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1. NeXtRad--A Radiosity-Lighted Walkthrough Package

NeXtRad is a three-dimensional interactive walkthrough simulation which uses 

radiosity-based  lighting  calculations.   This  document  gives  the  theory  behind  the 

radiosity method as well as implementation notes.  

2. What is Radiosity?

Realistic Image Generation



The goal of realistic image synthesis is to generate an image of a scene that 

evokes from the visual system a response indistinguishable from that evoked by the 

actual environment.  Although the current state of the art does not realize this goal, 

there are several methods that incorporate global illumination algorithms such as ray-

tracing and radiosity that give good approximations.

Modelling a Scene

A scene is what we are trying to view.  An example of a scene is a living room. 

The scene may contain objects such as chairs, lamps, and tables.  In order for realistic 

image generations to produce an image of a scene, the scene must be described in a 

format that is recognizable by the computer.  This process is called modelling.  NeXtRad 

models are specified using a set of input surfaces (modelled as polygons) and vertices 

(for  details  on  NeXtRad's  modeler  consult  the  NeXtRad  user's  manual).   These 

polygons and vertices are the input to the realistic image generator. 

Global and Local Illumination

Illumination is the process of tracking light in a room and determining how much 

light  falls on each surface.  The local  illumination model describes how the surface 

reflects and transmits light.  So, given a description of the light incident on a surface, it  

predicts the intensity, spectral character, and directional distribution of the light leaving 

the surface.  So the next question is, "How do we determine the description of light 

incident to a surface?"  For this, we need the global illumination model.  To get an idea 

of the complexity of the global illumination model, consider a scene with three surfaces 

labeled a, b, and c.  To determine the amount of light incident on surface a, we need to 

know how much light from surfaces b and c reach surface a.  But we don't know how 



much light is reflected off surface b until we know the amount of light incident on b--a 

computation  which  requires  that  we  know  the  amount  of  light  from surface  a that 

reaches  b!!   Hopefully,  from this simple example, you can see that all  of the global 

illumination computations are interdependent. 

Radiosity is a method of illumination that includes global illumination (sometimes 

called indirect  lighting).   The method was originally  used in  thermal  engineering for 

finding heat/light distributions.

A Simplifying Assumption : Diffuse Reflections

If  you recall,  one of  the jobs of  the local  illumination model  is  to  compute a 

directional distribution of the light leaving a surface.  Radiosity assumes only diffuse 

reflections.  Diffuse reflections are assumed to be uniform in all directions.  This turns 

out  to  be  a  dramatic  simplification  and  allows  the  radiosity  algorithm  to  be  view-

independent (another global illumination algorithm, ray-tracing, is view-dependent).  So, 

with radiosity only one solution is needed for any view but with ray-tracing, each view 

has a different solution.  This makes radiosity an ideal method for walkthroughs, such as 

NeXTRad, which allow the user to change the view point on the fly.  So what is the 

catch?  Yes, we do pay for this simplification.  Specular surfaces (surfaces that have 

directionally dependent reflection functions) such as mirrors and marble floors are not 

modeled correctly.  However, since radiosity is mostly used for building interiors with 

diffuse objects such as chairs and walls, this is a major problem.  Some more recent 

algorithms have  been  developed  that  incorporate  specular  effects  into  the  radiosity 

solution.



Model Discretization

As mentioned, surfaces are modelled with polygons.  In order to achieve a finite 

solution, the polygons of a scene are subdivided into smaller patches that are assumed 

to have constant local illumination.  One goal of the mesh generator, discussed in the 

mesh-generation paper, is to determine the set of patches that make up the scene. 

3. The Radiosity Equations

Radiosity is essentially a finite-element method.  Although each patch has three 

radiosity values (one for each color band), I will assume monochromatic surfaces for 

simplicity.   The radiosity  of  a patch is  given in terms of  the radiosities of  the other 

patches.  This system of equations is then solved using a iterative linear solver.  The 

radiosity of patch i is given below:

Bi = Ei + pi ∑ Bj Fij

These equations generate the following system of linear equations:



The following lists the meanings of each part of the equation:

Radiosity : (Bi) The basic quantity we want to compute for each patch i.
Emission : (Ei)  Light that the patch i emits itself,  as in the case of a light source. 
Known at run-time.
Reflectivity : (pi)  A number between 0 and 1 which indicates the fraction of light which 
is reflected from patch i.  Also known at run-time.
Form-Factor :(Fij) The fraction of light leaving patch i that arrives at patch j.

The Form-Factors

The form factors are based on the geometry of the scene and computing them is 

the  most  time-consuming  part  of  radiosity.   Fortunately,  they  never  have  to  be 

recomputed (unless scene geometry changes).  The following derivation of the form-

factor refers to the figure given below.

The form factor specifies the fraction of the energy leaving one surface which 

lands on another.    For non-occluded environments, the form factor for a differential 



area is given by :

FdAidAj = Cosøi Cosøj

        πr2

The form-factor for a patch and a differential area is given by :

FdAiAj =  ∫ Cos øi Cos øj dAj

                                               A j             πr2

The patch-to-patch form factor is defined to be the area average and is thus:

 FAiAj =  (1/Ai ) ∫∫ Cos øi Cos øj dAj dAi

                                             Ai Aj           πr2

Finally, to account for the possibility of hidden surfaces we have :

FAiAj =  (1/Ai ) ∫∫ Cos øi Cos øj  HID dAj dAi

                                             Ai Aj           πr2

where HID = 1 if and only if differential area i can see differential area j.

4. The Hemi-Cube Algorithm

In  complex  scenes  with  occluded  (hidden)  surfaces,  this  integral  cannot  be 

evaluated in the general case.  Fortunately, the Hemi-Cube algorithm for approximating 

form factors has been developed.

Assumptions

Assume that the distance between the two patches is large compared to their 

size  and  they  are  not  partially  occluded.   If  these  conditions  are  not  met,  further 

subdivision  of  patches  (the  mesh-generator's  job)  will  be  necessary.   When  these 

conditions are met, it can be seen that the value of the inner integral remains almost 

constant.  Therefore, the patch-to-patch form factor can be approximated with the value 

of the inner integral for the center point of patch i.



Nusselt's Analog

For a finite area, the form-factor (inner integral) is equivalent to the fraction of the 

circle covered by projecting the area onto the hemisphere and then orthographically 

down into the circle (see figure below). 

From Hemi-Sphere to Hemi-Cube 

However projecting onto the sphere for  form-factor  computation is  impractical 

(too  slow).   From  the  figure  below,  it  can  be  seen  that  any  two  patches  in  the 

environment, which when projected onto the hemisphere occupy the same area and 

location, will have the same form-factor value.



For example, patch A has the same form-factor as patch D which has the same form-

factor as patch E.  Thus to compute the form-factor of patch A, we can compute the 

form-factor of patch D which is a much easier task than computing the form-factor of 

patch E.  This basic idea leads us to the hemi-cube algorithm.  With the hemi-cube 

algorithm, a row of form-factors is computed in one step by projecting the environment 

(patches) down onto the hemi-cube algorithm surrounding a single patch (see figure 

below).



NeXtRad does the hemi-cube projections in five separate passes--one for each side of 

the hemi-cube.  Each one of these passes is almost identical to the view projections 

done during display (leads to substantial code reuse).

Computing Form-Factor of Projected Patch

Now we have to compute the form-factor for the projected patch.  This is done by 

discretizing the hemi-cube (usually  100X100).   Then a rasterization is  performed to 

determine which pixels the projected patch covers (also known as scan-conversion). 

For example, see the figure below:



Each  pixel  of  the  hemi-cube  can  be  thought  of  as  a  small  patch.   Then  to 

compute the form-factor of the projected patch, the aggregate sum of the form-factors of 

the covered pixels is determined.  The form-factors for the pixels are called delta form-

factors and are precomputed and stored for easy lookup.  The accuracy of this process 

can be increased by increasing the resolution of the hemi-cube.  This algorithm can 

easily be extended to handle occluded surfaces: If two patches project onto the same 

pixel, the one that is closest gets the pixel (basically, a z-buffer algorithm). 

Derivation of a Delta Form-Factor

The last step is to determine how to derive the delta form-factors.  Fortunately, 

the geometry is simple enough to determine them analytically.  The following example 

derivation of a form-factor for a pixel on the top face of the cube refers to the figure 

below:

First, a differential-area to differential-area form-factor is computed (see equation given 



above):

r = sqrt (x^2 + y^2 + 1)

Cos Øi = Cos Øj

r*cosØ = 1

differential form-factor = (cos Øi * cos Øj)/(Pi * r^2)

substitute 1/r for the cos terms ->

differential form-factor = (cos Øi * cos Øj)/(Pi * r^4)

Next, substitute r with right-hand side given above ->

differential form-factor = 1/(Pi * (x^2 + y^2 + 1)^2)

Now,  we must  compute  the differential  area to  patch form-factor  (i.e.  center  of  the 

bottom patch is the differential area).  Assuming that the differential area to differential 

area form factors are constant, the integrand stays constant and the integral can be 

determined by multiplying by the area.

Thus,

delta form-factor = area (A) / (Pi * (x^2 + y^2 + 1)^2)

Deriving the delta form-factors for pixels on the sides of the hemi-cube is similar and will 

not be covered in detail.

5. Computing the Radiosities

Solving The Radiosity Matrix

Once we have computed the form-factors, we are in the position to solve the 

radiosity matrix (refer to the matrix given above for this discussion).  For starters, note 



that the diagonal values are one--assuming that the patches are convex, F ii equals zero 

for all i.  By definition, the sum of any row of form-factors is equal to one.  In the matrix 

to be solved, each form-factor term is multiplied by a surface reflectivity, which is also 

less than one.  Thus, the summation of the absolute values of all  terms in any row 

exclusive of  the main diagonal term is always less than one.  Hence, the matrix is 

strictly diagonally dominant (the sum of the absolute values of each row is less than the 

diagonal  term).   Therefore,  Gauss-Siedel  iteration  is  guaranteed  to  converge.   In 

practice it  only takes about 5-8 iterations to converge within 1%.  Finally,  the initial 

guess for Gauss-Siedel the column of emission values.

Vertex Radiosities

Now we have the patch radiosities.  To display, the vertex radiosities are needed. 

These are found by simply averaging the surrounding patch radiosities. 

6. Displaying the Radiosities

The display stage displays the scene given the vertex radiosities using linear 

interpolation and a z-buffer algorithm for hidden surface removal.  Because the range of 

the radiosities is not between 0 and 1, all of the final colors are scaled by the maximum 

to take full advantage of the full range of colors.  

Texture mapping also occurs during the display phase.  The color of the pixel is 

determined  by  multiplying  the  color  of  corresponding  texture  pixel  (found  with  an 

inverse-mapping) by the radiosity value for that pixel.  To make the algorithm tractable, 

the reflectivities of a textured-patch are determined by averaging together the texture 



colors.  This allows patch radiosities to be computed without having a patch for each 

texture pixel.  When display is done, the actual texture-value is used to compute the 

color.

Finally,  because  the  solution  is  view-independent  the  only  recomputation 

necessary for a change of view is the display phase.   


