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Preface

The complex conversion system uses the standard software interface to
handle different types of images in image processing. During the development of
the CCS, many useful and high performance functions and subroutines have been
programmed.  These functions and subroutines generates an extended C language
library (CCS-ECL).

What is the standard software interface? Compatibility and exchangeability
are perennial problems in the computer field, in both the software and hardware
areas. Some very good operating systems and compilers are limited in use because
they are not compatible and exchangeable with all machines.  Software interface
increases image processing tool compatibility and exchangeability.  Many image
systems have different and incompatible formats.  Many our programs handle only
the HIPS [Landy, 1984] image,  but we want to handle many other type of images,
especially in the interactive programs.  Even though software engineers expend
much labor designing filters to convert x to y, y to x, y to z, ..., but these filters cause
the complexity for users and still cannot satisfy all of them.  Many of these
converting filters are not reversible.  So, for each different image system, we have
to rebuild hundreds of image processing tools (including converting filters).  In the
face of established diversity of machines and software, it is almost impossible to
imagine standardizing image systems, the answer is standard software interfaces.
This includes static and dynamic handling.  Interface is a type of hardware
technique used to enhance and improve the CPU performance and increase the CPU
power.  The software interface is a type of the software technique used to coordinate
the different types of systems, allowing machines to have compatibility and
improving efficiency through exchangeability.  The basic software interface
scheme is shown in Figure 1.0.

Our software interface is implemented by 3 modules.  They are internal
library, dynamic table, and adaptive interface.  The internal library collects often-
used image conversion tools for common image types, and builds certain program
sub-routines.  These libraries must be compiled and linked with the main filter
programs.  The conversion library interface is a static interface, and has high
efficiency.  The dynamic table interface, which is built on the top of the internal
library, uses a well-designed formatted table-file to obtain information telling how
to read an image header and how to decode the image data.  This interface may
require that the input images have a special symbol at the beginning of the image
file.  This special symbol is usually called a "magic number".  When a filter
equipped with a dynamic table interface recognizes the input image, it will try to
find the magic number in the input image to match one in the interface table file.
Once a matching symbol is found, the filter can retrieve the information in that
related table fields to get the header information and to decode the image
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data. Another requirement of the dynamic table interface is that the encoding
method of an input image must be known by the internal library.  Otherwise, even
though a filter can read the image header, but will not be able to decode the image
data.  The dynamic table interface advantages are flexibility, convenience, and
speed.  Users can add new image types into the dynamic table file using the text
editor.   The adaptive interface is a general software interface for image processing.
The adaptive interface invokes other programs in run time which are used to handle
the image header recognition and the image decoding.  This differs from the internal
library interface in two aspects: First, once an internal library interface has been
changed, all the filters using this library must be re-compiled and linked to this
library again, unless operating system allows to use dynamic linking.  If we want to
add a new image type into an adaptive interface based image processing system,
however, the only thing that needs to be done is to install the new header handling
or data decoding program into the particular area for the adaptive interface to
search.  Secondly, in the conversion library interface, all the data transfers are done
in the local memory since all the sub-routines are linked at compile time.  In the
adaptive interface, image data transfer uses either pipe, shared memory, or other
data communication schemes.  Because of the interactions between the adaptive
interface and handling programs through the operating system, the time delay is
considerable in the adaptive interface technique.

Comparing these three types of interfaces, we prefer to use the conversion
library interface for simple functional filter design.  The adaptive interface is good
for programs that are not very time sensitive to handle very different images, such
as window based image analysis systems.  The dynamic table interface may be used
in both case to remedy their defects and to enhance the performance.  Currently, the
CCS kernel can handle FITS, GIF, HIPS, ICC, PICT, PNM, RLE, SUN-Raster,
TIFF, and JPEG images.  With our experience of image processing, use of the
software interface for image type conversion in image processing is imperative.

How to Use This Handbook

This handbook has four parts:

(1) reference manual - I — CCS-ECL kernel and interface;

(2) reference manual - II — CCS X panel and interface;

(3) macro and header file — macros defined in library header files, library
structures, and library header files;

(4) program guide — build programs step by step to show the simplicity of using
CCS libraries and to build complicated programs in a few steps.

(5) how to add a new image type handler into CCS

(6) future and limitations for CCS-ECL
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All tables of contents in this book are alphabetically ordered, and indices are
sort in subjects. The tables of contents for reference manuals also contain simple
descriptions for each function and subroutine. The indices, however, do not have
any further explanations for details. Therefore, to find a new function or
subroutine, you may need both subject index and alphabetic table of contents.

Two reference manuals describe the CCS-ECL library kernel and interface
routine calls with parameters in details. The manual - I covers CCS-ECL kernel
and interface functions and subroutines, and the manual - II covers CCS panel and
interface functions and subroutines. These two manuals describe the usage and
parameters in details for each function and subroutine if they are recommend for
user programming, as well in some usage examples. Otherwise, only a brief
description is given.  The most useful categories in these manuals are:

CCS —

colors:

color conversion, color map and mapping, quantization

error:

error report and control

image:

math function, histogram, convolution, Fourier transform, rotation,
superimpose

interface:

header handle, image data read and write, user interface

input/output:

file control, buffer

memory:

management, debug

network:

socket, RTP, TCP, UDP, extended server

others:

argument handle, bytes swap, host_check, timer

table:

table interface

X window —

panel:

basic window, panel, button, press button, slider, scroll bar, pop
menu, message window, note window

image display and control

and the indices in these two manuals are sorted by these categories.
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The third chapter, Marco and Header Files, lists a number of macros defined
in CCS library header files and explains some important library structures, such
as U_IMAGE.

The next chapter is the program guide. Two programs are used to illustrate
how to program in CCS-ECL for regular and X window programs. They are
tonay.c and getx.c. The toany.c is a more general purpose tool in CCS
programming for image type conversion. The getx.c is the X window
programming in CCS; its binary and manual page are available for Sun 4 work-
stations, but its source code is not released to public. The getx.c source code
is available to only HIPS and LBL users now. In these examples, both
programs are build in server times from very simple case, but very useful, to a
complicated, in functionality not in programming, program.

In Chapter 5, how to extend a new image type for CCS library is introduced
for every one who wants to add his/her own stuff into CCS-ECL package.

The last thing in this handbook is giving the goal and limitation about this
library.

Compile and Link CCS-ECL Libraries

The CCS-ECL package is well formatted for users to use. The
config.xxxy files in ccs-lib directory are for different machine architectures. The
xxxy is the machine type. If you find any xxxy is same as your machine type or
close to your machine type, type Configure xxxy, or just Configure in other cases,
to configure CCS Makefiles. Before you configure CCS, you may need to do a
minor modification in your config.xxxy file to change the default library and binary
destination paths. To do so:

change LIBDIR = $(TOPDIR)/sun4/lib

to LIBDIR = your_lib

e.g. LIBDIR = /usr/local/lib

change DESTDIR = $(TOPDIR)/sun4/bin

to DESTDIR = dest-binary-dir

e.g. DESTDIR = /usr/local/bin

After configuring CCS, type make to build libraries. On IBM/PC system, special
makefiles are needed for compiling CCS-ECL. These makefile.src files are in
directory makefile.bcc for Borland C or Turbo C compiler. If these files are not
available, contact me by email.
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The syntax to link program to CCS libraries on unix system is:

cc -o $(DESTDIR)/filte $(OBJS) -lscs# -lccs $(OTHER_LIBS)

Look at the makefile.src in convert directory for more different usage.

For different programming requirement, the CCS-ECl libraries have six
interface levels: libscs1 - libscs6. Application programs are linked to CCS kernel
by these interfaces to suit different demands. The level 1 only reads and writes
HIPS and FITS images. The level 2 can read and write one more type image
RLE. The level 3 reads most of the supporting type images in CCS, except PICT
& JPEG. The level 4 can read PICT image. The level 5 reads all of supporting
type images. The level 6 can write Sun Raster image, as well other CCS supported
image types (not guaranteed). The level 1 - 4 is stable, and any new image type
should be added into level 5 and 6 unless it has to be split to a higher level.
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