
DirectSound tips and traps

www.sensaura.com

SensauraTM

3D  POSITIONAL  AUDIO

Sensaura

by Peter Clare

This paper presents a compendium of common pitfalls
and useful tips for the DirectSound programmer.  It is
aimed squarely at experienced game audio developers.
Written from the perspective of one of Sensaura's driver
architects, hardware acceleration and 3D positional audio
programming naturally receives specific coverage.

Introduction
When programming for DirectSound the first source of information
should be the documentation included with the DirectX SDK.  This
is good reference material but it does not cover some of the
difficulties that may be encountered in practice when using the
DirectSound API.  Also, some really useful nuggets of information
are present in the documentation but tend to get lost amongst the
wealth of material.  This paper provides additional advice and
should be read as an adjunct to the main SDK reference material.

Here we present a compendium of common pitfalls and useful tips
that should prove useful to any DirectSound programmer.  We start
by summarising the main DirectSound differences from DirectX 3.0
through to DirectX 7.0a.  This sets the scene and introduces some
behavioural differences that are covered in detail later.  We briefly
cover some COM programming issues before moving on to
concentrate on giving practical advice on using DirectSound.  There
are specific issues concerning 3D positional audio and these form
the subject matter for the last main section.  We conclude by
offering Top Ten lists of tips and traps.

It is assumed that the reader is developing applications (most likely,
games) that require DirectX on a Windows 9x or Windows 2000
target platform.  Familiarity with C/C++, COM programming,
DirectSound and DirectX is assumed.

The author has spent the last three years as one of the main
architects of Sensaura's 3D positional audio device drivers.  In
addition to developing drivers, the author has also developed
applications that use DirectSound, DirectSound3D and the
common property set extensions.  This background has enabled the
paper to be written from the perspective of knowing what goes on
inside an audio device driver in response to application stimuli –
hence being able to view the Microsoft DirectSound layer from
below as well as above.

Currently, DirectX 8 is in early beta testing with developers and full
details have not been made public.  This paper will be fully revised
after the public release of the DirectX 8 SDK.



2

Sensaura

DirectSound version history
For applications, the main DirectSound APIs
have changed little between DirectX 3.0 and
the latest version, DirectX 7.0a.  However,
there have been some small API changes and,
below the surface, much has changed (i.e. to
support WDM audio drivers).

DirectX 3.0
Introduced 3D sound buffers and a new
interface: IDirectSound3D.  At driver level
there was no mechanism for hardware to
accelerate 3D buffers so all such buffers had
to be rendered with a software 3D positional
algorithm built into DirectSound.

Unfortunately, this algorithm sounded awful
(little 3D positional effect and noticeable
distortion).  This wouldn't have been so bad if
it had required minimal CPU resources.  In
fact, it was rather heavy on CPU use (about
5.5% per channel on a, then current, 100
MHz Pentium).  As a consequence, software
3D buffers were a novelty that few developers
chose to use.

DirectX 5.0
3D buffers could now be accelerated in
hardware.  The rather poor software 3D
algorithm remained.  Most developers ignored
this and only enabled 3D audio in their game
titles if running on sound card hardware that
could accelerate 3D buffers.

Speaker geometry (i.e. angle between them)
can now be specified.

A new API for sound recording and capture:
IDirectSoundCapture (not discussed in this
paper because we concentrate on the sound
playback APIs).

A new buffer playback position notification
mechanism.  This only applies to software
buffers (a fact not made clear in the SDK
documentation).

A new API addition was that of property sets.
This was a mechanism, only applicable to 3D

buffers, whereby sound card makers could
expose special features of the hardware.
Cynics might argue that extending an API in
this way bypasses all COM rules.  Never mind,
the property set concept would allow
manufacturers to innovate.

DirectX 6.0/6.1
No real change for DirectSound.  In fact, the
version numbers of the DirectSound
components (DLL and VxD) remained at
number five.

Not really part of DirectX 6, but distributed
with the SDK (albeit hidden away in an extras
directory) was a header file and
documentation for the Voice Manager
property set supported by a number of sound
cards.  This let games create large numbers of
3D buffers, with the hardware allocating
physical resources as necessary.  We'll be
covering this in detail later.

Windows 98
Windows 98 included DirectX 5, but the
DirectSound components were different.  No
changes for applications but, below the
surface, support for WDM audio drivers was
introduced.  This driver support was not fully
functional – WDM drivers could not
accelerate buffers (and thereby match existing
VxD capabilities).

The Windows 98 version of DirectSound is
actually newer than that shipped in DirectX 6.
If an end user upgrades using the DX6
runtime, the sound components will remain
unchanged.

Windows 98 included new features in the
Multimedia Control Panel applet.  "Advanced
Properties" allows the speaker configuration to
be changed.  Controls for software SRC quality
and varying the level of hardware acceleration
are also provided.

Windows 98 SE
Windows 98 SE ships with DirectX 6 already
installed, but DirectSound is further changed



3

Sensaura
from the Windows 98 version.  WDM driver
support is meant to be complete (but there
are still bugs that prevent certain types of
WDM audio driver from working) and
hardware can now accelerate 2D and 3D
buffers.  It would be a while before such
WDM drivers were readily available to end-
users.

DirectSound now included an improved
software rendering algorithm (look for the new
dsound3d.dll file in the Windows system
directory).  At the API level, an application
could now select different 3D rendering
algorithms when creating a sound buffer.
How to do this though was not documented
until the release of the DirectX 7.0 SDK.  The
new, improved, highest quality 3D positioning
algorithm can only be selected when running
with a WDM driver.

Unfortunately, this release of DirectSound
broke the Voice Manager.  By this time, many
games were using this property set so this
causes problems (e.g. missing sounds, 3D
buffers not accelerated) in those games.

DirectX 7.0/7.0a
Further improvements to the software 3D
rendering algorithm.  Other than the simple
stereo pan algorithm, this is only available
where WDM drivers are used.  The selection
mechanism is now documented in the SDK.
Some new flags are available for use when
creating buffers allowing allocation of
hardware resources to be deferred until a
buffer is played.  With this voice management
now built into DirectSound, Microsoft advise
against using the Voice Manager property set
(and details of this are removed from the
SDK).  For game titles that do use the old
Voice Manager (and many developers chose
to carry on using it) the broken property set in
Windows 98 SE is fixed.

For developers, the SDK contains some real
improvements to the documentation, support
for applications written in Visual Basic and
some new examples.

DirectX 7.0a was a very minor point release
with no change to DirectSound.

At last accelerated 3D audio comes to
Windows 2000 – the final release version
includes DirectX 7.  We are promised that
future DirectX runtime releases will be able to
upgrade Win2K as well as Windows 9x.

DirectX 8.0
Currently, DirectX 8 is in early beta testing
with developers and full details have not been
made public.  From what has been said on the
record we can expect changes to the sound
APIs.  [This document will be fully revised
after the public release of the DirectX 8 SDK.]

COMmon mistakes
The DirectSound APIs are all based on COM
(Component Object Model).  Full details of
how to correctly use COM interfaces are
beyond the scope of this paper, but here we
cover some of the easily made mistakes.

Initialization
Before doing anything in your application, you
must call CoInitializeEx (and remember to
check for a non-error return code).

On application exit, when you’re done with
all COM operations, call CoUninitialize to
match the original CoInitializeEx.  Note that
Microsoft documentation offers confusing
advice on this.  Some older documentation
says that calling CoUninitialize is optional
(because the operating system will close down
COM by default).  The latest Platform SDK
documentation states that every call to
CoInitializeEx must be matched by a
corresponding CoUninitialize.  Probably
safest to follow this latter advice.

Obey the COM rules
This cannot be stressed enough.  The COM
specification defines certain rules that
applications using an interface must follow.
(There are even more rules that must be
obeyed if you are implementing a COM



4

Sensaura
object and exposing an interface, but those
need not concern us here.)

The main issue likely to trap the novice COM
user concerns correctly acquiring, using and
releasing interface pointers.  Your first COM
interface (i.e. IDirectSound) should be
obtained using CoCreateInstance.  Then use
either functions provided by that interface to
get other interfaces (e.g. CreateSoundBuffer
to get IDirectSoundBuffer) or use AddRef or
QueryInterface.

0 When you are done with an interface
you must Release it.  Once you have released
an interface you must treat the pointer as
being invalid and make sure you do not use it
to access subsequently any interface member
functions.  This is a common mistake and is
something that can appear to work for a while
but then blow up with a GPF when you least
expect it.

☺ It is good programming practice to
initialize COM interface pointers to NULL
before using them and set their value back to
NULL immediately following a Release.  This
will help trap incorrect use of interface
pointers when they are invalid.

Be careful with Release

0 Interfaces must be released once and
only once for each time an interface has been
obtained.  If you see code like this it is almost
certainly wrong:
// WARNING this is not correct!!
while ( pComInterface->Release() != 0 )

;

We've actually seen this (turned into a handy
macro) in a book on DirectX.  The authors
should have known better!  This can work if
client apps acquire only one reference to an
interface at a time and if COM objects do not
share reference counters amongst multiple
COM interfaces.  But, as a user of a COM
interface you cannot know that this is the
case.  So avoid this style of using Release.

There is another reason why the above code
fragment is wrong: it makes use of the return
value from Release.  The reference counter
returned by Release should only ever be used
for information purposes when debugging
your application.  Code should never be
written that relies on the return value.

Instantiate your GUIDs

0 Your DirectSound application compiles
correctly but when you come to link it you get
a load of linker errors.  These errors might be
unresolved external symbols, where those
symbols correspond to the various COM
interface and property set GUIDs used by
your application.  Alternatively, you get quite
the opposite: warnings that GUID symbols are
multiply defined.

If the above description applies to you then
you have made one of the most common
mistakes when building COM applications.
Don't be embarrassed!  We've all made the
same mistake at some time.

The important thing to remember is that the
symbol INITGUID must be #define'd in one
and only one source file at a point prior to the
inclusion of the header files that define the
GUIDs that you're using.  If INITGUID is
defined in more than one file then you will
(usually) get the multiple definitions linker
warning.  If it isn't defined in any file then you
will get the unresolved external errors unless
you adopt the approach outlined below.

Making sure that INITGUID is only defined
once can be a pain – especially if you are
incorporating externally supplied code (that
you'd rather not modify) into your application.

☺ There is an easy solution to all of these
GUID linker problems.  First, make sure that
INITGUID is not defined anywhere in your
code.  Then, link your application with the
SDK supplied libraries: uuid.lib and
dxguid.lib.  That will take care of all the
standard COM and DirectX GUIDs.  If you're
using DirectSound3D property sets then also
link with the ds3dguid.lib supplied with the



5

Sensaura
Sensaura SDK.  This takes care of all the
common property set GUIDs (EAX reverb,
I3DL2 reverb, Sensaura ZoomFX and the
Voice Manager).

DirectSound pitfalls
We now move on to advice on using
DirectSound and common problems that you
are likely to encounter.  In this section we'll
look at general issues concerning things such
as debugging, creating buffers, performance
and why your application might need to know
whether the sound driver is VxD or WDM.
We'll look at things specific to 3D buffers in
the next main section.

Use the debug DLLs
The various DirectX SDK releases each
provide two complete sets of DirectX
components: the retail DLLs (as shipped with
the operating systems and as end-user
upgrades) and a set of debug DLLs.

☺ You will benefit from using the debug
DLLs whilst developing your DirectX apps
(provided that you have some means, such as
SoftIce™, of capturing debug messages).
Debug messages will highlight incorrect use of
API functions, invalid parameters, interface
leaks and forgetting to clear sound buffers to
silence.  It is amazing how many released
games show up these sorts of problems when
run with debug DirectSound.

0 If you are developing on Windows 98 or
98 SE then you will not have debug DLLs for
the version of DirectSound being used.
Upgrade to DirectX 7 to fix this problem.

Check return codes
This should be obvious advice, but we've seen
many examples of code that doesn't check the
return code from DirectSound API functions.
Often an application can get away without
checking return codes, but checking result
codes is good programming practice and will

help to identify some of the other traps
identified in this document.

☺ Most API functions return a result code of
type HRESULT.  Remember that it's not just
values of zero (i.e. DS_OK) that indicate
success.  Other positive values might be
returned (e.g. from the version of
CreateSoundBuffer introduced in DirectX 7).
Use the FAILED() and SUCCEEDED() macros
to test the result code if you just want to
determine success or failure.

Now that you are checking the result codes,
what action should your application take on
failure?  Good question and the probable
answer will depend on which one of three
categories the particular API function falls into.

The first category includes all those functions
that might reasonably be expected to fail (e.g.
CreateSoundBuffer for a hardware buffer
when there are no free resources or if the
wave format is not supported).  The result
code from functions in this category should
always be checked at runtime and, in most
cases, there will be some logical course of
action on failure (e.g. dialog box to inform the
user, switch to using a software buffer, omit
playing the sound, etc.).

The second category includes all those
functions that probably will not fail but if they
do fail then the best action is to just ignore the
failure.  Setting the volume on a buffer might
be an example of this.  If this fails then, for
most applications, the most appropriate action
is to carry on and play the sound with the
volume unchanged.  Even though such
functions do not need runtime checking of
return codes you should still check the result
codes in debug builds (e.g. using an ASSERT
test).  Taking buffer SetVolume as the
example again, a common reason why this
might fail is that the buffer was not originally
created with volume setting capabilities.  So it
is still important to trap this sort of error during
debugging.

The third and final category of functions
includes all those functions that, under normal
circumstances, just cannot fail.  Finding the



6

Sensaura
capabilities of the DirectSound device using
GetCaps might be one such example.  It's still
a good idea to check result codes, at least in
debug builds, to trap programming errors (e.g.
supplying an incorrect parameter or using a
function without DirectSound being initialized
first).

Release buffer is good practice
Early DirectX documentation said that it was
not necessary to Release IDirectSoundBuffer
interfaces before doing the final Release on
IDirectSound.  The basis for this advice was
that dsound.dll would tidy up on behalf of
applications that left any buffer interfaces
unreleased.

It is good practice to always Release COM
interfaces in direct relation to the way they
were acquired.  It is strongly advised that apps
do not take the lazy option and do tidy up
correctly after using COM interfaces.  Later
SDK documentation agrees with this advice.

To maintain compatibility with old DirectX
apps, newer versions of dsound.dll will still
tidy up any unreleased COM interfaces but
the debug version of DirectSound will show a
warning to alert the developer.

There is another very sound (pun intended!)
reason for releasing buffer interfaces when
they're done with.  Creating a sound buffer
implies the allocation of certain resources (e.g.
memory in the operating system or driver,
hardware mixing channels on the sound card).
If a buffer is no longer being used then the
interface should be released to free these up.

DuplicateSoundBuffer
This must have seemed like a good idea when
DirectSound was first designed.  Simply
duplicate a buffer's context (e.g. play cursor)
but use the same sound sample buffer as an
existing buffer.  That way you can get the
same sound to play multiple times,
concurrently (e.g. might be needed for a
gunshot sound in a game).  The subsequent
addition of hardware acceleration, 3D buffers

and property sets to DirectSound has made
use of DuplicateSoundBuffer a little tricky.

0 We'll return to DuplicateSoundBuffer
when we discuss DirectSound3D.  But first it
is important to understand one problem that
affects any use of this function.  You cannot
reliably duplicate a hardware buffer as a
software buffer and vice versa.  What this
means is that, if you have used up all the
available hardware buffers and you attempt to
duplicate one of them, it may not work.  The
behaviour depends on the version of the
DirectSound components on the target
system.

With DirectX 5 and 6, issuing a duplicate
buffer call on a hardware buffer when no
hardware buffers are free will return a failure
code to the application.

With DirectX 7 and the DirectSound versions
that shipped with Windows 98 and 98 SE,
DuplicateSoundBuffer returns a success result
under these circumstances (contrary to the
SDK documentation).  When running the
debug version of dsound.dll you will also get
an appropriate error message.  Whether the
actual audible result is as expected is another
matter.  At the very least, the new buffer may
sound louder or quieter (more on mix levels
later).  3D buffers will likely sound even more
different due to the different positional
rendering algorithm.  Also, property sets that
were available on the hardware buffer will
likely not be there on the software buffer
(again, more on this later).  Worse is the
erratic behaviour that we have seen in some
cases: duplicate appears to work but the
sound buffer contains invalid data.

☺ Duplicating hardware buffers does have its
uses (mainly to conserve memory) but do take
care.  Check the return code and, even if
successful, you might want to call GetCaps on
the buffer interface and examine the flags to
verify that the buffer did actually end up in
hardware.



7

Sensaura
Creating buffers from resources

0 It's easy to fall into a little trap when
creating sound buffers from wave data
included as a resource (e.g. as part of your
main .exe file, or perhaps in a separate DLL).
CreateSoundBuffer expects a format
descriptor of type WAVEFORMATEX but most
software used to generate wave files puts a
WAVEFORMAT structure into the file.
[Technically, the RIFF format used for wave
files could easily accommodate descriptors of
type WAVEFORMATEX, but most sound
editing software saves wave files with the
similar, but slightly shorter, WAVEFORMAT
header.]

Why is this a problem for wave resources and
not wave files?  Well, when writing code to
read a wave file you are forced to allocate
memory or a local variable for the wave
header and also memory for the sample data.
You then call CreateSoundBuffer.  If you
make a mistake and use WAVEFORMAT
instead of WAVEFORMATEX then the
compiler will flag this up as an error.  Easily
detected, easily corrected.

With resources, you will probably write your
code a little differently.  Once you have
found, loaded and locked the resource it is
already in memory.  So no need to allocate a
sample buffer – just use a pointer into the
resource memory to the start of the samples
(which you find by parsing the RIFF data).
The temptation is to do the same for the
header – find the start of the wave header and
cast the pointer to type WAVEFORMATEX
and pass this to CreateSoundBuffer.  You
won't get a compiler error, but this is wrong
(unless you have made sure the wave resource
actually does have a WAVEFORMATEX
header).

That cast hides the problem.  [Did anyone
ever tell you that, whilst type casts are often a
necessary evil, they can get you into trouble?]
What happens in practice is that the last two
members (wBitsPerSample and cbSize) of the
"phantom" header are actually the start of the
next thing in the RIFF file (usually the data

chunk).  So, they will contain incorrect values
and, consequently, CreateSoundBuffer will
probably fail (DirectSound checks for cbSize
equal to zero).

You might think that this is all obvious and
that you won't fall into this particular trap.  But
Microsoft made this very mistake in some of
the early DirectSound sample code!  So, if you
based your code on those samples you may
well have copied the mistake.

Using the primary buffer
Back in the old ISA bus sound card days the
primary buffer actually meant something: a
DMA mixing buffer directly accessed by the
sound card hardware.  With VxD drivers
running on a modern PCI bus card that has
hardware buffer mixing, the DirectSound
primary buffer is something that the driver
knows about but probably uses an identical
hardware channel as other secondary buffers.
Moving on to WDM drivers, the driver has no
concept at all of a primary buffer – it's just a
software buffer with special properties and
handled entirely by the DirectSound layer
above the driver.

Most applications should never need to mix
directly into the primary buffer.  If an app
really needs to do its own mixing then it can
still mix into a secondary buffer (kept supplied
with data in streaming mode).  So avoid
mixing into the primary buffer unless you
absolutely have to.

Apart from mixing into the primary buffer
there are three other things that you might
want to do with it: call SetFormat, call Play or
create a primary buffer with the 3D control
property so that a 3D listener interface can
subsequently be obtained.

0 A common trap is that an application
creates a sound buffer with 16-bit samples,
but when it is played it is heard with only 8-bit
resolution.  Sound familiar?  A complication is
that this problem may not always occur on
hardware buffers (depending on the particular
sound card and whether the driver is WDM).
The cause of this 8-bit playback is that, for



8

Sensaura
VxD drivers, DirectSound defaults to 22 kHz
and 8-bit mixing/output (yuck!).  The reason
why this default behaviour is not always heard
on hardware buffers is because, with 16-bit
hardware mixing available anyway, there is no
saving to be had from switching to 8-bit
mixing.  Consequently, many sound cards will
choose to ignore the instruction to switch to 8-
bit mode.

☺ Assuming that you are using 16-bit
samples and don't really want to hear them at
8-bit resolution then there is a simple fix.  Just
create a primary buffer and SetFormat to 16-
bits and a sample rate equal to the maximum
used by any of your samples.  Probably one of
the first things that should be done after
initializing DirectSound.

☺ When there are no software buffers
playing, DirectSound normally halts the mixer
and DMA activity.  If application behaviour is
such that there are short intervals of silence
then this behaviour can actually increase
processing load.  If this is the case then an app
can issue a Play on the primary buffer and
mixing will then be continuous.

0 Remember that one of the first things that
you must do after obtaining the IDirectSound
interface is to set the co-operative level.
Remember too that if you are intending to
write to the primary buffer, set the format or
play it then the co-operative level that you set
must be appropriate.  A common pitfall is to
set the level to NORMAL but expect
SetFormat to work.  It won't!

Specify dwSize in structures
In common with other Windows APIs,
DirectSound uses a number of structures
where the first member is a DWORD named
dwSize.  Before passing the structure to an
API function this member must be set to the
size of the structure.  For example:
DSBUFFERDESC dsbd;
dsbd.dwSize = sizeof ( DSBUFFERDESC );

0 Omitting this simple step is a very
common mistake (albeit one that is usually
easily detected) and should be one of the first
things to check if calls to GetCaps or
CreateSoundBuffer (for example) are failing
for no good reason.

☺ C++ offers a simple and elegant solution
that will always ensure that you never fall into
this trap.  Simply derive a class from the
structure and initialize the size member in the
constructor.  You'll probably also want to add
some operators so that the class can be used
as a drop in replacement for the structure.
For example:
class CDsBufferDesc : public _DSBUFFERDESC
{
public:
 CDsBufferDesc()
  { dwSize = sizeof ( DSBUFFERDESC ); }

 operator DSBUFFERDESC * ()
  { return this; }

 operator const DSBUFFERDESC * () const
  { return (const DSBUFFERDESC *) this; }
};

DirectX 7 introduces a new complication
when creating buffers because the size of
DSBUFFERDESC has been increased, but for
compatibility with older applications the old
size is still accepted.  More on this next.

New descriptor structure (DirectX 7)

0 Building with the DirectX 7 SDK creates a
nasty little trap for the unwary.  The
DSBUFFERDESC structure has increased in
size to include a GUID used to specify the 3D
rendering algorithm.  We'll discuss actually
using this GUID later.  The problem arises
when you (or more likely an end-user or your
QA department) attempt to run your DX7 app
on DirectX 6 (or earlier) runtime.  All create
buffer operations will fail!  The reason is that
the new buffer descriptor size is not
recognised by the older runtime.  Note that
the reverse situation does work.  DX7 runtime
happily accepts either size of buffer descriptor



9

Sensaura
(necessary to avoid breaking every app
developed prior to DirectX 7).

In the author's opinion, changing the API in
this way, whilst possibly not breaking the letter
of the COM rules, certainly contradicts their
spirit.  This could easily have been avoided
with a new interface (e.g. IDirectSound7).

How do you live with this problem?
Obviously, shipping the latest DirectX runtime
with your game title is a good idea (and you
may have to do this anyway if you use new
DirectX features).  It would still be better
though to make your sound code compatible
with earlier versions of DirectX if possible.

☺ If you don't actually need to specify the
software 3D rendering algorithm then there is
a simple solution: define a constant called
DIRECTSOUND_VERSION to be something
less than 0x0700.  Do this either on the
compiler command line or in your source file
before dsound.h is included.  This will force
use of the shorter descriptor format.

Later, we'll look at using the new software
rendering algorithms whilst still providing
some compatibility with old DirectX runtimes.

Use the control capability flags
When creating a sound buffer, certain control
flags should be set in the dwFlags field of the
buffer descriptor structure (DSBUFFERDESC).
It is important to specify control capabilities
for those operations that will subsequently be
performed: 3D (if it is to be a 3D buffer) and
pan, volume or frequency if you intend to use
SetVolume, SetPan or SetFrequency.

0 A very common mistake is to omit one of
these control flags but then attempt to use the
corresponding function.  This sort of error can
be detected if you use the debug version of
dsound.dll and/or check return codes (both
good practice).

The easy solution would be to always specify
volume, pan and frequency control whether
these functions were needed or not.
However, this could have adverse

performance implications and the latest
DirectX SDK advises against it (and removes
the CTRLDEFAULT flag definition that made
this easy to do).  In particular, specifying
CTRLFREQUENCY unnecessarily may cause,
depending on the audio hardware, a sample
rate converter process to be allocated that
consumes host CPU cycles or precious
hardware resources.

Only software buffers and WDM driver
hardware buffers support the CTRLNOTIFY
capability.  So, only specify this if you must
have notify functionality and accept that you
will not get hardware buffers on a VxD driver.
Note that the combination of CTRLNOTIFY
and LOCHARDWARE is guaranteed to fail on
a VxD driver.

Whilst we're on the subject of the buffer flags,
there are some other ones worth mentioning.
For modern PCI bus sound cards the STATIC
flag is basically irrelevant (a buffer can be used
as static or streaming never mind whether this
flag is set).  It is recommended that this flag is
never used unless you are specifically
designing for use on old ISA bus sound
hardware.

Lastly, it's good practice to always specify the
GETCURRENTPOSITION2 flag.

Don't believe GetCaps
Treat the information returned by the
IDirectSound GetCaps function (i.e. in a
DSCAPS structure) as "guide not gospel".
Some sound cards do not always tell the truth
in the information returned!

The only true test of the number of hardware
buffers supported by a sound card is to keep
creating and playing buffers until the create
call fails.  The number of buffers that you have
playing may very well not match the
maximum buffers reported in DSCAPS.  If
DSCAPS reports one free hardware buffer
don't assume that next CreateSoundBuffer is
guaranteed to succeed.  You must check the
result code.

Why do some sound cards lie?  It is true that
some sound card drivers might report



10

Sensaura
inaccurate information for "marketing"
reasons: there is strong commercial pressure
for sound cards to report as many hardware
buffers as possible.  However, there are other
reasons why the developer of a sound driver is
forced to report inaccurate information.  The
DSCAPS structure simply does not have
enough fields to cover all the possibilities of
how a sound card/driver might be
implemented.  For example, consider a driver
that manages a collection of 16 mono mixing
buffers in hardware where two such resource
units are required to create a stereo
DirectSound buffer.  Does the driver report a
maximum of 16 buffers (i.e. total mono
buffers that could be created) or 8 (number of
possible stereo buffers)?

It is worth noting that, on modern PCI bus
sound cards, all buffers are essentially
streaming (although they can be made large
enough to hold an entire or static sound
sample).  An application should really only
check the "mixing all buffers" fields rather than
the individual static and streaming fields (if an
application needs to check any of these at all).

Finally, note that the term "hardware" as
applied to a DirectSound buffer does not
mean that all the processing associated with
such a buffer occurs on the sound card DSP.
All buffer operations, of necessity, involve at
least a minimum of host CPU activity.
However, some sound cards (those with weak
or non-existent DSPs) make rather more use
of the host CPU for processing than the term
"hardware" implies.  Just remember that
"software" equates to buffers processed in the
Microsoft-provided DirectSound layer and
"hardware" equates to buffers processed in the
sound card driver/hardware.

Wave formats and performance
It's important to have a basic understanding of
how your choice of buffer wave format(s) can
affect performance.  It should be obvious to
most audio programmers that higher sample
rates equate to more DSP or CPU cycles
required for processing (mixing, filtering,
reverb, 3D positioning, etc.) and more buffer

memory.  Perhaps less obvious is what effect
the choice of 8 or 16-bit samples has on
performance.

All modern sound cards support 16-bit
samples and this tends to be the "native"
format used by the drivers/hardware.  When
presented with 8-bit samples in a buffer, many
sound cards will perform a conversion to 16-
bits prior to 3D processing or mixing.
Choosing to use 8-bit samples, whilst saving
on memory and CPU cycles spent copying
buffers, can actually result in extra work and
greater processor load than for 16-bit samples.

Another thing that can adversely affect
performance is making a sound card mix
buffers at different formats (sample rate and/or
sample size).  Sound hardware generally works
best when all buffers have the same format.
Note that you can't just set the primary buffer
format and expect that to make everything the
same format.  You have to actually create your
sound buffers with identical formats.

When choosing sample rates for your sounds
it is worth being aware that, on all modern
sound cards, the codec runs at 48 kHz.  So, if
you use anything other than 48 kHz for your
samples (popular choices being 22,050 Hz or
44,100 Hz) then at some point a sample rate
conversion (SRC) step will be required.  This
may use host CPU cycles unless performed in
hardware.  Wherever it is done, the SRC
algorithm may be of low quality and introduce
artefacts into the resultant audio.

You probably don't have the luxury of
performance, memory and distribution CD-
ROM space to currently use 48 kHz samples.
However, in the future this may be practical.
[The wise sound designer and engineer will
already be making all master recordings at
48 kHz.]

☺ So, some general advice on choosing the
wave formats to use in your game or
application is to avoid 8-bit samples (never
mind the fact that they usually sound terrible!)
and use the same sample rate for all sounds
(static samples and background ambients or
music).  If you're going to give the user the



11

Sensaura
option of selecting sound quality (i.e. low
quality for low processing) then your app will
need to select between two entire sets of
samples at different rates.  Don't bother
offering the option to switch between 8 or 16-
bit samples.  And don't think that you can
leave the samples unchanged and just change
primary buffer formats.  That may reduce the
sound output quality but is unlikely to
improve performance.

Mixing and volume levels
One frustration felt by some DirectSound
programmers is that of buffers playing at
(unintentionally) different volumes.  The
precise behaviour can vary across different
sound cards (and even different drivers for the
same card).  Typically, a hardware buffer will
play at a different (usually lower) volume than
an otherwise identically created software
buffer.  Why is this and what can be done to
alleviate it?

Unfortunately, other than laboriously testing
every sound card and driver combination and
programming different buffer volumes as
needed, there isn't too much that developers
can do.  Microsoft is tightening up on driver
testing and WHQL certification to make sure
that this is less of a problem in the future.

Although the solution is in the hands of the
hardware vendors, it is useful to understand
why the problem exists.  Put yourself in the
shoes of the person designing the audio
mixing hardware (or software if host based in
the driver).  Actually, before DirectSound was
available to do audio mixing, you might have
already worn the "mixer shoes".  Anyone
attempting to mix n 16-bit audio streams (for
the purposes of this discussion we'll pick 32 as
an example) into one 16-bit output will
encounter an intractable DSP problem.

The simple approach is to take the 32 streams
and add them, sample by sample.  That can
easily lead to number overflow as the sample
sum exceeds the range of a 16-bit integer.
OK, so do the addition and then just limit the
output to ±32767.  That can work for a small

number of streams and with some content,
but it is likely that this clipping will be audible.
The easy way of solving the clipping problem
is to do the addition and then divide the result
by 32.  Then, the final result can never exceed
16-bits.  It is this approach of providing
"headroom" that leads to the mixer level
problem.  Each individual stream is quieter, by
a factor of 32, than if the single stream had
been played without mixing.  Designers find
various ways around this problem (e.g. a
hybrid of some headroom and some clipping,
perhaps with buffer look ahead to perform
automatic gain control).  Whatever the
solution, the result will always be a
compromise and imperfect in some cases.

A further problem with 3D buffers is that
different 3D positional algorithms simply
sound different.  There is no "correct" answer.
So, a sound positioned at a certain point and
rendered with one of the software algorithms
may be of different volume and frequency
content than an otherwise identical version
rendered in hardware.

Probably the best advice we can give apart
from testing on the popular sound cards (and
you're doing that anyway, right?) is to provide
user settings to individually alter volume levels
for different audio elements in your game.

Creating buffers and performance
It is important to be aware that, for every
buffer created, certain resources must be
allocated on the host processor (e.g. memory
for context information and for the sample
buffer) and on the sound card hardware (e.g.
an audio mixing channel).  Depending on the
particular sound driver, the sample buffer
memory may have to be allocated from a
special pool of non-paged contiguous memory
used for DMA operations.  Even if you have
128 Mbytes of main memory, with large
amounts unused, a buffer create operation
could still fail if this pool is fully used.

It's not just running out of resources that can
be a problem.  Dynamic creation and deletion
of buffers can lead to memory fragmentation
and paging.  More work for the operating



12

Sensaura
system and disk to do and reduced
performance for your application.

There are three different approaches to
creating sound buffers that a game can adopt:

� Create buffers for all sounds at start of
game or level (for 3D buffers this probably
implies use of voice management).  Keeps
overhead of create and loading buffer
with data from file out of main game
runtime.  Increases initialization times and
uses most memory and resources.

� Dynamically create buffers, as they are
needed.  Release them when the sound
has finished playing.  Good use of
resources, but a performance hit due to
dynamic create/load/release of buffers.
Increased latency (see below) when
playing a buffer.

� Create a small number of streaming
buffers.  Keep these fed with sound
samples from a buffer creation and
management layer that is part of the
game.  Game audio engine has to do
more work in duplicating the functionality
of DirectSound.  Not suitable for all apps.

A game audio engine may adopt a hybrid
approach (e.g. a streaming buffer for music,
create n buffers at start of level, dynamically
discard buffers on a least recently used basis
before creating new ones).

As the audio programmer, you need to
minimize the use of resources for best
performance but also realize that in doing so
you may actually reduce performance (due to
other reasons) and increase latency.  There is
no simple answer to this one!

Lock 'n' load and effect on latency
All sound buffer operations take a finite
amount of time.  The overall time from first
creating a buffer to playing it and sound
actually coming out of the loudspeakers can
be considerable on some audio hardware.

First, the buffer must be created.  Memory
and hardware resources are allocated.  This
takes time.  The buffer must be locked,

sample data read in from file and copied into
the buffer, then unlocked.  More time
(especially Unlock for static buffers on ISA
cards as data is copied across the bus).
Perhaps volume needs setting?  Or maybe it's
a 3D buffer and you need to get interfaces,
make further settings and perhaps use
property sets?  All more time.  Finally, you
issue the Play command.  The sound driver
may have deferred allocating some resources
until a sound is first played.  More time.  It
may then be necessary to wait on the
hardware (e.g. to fill up a small copy buffer or
for an interrupt) before the first sample is
actually fed to the codec and sound is heard.

When triggering a sound from a game event or
synchronizing with video action this latency is
an important issue.  On most modern PCI bus
sound cards the latency is probably acceptable
(under 20 ms) but it might be a problem on an
ISA card.

Of course, you can minimize the latency by
doing as much in advance as possible (i.e.
create and the lock 'n' load) and just issue the
Play on the game event.  However, you then
hit the resource issue that we discussed above.

A related problem occurs if you need to start
multiple sounds in synchronisation.  You can
issue consecutive Play calls on a number of
buffers but this does not guarantee sample
accurate synchronisation and there is no
DirectSound mechanism for doing so.  Does
this matter?  For a game, probably not.  But
we have seen applications that attempt to use
multiple 3D buffers to "virtualize" stereo (or
5.1 channel Dolby Digital).  Without
synchronisation at sample level there may be
slight delays between channels (leading to
unwanted phasing effects).  [DirectX 7
introduced support for multi-channel wave
streams.  This can help in these virtualization
type applications but doesn't solve the basic
problem of playing and stopping a group of
buffers together.]

Because the time spent on various operations
and hence overall latency varies across
different sound cards if all this matters then
you really need to test individual cards.  The



13

Sensaura
results can be quite illuminating!  Note that
most benchmarks (e.g. ZD Audio WinBench)
look at CPU usage under continuous
operation.  Such benchmarks rarely show
latency.  So, you will probably need to
develop your own tests.  [The author can
provide a simple latency test program upon
request.]

Clear streaming buffers before playing

0 This is such a common trap!  You create
a small buffer (enough for 1 second of
samples, say) to use for streaming (i.e. you will
repeatedly call Lock/Unlock, probably from a
timer interrupt, to keep the buffer supplied
with data).  The buffer must be filled with
silence (0x80 bytes for 8-bit samples, 0x00
bytes for 16-bit) before the Play command is
issued.  Instead of silence you could prime the
buffer with the first samples in the audio
stream that you intend to play.  There are
many examples of shipping applications that
don't initialize streaming buffers correctly.

This problem can go unnoticed because, by
good fortune, the buffer may start off
containing zeroes – with the first timer
interrupt that occurs putting valid data into the
buffer.  Also, some sound card drivers may
clear buffers when they are created which
masks the problem.  [This is not a very
efficient thing to do so not all drivers do it.]  If
you are unlucky the buffer will contain non-
zero "rubbish" data.  The result is a burst of
noise or nasty audio glitch when the buffer is
first played.

☺ If you're using the debug dsound.dll for
development (of course you are, you've read
these tips!) then this will help avoid this trap.
The debug dsound.dll initializes buffer data to
random noise.  So, if you get an audible burst
of "static" when playing your buffers you now
know the probable cause.

Driver models: VxD and WDM
Does an application need to know or care
whether the audio driver is of the VxD or

WDM type?  For many apps the answer is no.
There are behavioural differences between
the two driver architectures, so as a developer
you need to know these to code and test your
application accordingly.

Buffer position notification, previously only
available on software buffers, does work on
hardware buffers with a WDM driver.

The new 3D algorithms (that appeared in
Windows 98 SE and were formally introduced
in DirectX 7) are only available on WDM
drivers.  On VxD drivers the default, stereo
pan with distance and Doppler, algorithm is
all that can be selected.  There seems to be
little technical reason for this restriction – after
all, the old host based 3D algorithm worked
with VxD drivers.  Perhaps there were
"political" motives for this (i.e. to encourage
hardware vendors and end-users alike to
migrate to WDM)?

The biggest difference concerns the primary
buffer.  Originally, this provided direct access
from application to the hardware mixing DMA
buffer.  As PCI bus sound cards developed this
became harder to do and less relevant
anyway.  With a WDM driver an application
can never get quite this close to the hardware.
It has to go via the kernel mixer (part of the
operating system).  The old primary buffer API
functions are still provided for compatibility
but there should be less reason to use them.
There is now no need to set the format of the
primary buffer for 16-bit output.  So that
removes one of the most common reasons for
using the primary buffer anyway.

It should be noted that we are currently in a
transition phase where VxD drivers may be
more fully featured than corresponding WDM
drivers for the same hardware.  The main
reason for this is that WDM drivers are simply
less mature.  In particular, DirectSound3D
acceleration is only just now starting to
appear.  Be assured though that the future
very definitely lies with WDM.  For the time
being, unless an application is only targeting
Windows 2000 it should not absolutely rely
on any WDM specific features.



14

Sensaura

DirectSound3D traps
At last we move on to cover the issues that
affect use of DirectSound3D on top of the
advice given for general DirectSound use.
We'll revisit DuplicateSoundBuffer, take a
detailed look at voice management, cover
property set issues and speaker configuration.

DuplicateSoundBuffer
We've already covered the restriction that a
hardware buffer cannot be duplicated as a
software buffer.  With 2D buffers that
restriction was not much of a problem – all
buffers could be specified as software without
too great a performance penalty.  With 3D
buffers it really does matter whether hardware
is used or not.  In most cases you will want to
use the more effective 3D positioning
algorithms as implemented by the various
hardware vendors and the additional effects
properties they provide (most notably, reverb).
This was particularly relevant prior to the
improved software 3D algorithm in DirectX 7
for WDM drivers.  We also want to use
hardware buffers to avoid using host CPU
cycles for rendering a software buffer.

If you do use DuplicateSoundBuffer then you
basically have two alternatives:

� Duplicate hardware buffers up to the
maximum available.  Check that buffers
have been duplicated successfully by
checking return codes and doing a buffer
GetCaps to verify LOCHARDWARE.

� Duplicate as many hardware buffers as
possible and then use software buffers for
additional 3D positioned sources.  Accept
that property sets such as reverb are not
available on the software buffers.

Which method to adopt will depend on
whether you use one of the available methods
for voice management and, if so, which one.
This is the next topic for discussion.

Voice management: an introduction
DirectSound contained a fundamental design
flaw that soon became apparent to anyone
that attempted to create many hardware
sound buffers.  If a sound card supports n
hardware buffers then the first n buffers
created will be in hardware (assuming
LOCSOFTWARE not specified to override
default).  Any subsequent buffers created will
be in software.  This is the case whether or not
those first n buffers are actually playing.  It can
be seen that this is pretty wasteful of the
precious hardware resources.  What we would
like is some way of dynamically allocating
hardware resources as buffers are played and
releasing them when the buffer finishes
playing.  We would also like to discard an
existing playing buffer if all hardware
resources are in use and a "more important"
sound needs to be played.  We call such a
scheme voice management.

The need for voice management applies to 2D
buffers of course but, for reasons we have
already covered, is more of an issue for 3D
buffers where it is usually much more
important that they be rendered in hardware.

Earlier we looked at the different approaches
typically used by games when creating their
sound buffers (see Creating buffers and
performance).  For those games that choose to
create all their buffers at one time, unless the
total number of buffers is small or the sound
card is very capable, some form of voice
management is required if we are to keep all
those buffers in hardware.

Voice management is not rocket science and
is something that a game audio engine can do
for itself.  However, the further away from the
hardware that it is done the worse the latency
effects will be when switching buffers.

Realising that DirectSound had created a
problem (particularly acute on early sound
cards that accelerated eight 3D buffers or less)
some hardware providers (including Sensaura)
implemented proprietary buffer allocation
schemes within their audio drivers.  However,
there was no official or common way of
controlling these schemes and common



15

Sensaura
behaviour was also not guaranteed.  Thus was
born the Voice Manager property set.

Voice Manager property set
The original concept for property sets was that
they would allow a manufacturer to innovate
and provide effects and additions on top of
the basic DirectSound3D API.  All well and
good, but the last thing a developer needs is
ten different ways of doing the same thing!

Thankfully, with the Voice Manager property
set, common sense prevailed and industry
rallied around a common set of functions.
These were documented by Microsoft and,
along with the necessary header file, were
included in the DirectX 6.0 SDK (albeit
hidden away in an extras folder).

The Voice Manager provides a number of
modes of operation (full details in the
documentation) but most developers simply
choose to use the automatic mode.

It is trivially simple to test for Voice Manager
support and then set the AUTO mode if
available.  This needs doing just once during
initialization after the main DirectSound
object has been created.  From that point on
the audio driver will ensure that best use is
made of the available 3D rendering resources.

☺ Prior to the release of Windows 98 SE
and, later, DirectX 7 our firm advice was that
all applications should use the Voice Manager.
For most cases, the AUTO mode would
suffice.  However, this recommendation now
needs to be tempered with some caveats.

0 The version of DirectSound included in
Windows 98 SE broke the Voice Manager
property set.  What happened was that VM
property set calls appeared to the application
to work fine, but they were being intercepted
by dsound.dll and not being passed on to the
device driver.  The problem was fixed in
DirectX 7.  So, if your game uses the Voice
Manager you probably need to cover this issue
in the user documentation and get users of
Windows 98 SE to upgrade to a later DirectX
runtime.

The next caveat is that, with the release of
DirectX 7, DirectSound itself now includes
voice management functionality.  According to
Microsoft this should have made the Voice
Manager property set redundant.  However,
there are some potential problems with the
new mechanism (see below).  Also, to avoid
breaking all the games already released that
use the VM property set, hardware vendors
are not going to remove it any time soon.

So, be aware that the Voice Manager property
set is considered to be a legacy interface that
may disappear in the future.  But read the
next topic before definitely deciding to switch
to the replacement mechanism.

Voice management in DirectX 7
There are strong arguments for including voice
management in DirectSound itself rather than
in the audio driver.  The main benefits are
universal availability and common behaviour
across all sound card hardware.  A reasonable
argument is that putting voice management in
DirectSound is where it should have been in
the first place.  The one main counter
argument is that the closer to the hardware
that voice management can be performed the
smaller the latency will be when switching
buffers.

Leaving aside the latency issue, there is one
major problem with the scheme as
implemented in DirectX 7.  This problem only
manifests itself when an application uses
property sets (other than the Voice Manager
property set, of course, which the DirectX 7
system replaces).  Since a great many games
now use the EAX reverb property sets this is a
very relevant issue.

0 The basic problem is that property sets
(such as those used to implement reverb) and
use of the LOCDEFER capability introduced in
DirectX 7 do not mix.  Why is this so?

If DSBCAPS_LOCDEFER is specified when a
buffer is created then the hardware resources
are not actually allocated until the buffer is
played – just what we want for effective voice
management.  If you want to set reverb



16

Sensaura
properties (for example) this must be done
before the buffer is played (if properties are set
after the Play instruction then there may be
nasty transition effects).  But those hardware
property sets are only going to be exposed
when the hardware has been allocated – after
the Play instruction.  Catch-22!

☺ DirectX 7 voice management is fatally
flawed if property sets are used.  Our advice is
to continue using the Voice Manager property
set if you use reverb or other property sets.  If
you do not intend to use property sets on
hardware buffers then we do recommend
using the DirectX 7 mechanism.

Speaker configuration
3D positional audio algorithms need to know
information about the speaker or headphone
configuration.  Crosstalk cancellation is not
performed for headphone listening.  Where it
is used for loudspeaker playback, the angle
between the speakers affects the crosstalk
process.  Algorithms will be different again for
four (or more) speaker playback.  It is
important that the correct algorithm is used
otherwise 3D audio will not be effective.

DirectX 5 introduced an API function to set
speaker configuration (headphones, two
speakers, four speakers etc. and angle
between speakers).  Initial advice to
developers was that each game or application
should provide user options for configuring
the speakers to match their particular set up.
Few game titles actually offered these choices.

Sound card manufacturers took a different
view, saying that speaker configuration was a
system thing that should be set, like other
configuration details, via a Control Panel
applet or driver property page.  Many sound
cards shipped with proprietary control panels
that included options for speaker
configuration.

With the release of Windows 98, a new
Advanced Audio Properties section was
included in the Multimedia Control Panel
applet – a standard way for users to change
speaker configuration.  To maintain

compatibility, applications can still override
the system default.

The problem is that we now have three
different places where speaker configuration
can be set – the application, driver property
page or proprietary applet, or the standard
Multimedia applet.  Worse, some sound card
drivers actually ignore the settings made via
application or Multimedia applet, with the
proprietary applet taking precedence.  All a bit
of a mess really!

Things get even more complicated with sound
cards that offer even more configuration
options (e.g. 5.1 speaker setup).  Also, some
sound cards can auto detect whether
headphones or speakers are connected and
switch modes accordingly.  However, there is
no universal way for DirectSound to
enumerate the available speaker
configurations supported by the audio
hardware or let the hardware itself determine
the mode.

This whole area really needs pulling apart, re-
designing and making a standard part of the
operating system.  Proprietary sound card
applets should have no need to change the
configuration and should be prevented from
doing so (unless they use some new, official,
API).  Other than perhaps 3D audio test
programs, applications themselves should not
need to change the configuration either.

Being realistic, this isn't going to be fixed any
time soon.  So, what can be done to make the
best of the current situation?  For the most
part, the solution lies in the hands of Microsoft
and the hardware vendors.

☺ As far as you, the developer, are
concerned the simplest thing is to not
implement any control of speaker
configuration.  If configuration is implemented
then GetSpeakerConfig should be done first
to seed the user settings with what has been
set via the Multimedia applet.  Only do a
SetSpeakerConfig if the user specifies
something different.  Beyond that, it is
advisable to include some reference to



17

Sensaura
speaker configuration in the documentation or
help that ships with the game title.

Multimedia control panel options

0 Windows 2000 contains a nasty little trap
that can prevent property sets from working
on hardware buffers.  W2K has a similar
Multimedia Control Panel applet to that
introduced in Windows 98 with an Advanced
Audio Properties section.  In here there is a
Hardware Acceleration slider.  This must be in
the Full position for property sets and full
hardware acceleration of 3D buffers to work.
In Windows 98 this does not usually cause
any problems because it is set to Full by
default.  However, when a sound card is
installed on a Windows 2000 platform this is
first set to the reduced Standard setting.  It
needs to be set to Full (which requires
Administrator privileges).

Unfortunately this trap affects end users as
well as developers so it is something that
probably needs to be covered in the
documentation that accompanies your game.

Property sets and global settings
We've already talked quite a bit about
property sets.  We've discussed the problems
of property sets not being equally available on
hardware and software buffers and how this
affects use of DuplicateSoundBuffer.  We've
also discussed how property sets don't work
very well with DirectX 7 voice management.
Now, one more thing to discuss to complete
the picture.

Some property sets control settings specific to
a single buffer.  Other property sets control
global settings that affect how all buffers are
rendered (cf. the 3D Listener settings).  The
various reverb APIs contain examples of such
global property sets (in addition to the buffer
specific ones).

So the question arises, what buffer should
provide the IKsPropertySet interface used to
set global settings?  The obvious answer might
first appear to be the primary buffer.  There is

only one of these – the natural choice, surely?
Wrong!

Technically, a VxD driver can expose property
sets to an application on the primary buffer.
Some sound card drivers did just this.  There
was nothing in the DDK documentation that
said that this couldn't be done but Microsoft
folk advised hardware vendors against it.
Later, when WDM audio drivers came onto
the scene, it all became clear – primary buffer
behaviour had changed (as we discussed
earlier).

0 Even if you have found the technique to
work on some sound cards, do not fall into
the trap of using property sets on the primary
buffer.  Any code that has been already
written in this way should be changed.

If we cannot use the primary buffer, can we
not just use one of the 3D buffers that we're
creating and playing anyway?  That is certainly
one solution.  However, if you think carefully
about the design of your game audio engine
then setting global properties via one of your
buffers (which may be transitory in nature)
may be awkward.  It is much neater to have a
global object, on which properties can be set,
that exists for the runtime life of the game.

The advice offered from a number of quarters
has been to create a "dummy" 3D buffer.  This
never needs to be played or filled with valid
sound data.  It can just sit around for the life
of the program and provide the needed global
property set interface.  The only problem with
this approach is that it uses up a valuable 3D
hardware buffer – if a sound card supports
only 16 buffers then it seems rather wasteful
to use one just to provide an interface.

☺ The wasted dummy buffer problem can
easily be solved if you use the Voice Manager
property set and set the mode to AUTO.
Another tip is to make the buffer small – say
64 bytes long.  Don't make it too small
because some versions of DirectSound will fail
the creation of very tiny buffers.  The small
buffer size will save on memory (that is not
actually going to be used for sample data).



18

Sensaura
In the author's opinion, setting global
properties via individual buffers is rather
inelegant and seems counter to good sense.
However, with DirectSound property sets it is
something that we have to live with.

Property sets – Watcom enum size

0 Here's a little trap for users of the
Watcom C compiler (and perhaps others, but
not Visual C++).  Likely to be encountered
when using property sets, but could possibly
cause problems elsewhere too.  The problem
arises because Watcom C represents the
underlying type of an enum as an 8-bit value
(rather than a 32-bit integer as used by Visual
C++).  This is perfectly acceptable behaviour
since the ANSI standard says that this is
implementation defined.  However, because
Visual C++ is the predominant compiler used
by Microsoft (obviously!) and driver
developers, this difference in behaviour can
lead to a "misunderstanding" between a
Watcom C application and DirectSound.

It is quite common for enums to be used in
property set definition header files (e.g. to
define the range of property set IDs, to define
a range of mode or status codes, etc.).  Both
the I3DL2 reverb and the Voice Manager
definitions use enum in this way.

When an application performs a property set
Get or Set it must supply the size of the data
in cbPropData.  If the Watcom user gets this
using the sizeof operator on the enum type
then it will specify the wrong size and the
results will be unpredictable.  Hence the trap.

Set initial params before playing

0 This is a simple trap that most avoid, but
we've seen some games that have this
problem.  What happens is that the sound
buffer is created and then played.  Then,
position (and perhaps other 3D parameters or
reverb) information is set.  The result can be a
burst of audio in the wrong position and/or
the wrong volume at the start of the sound
sample.  What went wrong, of course, is that

all the 3D parameters should have been set to
sensible values before the buffer is played.
Relying on some overall game timer interrupt,
which updates things like position, to do the
initialization as well, probably causes this sort
of problem.

Portable use of 3D rendering algorithms
We have already discussed how DirectX 7
introduced a new mechanism whereby a
GUID could be specified, when creating a
software buffer, to determine which rendering
algorithm is used.  We have also noted that
the DSBUFFERDESC structure increased in
size to accommodate this new GUID and that
this can prevent DirectX 7 apps from working
on DirectX 6 or earlier runtime.

☺ How can an application use the new
rendering algorithms whilst still maintaining
some level of compatibility with older
runtimes?  The answer is pretty simple, but it
is not as easy as just changing the
DIRECTSOUND_VERSION setting.  The
version should be left intact at 0x0700 (or
greater).  DSBUFFERDESC should be filled in
as required (including specifying the 3D
rendering GUID), with the dwSize parameter
set to the full size of the structure.  Then, an
attempt should be made to create the buffer.
If the creation fails (as it would on DirectX 6
runtime) then a second create attempt should
be made, after first reducing the dwSize value
by the size of a GUID (i.e. to the original
buffer descriptor size).



Sensaura

Sensaura Ltd
Dawley Road, Hayes
Middlesex   UB3 1HH
United Kingdom

A Scipher Company

© Copyright Sensaura Ltd, 2000.
We reserve the right to alter or amend the information in this document and/or the products described herein.
Sensaura, the Sensaura logo, Audio3D, Digital Ear, ZoomFX and MacroFX are trademarks of Scipher plc.
Microsoft, DirectX, DirectSound and DirectSound3D are either trademarks or registered trademarks of Microsoft.
Ownership of all other trademarks is acknowledged.

DEVPC/014/0006/1

Conclusions
By way of a summary, we conclude with Top
Ten lists of tips and traps.  There is no
particular priority order in the lists and we
start with the traps.

0 Top Ten Traps
1. Using COM interface pointers after they

have been released.  [See Tip #1.]

2. Defining INITGUID in either none or
more than one source file.  [See Tip #2.]

3. Duplicating a hardware buffer as software,
or vice versa.

4. All sounds played with 8-bit resolution
even though buffers may be 16-bit.  [See
Tip #5.]

5. Forgetting to set dwSize in structures.
[See Tip #6.]

6. DirectX 7 app fails on DirectX 6 runtime
due to DSBUFFERDESC differences.  [See
Tip #7.]

7. Forgetting to set required control flags
when creating buffers causing subsequent
control operations to fail.

8. Forgetting to initialize streaming buffer
sample data before playing it.

9. Property sets not working on Windows
2000 due to incorrect Hardware
Acceleration setting.

10. Specifying incorrect sizes for property set
operations (Watcom enum differences).

☺ Top Ten Tips
1. Set invalid COM pointers to NULL.

2. Link with the GUID libraries to avoid
INITGUID and linker problems.

3. Use the DirectX debug runtime DLLs
during development.

4. Check return codes and use the FAILED()
and SUCCEEDED() macros.

5. Set primary buffer format to 16-bit after
setting an appropriate co-operative level.

6. Use C++ to solve structure dwSize
hassles.

7. Use DIRECTSOUND_VERSION to solve
DirectX runtime compatibility issues.

8. Using 8-bit samples will probably not
improve performance.  Don't mix sample
rates and formats if you can help it.

9. Use some form of voice management –
VM property set if using other property
sets or the DirectX 7 mechanism if not.

10. Create a tiny dummy buffer for global
property set operations (and use the VM
in AUTO mode to avoid wasting
hardware resources).

References
[1] DirectX 7.0 SDK documentation; Microsoft.

http://msdn.microsoft.com/directx/

[2] Sound Cards, Voice Management, and Driver
Models; Brian Schmidt; Microsoft; January 2000.
http://msdn.microsoft.com/

[3] Avoiding a DirectSound3D Disaster; Rich Warwick;
Game Developer; January 1998.
http://www.gamasutra.com/

[4] Configuring Hardware-Accelerated DirectSound3D;
Brian Schmidt; Gamasutra; Vol 1 Issue 5; September
1997.
http://www.gamasutra.com/

For further information please contact:
Email: dev@sensaura.com
WWW: www.sensaura.com
Tel: +44 20 8848 6636

http://msdn.microsoft.com/directx/
http://msdn.microsoft.com/
http://www.gamasutra.com/
http://www.gamasutra.com/
mailto:dev@sensaura.com
http://www.sensaura.com/

	Introduction
	DirectSound version history
	DirectX 3.0
	DirectX 5.0
	DirectX 6.0/6.1
	Windows 98
	Windows 98 SE
	DirectX 7.0/7.0a
	DirectX 8.0

	COMmon mistakes
	Initialization
	Obey the COM rules
	Be careful with Release
	Instantiate your GUIDs

	DirectSound pitfalls
	Use the debug DLLs
	Check return codes
	Release buffer is good practice
	DuplicateSoundBuffer
	Creating buffers from resources
	Using the primary buffer
	Specify dwSize in structures
	New descriptor structure (DirectX 7)
	Use the control capability flags
	Don't believe GetCaps
	Wave formats and performance
	Mixing and volume levels
	Creating buffers and performance
	Lock 'n' load and effect on latency
	Clear streaming buffers before playing
	Driver models: VxD and WDM

	DirectSound3D traps
	DuplicateSoundBuffer
	Voice management: an introduction
	Voice Manager property set
	Voice management in DirectX 7
	Speaker configuration
	Multimedia control panel options
	Property sets and global settings
	Property sets – Watcom enum size
	Set initial params before playing
	Portable use of 3D rendering algorithms

	Conclusions
	( Top Ten Traps
	( Top Ten Tips

	References

