
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where n is the number of source samples.

From equation (5.1), the radiosity at surface j due to energy from surface i is given as
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Substituting equation (5.5), the radiosity at vertex j due to energy from source i is given as:
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There are some problems inherent in this approximation. As Wallace notes, equation (5.4) extends

a true analytic formulation for a di�erential area to �nite parallel disc by introducing cosines of

angles between the normal at each surface, and the direction between the source and the receiver

(See Figure 5.3). Thus errors occur due to di�erences between the true shape of the source and

a disc (e.g. if the source is elongated) , and non-parallel orientations. These errors are noticeable

when sampling at rates lower that 16 source samples per vertex ([Wallace89]).

An example of orientation producing sampling problems is seen in Figure 5.4 where the source

and receiver are at right angles to one another and abut. An illumination gradient in the opposite

direction occurs. This is due to the fact that sampling is only performed from vertex positions,

and at vertices where the patches touch no energy is transferred. Thus, more energy appears to

be transferred to areas further away from the source than those closer, since interpolation between

samples is used. A potentially large amount of sampling may be required to capture the correct

gradient in such situations. Note that no matter how much adaptive subdivision is performed, a

reverse illumination gradient will still occur.
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Figure 5.4: Figure on left shows reverse gradient on receiver polygon sampling perpendicular

source using Wallaces approximation. Figure on right shows use of Baums analytic approximation

on same geometry.
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Figure 5.5: Left shows geometry for evaluating analytic form-factor. Right shows sampling geom-

etry from a receiver to source to compute visibility for form-factors. (After [Baum89])

To handle the above sampling problem, an analytic form-factor approximation is used ([Baum89]),

which uses the di�erential area to unoccluded �nite area polygon approximation found in [Saro�m67]:
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G

i

is the set of edges of surface i, N

j

is the surface normal for di�erential surface j, �

g

is a vector

with magnitude equal to the angle 


g

(in radians), and direction given by R

g


R

g+1

, (where 
 is

the vector cross product), as shown in Figure 5.5.
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To account for occluding objects, Baum uses a hemicube to compute visibility. For every re-

ceiver element, the pixel coverage is used to determine sample positions on the element, and an

area weight for the analytic form factor computed from each sample position. To incorporate this

method with ray casting, equation (5.8) is computed from uniform sample points on receiver ele-

ments, with visibility computed by sampling from receiver sample points to uniformly distributed

sample points on the source. The percentage of samples seen by the source is used as the percent

visibility, and the receiver sample area is used to weight each form-factor. As with Wallace's

formulation ([Wallace89]), a similar equation can be derived to compute the radiosity at vertex j

due to energy from source i:
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S is the number of samples to compute visibility, and 4A

e

j

is the receiver sample area.

For both Wallace's and Baum's form-factor formulations, using averaged area weighted samples

avoids the sampling errors that result from counting samples to compute visibility ([Chen89]),

and the proximity assumption ([Baum89]) is maintained since form-factors are computed from

di�erential areas.

Elliptical Formulation

To handle problems with elongated surfaces, an extension of a di�erential area to parallel ellipse

formulation ([Siegel81]) has been proposed. Using a similar derivation as in [Wallace89], for every

vertex of a receiver (j), the form-factor with source sample i is given as:
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where a and b are the approximate major and minor axis of an ellipse that would �t the source

sample's (i) area. This method, has a trade o� between more expensive area computation, versus

more samples per form-factor.
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Hemicube Formulation

For fast initial approximate solutions, a hemicube form-factor formulation ([Cohen85]) is included,

which uses the graphics hardware found on Silicon Graphics Iris workstations. For accurate

results, this method is not supported, due to problems previously mentioned in the analysis. This

formulation basically approximates the form-factor from patch i to patch j as (from Figure 2.3) :
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which assumes that the distance between the two surfaces is great compared to the area of the

receiver, and that the form-factor from the center of the source applies to the whole surface. Using

a hemicube, F

i�j

is discretely computed as:
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where Q

ij

is the set of hemicube pixels through which surface j is visible to the center of the

surface i, and 4F

q

is the delta form-factor associated with pixel q. Aliasing problems for the

hemicube have been addressed in part by using a jittered hemicube ([Arvo91]), though aliasing

still results from uniform sampling (See Figure 5.6). We refer you to the respective references for

further details.

Figure 5.6: On the left, aliasing due to uniform sampling imposed by the jittered hemicube, is

shown. The surface is subdivided into 32 by 32 elements. On the right the sample geometry with

form-factors computed using Wallaces method (After [Wallace89]).
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5.6.2 Sampling and Visibility determination

A crucial, and time consuming step is to compute the visibility between surfaces. Currently a point

sampling strategy is used to determine visibility between two points. Surface to surface visibility

is determined by counting samples. As in ([Wallace89]), the source is bilinearly subdivided into

a number of sample areas, whose centers are used as sample positions. Noting that source and

receiver subdivision may not be compatible, sources are not actually subdivided permanently, but

only to derive sample points, and area weights for form-factor computation.

Sampling strategies using either uniform or jittered sampling positions has been implemented,

but adaptive source sampling has not been implemented. Adaptively adjusting the source sample

density will be covered when discussing capturing gradient information.

Neither form-factor nor visibility computation information is currently reused, resulting in

duplicate computation. A proposed scheme is to store form-factors or visibility at the vertices

for reuse on a per visibility determination basis as in [Sillion89]. Note that polygons that share

a vertex must have the same orientation in order to share form-factor information at that vertex.

In addition, ideas from [Hanrahan91] to reduce the number of form-factors to compute and store

has not been incorporated. This should greatly reduce computation and storage requirements.

To compute visibility, ray casting is used, where each sample corresponds to a ray cast between

a receiver element point and a source sample point. The percentage visibility is the fraction of

rays not intersected by some object before reaching the source sample positions, divided by the

total number of rays shot (total samples taken).

5.6.3 Accelerating Ray Casting

As with choosing receivers, all objects in the scene should not be naively tested against every ray

used for sampling. By making use of the bounding volume hierarchy, as well as exploiting aspects

of the structure hierarchy, the following ideas are implemented:

� Using higher order representations (algebraic surfaces) to reduce the number of intersections.

� Exploiting object coherence, through the bounding volume hierarchy.

� Exploiting constraints in space when computing visibility via back-face and shaft culling.
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Ray-Primitive Intersection Testing

To reduce the number of intersection tests required, ray intersection tests are performed using the

algebraic de�nitions of primitives, rather than against every polygon in the mesh representing the

primitive. The true surface geometry of the surface is used rather than a polygonal approximation.

To simplify the intersection computation, tests are performed in the coordinate system of the

primitive instead of the coordinate system of the scene, by transforming the sample ray using a

model-to-scene transformation matrix kept with every primitive. Since all primitives are instances

of representations that �t within a unit cube centered around the origin, the ray-primitive intersec-

tion computation is simpli�ed. A �xed amount of time is required for each intersection test, since

transformations that a�ect orientation and size of the primitive are not present. The above ideas

and formulations for ray-primitive intersections are taken from the Optik ray tracing program

([Amana87]).

Object Coherence

A common technique to reduce the number of ray-object intersection tests is to exploit object

coherence. To avoid testing potentially complex objects, the associated geometrically simpler

bounding volume may �rst be tested. If the object is already simple, as with the primitives

implemented, there is no need to test against the primitive's volume �rst. For non-primitives,

where arbitrarily shaped polygonal meshes are present, the cost of testing against a bounding

volume �rst is justi�ed. Using similar reasoning as for the usage of algebraic representations, time

may be saved by testing against a single volume �rst, versus all of the polygons of a mesh. The

cost per volume test depends on the the complexity of volume, and how tightly the volume �ts

the object. Though boxes have been chosen, more complex and tighter �tting volumes may be

used ([Arvo89]).

To potentially further reduce the number of intersections a hierarchy of higher level groupings

of volumes in space is used. That is, it is possible to disregard groups of objects if the ray does

not intersect the volume. When considering the cost of creating and traversing this tree, an

additional factor to consider is that this hierarchy is not solely used from ray-intersection testing.

The O(nlog(n)) cost of building the tree is not considered as part of the ray-intersection test cost,

but as part of the preprocess cost ([Goldsmith87]). The savings is that in the best case, only

O(log(n)) intersection tests are required per ray to �nd an intersecting object.
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Shaft Culling

Before performing any intersection tests, Haines ([Haines92a]) notes that the number of volumes

to check per form-factor computation may be reduced by exploiting the fact that the visibility to

determine is restricted to a �nite volume between two surfaces.

As with receiver patch selection, back-face culling may be used to cull away non-visible parts

of the scene. On a hierarchical basis, culling is performed in a top-down traversal of the object

HBV tree. The aim is to form a list of \candidate" bounding volumes, which may be intersected

by any ray used for sampling the source. This list will be called the candidate list. The bounding

volume to test is called the test bounding volume or TBV , and the source and receiver bounding

volumes are labeled SBV and RBV respectively.

The �rst test performed is to back-face cull the TBV against the source, and the receiver

planes. If the volume survives this test it is then tested against the source, and receiver volumes,

and a construct known as an extent box which is the minimum bounding box of the source and

receiver boxes. The TBV is checked for overlap or inclusion in the extent box. If this is true, then

if the TBV overlaps or contains the SBV or RBV then it is a potential intersecting volume and

no further tests are performed, otherwise a structure called a shaft is used. The shaft is basically

the convex hull of the bounding volumes of source and receiver surface. Since bounding boxes are

assumed, it is quite straightforward to build the shaft as a series of connecting planes. The planes

are used to back-face cull the hierarchy under the bounding volume, keeping those volumes that

are either inside or overlapping the shaft. Various strategies are used as to how to perform testing

on the hierarchy:

� Always open: always check all boxes in the hierarchy against the shaft.

� Overlap open: if the TBV overlaps the shaft, then check at the next level down.

� Keep closed: if the TBV overlaps the shaft, then don't check further down

� Ratio open: if the TBV overlaps by a certain percentage = percentage of children that

overlap or are inside the shaft, then check the next level down.

Haines reports the best experimental results with a ratio open strategy of \opening" on 40 percent.

Primitives that are candidates are immediately added to the candidate list if they either overlap

or are inside the shaft, the SBV or the RBV . If the primitive candidate contains the shaft, then

it may be discarded if it is a cube, since nothing inside the cube can intersect with the shaft,

otherwise the primitive is added to the list.
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To handle non-primitives that contain the extent box, the tree is traversed until a bounding

volume is found that does not contain the extent box, throwing away all volumes along the way.

If that bounding volume cannot be found, then the original volume is added to the list.

As noted by Haines, the complexity of this testing may be justi�ed since shaft culling need

only be performed once per source-to-receiver visibility test regardless of the ray/sample density.

Currently a minimum of three rays is tested per shaft for a triangular receiver. Also, the shaft

should in practice be thin, since shafts are formed between elements and patches.

5.6.4 Ray-Intersection Testing

Using the above acceleration techniques the algorithm to check for intersections with a ray for

visibility is given below. The maximumdistance that the ray may travel (from the receiver position

to the source sample position) is labeled R

max

. If a ray intersects any object or patch at a closer

distance, than searching halts.

Intersection Algorithm f

if using bounding volumes then f

if using a shaft then for all candidates in candidate list f

If the candidate is a polygon bounding volume then

Check the polygon HBV tree starting at the candidate bounding volume

else

Check the object HBV tree starting at the candidate bounding volume

g else if back-face culling using source and receiver f

Check against volumes in front of receiver and source in the HBV tree

g else

Check against all volumes in the whole HBV tree starting at the root.

g else

Perform ray-object intersection tests for all objects. Stop if an intersection closer than R

max

is found

g

Object Bounding Volume Testing f

While the ray has not intersected an object at distance < R

max

f

If testing against an object then

Perform ray-object intersection testing

else

Check for intersection with bounding volume

If intersection distance < R

max

then

Perform bounding volume testing on any children

g

g

Ray-Object Intersect Testing f

If object is a primitive then

Do intersection test in primitive coordinate system
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else if object is a mesh then

if using bounding volumes then check polygon HBV

else

Check against BV of polygon before checking against

the polygon itself.

Stop if intersection distance < R

max

g

For every ray, the main intersection algorithm is performed to determine visibility between the

origin, and destination of that ray. Note that the testing for the polygon HBV tree is similar to

that for the object HBV, except that polygons and their associated BVs are tested versus objects

and object BVs. Also there is no primitive testing.

5.7 Capturing Gradients

5.7.1 Adaptive Subdivision

In order to capture radiosity gradients across surfaces, an adaptive subdivision method ([Cohen86])

is used. A two-fold criteria of form-factor and radiosity gradients is used to determine when to

subdivide. If the di�erence between the form-factor or radiosity values of two vertices sharing an

edge is greater than a speci�ed tolerance, then subdivision may be performed. The form-factor

test is used to capture visibility gradients that may be missed by simply using a radiosity gradient

criteria ([Arvo91]).

To maintain well-shaped polygons, bilinear subdivision is used for both triangular and quadri-

lateral patches or elements, with monotonic change along the edge being assumed when assigning

values to new subdivision points. As previously mentioned, neither tree balancing nor anchouring

has been performed to �x mesh problems ([Baum91]).

To avoid excessive meshing of receivers, a minimum receiver area is used, which is speci�ed as

a percentage of the average area of a polygon in a scene. The average area is computed as the

ratio of the total area of the scene over the number of polygons. Patch subdivision is maintained

in an n level tri-quadtree ([Baum91]), with the area of elements decreasing bilinearly for each level

down the tree. A second criteria to avoid excessive receiver meshing, is a user-de�ned maximum

subdivision level.

To handle problems with using the reciprocity rule in the hemicube form-factor implementation,

the criteria from [Chen89] of checking for form-factors greater than one is used. Currently no

adaptive subdivision is performed on walk-throughs (e.g. [Sillion89]), since the walk-through
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program is disjoint from the simulation implementation.

5.7.2 Adaptive Sampling

To take into account the amount of subdivision performed on receivers, the number of source

samples per vertex is adjusted to be inversely proportional to the level of receiver subdivision.

This is to maintain roughly the same amount of sampling per unit area of a receiver patch, and

to avoid undue cost for squared increases in sampling rate due to bilinear subdivision.

The number of samples with respect to the source may also be adjusted. To avoid undersam-

pling the source, the number of samples taken may be adjusted based on the radiosity received at

the vertex of the receiver, and resampling at a higher rate if the radiosity is too large ([Wallace89]).

As Campbell notes ([Campbell90]), oversampling should be avoided as well. A combined approx-

imate method is currently used, using the solid angle that the source subtends with respect to

the receiver ([Campbell90]), and the amount of radiosity the source may send to the receiver with

respect to the total energy left. If the solid angle is too small, then the number of samples is re-

duced; if the radiosity is too large, then the number of samples is increased. Currently a minimum

threshold of 0.005 steradians is used as in ([Campbell90]). Any light subtending a smaller angle

is considered to be a point light source.

For more e�cient sampling, as previously mentioned, samples for visibility and form-factor

calculations should be reused.

5.7.3 Non-di�use Environments

The above sampling methods have been used to capture radiosity gradients at patches with ideal

di�use surface properties. For more complex re
ectance or emittance properties for the receiver or

source, consideration should be given to weighting the distribution of samples by these properties

to avoid oversampling in directions where little energy may be exchanged. Currently, probabilis-

tic sampling is suggested as the most suitable approach to capture general surface properties

([Greenberg91]), using some form of distributed ray tracing.
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5.8 Rendering

5.8.1 Reconstructing Radiosity Gradients

Since two methods are used for computing form-factors, values are stored di�erently for each

method.

If a hemicube method is used, radiosity values are stored per patch or element. We will call

this patch storage. Otherwise, radiosity values are stored per vertex, such that if a vertex is shared

by more than one element or patch, with di�erent surface properties or di�erent orientation, then

more than one radiosity value is stored. We will call this vertex storage.

Using patch storage, radiosity values at vertices are computed by bilinearly interpolating the

values for patches or elements sharing the vertex, that have the same surface properties, and do not

contain elements that also belong to this vertex. That is, the smallest shared polygons are always

used to interpolate. If vertex storage is used, an area-weighted average of all values stored at that

vertex is computed, again, for the smallest shared polygons with the same surface properties.

In general, better reconstruction methods may be employed such as higher order interpolation,

or �ltering to produce more accurate radiosity gradients (e.g. [Haines91a]). In addition, radiosity

values are currently stored at �xed points (vertices). For a freer choice of points, texture storage

could be used ([Heckbert90]), with separation of rendering and radiosity storage structures. This

allows true surface representations to be used for rendering versus polygonal breakdowns.

5.8.2 Shading

Given a polygonized model with values only at vertex points, polygons are currently displayed

using Gouraud shading ([Gour71]). This method is used due to the fact that input models con-

tain surfaces with ideal di�use surface properties, and hardware implementation of this method,

allowing for su�cient speed for real-time walk-throughs.

Shading problems associated with vertex misalignment in polygonal meshes have not been

handled. To handle problems with rendering quadrilaterals, which are rotation variant, a post

process of triangulating all quadrilaterals as close as possible to the intensity gradient has been

used. As in [Airey90], each quadrilateral is split by connecting the two opposing vertices with the

least radiosity di�erence. If there is a tie, an arbitrarily choice is made.

If non-ideal di�use surfaces are considered, an alternative method would be to use ray tracing,

with interpolation or �ltering of radiosity values at surface intersection points (e.g. [Shirley90],
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[Chen91]).

Spectral Sampling

Three wavelength bands are used to compute three sets of radiosity values, which are interpreted

as the red, green and blue channels of a RGB colour space. It is possible to use more wavelength

bands for better more accuracy (four is suggested in [Hall89]), though more time is required to

compute the distribution of radiosity. Currently, user-de�ned gamma correction is included to

scale the colour of images produced for di�erent hardware displays.

Ambient Term

An ambient term, from [Chen89], which uses a form-factor and re
ectance approximation is com-

puted. Display values are a combination of the radiosity per patch or vertex (i) and the ambient

term as follows:

B

display

i

= B

i

+ �

i

Ambient (5:14)

The term is not used to compute the radiosity solution, and is scalable so as not to wipe out any

subtle radiosity gradients, in rendered images.

5.8.3 Iterative Image Re�nement

To view progression of the simulation, intermediate solutions are displayed after every progressive

re�nement iteration. Display is currently restricted to Silicon Graphics Iris workstations, that

have su�cient hardware to display RGB colour information. The scene may be viewed from a

user-de�ned viewing position, orientation, and �eld of view.

5.9 Radiosity Algorithm

The complete algorithm is summarized in the following pseudo-code description. Delimiters ()

denote optional steps that are user-de�ned, or restricted by hardware platform.

/* Initialization step: */

Read and preprocess initial model;

Read user options;

if using bounding volumes then

Create object and polygon bounding-volume trees
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(Initialize ray tracing, shaft culling, and hemicube statistics);

(Calculate \ambient term");

(If displaying on screen)

(If using hemicube, create hardware item-bu�er);

(Display initial image of model);

/* Iterative radiosity solution step: */

Sort and �nd shooting patch (S);

While (radiosity stopping criteria is not met) f

if using bounding volumes

Compute object receiver list (OR

list

) and receiver list (R

list

) from OR

list

;

else

Compute receiver list (R

list

) from all objects;

/* form-factor computation step: */

For all receivers (R 2 R

list

) f

if using the hemicube method

Compute form-factor F

R�S

from receiver to source using item-bu�er;

else

If using shaft, create shaft and perform shaft culling;

Decide on which form-factor (disc or analytic) to compute;

Adjust sampling rate for visibility testing;

Compute form-factor F

R�S

from receiver to source using ray casting;

Subdivide R if the form-factor gradient is exceeded or (F

R�S

> 1);

Calculate and propagate energy from S to R;

Subdivide R if radiosity gradient exceeded;

g

(Calculate "ambient term");

(Compute vertex radiosities and display intermediate images);

Sort and �nd shooting patch (S);

g

/* End process */

(Display �nal image);

(Output model with �nal radiosity values);

5.10 Walk-Throughs

A simple walk-through program has been provided to view the scenes produced by the radiosity

program. Polygons containing colour information per polygon or for each vertex of a polygon may

be read in. Options provided include rotation around the axises in the coordinate system of the

viewer, and translation along or perpendicular to the the viewing direction for a \zooming" e�ect.

Viewing parameters and the movements listed above may be performed interactively or stored

and retrieved for automated movement through the scene. Viewing parameters include position,
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orientation, and �eld of view.

Rendering options include using either Gouraud, 
at shading, or viewing the polygon mesh,

an option to triangulate quadrilaterals into triangles, and storage and retrieval of images in IRIS

imagelib format.
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Chapter 6

Experimental Results

6.1 Setup

The radiosity algorithm introduced is implemented in C on a Sun Sparcstation 2 workstation with

64 megabytes of main memory running the Unix

TM

operating system. and a Silicon Graphics

Iris 4D workstation with 16 megabytes of main memory running the Irix

TM

operating system.

The radiosity simulation code is 12364 lines long, the mesh preprocessors 2242 lines, and the

walk-through program 3995 lines long. A optimized stripped version of the radiosity program,

compiled on the Sparcstation, takes up 119907 bytes of disk storage. The amount of memory

required by the simulation as a function of the number of polygons is roughly 0.6 kilobytes per

polygon. All projection/visibility/depth-bu�er computations for the hemicube method and ren-

dering are performed using the GeometryP ipeline

TM

and hardware Z-bu�er ([Haeberli90]). All

other computations are not dependent on any graphics hardware.

A number of di�erent environments are chosen that range in terms of the number and size of

polygons in the scene, the types of objects in the scene, and the kind of coherence that can be

exploited in the scene. Results are presented for a cubic mostly empty enclosure, a mostly �lled

enclosure with several primitives, and two more complex scenes with roughly an even mixture of

primitives and non-primitives. The �rst has a small ratio of emitters to non-emitters, and the

second the reverse.

Statistics have been collected under a number of di�erent categories:
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1. Convergence rates: Graphs of time (number of iterations) versus total unshot energy left in

the scene. Initial unshot is just the sum of all emission in the scene.

2. Ray casting information: Included is the total number of rays shot; the average number of

ray tests and intersections per ray, primitive, polygon, or bounding volume; and the average

number of intersections with the same entities per ray test.

3. Execution time: CPU usage of the total progressive re�nement time, hierarchical bounding

volume preprocessing time, average time per iteration, per shaft cull, per form-factor and

per ray visibility test is recorded. All computation times are measured (in seconds) on the

Sparcstation.

Comparisons are made using a set of default options: Use of object and polygon hierarchical

bounding volumes is assumed. Wallace's numeric ([Wallace89]) and Baum's analytic form-factor

([Baum89]) are used, along with adaptive sampling, source and receiver back-face culling and shaft

culling with a 40% ratio-open strategy. A minimum di�erence between form-factors of 0.015, and

minimumpolygon subdivision area of 10 percent of average polygon area is allowed. Computation

of the ambient term and rendering are not included as part of the computation time. The stopping

threshold is 1/1000 th of the original energy, or a maximum of 200 iterations.

A set of tests with the following variable options were performed:

1. Using 16 samples per vertex, the result is labeled WALK in tables of statistics given in

Appendix A. These results are used to measure the convergence rates, and produce output

images. Solutions using 16 samples, but without shaft culling, were also performed.

2. Testing using four shaft strategies: \Keep closed", \Always open", \Overlap open" and

40% \Ratio open" was performed. These tests are labeled M0R4S0A1, M0R4S1A1,

M0R4S2A1, and M0R4S3A1 respectively in Appendix A.

3. Testing at 1, 4 and 16 samples per vertex was performed, These tests are labeledM0R1S0A1,

M0R4S0A1, and WALK respectively in Appendix A.

4. Testing without an adjusted sampling rate, for adaptive subdivision to zero, one or two levels

was performed. These tests are labeled M0R4S0A0, M1R4S0A0, and M2R4S0A0 in

Appendix A. Two level subdivision is only performed for the simple cubic environment.

5. Testing with a maximum of 1 or 2 subdivision levels, and minimum area of 50 or 10 per-

cent of the average polygon area for a given scene was performed. Corresponding tests

without adaptive sampling for the simple cubic environment at 1 subdivision level are la-

beled: M1R4S3A0a5 and M1R4S3A0, and at 2 subdivision levels: M2R4S3A0a5 and

M2R4S3A0. For all other environments, testing at 1 subdivision level was performed with

tests labeled: M1R4S3A1a5 and M1R4S3A1 in Appendix A. a5 denotes the 50 percent

case.
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6.2 Environment Speci�cations

A more detailed description of each of the environments is given in this section to point out the

di�erent aspects tested, which includes:

1. Geometric complexity in terms of the number of objects, polygonal meshes, polygons, and

primitives, and the orientation and size (area) of these entities with respect to each other.

2. The distribution of energy in the scene, and the relation of total energy to size (volume

occupied) and geometry of the scene.

First, a simple cubic model is shown in Figure 6.1. The scene contains 10 objects, 10 meshes,

103 polygons, with 118 unique vertices. The total original energy is 6.525 with a total area of

25.75. The radius of the enclosure is 3.337. This scene contains few occluding objects, a large

percentage of emitters to non-emitters (roughly 1/4 of the total area), only planar meshes, emitters

with non-zero re
ectance, and emitters at right angles to non-emitters.

Secondly, a simple model with primitives is shown in Figure 6.2. The scene contains 14 objects,

23 meshes, 714 polygons, and 702 unique vertices. The total original energy is 226.25 with a total

area of 804.011. The radius of the enclosure is 11.0494. This scene contains many occluding

objects, a small percentage of strong emitters with (zero re
ectance) to non-emitters (with high

re
ectance), non-planar meshes and primitives, and emitters at right angles to non-emitters.

A more complex scene is shown in Figure 6.3. The scene contains 26 objects, 63 meshes,

1391 polygons, with 1306 unique vertices. The total original energy is 17801.7, with a total area

of 8287.5, and the radius of the enclosure is 44.881. This scene contains many occluding objects

consisting of clustered small non-emitters, surrounded by a large mostly empty enclosure consisting

of many strong area emitters with zero re
ectance. The percentage of primitives to meshes is high

(roughly 3 to 1).

A second complex scene, is shown in Figure 6.4. The scene contains 41 objects, 160 meshes,

1296 polygons, with 1356 unique vertices. The total original energy is 448.794 with a total area

of 2058.14. The radius of the scene is 16.5941. This scene contains very few large area emitters

(with zero re
ectance) compared to non-emitters. Surfaces do not form an enclosure.
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6.3 Results

From statistics gathered for the scenes just mentioned, some results with respect to convergence

and CPU utilization, culling to reduce computation time for visibility, and use of adaptive visibility

sampling and adaptive subdivision techniques are given in the following sections.

6.3.1 Convergence and Time

Convergence

In terms of convergence (how quickly energy is propagated per iteration), all scenes showed a

logarithmic decrease in total energy per iteration. Qualitatively, due to very slow decreasing rates

in later iterations roughly the last quarter of the iterations show little discernible change in the

image produced. (See Figure 6.5 for example). Convergence rates were highly dependent on the

surface properties and geometry of emitters, and re
ectors.

A few strong large area emitters gave steep initial energy drops (e.g. � 50% propagated after 10

iterations for the cubic environment). The presence of an enclosure also greatly a�ects the rate of

convergence, wherein in the absence of one, initial energy drops are steeper and �nal convergence

is reached more quickly. For example, the second complex scene, takes 52 iterations to complete,

with about 20% of the original energy left after 12 iterations.

If emitters have small re
ectance and are not clustered, as with the cubic scene, convergence

is reached quickly, with the energy drop tapering o� in later iterations until little energy remains

upon completion (� 3%). With highly clustered small non-emitters, as in the �rst complex scene,

slower rates of change result in later iterations. In the primitive scene, where a high concentration

of strong emitters and strong re
ectors exists, as well as increased number of possible shooters

due to the presence of tesselated primitives, the convergence rate is quite a bit slower, than the

cubic case, with a fair amount of energy left after convergence at 234 iterations (� 20).

Convergence rates are shown in Figure A.1 and A.2

CPU Usage

With respect to the utilization of processing time, the majority of the time per iteration is used

for computing form-factors (� 85%) of which most of that time is used to compute visibility

(� 80%). Shaft culling time is comparatively small, taking up about 5% of the total iteration

time. Hierarchical bounding volume creation time was mostly dependent on creation of the polygon
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volume tree (about 90% of the time), with an average insertion time of� 1x10

�4

seconds. Modeling

time which includes time to read in data, and create the structure hierarchy (tri-quadtree, vertex-

tree, etc.) takes about 0.008 seconds per polygon on average.

6.3.2 Culling

From experimental results, source and receiver culling tends to reduce the number of potential

receivers by about 20%, for all scenes tested. Savings in ray visibility testing, and per form-factor

time ranged from � 23% less time per ray test, and � 8% per form-factor for the second complex

scene to roughly halving these times for the �rst complex scene.

The cost of shaft culling is not justi�ed for mostly empty scenes, with few obstructing objects,

where the overhead of using a shaft increases the cost per iteration more than any possible savings

in ray-intersection time. When shaft culling is appropriate, a ratio-open strategy gives generally

better results, unless the scene is mostly empty, in which case a keep-closed strategy may give less

overhead time for culling, since percent-overlap ratio testing may be wasted time. Even though

more granular shafts are used in this implementation, in contrast to the larger object level shafts

used in [Haines92a], similar overall results were obtained.

6.3.3 Visibility Sampling

Ray Casting Time

From experimental scenes used, it seems that those with many occluding objects evenly distributed

in the scene will require the least number of ray intersection tests, since once a hit has been found,

no further traversal is required. Of the ray intersections found, the majority were with bounding

volumes, the percentage of which ranged from 67% for the second complex scene to 97% for the

cubic scene. The number of intersections per ray intersection test was quite small for polygons,

ranging from intersecting 1% to 0.2% of the time. For bounding volumes, about 60 to 70% of

intersection tests resulted in an intersection being found.

Sample Rate

In general, a suggested sampling rate of 4 source samples per receiver vertex, to compute visibility,

tended to adjust to 1 sample. Both 1 and 4 sample solutions gave reasonable results with respect

to 16 sample per vertex solutions. In terms of convergence, di�erences from 0:07% (for the cubic
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scene) to 2% (for the �rst complex scene) of the total energy left was seen. Time saved is from

12 to 30 percent per iteration, and 22 to 25% per form-factor for roughly 1.2 to 2 times less ray

visibility tests.

Adaptive Sampling Rates

Currently, without adjusting the number of samples taken to determine visibility, the increase in

cost is roughly 2.5 to 4 times the time per iteration and per form-factor calculation due to about 4

times the number of ray tests, with very small di�erences in energy left at convergence (less than

1/2% for the �rst, and less than 1% for the second complex scenes).

6.3.4 Adaptive Subdivision

In the current implementation, the increase in cost associated with using subdivision is quite large,

if mutual visibility is maintained between new elements (produced upon subdivision) and the rest

of the scene. This was the case with the cubic scene. Costs are reduced for scenes with more

occluding objects.

With adjusted sampling rates, 1.4 to 3 times the amount of time per form-factor calculation

and roughly a 40% time increase per iteration results to compute 1.4 to 3 times the number of ray

tests for 1 level of subdivision allowed. The upper bound was for the mostly empty cubic scene,

and the lower bound for both complex scenes. Similar results were obtained from 1 to 2 levels of

subdivision for the cubic scene, as for 0 to 1 levels.

Without adjusted sampling, at 1 level compared with no subdivision, increases ranged from

about 3 times the amount of time per iteration and 3 times per form-factor to compute about 4

times the number of ray tests for the cubic scene to 1.4, 1.4 and 4 times respectively for the second

complex scene.

The increases are mainly due to the lack of form-factor or visibility information reuse and

computation of form-factor at vertices. Until reuse is incorporated, tests using minimum area

subdivision are inconclusive, using the current restricted subdivision levels.

6.3.5 Images

The �rst four �gures show the initial model geometry and the �nal results after the radiosity

simulation, for the four scenes tested. The next two pictures show an example solution at various
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stages of completion, and some rendering options in the walk-through program. The last picture

shows the results after 200 iterations for a complex scene with 23640 total polygons consisting of

5352 patches, 18288 elements and 17961 vertices; 524 meshes; and 89 objects.
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Figure 6.1: Cubic Environment: Shown is simple cubic environment
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Figure 6.2: Primitive Environment: Shown is environment after 200 iterations
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Figure 6.3: Complex Environment 1: Shown is the �rst complex environment
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Figure 6.4: Complex Environment 2: Shown is the second complex environment
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Figure 6.5: Progressive Re�nement: Clockwise from the top left, primitive scene at 40, 100, 200

and 234 iterations

Figure 6.6: Walk-through options: Clockwise from top left shows a) Polygonally meshed scene, b)

Flat shaded scene, c) Gouraud shaded scene and d) Triangulated Gouraud shaded scene
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Figure 6.7: Sample environment: Shown is a more complex environment

104



Chapter 7

Conclusions and Future Work

In this thesis, a comparative survey has been given which encompasses all major areas of techniques

used for computing solutions using the radiosity method. In addition, some of the major advances

in each area has been incorporated in a general implementation useful for further experimental

work in selection of techniques. From current experimental results, some of the advantages and

disadvantages of the techniques implemented have been shown, as well as some of the interdepen-

dencies between these techniques. To bring together the various aspects discussed in this paper,

this chapter will present some closing remarks with respect to the radiosity techniques examined,

and the current implementation presented.

As has been seen, the radiosity method is based on established physically based principles,

which allows for realistic image synthesis that does not rely on empirical knowledge. Though the

basic principles behind computing energy transport using this method are straight forward, there

are a number of di�cult choices to be made as to what techniques are suitable when implementing

an algorithm for such a method. These choices are further complicated by the fact that many

techniques have mutual dependencies.

In the following sections, an outline of a set of suggested techniques, and possible enhancements

for the current implementation, are given.

7.1 Radiosity Techniques

First of all, for geometric modeling, current polygonal representations have many problems asso-

ciated with the fact that polygonal breakdowns cannot capture information that is continuous in
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nature. Speci�cally, these representations su�er from inaccurate geometric representations and ra-

diosity gradients, associated rendering problems, cost overhead for maintaining polygonal meshes,

and an explicit dependency on these meshes to be able to represent radiosity gradients accurately.

Though some techniques have attempted to address these concerns, a preferable choice is to use

more continuous representations such as textures, or other parametric descriptions.

In terms of form-factor computation, many methods only compute approximate discrete solu-

tions for visibility and form-factors, or compute continuous solutions which are too computationally

expensive for complex scenes with very large numbers of form-factors to compute. Of the current

discrete solutions, depth-bu�er approaches currently have numerous sampling problems associated

with using uniform sampling methods, and insu�cient sampling density, which results in inaccu-

rate results. Though the method is computationally fast, due to the usage of graphics hardware,

the result is incorrect solutions that are computed more quickly. As such, recent work has con-

centrated on using ray casting techniques to compute form-factors. To capture di�use transport,

techniques such as Wallace's ([Wallace89]) are suggested, while for capturing more general e�ects,

use of extended form-factors ([Sillion89]) is more suitable. In terms of storage and computation

costs, two approaches have stood out. The �rst is Hanrahans error tolerance method ([Hanra-

han91]), which exploits being able to share information between surface subdivision levels, and

works best for scenes which are polygonalized. The second approach is to use variance-reducing

probabilistic methods, which are suitable for non-polygonized scenes as well as polygonized ones,

and have less dependency on grouping in order to produce reduced sampling costs. This second

approach still has problems with error reduction, su�cient sampling to capture energy gradients

at surfaces, and is restricted due to it's computational expense.

When performing sampling to compute visibility and energy gradients, most methods are

incomplete as they do not consider all important factors. For methods to be complete they must

consider distributions of energy at the surface sampling from, and distributions at surfaces being

sampled, as well as the geometry of these surfaces. To date the most complete methods include

Hanrahan's BF-re�nement method ([Hanrahan91]), and Haines shaft culling method ([Haines92])

in terms of capturing di�use transport. For specular transport, current methods are still lacking

in terms of sample reuse.

To capture or store gradients found, adaptive storage methods introduced by Cohen ([Co-

hen86]) are preferable for computation and storage cost reduction. In terms of capturing general

radiative properties, methods of He and Sillion ([He91] and [Sillion91] respectively) incorporate
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the most accurate physically based illumination models.

For capturing global illumination, radiosity solutions that incorporate progressive re�nement

([Chen89]) are preferable as they allow reduced storage costs, and incremental feedback. To

incorporate di�use and specular e�ects e�ciently, hybrid multi-pass methods, such as [Chen91]

which utilize both ray tracing and radiosity based solutions, are preferable, as each method has it's

own advantage with respect to the transport mechanisms that may be simulated. As with sampling

methods, there is still little shared information between di�erent passes in current implementations.

Even with speed improvements, as with the case of depth-bu�er form-factor techniques, fast

solutions may not be accurate ones. Currently, there is a lack of published general criteria to

measure physical accuracy of solutions for scenes with general radiative and geometric properties,

though such research is currently underway ([Greenberg91]). As well, measures of \quality" of

solutions are incomplete, as many current algorithms only use a single measure of quality, which

may not be complete or generally applicable.

Assuming solutions are accurate, accuracy and minimal cost for storage of results (i.e. stor-

age of radiosity distributions) is desired. Sillion's ([Sillion91]) storage scheme has shown useful

characteristics of roughly �xed storage cost regardless of the complexity of the energy distribution

stored, and e�cient placement and movement of distributions. For the most 
exible placement

scheme, and usage of the real geometry of objects, storage at texture map locations is preferable to

placement at polygon or vertex points in polygonal representations. Further work is still required

to derive texture map representations that avoid polygonization and uniform subdivision in such

maps.

For capturing more than just ideal di�use transport, rendering using Gouraud shading is not

a practical option. Thus, current techniques that use ray tracing methods are preferable for

capturing general transport. Reconstruction of gradients still poses problems, due to insu�cient

samples for proper reconstruction, simplistic reconstruction methods, and insu�cient research into

examining accountability for samples at surfaces. From the set of available techniques, a choice

still must be made between accuracy and 
exibility versus speed.

When considering dynamic environments, the current choice has been speed over accuracy, as

all current solutions only compute ideal di�use transport using depth-bu�er techniques. Important

advances have been incremental form-factor ([Chen90]), and incremental radiosity ([Sillion89])

computations which exploit temporal coherence. In terms of maintaining accurate solutions when

geometric or radiative changes occur in an environment, the criteria for determining the order

107



of propagating energy is still incomplete. In general, two important principles have been used:

that of smooth image re�nement ([Chen89]), and consideration of properties important to the

viewer. This second point includes consideration of viewing position ([Baum90] [Heckbert90]),

and specular e�ects, and texturing deemed important to the viewer ([Chen91]).

Finally, current parallel solutions have also concentrated on speed versus accuracy. Currently

lacking are implementations for hybrid ray-tracing / radiosity methods, adaptive subdivision and

sampling techniques, and form-factors and energy transport that incorporates generalized radiative

properties.

7.2 Radiosity Implementation

The current implementation presented in this paper has chosen techniques based on the restric-

tions imposed by the radiative and geometric properties associated with environments best suited

for a non-parallel progressive re�nement radiosity algorithm, designed for machine-independence,

and suitable for real-time scene walk-throughs. The current major restrictions are the assump-

tion of ideal di�use radiative properties and use of polygonized environments. As the type of

environments that maintain these assumptions is quite small, a natural extension would be the

use of techniques that relax these assumptions. Among the enhancements would be the use of

form-factors computed using ray tracing (extended form-factors), as opposed to ray casting and

the use of textures versus the use of polygonal meshes for radiosity storage and sampling. This

would result in extensions being required for input parameters for models, and rendering using

a ray tracing method. For input models, in addition to speci�cations for more general radiative

properties, incorporation of many of modeling constraints found in [Baum91] are still useful. For

rendering, though there are many publicly available ray tracing programs available, enhancements

are required to incorporate energy distributions calculated using the radiosity simulation into en-

ergy transport computed using ray tracing, as seen in [Sillion91]. To capture these distributions,

better storage mechanisms are required such as that of [Sillion91]. Finally, better reuse of visibility

and form factor information, and information found in the structure hierarchy is required for e�-

cient computation and storage. To this end, sample reuse from [Wallace89] and [Campbell89], and

BF-re�nement from [Hanrahan91] for reduced form-factor interactions are desirable. Currently,

work is underway into incorporating BF-re�nement [Hanrahan91], use of modeling constraints in

[Baum91], and sample reuse.
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Appendix A

Statistics

Notation

The following notation is used for tables of statistics given below.

Parameter Description

Tot iter Total number of iterations executed, either before convergence,

or before reaching 200 iterations.

E left Energy left to propagate in the scene. Assuming the dimensions of

the scenes modeled are given in metres, energy is speci�ed in units of watts.

Perc left Percentage of original energy left in the scene.

PR Total time to compute radiosity solution.

HBV Preprocessing time to compute object and polygon bounding volumes.

Avg Iter Average computation time per iteration.

Rec / Elem The ratio of receivers to elements for the complete solution.

Avg � Average computation time for form-factor computation per iteration.

Avg shaft Average computation time for shaft culling per iteration.

Avg ray Average computation time for ray visibility testing

per form-factor per iteration.

x x = Cone, Cube, Cyl, Sph, or Poly, which represents

either a cone, cube, cylinder, sphere or polygon respectively.

Int / ray Average number of total intersections per ray test.

Ix / ray Average number of intersections with x per ray test.

Tx / ray Average number of intersections tests with x per ray test.

Ix / RT Average number of intersections with x per ray test.

Str Shaft culling strategy where KC, AO, OO, and RO represent

\Keep closed", \Always open", \Overlap open" and 40% \ratio open".

Boxes T Number of bounding boxes tested in shaft culling.

In / Out / Over / Cont Number of boxes inside, outside, overlapping, or containing the shaft tested.

TotC Total number of candidates found in shaft culling.

C/Shaft Average number of candidates per shaft per iteration.
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A.1 Convergence Graphs

The following graphs shows the percentage of total energy along the vertical axis versus the num-

ber of iterations along the horizontal axis.

0 -x- 150  0 -y- 1 0 -x- 250  0 -y- 1

Figure A.1: Convergence rates: Cubic environment on the left, and primitive environment on the

right

0 -x- 200  0 -y- 1 0 -x- 60  0 -y- 1

Figure A.2: Convergence rates: Complex environment 1 on the left and 2 on the right
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A.2 Tables of statistics

For the proceeding tables of statistics, each column indicates a di�erent set of test conditions,

given in Chapter 6, and each row indicates algorithm parameters measured. All computation are

in seconds.

A.2.1 Tables for Cubic Scene

Preprocess time for bounding volume tree creation is � 0:03 seconds, and 0.58 seconds for model

creation.

Cubic WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

E Left 0.182 0.1773 0.1773 0.1773 0.1773 0.1773 0.18122

Perc. Left 2.792 2.717 2.717 2.717 2.717 2.717 2.777

PR 143.58 128.79 132.3 129.7 126.34 126.45 389.15

Avg Iter 0.983 0.882 0.906 0.888 0.865 0.866 2.612

Avg � 0.706 0.606 0.603 0.591 0.590 0.590 2.33

Avg shaft 0.081 0.082 0.105 0.101 0.081 .0842 0.0851

Avg Ray 0.6258 0.5345 0.5314 0.5248 0.5213 0.5154 2.09409

Table A.1: Computation time: The total number of iterations is 146.

Cubic WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Int / ray 10.3911 10.484 10.39 10.288 10.44 10.44 10.57

Int / BV 10.121 10.204 10.105 10.007 10.16 10.16 10.29

IPoly / ray 0.1351 0.1402 0.1402 0.1402 0.1402 0.1402 0.139

TBV / ray 17.0328 17.038 16.914 16.771 16.995 16.995 17.07

TPoly / ray 16.880 17.167 17.427 17.223 16.817 16.817 17.115

IBV / RT 0.594 0.599 0.598 0.597 0.598 0.598 0.603

IPoly / RT 0.0082 0.0082 0.0082 0.0082 0.0084 0.0084 0.0081

Table A.2: Ray statistics: At 16 samples per vertex 50584 rays are shot, at 1 and 4 samples per

vertex: 42052, and 172128 rays for M0R4S4A0.

Cubic WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Str RO KC AO OO R0 RO RO

Boxes T 90649 90649 104465 104409 90649 90649 92824

In 4 4 117 91 4 4 4

Out 67915 67915 73453 73453 67915 67195 69530

Over 1296 1296 4242 4456 1296 1296 1352

Cont 9836 9836 9925 9836 9836 9836 10053

TotC 11136 11136 14284 14383 11136 11136 11409

C/shaft 76.274 76.274 97.836 98.514 76.274 76.274 76.571

Table A.3: Shaft statistics
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Cubic M1R4S3A0 M2R4S3A0 M1R4S3A0 M1R4S3A0a5

Tot CPU 154 157 151 151

E Left 0.181 0.189 0.185 0.185

Perc. Left 2.776 2.890 2.832 2.832

PR 1460.25 5086.87 1759.77 1766.6

Avg Iter 9.482 32.4 11.654 11.699

Avg � 8.356 28.357 7.368 7.398

Avg shaft 0.315 1.092 1.103 1.1

Avg Ray 7.4215 25.233 6.442 6.467

Table A.4: Computation time

Cubic M1R4S3A0 M2R4S3A0 M1R4S3A0 M1R4S3A0a5

Tot rays 672432 2371952 581796 581796

Int / ray 9.931 9.685 9.631 9.631

Int / BV 9.6365 9.638 9.338 9.338

IPoly / ray 0.1472 0.150 0.146 0.146

TBV / ray 16.692 16.534 16.546 16.546

TPoly / ray 15.494 14.748 14.596 14.596

IBV / RT 0.577 0.568 0.564 0.564

IPoly / RT 0.01 0.01 0.01 0.01

Table A.5: Ray casting statistics

Cubic M1R4S3A0 M2R4S3A0 M1R4S3A0 M1R4S3A0a5

Boxes T 358992 1263828 1238301 1238301

In 0 0 0 0

Out 271747 960806 941205 941205

Over 2571 5524 5266 5266

Cont 40308 143864 141244 141244

TotC 42879 149388 146510 146510

C/shaft 278.44 951.52 970.26 970.26

Table A.6: Shaft statistics: A 40 percent ratio open strategy was used.
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A.2.2 Tables for Primitive Scene

Preprocess time for hierarchical bounding volume building is � 0.035 seconds, and � 6:03 seconds

for model creation.

Prim WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

E Left 61.761 56.61 56.61 56.61 56.61 56.61 66.476

Perc. Left 27.298 24.779 24.779 24.779 24.779 24.779 29.382

PR 895.17 819.78 847.08 845.67 820.06 820 1560.21

Avg Iter 4.453 4.078 4.214 4.207 4.08 4.079 7.762

Avg � 1.708 1.329 1.313 1.307 1.329 1.314 5.008

Avg shaft 1.09 1.09 1.25 1.25 1.088 1.098 1.088

Avg Ray 1.011 1.089 0.786 0.774 0.77 0.759 3.031

Table A.7: Computation time: Total number of iterations is 200. Number of receivers per elements

is � 84.13 percent.

Prim WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Int / ray 1.4761 1.544 1.388 1.374 1.479 1.479 1.51

Int / BV 0.977 1.03 0.886 0.875 0.9833 0.9833 1.01

ICube / ray 0.135 0.142 0.142 0.142 0.15 0.15 0.165

ICone / ray 0.119 0.102 0.102 0.102 0.103 0.103 0.102

ICyl / ray 0.141 0.152 0.153 0.152 0.151 0.15 0.145

ISph / ray 0.104 0.104 0.104 0.104 0.103 0.103 0.103

IPoly / ray 0.022 0.031 0.029 0.029 0.02 0.02 0.02

TBV / ray 3.326 3.22 3 2.98 3.168 3.168 3.153

TCube / ray 0.326 0.337 0.34 0.337 0.344 0.344 0.341

TCone / ray 0.571 0.552 0.559 0.552 0.558 0.558 0.551

TCyl / ray 0.439 0.446 0.448 0.446 0.443 0.443 0.438

TSph / ray 0.499 0.482 0.486 0.4816 0.481 0.481 0.472

TPoly / ray 1.06 1.338 1.447 1.4154 1.12 1.12 1.14

IBV / RT 0.294 0.32 0.295 0.2937 0.3103 0.3104 0.321

ICube / RT 0.417 0.42 0.419 0.4204 0.4365 0.4365 0.4838

ICone / RT 0.210 0.184 0.183 0.1845 0.1838 0.1838 0.1843

ICyl / RT 0.321 0.340 0.342 0.3402 0.3405 0.3405 0.3297

ISph / RT 0.208 0.215 0.215 0.2157 0.2137 0.2137 0.2172

IPoly / RT 0.021 0.023 0.02 0.02 0.018 0.018 0.021

Table A.8: Ray statistics: At 16 samples per vertex 649844 rays are shot, at 4 samples per vertex:

481784, and 1930816 rays for M0R4S4A0.
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Prim WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Str RO KC AO OO R0 RO RO

Boxes T 1409286 1397739 1553729 1554911 1402013 1402013 1402125

In 238 241 523 468 240 240 233

Out 986557 979213 1043144 1043651 980958 980958 981082

Over 170327 167827 198037 203116 169889 169889 169884

Cont 33335 33244 33801 33244 33104 33104 32920

TotC 203900 201312 232361 236828 203233 203233 203037

C/shaft 1019.5 1006.56 1161.81 1184.14 1016.16 1016.16 1015.18

Table A.9: Shaft statistics

Prim M1R4S3A0 M1R4S3A1a5 M1R4S3A1

E Left 68.04 56.82 56.51

Perc. Left 30.07 25.11 24.98

PR 4275.91 2249.39 2334.1

Avg Iter 21.273 11.191 11.612

Avg � 14.111 3.774 4.045

Avg shaft 2.921 2.945 3.588

Avg Ray 8.797 2.242 2.52

Table A.10: Computation time
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Prim M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Tot rays 5197288 1315980 1316636

Int / ray 1.764 1.733 1.734

Int / BV 1.185 1.157 1.158

ICube / ray 0.161 0.147 0.158

ICone / ray 0.105 0.104 0.104

ICyl / ray 0.2061 0.2168 0.2169

ISph / ray 0.119 0.1169 0.1168

IPoly / ray 0.0243 0.0213 0.0213

TBV / ray 3.305 3.30 3.303

TCube / ray 0.3099 0.3068 0.3068

TCone / ray 0.5199 0.5236 0.524

TCyl / ray 0.4553 0.4664 0.4665

TSph / ray 0.4674 0.4701 0.4702

TPoly / ray 1.4589 1.4397 1.441

IBV / RT 0.3587 0.3505 0.3507

ICube / RT 0.52 0.4791 0.4797

ICone / RT 0.2024 0.1985 0.1984

ICyl / RT 0.4525 0.4649 0.4652

ISph / RT 0.2546 0.2487 0.2485

IPoly / RT 0.0167 0.0148 0.0148

Table A.11: Ray casting statistics

Prim M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Boxes T 3723961 3787722 3789150

In 180 175 174

Out 2595156 2641611 2642486

Over 460406 469449 469675

Cont 87382 88384 88491

TotC 547968 558008 558340

C/shaft 2739.84 2790.04 2791.7

Table A.12: Shaft statistics: A 40 percent ratio open strategy was used.
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A.2.3 Tables for Complex Scene 1

Time for bounding volume tree creation is � 0.19 seconds, and � 12:68 seconds for model creation.

Compl1 WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Iter 172 166 166 166 166 166 173

E Left 427.032 431.4 431.4 431.4 431.4 431.4 438.854

Perc. Left 5.153 5.21 5.21 5.21 5.21 5.21 5.29

PR 2755.69 2414.64 2507.77 2512.88 2276.25 2275.77 5781.08

Avg Iter 16.02 14.55 15.11 15.14 13.63 13.626 33.416

Rec / Elem 0.842 0.838 0.838 0.838 0.838 0.838 0.843

Avg � 9.364 7.921 7.03 7.07 7.0 7.02 26.77

Avg shaft 3.492 3.46 4.923 4.924 3.48 3.47 3.481

Avg Ray 7.992 6.867 5.95 5.98 5.922 5.928 22.982

Table A.13: Computation time

Compl1 WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Tot rays 1047992 745172 745172 745172 745172 745172 3126672

Int / ray 7.166 7.314 6.2 6.32 6.17 6.17 7.07

Int / BV 6.78 6.864 5.79 5.91 5.78 5.78 6.68

ICube / ray 0.495 0.5 0.5 0.5 0.5 0.5 0.493

ICone / ray 0.0319 0.024 0.024 0.024 0.024 0.024 0.026

ISph / ray 0.152 0.151 0.151 0.151 0.151 0.151 0.152

IPoly / ray 0.0338 0.06 0.05 0.05 0.034 0.034 0.033

TBV / ray 11.349 11.483 9.54 9.80 11.487 11.487 11.368

TCube / ray 1.7 1.67 1.67 1.67 1.67 1.67 1.674

TCone / ray 0.203 0.194 0.194 0.194 0.194 0.194 0.196

TSph / ray 0.923 0.916 0.916 0.916 0.916 0.916 0.899

TPoly / ray 8.33 11.1633 9.748 9.726 8.21 8.21 7.929

IBV / RT 0.597 0.598 0.607 0.603 0.59 0.59 0.587

ICube / RT 0.291 0.3 0.3 0.3 0.3 0.3 0.295

ICone / RT 0.157 0.121 0.121 0.121 0.121 0.121 0.133

ISph / RT 0.165 0.165 0.165 0.165 0.165 0.165 0.169

IPoly / RT 0.004 0.006 0.006 0.006 0.004 0.004 0.004

Table A.14: Ray statistics
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Compl1 WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Str RO KC AO OO RO RO RO

Boxes T 3407158 3266304 4437292 4430643 3291581 3291581 3430251

In 3714 3569 12204 9219 3597 3597 3733

Out 1000453 956445 1509552 1508493 965801 965801 1007066

Over 387728 372240 714080 726339 374600 374600 390687

Cont 171895 164932 16507 164932 166241 166241 172966

TotC 563337 540741 891358 900490 544438 544438 567386

C/shaft 3275.22 3257.48 5369.63 5424.64 3260.11 3260.11 3279.69

Table A.15: Shaft statistics

Compl1 M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Iter 172 177 177

E Left 438.854 453.469 453.469

Perc. Left 5.29 5.472 5.472

PR 5791.08 3343.3 3357.75

Avg Iter 33.416 18.89 18.97

Rec / Elem 0.843 0.83 0.83

Avg � 26.774 9.775 9.71

Avg shaft 3.481 4.899 4.819

Avg Ray 22.982 8.253 8.27

Table A.16: Computation times and convergence

Compl1 M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Tot rays 3126672 1112468 1112468

Int / ray 7.072 7.228 7.228

Int / BV 6.678 6.878 6.878

ICube / ray 0.493 0.5 0.5

ICone / ray 0.026 0.019 0.019

ISph / ray 0.152 0.111 0.111

IPoly / ray 0.033 0.033 0.033

TBV / ray 11.368 11.502 11.502

TCube / ray 1.674 1.715 1.715

TCone / ray 0.196 0.153 0.153

TSph / ray 0.899 0.826 0.826

TPoly / ray 7.939 8.148 8.148

IBV / RT 0.587 0.598 0.598

ICube / RT 0.295 0.292 0.292

ICone / RT 0.133 0.124 0.124

ISph / RT 0.169 0.135 0.135

IPoly / RT 0.004 0.004 0.004

Table A.17: Ray casting statistics
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Compl1 M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Boxes T 3430251 4832904 4832904

In 3733 4667 4667

Out 1007066 1468601 1468601

Over 390687 501824 501824

Cont 172966 243643 243643

TotC 567386 750134 750134

C/shaft 3279.69 4238.05 4238.05

Table A.18: Shaft statistics: A 40 percent ratio open strategy was used.

A.2.4 Tables for Complex Scene 2

Time for hierarchical bounding volume creation is � 0.24 seconds, and � 10:14 for model creation.

Compl2 WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

E Left 36.812 35.008 35.008 34.515 34.86 34.86 38.858

Perc. Left 8.202 7.8 7.8 7.691 7.768 7.768 7.768 8.658

PR 589.66 458.53 477.66 473.63 456 456.79 1174.74

Avg Iter 11.335 8.813 9.181 9.104 8.765 8.78 22.587

Avg � 7.772 5.262 5.244 5.258 5.238 5.236 19.075

Avg shaft 0.919 0.929 1.297 1.185 0.8925 0.909 0.895

Avg Ray 6.717 4.579 4.595 4.608 4.601 4.574 16.8425

Table A.19: Computation times: Total number of iterations is 52 for each run. The average

number of receivers per elements per iteration is 0.504.

Compl2 WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Tot rays 242784 134112 134112 134112 134112 134112 536448

Int / ray 7.89 9.992 9.692 9.769 9.918 9.918 9.271

Int / BV 7.778 9.844 9.541 9.618 9.767 9.767 9.14

ICube / ray 0.247 0.312 0.317 0.319 0.317 0.317 0.263

ICyl / ray 0.014 0.014 0.0129 0.015 0.0151 0.0151 0.01

IPoly / ray 0.016 0.019 0.021 0.02 0.019 0.019 0.017

TBV / ray 11.103 13.575 13.179 13.299 13.478 13.478 12.98

TCube / ray 1.773 2.260 2.199 2.247 2.258 2.258 2.102

TCyl / ray 0.069 0.08 0.073 0.081 0.08 0.08 0.053

TPoly / ray 10.491 13.424 13.618 13.446 13.195 13.195 12.198

IBV / RT 0.701 0.725 0.724 0.723 0.725 0.725 0.704

ICube / RT 0.139 0.138 0.144 0.142 0.141 0.141 0.125

ICyl / RT 0.207 0.184 0.177 0.185 0.191 0.191 0.198

IPoly / RT 0.002 0.001 0.002 0.001 0.001 0.001 0.001

Table A.20: Ray statistics
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Compl2 WALK M0R4S0A1 M0R4S1A1 M0R4S2A1 M0R4S3A1 M0R1S3A1 M0R4S3A0

Str RO KC AO OO R0 RO RO

Boxes T 194593 184220 291723 264891 194593 194593 194593

In 222 203 10089 2656 222 222 222

Out 80883 73097 119712 112265 80883 80883 80883

Over 10845 8992 29076 26824 10845 10845 10845

Cont 32660 32660 32811 32660 32660 32660 32660

TotC 43727 41855 71976 62140 43727 43727 43727

C/shaft 840.904 804.904 1384.15 1195 840.904 840.904 840.904

Table A.21: Shaft statistics

Compl2 M1R4S3A0 M1R4S3A1a5 M1R4S3A1

E Left 37.537 33.684 33.684

Perc. Left 8.364 7.505 7.505

PR 1607.6 636.12 645.82

Avg Iter 30.911 12.229 12.415

Avg � 25.884 7.02 7.02

Avg shaft 1.327 1.462 1.626

Avg Ray 22.769 6.04 5.98

Table A.22: Computation time. Average number of receivers per elements is 0.509.

Compl2 M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Tot rays 751240 189720 189720

Int / ray 8.819 9.156 9.156

Int / BV 8.679 9.003 9.003

ICube / ray 0.293 0.345 0.345

ICyl / ray 0.008 0.012 0.012

IPoly / ray 0.021 0.021 0.021

TBV / ray 12.418 12.579 12.579

TCube / ray 2.045 2.115 2.115

TCyl / ray 0.051 0.069 0.069

TPoly / ray 11.658 12.164 12.164

IBV / RT 0.699 0.716 0.716

ICube / RT 0.143 0.163 0.163

ICyl / RT 0.164 0.169 0.169

IPoly / RT 0.002 0.002 0.002

Table A.23: Ray casting statistics
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Compl2 M1R4S3A0 M1R4S3A1a5 M1R4S3A1

Boxes T 281703 283872 283872

In 353 360 360

Out 119635 120284 120284

Over 17206 17317 17317

Cont 45805 46330 46330

TotC 63364 64007 64007

C/shaft 1218.54 1230.9 1230.9

Table A.24: Shaft statistics: A 40 percent ratio open strategy was used.
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Appendix B

Glossary

This appendix provides brief descriptions of various terms mentioned in the text of this docu-

ment. For more detailed explanations the interested reader may refer to general references such

as [Foley90] and [Hall89].

� A-bu�er : Method to antialias, by using a subpixel viewing grid.

� Aliasing : Resulting misrepresentations due to sampling with regularly spaced samples at

a rate less than the Nyquist rate.

� Ambient term : Empirical constant used to represent illumination from all directions on

a surface.

� Back-face Culling : Eliminating from consideration, all faces of an object whose surface

normals point away from a given viewing position.

� Beam tracing : Tracing of polygonal beams versus single rays when ray tracing.

� Bilinear interpolation : Interpolation in two dimensions that a surface is de�ned in.

� Bilinear subdivision : Subdivision in two dimensions that a surface is de�ned in.

� Binary space partitioning tree : Tree with inner nodes representing partitioning planes

and leaves representing regions of space.

� Depth bu�ering : Method to compute visibility by scan converting and sorting projections

of polygons by their depth values, with respect to a viewing position, in a pixel level bu�er

called a depth bu�er. An item bu�er is a pixel level bu�er that stores the corresponding

identi�er of polygons that are visible in the pixels of the depth bu�er.

� Distributed ray tracing : Stochastically distributing rays in space to sample quantities.

� Double-bu�ering: Process of using two bu�ers, such that one bu�er displays the current

image, while the other is written to. Once �nished writing, the roles of the bu�ers switch.

� Extrusion : Surface formed by translating a 2d curve through space.
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� Filtering : Using weighted sampling to reconstruct a signal.

� Gouraud shading : intensity or colour interpolation between vertex values of polygons

projected into image space.

� Image space : The coordinate system of the viewing screen.

� Importance sampling : Using proportionally more samples at locations of higher weight.

� Light ray tracing : Ray tracing from position on light sources into a given scene.

� Model space : Coordinate system associated with a model.

� Non-uniform sampling : Sampling in a non-uniform distribution.

� Nyquist Rate : Minimum sampling rate of two times the highest frequency component in

the spectrum of a signal in order to reconstruct the signal from it's samples without aliasing.

� Quadtree : Tree produced by successively subdividing a 2D plane in both dimensions to

form quadrants. An octree is the three-dimensional analog to a quadtree.

� Perspective distortion : Anomalies caused by interpolating data after a perspective trans-

formation versus interpolating in world space.

� Perspective warp : Use of a series of image transformations to simulate the e�ect of a

perspective transformation of an image.

� Primitive instancing : Reuse of a parameterized original object description.

� Render pipeline : Implementation in software and/or hardware of a display process that

maps a model to an image. The process if referred to as rendering.

� Rotation variant : Change in properties of the image of a surface as this surface is rotated

in space.

� RMS : Root mean squared.

� Shadow rays : In a ray tracing method, these are rays shot from a point on a surface to

the lights in the scene to determine visibility of the point to the lights.

� Summed area tables : Method to �nd the integral between two points on an 2D image by

subtracting the horizontal and vertical areas between the minimum and maximum of these

points in each dimension, and adding back the intersecting area of the subtracted areas.

� Surface detail polygon : Coplanar polygon associated with a polygon in a model, such

that properties of the detail polygon are used versus the properties of the model polygon,

when computing quantities.

� Surface of revolution : Surface formed by rotating a 2d curve about some axis.

� Texture mapping : mapping a pattern to a surface.

� Tri-quadtree : Tree formed by successive bilinear subdivision of quadrilaterals or triangles

to form quadrants.
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� Warnock area subdivision : Exploitation of area coherence, by subdividing a grid until

projected polygons are either inside, outside, overlap or surround a grid cell.

� Weiler-Atherton algorithm : Visibility algorithm that �nds areas of a model shadowed

from each of the lights in a scene, then mapping these shadowed areas onto the model, before

rendering from a given viewing position.

� Winged-edge data structure : Construct to provide adjacency information, such that

constant time is required for searching for vertices and faces with respect to an edge in a

boundary representation.
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Appendix C

Example Usage

This appendix provides a brief example of the usage of some techniques described in Chapter 4. Let

us consider a hollow cubic enclosure with a small sphere centered within the cube. The enclosure

contains no participating media, and all surfaces are opaque. An outline of the steps required

to compute a progressive re�nement solution which uses the hemicube method to compute form

factors, and Gouraud shading to render images follows:

1. Assume that the normals of the sphere face outward, and the normals of the cube face inwards

towards space of the enclosure.

2. Assign radiative properties to the cube and sphere, including emission and re
ectance values. Let

us assume that one face of the cube has non-zero emission, and all other faces of the cube, and the

sphere have zero emission, but non-zero re
ectance values.

3. Polygonize the cube and sphere to the desired level of subdivision, making sure to maintain proper

modeling constraints.

4. Patches in the scene are sorted by total energy, and the shooter is chosen. The choice of the �rst

shooting patch would be a patch belonging to the emitting face of the cube.

5. Form an imaginary hemicube centered at the front face of the shooter. Project all surfaces onto

each of the faces of the hemicube, and compute form factors values.

6. Compute, and propagate the radiosity from the shooter to all surfaces visible from the center of the

shooter.

7. Subdivide the shooter based on source subdivision criteria as required. Perform recomputation of

form-factors as required.

8. Subdivide receiver patches based on receiver subdivision criteria (e.g. form-factor and radiosity

gradients) as required. Perform recomputation of form-factors as required.

9. Patches in the scene are sorted by total energy, and the next shooter is chosen.

10. Go back to step 5, and repeat until the energy per shooter is less than some user de�ned tolerance.

11. Compute vertex radiosities by interpolating patch radiosity values.

12. Choose a position to view the scene from, and use Gouraud shading to render the scene.

13. Store form-factor and radiosity values if desired.
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