
NeXtRad:
A Radiosity-Lighted Walkthrough Package

The Theory and Implementation of Radiosity

Jason R. Wilson

Contents

1. NeXtRad--A Radiosity-Lighted Walkthrough Package

2. What is Radiosity?

3. The Radiosity Equations

4. The Hemi-Cube Algorithm

5. Computing the Radiosities

6. Displaying the Radiosities

1. NeXtRad--A Radiosity-Lighted Walkthrough Package

NeXtRad is a three-dimensional interactive walkthrough simulation which uses

radiosity-based lighting calculations. This document gives the theory behind the

radiosity method as well as implementation notes.

2. What is Radiosity?

Realistic Image Generation

The goal of realistic image synthesis is to generate an image of a scene that

evokes from the visual system a response indistinguishable from that evoked by the

actual environment. Although the current state of the art does not realize this goal,

there are several methods that incorporate global illumination algorithms such as ray-

tracing and radiosity that give good approximations.

Modelling a Scene

A scene is what we are trying to view. An example of a scene is a living room.

The scene may contain objects such as chairs, lamps, and tables. In order for realistic

image generations to produce an image of a scene, the scene must be described in a

format that is recognizable by the computer. This process is called modelling. NeXtRad

models are specified using a set of input surfaces (modelled as polygons) and vertices

(for details on NeXtRad's modeler consult the NeXtRad user's manual). These

polygons and vertices are the input to the realistic image generator.

Global and Local Illumination

Illumination is the process of tracking light in a room and determining how much

light falls on each surface. The local illumination model describes how the surface

reflects and transmits light. So, given a description of the light incident on a surface, it

predicts the intensity, spectral character, and directional distribution of the light leaving

the surface. So the next question is, "How do we determine the description of light

incident to a surface?" For this, we need the global illumination model. To get an idea

of the complexity of the global illumination model, consider a scene with three surfaces

labeled a, b, and c. To determine the amount of light incident on surface a, we need to

know how much light from surfaces b and c reach surface a. But we don't know how

much light is reflected off surface b until we know the amount of light incident on b--a

computation which requires that we know the amount of light from surface a that

reaches b!! Hopefully, from this simple example, you can see that all of the global

illumination computations are interdependent.

Radiosity is a method of illumination that includes global illumination (sometimes

called indirect lighting). The method was originally used in thermal engineering for

finding heat/light distributions.

A Simplifying Assumption : Diffuse Reflections

If you recall, one of the jobs of the local illumination model is to compute a

directional distribution of the light leaving a surface. Radiosity assumes only diffuse

reflections. Diffuse reflections are assumed to be uniform in all directions. This turns

out to be a dramatic simplification and allows the radiosity algorithm to be view-

independent (another global illumination algorithm, ray-tracing, is view-dependent). So,

with radiosity only one solution is needed for any view but with ray-tracing, each view

has a different solution. This makes radiosity an ideal method for walkthroughs, such as

NeXTRad, which allow the user to change the view point on the fly. So what is the

catch? Yes, we do pay for this simplification. Specular surfaces (surfaces that have

directionally dependent reflection functions) such as mirrors and marble floors are not

modeled correctly. However, since radiosity is mostly used for building interiors with

diffuse objects such as chairs and walls, this is a major problem. Some more recent

algorithms have been developed that incorporate specular effects into the radiosity

solution.

Model Discretization

As mentioned, surfaces are modelled with polygons. In order to achieve a finite

solution, the polygons of a scene are subdivided into smaller patches that are assumed

to have constant local illumination. One goal of the mesh generator, discussed in the

mesh-generation paper, is to determine the set of patches that make up the scene.

3. The Radiosity Equations

Radiosity is essentially a finite-element method. Although each patch has three

radiosity values (one for each color band), I will assume monochromatic surfaces for

simplicity. The radiosity of a patch is given in terms of the radiosities of the other

patches. This system of equations is then solved using a iterative linear solver. The

radiosity of patch i is given below:

Bi = Ei + pi ∑ Bj Fij

These equations generate the following system of linear equations:

The following lists the meanings of each part of the equation:

Radiosity : (Bi) The basic quantity we want to compute for each patch i.
Emission : (Ei) Light that the patch i emits itself, as in the case of a light source.
Known at run-time.
Reflectivity : (pi) A number between 0 and 1 which indicates the fraction of light which
is reflected from patch i. Also known at run-time.
Form-Factor :(Fij) The fraction of light leaving patch i that arrives at patch j.

The Form-Factors

The form factors are based on the geometry of the scene and computing them is

the most time-consuming part of radiosity. Fortunately, they never have to be

recomputed (unless scene geometry changes). The following derivation of the form-

factor refers to the figure given below.

The form factor specifies the fraction of the energy leaving one surface which

lands on another. For non-occluded environments, the form factor for a differential

area is given by :

FdAidAj = Cosøi Cosøj

 πr2

The form-factor for a patch and a differential area is given by :

FdAiAj = ∫ Cos øi Cos øj dAj

 A j πr2

The patch-to-patch form factor is defined to be the area average and is thus:

 FAiAj = (1/Ai) ∫∫ Cos øi Cos øj dAj dAi

 Ai Aj πr2

Finally, to account for the possibility of hidden surfaces we have :

FAiAj = (1/Ai) ∫∫ Cos øi Cos øj HID dAj dAi

 Ai Aj πr2

where HID = 1 if and only if differential area i can see differential area j.

4. The Hemi-Cube Algorithm

In complex scenes with occluded (hidden) surfaces, this integral cannot be

evaluated in the general case. Fortunately, the Hemi-Cube algorithm for approximating

form factors has been developed.

Assumptions

Assume that the distance between the two patches is large compared to their

size and they are not partially occluded. If these conditions are not met, further

subdivision of patches (the mesh-generator's job) will be necessary. When these

conditions are met, it can be seen that the value of the inner integral remains almost

constant. Therefore, the patch-to-patch form factor can be approximated with the value

of the inner integral for the center point of patch i.

Nusselt's Analog

For a finite area, the form-factor (inner integral) is equivalent to the fraction of the

circle covered by projecting the area onto the hemisphere and then orthographically

down into the circle (see figure below).

From Hemi-Sphere to Hemi-Cube

However projecting onto the sphere for form-factor computation is impractical

(too slow). From the figure below, it can be seen that any two patches in the

environment, which when projected onto the hemisphere occupy the same area and

location, will have the same form-factor value.

For example, patch A has the same form-factor as patch D which has the same form-

factor as patch E. Thus to compute the form-factor of patch A, we can compute the

form-factor of patch D which is a much easier task than computing the form-factor of

patch E. This basic idea leads us to the hemi-cube algorithm. With the hemi-cube

algorithm, a row of form-factors is computed in one step by projecting the environment

(patches) down onto the hemi-cube algorithm surrounding a single patch (see figure

below).

NeXtRad does the hemi-cube projections in five separate passes--one for each side of

the hemi-cube. Each one of these passes is almost identical to the view projections

done during display (leads to substantial code reuse).

Computing Form-Factor of Projected Patch

Now we have to compute the form-factor for the projected patch. This is done by

discretizing the hemi-cube (usually 100X100). Then a rasterization is performed to

determine which pixels the projected patch covers (also known as scan-conversion).

For example, see the figure below:

Each pixel of the hemi-cube can be thought of as a small patch. Then to

compute the form-factor of the projected patch, the aggregate sum of the form-factors of

the covered pixels is determined. The form-factors for the pixels are called delta form-

factors and are precomputed and stored for easy lookup. The accuracy of this process

can be increased by increasing the resolution of the hemi-cube. This algorithm can

easily be extended to handle occluded surfaces: If two patches project onto the same

pixel, the one that is closest gets the pixel (basically, a z-buffer algorithm).

Derivation of a Delta Form-Factor

The last step is to determine how to derive the delta form-factors. Fortunately,

the geometry is simple enough to determine them analytically. The following example

derivation of a form-factor for a pixel on the top face of the cube refers to the figure

below:

First, a differential-area to differential-area form-factor is computed (see equation given

above):

r = sqrt (x^2 + y^2 + 1)

Cos Øi = Cos Øj

r*cosØ = 1

differential form-factor = (cos Øi * cos Øj)/(Pi * r^2)

substitute 1/r for the cos terms ->

differential form-factor = (cos Øi * cos Øj)/(Pi * r^4)

Next, substitute r with right-hand side given above ->

differential form-factor = 1/(Pi * (x^2 + y^2 + 1)^2)

Now, we must compute the differential area to patch form-factor (i.e. center of the

bottom patch is the differential area). Assuming that the differential area to differential

area form factors are constant, the integrand stays constant and the integral can be

determined by multiplying by the area.

Thus,

delta form-factor = area (A) / (Pi * (x^2 + y^2 + 1)^2)

Deriving the delta form-factors for pixels on the sides of the hemi-cube is similar and will

not be covered in detail.

5. Computing the Radiosities

Solving The Radiosity Matrix

Once we have computed the form-factors, we are in the position to solve the

radiosity matrix (refer to the matrix given above for this discussion). For starters, note

that the diagonal values are one--assuming that the patches are convex, F ii equals zero

for all i. By definition, the sum of any row of form-factors is equal to one. In the matrix

to be solved, each form-factor term is multiplied by a surface reflectivity, which is also

less than one. Thus, the summation of the absolute values of all terms in any row

exclusive of the main diagonal term is always less than one. Hence, the matrix is

strictly diagonally dominant (the sum of the absolute values of each row is less than the

diagonal term). Therefore, Gauss-Siedel iteration is guaranteed to converge. In

practice it only takes about 5-8 iterations to converge within 1%. Finally, the initial

guess for Gauss-Siedel the column of emission values.

Vertex Radiosities

Now we have the patch radiosities. To display, the vertex radiosities are needed.

These are found by simply averaging the surrounding patch radiosities.

6. Displaying the Radiosities

The display stage displays the scene given the vertex radiosities using linear

interpolation and a z-buffer algorithm for hidden surface removal. Because the range of

the radiosities is not between 0 and 1, all of the final colors are scaled by the maximum

to take full advantage of the full range of colors.

Texture mapping also occurs during the display phase. The color of the pixel is

determined by multiplying the color of corresponding texture pixel (found with an

inverse-mapping) by the radiosity value for that pixel. To make the algorithm tractable,

the reflectivities of a textured-patch are determined by averaging together the texture

colors. This allows patch radiosities to be computed without having a patch for each

texture pixel. When display is done, the actual texture-value is used to compute the

color.

Finally, because the solution is view-independent the only recomputation

necessary for a change of view is the display phase.

