
SNMP++
An Object Oriented Approach

For Network Management
Programming

Using C++

Revision 2.1

Peter E Mellquist
Network Management

Roseville Networks Division
Hewlett Packard Company

 µ §

Copyright © 1994 Hewlett Packard Company
All Rights Reserved

Roseville Networks Division
Network Management Section

Peter E Mellquist

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its
entirety and that the copyright and this notice are included. Comments, suggestions and inquiries

regarding SNMP++ may be submitted via electronic mail to mellqust@hprnd.rose.hp.com or
banker@hprnd.rose.hp.com.

Technical Contributors:
Kim Banker
Gary Berard
Chuck Black
Bruce Falzarano
Harry Kellog
Moises Medina
Tom Milner
Mark Pearson

SNMP++ HP RND 10/21/2024 10/21/2024 2

Table Of Contents

Μ WHAT’S New in Revision 2.0 7

PRODUCTS NOW USING SNMP++ 8

INTRODUCTION 9

What Is SNMP++ 9
SNMP++ Objectives 9

Ease of Use 9
Provides an easy-to-use interface into SNMP 10
Preserves the flexibility of lower level SNMP programming 10
Encourage programmers to use the full power of C++ without chastising them for not
learning fast enough 10

Safety 10
Provides automatic management of SNMP resources. 10
Provides built in error checking, automatic timeout and retry 10

Portability 11
Extensibility 11

OverLoading SNMP++ Base Classes 11
An Introductory Example 12
Windows 3.1 Example 12
Explanation of Introductory Example 12

SNMP++ FEATURES 13

Oid, Vb and SNMP Objects 13
Automatic SNMP Resource Memory Management 13
Ease Of Use 13
Power and Flexibility 13
Portable Objects 13
Automatic Timeout And Retries 13
Blocked Mode Requests 14
Non-Blocking Asynchronous Mode Requests 14
Traps 14
Support For SNMP Version 1 14
SNMP Get, Get Next and Set Supported 14
Redefinition Through Inheritance 14
Many Engine 14

SNMP++ HP RND 10/21/2024 10/21/2024 3

SNMP++ FOR WINDOWS 3.1 15

Runs Over WinSnmp Ver 1.1 15
Multiple Sessions Via Multiple Instances 15
Multiple Concurrent Blocked Mode Requests 15
IP and IPX Support using FTP Software Inc.’s WinSNMP.DLL 15
IP Support Using American Computer and Electronics Corp. Netplus WinSNMP.DLL 15
Windows Message Handling 15
Medium or Large Model Support 16
Rendezvous Shut Down Messages 16
Runs on MS-Windows NT 16
Trap Support 16
Compatability with HP OpenView for Windows 16
The PDU Container Class 17
Tested Over MFC and 3.1 API 17

SNMP++ FOR HPUX 18

Runs Using SNMP Research’s SNMP Libraries 18
Identical Class Interface 18
Portable to UNIX-Windows Emulators 18
Multiple Connections via Multiple Instances 18

THE OBJECT IDENTIFICATION CLASS 19

Object Modeling Technique Representation 19
OMT Public View Of Oid Class 19

Oid Class Public Member Functions 20
Oid Class Constructors & Destructors 20
Oid Class Overloaded Operators 20
Oid Class String Value Methods 21
Oid Class Set Instance & Get Instance Methods 22
Oid Class Trim Method 22
Oid Class nCompare Method 22

Oid Class Examples 23

THE VARIABLE BINDING CLASS 25

Object Modeling Technique Representation 25
OMT Public View of Vb Class 25

Vb Class Public Member Functions 26
Vb Class Constructors & Destructors 26
Vb Class Get Oid / Set Oid Member Functions 26
Vb Class Get Value / Set Value Member Functions 27
Vb Class Get Value Member Functions 28

SNMP++ HP RND 10/21/2024 10/21/2024 4

Vb Object Get Syntax Member Function 30

TIMETICKS, COUNTER AND GAUGE CLASSES 34

TimeTicks Class Example 34
Counter Class Example 34
Gauge Class Example 34

THE SNMP CLASS 35

Object Modeling Technique Representation 36
Public View of SNMP Class 36

SNMP Class Public Member Functions 36
SNMP Class Constructors and Destructors 36
SNMP Class Constructor, Blocked Mode 37
SNMP Class Constructor, Asynchronous Mode 37
SNMP Class Destructor 38
SNMP Class Access and Mutator Member Functions 38

SNMP Class Set Timeout & Get Timeout 38
Snmp Class Set Retry & Get Retry 39
SNMP Class Set Community Name 39

SNMP Class Request Member Functions 40
Request Member Function Parameter Description 40

SNMP Class Blocked Get Member Function 41
SNMP Class Blocked Get Next Member Function 41
SNMP Class Blocked Set Member Function 42

SNMP Class Asynchronous Member Functions 42
SNMP Class Asynchronous Get Member Function 42
SNMP Class Asynchronous Set Member Function 43
SNMP Class Asynchronous Get Next Member Function 43

Medina’s Many Engine Member Functions 44
SNMP Class Get Many 44
SNMP Class Set Many 44

SNMP Class Trap Methods 45
SNMP Class Trap Registration Member Function 45

SNMP Class Error Return Codes 46
SNMP Class Examples 48

SNMP++ Example #1, Getting a Bunch of Values in HPUX 48
SNMP++ Example #2, Setting Values in MS-Windows MFC 50

NETWORK TRANSPORT MECHANISMS 51

Transport Start Up 51
Transport Shut Down 51

SNMP++ PROPOSED NEW FEATURES 52

SNMP++ HP RND 10/21/2024 10/21/2024 5

Support for SNMP version 2 52
Traps For UNIX 52
Asynchronous Mode For UNIX 52
Demo Engine 52
Community Name Database Access 52
SNMP++ Script 52
Oid Database 52
Full Win32 Support 52
Solaris OS Support 52
Apple OS Support 52
OS/2 Support 52
NMS Support 52

LISTING AND DESCRIPTION OF FILES 53

Required Files For MS-Windows Development 53
Required Files For HPUX Development 53

REFERENCES 54

APPENDIX A, PUBLIC OID CLASS INTERFACE: 55

APPENDIX B, PUBLIC VB CLASS INTERFACE: 57

APPENDIX C, PUBLIC SNMP CLASS INTERFACE: 60

APPENDIX D, PUBLIC TIMETICKS, COUNTER AND GAUGE CLASS INTERFACE:
 64

SNMP++ HP RND 10/21/2024 10/21/2024 6

WHAT’S NEW IN REVISION 2.0

SNMP++ revision 2.0 includes a variety of new enhancements. Enhancements include new features,
increased flexibility and better performance. The following is a summary of new features for rev 2.0.

· Asynchronous SNMP requests for MS-Windows
SNMP++ for MS-Windows now supports both blocked and non-blocked (asynchronous) modes.
The UNIX implementation does not currently support async mode.

· Rendezvous shutdown mechanism
Rendezvous shut down mechanisms for globally or partially shutting down a blocked SNMP++
request is now possible.

· Medina’s many engine
Medina’s Many Engine is a powerful member function for obtaining SNMP objects in bulk. The
many engine makes it easy for the implementor to grab up to fifty objects from a device in one
call . As SNMP++ migrates to SNMP v2, the internals of the many engine will utilize SNMP
version 2’s get-bulk.

· Timeticks, Counter and Gauge objects
These three new SNMP++ classes make getting and setting SMI TimeTicks, Counters and Gauge
Objects easy.

· New Oid class member functions
A variety of new Oid class member functions were created extending the functionality and power
of the Oid class.

· Medium memory model support for MS-Windows
SNMP++ may now be compiled in the MS-Windows medium or large model.

· Windows NT and Windows ‘95 Beta Support
A Win16 SNMP++ application will now function under Win32 driving through WinSNMP and
NT’s WinSock protocol stack. This includes Windows ‘95 Beta II.

· Trap Support for MS-Windows
SNMP++ now includes support for arming and receiving traps for MS-Windows.

· HPUX support for series 700 and 800 workstations
An SNMP++ HPUX app can now operate on series 700 or 800 HP Workstations.

· Extended Error Codes
SNMP++ error codes have been extended to provide more detail on possible errors which can
occur.

· Faster, More Efficient Oid Class
Leaner and faster Oid class offers significant performance improvements.

· Runs over FTP’s and ACEC (American Computer Electronics Corp) WinSNMP DLL
SNMP++ has been tested over FTP Softwares and ACEC s NetPlus WinSNMP

SNMP++ HP RND 10/21/2024 10/21/2024 7

Products Now Using SNMP++

· HP DownLoad Manager For MS-Windows
Uses SNMP++ for MS-Windows running over WinSNMP. Runs over IP & IPX on MS-
Windows 3.1, Windows For Work Groups 3.11(WFWG) and Windows NT.

· HP DownLoad Manager For HPUX
Uses SNMP++ for HPUX. Runs over IP on series 700 and 800 HP work stations.

· HP Router Monitor For MS-Windows
Uses SNMP++ for MS-Windows running over WinSnmp. Runs over IP on MS-

Windows
3.1, WFWG and Windows NT for the HP OpenView for Windows platform.

· HP Router Monitor For HPUX
Uses SNMP++ for MS-Windows running over WinSnmp. Runs Over IP on series 700

and
800 HP workstations for the HP OpenView for HPUX platform.

· HP InterConnect Manager (ICM) For MS-Windows
Uses SNMP++ for MS-Windows running over WinSnmp. Runs over IP on MS-

Windows
3.1, WFWG and Windows NT. Operates in a stand alone manner or with HP OpenView

for
Windows.

· HP InterConnect Manager For HPUX
Uses SNMP++ for MS-Windows running over WinSnmp. Runs Over IP on series 700

and
800 HP workstations for the HP OpenView for HPUX platform.

· SNMP++ Demo Application
 A powerful browser application which demonstrates the ease, power and flexibility of
 SNMP++. Implemented using MS-Visual C++ and MFC for Win16. The demo application
 is available through HP Roseville Network Division for evaluation purposes.

SNMP++ HP RND 10/21/2024 10/21/2024 8

µ §

Introduction
Various Simple Network Management Protocol (SNMP) Application Programmers Interfaces (APIs) exist
which allow for the creation of network management applications. The majority of these APIs provide a
large library of functions which require the programmer to be familiar with the inner workings of SNMP
and SNMP resource management. Most of these APIs are platform specific, resulting in SNMP code
specific to an operating system or network operating system platform and thus not portable. Application
development using C++ has entered the main stream and with it a rich set of reusable class libraries are
now readily available. What is missing is a standard set of C++ classes for network management. An
object oriented approach to SNMP network programming provides many benefits including ease of use,
safety, portability and extensibility. SNMP++ offers power and flexibility which would otherwise be
difficult to implement and manage.

What Is SNMP++
SNMP++ is a set of C++ classes which provide SNMP services to a network management application
developer. SNMP++ is not an additional layer or wrapper over existing SNMP engines. SNMP++ layers
over existing SNMP libraries in a few minimized areas and in doing so is efficient and portable. The
majority of SNMP++ includes a full implementation of SNMP. SNMP++ is not meant to replace other
existing SNMP APIs such as WinSNMP, rather it offers power and flexibility which would otherwise be
difficult to manage and implement. SNMP++ brings the Object Advantage to network management
programming.

SNMP++ Objectives

Ease of Use
An Object Oriented (OO) approach to SNMP programming should be easy to use. After all, this
is supposed to be a simple network management protocol. SNMP++ attempts to put the simple
back into SNMP! The application programmer does not need be concerned with low level SNMP
mechanisms. An OO approach to SNMP encapsulates and hides the internal mechanisms of
SNMP. This provides safety since it protects the programmer from inadvertently doing the wrong
thing. In regard to ease of use, SNMP++ addresses the following areas.

Provides an easy-to-use interface into SNMP
A user does not have to be an expert in SNMP to use SNMP++. Furthermore, a user does
not have to be an expert in C++!

Preserves the flexibility of lower level SNMP programming
A user may want to bypass the OO approach and code directly to low level SNMP calls.
SNMP++ is fast and efficient. However, there may be instances where the programmer
requires coding directly to an SNMP API.

Encourage programmers to use the full power of C++ without
chastising them for not learning fast enough
A user does not have to be an expert in C++ to use SNMP++. Basic knowledge of
SNMP is required, but as will be shown, a minimal understanding of C++ is needed.

Safety
Most SNMP APIs require the programmer to manage a variety of resources. These include

SNMP++ HP RND 10/21/2024 10/21/2024 9

Object Id’s (Oids), Variable Bindings (Vbs), Variable Binding Lists (Vbls), Protocol Data Units
(PDUs), Community Names, and authentication structures [RFC 1442]. Improper allocation or
de-allocation of these resources can result in corrupted or lost memory. SNMP++ provides safety
by managing these resources internally. The user of SNMP++ realizes the benefits of automatic
resource and session management. In regard to safety, SNMP++ addresses the following areas.

Provides automatic management of SNMP resources.
This includes SNMP structures, sessions, and transport layer management.
SNMP classes are designed as Abstract Data Types (ADTs) [Saks]. This includes data
hiding and the provision of public member functions to inspect or modify hidden
instance variables.

Provides built in error checking, automatic timeout and retry
A user of SNMP++ does not have to be concerned with providing reliability for an
unreliable transport mechanism. SNMP relies on network transport layer
communication via unreliable services (eg. UDP , IPX) [Stallings]. A variety of
communications errors can occur including: lost datagrams, duplicated datagrams, and
reordered datagrams. SNMP++ addresses each of these possible error conditions and
provides the user with transparent reliability.

SNMP++ HP RND 10/21/2024 10/21/2024 10

Portability

µ §

A major goal of SNMP++ is to provide a portable API across a variety of operating systems
(OSs), network operating systems (NOSs), and network management platforms. Since the internal
mechanisms of SNMP++ are hidden, the public interface remains the same across any platform.
A programmer who codes to SNMP++ does not have to make changes to move it to another
platform. The current working SNMP++ platforms include MS-Windows 3.1, MS-Windows For
Work Groups 3.11, MS-Windows NT, MS-Windows ‘95 Beta II, and HPUX (HP UNIX). Note!,
Currently only Win16 is supported. Platforms currently supported are HP OpenView for
Windows and HP OpenView for HPUX. Another issue in the area of portability is the ability to
run across a variety of protocols. SNMP++ currently operates over the Internet Protocol (IP) or
Internet Packet Exchange (IPX) protocols, or both using a dual stack.

Extensibility
Extensibility is not a binary function but rather one of degree. SNMP++ not only can be extended,
but can and has been extended easily. Extensions to SNMP++ include supporting new OS’s,
NOS’s , network management platforms, protocols, supporting SNMP version 2, and adding new
features. Through C++ class derivation, users of SNMP++ can inherit what they like and
overload what they wish to redefine.

OverLoading SNMP++ Base Classes
The application programmer may subclass the base SNMP++ classes to provide
specialized behavior and attributes. This theme is central to object orientation [Gama].
The base classes of SNMP++ are meant to be generic and do not contain any vendor
specific data structures or behavior. New attributes can be easily added through C++
sub-classing and member function redefinition.

SNMP++ HP RND 10/21/2024 10/21/2024 11

An Introductory Example
Rather than begin by describing SNMP++ and all of its features, here is a simple example that illustrates
its power and simplicity. The following example is designed to run on MS-Windows 3.1 using the 3.1 API
[Petzold]. This example obtains a System Descriptor object from the specified agent. Included is all code
needed to create a session, get an SMI octet variable, and print it out. Retries and time-outs are managed
automatically. The SNMP++ code is in bold font.

Windows 3.1 Example

#include “snmp.h”
void get_system_descriptor(HWND hWnd)
{
 int status;
 long int err_status, err_index;
 char msg[255];
 Vb vb; // construct a vb object
 vb.set_oid(“1.3.6.1.2.1.1.0”); // get the system descriptor
 // construct a Snmp Object
 Snmp snmp(hWnd, (Protocol) ip, "public", &status); // construct an ip snmp object
 if (status != SNMP_CLASS_SUCCESS)
 {
 MessageBox(hWnd,"Failure Instantiating SNMP Class!","Snmp++ Error",MB_ICONSTOP);
 return;
 }

 snmp.set_retry(3); // set retries @ 3, default is 1 second
 status = snmp.get(&vb,1,err_status, err_index,”15.29.33.10”); // get the data
 if (status != SNMP_CLASS_SUCCESS)
 {
 sprintf(msg,"Get Fail %d ",status);
 MessageBox(hWnd,msg,"Snmp++ Error",MB_ICONSTOP); // display it
 }
 else
 {
 vb.get_value((char *)msg); // extract the char string into msg
 MessageBox(hWnd,msg,”System Descriptor”, MB_OK);
 }
};

Explanation of Introductory Example
The majority of code in the above example provides for error checking . The actual SNMP++
calls are made up of six lines of code. Two SNMP++ objects are utilized, the Variable Binding
(Vb) object and the SNMP object. The Vb object is constructed and two public member
functions are utilized. Vb::set_oid, sets the Oid portion of the Vb object. Vb::get_value extracts a
octet array from the returned Vb object.

SNMP++ HP RND 10/21/2024 10/21/2024 12

SNMP++ Features

Oid, Vb and SNMP Objects
SNMP++ is based around three C++ classes, the SNMP Object Identification (OID) class, the
SNMP Variable Binding (Vb) class, and the SNMP class. Together, these classes give the
programmer full SNMP management support.

Automatic SNMP Resource Memory Management
The Oid, Vb and SNMP classes manage various SNMP structures and resources automatically
when objects are instantiated and destroyed. This frees the application programmer from having
to worry about de-allocating structures and resources and thus provides better protection from
memory corruption and leaks. SNMP++ objects may be instantiated statically or dynamically.
Static object instantiation allows destruction when the object goes out of scope. Dynamic
allocation requires use of C++ constructs New and Delete [Stroustrup]. Internal to SNMP++ are
various Structure of Management Information (SMI) structures which are protected and hidden
from the public interface. All SMI structures are managed internally, the programmer does not
need to define or manage SMI structures or values.

Ease Of Use
By hiding and managing all SMI structures and values, the SNMP++ classes are easy and safe to
use. The programmer cannot corrupt what is hidden and protected from scope.

Power and Flexibility
SNMP++ provides power and flexibility which would otherwise be difficult to implement and
manage. Each SNMP++ object communicates with an agent through a session model. That is, an
instance of a SNMP++ class maintains a connection to the specified agent. Each SNMP++ object
provides reliability through automatic retry and timeouts. An application may have multiple
SNMP++ object instances, each instance communicating to the same or different agent(s). This is
a powerful feature which allows a network management application to have different sessions for
each management component. For example, an application may have one SNMP++ object to
provide graphing statistics, another SNMP++ object to monitor traps, and a third SNMP++ object
to allow SNMP browsing. SNMP++ automatically handles multiple concurrent requests from
different SNMP++ instances.

Portable Objects
The majority of SNMP++ is portable C++ code. This includes the Oid and Vb classes. The
SNMP class definition is portable as well. Only the SNMP class implementation is different for
each target operating system. If your program contains SNMP++ code, this code will port
without any changes!

Automatic Timeout And Retries
SNMP++ supports automatic timeout and retries. This frees the programmer from having to
implement timeout or retry code. The SNMP class supports two public member functions for
accessing and modifying the retry and timeout behavior. Automatic timeout and retry is exclusive
to blocked mode SNMP++ objects.

Blocked Mode Requests
SNMP++ includes a blocked model. The blocked model supported allows multiple blocked

SNMP++ HP RND 10/21/2024 10/21/2024 13

requests on separate SNMP class instances. The blocked model provides a cleaner, simpler
SNMP interface while introducing no restrictions. Note!, blocked mode only applies to individual
SNMP object instances. You may have multiple instances which operate asynchronously.

Non-Blocking Asynchronous Mode Requests
For the MS-Windows environment, SNMP++ supports a non-blocking asynchronous mode for
gets, sets and get-nexts. For this mode of operation, the programmer is responsible for handling
time-outs and retries. Asynchronous mode lends itself well for applications which do periodic
polling such as graphing.

Traps
For the MS-Windows environment, SNMP++ supports trap reception. Traps are received through
WinSNMP which manages the well known UDP or IPX trap port. This allows an SNMP++
application to coexist with other applications receiving traps on the same computer. This is the
case with applications wishing to coexist with HP OpenView for MS-Windows.

Support For SNMP Version 1
The current implementation for SNMP++ is for SNMP version 1. The classes have been designed
to be adapted to SNMP Version 2 and some of the V2 capability already exists. Many of the SMI
structures for SNMP version 2 are already present in SNMP++.

SNMP Get, Get Next and Set Supported
The SNMP class supports three access methods for getting and setting MIB variables. All three
member functions utilize similar parameter lists and operate in a blocked or non-blocked
(asynchronous) manner.

Redefinition Through Inheritance
SNMP++ is implemented using C++ and thus allows a programmer to overload or redefine
behavior which does not suite their needs [Stroustrup]. For example, if an application requires
special Oid object needs, a subclass of the Oid class may be created, inheriting all the attributes
and behavior the Oid base class while allowing new behavior and attributes to be added to the
derived class.

Many Engine
The many engine provides an easy to use interface for getting or setting objects in bulk using
SNMP version 1. Using a single member function call, the caller may retrieve up to fifty objects
from the specified agent. For SNMP v1, the many engine breaks up the request into multiple
request PDUs based on maximum PDU size. As SNMP++ migrates to SNMP v2, the many
engine will utilize v2’s awesome get-bulk request.

SNMP++ HP RND 10/21/2024 10/21/2024 14

SNMP++ for Windows 3.1
SNMP++ has currently been tested and runs over MS-Windows 3.1, MS-Windows For Work Groups 3.11,
MS-Windows NT 3.5, and MS-Windows ‘95 Beta II. SNMP++ for MS-Windows utilizes WinSNMP for
its SNMP Basic Encoding Rules (BER) and transport services. This includes the encoding and decoding of
Protocol Data Units (PDUs) and transporting them over WinSockets or Novells NWIPXSPX . SNMP++
relies on a robust and reliable WinSNMP.DLL. The hope and intent is that as WinSNMP solidifies and
matures, SNMP++ will run over any WinSnmp.DLL implementation.

Runs Over WinSnmp Ver 1.1
WinSNMP ver 1.1 is required to run SNMP++ on MS-Windows. WinSNMP Version 1.0 will not
work since the interface has changed.

Multiple Sessions Via Multiple Instances
WinSNMP supports a session model. Sessions are supported in SNMP++ through different
instances of the SNMP class. Each instance creates and maintains its own session. The number of
instances allowed is limited only by the WinSNMP.DLL and WinSock.DLL being used. A
program may create and use different SNMP objects for different sessions. Note!, since each
session maps to an underlying UDP or IPX socket, you may need to fine-tune your stack to allow
more sockets.

Multiple Concurrent Blocked Mode Requests
Using different SNMP class instances, multiple blocked Snmp::gets or Snmp::sets requests may
be evoked concurrently. This feature leans heavily on the robustness of the WinSNMP.DLL. For
example, a windows timer may trigger a get request on a given SNMP object. While this request
is pending, another timer on a different object may fire which causes a different request to be
issued. SNMP++ manages this scenario by: 1) allowing Windows messages to be processed
while waiting for a PDU response, and 2) queuing incoming PDU responses in a container class.

IP and IPX Support using FTP Software Inc.’s WinSNMP.DLL
By utilizing FTP’s WinSNMP, IP and IPX support are available. For IP operation, a WinSock
compliant stack is required. For IPX, a Netware client and the required Netware drivers are
needed. SNMP++ has been tested to run over a wide variety of protocol stacks including FTP,
Netmanage, LanWorkPlace, MS-WFWG 3.11, and Windows NT.

IP Support Using American Computer and Electronics Corp. Netplus
WinSNMP.DLL
Utilizing ACECs NetPlus WinSNMP, IP support is available. A Winsock compliant stack is
required. Contact ACEC for supported WinSock stacks.

Windows Message Handling
While blocking on a Snmp::get, Snmp::get_next , or Snmp::set, SNMP++ allows other Windows
messages to be processed. Without this feature, the entire Windows application would be tied up
while waiting for the response PDU. There are times when an application may want to terminate
while in a pending blocked mode request. SNMP++ provides facilities for globally shutting down
all pending blocked requests global shutdown, and partially shutting down just one SNMP++
session, partial shutdown. This allows an application to shut down on the fly and not have to
wait for outstanding requests to complete.

SNMP++ HP RND 10/21/2024 10/21/2024 15

Medium or Large Model Support
SNMP++ may be compiled and used in both medium and large memory models.

Rendezvous Shut Down Messages
MS-Windows SNMP++ supports shut down messages for shutting down a blocked SNMP++
request. This allows an application to shut down a request without waiting for it to finish.

Runs on MS-Windows NT
SNMP++ applications for Win16 may run on Windows NT using the native NT Winsock
compliant stack. This does not offer the performance of a Win32 application but does allow
execution on the NT platform.

Trap Support
SNMP++ includes support for interfacing with WinSNMP trap mechanisms. This includes
arming, filtering and receiving traps. The interface for traps utilizes the asynchronous mode of
SNMP++.

Compatability with HP OpenView for Windows
A number of applications have been created using SNMP++ which coexist and are compatible
with HP’s OpenView for MS-Windows. This includes full SNMP support and the reception of
traps.

SNMP++ HP RND 10/21/2024 10/21/2024 16

The PDU Container Class
In order to accommodate multiple concurrent blocked mode requests, a container class is used to
hold the incoming response PDUs. As an SNMP object is instantiated, a new session and new
Windows class is created. This procedure is used to process any incoming PDUs for that session.
This hidden window remains for the life of the SNMP object and WinSNMP will call it whenever
a PDU has arrived for that session. The windows procedure processes the WinSNMP notification
by receiving the PDU, verifying that it is valid, and stuffing it into the PDU container. By
default, the container can handle twenty concurrent requests. The verification includes verifying
that the response PDU matches a pending request and contains no errors. If it is invalid, the PDU
is discarded automatically. In addition to storing incoming PDUs, the container class serves
PDUs to the waiting blocked process. While a process is waiting in a message pump loop, it
queries the container class for the PDU matching the one it had issued a request for. If the PDU is
present in the container before the timeout period, the process then extracts the PDU from the
container and uses it. In addition to processing and serving PDUs, the PDU class maintains
statistics PDU traffic. These statistics include...

· Number of Received PDUs
· Number of Transmitted PDUs
· Number of Time-outs
· Number of Send Errors
· Number of Receive Errors

The Bottom Line: The programmer does not need to know anything about the PDU Container
Class or its mechanisms unless you are interested in obtaining performance statistics.

Tested Over MFC and 3.1 API
SNMP++ / MS-Windows applications have been created and tested using Microsoft’s Visual C+
+ Foundation Classes (MFC) and using the standard 3.1 API.

SNMP++ HP RND 10/21/2024 10/21/2024 17

SNMP++ for HPUX

Runs Using SNMP Research’s SNMP Libraries
 The HPUX implementation offers the identical interface and behavior as SNMP++ for MS-
Windows. SNMP++ for HPUX is compatible with HP OpenView for HPUX. A number of
SNMP++ applications have been created for HP OpenView for MS-Windows and then ported to
HP OpenView for HPUX using SNMP++ as the portable SNMP interface.

Identical Class Interface
The class interface for the UNIX implementation is identical to MS-Windows. Only the internal
class implementation of the SNMP class have been changed.

Portable to UNIX-Windows Emulators
SNMP++ runs over HPUX by compiling and linking the proper SNMP++ class implementation.
SNMP++ / HPUX is designed to run in a native text mode HPUX app, in a X-Window app, or
using Windows-to-UNIX porting tools.

Multiple Connections via Multiple Instances
Under HPUX, the concept of multiple SNMP++ object instances mapping to unique UDP
connections has been preserved. Each SNMP++ object maintains and manages its own UDP
socket. This ensures that Windows code will have the same behavior in a HPUX environment.

Note! Async mode and traps are not yet available for SNMP++ on HPUX.

SNMP++ HP RND 10/21/2024 10/21/2024 18

The Object Identification Class
The Object Identification (Oid) class is the encapsulation of an SNMP object identifier. The SMI Oid, its
related structures and functions, are a natural fit for object orientation. In fact, the Oid class shares many
common features to the C++ String class. For those of you familiar with the C++ String class or MFC’s
Cstring class, the Oid class will be familiar and easy to use. The Oid class is designed to be efficient and
fast. Do not make the false assumption that by using C++, a performance penalty must be paid. A well
encapsulated C++ class is easier to fine tune than the equivalent C code [Meyers]. The Oid class allows
definition and manipulation of object identifiers. The Oid Class is fully portable and does not rely on
WinSNMP or any other Windows or UNIX SNMP API to be present. The Oid class may be compiled and
used with any ANSI C++ compiler. The Oid class includes all the related SMI types for Oids.

Object Modeling Technique Representation
The Object Modeling Technique (OMT) methodology was used to design all SNMP++ classes .
OMT is a popular design methodology for modeling objects [Rumbaugh].

OMT Public View Of Oid Class

µ §

Oid Class Public Member Functions
There are a variety of public member functions which allow for the construction, destruction,
access and modification of Oid objects.

Oid Class Constructors & Destructors
Oid objects may be instantiated either statically or dynamically depending on your need.

SNMP++ HP RND 10/21/2024 10/21/2024

An Oid object may be constructed with no arguments. Using this constructor, the Oid
object has no value, but can be mutated to change its value.
// constructor using no arguments
Oid::Oid(void);

An Oid object may be constructed with a character array representing the object id.
// constructor using a dotted string
Oid::Oid(const char WINFAR * dotted_oid_string);

An Oid object may be constructed using another Oid object.
// constructor using another oid object
Oid::Oid (const Oid &oid);

The destructor for the Oid object frees up any memory occupied by the object.
// destructor
Oid::~Oid();

19

Oid Class Overloaded Operators
Various operators are overloaded which allow comparison and mutation of Oid objects.
Overloaded operators allow easy assignment and comparison of Oid objects.

Oid Class String Value Methods
Oid class string value member functions allow retrieval of an Oid objects dotted string
representation. This is valuable when printing out an Oid object.

SNMP++ HP RND 10/21/2024 10/21/2024

Assign an Oid object a dotted string value.
// assignment to a string operator overloaded
Oid::Oid& operator=(const char WINFAR *dotted_oid_string);

Assign an Oid object another Oid Object
// assignment to another oid object overloaded
Oid::Oid& operator=(const Oid &oid);

Test the equivalence of two Oid objects
// equivalence operator overloaded
friend int operator==(Oid &x,Oid &y)

Append a dotted string to an existing Oid object
// append operator, appends a string
Oid::Oid& operator+=(const char WINFAR *a);

Append a unsigned long int as the last instance of an Oid object
// appends an int
Oid::Oid& operator+=(const unsigned long i);

Return the entire dotted string representation
// return an oid as a dotted string value
char * Oid::strval();

Return the dotted string representation where n specifies the position from the
rightmost value.
// return dotted string value from the right
// where the user specifies how many positions to print
char * Oid::strval(unsigned long n);

Return the dotted string representation where start specifies the beginning location
and n specifies how many values to right.
// return a dotted string where the caller specifies
// where the starting position is and how many to include to the right
char * Oid::strval(unsigned long start, unsigned long n);

20

Oid Class Set Instance & Get Instance Methods
The set and get instance member functions allow setting and getting individual Oid
object values. These methods are particularly useful when intricate Oid object
manipulation is required, such as when implementing get-nexts.

Oid Class Trim Method
The trim member function allows trimming off the n rightmost values of an Oid object.

Oid Class nCompare Method
The nCompare method allows comparing two Oid objects where n specifies the n
leftmost values of each Oid object to compare.

SNMP++ HP RND 10/21/2024 10/21/2024

The set instance method allows changing the rightmost instance of
an Oid object.
// set the rightmost instance
void Oid::set_instance(unsigned long i)

The set instance with an argument allows modifying an Oid object at position n.
// modify position n of an oid to value i
// indexes are 1 to n
void Oid::set_instance(unsigned long n, // instance # to change
 unsigned long i) // new value

The get instance member function allows retrieval of the rightmost Oid object value.
// returns the rightmost value of the oid
unsigned long Oid::get_instance()

The get instance with an argument allows retrieval of an Oid object value at
position n.
// returns the value of an oid
// at position n
unsigned long Oid::get_instance(unsigned long n)

// trim off the n rightmost values of an oid
void Oid::trim(unsigned long n)

// compare the n leftmost bytes
// returns TRUE or FALSE
int Oid::nCompare(unsigned long n, const Oid &o);

21

Oid Class Examples
The following examples show different ways in which to use the Oid class. The Oid class does
not require or depend on any other libraries or modules. The following code is ANSI C++
compatible.

SNMP++ HP RND 10/21/2024 10/21/2024

#include “oid.h”
void oid_example_1()
{
 // construct an Oid with a dotted string and print it out
 Oid o1("1.2.3.4.5.6.7.8.9.1");
 printf(“o1=%s”,o1.strval());

 // construct an Oid with another Oid and print it out
 Oid o2(o1);
 printf(“o2=%s”,o2.strval());

 // trim o2’s last value and print it out
 o2.trim(1);
 printf(“o2=%s”,o2.strval());

 // add a 2 value to the end of o2 and print it out
 o2+=2;
 printf(“o2=%s”,o2.strval());

 // create a new Oid, o3
 Oid o3;

 // assign o3 a value and print it out
 o3="1.2.3.4.5.6.7.8.9.3";
 printf(“o3=%s”,o3.strval());

 // create o4
 Oid o4;

 // assign o4 o1’s value
 o4=o1;

 // trim off o4 by 1
 o4.trim(1);

 // concat a 4 onto o4 and print it out
 o4+=4;
 printf(“o4=%s”,o4.strval());

 // make o5 from o1 and print it out
 Oid o5(o1);
 printf(“o5=%s”,o5.strval());

22

Oid Example Continued...

SNMP++ HP RND 10/21/2024 10/21/2024 23

The Variable Binding Class
The variable binding (Vb) class represents the encapsulation of a SNMP variable binding. A variable

SNMP++ HP RND 10/21/2024 10/21/2024

 // compare two not equal oids
 if (o1==o2) printf("O1 EQUALS O2");
 else printf("O1 NOT EQUALS O2");

 char msg[100];
 // print out a piece of o1
 sprintf(msg,"strval(3) of O1 = %s", o1.strval(3));
 printf(“%s”,msg, strlen(msg));

 // print out a piece of o1
 sprintf(msg,"strval(1,3) of O1 = %s", o1.strval(1,3));
 printf(“%s”,msg, strlen(msg));

 // set o1's last instance
 o1.set_instance(49);
 sprintf(msg,"O1 modified = %s", o1.strval());
 printf(“%s”,msg, strlen(msg));

 // set o1's last instance
 o1.set_instance(3,49);
 sprintf(msg,"O1 modified = %s", o1.strval());
 printf(“%s”,msg, strlen(msg));

 // get the last instance of 02
 sprintf(msg,"last of o2 = %ld",o2.get_instance());
 printf(“%s”,msg,strlen(msg));

 // get the 3rd instance of 02
 sprintf(msg,"3rd of o2 = %ld",o2.get_instance(3));
 printf(“%s”,msg,strlen(msg));

 // ncompare
 if (o1.nCompare(3,o2))
 printf("nCompare o1,o2,3 ==");
 else
 printf("nCompare o1,o2,3 !=");

 // make an array of oids
 Oid oids[30]; int w;
 for (w=0;w<30;w++)
 {
 oids[w] = "300.301.302.303.304.305.306.307";
 oids[w] += (w+1);
 }
 for (w=0;w<25;w++)
 {
 sprintf(msg,"Oids[%d] = %s",w, oids[w].strval());
 printf(“%s”,msg, strlen(msg));
 }
}

24

binding is the association of a SNMP object ID with its SMI value. In object oriented methodology, this is
simply a has a relation. A Vb object has an Oid object and a SMI value. The Vb class allows the
application programmer to instantiate Vb objects and assign the Oid portion (Vb::set_oid), and assign the
value portion (Vb::set_value). Conversely, the Oid and value portions may be extracted using
Vb::get_oid() and Vb::get_value(). The public member functions Vb::set_value() and Vb::get_value() are
overloaded to provide the ability to set or get different values to the Vb binding. Variable binding lists in
SNMP++ are represented as arrays of Vb objects. All SMI types are provided within the Vb Class. The
Vb class provides full data hiding. The user does not need to know about SMI value types, Oid
representations, or other related SNMP structures. Like the Oid class, the Vb class is fully portable using a
standard ANSI C++ compiler.

Object Modeling Technique Representation
The Object Modeling Technique (OMT) was used to design the Variable Binding (Vb) Class. A
Vb object is related to Oid object since every Vb object has an Oid object. This is a one-to-one
association.

OMT Public View of Vb Class

SNMP++ HP RND 10/21/2024 10/21/2024 25

Vb Class Public Member Functions
The Vb class provides a variety of public member methods to access and modify Vb objects. The
Vb class requires presence and use of the Oid class.

Vb Class Constructors & Destructors

Alternatively, a Vb object may be constructed with an Oid object as a construction
parameter. This initializes the Oid part of the Vb object to the Oid passed in. The Vb
object makes a copy of the Oid passed in. This saves the programmer from having to
worry about the duration of the parameter Oid.

The destructor for a Vb object releases any memory and/or resources which were
occupied. For statically defined objects, the destructor is called automatically when the
object goes out of scope. Dynamically instantiated objects require usage of the delete
construct to cause destruction.

Vb Class Get Oid / Set Oid Member Functions
The get and set Oid member functions allow getting or setting the Oid part of a Vb
object. When doing SNMP gets or sets, the variable is identified by setting the Oid value
of the Vb via the Vb::set_oid(Oid oid). Conversely, the oid portion may be extracted via
the Vb::get_oid(Oid &oid) member function. The get_oid member function is
particularly useful when doing SNMP get_next’s.

The Oid portion of a Vb object can be set with an already constructed Oid object

Alternatively, the Oid portion may be set with the dotted string representation of the Oid.

SNMP++ HP RND 10/21/2024 10/21/2024

A Vb object may be constructed with no arguments. In this case, the Oid and
 value portions must be set with subsequent member function calls.
// constructor with no arguments
// makes an vb, un-initialized
Vb::Vb(void);

// constructor to initialize the oid
// makes a vb with oid portion initialized
Vb::Vb(const Oid oid);

// destructor
// if the vb has a oid or an octect string then
// the associated memory needs to be freed
Vb::~Vb();

// set value oid only with another oid
void Vb::set_oid(const Oid &oid);

26

The Oid portion may be retrieved by providing a target Oid object. This destroys the
previous value of the Oid parameter object.

Vb Class Get Value / Set Value Member Functions
The get_value, set_value member functions allow getting or setting the value portion of
a Vb object. These member functions are overloaded to provide getting or setting
different types. The internal hidden mechanisms of getting or setting Vb’s handles all
memory allocation/de-allocation. This frees the programmer from having to worry about
SMI-value structures and their management. Get value member functions are typically
used to get the value of a Vb object after having done a SNMP get. Set value member
functions are useful when wishing to set values of Vb’s when doing a SNMP set. The
get_value member functions return a -1 if the get does not match what the Vb is holding.

Set the value portion of a Vb object to an integer.

Set the value portion of a Vb Object to a long integer.

Set the value portion of a Vb object to an unsigned long integer.

Set the value portion of a Vb object to two unsigned ints. This is used for SNMP 64 bit
counters comprised of a hi and lo 32 bit portion.

Set the value portion of a Vb object to an Oid.

SNMP++ HP RND 10/21/2024 10/21/2024

// set oid value with a const string
void Vb::set_oid(const char WINFAR * dotted_oid_string);

// get oid portion
void Vb::get_oid(Oid &oid);

// set the value with an int
void Vb::set_value(int I);

// set the value with a long signed int
void Vb::set_value(long int I); unsigned long

// set the value with an unsigned long int
void Vb::set_value(unsigned long int i);

// set value for building an 64 bit counter
void Vb::set_value(unsigned long int hi,unsigned long int lo);

27

Set the value portion of a Vb object to an octet string. This is comprised of a unsigned
char string and a length.

Set the value portion of a Vb object to a char string. Really, this internally uses the SMI
value portion of an octet string but makes it easier to use when it is an ASCII string. (eg
system descriptor)

Set the value portion of a Vb to an IP address. The typedef for Iptype is defined in
Vb.hpp and is simply a 4 byte octet string. IP address is a explicit SMI value type.

Vb Class Get Value Member Functions
All Vb::get_value member functions modify the parameter passed in. If a Vb object does
not contain the requested parameter type, the parameter will not be modified and a -1
will be returned. Otherwise on success, a 0 status is returned.

Get an integer value from a Vb object.

Get a long integer from a Vb object.

SNMP++ HP RND 10/21/2024 10/21/2024

// set value for setting an oid
// creates own space for an oid which
// needs to be freed when destroyed
void Vb::set_value(Oid &varoid);

//set value for setting an octet string
// creates own space for a octet which
// needs to be freed when destroyed
void Vb::set_value(unsigned char WINFAR * ptr, unsigned long len);

// set value on a string
// makes the string an octet
// this must be a null terminates string
void Vb::set_value(char WINFAR * ptr);

// set an ip address as a value
void Vb::set_value (Iptype ipaddr);

// get value int
// returns 0 on success and value
int Vb::get_value(int &i);

28

Get an unsigned long integer value from a Vb.

Get two unsigned longs from a Vb object. (64 counter hi,lo).

Get an Oid object from a Vb object.

Get an unsinged char string value from a Vb object (Octet string).

Get a char string from a Vb object. This grabs the octet string portion and pads it with a
null.

Get a IP address from a Vb object. Iptype is defined as an array of four unsigned chars.

SNMP++ HP RND 10/21/2024 10/21/2024

// get the signed long int
// returns 0 on success and a value
int Vb::get_value(long int &I);

// get the unsigned long int
// returns 0 on success and a value
int Vb::get_value(unsigned long int &i);

// get value for building an 64 bit counter
// returns 0 on success and a value
int Vb::get_value(unsigned long int &hi,unsigned long int &lo);

// get the oid value
// free the existing oid value
// copy in the new oid value
int Vb::get_value(Oid &varoid);

// get a unsigned char string value
// destructive, copies into given ptr of up
// to len length
//
// Note! the caller must provide a target string big
// enough to handle the vb string, else memory corruption
int Vb::get_value(unsigned char WINFAR * ptr, unsigned long &len);

// get a char * from an octet string
// the user must provide space or
// memory will be stepped on
int Vb::get_value(char WINFAR *ptr);

29

Vb Object Get Syntax Member Function
This method violates the object oriented paradigm. An object knows what it is. By
having a method which returns the id of an object violates its data hiding. Putting that
aside, there are times when it may be necessary to know what value a Vb is holding to
allow extracting that value. For example, when implementing a browser it would be
necessary to grab a Vb, ask it what it has and then pull out whatever it may hold.

SNMP++ HP RND 10/21/2024 10/21/2024

// get an ip address
int Vb::get_value(Iptype ipaddr);

// return the current syntax
// This method violates the OO paradigm but may be useful if
// the caller has a vb object and does not know what it is.
// This would be useful in the implementation of a browser.
unsigned long get_syntax();

30

Vb Class Examples
The following examples show different ways in which to use the Vb class. The Vb class does not
require or depend on any other libraries or modules other than the Oid class. The following C++
code is ANSI compatible.

SNMP++ HP RND 10/21/2024 10/21/2024

#include “oid.h”
#include “vb.h”
vb_test()
{
 // -------[Ways to construct vb objects]-------
 // construct a single vb object
 Vb vb1;

 // construct a vb object with an Oid object
 // this sets the oid portion of the vb
 Oid d1(“1.3.6.1.4.12”);
 Vb vb2(d1);

 // construct a vb object with a dotted string
 Vb vb3(“1.2.3.4.5.6”);

 // construct an array of ten vb’s
 Vb vbs[10];

 //------[Ways to set and get the oid portion of Vb objects]

 // set and get the oid portion
 Oid d2(“1.2.3.4.5.6”);
 vb1.set_oid(d2);
 Oid d3;
 vb1.get_oid(d3);
 if (d2==d3) printf(“They better be equal!!\n”);

 Vb ten_vbs[10];
 int z;
 for (z=0;z<10;z++)
 ten_vbs[0].set_oid(“1.2.3.4.5”);

 //-------[ways to set and get values]

 // set & get ints
 int x,y;
 x=5;
 vb1.set_value(x);
 vb1.get_value(y);
 if (x == y) printf(“x equals y\n”);
 // set and get long ints
 long int a,b;
 a=100;

31

Vb Class Example Continued..

SNMP++ HP RND 10/21/2024 10/21/2024

//-------[ways to set and get values]
 // set & get ints
 int x,y;
 x=5;
 vb1.set_value(x);
 vb1.get_value(y);
 if (x == y) printf(“x equals y\n”);
 // set and get long ints
 long int a,b;
 a=100;
 vb2.set_value(a);
 vb2.get_value(b);
 if (a == b) printf(“a equals b\n”);
 // set & get unsigned long ints
 unsigned long int c,d;
 c = 1000;

 vbs[0].set_value(c); vbs[0].get_value(d);
 if (c == d) printf(“c equals d\n”);

 // get and set a 64 bit counter
 unsigned long int hi,lo;
 unsigned long int big,small;
 hi = 1000; lo = 1001;
 vbs[1].set_value(hi,lo);
 vbs[1].get_value(big, small);
 if ((hi==big) && (lo == small)) printf(“hi == big and lo == small\n”);

 // get and set an oid as a value
 Oid o1, o2;
 o1 = “1.2.3.4.5.6”;
 vbs[2].set_value(o1); vbs[2].get_value(o2);
 if (o1 == o2) printf(“o1 equals o2\n”);

 // set and get an octet string
 unsigned char data[4],outdata[4];
 unsigned long len,outlen;
 len =4; data[0] = 10; data[1] = 12; data[2] = 12; data[3] = 13;
 vbs[3].set_value(data,len);
 vbs[3].get_value(outdata, outlen);

 // get & set a string
 char beer[20]; char good_beer[20];
 strcpy(beer,”Sierra Nevada Pale Ale”);
 vbs[4].set_value(beer);
 vbs[4].get_value(good_beer);
 printf(“Good Beer = %s\n”,good_beer);

32

Vb Class Example Continued..

SNMP++ HP RND 10/21/2024 10/21/2024

 // get and set an ip an address
 IpType ipaddr,new_ipaddr;
 ipaddr[0] = 10;
 ipaddr[1] = 4;
 ipaddr[2] = 8;
 ipaddr[3] = 69;
 vbs[5].set_value(ipaddr);
 vbs[5].get_value(new_ipaddr);
 printf(“%d .%d .%d . %d\n”, new_ipaddr[0], new_ipaddr[1],

new_ipaddr[2],new_ipaddr[3]);

} // end vb test

33

TimeTicks, Counter and Gauge Classes
These three classes allow the programmer to access or modify SMI timetick, counter and gauge variables.
The SMI values are distinguished as separate data types. For all practical purposes, the SNMP++
Timeticks, Counter and Gauge objects can be thought of as unsigned long ints in C++. That is, anything
that can be done with an unsigned long int can be done with a TimeTicks, Counter or Gauge object.

TimeTicks Class Example

Counter Class Example

Gauge Class Example

SNMP++ HP RND 10/21/2024 10/21/2024

TimeTicks tt; // declare a time ticks object

vb.get_value(tt); // extract time ticks from a vb
printf(“Time up = %ld”, tt);

Counter ctr; // declare a counter object

ctr = 1200; // assign counter a value
vb.set_value(ctr); // set a vb with the counter object

Gauge g; // declare a gauge object

vb.get_value(g); // get a gauge object from a vb object
printf(“Gauge value = %ld”, g);

34

The SNMP Class
The most important class in SNMP++ is the SNMP class. The SNMP class is an encapsulation of a SNMP
session. A SNMP session includes a logical connection from an SNMP management station to a managed
agent or agents. Handled by the session is the construction, delivery and reception of PDUs. Most APIs
require the programmer to directly manage the session. This includes providing a reliable transport
mechanism handling time-outs, retries and packet duplication. The SNMP class manages a large part of
the session and frees the implementor to concentrate on the agent management. By going through the
SNMP class for session management, the implementor is driving through well developed and tested code.
The alternative is to design, implement and test your own SNMP engine. The SNMP class manages a
session by 1) managing the transport layer over a UDP or IPX connection. 2) handles packaging and un-
packaging of Vbs into PDUs 3) provides for delivery and reception of PDUs and 4) manages all necessary
SNMP resources.

The SNMP class is easy to use. Three basic methods, Snmp::get, Snmp::set and Snmp::get_next provide
the basic functions for a network management application. Blocking or non-blocking access may be used.
Multiple sessions may be used each asynchronously firing simultaneous requests. Each session maps to
underlying socket so the number of SNMP objects is limited by socket availability. Non-blocking or
asynchronous mode requires the programmer to handle request time-outs and retries.

The SNMP class is safe to use. The constructor and destructors allocate and de-allocate all resources
needed. This minimizes the likelihood of corrupt or leaked memory. All of the internal SNMP mechanisms
are hidden and thus cannot be inadvertently modified.

The SNMP class is portable. The SNMP class interface is portable across OS’s and NOS’s. The Oid and
Vb classes can be compiled and used on any ANSI C++ compiler. The implementation of the SNMP class
is platform specific. That is, the SNMP.CPP file is implemented for each OS /NOS platform. Currently
this module has been ported to run on MS-Windows over WinSNMP and on HPUX using SNMP++s
UNIX engine. The amount of coding needed to port SNMP++ to another platform is minimal. To the
application programmer, no code changes are required to move from one platform to the next. The vast
majority of SNMP++ is re-used across platforms; thus, development time and testing time are cut
drastically.

SNMP++ HP RND 10/21/2024 10/21/2024 35

Object Modeling Technique Representation
The SNMP class was designed and developed using the Object Modeling Technique (OMT).
Note the relationship between the classes. A SNMP object has one or more Vb objects. The Vb
objects each have exactly one Oid object.

Public View of SNMP Class

SNMP Class Public Member Functions
The SNMP class provides a variety of member functions for creating, managing and terminating
a session. Multiple SNMP objects may be instantiated at the same time.

SNMP Class Constructors and Destructors
The constructors and destructors for the SNMP class allow sessions to be opened and
closed. By constructing a SNMP object, a SNMP session is open. UDP or IPX sockets
are created and managed until the objects are destroyed. SNMP objects may be
instantiated dynamically or statically.

SNMP++ HP RND 10/21/2024 10/21/2024 36

SNMP Class Constructor, Blocked Mode
The construction parameters include a window handle, protocol type, community name
and a return status. Since constructors do not return values in C++, the caller must
provide a status which should be checked after instantiating the object. The window
parameter is applicable when programming in Windows only and may be null in
environments such as UNIX. The protocol type specifies the type of transport services to
use. The community name parameter allows the caller to specify the community name.
The community name may be modified at some later time via Snmp::set_community().
The caller should check the return status for ‘SNMP_CLASS_SUCCESS’. If the
construction status does not indicate success, the session should not be used.

SNMP Class Constructor, Asynchronous Mode
In order to use an SNMP++ asynchronous member functions, an asynchronous object
must be instantiated. Blocking and asynchronous SNMP objects are mutually exclusive.
An asynchronous object may not use blocking calls and a blocked object may not use
asynchronous calls. One additional parameter is required for async operation. The
callback function pointer allows the programmer to specify a function to be called when
asynchronous event occurs on the object. This gives the programmer the flexibility to
process the async event in any manner desired.

The snmp_callback typedef is the function prototype for the call back. When the
callback is called, the Vb objects contain the payload for the response PDU. Error status,
error index, address and community name information are provided to allow
differentiating on PDU from another.

SNMP++ HP RND 10/21/2024 10/21/2024

// constructor, blocked SNMP object
 Snmp::Snmp(WORD hwnd, // parent handle
 Protocol protocol, // type of protocol to use
 const char *community_name, // community name
 int *status); // construction status

 // constructor SNMP async object
Snmp(WORD hwnd, // parent handle
 Protocol protocol, // type of protocol to use
 const char *community_name, // community name
 snmp_callback lpcallback, // callback function address
 int *status); // construction status

37

SNMP Class Destructor
The SNMP class destructor closes the session and releases all resources and memory.

 SNMP Class Access and Mutator Member Functions

SNMP Class Set Timeout & Get Timeout
By default, when an Snmp object is instantiated, automatic time-outs and retries
are set to one second and one retry respectively. Blocked request member
functions, (get set and get_next) will utilize the automatic timeout and retry
parameters. Timeout values may be accessed and modified using the
Snmp::set_timeout and Snmp::get_timeout member functions.

Set the timeout value. Parameter is the number of milliseconds to wait.

Get timeout allows the timeout value to be accessed. The returned value in
milliseconds.

SNMP++ HP RND 10/21/2024 10/21/2024

typedef void (WINFAR *snmp_callback)(long int, // request id
 Vb*, // vbs
 int, // number of vbs
 long int, // error status
 long int, // error index
 unsigned char *agent_addr, // agent address
 unsigned char *community, // community name
 unsigned long community_len); // len of comm. name

// destructor
 Snmp::~Snmp();

// set timeout
 void Snmp::set_timeout(DWORD t)

// get timeout
DWORD Ssnmp:: get_timeout()

38

Snmp Class Set Retry & Get Retry
The set and get retry member functions allow accessing and modifying the retry
behavior of the SNMP class request member functions (get, set and get_next).
By default, the retry value is set to one when an Snmp object in instantiated.

Set the retry value.

Get the retry value.

SNMP Class Set Community Name
The set community name member function allows modification to the
community name which will be used when requesting data through the request
member functions. The initial value of the community name is passed in as a
construction parameter.

Or community names may be set using a pointer and a len.

SNMP++ HP RND 10/21/2024 10/21/2024

// set retry
 void Snmp::set_retry(int r)

// get retry
 int Snmp::get_retry()

// set the community name
void Snmp:: set_community(const char * new_name);

// set community name using ptr and len
void Snmp::set_community(const char * new_name, int len);

39

SNMP Class Request Member Functions
In order to access or modify an agents MIB, requests must be made via the Snmp::get,
Snmp::set or Snmp::get_next. All of these member functions accept the identical
parameter lists. All blocked mode requests behave the same way in terms of timeout and
retries and all return the same success and error status values.

Request Member Function Parameter Description
Blocked mode request member functions, require five parameters and return an
error status. The first argument is a pointer to an array of Vb objects. The
second parameter specifies the size of the array. The third and fourth parameters
map directly to the received Pdu’s error status and error index. The last
parameter specifies the destination address. Asynchronous calls require only
four parameters.

· Parameter Vb*
The first parameter of the request methods specify a pointer to an array
of Vb objects. Variable binding lists in SNMP++ are represented as
arrays of Vb objects. These objects are the variable bindings to be
applied in the set or get. The caller may specify any number of Vb’s as
long as the max PDU size is not overrun. An error status will be
returned if this is the case.

· Parameter vb_count
The second parameter specifies the number of Vb objects passed in the
first parameter.

· Parameter long int err_status
This parameter is the error status of the received response PDU. If this
value is non zero, the return status of the request member function will
flag it as ‘SNMP_ERR_STATUS_SET’. This parameter is valuable
when accessing objects incorrectly or accessing objects which do not
exist. This return parameter is the SMI error status and may have the
following values..

0 - No error
1 - PDU too Big
2 - No such MIB var name
3 - Bad MIB var value
4 - Read Only MIB var
5 - General Error

· Parameter err_index
This parameter specifies the Vb object in error. Note, the error index is
one not zero based. The first Vb will be flagged as index number 1.

SNMP++ HP RND 10/21/2024 10/21/2024 40

· Parameter dest_addr
The last parameter specifies the destination address where the request
shall be directed. This address may in the form of an IP or IPX address
depending on the type of transport services available.

SNMP Class Blocked Get Member Function
The get member function allows getting objects from the agent at the specified
address. In order to use the get, the user needs to fill the Vb objects with the
requested Oid’s. Returned will be the Vb’s with their values set. Blocked
member functions will return as soon as the SNMP response is received or if a
timeout or error condition has occurred.

SNMP Class Blocked Get Next Member Function
The get next member function may be used to traverse an agents MIB. Get next
may traverse more than one table at a time. (In most cases just using one Vb
will be enough). The caller fills the request Vb with the Oid requested.
Returned will be the Oid and the value for the next table entry. The caller may
then call get_next again with the returned Vb. The caller must determine when
to stop calling get_next based on return Vb Oid values.

SNMP++ HP RND 10/21/2024 10/21/2024

//--------[get]---
int get(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr) // get address

//---------[get next]--------------------------------------
 int get_next(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr) // get address

41

SNMP Class Blocked Set Member Function
The set member function allows setting agent objects. The caller fills in the
Vb’s to be set with the Oid values. Returned will be the status of the set.

SNMP Class Asynchronous Member Functions
When SNMP++ objects are instantiated as async objects, asynchronous member
functions may be utilized. For async SNMP++ objects, it is the programmers
responsibility to handle time-outs and retries. Async objects lend themselves well to
SNMP access which occurs repeatedly. This includes updating graphs or any other time
driven event where retries will occur automatically.

SNMP Class Asynchronous Get Member Function
The async get allows getting SNMP objects from the specified agent. The
async get call will return as soon as the request PDU has been sent. It does not
wait for the response PDU. The programmers defined callback, which was
specified upon the SNMP’s object async instantiation, will be called when the
response PDU has arrived. The implementation of the callback may utilize the
response payload in any desired manner.

SNMP++ HP RND 10/21/2024 10/21/2024

//---------[set]--
 int set(Vb *vb, // pointer to array of objects
 int vb_count, // count of objects
 long int err_status, // returned error status
 long int err_index, // returned error index
 const char *dest_addr) // target address

//------------------------[get async]----------------------------------
 int Snmp:: get_async(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int req_id, // request id to use, returned
 const char *dest_addr) // address to send to

42

SNMP Class Asynchronous Set Member Function
The asynchronous set member function works in the same manner as the get
counter part.

SNMP Class Asynchronous Get Next Member Function
The asynchronous get-next member function works in the same manner as does
async get and async set.

SNMP++ HP RND 10/21/2024 10/21/2024

//------------------------[set async]----------------------------------
 int Snmp::set_async(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int req_id, // request id to use, returned
 const char *dest_addr) // address to send to

//------------------------[get next async]-----------------------------
 int get_next_async(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int req_id, // request id to use, returned
 const char *dest_addr) // address to send to

43

Medina’s Many Engine Member Functions
Moises Medina, software engineer at HP Roseville Networks division, extended SNMP+
+ to include member functions for getting and setting SNMP objects in bulk using
SNMP v1. The many engine and the supporting member functions are generic and are
part of the SNMP base class. The many engine is convenient when getting or setting
many objects of the same type. This comes in handy when getting or setting an entire
row of objects. The many engine interface allows getting or setting up to fifty objects in
one call. The underlying many engine breaks up the request in separate PDU requests,
based on max PDU sizes. An example would be getting port status for a forty eight port
hub. With a single call, all forty eight Vb objects can be obtained. The many engine
would transparently break up the request into three PDU’s and when finished will return
the resulting Vb’s. As SNMP++ migrates to SNMP v2, the internals of the many engine
will utilize V2’s get-bulk. All many engine member functions require a base Oid. The
base Oid specifics the starting Oid used in the many operation. The caller also specifies
how many objects are to be gathered. The many engine will start at the base Oid and get
all objects up the number specified by concatenating instance values. For example,
given a base Oid value of ‘1.2.3.0’ and the number of values of 20, the many engine
would get or set values ‘1.2.3.1’ through ‘1.2.3.20’.

SNMP Class Get Many
The Snmp::get_many member function may be used to retrieve ints, long ints,
IP addresses and octet arrays with a single call.

SNMP Class Set Many

SNMP++ HP RND 10/21/2024 10/21/2024

//---------------------------[get many ,ints]--------------------------
 int Snmp::get_many(Oid base_oid, // base oid to use
 int *ret_values, // returned int values
 int num_values, // number of values to get
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

//---------------------------[set many ,ints]--------------------------
 int Snmp::set_many(Oid base_oid, // base oid to use
 int *in_values, // values to set
 int num_values, // number of values to set
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

44

SNMP Class Trap Methods
SNMP++ allows the reception of traps through use of an SNMP++ asynchronous object. Traps
are an asynchronous event therefor asynchronous SNMP object must be used. An important
consideration when receiving traps is the concept of trap port ownership. For UDP or IPX
sockets, a well known trap port is utilized to receive incoming trap PDU’s. Agents throwing traps
direct their traps to a defined address and port. The manager listens on the well known port for
any incoming traps then receives and processes them. Since on a given machine there is only one
well know trap port, it must be shared if more than one application is to receive traps on the
machine. This is commonly known as the trap server. For WinSNMP, WinSNMP acts as the trap
server. It owns and listens on the well known port. MS-Windows applications may then receive
their traps from the WinSNMP.DLL. For other platforms such as Novell’s NMS or HPUX Open
View, the platforms themselves own the trap port. In order to receive traps on a given platform,
SNMP++ must interface with the trap server on that platform. Currently, SNMP++ receives traps
only from WinSNMP.

SNMP Class Trap Registration Member Function
SNMP++ for async objects allows registration for the reception of traps through the
Snmp::trap_register member function. When a registered trap arrives, it will be directed
to the specified call back function which was used when instantiating the SNMP async
object. Traps are received as SNMP version 2 format traps, even if they were transmitted
as version 1 traps. Version 1 traps are translated to version 2 traps as defined in the
SNMPv2 coexistence document [RFC 1452]. In the v2 format for traps, the first Vb is
the timestamp, the second vb is the trap id and the third through the last are the payload.
The time stamp may be extracted from the Vb object as a TimeTicks object. The trap
identifier may be extracted as an Oid object. The parameters on the member function
specify the managers address, agents address (agent sending the traps), an Oid mask and
a flag for turning the traps on or off. The Oid mask allows filtering specific traps based
on their id.

SNMP++ HP RND 10/21/2024 10/21/2024

//----------------------------[trap register]--------------------------
 // To be used only for async Snmp objects
 // Note, WinSnmp v1 informs the trap receiver with SnmpV2 type
 // trap messages. In SnmpV2, the trap format consists of N variable
 // bindings where...
 // - the first vb is the time stamp
 // - the second vb identifies the trap
 // - the third through N vb's are the payload
 //
 //
 int Snmp::trap_register(const char * mgr_addr, // managers source address
 const char * agent_addr, // agents address
 Oid oidmask, // oid mask or empty for all
 int on); // boolean for on or off

45

SNMP Class Error Return Codes
There are a variety of return codes when using SNMP++. The error codes are common across
platforms and may aid the application programmer in finding and detecting error conditions.

SNMP_CLASS_SUCCESS 0
 Operation was Successful.

SNMP_CLASS_START_ERR -1
Transport start up has failed. Verify that the network protocol is in place and is working.

SNMP_CLASS_END_ERR -2
Unable to shut down transport services.

SNMP_CLASS_CONSTRUCT_ERR -3
Unable to construct an SNMP object. Verify that there is enough memory available and
that UDP or IPX sockets are available.

SNMP_CLASS_VBL_ERR -4
Internal error while creating an SNMP SMI Vbl.

SNMP_CLASS_OID_ERR -5
Internal error while creating an SMI Oid.

SNMP_CLASS_SETVB_ERR -6
Internal error while setting a SMI Vb.

SNMP_CLASS_ENTITY_ERR -7
Internal error while creating an SNMP entity.

SNMP_CLASS_CONTEXT_ERR -8
Internal error while creating an SNMP context.

SNMP_CLASS_PDUCREATE_ERR -9
Internal error while creating an SMI PDU.

SNMP_CLASS_SEND_ERR -10
Error sending request PDU. This error may occur if the destination address does not
exists or if the transport services are not working. Try pinging the device to verify the
address exists.

SNMP_CLASS_REC_ERR -11
Error while receiving the PDU response.

SNMP_CLASS_PDUGET_ERR -12
An error occurred while getting the Vbl from the PDU.

SNMP_CLASS_BAD_RESPONSE -13
The specified agent responded with a bad response PDU not matching the request type.

SNMP_CLASS_BAD_ID -14
The agents response did not match the request id. These errors cannot occur in blocked
mode since bad responses are discarded automatically.

SNMP_CLASS_BADVB_COUNT -15

SNMP++ HP RND 10/21/2024 10/21/2024 46

The response PDUs id is a match but the Vb count does not match.

SNMP_CLASS_TIMEOUT -16
Timed out while waiting for response PDU. The error can happen and should be treated
as a benign condition. Try increasing the default retry or timeout values.

SNMP_CLASS_ENGINE_BUSY -17
The SNMP engine was busy. This error should not happen unless you are reentering an
already pending request. Pending blocked mode requests should not be reentered.

SNMP_CLASS_CREATE_FAIL -18
MS-Windows Only, Unable to create a hidden window class.

SNMP_CLASS_REG_FAIL -19
MS-Windows Only, Unable to register a SNMP++ window.

SNMP_CLASS_CONT_FAIL -20
MS-Windows Only, Unable to create a PDU container.

SNMP_CLASS_QUEUE_FULL -21
MS-Windows Only, the PDU container class is full. Default is twenty concurrent
outstanding requests.

SNMP_ERR_STATUS_SET -22
The SMI error status flag has been set. See error status and error index for details on
error.

SNMP_CLASS_ILLEGAL_MODE -23
This error will occur is an asynchronous object is attempted to be used for blocked
requests or a blocked object used for asynchronous requests.

SNMP_CLASS_SHUTDOWN -25
A blocked mode request received a shutdown request while waiting for the response
PDU.

SNMP_CLASS_TRAP_IN_USE -26
Failed to register for traps. Trap port may already be in use.

SNMP_CLASS_TRAP_REG_FAIL -27
Failed to register for the specific trap is requested.

SNMP_CLASS_PARTIAL_SHUTDOWN -28
While waiting for a blocked mode request. A partial shutdown message was processed.

SNMP++ HP RND 10/21/2024 10/21/2024 47

SNMP Class Examples
Following is a set of examples which illustrate the usage of SNMP++.

SNMP++ Example #1, Getting a Bunch of Values in HPUX

SNMP++ HP RND 10/21/2024 10/21/2024

#include “snmp.h”
void hpux_example()
{
 int status;
 Vb vb[8];
 long int error_status, error_index;
 char name[255];
 unsigned long long_val;

 // start up the transport services
 transport_start_up(NULL, (Protocol) ip);

 // instantiate a snmp object
 Snmp snmp(NULL, (protocol) ip, “public”,&status);
 if (status != SNMP_CLASS_SUCCESS)
 {
 printf(“error constructing snmp object\n”);
 return;
 }

 // set retry and timeout
 snmp.set_retry(3);
 snmp.set_timeout(2000); // 2 seconds

 // set up the Vb’s required
 Vb[0].set_oid(“1.3.6.1.2.1.1.1.0”); // system descriptor
 Vb[1].set_oid(“1.3.6.1.2.1.1.3.0”); // system up time
 Vb[2].set_oid(“1.3.6.1.2.1.1.2.0”); // system id
 Vb[3].set_oid(“1.3.6.1.2.1.1.4.0”); // system contact
 Vb[4].set_oid(“1.3.6.1.2.1.1.5.0”); // system name
 Vb[5].set_oid(“1.3.6.1.2.1.1.6.0”); // system location
 Vb[6].set_oid(“1.3.6.1.2.1.1.7.0”); // system services
 Vb[7].set_oid(“1.3.6.1.2.1.2.2.1.1.0”); // number of network interfaces

 // get the objects
 status = snmp.get((Vb*) &vb,8,error_status, error_index,”15.29.32.143”);
 if (status != SNMP_CLASS_SUCCESS)
 {
 printf(“error getting objects = %d\n”,status);
 return;
 }

 // print out the object values
 vb[0].get_value(name);
 printf(“System Descriptor = %s\n”,name);

}

48

Getting a Bunch of Values in HPUX Continued....

SNMP++ HP RND 10/21/2024 10/21/2024

 vb[1].get_value(long_val);
 printf(“System Up Time = %ld\n”,long_val);
 Oid soid;
 vb[2].get_value(soid);
 printf(“System Object Id = %s\n”, soid.strval());
 vb[3].get_value(name);
 printf(“System Contact = %s\n”,name);
 vb[4].get_value(name);
 printf(“System Name = %s\n”,name);
 vb[5].get_value(name);
 printf(“System Location = %s\n”,name);
 vb[6].get_value(long_val);
 printf(“System Services = %ld\n”,long_val);
 vb[7].get_value(long_val);
 printf(“Number of Interface = %ld\n”,long_val);

 transport_shutdown((Protocol) ip);
} // end hpux example

49

SNMP++ Example #2, Setting Values in MS-Windows MFC

SNMP++ HP RND 10/21/2024 10/21/2024 50

Network Transport Mechanisms

SNMP++ HP RND 10/21/2024 10/21/2024

void CMainFrame::OnGetst()
{
 // this example sets up a network device for a os image download
 int status;
 char msg[80];
 Vb vb[4];
 unsigned char ipaddr[6] = {10,4,8,82,0,69};
 CDC *cdc;
 long int error_status, error_index;

 // DownLoadStatus
 vb[0].set_oid(DOWNLOAD_STATUS_OID);
 vb[0].set_value(CREATE_AND_GO);

 // DownLoadTDomain
 vb[1].set_oid(DOWNLOAD_DOMAIN_OID);
 Oid oid1(UDP_FAMILY_OID);
 vb[1].set_value(oid1);

 // DownLoadTAddress
 vb[2].set_oid(DOWNLOAD_ADDRESS_OID);
 vb[2].set_value((unsigned char *) ipaddr,6);

 // DownLoadFileName
 vb[3].set_oid(DOWNLOAD_FILENAME_OID);
 vb[3].set_value((char *) "test36.dat");

 // construct a snmp object
 Snmp snmp((WORD) GetSafeHwnd(), (Protocol) ip, "public", &status);

 if (status != SNMP_CLASS_SUCCESS)
 MessageBox("Unable to Create Snmp Object");
 else
 {
 // do the get
 status = snmp.set((Vb *) &vb,
 4,
 error_status,
 error_index,
 "10.4.8.78");
 if (status != SNMP_CLASS_SUCCESS)
 {
 sprintf(msg,"Set Failure = %d",status);
 MessageBox(msg);
 }
 else
 {
 cdc = GetDC();
 cdc->TextOut(5,5,"Set Successful !!",17);
 ReleaseDC(cdc);
 }
 }

51

SNMP++ is designed to be portable across multiple OS platforms and run across multiple transport
mechanisms. SNMP++ has been designed to run across IP and IPX. In order for SNMP++ to run over
these different transport layers, two additional function calls are needed.

Transport Start Up
An application wishing to utilize the SNMP class must first call the transport_start_up function
before doing any request member functions. This function verifies that the type of transport
service requested is present and working. A fail status will be returned is the service is not
available. This function takes an instance pointer (not applicable for UNIX) and a protocol type.
Currently IP and IPX are supported.

Transport Shut Down
When an application is complete, transport_shut_down should be called. This function shuts
down the transport services for the type specified.

SNMP++ HP RND 10/21/2024 10/21/2024

//-----------[transport layer start up]-------------------------
// Starts up transport services for protocol type passed in.
// Every call to this function should be followed by a
// transport_shut_down. This function must be called prior
// to instantiating and using snmp objects.
int transport_start_up(WORD hInst,Protocol protocol);

//-----------[transport layer shut down]-------------------------
// Shuts down transport services based on the protocol type passed
// in. Every call to this function should be preceeded by a call to
// transport_start_up.
int transport_shut_down(Protocol protocol);

52

SNMP++ Proposed New Features
There are a variety of new features and enhancements which may be included to SNMP++. Extensibility
may be accomplished either through inheritance and redefinition or via adding new attributes and behavior
to the classes. Below are listed possible enhancements ,they are not ordered.

Support for SNMP version 2
Currently SNMP++ only supports version 1. WinSnmp does not support version 2 at the time this
document was authored. Full V2 support includes the following areas.

· Additional SMI Value Types
v2 adds a variety of new SMI types including 64-bit counters and Uinteger types. Some
of these features are already in SNMP++.
· Protocol Operations
v2 adds new protocol requests including ‘get_bulk’ and ‘inform’ request Pdu’s.
· Security
· Manager to Manager Capability

Traps For UNIX
Trap coexistence with HP OpenView for HPUX. A trap server for stand alone operation.

Asynchronous Mode For UNIX
Async mode is currently only available for MS-Windows.

Demo Engine
SNMP++ demo engine which would allow a local database to be present to simulate an agent. All
gets & set would read or write from a local ASCII database. The database could be made up and
customized by anyone with knowledge of the agent MIB.

Community Name Database Access
Allow community names to be accessed from a community name database.

SNMP++ Script
Scripting language written using Lex an Yacc for easy SNMP coding.

Oid Database
Allow macro names to be used for referencing Oid’s.

Full Win32 Support
Full Win32 support running allowing Win32 network management apps.

Solaris OS Support
Support for Sun Solaris OS.

SNMP++ HP RND 10/21/2024 10/21/2024 53

Apple OS Support

OS/2 Support

NMS Support

SNMP++ HP RND 10/21/2024 10/21/2024 54

Listing and Description of Files

· oid.h - Class definition for the Object Identification class.

· vb.h - Class definition for the Variable binding class.

· pdu_cls.h - Class definition for the PDU Container Class. (MS-Windows Only)

· snmp.h - Class definition for the SNMP class.

· snmp_pp.lib - SNMP++ MS-Windows Win16 Library

· libsnmp++.a - SNMP++ HPUX library for HPUX rev 9.X for series 700 & 800 series
workstations.

Required Files For MS-Windows Development
oid.h
vb.h
snmp.h
pdu_cls.h
snmp_pp.lib
winsnmp.h, winsnmp.lib, winsnmp.dll.

Required Files For HPUX Development
oid.h
vb.h
snmp.h
libsnmp++.a

SNMP++ HP RND 10/21/2024 10/21/2024 55

 References

[Comer]
Comer, Douglas E. , Internetworking with TCP/IP, Principles, Protocols and Architecture, Volume I
Prentice Hall, 1991.

[Gama, Helm, Johnson, Vlissides]
Erich Gama, Richard Helm , Ralph Johnson, John Vlissides , Design Patterns, Addison Wesley, 1995.

[Meyers]
Meyers, Steve, Effective C++, Addison Wesley, 1994.

[Petzold]
Petzold Charles, Programming MS-Windows, Microsoft Press

[RFC 1452]
J. Case, K. McCloghrie, M. Rose, S. Waldbusser, Coextistence between version 1 and version 2 of the
Internet-standard Network Management Framework, May 03, 1993.

[RFC 1442]
 J. Case, K. McCloghrie, M. Rose, S. Waldbusser, Structure of Management Information for version 2 of
the Simple Network Management Protocol (SNMPv2), May 03 , 1993.

[Rose]
Rose, Marshall T. , The Simple Book, An Introduction to Internet Management , Second Edition, Prentice
Hall Series 1994.

[Rumbaugh]
Rumbaugh, James, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[Saks]
Saks, Dan, C++ Programming Guidelines, Thomas Plum & Dan Sacks, 1992.

[Stallings]
Stallings, William, SNMP, SNMPv2 and CMIP The Practical Guide to Network Management Standards,
Addison Wesley, 1993.

[Stroustup]
Stroustrup , Bjarne, The C++ Programming Language, Edition #2 Addison Wesley, 1991.

[WinSNMP]
WinSNMP, Windows SNMP An Open Interface for Programming Network Management Application
under Microsoft Windows. Version 1.1.

[WinSockets]
WinSockets, Windows Sockets, An Open Interface for Network Programming under Microsoft Windows.

SNMP++ HP RND 10/21/2024 10/21/2024 56

Appendix A, Public Oid Class Interface:

SNMP++ HP RND 10/21/2024 10/21/2024

public:

 // constructor using no arguments
 // initialize octet ptr and string
 // ptr to null
 Oid::Oid(void);

 // constructor using a dotted string
 Oid::Oid(const char WINFAR * dotted_oid_string);

 // constructor using another oid object
 Oid::Oid (const Oid &oid);

 // destructor
 Oid::~Oid();

 // assignment to a string operator overloaded
 Oid::Oid& operator=(const char WINFAR *dotted_oid_string);

 // assignment to another oid object overloaded
 Oid::Oid& operator=(const Oid &oid);

 // equivalence operator overloaded
 friend int operator==(Oid &x,Oid &y);

 // equivalence operator overloaded
 friend int operator==(Oid &x,char WINFAR *dotted_oid_string);

 // append operator, appends a string
 Oid::Oid& operator+=(const char WINFAR *a);

 // appends an int
 Oid::Oid& operator+=(const unsigned long i);

 // return an oid as a dotted string value
 char WINFAR * Oid::strval();

 // return dotted string value from the right
 // where the user specifies how many positions to print
 char WINFAR * Oid::strval(unsigned long n);

 // return a dotted string where the caller specifies
 // where the starting position is and how many to include to the right
 char WINFAR * Oid::strval(unsigned long start, unsigned long n);

// return the WinSnmp oid part
 SmiLPOID Oid::oidval();

57

Appendix A, Public Oid Class Interface Continued:

SNMP++ HP RND 10/21/2024 10/21/2024

 // set the leftmost instance
 void Oid::set_instance(unsigned long i);

 // modify position n of an oid to value i
 // indexes are 1 to n
 void Oid::set_instance(unsigned long n, // instance # to change
 unsigned long i); // new value

 // returns the rightmost value of the oid
 unsigned long Oid::get_instance();

 // returns the value of an oid
 // at position n
 unsigned long Oid::get_instance(unsigned long n);

 // return the len of the oid
 unsigned long Oid::len();

 // trim off the n leftmost values of an oid
 // Note!, does not adjust actual space for
 // speed
 void Oid::trim(unsigned long n);

 // compare the n leftmost bytes
 // returns TRUE or FALSE
 int Oid::nCompare(unsigned long n, const Oid &o);

58

Appendix B, Public Vb Class Interface:

Appendix B, Public Vb Class Interface Continued:

SNMP++ HP RND 10/21/2024 10/21/2024

public:
 //-----[constructors / destructors]-------------------------------

 // constructor with no arguments
 // makes an vb, unitialized
 Vb::Vb(void);

 // constructor to initialize the oid
 // makes a vb with oid portion initialized
 Vb::Vb(const Oid oid);

 // destructor
 // if the vb has a oid or an octect string then
 Vb::~Vb();

 //-----[set oid / get oid]--

 // set value oid only with another oid
 void Vb::set_oid(const Oid &oid);

 // set oid value with a const string
 void Vb::set_oid(const char WINFAR * dotted_oid_string);

 // get oid portion
 void Vb::get_oid(Oid &oid);

//-----[set value]--

 // set the value with an int
 void Vb::set_value(int i);

 // set the value with a long signed int
 void Vb::set_value(long int i);

 // set the value with an unsigned long int
 void Vb::set_value(unsigned long int i);

 // set value for building an 64 bit counter
 void Vb::set_value(unsigned long int hi,unsigned long int lo);

 // set value for setting an oid
 // creates own space for an oid which
 void Vb::set_value(Oid &varoid);

 // set value for setting an octet string
 // creates own space for a octet
 void Vb::set_value(unsigned char WINFAR * ptr, unsigned long len);

59

Appendix B, Public Vb Class Interface Continued:

SNMP++ HP RND 10/21/2024 10/21/2024

 // set value on a string
 // makes the string an octet
 // this must be a null terminates string
 void Vb::set_value(char WINFAR * ptr);

 // set an ip address as a value
 void Vb::set_value (Iptype ipaddr);

 // set value for timeticks
 void Vb::set_value(TimeTicks timeticks);

 // set value for a counter
 void Vb::set_value(Counter counter);

 // set value for a gauge
 void Vb::set_value(Gauge gauge);

//----[get value]--

 // get value int
 // returns 0 on success and value
 int Vb::get_value(int &i);

 // get the signed long int
 // returns 0 on success and a value
 int Vb::get_value(long int &i);

 // get the unsigned long int
 // returns 0 on success and a value
 int Vb::get_value(unsigned long int &i);

 // get value for building an 64 bit counter
 // returns 0 on success and a value
 int Vb::get_value(unsigned long int &hi,unsigned long int &lo);

 // get the oid value
 // free the existing oid value
 // copy in the new oid value
 int Vb::get_value(Oid &varoid);

 // get a unsigned char string value
 // destructive, copies into given ptr
 // also returned is the len length
 // Note! the caller must provide a target string big
 // enough to handle the vb string
 int Vb::get_value(unsigned char WINFAR * ptr, unsigned long &len);

 // get an unsigned char array
 // caller specifies max len of target space
 int Vb::get_value(unsigned char WINFAR * ptr, // pointer to target space
 unsigned long &len, // returned len
 unsigned long maxlen); // max len of target space

60

SNMP++ HP RND 10/21/2024 10/21/2024

 // get a char * from an octet string
 // the user must provide space or
 // memory will be stepped on
 int Vb::get_value(char WINFAR *ptr);

 // get an ip address
 int Vb::get_value(Iptype ipaddr);

 // get value for timeticks
 int Vb::get_value(TimeTicks &timeticks);

 // get value for a counter
 int Vb::get_value(Counter &counter);

 // get value for a gauge
 int Vb::get_value(Gauge &gauge);

 //-----[misc]--

 // return the current syntax
 // This method violates Object Orientation but may be useful if
 // the caller has a vb object and does not know what it is.
 // This would be useful in the implementation of a browser.
 SmiUINT32 Vb::get_syntax();

 // return smivalue portion
 // this should really be a friend function
 // since it violates data hiding
 SmiLPVALUE Vb::get_smival();

61

Appendix C, Public SNMP Class Interface:

Appendix C, Public SNMP Class Interface, Continued:

SNMP++ HP RND 10/21/2024 10/21/2024

public:

 //------------------[constructor,blocked usage]---------------------
 Snmp::Snmp(WORD hwnd, // parent handle
 Protocol protocol // type of protocol to use
 const char *community_name, // community name
 int *status); // construction status

 //------------------[constructor, async usage]-----------------------
 Snmp:: Snmp(WORD hwnd, // parent handle
 Protocol protocol, // type of protocol to use
 const char *community_name, // community name
 snmp_callback lpcallback, // callback function address
 int *status); // construction status

 //-------------------[destructor]------------------------------------
 Snmp::~Snmp();

 //--------------------[set timeout]----------------------------------
 void Snmp::set_timeout(DWORD t);

 //---------------------[get timeout]---------------------------------
 DWORD Snmp::get_timeout();

 //----------------------[set retry]----------------------------------
 void Snmp::set_retry(int r);

 //----------------------[get retry]----------------------------------
 int Snmp::get_retry();

 //----------------------[set the community name]---------------------
 void Snmp::set_community(const char * new_name);

 //----------------------[set community name ptr and len]
 void Snmp::set_community(const char * new_name, int len);

 //----------------------[set partial shut down value]-----------------
 void Snmp::set_shutdown_val(WORD val) { partial_shutdown_val = val;};

//------------------------[get]---------------------------------------
 int Snmp::get(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // get address

62

Appendix C, Public SNMP Class Interface, Continued:

SNMP++ HP RND 10/21/2024 10/21/2024

//------------------------[get async]----------------------------------
 int Snmp::get_async(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int req_id, // request id to use, returned
 const char *dest_addr); // address to send to

 //------------------------[get next]-----------------------------------
 int Snmp::get_next(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr) ; // get address

 //------------------------[get next async]-----------------------------
 int Snmp::get_next_async(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int req_id, // request id to use, returned
 const char *dest_addr); // address to send to

 //-------------------------[set]---------------------------------------
 int Snmp::set(Vb *vb, // pointer to array of objects
 int vb_count, // count of objects
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr) ; // target address

 //------------------------[set async]----------------------------------
 int Snmp::set_async(Vb *vb, // pointer to array of vb objects
 int vb_count, // count of vb objects
 long int req_id, // request id to use, returned
 const char *dest_addr); // address to send to

//---------------------------[get many ,ints]--------------------------
 int Snmp::get_many(Oid base_oid, // base oid to use
 int *ret_values, // returned int values
 int num_values, // number of values to get
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

 //---------------------------[get many ,long ints]---------------------
 int Snmp::get_many(Oid base_oid, // base oid to use
 long int *ret_values, // returned int values
 int num_values, // number of values to get
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

63

Appendix C, Public SNMP Class Interface, Continued:

SNMP++ HP RND 10/21/2024 10/21/2024

//---------------------------[get many ,ip addresses]------------------
 int Snmp::get_many(Oid base_oid, // base oid to use
 Iptype ret_values[], // returned int values
 int num_values, // number of values to get
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

 //---------------------------[get many array of chars]-----------------
 int Snmp::get_many(Oid base_oid, // base oid to use
 unsigned char ret_values[][MAX_ADDR_LEN],
 int num_values, // number of values to get
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

 //---------------------------[set many ,ints]--------------------------
 int Snmp::set_many(Oid base_oid, // base oid to use
 int *in_values, // values to set
 int num_values, // number of values to set
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

 //---------------------------[set many ,long ints]---------------------
 int Snmp::set_many(Oid base_oid, // base oid to use
 long int *in_values, // values to set
 int num_values, // number of values to set
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

 //---------------------------[set many ,iptypes]---------------------
 int Snmp::set_many(Oid base_oid, // base oid to use
 Iptype in_values[], // values to set
 int num_values, // number of values to set
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

 //---------------------------[set many ,uinsigned chars]-------------
 int Snmp::set_many(Oid base_oid, // base oid to use
 unsigned char in_values[][MAX_ADDR_LEN], // values to set
 int num_values, // number of values to set
 long int &err_status, // returned error status
 long int &err_index, // returned error index
 const char *dest_addr); // target address

64

SNMP++ HP RND 10/21/2024 10/21/2024

//----------------------------[trap register]--------------------------
 // To be used only for async Snmp objects
 // Note, WinSnmp v1 informs the trap receiver with SnmpV2 type
 // trap messages. In SnmpV2, the trap format consists of N variable
 // bindings where...
 // - the first vb is the time stamp
 // - the second vb identifies the trap
 // - the third through N vb's are the payload
 //
 //
 int Snmp::trap_register(const char * mgr_addr, // managers source address
 const char * agent_addr, // agents address
 Oid oidmask, // oid mask or empty for all
 int on); // boolean for on or off

65

Appendix D, Public Timeticks, Counter and Gauge Class Interface:

SNMP++ HP RND 10/21/2024 10/21/2024

public:
 // constructor with no args
 TimeTicks::TimeTicks(void)

 // constructor with an unsigned long
 TimeTicks::TimeTicks(unsigned long i)

 // overloaded equivalence operator to an unsigned long
 TimeTicks::TimeTicks& operator=(unsigned long int i)

 // overloaded equivalence operator to another Timeticks object
 TimeTicks::TimeTicks& operator=(const TimeTicks &uli)

 // behavior like an unsigned long int
 operator Counter::unsigned long()

 public:
 // construct a counter object
 Counter::Counter(void)

 // construct a counter with an unsigned long
 Counter::Counter(unsigned long i)

 // overloaded assignment to an unsigned long int
 Counter::Counter& operator=(unsigned long int i)

 // overloaded assignment to another counter object
 Counter& operator=(const Counter &uli)

 // give it the full functionality of an unsigned int
 operator Counter::unsigned long()

 public:
 // constructor
 Gauge::Gauge(void)

 // constructor with an unsigned long
 Gauge::Gauge(unsigned long i)

 // overloaded assignment with an unsigned long
 Gauge::Gauge& operator=(unsigned long int i)

 // overloaded assignment with another gauge
 Gauge::Gauge& operator=(const Gauge &uli)

 // give it full functionality of an unsigned long
 operator Gauge::unsigned long()

66

SNMP++ HP RND 10/21/2024 10/21/2024 67

	
	Products Now Using SNMP++
	Introduction
	What Is SNMP++
	SNMP++ Objectives
	Ease of Use
	Provides an easy-to-use interface into SNMP
	Preserves the flexibility of lower level SNMP programming
	Encourage programmers to use the full power of C++ without chastising them for not learning fast enough

	Safety
	Provides automatic management of SNMP resources.
	Provides built in error checking, automatic timeout and retry

	Portability
	Extensibility
	OverLoading SNMP++ Base Classes

	An Introductory Example
	Windows 3.1 Example
	Explanation of Introductory Example

	SNMP++ Features
	Oid, Vb and SNMP Objects
	Automatic SNMP Resource Memory Management
	Ease Of Use
	Power and Flexibility
	Portable Objects
	Automatic Timeout And Retries
	Blocked Mode Requests
	Non-Blocking Asynchronous Mode Requests
	Traps
	Support For SNMP Version 1
	SNMP Get, Get Next and Set Supported
	Redefinition Through Inheritance
	Many Engine

	SNMP++ for Windows 3.1
	Runs Over WinSnmp Ver 1.1
	Multiple Sessions Via Multiple Instances
	Multiple Concurrent Blocked Mode Requests
	IP and IPX Support using FTP Software Inc.’s WinSNMP.DLL
	IP Support Using American Computer and Electronics Corp. Netplus WinSNMP.DLL
	Windows Message Handling
	Medium or Large Model Support
	Rendezvous Shut Down Messages
	Runs on MS-Windows NT
	Trap Support
	Compatability with HP OpenView for Windows
	The PDU Container Class
	Tested Over MFC and 3.1 API

	SNMP++ for HPUX
	Runs Using SNMP Research’s SNMP Libraries
	Identical Class Interface
	Portable to UNIX-Windows Emulators
	Multiple Connections via Multiple Instances

	The Object Identification Class
	Object Modeling Technique Representation
	OMT Public View Of Oid Class

	Oid Class Public Member Functions
	Oid Class Constructors & Destructors
	Oid Class Overloaded Operators
	Oid Class String Value Methods
	Oid Class Set Instance & Get Instance Methods
	Oid Class Trim Method
	Oid Class nCompare Method

	Oid Class Examples

	The Variable Binding Class
	Object Modeling Technique Representation
	OMT Public View of Vb Class

	Vb Class Public Member Functions
	Vb Class Constructors & Destructors
	Vb Class Get Oid / Set Oid Member Functions
	Vb Class Get Value / Set Value Member Functions
	Vb Class Get Value Member Functions
	Vb Object Get Syntax Member Function

	TimeTicks, Counter and Gauge Classes
	TimeTicks Class Example
	Counter Class Example
	Gauge Class Example

	The SNMP Class
	Object Modeling Technique Representation
	Public View of SNMP Class

	SNMP Class Public Member Functions
	SNMP Class Constructors and Destructors
	SNMP Class Constructor, Blocked Mode
	SNMP Class Constructor, Asynchronous Mode
	SNMP Class Destructor
	SNMP Class Access and Mutator Member Functions
	SNMP Class Set Timeout & Get Timeout
	Snmp Class Set Retry & Get Retry
	SNMP Class Set Community Name

	SNMP Class Request Member Functions
	Request Member Function Parameter Description
	· Parameter Vb*
	· Parameter vb_count
	· Parameter long int err_status
	· Parameter err_index
	· Parameter dest_addr

	SNMP Class Blocked Get Member Function
	SNMP Class Blocked Get Next Member Function
	SNMP Class Blocked Set Member Function

	SNMP Class Asynchronous Member Functions
	SNMP Class Asynchronous Get Member Function
	SNMP Class Asynchronous Set Member Function
	SNMP Class Asynchronous Get Next Member Function

	Medina’s Many Engine Member Functions
	SNMP Class Get Many
	SNMP Class Set Many

	SNMP Class Trap Methods
	SNMP Class Trap Registration Member Function

	SNMP Class Error Return Codes
	SNMP Class Examples
	SNMP++ Example #1, Getting a Bunch of Values in HPUX
	SNMP++ Example #2, Setting Values in MS-Windows MFC

	Network Transport Mechanisms
	Transport Start Up
	Transport Shut Down

	SNMP++ Proposed New Features
	Support for SNMP version 2
	Traps For UNIX
	Asynchronous Mode For UNIX
	Demo Engine
	Community Name Database Access
	SNMP++ Script
	Oid Database
	Full Win32 Support
	Solaris OS Support
	Apple OS Support
	OS/2 Support
	NMS Support

	Listing and Description of Files
	Required Files For MS-Windows Development
	Required Files For HPUX Development

	References
	Appendix A, Public Oid Class Interface:
	Appendix B, Public Vb Class Interface:
	Appendix C, Public SNMP Class Interface:
	Appendix D, Public Timeticks, Counter and Gauge Class Interface:

