
Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

What is Windows SNMP?

Compliance

SNMP

Microsoft Windows

The Status of this Specification

References

Primary Sources
Secondary Sources

Glossary:    Abbreviations, Acronyms, and Definitions

Contributors

Special Acknowledgments

Individual Contributors

Programming With Windows SNMP

Windows SNMP Interfaces

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Levels of SNMP Support

Implementations

Applications

Transport Interface Support

Entity/Context Translation Modes

Local Database

Sessions

Memory Management

Asynchronous Model

Polling and Retransmission

Error Handling

Common Error Codes

Context-Specific Error Codes

Transport Error Reporting

WinSNMP Data Types

Integers

Pointers

Function Returns

Descriptors

Windows SNMP Interfaces

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions

Communications Functions

Entity/Context Functions

PDU Functions

Variable Binding Functions
Utility Functions

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions
SnmpGetTranslateMode()

SnmpSetTranslateMode()

SnmpGetRetransmitMode()

SnmpSetRetransmitMode()

SnmpGetTimeout()

SnmpSetTimeout()

SnmpGetRetry()

SnmpSetRetry()

Communications Functions

Entity/Context Functions

PDU Functions

Variable Binding Functions
Utility Functions

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions

Communications Functions
SnmpStartup()

SnmpCleanup()

SnmpOpen()

SnmpClose()

SnmpSendMsg()

SnmpRecvMsg()

SnmpRegister()

Entity/Context Functions

PDU Functions

Variable Binding Functions
Utility Functions

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions

Communications Functions

Entity/Context Functions
SnmpStrToEntity()

SnmpEntityToStr()

SnmpFreeEntity()

SnmpStrToContext()

SnmpContextToStr()

SnmpFreeContext()

PDU Functions

Variable Binding Functions
Utility Functions

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions

Communications Functions

Entity/Context Functions

PDU Functions
SnmpCreatePdu()

SnmpGetPduData()

SnmpSetPduData()

SnmpDuplicatePdu()

SnmpFreePdu()

Variable Binding Functions
Utility Functions

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions

Communications Functions

Entity/Context Functions

PDU Functions

Variable Binding Functions
SnmpCreateVbl()

SnmpDuplicateVbl()

SnmpFreeVbl()

SnmpCountVbl()

SnmpGetVb()

SnmpSetVb()

SnmpDeleteVb()

Utility Functions

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Table of Contents

Windows Help Version of Windows SNMP Specification

Authors and Copyright

Revision History

Introduction

Programming With Windows SNMP

Windows SNMP Interfaces

Local Database Functions

Communications Functions

Entity/Context Functions

PDU Functions

Variable Binding Functions
Utility Functions

SnmpGetLastError()

SnmpStrToOid()

SnmpOidToStr()

SnmpOidCopy()

SnmpOidCompare()

SnmpEncodeMsg()

SnmpDecodeMsg()

SnmpFreeDescriptor()

Declarations

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Appendix B. Usage Example

Appendix C. WinSNMP++ Prototype

Windows Help version of the Windows SNMP Manager API Specification Version 1.1
  created by:
  Dale Wityshyn
  vdwit@chevron.com
  Comments and suggestions gratefully accepted

Authors and Copyright

Windows SNMP

An Open Interface for Programming

Network Management Applications

using the

Simple Network Management Protocol

under Microsoft Windows

WinSNMP/Manager API

Version 1.1

12 June 1994

Bob Natale
American Computer & Electronics Corporation

Copyright    1993, 1994 by Bob Natale,

American Computer & Electronics Corporation

All rights reserved.

This document may be freely redistributed in any form, electronic or
otherwise, provided that it is distributed in its entirety and that the
copyright and this notice are included.    Comments or questions may be
submitted via electronic mail to winsnmp@mailbag.intel.com.   
Requests to be added to the Windows SNMP mailing list should be
addressed as follows:

To:    Majordomo@mailbag.intel.com

Subject:    <leave blank>

subscribe WinSNMP

This specification and other information on Windows SNMP are available
via anonymous FTP from the host SunSITE.unc.edu under the    directory
path /pub/micro/pc-stuff/ms-windows/WinSNMP.

Questions about products conforming to this specification should be
addressed to the vendors of the products.

Author's Contact Information

Bob Natale

Director, Network Management Products

American Computer & Electronics Corporation

209 Perry Parkway

Gaithersburg MD    20877

301-258-9850 (Tel)

301-921-0434 (Fax)

natale@acec.com (e-mail)

Revision History

Abbreviated Revision History

Rev Date Editor Editor's Address

0.3 January 25, 1993 Microsoft dwaink@microsoft.com

1.0a April 28,1993 Amatzia Ben-Artzi amatzia@netmanage.com

1.0 September 13, 1993 Bob Natale natale@acec.com

1.1a DRAFT February 14, 1994 Bob Natale natale@acec.com (bake-off)

1.1b DRAFT May 16,1994 Bob Natale natale@acec.com (draft)

1.1 June 12, 1994 Bob Natale natale@acec.com

Introduction

The Windows SNMP API specification defines a programming interface for network management
applications running under the Microsoft Windows family of GUI/operating system products, enabling
those applications to make use of a logically external SNMP engine or service layer.

For the purpose of exposition, the original Internet-standard Network Management Framework, as
described in RFCs 1155, 1157, and 1212, is termed the SNMP version 1 framework (SNMPv1).    The
new framework that is currently a proposed Internet standard, as described in RFCs 1441, 1442, 1443,
1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, and 1452, is termed the SNMP version 2 framework
(SNMPv2).    In addition, there are three proposed Internet standards, as described in RFCs 1418, 1419,
and 1420, that address the use of transports other than UDP over IP for SNMPv1.    These RFCs
describe SNMPv1 over OSI, AppleTalk, and IPX.    Note that these transports are directly addressed in
SNMPv2 by RFC 1449.

The Windows SNMP API specification introduces no constraints on the use of SNMPv1 or SNMPv2, nor
on the functionality supported by those protocols as prescribed in the relevant Internet RFCs.

For the purposes of this specification, SNMPv1 is seen as a subset of SNMPv2.

Hereinafter the terms "WinSNMP", WinSNMP/Manager, and "Windows SNMP" will be used as
shorthand for "the Windows SNMP Manager API Specification" (which is the full and formal name for this
document itself).

This specification avoids introducing new or different meanings for terms which have established
definitions in the existing SNMP literature (especially the RFCs).    Readers are encouraged to consult
the "Glossary" and "References" sections (and to point out lapses in terminological correctness).

Whis is Windows SNMP?

The purpose of WinSNMP is to promote the development of SNMP-based network management
applications running under the Microsoft Windows family of GUI/operating system products.

WinSNMP provides a single interface to which application developers can program and multiple SNMP
software vendors can conform.    This specification thus defines the procedure calls, data types, data
structures, and associated semantics to which an application developer can program and which an
SNMP software vendor can implement.

The following diagram shows where WinSNMP fits in one possible scenario of end-to-end SNMP
connectivity from an entity acting in a manager role (far left) to an entity acting in an agent role (far right).
This diagram is a high-level rendition of the model embodied in the current version of WinSNMP.    Other
models are both possible and supported by the specification, particularly as regards network transport
independence.

In summary, WinSNMP offers these major benefits--all intended to accelerate the development,
dissemination, and use of SNMP network management applications:

· SNMP enabling technology for functional network management applications (i.e., hides    ASN.1,
BER, and SNMP protocol details).

· SNMP service provider independence.    A WinSNMP application will run against any compliant
WinSNMP implementation.

· Uniform SNMPv1 and SNMPv2 support.    A WinSNMP application does not have to know the
SNMP version level of    the target SNMP entities acting in an agent role.    The WinSNMP
implementation will perform any and all necessary mappings    between SNMPv1 and SNMPv2 in
accordance with the appropriate RFCs.

Compliance

Software which conforms to this Windows SNMP specification will be considered "WinSNMP compliant".

Suppliers of implementations which are "WinSNMP compliant" shall be referred to as "WinSNMP
suppliers".    Nothing in the WinSNMP specification is meant to dictate or preclude particular
implementation strategies.    This specification allows for various overlapping levels of SNMP support on
the part of an implementation:

Level 0 = Message encoding/decoding only

Level 1 = Level 0 + interaction with SNMPv1 agents

Level 2 = Level 1 + interaction with SNMPv2 agents

Level 3 = Level 2 + interaction with other SNMPv2 managers

To be WinSNMP compliant, a vendor must implement 100% of this WinSNMP specification, as
appropriate to the level of SNMP interaction the given implementation supports.    WinSNMP vendors are
encouraged to state clearly the level of SNMP interaction they support in all of their marketing and
technical literature.

Applications which are capable of operating with any "WinSNMP compliant" implementation which
supports at least the level of SNMP interaction required by the application will be considered as having a
"WinSNMP interface" and will be referred to as "WinSNMP applications".

This version of the WinSNMP specification defines and documents the use of the API by management
applications.    A future revision or separate extension may include features for use by SNMP agents.    A
companion document, the WinSNMP/MIB API Specification, provides definitions of elements used as

SNMP

SNMP is a request-response protocol used to transfer management information between entities acting
in a manager role and entities acting in an agent role.    Managers are often configured as management
stations and agents are often configured as managed nodes.    A manager can also act as an agent to
another manager in both vertical (hierarchical) and horizontal (distributed) relationships.    Likewise, a
physical node might be managed by multiple agents, and an agent might manage multiple physical
nodes.    When hereinafter we use the prototypical management station/managed node perspective for
the sake of simplicity and clarity of presentation, that practice is not meant to preclude other forms of
SNMP interactions.

Each managed device or application contains monitoring and (possibly) control instrumentation.    This
instrumentation is accessed by the agent.    The agent represents its access to this instrumentation to
the manager via a MIB, filtered by the SNMP security mechanisms.    Management applications
communicate with agents via SNMP to monitor and (possibly) control managed devices or applications.

A management application may issue several requests to an agent, without waiting for a response.   
Alternatively, it may issue a request and wait for a response, operating in a lock-step fashion with the
agent.    Furthermore, SNMP may be implemented on a wide range of transport protocols, each with
varying delivery mechanisms and reliability characteristics.    The normal transmission mechanism (UDP)
is through non-guaranteed messages which may be dropped, duplicated, or re-ordered.    Thus, with
SNMP, it is the responsibility of each management application to determine and implement the desired
level of reliability for its communications.    This means that the management application decides on its
own retransmission and timeout strategy.

Note, also, that an agent may send asynchronous messages--called traps (SNMPv1) or notifications
(SNMPv2)--to a management application.    This important feature of SNMP is also fully supported by
WinSNMP.    Note that in this document, the term "traps" is used to refer both to traps and notifications,
unless specifically qualified as otherwise in a given instance.

Microsoft Windows

This API is intended to be usable within all implementations and versions of Microsoft Windows "family"
of operating systems and graphical user interface environments from Microsoft Windows Version 3.0
onwards, including Windows v3.1, Windows for Workgroups v3.11, and Windows NT (among others).    It
thus provides for WinSNMP implementations and WinSNMP applications in both 16- and 32-bit
operating environments, and in both single- and multi-threaded execution environments.

WinSNMP makes provisions for multi-threaded Windows processes.    A process contains one or more
threads of execution.    In the Win16 non-multi-threaded world, a task corresponds to a process with a
single thread.    All references to threads in this document refer to actual "threads" in multi-threaded
Windows environments.    In single-threaded environments (such as Windows 3.0 and Windows 3.1),
use of the term thread refers to a Windows process.

The Status of this Specification

This specification is released for stable implementation as of this revision (v1.1).    It is the product of
collaboration among an informal, ad hoc, self-organized group of vendors, developers, and users with
an interest in SNMP-based network management applications and the Microsoft Windows family of
development and runtime supporting environments for such applications.

Readers of this specification are assumed to have a high degree of knowledge and understanding of
SNMP (through SNMPv2) and Microsoft Windows programming conventions.    Contributions aimed at
reducing the level of detailed knowledge of these specific technologies required for users of this
specification are invited.

At the present time, it is believed that this version (v1.1) of the WinSNMP/Manager API specification
permits the development of interoperable implementations and applications supporting at least "SNMP
Level 1" as defined herein and that applications developed in accordance with this version of the
specification will, additionally, be structured for future compatibility through "SNMP Level 3" as defined
herein.    Due to limitations in the understanding and specification of "local database" functions in the
current version, it is unlikely that full SNMPv2 operational support can be achieved without additional
functions and data structures being defined.    It is expected that implementation, development, and
interoperability experience gained with this v1.1 of this specification will identify those additions, and that
they will appear in v2.0 of the specification in early 1995.

Consensus on the release of the previous version of the specification was reached on the mailing list
and confirmed at the third BOF meeting of the WinSNMP group held at the August '93 Interop in San
Francisco.    This was followed by an interoperability testing event, hosted by NetManage in Cupertino in
February 1994.    On-going edits to v1.1 will be accepted to:

1. correct errors and inconsistencies;

2. add explanatory and/or expository text and graphics;

3. add essential new functions, variables, error codes, data types, or data structures required for
usability of the baseline specification.

Contributions oriented toward new and/or expanded functionality outside the scope of the preceding
three objectives will be accepted, but will be considered for inclusion in v2.0 of this specification.

Primary Sources

RFC Title Author(s) Date Comments

1089 SNMP over Ethernet M.L. Schoffstall, C.
Davin, M. Fedor, J.D.
Case

Feb 1989 none

1098 Simple Network
Management Protocol
(SNMP)

J.D. Case, M. Fedor,
M.L. Schoffstall, C.
Davin

Apr 1989 OBSOLETES:
RFC1067,
OBSOLETED-BY:
RFC1157

1155 Structure and
Identification of
Management
Information for TCP/IP-
based Internets

M. T. Rose, K. Z.
McCloghrie

May 1990 OBSOLETES:

RFC1065

1156 Management
Information Base for
Network Management of
TCP/IP-based Internets

K. Z. McCloghrie, M. T.
Rose

May 1990 OBSOLETES:

RFC1066

1157 Simple Network
Management Protocol
(SNMP)

J.D. Case, M. Fedor,
M.L. Schoffstall, C.
Davin

May 1990 OBSOLETES:
RFC1098

1158 Management
Information Base for
Network Management of
TCP/IP- based
Internets:    MIB-II

M. T. Rose May 1990 OBSOLETED-BY:

RFC1213

1161 SNMP over OSI M.T. Rose Jun 1990 OBSOLETED-BY:
RFC1418

1187 Bulk table retrieval with
the SNMP

M.T. Rose, K.
McCloghrie, J.R. Davin

Oct 1990 none

1213 Management
Information Base for
Network Management of
TCP/IP- based
Internets:    MIB-II

K. Z. McCloghrie, M. T.
Rose

Mar 1991 OBSOLETES:

RFC1158

1215 Convention for defining
traps for use with the
SNMP

M.T. Rose Mar 1991 none

1227 SNMP MUX protocol
and MIB

M.T. Rose May 1991 none

1270 SNMP communications
services

F. Kastenholz Oct 1991 None

1283 SNMP over OSI M. Rose Dec 1991 OBSOLETED-BY:
RFC1418

1284 Definitions of Managed
Objects for the Ethernet-
like Interface Types

J. Cook Dec 1991 none

1285 FDDI Management
Information Base

J. Case Jan 1992 none

1286 Definitions of Managed
Objects for Bridges

E. Decker, P. Langille, A.
Rijsinghani, K.
McCloghrie

Dec 1991 none

1289 DECnet Phase IV MIB
Extensions

J. Saperia Dec 1991 none

1298 SNMP over IPX R. Wormley, S. Bostock Feb 1992 OBSOLETED-BY:
RFC1420

1303 A Convention for
Describing SNMP-based
Agents

K. McCloghrie, M. Rose Feb 1992 SEE-ALSO:
RFC1155,
RFC1212,
RFC1213,
RFC1157

1351 SNMP Administrative
Model

J. Davin,J. Galvin,K.
McCloghrie

Jul 1992 none

1352 SNMP Security
Protocols

J. Galvin,K.
McCloghrie,J. Davin

Jul 1992 none

1381 SNMP MIB Extension
for X.25 LAPB

D. Throop, F. Baker Nov 1992 none

1382 SNMP MIB Extension
for the X.25 Packet
Layer

D. Throop Nov 1992 none

1407 Definitions of Managed
Objects for the DS3/E3
Interface Type

Tracy A. Cox, Kaj Tesink Jan 1993 OBSOLETES:
RFC1233

1414 Identification MIB M. StJohns & M. Rose Jan 1993 none

1418 SNMP over OSI M. Rose Feb 1993 OBSOLETES:
RFC1161,
RFC1283

1419 SNMP over AppleTalk G. Minshall & M. Ritter Feb 1993 none

1420 SNMP over IPX S. Bostock Feb 1993 OBSOLETES:
RFC1298

1441 Introduction to version 2
of the Internet-standard
Network Management
Framework

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1442 Structure of
Management
Information for version 2
of the Simple Network
Management Protocol
(SNMPv2)

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1443 Textual Conventions for
version 2 of the Simple
Network Management
Protocol (SNMPv2)

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1444 Conformance
Statements for version 2

J. Case, K. McCloghrie,
M. Rose, & S.

Apr 1993 none

of the Simple Network
Management Protocol
(SNMPv2)

Waldbusser

1445 Administrative Model for
version 2 of the Simple
Network Management
Protocol (SNMPv2)

J. Galvin & K.
McCloghrie

Apr 1993 none

1446 Security Protocols for
version 2 of the Simple
Network Management
Protocol (SNMPv2)

J. Galvin & K.
McCloghrie

Apr 1993 none

1447 Party MIB for version 2
of the Simple Network
Management Protocol
(SNMPv2)

K. McCloghrie & J.
Galvin

Apr 1993 none

1448 Protocol Operations for
version 2 of the Simple
Network Management
Protocol (SNMPv2)

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1449 Transport Mappings for
version 2 of the Simple
Network Management
Protocol (SNMPv2)

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1450 Management
Information Base for
version 2 of the Simple
Network Management
Protocol (SNMPv2)

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1451 Manager-to-Manager
Management
Information Base

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

1452 Coexistence between
version 1 and version 2
of the Internet-standard
Network Management
Framework

J. Case, K. McCloghrie,
M. Rose, & S.
Waldbusser

Apr 1993 none

Secondary Sources

Black, Uyless D.    TCP/IP and Related Protocols.    McGraw-Hill, 1992.

Comer, Douglas E., and Stevens, David L.    Internetworking with TCP/IP - Volume II:    Design,
Implementation, and Internals.    Prentice-Hall, 1991.    (Chaps. 18-20.)

Harnedy, Sean J.    Total SNMP:    Exploring the Simple Network Management Protocol.    CBM Books,
1994.

Miller, Mark E., P.E., Managing Internetworks with SNMP:    The Definitive Guide to the Simple Network
Management Protocol (SNMP) and SNMP version 2.    M&T Books, 1993.

Perkins, David T.    "Understanding SNMP MIBS".    Rev. 1.1.5, July 7, 1992.

Rose, Marshall T.    The Simple Book:    An Introduction to Management of TCP/IP-based Networks.   
Prentice-Hall, 1990.

Rose, Marshall T.    The Simple Book:    An Introduction to Internet Management.    2nd ed.    Prentice-
Hall, 1994 (published in 1993).

Stallings, William.    SNMP, SNMPv2, and CMIP:    The Practical Guide to Network Management
Standards.    Addison-Wesley, 1993.

Glossary:    Abbreviations, Acronyms, and Definitions

The following table of abbreviations and definitions presents terms frequently used in the SNMP RFCs
and related literature along with the official, customary, or consensual meaning(s).    An editing objective
of this specification is to use none of these terms in any sense other than that shown in the
corresponding definition, nor to invent or employ new terms with meanings functionally equivalent to
those of these established terms.

Short Term Definition

Access Control Restriction of access to MIB objects either in
scope or function or both, on the basis of
party.

ACL Access Control List An indication of what actions (aclPrivileges)
may be performed by a given party
(aclTarget) on behalf of another party
(aclSubject) within a given context
(aclResources).

API Application Programming Interface A defined set of procedure calls, data types,
data structures, and associated semantics
used to incorporate a logically external
service layer into an application program.

Authentication Verification of message source and
timeliness. Achieved in SNMPv2 normally by
message component transformation via
secret codes.

Authorization Defining and controlling the levels of
legitimate access to data and/or resources.   
Achieved in SNMPv2 with the use of ACLs,
and in SNMPv1 with the use of Community
strings.

Bilingual Entity A protocol entity that can handle both
SNMPv1 and SNMPv2 operations,
semantics, and communications.

Community An administrative relationship between
SNMPv1 entities; identified by a "community
string".

CTX Context A collection of managed object resources
accessible by an SNMP entity.

Dual-Role Entity A protocol entity capable of acting in both a
manager and an agent role.

Entity Protocol Entity An SNMP-conversant process, operating in
either and agent role or in a manager role, or
both, which performs network management
operations by generating and/or responding
to SNMP protocol messages.

GUI Graphical User Interface A visually rich user interface (as contrasted
with a Command Line Interface [CLI]).

Local Database An entity-specific collection of information
about parties, contexts, views, and access

control policies.

M2M Manager-to-Manager MIB Used to define conditions and thresholds at
a manager that will trigger notifications to
other managers.

MIB Management Information Base A virtual information store holding a
collection of managed object definitions.

View MIB View A subset of the universal set of all instances
of all MIB objects; defined as a collection of
view subtrees.

Mid-Level Manager A dual-role protocol entity acting primarily in
a manager role except when acting in an
agent role vis-à-vis other managers.

OID Object Identifier A data type denoting an authoritatively
named object; a sequence of non-negative
integers.

Party A conceptual, virtual execution environment
who operation is restricted to an
administratively defined subset of all
possible operations of a particular entity.    A
set of specific security characteristics.

Party MIB Used to configure parties at protocol entities
with various security characteristics,
including use or non-use of authentication
and/or privacy and access control
constraints.

Privacy Protection of transmitted data from
eavesdropping.    Achieved in SNMPv2
normally by message component encryption.

PDU Protocol Data Unit A data structure containing SNMP message
components and used for communication
between SNMP entities.

Proxy Proxy Agent

RFC Request for Comments The document series describing the Internet
suite of protocols and related experiments.

SNMP Simple Network Management
Protocol

The application protocol offering network
management service in the Internet suite of
protocols.    Abbreviation used for both
SNMPv1 and SNMPv2.

variable SNMP variable An object's identity and its instance value
encoded as an OID.

varbind Variable-Binding A pairing of an object instance name and an
associated value or pseudo-value and
syntax.

varbindli
st

Variable-Bindings List A grouping of one or more variable-bindings

Special Acknowledgments

Special acknowledgment is made to the following individuals and organizations for critical contributions
to the origination, evolution, and realization of the WinSNMP/Manager API:

· Amatzia Ben-Artzi, NetManage, for contributing original SNMP API specifications to be used a
starting point for the WinSNMP/Manager API and for hosting the first WinSNMP interoperability
tests in February 1993.

· Dwain Kinghorn, Microsoft, for contributing original SNMP API specifications to be used as a
starting point for the WinSNMP/Manager API.

· Marshall Rose, Dover Beach Consulting, for a major enhancement to the early WinSNMP/
Manager API to provide for transparent SNMPv1 and SNMPv2 support and to enable transport
independence.    Marshall, of course, is a beacon of SNMP understanding and a bastion of SNMP
authority.

· Two other notable SNMP authorities--Jeff Case of SNMP Research and Dave Perkins of
Synoptics--contributed extensive reviews of the pre-1.0 versions of this specification.    In addition,
three other equally qualified SNMP experts--Bob Stewart of Xyplex, Keith McCloghrie of Cisco,
and Karl Auerbach--provided invaluable insights and guidance at various stages of the working
groups deliberations.

· Bob Natale, American Computer & Electronics Corp, for serving as group moderator and editor of
the WinSNMP family of APIs--WinSNMP/Manager, WinSNMP/MIB, and WinSNMP/Agent.

· Mark Towfiq and Simon Spero, SunSITE, for their generosity, patience, and effort with respect to
WinSNMP mailing list and file archive administration.

Also, several specific technical contributions deserve mention:    Maria Greene (while at Xyplex) for the
strawman C++ Appendix; Mary Quinn of FTP Software for the transport layer error codes; Reuben Sivan
of MultiPort Software for the const types; and Kee Lai of FTP Software for the trap processing example
Appendix.    Each of those contributions involved not just an idea expressed via e-mail, but some actual
work in writing and testing proposed code.    There have been many good ideas expressed on the
WinSNMP mailing list by many people--hopefully all of them are listed below.    However, one additional
individual deserves special mention here because he participated in almost all of the technical
discussions with patience, imagination, and persistence...many of the low-level specifics of the
WinSNMP/Manager API have been affected (positively :-) by the input of Chris Young of Cabletron.

In addition, the individuals listed in the next section and their sponsoring organizations have contributed
ideas, time, and (in some cases) other valuable resources, to the creation of the Windows SNMP API
specification.    (Other individuals have indicated a desire to help with some of the planned extensions to
the WinSNMP/Manager API...look for their names in the v2.0 document next year!)

Individual Contributors

Tom Abraham abraham@acec.com

Ed Alcoff oldera@nat.com

James    Allard jallard@microsoft.com

Karl Auerbach auerbach@ssds.com

Larry Backman backman@ftp.com

John Bartas jbartas@sunlight.com

jrb@ibeam.ht.intel.com

Amatzia Ben-Artzi amatzia@netmanage.com

Chris Bologna chris@distinct.com

Jeff Case case@snmp.com

Seung Tae Chin schin@novell.com

David Corbello corb@acc.com

William Dunn williy@netmanage.com

Hope Fabian hope@ralvm12.vnet.ibm.com

Nick Gandin gandin@acec.com

Maria Greene maria@maelstrom.timeplex.com

Michael Greenberg arnoff@ftp.com

Jim Greuel j_greuel@hpcnd.cnd.hp.com

Dwain Kinghorn dwaink@microsoft.com

Guenther Kroenert Guenther.Kroenert@sto.mchp.sni.de

Kee Lai klai@ftp.com

Ray C. Langford ray@frontiertech.com

Osip Liitsci osip@netmanage.com

Keith McCloghrie kzm@cisco.com

Evan McGinnis bem@nsd.3com.com

Victoria J. McGuire victoria@ralvm12.vnet.ibm.com

John F. Moehrke john@frontiertech.com

Bob Natale natale@acec.com

Scott Neal scott_neal@hp0800.desk.hp.com

Bill Norton wbn@merit.edu

Barbara Packard bpackard@ppg01.sc.hp.com

Sudhir Pendse sudhir@netcom.com

Dave Perkins dperkins@synoptics.com

Eric Peterson ericpe@microsoft.com

Mary Quinn mquinn@ftp.com

Marshall T. Rose mrose@dbc.mtview.ca.us

Rick Segal rsegal@microsoft.com

Reuben Sivan rds@world.std.com

Simon E. Spero ses@tipper.oit.unc.edu

Bob Stewart rlstewart@eng.xyplex.com

Wayne F. Tackabury wayne@cayman.com

Ling Thio H.L.Thio@et.tudelft.nl

Mark Towfiq towfiq@sunsite.unc.edu

Chuck Townsend townsend@ctron.com

Alex Tudor alex@hpssdat.sc.hp.com

Chuck Wegrzyn wegrzyn@nic.cerf.net

Pete Wilson pwilson@world.std.com

Boris Yanovsky boris@netmanage.com

Chris Young cyoung@ctron.com

Dennis Young young@telebit.com

Declarations

This section--exclusive of    this preamble text--constitutes the WinSNMP.h include file containing
common declarations for SNMP datatypes, attributes, and values and for WinSNMP API datatypes,
attributes, and values.    This section (minus this preamble text) must be delivered as WinSNMP.h with
every compliant implementation.

Additional declarations required or offered by an implementation must be delivered in a separate include
file with an implementation-specific name.

An attempt has been made to balance brevity and clarity in these declarations.    In general, however,
there has been a slight bias toward brevity.    Developers can easily include longer, more descriptive
equivalents to the declarations through additional #define and typedef statements in a private include
files loaded after WinSNMP.h.

Winsnmp.h Include File

/* v1.1 WinSNMP.h */

/* v1.0 - Sep 13, 1993 */

/* v1.1 - Jun 10, 1994 */

#ifndef _INC_WINSNMP /* Include WinSNMP declarations */

#define    _INC_WINSNMP /* Just once! */

#ifndef _INC_WINDOWS /* Include Windows declarations, if not already done */

#include <windows.h>

#define _INC_WINDOWS /* Just once! */

#endif /* _INC_WINDOWS */

#ifdef __cplusplus

extern "C" {

#endif

/* WinSNMP API Type Definitions    */

typedef    HANDLE HSNMP_SESSION, FAR *LPHSNMP_SESSION;

typedef    HANDLE HSNMP_ENTITY,    FAR *LPHSNMP_ENTITY;

typedef    HANDLE HSNMP_CONTEXT, FAR *LPHSNMP_CONTEXT;

typedef    HANDLE HSNMP_PDU, FAR *LPHSNMP_PDU;

typedef    HANDLE HSNMP_VBL, FAR *LPHSNMP_VBL;

typedef unsigned char smiBYTE, FAR *smiLPBYTE;

/* SNMP-related types from RFC1442 (SMI) */

typedef signed long smiINT, FAR *smiLPINT;

typedef smiINT smiINT32, FAR *smiLPINT32;

typedef unsigned long smiUINT32, FAR *smiLPUINT32;

typedef struct {

          smiUINT32 len;

          smiLPBYTE ptr;} smiOCTETS, FAR *smiLPOCTETS;

typedef const smiOCTETS FAR *smiLPCOCTETS;

typedef smiOCTETS smiBITS, FAR *smiLPBITS;

typedef struct {

          smiUINT32      len;

          smiLPUINT32 ptr;} smiOID, FAR *smiLPOID;

typedef const smiOID FAR *smiLPCOID;

typedef smiOCTETS smiIPADDR, FAR *smiLPIPADDR;

typedef smiUINT32 smiCNTR32, FAR *smiLPCNTR32;

typedef smiUINT32 smiGAUGE32, FAR *smiLPGAUGE32;

typedef smiUINT32 smiTIMETICKS, FAR *smiLPTIMETICKS;

typedef smiOCTETS smiOPAQUE, FAR *smiLPOPAQUE;

typedef smiOCTETS smiNSAPADDR, FAR *smiLPNSAPADDR;

typedef struct {

                smiUINT32 hipart;

                smiUINT32 lopart;} smiCNTR64, FAR *smiLPCNTR64;

/* ASN/BER Base Types */

/* (used in forming SYNTAXes and certain SNMP types/values) */

#define ASN_UNIVERSAL (0x00)

#define ASN_APPLICATION (0x40)

#define ASN_CONTEXT (0x80)

#define ASN_PRIVATE (0xC0)

#define ASN_PRIMITIVE (0x00)

#define ASN_CONSTRUCTOR (0x20)

/* SNMP ObjectSyntax Values */

#define SNMP_SYNTAX_SEQUENCE (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x10)

/* These values are used in the "syntax" member of the smiVALUE structure which follows */

#define SNMP_SYNTAX_INT (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x02)

#define SNMP_SYNTAX_BITS (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x03)

#define SNMP_SYNTAX_OCTETS (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x04)

#define SNMP_SYNTAX_NULL (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x05)

#define SNMP_SYNTAX_OID (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x06)

#define SNMP_SYNTAX_INT32 SNMP_SYNTAX_INT

#define SNMP_SYNTAX_IPADDR (ASN_APPLICATION | ASN_PRIMITIVE | 0x00)

#define SNMP_SYNTAX_CNTR32 (ASN_APPLICATION | ASN_PRIMITIVE | 0x01)

#define SNMP_SYNTAX_GAUGE32 (ASN_APPLICATION | ASN_PRIMITIVE | 0x02)

#define SNMP_SYNTAX_TIMETICKS (ASN_APPLICATION | ASN_PRIMITIVE | 0x03)

#define SNMP_SYNTAX_OPAQUE (ASN_APPLICATION | ASN_PRIMITIVE | 0x04)

#define SNMP_SYNTAX_NSAPADDR (ASN_APPLICATION | ASN_PRIMITIVE | 0x05)

#define SNMP_SYNTAX_CNTR64 (ASN_APPLICATION | ASN_PRIMITIVE | 0x06)

#define SNMP_SYNTAX_UINT32 (ASN_APPLICATION | ASN_PRIMITIVE | 0x07)

/* Exception conditions in response PDUs for SNMPv2 */

#define SNMP_SYNTAX_NOSUCHOBJECT (ASN_CONTEXT | ASN_PRIMITIVE | 0x00)

#define SNMP_SYNTAX_NOSUCHINSTANCE (ASN_CONTEXT | ASN_PRIMITIVE | 0x01)

#define SNMP_SYNTAX_ENDOFMIBVIEW (ASN_CONTEXT | ASN_PRIMITIVE | 0x02)

typedef struct { /* smiVALUE portion of VarBind */

smiUINT32 syntax; /* Insert SNMP_SYNTAX_<type> */

union {

smiINT sNumber; /* SNMP_SYNTAX_INT

      SNMP_SYNTAX_INT32 */

smiUINT32 uNumber; /* SNMP_SYNTAX_UINT32

      SNMP_SYNTAX_CNTR32

      SNMP_SYNTAX_GAUGE32

      SNMP_SYNTAX_TIMETICKS */

smiCNTR64 hNumber; /* SNMP_SYNTAX_CNTR64 */

smiOCTETS string; /* SNMP_SYNTAX_OCTETS

      SNMP_SYNTAX_BITS

      SNMP_SYNTAX_OPAQUE

      SNMP_SYNTAX_IPADDR

      SNMP_SYNTAX_NSAPADDR */

smiOID oid; /* SNMP_SYNTAX_OID */

smiBYTE empty; /* SNMP_SYNTAX_NULL

      SNMP_SYNTAX_NOSUCHOBJECT

      SNMP_SYNTAX_NOSUCHINSTANCE

      SNMP_SYNTAX_ENDOFMIBVIEW */

                } value; /* union */

} smiVALUE, FAR *smiLPVALUE;

typedef const smiVALUE FAR *smiLPCVALUE;

/* SNMP Limits      */

#define MAXOBJIDSIZE 128 /* Max number of components in an OID */

#define MAXOBJIDSTRSIZE 1408 /* Max len of decoded MAXOBJIDSIZE OID */

/* PDU Type Values */

#define SNMP_PDU_GET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x0)

#define SNMP_PDU_GETNEXT (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x1)

#define SNMP_PDU_RESPONSE (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x2)

#define SNMP_PDU_SET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x3)

/* SNMP_PDU_V1TRAP is obsolete in SNMPv2 */

#define SNMP_PDU_V1TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x4)

#define SNMP_PDU_GETBULK (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x5)

#define SNMP_PDU_INFORM (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x6)

#define SNMP_PDU_TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x7)

/* SNMPv1 Trap Values */

/* (These values might be superfluous wrt WinSNMP applications) */

#define SNMP_TRAP_COLDSTART 0

#define SNMP_TRAP_WARMSTART 1

#define SNMP_TRAP_LINKDOWN 2

#define SNMP_TRAP_LINKUP 3

#define SNMP_TRAP_AUTHFAIL 4

#define SNMP_TRAP_EGPNEIGHBORLOSS 5

#define SNMP_TRAP_ENTERPRISESPECIFIC 6

/* SNMP Error Codes Returned in Error_status Field of PDU */

/* (these are NOT WinSNMP API Error Codes */

/* Error Codes Common to SNMPv1 and SNMPv2 */

#define SNMP_ERROR_NOERROR 0

#define SNMP_ERROR_TOOBIG 1

#define SNMP_ERROR_NOSUCHNAME 2

#define SNMP_ERROR_BADVALUE 3

#define SNMP_ERROR_READONLY 4

#define SNMP_ERROR_GENERR 5

/* Error Codes Added for SNMPv2 */

#define SNMP_ERROR_NOACCESS 6

#define SNMP_ERROR_WRONGTYPE 7

#define SNMP_ERROR_WRONGLENGTH 8

#define SNMP_ERROR_WRONGENCODING 9

#define SNMP_ERROR_WRONGVALUE 10

#define SNMP_ERROR_NOCREATION 11

#define SNMP_ERROR_INCONSISTENTVALUE 12

#define SNMP_ERROR_RESOURCEUNAVAILABLE 13

#define SNMP_ERROR_COMMITFAILED 14

#define SNMP_ERROR_UNDOFAILED 15

#define SNMP_ERROR_AUTHORIZATIONERROR 16

#define SNMP_ERROR_NOTWRITABLE 17

#define SNMP_ERROR_INCONSISTENTNAME 18

/* WinSNMP API Values */

/* Values used to indicate entity/context translation modes */

#define SNMPAPI_TRANSLATED                    0

#define SNMPAPI_UNTRANSLATED_V1 1

#define SNMPAPI_UNTRANSLATED_V2 2

/* Values used to indicate SNMP "communications    level" supported by the implementation */

#define SNMPAPI_NO_SUPPORT 0

#define SNMPAPI_V1_SUPPORT 1

#define SNMPAPI_V2_SUPPORT 2

#define SNMPAPI_M2M_SUPPORT 3

/* Values used to indicate retransmit mode in the implementation */

#define SNMPAPI_OFF 0 /* Refuse support */

#define SNMPAPI_ON 1 /* Request support */

/* WinSNMP API Function Return Codes */

typedef smiUINT32 SNMPAPI_STATUS; /* Used for function ret values */

#define SNMPAPI_FAILURE 0 /* Generic error code */

#define SNMPAPI_SUCCESS 1 /* Generic success code */

/* WinSNMP API Error Codes (for SnmpGetLastError) */

/* (NOT SNMP Response-PDU error_status codes) */

#define SNMPAPI_ALLOC_ERROR 2 /* Error allocating memory */

#define SNMPAPI_CONTEXT_INVALID 3 /* Invalid context parameter */

#define SNMPAPI_CONTEXT_UNKNOWN 4 /* Unknown context parameter */

#define SNMPAPI_ENTITY_INVALID 5 /* Invalid entity parameter */

#define SNMPAPI_ENTITY_UNKNOWN 6 /* Unknown entity parameter */

#define SNMPAPI_INDEX_INVALID 7 /* Invalid VBL index parameter */

#define SNMPAPI_NOOP 8 /* No operation performed */

#define SNMPAPI_OID_INVALID 9 /* Invalid OID parameter */

#define SNMPAPI_OPERATION_INVALID 10 /* Invalid/unsupported operation */

#define SNMPAPI_OUTPUT_TRUNCATED 11 /* Insufficient output buf len */

#define SNMPAPI_PDU_INVALID 12 /* Invalid PDU parameter */

#define SNMPAPI_SESSION_INVALID 13 /* Invalid session parameter */

#define SNMPAPI_SYNTAX_INVALID 14 /* Invalid syntax in smiVALUE */

#define SNMPAPI_VBL_INVALID 15 /* Invalid VBL parameter */

#define SNMPAPI_MODE_INVALID 16 /* Invalid mode parameter */

#define SNMPAPI_SIZE_INVALID 17 /* Invalid size/length parameter */

#define SNMPAPI_NOT_INITIALIZED 18 /* SnmpStartup failed/not called */

#define SNMPAPI_MESSAGE_INVALID 19 /* Invalid SNMP message format */

#define SNMPAPI_HWND_INVALID 20 /* Invalid Window handle */

#define SNMPAPI_OTHER_ERROR 99 /* For internal/undefined errors */

/* Generic Transport Layer (TL) Errors */

#define SNMPAPI_TL_NOT_INITIALIZED 100 /* TL not initialized */

#define SNMPAPI_TL_NOT_SUPPORTED 101 /* TL does not support protocol */

#define SNMPAPI_TL_NOT_AVAILABLE 102 /* Network subsystem has failed */

#define SNMPAPI_TL_RESOURCE_ERROR 103 /* TL resource error */

#define SNMPAPI_TL_UNDELIVERABLE 104 /* Destination unreachable */

#define SNMPAPI_TL_SRC_INVALID 105 /* Source endpoint invalid */

#define SNMPAPI_TL_INVALID_PARAM 106 /* Input parameter invalid */

#define SNMPAPI_TL_IN_USE 107 /* Source endpoint in use */

#define SNMPAPI_TL_TIMEOUT 108 /* No response before timeout */

#define SNMPAPI_TL_PDU_TOO_BIG 109 /* PDU too big for send/receive */

#define SNMPAPI_TL_OTHER 199 /* Undefined TL error */

/* WinSNMP API Function Prototypes */

#define IN /* Documentation only */

#define OUT /* Documentation only */

#define SNMPAPI_CALL WINAPI /* FAR PASCAL calling conventions */

/* Local Database Functions */

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetTranslateMode

(OUT smiLPUINT32 nTranslateMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetTranslateMode

(IN smiUINT32 nTranslateMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetRetransmitMode

(OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetRetransmitMode

(IN smiUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetTimeout

(IN HSNMP_ENTITY hEntity,

OUT smiLPTIMETICKS nPolicyTimeout,

OUT smiLPTIMETICKS nActualTimeout);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetTimeout

(IN HSNMP_ENTITY hEntity,

IN smiTIMETICKS nPolicyTimeout);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetRetry

(IN HSNMP_ENTITY hEntity,

OUT smiLPUINT32 nPolicyRetry,

OUT smiLPUINT32 nActualRetry);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetRetry

(IN HSNMP_ENTITY hEntity,

IN smiUINT32 nPolicyRetry);

/* Communications Functions */

SNMPAPI_STATUS SNMPAPI_CALL SnmpStartup

(OUT smiLPUINT32 nMajorVersion,

OUT smiLPUINT32 nMinorVersion,

OUT smiLPUINT32 nLevel,

OUT smiLPUINT32 nTranslateMode,

OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpCleanup

(void);

HSNMP_SESSION    SNMPAPI_CALL SnmpOpen

(IN HWND hWnd,

IN UINT wMsg);

SNMPAPI_STATUS SNMPAPI_CALL SnmpClose

(IN HSNMP_SESSION session);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSendMsg

(IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN HSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpRecvMsg

(IN HSNMP_SESSION session,

OUT LPHSNMP_ENTITY srcEntity,

OUT LPHSNMP_ENTITY dstEntity,

OUT LPHSNMP_CONTEXT    context,

OUT LPHSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpRegister

(IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN smiLPCOID notification,

IN smiUINT32 state);

/* Entity/Context Functions */

HSNMP_ENTITY SNMPAPI_CALL SnmpStrToEntity

(IN HSNMP_SESSION session,

IN LPCSTR string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpEntityToStr

(IN HSNMP_ENTITY entity,

IN smiUINT32 size,

OUT LPSTR string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeEntity

(IN HSNMP_ENTITY entity);

HSNMP_CONTEXT SNMPAPI_CALL SnmpStrToContext

(IN HSNMP_SESSION session,

IN smiLPCOCTETS string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpContextToStr

(IN HSNMP_CONTEXT context,

OUT smiLPOCTETS string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeContext

(IN HSNMP_CONTEXT context);

/* PDU Functions */

HSNMP_PDU SNMPAPI_CALL SnmpCreatePdu

(IN HSNMP_SESSION session,

IN smiINT PDU_type,

IN smiINT32 request_id,

IN smiINT error_status,

IN smiINT error_index,

IN HSNMP_VBL varbindlist);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetPduData

(IN HSNMP_PDU PDU,

OUT smiLPINT PDU_type,

OUT smiLPINT32 request_id,

OUT smiLPINT error_status,

OUT smiLPINT error_index,

OUT LPHSNMP_VBL varbindlist);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetPduData

(IN HSNMP_PDU PDU,

IN const smiINT FAR *PDU_type,

IN const smiINT32 FAR *request_id,

IN const smiINT FAR *non_repeaters,

IN const smiINT FAR *max_repetitions,

IN const HSNMP_VBL FAR *varbindlist);

HSNMP_PDU SNMPAPI_CALL SnmpDuplicatePdu

(IN HSNMP_SESSION session,

IN HSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreePdu

(IN HSNMP_PDU PDU);

/* Variable-Binding Functions */

HSNMP_VBL SNMPAPI_CALL SnmpCreateVbl

(IN HSNMP_SESSION session,

IN smiLPCOID name,

IN smiLPCVALUE value);

HSNMP_VBL SNMPAPI_CALL SnmpDuplicateVbl

(IN HSNMP_SESSION session,

IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeVbl

(IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpCountVbl

(IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetVb

(IN HSNMP_VBL vbl,

IN smiUINT32 index,

OUT smiLPOID name,

OUT smiLPVALUE value);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetVb

(IN HSNMP_VBL vbl,

IN smiUINT32 index,

IN smiLPCOID name,

IN smiLPCVALUE value);

SNMPAPI_STATUS SNMPAPI_CALL SnmpDeleteVb

(IN HSNMP_VBL vbl,

IN smiUINT32 index);

/* Utility Functions */

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetLastError

(IN HSNMP_SESSION session);

SNMPAPI_STATUS SNMPAPI_CALL SnmpStrToOid

(IN LPCSTR string,

OUT smiLPOID dstOID);

SNMPAPI_STATUS SNMPAPI_CALL SnmpOidToStr

(IN smiLPCOID srcOID,

IN smiUINT32 size,

OUT LPSTR string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpOidCopy

(IN smiLPCOID srcOID,

OUT smiLPOID dstOID);

SNMPAPI_STATUS SNMPAPI_CALL SnmpOidCompare

(IN smiLPCOID xOID,

IN smiLPCOID yOID,

IN smiUINT32 maxlen,

OUT smiLPINT result);

SNMPAPI_STATUS SNMPAPI_CALL SnmpEncodeMsg

(IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN HSNMP_PDU pdu,

OUT smiLPOCTETS msgBufDesc);

SNMPAPI_STATUS SNMPAPI_CALL SnmpDecodeMsg

(IN HSNMP_SESSION session,

OUT LPHSNMP_ENTITY srcEntity,

OUT LPHSNMP_ENTITY dstEntity,

OUT LPHSNMP_CONTEXT context,

OUT LPHSNMP_PDU pdu,

IN smiLPCOCTETS msgBufDesc);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeDescriptor

(IN smiUINT32 syntax,

IN smiLPOPAQUE descriptor);

#ifdef __cplusplus

}

#endif

#endif /* _INC_WINSNMP */

Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

One of the differences between SNMPv1 and SNMPv2 is a change to the trap format: In SNMPv1, the
trap format was unlike the format of the other protocol data units; in SNMPv2 the trap format is identical
to the format of the other PDUs.

When the WinSNMP API delivers a trap to a management application, it always uses the SNMPv2 trap
format, even if an SNMPv1 agent generated the trap.    The SNMPv2 coexistence document, RFC 1452,
specifies how an SNMPv1 trap is translated into the SNMPv2 trap format, and this algorithm is used in
all implementations of the WinSNMP API.

In SNMPv1, the trap format has five fields:

- enterprise, which identified the type of device which generated the trap;

- agent-addr, which identified the network address of the device;

- generic-trap/specific-trap, which identified the trap which was generated;

- time-stamp, which identified when the trap was generated; and,

- variable-bindings, which contained the "payload", if any, associated with the trap.

In SNMPv2, the trap format consists simply of a list of "N'' variable bindings, in which:

- the first variable binding contains the time-stamp;

- the second variable binding identifies the trap, using an OBJECT IDENTIFIER;

- the third through "N'' variable bindings, if any, contain the payload.

Hence, when SnmpRecvMsg returns a message whose operation type is SNMP_PDU_TRAP, the
application need only examine the variable-bindings of that message in order to ascertain the
information associated with the trap.

When translating an SNMPv1 trap to the SNMPv2 format, one additional variable binding may be
present, at the end of the list, which corresponds to the enterprise field.    According to the SNMPv2
coexistence document, this variable binding need only be present if the trap was enterprise-specific.   
However, in order to simplify the programming of management applications, this variable binding is
always added by the WinSNMP API when it translates an SNMPv1 trap to the SNMPv2 format.

The following code fragment shows how an application can examine the variable-bindings in order to
retrieve all of the information associated with a trap.

SNMPAPI_STATUS TrapProcess (HSNMP_SESSION hSession)

{

                HSNMP_ENTITY hSrc, hDest;

                HSNMP_CONTEXT hContext;

                HSNMP_PDU hPDU;

                HSNMP_VBL hVBL;

                smiINT32 Request_id;

                smiINT PduType, Err_stat, Err_index;

                SNMPAPI_STATUS RetStatus, Index, VBCount;

                smiOID      Name;

                smiVALUE Value;

                smiBYTE    NameBuffer[100], ValueBuffer[256];

                ...

                Request_id = SnmpRecvMsg (

                                hSession, // Trap Session Handle

                                &hSrc, // Source Entity Handle

                                &hDest, // Destination Entity Handle

                                &hContext, // Context Handle

                                &hPDU); // PDU Handle

                // Error condition checking for SnmpRecvMsg() performs here.

 

                RetStatus = SnmpGetPduData (

                                hPDU, // PDU Handle

                                &PduType, // PDU return type

                                &Request_id, // Request ID of the Trap

                                &Err_stat, // Error status for a variable

                                &Err_index, // Index to the variable with error

                                &hVBL); // Handle to the Varbindlist

                // Sample error checking for SnmpGetPduData():

                if ((RetStatus == SNMPAPI_FAILURE) ||

                        (PduType != SNMP_PDU_TRAP) ||

                        (Err_stat != SNMP_ERROR_NOERROR)) {

                                SnmpFreePdu(hPDU);

                                SnmpFreeEntity(hSrc);

                                SnmpFreeEntity(hDest);

                                SnmpFreeContext(hContext);

                                return (SnmpGetLastError(hSession));

                }

                VBCount = SnmpCountVbl(hVBL);

                for (Index = 1; i <= VBCount; Index ++) {

                                // When Index = 1,

                                //    Oid      = sysUpTimeOid

                                //    Value = uptime value for the V1 time-stamp trap field

                                // When Index = 2,

                                //    Oid      = v2snmpTrapOid

                                //    value = can be one of the following Oids:

                                //                            v2coldStartOid

                                //                            v2warmStartOid

                                //                            v2linkDownOid

                                //                            v2linkUpOid

                                //                            v2authenFailureOid

                                //                            v2egpNeighborLossOid

                                //                            v2snmpTrapEnterpriseOid+specific_trap

                                // When Index = VBCount, (the last Oid in the v2 trap)

                                //    Oid      = v2snmpTrapEnterpriseOid

                                //    Value = enterprise specific Oid from V1 trap

                            // Get a particular variable from the Varbindlist

                            // using the given Index.

                                RetStatus = SnmpGetVb (

  hVBL, // Input Varbindlist Handle

  Index, // Index to a variable

  &Name, // Output name of the variable

  &Value); // Output value of the variable

                                // Error condition checking for RetStatus performs here

                                SnmpOidToStr (&Name, 100, (LPSTR)NameBuffer);

                                SnmpFreeDescriptor (SNMP_SYNTAX_OID, &Name);

                                switch (Value.syntax) {

 

  case SNMP_SYNTAX_INT :

  _ltoa ((long)Value.value.sNumber, ValueBuffer, 10);

  break;

  case SNMP_SYNTAX_UINT32 :

  case SNMP_SYNTAX_CNTR32 :

  case SNMP_SYNTAX_GAUGE32 :

  case SNMP_SYNTAX_TIMETICKS :

  _ltoa ((long)Value.value.uNumber, ValueBuffer, 10);

  break;

  case SNMP_SYNTAX_CNTR64 :

  break; // Need routine to convert 64-bit number to string here!

  case SNMP_SYNTAX_OCTETS :

  case SNMP_SYNTAX_BITS :

  case SNMP_SYNTAX_OPAQUE :

  case SNMP_SYNTAX_IPADDR :

  case SNMP_SYNTAX_NSAPADDR :

  _fmemcpy (ValueBuffer, Value.value.string.ptr, (size_t)Value.value.string.len);

  SnmpFreeDescriptor (SNMP_SYNTAX_OCTETS, &Value.value.string);

  break;

  case SNMP_SYNTAX_OID :

  SnmpOidToStr (&Value.value.oid, 256, ValueBuffer);

  SnmpFreeDescriptor (SNMP_SYNTAX_OID, &Value.value.oid);

  break;

                                } // switch

                                OutputVariable (

  Index, // Index to a given variable for output

  NameBuffer, // Trap variable Oid Name Output Buffer

  ValueBuffer); // Trap variable Value Output Buffer

                } //for loop

 

                SnmpFreeEntity (hSrc);

                SnmpFreeEntity (hDest);

                SnmpFreeContext (hContext);

                SnmpFreeVbl (hVBL);

                SnmpFreePdu (hPDU);

                return SNMPAPI_SUCCESS;

} // TrapProcess

Appendix B. Usage Example

Sample applications will be published separately due to size and packaging considerations.

Appendix C.    WinSNMP++ Prototype

The following table shows a possible mapping between the C interface of the WinSNMP API
specification and a set of C++ wrappers.    This is strictly an informational Appendix and does not
constitute a part of the official Windows SNMP API specification at this time.

The content was contributed by Maria Greene, and was well-discussed on the list.    Unless otherwise
noted, obvious differences between the WinSNMP C interface specifications and the WinSNMP++
interface prototypes shown below are simply due to changes being made to the C interface after this
Appendix was inserted.    Therefore, future edits for consistency--according to the pattern demonstrated
herein--can be assumed.

Please note the re-positioning of the varbindlist parameter in the SnmpCreatePdu and
SnmpSetPduData C++ equivalents is intentional and permits applications to take advantage of certain
C++ language-specific features.

Class/Returns C++ Interface C Interface

Session:: Session (

      Entity &srcEntity,

      HWND hWnd,

      UINT wMsg)

SnmpOpen

~Session (void) SnmpClose

BOOL SendMsg (

      const Entity &dstEntity,

      const Context &context,

      const Pdu &PDU)

SnmpSendMsg

Pdu * RecvMsg (

      Entity &srcEntity,

      Entity &dstEntity,

      Context &context)

SnmpRecvMsg

BOOL Register (

      const Entity &entity,

      const Context &context,

      const Oid ¬ification = NULL,

      BOOL enabled = TRUE)

SnmpRegister

Entity:: Entity (const LPSTR entity)

Entity (const Entity &entity)

SnmpStrToEntity

~Entity (void) SnmpFreeEntity

 

Entity

operator const char*() const

&operator    =    (const Entity &entity)

SnmpEntityToStr

Context:: Context (const LPSTR context)

Context (const Context &context)

SnmpStrToContext

~Context (void) SnmpFreeContext

 

Context

operator const char*() const

&operator    = (const Context &context)

SnmpContextToStr

SnmpUtil:: SnmpUtil (???) SnmpStartup

~SnmpUtil (void) SnmpCleanup

???? EnumEntities (???) SnmpEnumEntities

???? EnumContexts (???) SnmpEnumContexts

int GetLastError (void) SnmpGetLastError

DWORD Version (void) SnmpUtilVersion

Class/Returns C++ Interface C Interface

Pdu:: Pdu (

      smiINT PDU_type=

            SNMP_PDU_GETNEXT,

      VarBindList *varbindlist = NULL,

      smiINT32 request_id = 0,

      smiINT non_repeaters = 0,

      smiINT max_repetitions = 0)

SnmpCreatePdu

 Pdu (const Pdu &PDU) SnmpDuplicatePdu

~Pdu (void) SnmpFreePdu

BOOL GetData (

      smiLPINT PDU_type = NULL,

      smiLPINT32 request_id = NULL,

      smiLPINT error_status = NULL,

      smiLPINT error_index = NULL,

      VarBindList **varbindlist = NULL)

SnmpGetPduData

BOOL SetData (

      smiINT PDU_type =

            SNMP_PDU_GETNEXT,

      VarBindList *pvarbindlist = NULL,

      smiINT32 request_id = 0,

      smiINT non_repeaters = 0,

      smiINT max_repetitions = 0)

SnmpSetPduData

Pdu &operator = (const Pdu &PDU)

VarBindList:: VarBindList (

      Oid *poid = NULL,

      smiLPVALUE value = NULL)

SnmpCreateVbl

VarBindList (&VarBindList) SnmpDuplicateVbl

~VarBindList (void) SnmpFreeVbl

smiINT Count (void) SnmpCountVbl

BOOL GetVb (SnmpGetVb

      smiINT index,

      Oid &oid,

      smiLPVALUE value)

BOOL SetVb (

      Oid &oid,

      smiLPVALUE value)

SnmpSetVb

BOOL DeleteVb (Oid &oid) SnmpDeleteVb

VarBindList &operator    =

(const VarBindList &varbindlist)

Oid:: Oid (LPSTR str =    NULL) SnmpUtilStrToOid

Oid (const Oid &oid) SnmpUtilOidCpy

~Oid (void)

operator const char*() const SnmpUtilOidToStr

Oid &operator += (const Oid &oid) SnmpUtilOidAppend

BOOL operator == (const Oid &oid) const SnmpUtilOidCmp

Oid &operator = (const LPSTR str) SnmpUtilStrToOid

Oid &operator = (const Oid &oid) SnmpUtilOidCpy

smiINT NCmp (

      const Oid &oid,

      smiUINT32 len = 0) const

SnmpUtilOidNCmp

Programming With Windows SNMP

This section outlines some of the high level considerations relevant to the programming "model"
envisioned by WinSNMP.    This model is meant to add background and context for evaluating the
specification itself.    In general, although it is not possible to eschew all references to implementation
details in the MSWindows environments, the WinSNMP specifications try to openly state any and all
relevant implementation assumptions.

The primary assumption is that the WinSNMP/Manager API will be implemented by (or for) the SNMP
service provider as a dynamic link library (WINSNMP.DLL).    This DLL might perform the SNMP
functions locally or might be a helper DLL that ships application requests to an SNMP service on a
remote platform and, in return, routes responses from that platform back to the target applications on the
local MSWindows machine.

In either case, the major aspects of WinSNMP implementation that affect application development
include:

· Levels of SNMP Support

· Transport Interface Support

· Entity/Context Translation Modes

· Local Database Information

· Session Characteristics

· Memory Management

· Asynchronous Model

· Polling and Retransmission

· Error Handling

· Data Types

Levels of SNMP Support

This specification allows for multiple levels of SNMP support -- explicitly for implementations and
implicitly for applications.

Note that these "Levels" are independent of and unrelated to the "Modes" of interpretation of entity and
context arguments (described later).

Note that the implementation will report its maximum level of SNMP support in response to the
SnmpStartup function (described later).

Implementations

The WinSNMP API specification allows an implementation to support any of four overlapping levels of
SNMP operations:

Level 0 = Message encoding/decoding only

Level 1 = Level 0 + interaction with SNMPv1 agents

Level 2 = Level 1 + interaction with SNMPv2 agents

Level 3 = Level 2 + interaction with other SNMPv2 managers

"Level 0" Implementations

"Level 0" implementations must support all WinSNMP specifications except those which require
communication with other SNMP entities, namely:

SnmpSendMsg

SnmpRecvMsg

SnmpRegister

"Level 0" implementations exist to provide SNMP message encoding and decoding services to
applications which do not require the communications transport services of the WinSNMP
implementation, but still require WinSNMP services, such as:

Local Database Functions

SnmpEncodeMsg

SnmpDecodeMsg

All WinSNMP implementations must include full "Level 0" support.

"Level 1" Implementations

"Level 1" implementations support communications with SNMPv1 agents, in addition to providing full
"Level 0" support.

Since WinSNMP applications are structured to support SNMPv2, "Level 1" implementations must
support the requisite transformations specified in the "Coexistence" document (RFC1452).    For
example, if a WinSNMP application submits a GetBulkRequest PDU to a "Level 1" implementation, the
WinSNMP implementation will transform this into a GetNextRequest PDU, per Section 3.1.1.(2) of
RFC1452, and proceed accordingly.

Note that WinSNMP always returns traps in SNMPv2 format, whether the trap emanates from an
SNMPv1 agent or, as a notification, from an SNMPv2 agent.    This behavior is also defined by
RFC1452.

"Level 1" implementations must support the use of target agent addresses and community strings;

but are not required to support any SNMPv2 mechanisms, other than the "Coexistence"
transformations mentioned above.

"Level 2" Implementations

"Level 2" implementations support communications with SNMPv2 agents, in addition to providing full
"Level 1" and "Level 0" support.

In particular, "Level 2" implementations must support the Party MIB and the use of parties, contexts,
authentication, and privacy mechanisms, but are not required to support the Manager-to-Manager MIB
or protocol operations relating to the InformRequest PDU type.

"Level 3" Implementations

"Level 3" implementations support communications with other SNMPv2 management entities via the
Manager-to-Manager MIB and protocol operations relating to the InformRequest PDU type, in addition to
providing full "Level 2", "Level 1", and "Level 0" support.

Applications

The WinSNMP API is oriented toward the writing of applications which are SNMPv2-enabled, at least in
terms of their structure.    A WinSNMP application may always use the relevant PDU types defined for
SNMPv2 (as specified in WinSNMP.h, the "Declarations" section of this document) with the assurance
that the implementation will perform the necessary transformations--in accordance with the
"Coexistence" document (RFC1452)--when communicating with an SNMPv1 agent on behalf of the
application.    Likewise, a WinSNMP application will always receive Trap PDUs (via SnmpRecvMsg from
the implementation) as SNMPv2 traps, even when the issuing entity is an SNMPv1 agent.

Note that it is possible for WinSNMP applications to operate in such a way as to utilize the
implementation merely for SNMP message encoding and decoding and to bypass the WinSNMP
implementation with respect to communications with the destination entities.    In this mode, the
application must perform the necessary GetResponse and Trap PDU transformations for itself, at its own
discretion.

Transport Interface Support

For everything above Level 0, the WinSNMP implementation conducts the communications transactions
with the SNMP agents on behalf of the applications.    Nothing in the WinSNMP specification attempts to
dictate how an implementation (and/or an application) will actually execute the communications process
with remote entities.

A number of options exist.    They are not necessarily mutually exclusive--several might be used by an
implementation with one or more in the same or a different combination being used by its client
applications.

Possible approaches include the following:    Embedded Stack, Proprietary Stack API, Windows Sockets
API, Multi-Protocol API, RPC.

In the embedded stack approach, the implementation incorporates the transport layer, without overt
reliance on any external components.    Note that in this context embedded simply means that it is part of
the WinSNMP implementation package and external means not provided by the WinSNMP provider.    In
other words, an embedded transport could actually reside in a separate physical module (e.g., a DLL or
virtual driver (VxD) of its own).

Using the proprietary stack API approach, a WinSNMP implementation supports the development API of
a transport stack vendor.    Such a technique might be used for competitive, marketing, or performance
reasons (among others).    This approach can often yield access to low-level protocol elements that are
sometimes not available in the vendor-independent and multi-protocol options.

The Windows Sockets API (WinSock) approach affords an implementation--and, consequently its
users--a very comfortable degree of independence and flexibility.      WinSock is fast becoming an
industry standard for TCP/IP applications programming.    It enables stack vendors to exploit their
proprietary APIs on the backend while offering application developers a single interface on the frontend.
The WinSock approach is the one that is assumed (but not required) by the WinSNMP API
specifications, as shown in Figure 1.

The Multi-Protocol API approach allows an implementation to include support for a diverse set of
transport interfaces.    The APP2SOCK.DLL supplied by Spry is an example of such an API.    Enhanced
flexibility is the main advantage of this approach, while limited support for some of the lower-level details
of the underlying protocols and potential performance impacts are possible disadvantages.    It is
anticipated that v2 of the WinSock API will include support for multiple transport protocols (including
TCP/IP, of course).

Finally, the RPC approach permits implementations which function only as mediators between
applications on the local MSWindows desktop and a remote SNMP service provider on, for example, a
UNIX platform.

The main point of this survey of available communications strategies is that there are options; they are
not necessarily mutually exclusive; they can be mixed and matched across both WinSNMP
implementations and applications.

Entity/Context Translation Modes

WinSNMP applications have the capability of instructing the implementation to interpret entity and
context arguments as either literal SNMPv1 agent address and community string, respectively, or as
literal SNMPv2 party and context IDs, respectively.    An alternative to either of these modes is that in
which these arguments are interpreted as user- or application-friendly names for entities and managed
object collections to be dereferenced ("translated") into their respective SNMPv1 or SNMPv2
components via the implementation's local database.

The three entity/context translation modes are:

SNMPAPI_TRANSLATED       = Translate via Local Database look-up

SNMPAPI_UNTRANSLATED_V1 = Literal transport address and community string

SNMPAPI_UNTRANSLATED_V2 = Literal SNMPv2 party and context IDs

The WinSNMP implementation will always identify its current default entity/context translation mode
setting in the return value from the SnmpStartup function (which is idempotent).    A WinSNMP
application may request a different entity/context translation mode setting at any time with the
SnmpSetTranslateMode function.    An implementation may elect to not support a requested translation
mode, in which case it must return an error and set SnmpGetLastError to SNMPAPI_MODE_INVALID.

All WinSNMP implementations and applications are encouraged to support SNMPAPI_TRANSLATED
mode as their default mode of operation, to assist in fostering bilingual (SNMPv1 and SNMPv2)
applications deployment.

Note that the sample code which follows in sections 2.3.1 through 2.3.4 includes literal string
representations of some of the arguments to the WinSNMP functions.    This is merely for expository
purposes.    In the interests of internationalization and localization--and generally good software
engineering practices--application writers are encouraged to isolate all such text string values in
StringTables in separate resource files or to use some similar technique to modularize such strings out
of the operating logic of their applications.

Also, note that context string arguments are passed as octet string structures (smiOCTETS descriptors)
since SNMPv1 community strings can contain any values, not just those from the NVT ASCII or
DisplayString character set.

SNMPAPI_TRANSLATED Mode

When the translation mode is set to SNMPAPI_TRANSLATED, an application will make calls similar to
the following:

LPCSTR entityName = Main_Hub;

smiOCTETS contextName;

contextName.ptr = Traffic_Stats;

contextName.len = lstrlen (contextName.ptr);

hAgent = SnmpStrToEntity (hSomeSessin, entityName);

hView      = SnmpStrToContext (hSomeSession, const &contextName);

The implementation will use its selected access method to look-up "Main_Hub" and "Traffic_Stats" in its
local database and, if successful, will assemble the appropriate internal data structures and return
HANDLE values for use by the application.

SNMPAPI_UNTRANSLATED_V1 Mode

When the translation mode is set to SNMPAPI_UNTRANSLATED_V1, an application will make calls
similar to the following:

LPCSTR entityName = 192.151.207.34;
smiOCTETS contextName;
contextName.ptr = public;
contextName.len = lstrlen (contextName.ptr);
hAgent = SnmpStrToEntity (hSomeSessin, entityName);
hView      = SnmpStrToContext (hSomeSession, const &contextName);

The implementation will assume--based on the SNMPAPI_UNTRANSLATED_V1 setting for
hSomeSession--that "192.151.207.34" equates to an IP address to be reached via UDP port 161, and
that this value is being passed as a far pointer to a constant NULL terminated text string (LPCSTR) that
it must first convert to dotted decimal notation.

SNMPAPI_UNTRANSLATED_V2 Mode

When the translation mode is set to SNMPAPI_UNTRANSLATED_V2, an application will make calls
similar to the following:

LPCSTR entityName = 1.3.6.1.6.3.3.1.3.134.141.40.162.1;
smiOCTETS contextName;
contextName.ptr = 1.3.6.1.6.3.3.1.4.134.141.40.162.1;
contextName.len = lstrlen (contextName.ptr);
hAgent = SnmpStrToEntity (hSomeSessin, entityName);
hView      = SnmpStrToContext (hSomeSession, const &contextName);

The first string is an initialPartyID with an agent from 134.141.40.162; the second string is an
intialContextID with the same agent.

The implementation will assume--based on the SNMPAPI_UNTRANSLATED_V2 setting for
hSomeSession--that "1.3.6.1.6.3.3.1.3.134.141.40.162.1" equates to an a PartyID instance at IP
address 134.141.40.162 to be reached via UDP port 161, and that this value is being passed as a far
pointer to a constant NULL terminated text string (LPCSTR) that it must first convert to an OID.

Local Database

An SNMPv1 message includes version information and a community string, in addition to the PDU.    An
SNMPv2 message includes source party, destination party, context, and authentication information, in
addition to the PDU (and the entire message may optionally be encrypted).    Given these facts and the
stated mission to accommodate both existing versions of SNMP, WinSNMP must meet at least the
following four objectives:

1. A WinSNMP application must have full access to all components of the SNMP message issued
by the WinSNMP implementation.    At the extreme, the SnmpEncodeMsg and
SnmpDecodeMsg functions enable access to and manipulation of fully-serialized, "ready-for-
transport" SNMP messages.

2. A WinSNMP application must not have to incorporate WinSNMP implementation-specific routines
or data structures to utilize any of the functionality defined by WinSNMP itself.    Each WinSNMP
implementation may use private mechanisms external to the WinSNMP applications, but any and
all necessary interfaces to these mechanisms will be via the defined WinSNMP APIs only.

3. A WinSNMP application must not have to know the SNMP version level of    the target SNMP
entities acting in an agent role.    The WinSNMP implementation will perform any and all
necessary mappings between SNMPv1 and SNMPv2 in accordance with the appropriate RFCs,
and especially RFC 1452.    With respect to agent addressing, this is particular true for
TRANSLATED mode access; for protocol operations it holds regardless of the entity/context
translation mode in effect.

4. One implication of the foregoing requirement is that the SNMPv1 message format must fit neatly
within the structure adopted for the SNMPv2 message format.    This statement applies to
WinSNMP "messages" only--it is not meant in any way to limit or modify anything in the
"Coexistence" RFC.

Taking the view that SNMPv1 message semantics can be housed within SNMPv2 message semantics,
we will first focus on the SNMPv2 message components:

For SNMPv2 communications, the "source party" (srcEntity) components refer to the management
application and will largely be supplied by the WinSNMP implementation layer via the Local Database.   
For SNMPv1 communications, srcEntity basically is a no-op.

For SNMPv2 communications, the "destination party" (dstEntity) components refer to the target agent
and must come, at least in part, from logically remote SNMP entities.    Given a dstEntity transport
address and protocol and the assumption of at least one noAuth/noPriv "entrance" into the target agent
(i.e., InitialPartyID), an application can initiate SNMP exchanges via the WinSNMP implementation.    For
SNMPv1 communications, dstEntity refers to the transport address of the target agent entity.

For SNMPv2 communications, the "context" identifies a collection of managed object resources
accessible to a management application under the control of the target agent.    For SNMPv1
communications, the context parameter refers to "community string".

A driving force behind the approach taken in this specification with respect to these issues is the need to

accommodate SNMPv2 administrative and protocol constructs in a symmetrical fashion, and at the
same time transparently subsume SNMPv1 administrative and protocol constructs.

The major assumption is that the implementations "local database"--at least for TRANSLATED mode
operations--contains source party, destination party, and context entries (and possibly other data).   
Consequently, the SnmpSendMsg function does not need to include "qos", "timeout", "retry", or similar
values since these are available in the Local Database.

Sessions

The "session" created by the SnmpOpen function is used to manage the link between the WinSNMP
application and the WinSNMP interface implementation.    That is, the session is the unit of resource and
communications management between a calling WinSNMP application and its supporting WinSNMP
implementation.    A well-behaved WinSNMP application will use the session construct to logically
organize its operations and to minimize resource requirements on the implementation.    The following
statements summarize the role and certain attributes of WinSNMP sessions:

· A "session" is opened with SnmpOpen, and closed with SnmpClose.

· A "session-id" is returned by the SnmpOpen function to the application as a HANDLE
variable, which the implementation may use internally to manage resources.

· An application can have multiple sessions open at one time, subject to the limitations
stated below.

· The minimum number of concurrent sessions which an implementation must support is
one.

· The maximum is undefined and is implementation-specific and, possibly, resource-
dependent.

· When an application's request to open a session cannot be granted because of the
limitations stated above, the implementation will return SNMPAPI_FAILURE to
SnmpOpen and will set SnmpGetLastError to report SNMPAPI_ALLOC_ERROR.

· All WinSNMP API functions--except SnmpOpen--which return HANDLE variables will
include a "session-id" handle as an input parameter, so that the implementation can use it
internally to manage and account for resources on behalf of the session.

· HANDLE variables created under one open session can be utilized by other open
sessions (if any) within a given application (task). Optionally, an implementation may
internally share HANDLE variables among sessions in separate applications. Note this
optional resource efficiency, if it is supported by an implementation, is totally transparent
to the application.

· When an application closes a session by executing the SnmpClose function, all
resources created on behalf of that session by the implementation, and not previously
freed by the application, will be freed automatically by the implementation.    If an
implementation supports the optional sharing of HANDLE variables among open sessions
across multiple applications, then the resources will not be physically freed until the final
open session which "created" the resources closes.

· Sessions may have other attributes, above and beyond those discussed above (e.g., the
'dstEntity' and 'context' interpretation modes of TRANSLATED, UNTRANSLATED_V1,
and UNTRANSLATED_V2).

Memory Management

The allocation, ownership, deallocation, and garbage collection of memory objects is often a
troublesome issue in a complex multi-provider MSWindows programming arrangement.    It really is not a
question of adequate capabilities being provided by the environment.    It is a question of understanding
the options and the rules, agreeing to a division of labor, authority, and responsibility among the
components; and, finally, competence and diligence in implementing such an agreement.

In MSWindows programming, it is important to remember that the implementation, as a DLL, is actually
just an extension of the calling application.    Applications can allocate, use, and deallocate memory; if
they terminate without freeing allocated memory, MSWindows deallocates it for them automatically.    If a
DLL allocates memory (without taking explicit actions to the contrary by declaring the GMEM_SHARE
option), then it is actually owned by the currently connected application and is identical to memory
allocated directly by the application.    A DLL can also deallocate application-owned memory on behalf of
the calling application.    A DLL can invoke the GMEM_SHARE option (not recommended if portability to
Windows-NT is desired) to allocate memory that it will own, and/or it can allocate memory out of its local
dataspace to provide for persistent objects that might be shared among diverse applications.

The WinSNMP arrangement includes three different kinds of memory "objects":

· HANDLE'd resources

· C-style (NULL terminated) strings

· Non-scalar WinSNMP API data types of variable length

HANDLE'd Resources

There are five varieties of HANDLE'd resources:

· Sessions

· Entities

· Contexts

· Protocol Data Units (PDUs)

· VarBindLists (VBLs)

These objects are accessed via handles for two reasons:

· To hide their structures from the applications; and

· to permit implementations to optimize and/or differentiate themselves vis-à-vis their construction
and manipulation of these objects "behind" the API.

All HANDLE'd objects are of data type HSNMP_<object_tag> and are always "owned" by the
implementation.    An application may request their creation and may signal their eligibility for deletion
and reclamation, but these operations (like all others concerning these objects) are indirect...the
realization is up to the implementation.

An implementation that wants to permit sharing of HANDLEd resources (most likely) allocates them out
of its local data space.    If it wanted to restrict them to the calling applications scope, it would allocate
them out of global memory without the GMEM_SHARE option.    Both approaches can be employed in
an implementation -- for example, it might make sense to share Entity and Context objects across
multiple applications, but it is less likely that Sessions, PDUs, and VarBindLists would benefit
significantly from such treatment.

C-Style Strings

The C-style (NULL terminated) strings are provided mainly for convenience to easily convert Entity and
OID objects to and from the most common string representation.    The WinSNMP functions which use
C-style strings are limited to:    SnmpStrToEntity, SnmpEntityToStr, SnmpStrToOid, and
SnmpOidToStr.    (The inclusion of Str in the name is a bit misleading in the case of the
SnmpStrToContext and SnmpContextToString functions, as the context parameter in these functions
must be an SNMP-style octet string to accommodate the legal data values.)

The application is entirely responsible for allocating, managing, and freeing this memory, as might be
appropriate to its specific operating requirements and/or circumstances.    This will require passing a size
parameter to the implementation in functions which use pointers to C-style string    variables as output
arguments (i.e., SnmpEntityToStr and SnmpOidToStr).

Descriptors

There are three non-scalar WinSNMP API data types, of variable length:

· smiOCTETS

· smiOID

· smiVALUE.

All three are structures.    The first two are both "descriptor" structures, consisting of two members: "len"
and "ptr".    For smiOCTETS, "len" is an unsigned long integer (smiUINT32) value indicating the number
of bytes in the subject octet string (no necessary NULL terminating byte) and "ptr" is a far pointer to a
byte array containing the octet string.    For smiOID, "len" is an unsigned long integer value indicating the
number of unsigned long integers in the subject OID and "ptr" is a far pointer to an array of unsigned
long integers representing the OIDs sub-identifiers.

The smiVALUE structure is different and a bit more complex.    It too consists of just two members.    The
first is an unsigned long integer indicating the "syntax" of the second member.    The second member is
the union of all the possible WinSNMP API data types.    A calling application must first check the
"syntax" member of a returned smiVALUE structure to know how to dereference the second member,
which might be a simple scalar value or might be one of the WinSNMP API structures with defined
syntax (including an smiOCTETS, or one of its derivatives such as smiIPADDR, or an smiOID).    In
general, this is pretty typical SNMP API fare.    In actuality, the smiVALUE structure is not a problem--it is
always of a fixed size.

It is only when its syntax member indicates that the value member is either an smiOCTETS or an
smiOID structure (which contain pointers to variable length data) that the memory management
agreement becomes important.    Specifically, who assigns the pointers (i.e., allocates the memory), who
fills in the "len" members, who owns these objects, and who is responsible for freeing the resources
when they are no longer needed or in cases of memory shortage?

Fortunately, the statement of this problem is more complex than the statement of its resolution!

· For input parameters, the application provides the structure and populates its members (i.e.,
allocates the memory for the variable length objects).

· For output parameters, the application again provides the structure, but the implementation
populates its members (i.e., allocates the memory for the variable length objects).

· The application must use an appropriate functions (e.g., GlobalFreePtr) to free the memory that it
has allocated for such input parameters and must use the SnmpFreeDescriptor WinSNMP
function to free the memory allocated by the implementation for these output parameters.

See Section 2.10.4. Descriptors, in Section 2.10. WinSNMP Data Types

The combined effects of this particular agreement yield substantial benefits:

· It clearly delineates a small number of cooperative memory management requirements.

· It clearly assigns responsibility in each case.

· It reduces the likelihood of over-allocation of temporary buffer space.

· It reduces the likelihood of unnecessary buffer copying (from max-sized temporary buffers to
right-sized working buffers).

· It leverages the natural memory management posture of MSWindows while providing
independent flexibility in this area to both applications and implementations alike.

Asynchronous Model

One contemporary programming model has applications "driven" by the receipt and processing of
asynchronous message-events.    This asynchronous message-driven model maps well to modern
object-oriented theory, the SNMP distributed management paradigm, and the Microsoft Windows
programming and runtime environments.    Likewise, although WinSNMP does not presume any
particular transport mechanism for the conveyance of SNMP messages between managers and agents,
it is to be noted that, fundamentally, SNMP is a datagram-based protocol, in which no actual channel
(virtual circuit) is established between remote entities.    This behavior also maps well to the message-
driven programming model.    For those reasons, among others, this is the programming model adopted
by WinSNMP.

Modern message-driven applications typically must respond to other kinds of important events, some of
which may rely on synchronous relationships.    Actually, all of the functions specified in the WinSNMP
API have a synchronous component--most are totally synchronous; three critical ones have an
asynchronous dimension:

SnmpSendMsg

SnmpRecvMsg

SnmpRegister

Of these, SnmpRecvMsg has the most impact on asynchronous operations.

The basic asynchronous model for programming with WinSNMP follows these steps:

1. The application opens a session with the WinSNMP implementation (with the
SnmpOpen function).

2. If the application is interested in receiving traps, it indicates this (with the
SnmpRegister function).

3. The application prepares one or more PDUs for transmission to and processing by the
WinSNMP implementation via WinSNMP "messages" (using SnmpCreatePdu and
other PDU, Variable-Binding, and Utility functions).

4. The application submits one or more asynchronous requests consisting of an SNMP
PDU and message "wrapper" elements (with the SnmpSendMsg function).

5. The application receives notification that a response to a request is available or that a
registered trap has occurred (via the message "channel" specified in the SnmpOpen
function).

6. The application retrieves the response (with the SnmpRecvMsg function).

7. The application processes the response as appropriate (using application-specific
logic).

8. The application closes the WinSNMP session (with the SnmpClose function).

Note that, in general, steps 2 through 7 can take place in nearly any order and at any time during
program execution.

Polling and Retransmission

Given the asynchronous nature of both SNMP itself and the WinSNMP SnmpSendMsg,
SnmpRecvMsg, and SnmpRegister functions, users of this specification (i.e., implementors and
applications writers) must be concerned with timeout and retry issues.    Taken together, timeout and
retry will be referred to hereinafter as "retransmission".    (Note that no "back-off" mechanisms are
currently included.)

Applications have sole responsibility for polling:    establishing the frequency, initiating transactions, and
timer management, among other things.    This ensures that applications have knowledge of the request-
id component of the out-going PDUs.

With respect to retransmission, applications clearly have the primary responsibility, regarding both
policy and execution.    Implementations must provide retransmission policy support (via their local
database) and may optionally provide retransmission execution support.

Accordingly, in WinSNMP applications the timeout period, in practice, refers to the elapsed time between
an application's issuance of an SnmpSendMsg request and receipt of the corresponding message via
the SnmpRecvMsg function.      From the perspective of the implementation, the timeout period will refer
to the elapsed time between the actual sending of an SNMP request message to a destination entity and
the receipt of the SNMP response message from that destination.

The fundamental retransmission policy mechanism will be the Local Database.    Each potential
destination entity entry in the Local Database will include--among other attributes--timeout (elapsed time
in seconds) and retry (count) elements.    These values can be stored in and retrieved from the Local
Database by an application with the Snmp[Get|Set]Timeout and Snmp[Get/Set]Retry functions.    At
runtime, an application may elect to use, update, or ignore the default values in the Local Database.   
When an implementation which supports retransmit execution is operating in retransmit mode, it must
use the timeout and retry values from the Local Database for the respective destination entities.

Note that none of the foregoing precludes or impedes the "out-of-the-box" mode of operation.    An
implementation can (and should) "boot up" with some generic default values in its (conceptual) Local
Database for use when an application initializes entities in the SNMPAPI_UNTRANSLATED_V[1|2]
modes.

So, for WinSNMP, the following summarizes the timeout/retry approach:

· The application manages the policy via the Local Database functions by storing desired values for
each destination entity.    Optionally, the implementation may also update the actual observed
values in its local database for subsequent use by the application in adjusting the desired (policy)
values..

· The application executes the policy, at its discretion.    That is, when it issues a request (via
SnmpSendMsg) and wants to monitor the time-out event, it sets a timer (most likely using the
desired time-out value retrieved from the local database).

· If the response comes in before the timer goes off, it cancels the timer and that's the end of it.    If
the timer expires, it decides then whether to retry (most likely, but not only, based on the retry

count value retrieved from the local database).

· If, during the course of execution, the application determines that either the default time-out
and/or retry values are inappropriate in can either ignore that fact, or change its runtime behavior
accordingly, and/or modify the default values for the respective entities in the Local Database.

· It may well be, given the above, that certain "network smart" apps might populate and update the
default values in the Local Database, while many more "network agnostic" applications just use
the default values, whether just for its policy (when the implementation actually does the
execution) or for both policy and execution purposes.

· Applications may request that the implementation execute the retransmission policy (using the
values in the Local Database) via the SnmpSetRetransmitMode function, with (SNMPAPI_ON).
A valid response to this request by a compliant implementation is either SNMPAPI_SUCCESS or
SNMPAPI_MODE_INVALID.

· In the former case, the application may elect to leave retransmission execution entirely to the
implementation or to augment it with its own execution, if desired.    An application can use
SnmpSetRetransmit again, with (SNMPAPI_OFF), to "turn off' the implementation in this regard.

· When the implementation executes the retransmission policy, it repeats the original request-id
component in each retransmitted PDU.

· When the implementation responds to the SnmpSetRetransmitMode (SNMPAPI_ON) request
with the SNMPAPI_MODE_INVALID error, the application must assume all responsibility for
execution of the retransmission policy.

· A "standard" set of timer support functions for use by WinSNMP applications developers might be
added to the WinSNMP specification at a future date.

Error Handling

All WinSNMP functions have an immediate return value.    If this value is SNMPAPI_FAILURE (0), it
means that the implementation detected or encountered an error of some kind.    The application must
then call the SnmpGetLastError function to retrieve the extended error information describing the
specific problem encountered.

The bifurcation into "common" and "context-specific" error codes in this section serves merely to allow
an abbreviation of error condition descriptions in the function reference sections.    The distinction
between "SNMP error codes" and "SNMP API error codes" in the "context-specific" section is somewhat
more significant.    The former are fixed by the RFCs; the latter are creations of this specification.

Common Error Codes

Any WinSNMP function can fail with any one of the following error codes returned via
SnmpGetLastError:

SNMPAPI_NOT_INITIALZED

SNMPAPI_ALLOC_ERROR

SNMPAPI_OTHER_ERROR

SNMPAPI_NOT_INITIALIZED signals that SnmpStartup was not successfully executed, either since
program execution began or since SnmpCleanup successfully completed.    Note that if SnmpStartup
fails, an immediate call to SnmpGetLastError (i.e., before any other WinSNMP calls) will return the
error code applicable to the failure of SnmpStartup; all subsequent calls to WinSNMP functions before
a successful SnmpStartup execution will fail with SNMPAPI_NOT_INITIALIZED.

SNMPAPI_ALLOC_ERROR signals that the implementation was unable to obtain sufficient resources to
carry out the requested action.    Applications should respond by freeing resources, or by reducing the
resource requirements of the request, or by informing the user (e.g., via MessageBox or log file entry)
and facilitating a graceful shutdown via SnmpClose calls and/or SnmpCleanup.

SNMPAPI_OTHER_ERROR signals an unknown, undefined, or otherwise indeterminate error occurred.
Implementations may provide an optional, ancillary, and independent means of providing additional
feedback to the user for subsequent problem resolution.    In most cases, applications should attempt to
shutdown gracefully via SnmpClose calls and/or SnmpCleanup after receiving this error.

Since each of these error conditions could arise on each and any of the WinSNMP API functions, they
are documented here only.    The error information section of each function description refers to these
collectively as "Common Error Codes" and documents any other error conditions which might be specific
to the given function.

Context-Specific Error Codes

The following lists are excerpted from the "Declarations" section of this document (which essentially
constitutes the WinSNMP.h include file).    They are included here mainly as a place-holder for a future
elaboration of each error condition, similar to what was done in the preceding section for "Common Error
Codes".

/* Syntax Values for Exception Conditions in SNMPv2 Response Varbinds */

#define SNMP_VALUE_NOSUCHOBJECT (ASN_CONTEXT | ASN_PRIMITIVE | 0x0)

#define SNMP_VALUE_NOSUCHINSTANCE (ASN_CONTEXT | ASN_PRIMITIVE | 0x1)

#define SNMP_VALUE_ENDOFMIBVIEW (ASN_CONTEXT | ASN_PRIMITIVE | 0x2)

/* SNMP Error Codes Returned in Error_status Field of PDU...Not API Error Codes */

/* Error Codes Common to SNMPv1 and SNMPv2 */

#define SNMP_ERROR_NOERROR     0

#define SNMP_ERROR_TOOBIG     1

#define SNMP_ERROR_NOSUCHNAME     2

#define SNMP_ERROR_BADVALUE     3

#define SNMP_ERROR_READONLY     4

#define SNMP_ERROR_GENERR     5

/* Error Codes Added for SNMPv2 */

#define SNMP_ERROR_NOACCESS     6

#define SNMP_ERROR_WRONGTYPE     7

#define SNMP_ERROR_WRONGLENGTH     8

#define SNMP_ERROR_WRONGENCODING     9

#define SNMP_ERROR_WRONGVALUE 10

#define SNMP_ERROR_NOCREATION 11

#define SNMP_ERROR_INCONSISTENTVALUE 12

#define SNMP_ERROR_RESOURCEUNAVAILABLE 13

#define SNMP_ERROR_COMMITFAILED 14

#define SNMP_ERROR_UNDOFAILED 15

#define SNMP_ERROR_AUTHORIZATIONERROR 16

#define SNMP_ERROR_NOTWRITABLE 17

#define SNMP_ERROR_INCONSISTENTNAME 18

/* WinSNMP API Function Return Codes */

#define SNMPAPI_FAILURE 0 /* Generic error code */

#define SNMPAPI_SUCCESS 1 /* Generic success code */

/* WinSNMP API Error Codes (for SnmpGetLastError) */

#define SNMPAPI_ALLOC_ERROR 2 /* Error allocating memory */

#define SNMPAPI_CONTEXT_INVALID 3 /* Invalid context parameter */

#define SNMPAPI_CONTEXT_UNKNOWN 4 /* Unknown context parameter */

#define SNMPAPI_ENTITY_INVALID 5 /* Invalid entity parameter */

#define SNMPAPI_ENTITY_UNKNOWN 6 /* Unknown entity parameter */

#define SNMPAPI_INDEX_INVALID 7 /* Invalid VBL index parameter */

#define SNMPAPI_NOOP 8 /* No operation performed */

#define SNMPAPI_OID_INVALID 9 /* Invalid OID parameter */

#define SNMPAPI_OPERATION_INVALID 10 /* Invalid/unsupported operation */

#define SNMPAPI_OUTPUT_TRUNCATED 11 /* Insufficient output buf len */

#define SNMPAPI_PDU_INVALID 12 /* Invalid PDU parameter */

#define SNMPAPI_SESSION_INVALID 13 /* Invalid session parameter */

#define SNMPAPI_SYNTAX_INVALID 14 /* Invalid syntax in smiVALUE */

#define SNMPAPI_VBL_INVALID 15 /* Invalid VBL parameter */

#define SNMPAPI_MODE_INVALID 16 /* Invalid mode parameter */

#define SNMPAPI_SIZE_INVALID 17 /* Invalid size/length parameter */

#define SNMPAPI_NOT_INITIALIZED 18 /* SnmpStartup failed/not called */

#define SNMPAPI_MESSAGE_INVALID 19 /* Invalid SNMP message format */

#define SNMPAPI_HWND_INVALID 20 /* Invalid Window handle */

/* Others will be added as needed */

#define SNMPAPI_OTHER_ERROR 99 /* For internal/undefined errors */

Transport Error Reporting

In the case of errors which are detected at the time of accepting a request to send or receive a packet,
these are returned synchronously by SnmpSendMsg, SnmpRecvMsg, or SnmpRegister via a return
code of SNMPAPI_FAILURE (which the application must follow-up with a call to SnmpGetLastError (to
retrieve the extended error code).    In the case of errors which are detected after the packet has gone
out onto the wire, the WinSNMP implementation sends a packet receipt notification to the affected
session and these errors are returned via an SNMPAPI_FAILURE indication from the next
SnmpRecvMsg call on that session.

The generic transport layer (TL) error codes for the WinSNMP/Manager API are:

#define SNMPAPI_TL_NOT_INITIALIZED 100 /* Transport layer not initialized */

#define SNMPAPI_TL_NOT_SUPPORTED 101 /* Transport does not support protocol */

#define SNMPAPI_TL_NOT_AVAILABLE 102 /* Network subsystem has failed */

#define SNMPAPI_TL_RESOURCE_ERROR 103 /* Transport resource error */

#define SNMPAPI_TL_UNDELIVERABLE 104 /* Destination unreachable */

#define SNMPAPI_TL_SRC_INVALID 105 /* Source endpoint invalid */

#define SNMPAPI_TL_INVALID_PARAM 106 /* Input parameter invalid */

#define SNMPAPI_TL_IN_USE 107 /* Source endpoint in use already */

#define SNMPAPI_TL_TIMEOUT 108 /* No response within Timeout interval */

#define SNMPAPI_TL_TOO_BIG 109 /* PDU too big for send/receive */

#define SNMPAPI_TL_OTHER 199 /* Undefined transport error */

Specific transport layer errors are listed as appropriate in the definitions of the SnmpRegister,
SnmpSendMsg, and SnmpRecvMsg functions later in this document.

Implementations should attempt to map specific transport errors to one of the generic transport errors.   
If no such mapping is possible, the implementation should return SNMPAPI_TL_OTHER.    This error is
preferred over SNMPAPI_OTHER_ERROR, for un-mapped transport layer errors..

WinSNMP Data Types

The following is an excerpt from the "Declarations" section of this document (and is part of the standard
WinSNMP.h include file):

/* WinSNMP API Type Definitions    */

typedef    HANDLE HSNMP_SESSION, FAR *LPHSNMP_SESSION;

typedef    HANDLE HSNMP_ENTITY,    FAR *LPHSNMP_ENTITY;

typedef    HANDLE HSNMP_CONTEXT, FAR *LPHSNMP_CONTEXT;

typedef    HANDLE HSNMP_PDU, FAR *LPHSNMP_PDU;

typedef    HANDLE HSNMP_VBL, FAR *LPHSNMP_VBL;

typedef unsigned char smiBYTE, FAR *smiLPBYTE;

/* SNMP-related types from RFC1442 (SMI) */

typedef signed long smiINT, FAR *smiLPINT;

typedef smiINT smiINT32, FAR *smiLPINT32;

typedef unsigned long smiUINT32, FAR *smiLPUINT32;

typedef struct {

          smiUINT32 len;

          smiLPBYTE ptr;} smiOCTETS, FAR *smiLPOCTETS;

typedef const smiOCTETS FAR *smiLPCOCTETS;

typedef smiOCTETS smiBITS, FAR *smiLPBITS;

typedef struct {

          smiUINT32      len;

          smiLPUINT32 ptr;} smiOID, FAR *smiLPOID;

typedef const smiOID FAR *smiLPCOID;

typedef smiOCTETS smiIPADDR, FAR *smiLPIPADDR;

typedef smiUINT32 smiCNTR32, FAR *smiLPCNTR32;

typedef smiUINT32 smiGAUGE32, FAR *smiLPGAUGE32;

typedef smiUINT32 smiTIMETICKS,FAR *smiLPTIMETICKS;

typedef smiOCTETS smiOPAQUE, FAR *smiLPOPAQUE;

typedef smiOCTETS smiNSAPADDR, FAR *smiLPNSAPADDR;

typedef struct {

                smiUINT32 hipart;

                smiUINT32 lopart;} smiCNTR64, FAR *smiLPCNTR64;

/* Structure used to compose a value member for a variable binding */

typedef struct { /* smiVALUE portion of VarBind */

smiUINT32 syntax; /* Insert SNMP_SYNTAX_<type> */

union {

smiINT sNumber; /* SNMP_SYNTAX_INT

      SNMP_SYNTAX_INT32 */

smiUINT32 uNumber; /* SNMP_SYNTAX_UINT32

  SNMP_SYNTAX_CNTR32

  SNMP_SYNTAX_GAUGE32

  SNMP_SYNTAX_TIMETICKS */

smiCNTR64 hNumber; /* SNMP_SYNTAX_CNTR64 */

smiOCTETS string; /* SNMP_SYNTAX_OCTETS

      SNMP_SYNTAX_BITS

      SNMP_SYNTAX_OPAQUE

      SNMP_SYNTAX_IPADDR

      SNMP_SYNTAX_NSAPADDR */

smiOID oid; /* SNMP_SYNTAX_OID */

smiBYTE empty; /* SNMP_SYNTAX_NULL

      SNMP_SYNTAX_NOSUCHOBJECT

      SNMP_SYNTAX_NOSUCHINSTANCE

      SNMP_SYNTAX_ENDOFMIBVIEW */

                } value; /* union */

} smiVALUE, FAR *smiLPVALUE;

typedef const smiVALUE FAR *smiLPCVALUE;

Integers

The "standard" integer type used in this specification is "unsigned long" (smiUINT32).    In a few places,
parameters are specified as "signed long" (smiINT) to comply with data elements defined in the
respective RFCs.    (This is especially true of some of the PDU components.)

Pointers

All pointer variables used in this specification are "far" pointers; large model programming is assumed.

Function Returns

All return values from WinSNMP functions fall into two categories:

A HANDLE to a resource allocated by the implementation on behalf of the application, including:

Sessions (HSNMP_SESSION)

Entities (HSNMP_ENTITY)

Contexts (HSNMP_CONTEXT)

PDUs (HSNMP_PDU)

Variable Binding Lists (HSNMP_VBL)

A long unsigned integer (smiUINT32) value representing a status (SNMPAPI_STATUS).

SNMPAPI_FAILURE (equates to 0 or NULL)

SNMPAPI_SUCCESS (equates to 1 or a positive count)

Descriptors

See Section 2.6.3. Descriptors, in Section 2.6.    Memory Management.

Two important WinSNMP data types--namely, Octet Strings and Object Identifiers--take the form of
"descriptors".    A descriptor is a structure consisting of a length member ("len") and a pointer member
(ptr), of the appropriate type (i.e., smiLPBYTE or smiLPUINT32, respectively),    to the actual data item
of interest.    Note that either of these two descriptor types can occur in the value member of an
smiVALUE structure, as can any of the scalar WinSNMP types.

When a descriptor which has been allocated by the application is actually populated (i.e., has its len and
ptr members defined for it) by the implementation, the application must eventually call the
SnmpFreeDescriptor function to enable the implementation to release the resources associated with
ptr member.

Windows SNMP Interfaces

This section comprises the function reference for WinSNMP.    In general, not a lot of significance
attaches to the categorization or ordering of the functions.    Some may argue that the "Entity/Context
Functions" belong in the "Local Database Functions" category, or that the "Variable Binding Functions"
belong in the "PDU Functions" category.    Those, and similar assertions, could be true.    The point for
now is simply not to attach any significance to the grouping or the order of appearance.

Local Database Functions

Communications Functions

Entity/Context Functions

PDU Functions

Variable Binding Functions

Utility Functions

Local Database Functions

The functions in this section concern manipulation of the "local database" of SNMP administrative
information.

The term "database" in this context is not meant to imply any particular data storage, access, or
manipulation techniques.    The WinSNMP implementation is the "owner" of the "local database" and
may utilize any proprietary mechanisms it considers best, as long as all the functions defined in this
section are fully supported and no additional implementation-specific functions are required of a
WinSNMP application to utilize the "local database".    Compliant WinSNMP implementations may
require additional implementation-specific mechanisms external to a WinSNMP application (e.g., setting
an environment variable in AUTOEXEC.BAT to point to a "local database" file or adjusting settings in a
private <app>.ini file).

The functions in this section are:

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpGetTranslateMode (OUT smiLPUINT32 nTranslateMode);

SNMPAPI_STATUS SnmpSetTranslateMode (IN smiUINT32 nTranslateMode);

SNMPAPI_STATUS SnmpGetRetransmitMode (OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SnmpSetRetransmitMode (IN smiUINT32 nRetransmitMode);

SNMPAPI_STATUS SnmpGetTimeout (IN HSNMP_ENTITY hEntity,

OUT smiLPTIMETICKS nPolicyTimeout,

OUT smiLPTIMETICKS
nActualTimeout);

SNMPAPI_STATUS SnmpSetTimeout (IN HSNMP_ENTITY hEntity,

IN smiTIMETICKS nPolicyTimeout);

SNMPAPI_STATUS SnmpGetRetry (IN HSNMP_ENTITY hEntity,

OUT smiLPUINT32 nPolicyRetry,

OUT smiLPUINT32 nActualRetry);

SNMPAPI_STATUS SnmpSetRetry (IN HSNMP_ENTITY hEntity,

IN smiUINT32 nPolicyRetry);

SnmpGetTranslateMode()

The SnmpGetTranslateMode function informs the calling application as to the entity/context translation
mode in effect at the time of the call..

Syntax:

SNMPAPI_STATUS SnmpGetTranslateMode (
OUT smiLPUINT32 nTranslateMode);

Parameter Description

nTranslateMode Pointer to variable to receive the current translation mode.

Returns:

The SnmpGetTranslateMode function returns SNMPAPI_SUCCESS if successful.    In this case, the
resultant value of nTranslateMode will be one of the following:

SNMPAPI_TRANSLATED                        = Translate via Local Database look-up

SNMPAPI_UNTRANSLATED_V1 = Literal transport address and community string

SNMPAPI_UNTRANSLATED_V2 = Literal SNMPv2 party and context IDs

The SnmpGetTranslateMode function returns SNMPAPI_FAILURE if it fails.    In this case, the value of
nTranslateMode is undefined and meaningless to the application, and the value of SnmpGetLastError
will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

Comments:

See Section 2.3. Entity/Context Translation Modes

SnmpSetTranslateMode()

The SnmpSetTranslateMode function enables the calling application to inform the implementation as
the desired entity/context translation mode to use for subsequent SnmpStrToEntity and
SnmpStrToContext function calls...

Syntax:

SNMPAPI_STATUS SnmpSetTranslateMode (
IN smiUINT32 nTranslateMode);

Parameter Description

nTranslateMode Value used to set the current translation mode--must be one of the
following:

SNMPAPI_TRANSLATED
SNMPAPI_UNTRANSLATED_V1
SNMPAPI_UNTRANSLATED_V2

Returns:

The SnmpSetTranslateMode function returns SNMPAPI_SUCCESS if successful.

The SnmpSetTranslateMode function returns SNMPAPI_FAILURE if it fails and the value of
SnmpGetLastError will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_MODE_INVALID Indicates that the implementation does not
support the requested translation mode.

Comments:

See Section 2.3. Entity/Context Translation Modes

SNMPAPI_TRANSLATED       = Translate via Local Database look-up

SNMPAPI_UNTRANSLATED_V1 = Literal transport address and community string

SNMPAPI_UNTRANSLATED_V2 = Literal SNMPv2 party and context IDs

Upon successful execution of the SnmpSetTranslateMode function, the requested translation mode
remains in effect for all subsequent SnmpStrToEntity and SnmpStrToContext function calls until
another SnmpSetTranslateMode call with a different nTranslateMode value is executed successfully.

SnmpGetRetransmitMode()

The SnmpGetRetransmitMode function informs the calling application as to the retransmission mode in
effect at the time of the call..

Syntax:

SNMPAPI_STATUS SnmpGetRetransmitMode (
OUT smiLPUINT32 nRetransmitMode);

Parameter Description

nRetransmitMode Pointer to variable to receive the current retransmission mode.

Returns:

The SnmpGetRetransmitMode function returns SNMPAPI_SUCCESS if successful.    In this case, the
resultant value of nRetransmitMode will be one of the following:

SNMPAPI_ON      = The implementation is doing retransmission.

SNMPAPI_OFF = The implementation is not doing retransmission.

The SnmpGetRetransmitMode function returns SNMPAPI_FAILURE if it fails.    In this case, the value
of nRetransmitMode is undefined and meaningless to the application, and the value of
SnmpGetLastError will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

Comments:

See Section 2.8. Polling and Retransmission

SnmpSetRetransmitMode()

The SnmpSetRetransmitMode function enables the calling application to inform the implementation as
to the desired retransmission mode (i.e., timeout/retry) for subsequent SnmpSendMsg operations.

Syntax:

SNMPAPI_STATUS SnmpSetRetransmitMode (
IN smiUINT32 nRetransmitMode);

Parameter Description

nRetransmitMode Value used to set the current retransmission mode--must be one of the
following:

SNMPAPI_ON
SNMPAPI_OFF

Returns:

The SnmpSetRetransmitMode function returns SNMPAPI_SUCCESS if successful.

The SnmpSetRetransmitMode function returns SNMPAPI_FAILURE if it fails and the value of
SnmpGetLastError will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_MODE_INVALID Indicates that the implementation does not
support the requested translation mode.

Comments:

SNMPAPI_ON      = The implementation is doing retransmission.

SNMPAPI_OFF = The implementation is not doing retransmission.

Changing the retransmission mode from SNMPAPI_OFF to SNMPAPI_ON has no effect on any SNMP
communications initiated via SnmpSendMsg function calls which might be outstanding prior to
successful return from the subject SnmpSetRetransmitMode function call.    That is, an implementation
does not have to execute the retransmission policy for messages which it initially sent when the
retransmission mode was set to SNMPAPI_OFF and to which it has not yet received a response.    An
implementation may elect to execute the retransmission policy on behalf of such messages in this case,
but this behavior is not a requirement and applications should not count on it.    The purpose of this
particular specification is to enable the implementations to take maximum advantage of the
SNMPAPI_OFF retransmission mode when it is in effect.

When an application changes the retransmission mode from SNMPAPI_ON to SNMPAPI_OFF, the
implementation should (but is not required to) cancel all further retransmission attempts for any
outstanding SNMP communications operations in effect prior to the call (and, of course, must not

initiate any for subsequent SnmpSendMsg functions until the application might set the mode back to
SNMPAPI_ON).    Applications, however, should assume that the implementation has done so.    The
reason this behavior is so specified is that it might not be possible for an implementation run through a
list of outstanding SNMP communications operations and turn each one off, while also receiving new
SnmpSendMsg requests and traps and notifications from prior SnmpRegister requests, without one or
more previously set retransmit timers waking up.    Since this may be the "critical loop" for WinSNMP
implementations, we need to ensure that the implementations can handle it efficiently.

SnmpGetTimeout()

The SnmpGetTimeout function returns current values for the retransmission timeout value on a per-
entity basis.    The timeout value is expressed in units of hundredths of seconds.    The nPolicyTimeout
value refers to the timeout value currently stored in the local database for the subject agent.    The
nActualTimeout value refers to the last measured or estimated response receipt interval reported by the
implementation.

Syntax:

SNMPAPI_STATUS SnmpGetTimeout (
IN HSNMP_ENTITY hEntity,
OUT smiLPTIMETICKS nPolicyTimeout,
OUT smiLPTIMETICKS nActualTimeout);

Parameter Description

hEntity Indicates the destination entity of interest.

nPolicyTimeout Points to a variable to receive the timeout value for this entity as stored in
the implementation's local database.

nActualTimeout Points to a variable to receive the last measured or estimated response
time interval from the destination agent.

Returns:

The SnmpGetTimeout function returns SNMPAPI_SUCCESS if successful.

The SnmpGetTimeout function returns SNMPAPI_FAILURE if it fails and the value of
SnmpGetLastError will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

Comments:

See Section 2.8. Polling and Retransmission

Implementations may provide utilities to load initial timeout values for the retransmission policy on a per
destination entity basis, or may automatically assign some initial default value.    Subsequent
modifications to this value are made by applications with the SnmpSetTimeout function.

Implementations may or may not return measured or estimated values for the "actual timeout"
parameter to the SnmpGetTimeout function.    In the latter case, the implementation should return zero.

Applications should monitor the "actual timeout" value...if it is near, equal to, or greater than then current

"policy timeout" value, the latter should be increased accordingly (or other corrective action taken).

SnmpSetTimeout()

The SnmpSetTimeout function enables an application to set the "policy timeout" value--in units of
hundredths of seconds--on a per destination entity basis in the implementation's local database.

Syntax:

SNMPAPI_STATUS SnmpSetTimeout (
IN HSNMP_ENTITY hEntity,
IN smiTIMETICKS nPolicyTimeout);

Parameter Description

hEntity Indicates the destination entity of interest.

nPolicyTimeout Indicates the timeout value for this entity to be stored in the
implementation's local database.

Returns:

The SnmpSetTimeout function returns SNMPAPI_SUCCESS if successful.

The SnmpSetTimeout function returns SNMPAPI_FAILURE if it fails and the value of
SnmpGetLastError will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

Comments:

See Section 2.8. Polling and Retransmission

The timeout value is expressed in units of hundredths of seconds.    If this value is zero, and both the
application and the implementation agree to SnmpSetRetransmitMode (SNMPAPI_ON), then the
implementation will select an operating value for this parameter when actually executing the
retransmission policy.

SnmpGetRetry()

The SnmpGetRetry function returns current values for the retransmission retry value on a per-entity
basis.    The retry value is expressed as a unit count.    The nPolicyRetry value refers to the retry value
currently stored in the local database for the subject agent.    The nActualRetry value refers to the last
measured or estimated response retry count reported by the implementation.

Syntax:

SNMPAPI_STATUS SnmpGetRetry (
IN HSNMP_ENTITY    hEntity,
OUT smiLPUINT32    nPolicyRetry,
OUT smiLPUINT32      nActualRetry);

Parameter Description

hEntity Indicates the destination entity of interest.

nPolicyRetry Points to a variable to receive the retry count value for this entity as
stored in the implementation's local database.

nActualRetry Points to a variable to receive the last measured or estimated response
retry count from the destination agent.

Returns:

The SnmpGetRetry function returns SNMPAPI_SUCCESS if successful.

The SnmpGetRetry function returns SNMPAPI_FAILURE if it fails and the value of SnmpGetLastError
will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

Comments:

See Section 2.8. Polling and Retransmission

Implementations may provide utilities to load initial retry count values for the retransmission policy on a
per destination entity basis, or may automatically assign some initial default value.    Subsequent
modifications to this value are made by applications with the SnmpSetRetry function.

Implementations may or may not return measured or estimated values for the "actual retry" parameter to
the SnmpGetRetry function.    In the latter case, the implementation should return zero.

Applications should monitor the "actual retry" value...if it is near, equal to, or greater than then current
"policy retry" value, the latter should be increased accordingly (or other corrective action taken).

SnmpSetRetry()

The SnmpSetRetry function enables an application to set the "policy retry" count on a per destination
entity basis in the implementation's local database.

Syntax:

SNMPAPI_STATUS SnmpSetRetry (
IN HSNMP_ENTITY hEntity,
IN smiUINT32 nPolicyRetry);

Parameter Description

hEntity Indicates the destination entity of interest.

nPolicyRetry Indicates the retry count for this entity to be stored in the
implementation's local database.

Returns:

The SnmpSetRetry function returns SNMPAPI_SUCCESS if successful.

The SnmpSetRetry function returns SNMPAPI_FAILURE if it fails and the value of SnmpGetLastError
will be set to one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

Comments:

See Section 2.8. Polling and Retransmission

The retry value is expressed as a simple unit count.    If this value is zero, and the application and the
implementation have agreed to SnmpSetRetransmitMode (SNMPAPI_ON), then the implementation
will select an operating value for this parameter when actually executing the retransmission policy.

Communications Functions

The functions in this section concern communications between the calling WinSNMP application and the
serving WinSNMP implementation.    Communications to and from other management entities--whether
they reside on the local machine, on a connected LAN or WAN, or an internet--are handled by the
WinSNMP implementation on behalf of the WinSNMP application, and without any overt orchestration by
the latter.

The functions in this section are:

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpStartup (OUT smiLPUINT32 nMajorVersion,

OUT smiLPUINT32 nMinorVersion,

OUT smiLPUINT32 nLevel,

OUT smiLPUINT32 nTranslateMode,

OUT smiLPUINT32
nRetransmitMode);

SNMPAPI_STATUS SnmpCleanup (void);

HSNMP_SESSION SnmpOpen (IN HWND hWnd,

IN UINT wMsg);

SNMPAPI_STATUS SnmpClose (IN HSNMP_SESSION session);

SNMPAPI_STATUS SnmpSendMsg (IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN HSNMP_PDU pdu);

SNMPAPI_STATUS SnmpRecvMsg (IN HSNMP_SESSION session,

OUT LPHSNMP_ENTITY srcEntity,

OUT LPHSNMP_ENTITY dstEntity,

OUT LPHSNMP_CONTEXT    context

OUT LPHSNMP_PDU pdu);

SNMPAPI_STATUS SnmpRegister (IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN smiLPCOID notification,

IN smiUINT32 state);

SnmpStartup()

The SnmpStartup function notifies the implementation that the calling application is going to use its

services, enabling the implementation to perform any required start-up procedures and allocations and
to return some useful housekeeping information to the application.

Syntax:

SNMPAPI_STATUS SnmpStartup (
OUT smiLPUINT32nMajorVersion,
OUT smiLPUINT32nMinorVersion,
OUT smiLPUINT32nLevel,
OUT smiLPUINT32nTranslateMode
OUT smiLPUINT32nRetransmitMode);

Parameter Description

nMajorVersion Pointer to variable to receive the major version number of the WinSNMP
API implemented.

nMinorVersion Pointer to variable to receive the minor version number of the WinSNMP
API implemented.

nLevel Pointer to variable to receive the highest level of SNMP communications
supported by the implementation.

nTranslateMode Pointer to variable to receive the default entity/context translation mode
in effect for the implementation.

nRetransmitMode Pointer to variable to receive the default retransmission mode in effect for
the implementation.

Returns:

Upon success, the return value will be SNMPAPI_SUCCESS.    In this case, the output parameters will
contain appropriate values, as follows:

nMajorVersion will contain the major version number of the WinSNMP API implemented--the only legal
value at this time is 1 (v1.nMinorVersion).

nMinorVersion will contain the minor version number of the WinSNMP API implemented--legal values at
this time are 0 (v1.0) and 1 (v1.1).

nLevel will contain the highest level of SNMP communications supported by the implementation.    This
value may be one of the following:

SNMPAPI_NO_SUPPORT        = "Level 0" (Message builder)
SNMPAPI_V1_SUPPORT          = "Level 1" (SNMPv1 agents)
SNMPAPI_V2_SUPPORT          = "Level 2" (SNMPv2 agents)
SNMPAPI_M2M_SUPPORT = "Level 3" (Manager-to-Manager)

nTranslateMode    will contain the current default mode of translation of the entity and context
parameters when used as inputs to SnmpStrToEntity and SnmpStrToContext functions.    This value
may be one of the following:

SNMPAPI_TRANSLATED                        = Friendly names for translation via the Local Database

SNMPAPI_UNTRANSLATED_V1 = Literal SNMPv1 transport address and community string

SNMPAPI_UNTRANSLATED_V2 = Literal SNMPv2 partyID and contextID

nRetransmitMode will contain the current default retransmission mode in effect for the implementation.   
This value may be one of the following:

SNMPAPI_OFF = The implementation is not executing the retransmission policy
SNMPAPI_ON      = The implementation is executing the retransmission policy

If this call fails, it will return SNMPAPI_FAILURE, and the application must use SnmpGetLastError to
determine the reason.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

Comments:

Note:    Every WinSNMP application must call SnmpStartup at least once and this call must precede
any other WinSNMP API function call.

See Section 2.1. Levels of SNMP Support

When this call fails, the application must not make any further WinSNMP API calls, other than
SnmpGetLastError and, if appropriate, retries to SnmpStartup.    If an application calls other WinSNMP
API functions without a preceding successful SnmpStartup, the implementation should, if possible,
return SNMPAPI_NOT_INITIALIZED.

An application which receives SNMPAPI_FAILURE and SNMP_ALLOC_ERROR in response to
SnmpStartup may elect to wait or do other tasks and try again later in the hope that the implementation
will have adequate free resources.

SnmpStartup is idempotent.    This means that an application can call it multiple times with impunity.   
Multiple SnmpStartup calls do not require multiple SnmpCleanup calls.    Every application must call
SnmpStartup at least once, before any other WinSNMP API call, and must call SnmpCleanup at least
once, as the last WinSNMP API call.

SnmpCleanup()

The SnmpCleanup function informs the implementation that the calling application is disconnecting and
no longer requires any open resources which might be allocated to it by the implementation.    The
implementation will deallocate all resources allocated to the application, unless they have also been
allocated to other active applications.

Syntax:

SNMPAPI_STATUS SnmpCleanup (void);

Returns:

The SnmpCleanup function returns SNMPAPI_SUCCESS if successful.    Every subsequent WinSNMP
API function call--until another successful SnmpStartup call--will return SNMPAPI_FAILURE with
SnmpGetLastError set to report SNMPAPI_NOT_INITIALIZED.

The SnmpCleanup function returns SNMPAPI_FAILURE if it fails.    The application should behave as
though it had returned    SNMPAPI_SUCCESS.    As an additional step the application could call
SnmpGetLastError to ascertain the reason for failure:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

Comments:

Note:    It is the responsibility of an application to use the respective SnmpFree<xxx> functions to free
specific resources created an its behalf and to use SnmpClose to clean-up after every session opened
via SnmpOpen.    However, in the event that an application must perform an emergency exit and call
SnmpCleanup without performing those steps, an implementation must perform all necessary clean-up
of any resources under its control which were created on behalf of or otherwise allocated to that
application.    Even in this emergency situation, however, the application must call SnmpCleanup to
enable this functionality in the implementation.

SnmpOpen()

The SnmpOpen function enables the implementation to allocate and initialize memory, resources,
and/or communications mechanisms and data structures for the application.    The application will
continue to use the "session identifier" returned by the implementation in subsequent WinSNMP function
calls to facilitate resource accounting on a per session basis.    This mechanism will enable the
implementation to perform an orderly release of resources in response to a subsequent SnmpClose
function call for a given session.

Syntax:

HSNMP_SESSION SnmpOpen (
IN HWND hWnd,
IN UINT wMsg);

Parameter Description

hWnd Identifies the application's notification window.

wMsg Identifies the application's notification message.

Returns:

If the function is successful, the return value is a HANDLE which identifies the WinSNMP session
opened by the implementation on behalf of the calling application.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_HWND_INVALID The hWnd parameter is not a valid window
handle.

Comments:

See Section 2.5. Sessions

An application can open multiple sessions.    Each such session for the same hWnd should provide a
different wMsg, but this is not required.    A successful SnmpOpen call using always returns a unique
session handle (with respect to all other currently open sessions for the calling application).

The hWnd parameter specifies the window handle to be notified when an asynchronous request
completes or trap/notification occurs and the wMsg parameter specifies the message number that the
window will be sent.    Upon receipt of this message, the application should call SnmpRecvMsg to
retrieve the subject PDU for immediate or subsequent processing.

In other programming models (e.g., synchronous, CLI-driven, or "curtained" applications), the WinSNMP
implementation may interpret hWnd and hMsg differently.    Likewise, the session model may be used to
facilitate multi-threaded programming in supporting environments.

Note:    A well-behaved WinSNMP application will call SnmpClose for each session opened by
SnmpOpen.    When an emergency exit is required of the application, it must at least call
SnmpCleanup.    A well-behaved WinSNMP implementation must react to an SnmpCleanup call as
though it were a series of SnmpClose calls for each open session allocated to the calling application.

SnmpClose()

The SnmpClose function causes the implementation to deallocate and/or close memory, resources,
communications mechanisms and data structures associated with the specified session, on behalf of the
calling application.

Syntax:

SNMPAPI_STATUS SnmpClose (
IN HSNMP_SESSION session);

Parameter Description

session A handle specifying the session to close.

Returns:

SNMPAPI_SUCCESS if the function successfully closes the WinSNMP session

If SnmpClose fails, it will return SNMPAPI_FAILURE.    Use SnmpGetLastError to obtain extended
error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates session parameter is invalid.

Comments:

Closing a session on which asynchronous requests are outstanding will cause any outstanding requests
and/or replies for that session to be discarded by the implementation.

Note:    A well-behaved WinSNMP application will call SnmpClose for each session opened by
SnmpOpen.    When an emergency exit is required of the application, it must at least call
SnmpCleanup.    A well-behaved WinSNMP implementation must react to an SnmpCleanup call as
though it were a series of SnmpClose calls for each open session allocated to the calling application.

SnmpSendMsg()

The SnmpSendMsg function requests the specified PDU be transmitted to the destination entity, using
the specified context and--for SNMPv2 communications--the designated source entity.    If the RequestID
component of the referenced PDU is zero, then the implementation will generate a non-zero value for
this component using an implementation-specific algorithm.

When a transmission request is received by the implementation via the SnmpSendMsg function, the
WinSNMP implementation determines which version of SNMP and which transport to use based on its
own capabilities and the corresponding properties associated with the requesting session and with the
remote entity which holds the context to be accessed, based on values in the Local Database.

Syntax:

SNMPAPI_STATUS SnmpSendMsg (
IN    HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN    HSNMP_PDU pdu);

Parameter Description

session Identifies the session that will perform the operation.

srcEntity Identifies the subject management entity.

dstEntity Identifies the target management entity.

context Identifies the target context of interest.

pdu Identifies the SNMP protocol data unit containing the operation.

Returns:

If the function is successful, the return value is the RequestID assigned to this PDU (see Comments,
below)..

If the function fails, the return value is SNMPAPI_FAILURE.    Use SnmpGetLastError to obtain
extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates that a session parameter is invalid.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is invalid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

SNMPAPI_OPERATION_INVALID Indicates that the PDU_type element is
inappropriate for the destination entity.

SNMPAPI_TL_NOT_INITIALIZED            Transport layer not initialized

SNMPAPI_TL_NOT_SUPPORTED              Transport does not support protocol

SNMPAPI_TL_NOT_AVAILABLE                Network subsystem has failed

SNMPAPI_TL_RESOURCE_ERROR              Transport resource error

SNMPAPI_TL_SRC_INVALID                    Source endpoint invalid

SNMPAPI_TL_INVALID_PARAM                Invalid parameter to transport call

SNMPAPI_TL_PDU_TOO_BIG                    PDU was too big for transport

SNMPAPI_TL_OTHER An undefined transport error occurred

Comments:

See Section 2.2. Transport Interface Support and Section 2.7. Asynchronous Model

This function returns immediately.    If the return indicates an error, SnmpGetLastError should be called
immediately to find out the error type.    When the asynchronous request completes, the hWnd specified
in the SnmpOpen call is sent the wMsg specified.    The application should call SnmpRecvMsg with this
HSNMP_SESSION to retrieve the results from the request.

Note:    It is the responsibility of the WinSNMP implementation to verify the correctness of the PDU
structure (and other arguments) and to return failure to the caller and an extended error code via
SnmpGetLastError.    For example, for a PDU_type other than SNMP_PDU_GETBULK and
SNMP_PDU_RESPONSE (if allowed), passed values (other than zero) for error_status and/or
error_index would constitute an invalid PDU structure and the implementation should return
SNMPAPI_FAILURE and set SnmpGetLastError to report SNMPAPI_PDU_INVALID.

Note:    An application may assign a RequestID to a PDU at any time via the SnmpCreatePdu or
SnmpSetPduData functions.    If the RequestID component is zero at the time of the SnmpSendMsg
call, the implementation will assign a RequestID, using an implementation-specific algorithm.

Note:    As SNMP replies do not necessarily come back in the same order as requests were sent, the
application should check the RequestID of the received message to match it with the appropriate
request.

If an SNMPv2 feature is requested, but the dstEntity implies an entity using SNMPv1, then the down-
grading procedures defined in the SNMPv2 "coexistence" specification (RFC1452) are used.    If down-
grading is not possible (e.g., an InformRequest-PDU directed at an SNMPv1 agent), then the function
will fail and SnmpGetLastError will return SNMPAPI_OPERATION_INVALID.

SnmpRecvMsg()

The SnmpRecvMsg function retrieves the results from a completed asynchronous request made on a
given HSNMP_SESSION.    It also receives traps registered for that session.

Syntax:

SNMPAPI_STATUS SnmpRecvMsg (
IN    HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT    context
OUT LPHSNMP_PDU pdu);

Parameter Description

session Specifies the session that will receive the SNMP message.

srcEntity Identifies the entity (agent role) which sent the message.

dstEntity Identifies the entity (manager role) which is to receive the message.

context Identifies the context from which the srcEntity issued the message.

pdu Identifies the PDU component of the received message.

Returns:

If the function is successful, the return value is the RequestID of the received PDU, and the OUT
parameters are populated with their corresponding values.

If the function fails, the return value is SNMPAPI_FAILURE.    Note that for the Transport Layer (TL)
errors, the OUT parameters are populated with their corresponding values to enable applications to
recover gracefully.    Use the SnmpGetLastError function to obtain extended error information.

    SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates that the session parameter is invalid.

SNMPAPI_NOOP Indicates that this session has no messages in
its queue at this time

SNMPAPI_TL_NOT_INITIALIZED            Transport layer not initialized

SNMPAPI_TL_NOT_SUPPORTED              Transport does not support protocol

SNMPAPI_TL_NOT_AVAILABLE                Network subsystem has failed

SNMPAPI_TL_RESOURCE_ERROR              Transport resource error

SNMPAPI_TL_UNDELIVERABLE                Destination unreachable

SNMPAPI_TL_SRC_INVALID                    Source endpoint invalid

SNMPAPI_TL_INVALID_PARAM                Invalid parameter to transport call

SNMPAPI_TL_PDU_TOO_BIG                    PDU was too big for transport

SNMPAPI_TL_TIMEOUT                            No response within Timeout Interval

SNMPAPI_TL_OTHER                                Undefined transport error

Comments:

See Section 2.2. Transport Interface Support and Section 2.7. Asynchronous Model

The implementation is only required to deliver information via SnmpRecvMsg that it has access to in
the SNMP message it received from the transport layer.    For SNMPv2, all components are included in
the SNMP message itself.    For SNMPv1, an implementation    has several choices:    It might have
access to additional transport layer data and elect to use that; it can probably associate an in-bound
GetResponse PDU with an out-bound request PDU and use the srcEntity and dstEntity values from that;
or it can return NULL for components missing from the received SNMP message.

The application is responsible for freeing the HANDLE object resources returned by this function when it
is no longer needed by the application, by calling the SnmpFreePdu, SnmpFreeEntity, and
SnmpFreeContext functions when appropriate.

Note that there are four HANDLE objects instantiated by a successful SnmpRecvMsg operation (i.e.,
the varbindlist component of the returned PDU is not instantiated until called for by the application via
the SnmpGetPduData function.

Replies are not necessarily received in the same order as their originating requests were sent.    For
traps received from SNMPv1 entities, in addition to mapping them to SNMPv2 format, the
implementation must assign a non-zero RequestID.    A RequestID value delivered via trap notification
can possibly duplicate a RequestID used by an application on a request PDU; applications need to
check for this occurrence.

When a trap is delivered by SnmpRecvMsg, it is returned in the SNMPv2 format, even if a SNMPv1
entity generated the trap.    The SNMPv2 "coexistence" specification, as described in RFC 1452,
specifies the mapping rules between the SNMPv1 and SNMPv2 trap formats.    However, for the
convenience of management applications, the final variable binding for a SNMPv1-generated trap will
always be snmpTrapEnterpriseOID.0, even if the trap is a generic trap such as coldStart.    See Appendix
A. Mapping Traps Between SNMPv1 and SNMPv2

SnmpRegister()

The SnmpRegister function registers the application's desire to receive or discontinue trap and inform
notifications from the specified entity of interest (dstEntity), which will act in an agent role.

Syntax:

SNMPAPI_STATUS SnmpRegister (
IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN smiLPCOID notification,
IN smiUINT32 status);

Parameter Description

session Identifies the session which is interested in registering.

srcEntity Identifies the management entity (manager role) of interest--this will be
the trap recipient.    (This is the source of the notification request.)

dstEntity Identifies the management entity (agent role) of interest--this will be the
trap sender.    (This is the target of the notification request.)

context Identifies the context of interest.

notification Identifies the trap/notification OID matching sequence to be registered or
un-registered.

status Indicates whether to register (SNMPAPI_ON) or un-register
(SNMPAPI_OFF) for the subject notification..

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

 SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates that the session parameter is invalid.

SNMPAPI_ENTITY_INVALID Indicates that the entity parameter is invalid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is invalid.

SNMPAPI_OID_INVALID Indicates that the notification parameter is
invalid.

SNMPAPI_TL_NOT_INITIALIZED Transport layer not initialized

SNMPAPI_TL_IN_USE Trap port not available

SNMPAPI_TL_NOT_AVAILABLE Network subsystem has failed

Comments:

In WinSNMP all traps are delivered to the applications are SNMPv2    traps.    If an implementation
receives an SNMPv1 trap from an SNMPv1 agent, it must convert it to an SNMPv2 trap in accordance
with RFC 1452 (the Coexistence document).

See Appendix A. Mapping Traps Between SNMPv1 and SNMPv2

Notifications, traps or informs, are defined using OBJECT IDENTIFIERs, as specified in SNMPv2.
Hence, an application interested in receiving coldStart traps should construct an OBJECT IDENTIFIER
corresponding to this trap based upon the SNMPv2 MIB (RFC 1450) and use this as the notification
parameter.

The value of the notification parameter is used for pattern matching against the OIDs of received traps
and notifications.    That is, if the first n sub-ids of a received SnmpTrapOID match all the sub-ids (n) of a
notification value passed to SnmpRegister, than that SnmpTrapOID is a match.    Accordingly, a   
received SnmpTrapOID with fewer sub-ids than a given notification parameters must fail the matching
process with respect to that particular notification parameter.

An application may pass NULL for any or all of the srcEntity, dstEntity, context, and notification
parameters.    The significance of NULL in any of these parameters is, effectively, to tell the
implementation to not filter out any received traps or notifications on the basis of this parameter.

If the notification parameter is NULL, then the application is indicating that it is interested in registering
or unregistering for any and all notifications from the dstEntity, as indicated by the status parameter.

If the status parameter contains any value other than SNMPAPI_OFF or SNMPAPI_ON, it will be
treated as though it were SNMPAPI_ON.

Upon receipt of a trap/notification, the hWnd parameter specified in the SnmpOpen call for the
registered session is sent the wMsg specified. The application should call SnmpRecvMsg with this
session to retrieve the appropriate results.

Note that it is the responsibility of a Level 3 implementation to acknowledge the receipt of an
InformRequest-PDU.    This tells the issuing management entity that the inform made it to the
implementation "platform", but not necessarily to any particular application(s).

In the case where a NULL dstEntity parameter to SnmpRegister results in the implementation creating
an entity object for the srcEntity parameter on a future SnmpRecvMsg call, the entity will "belong" to the
application as though it had caused its creation with SnmpStrToEntity.    Put differently, the behavior

in this respect will be the same as for SnmpDecodeMsg.    This is equally true--although perhaps less
likely to occur--with respect to the srcEntity and context parameters as well.

Note that this functionality relates to [not] filtering traps/notifications received by the implementation.    It
does not address the issue of how such traps/notifications get directed to the implementation in the first
place.    This is assumed to occur "out-of-band" from the perspective of application making use of NULL
filtering parameters as described above.

Entity/Context Functions

The functions in this section enable the application to use human-oriented string identifiers for the entity
and context "objects" and concepts, while permitting the WinSNMP implementation to adopt proprietary
repository, access method, and runtime representation strategies vis-à-vis the "local database", entities,
parties, and contexts.

The functions in this section are:

Return Type Procedure Name Parameters

HSNMP_ENTITY SnmpStrToEntity (IN HSNMP_SESSION session,

IN LPCSTR    entity);

SNMPAPI_STATUS SnmpEntityToStr (IN HSNMP_ENTITY entity,

IN smiUINT32 size,

OUT LPSTR string);

SNMPAPI_STATUS SnmpFreeEntity (IN HSNMP_ENTITY entity);

HSNMP_CONTEXT SnmpStrToContext (IN HSNMP_SESSION session,

IN smiLPCOCTETS string);

SNMPAPI_STATUS SnmpContextToStr (IN HSNMP_CONTEXT context,

OUT smiLPOCTETS string);

SNMPAPI_STATUS SnmpFreeContext (IN HSNMP_CONTEXT context);

SnmpStrToEntity()

The SnmpStrToEntity function accepts a pointer to a null-terminated text string identifying an entity of
interest and, if successful, returns a handle to an implementation-specific representation of entity
information.    Note that the resulting entity handle may be used as either a srcEntity value or as a
dstEntity value.    Note, also, that the semantics of the input string are governed by the value of
entity/context translation mode in effect at the time of the call.

Syntax:

 HSNMP_ENTITY SnmpStrToEntity (
IN HSNMP_SESSION session,
IN LPCSTR entity);

Parameter Description

session Handle of the allocating session.

entity Pointer to a NULL-terminated text string identifying the management
entity of interest.

 Returns:

If the function is successful, the return value is an HSNMP_ENTITY handle.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

    SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates an invalid session handle.

SNMPAPI_ENTITY_UNKNOWN Indicates entity parameter is unknown.

Comments:

See Section 2.3. Entity/Context Translation Modes

When the application no longer needs to utilize this entity handle, the SnmpFreeEntity function should
be called to release the resources associated with it.

When the current entity/context translation mode is SNMPAPI_TRANSLATED, the "entity" parameter is
assumed to be a user-friendly textual name to be de-referenced via the Local Database.

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V1, the "entity"
parameter is assumed to be a literal transport address (in textual form).    The implementation will
attempt to identify Local Database resources associated with this SNMPv1 "address" and will supply
working defaults when no such entry exists in the Local Database.    This is to enable "out-of-the-box"

SNMPv1/UDP operation with WinSNMP.

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V2, the "entity"
parameter is assumed to be a literal PartyID (in textual form).    The implementation will attempt to
identify Local Database resources associated with this SNMPv2 "party" and will supply working defaults
when no such entry exists in the Local Database.    This is to enable "out-of-the-box" SNMPv2/
InitialPartyID operation with WinSNMP.

SnmpEntityToStr()

The SnmpEntityToStr function returns a string value identifying an entity.

Syntax:

SNMPAPI_STATUS SnmpEntityToStr (
IN HSNMP_ENTITY entity,
IN smiUINT32 size,
OUT LPSTR string);

Parameter Description

entity A handle specifying an entity.

size The size of the buffer the application is providing to contain the string.

string Points to a buffer that will receive the NULL-terminated string that
identifies the management entity.

Returns:

If the function is successful, the return value is the number of bytes, including the NULL terminating byte,
output to "string"--this value may be less than or equal to "size", but not greater.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_ENTITY_INVALID Indicates entity parameter is unknown.

SNMPAPI_OUTPUT_TRUNCATED Indicates that the buffer was too small.

Comments:

See Section 2.3. Entity/Context Translation Modes

Note that the current setting of the entity/context translation mode affects this function:

If the setting is SNMPAPI_TRANSLATED, then the implementation returns the user-friendly textual
name of this entity from the Local Database.    If no such name exists in the Local Database, then the
function returns either of the following, depending upon whether the entity is known to be SNMPv1 or
SNMPv2.

If the setting is SNMPAPI_UNTRANSLATED_V1 and the subject entity is an SNMPv1 creature, then the
implementations returns the transport address of the entity (in textual form).    If the subject entity is an

SNMPv2 creature, then the implementation behaves as though the entity/context translation mode
setting were SNMPAPI_UNTRANSLATED_V2 for the purposes of this call only.

If the setting is SNMPAPI_UNTRANSLATED_V2 and the subject entity is an SNMPv2 creature, then the
implementations returns the PartyID of the entity (in textual form).    If the subject entity is an SNMPv1
creature, then the implementation behaves as though the entity/context translation mode setting were
SNMPAPI_UNTRANSLATED_V1 for the purposes of this call only.

SnmpFreeEntity()

The SnmpFreeEntity function releases resources associated with a entity returned by the
SnmpStrToEntity function.

Syntax:

SNMPAPI_STATUS SnmpFreeEntity (
IN HSNMP_ENTITY entity);

Parameter Description

entity An entity handle to be released.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_ENTITY_INVALID Indicates entity parameter is invalid.

Comments:

Un-freed resources created on behalf of the application will be freed by the implementation upon
execution of an associated SnmpClose function or upon execution of an SnmpCleanup function.   
Nonetheless, a well-behaved WinSNMP application will individually free all such resources using the
atomic "free" functions.    The reason for this is to eliminate or, at least, minimize any "batch-like" loads
on the implementation, so that other applications can be serviced in a timely fashion.

SnmpStrToContext()

The SnmpStrToContext function accepts an OCTET STRING naming the collection of managed
objects (or profile) of interest (for SNMPAPI_TRANSLATED mode), a community string (for
SNMPAPI_UNTRANSLATED_V1 mode), or a contextID (for SNMPAPI_UNTRANSLATED_V2 mode)
and returns a handle to an implementation-specific representation of context information for use with the
SnmpSendMsg and SnmpRegister functions.

Syntax:

 HSNMP_CONTEXT SnmpStrToContext (
IN HSNMP_SESSION session,
IN smiLPCOCTETS string);

Parameter Description

session Handle of the allocating session.

string Pointer to an smiOCTETS descriptor identifying a collection of managed
objects, community string, or contextID.

Returns:

If the function is successful, the return value is an HSNMP_CONTEXT handle.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

 SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates an invalid session handle.

SNMPAPI_CONTEXT_INVALID Indicates that the string descriptor is invalid
(e.g., len and/or ptr member is NULL).

SNMPAPI_CONTEXT_UNKNOWN Indicates that the value referenced in the string
descriptor is unknown.

Comments:

See Section 2.3. Entity/Context Translation Modes

Note:    The smiOCTETS descriptor used for the string parameter in the SnmpStrToContext function is
both allocated and populated by the application.    Hence, SnmpFreeDescriptor should not be called to
free the memory associated with the ptr member of this descriptor.

Note:    Strings referenced in descriptors (such as an smiOCTETS structure) do not require a NULL
terminating byte.    Such a string can be used in an IN smiOCTETS parameter by merely setting the len

member to ignore it.

When the application no longer needs to utilize this context handle, the SnmpFreeContext function
should be called to release the resources associated with it.

Note that the current setting of the entity/context translation mode affects this function:

When the current entity/context translation mode is SNMPAPI_TRANSLATED, the "string" parameter is
assumed to describe a user-friendly name (in textual form) to be de-referenced via the Local Database.

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V1, the "string"
parameter is assumed to describe a literal community string (which may contain non-printable ASCII
byte values).

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V2, the "string"
parameter is assumed to describe a literal ContextID (in textual form).    The implementation will attempt
to identify Local Database resources associated with this SNMPv2 "context" and will supply working
defaults when no such entry exists in the Local Database.    This is to enable "out-of-the-box" SNMPv2/
InitialContextID operation with WinSNMP.

SnmpContextToStr()

The SnmpContextToStr function populates an smiOCTETS descriptor with a context value appropriate
to the entity/context translation mode in effect at the time of execution..

Syntax:

SNMPAPI_STATUS SnmpContextToStr (
IN HSNMP_CONTEXT context,
OUT smiLPOCTETS string);

Parameter Description

context A handle specifying a context.

string A pointer to an smiOCTETS descriptor buffer that will receive the string
which identifies the context.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_CONTEXT_INVALID Indicates that the context handle is invalid.

Comments:

See Section 2.3. Entity/Context Translation Modes

Note:    The application provides only the address of a valid smiOCTETS descriptor structure as the
string parameter.    The implementation, upon successful execution of the SnmpContextToStr function,
will populate the len and ptr members of the descriptor.    The application must call
SnmpFreeDescriptor --when appropriate--to enable the implementation to free the memory resources
so consumed.

Note:    Strings referenced in descriptors (such as an smiOCTETS structure) do not require a NULL
terminating byte.    Applications should not expect a NULL-terminated string to be returned in an OUTput
smiOCTETS parameter.

Note that the current setting of the entity/context translation mode affects this function:

If the setting is SNMPAPI_TRANSLATED, then the implementation returns the user-friendly textual
name of this context from the Local Database.    If no such name exists in the Local Database, then the
function returns either of the following, depending upon whether the context is known to be an SNMPv1
or SNMPv2 construct.

If the setting is SNMPAPI_UNTRANSLATED_V1 and the subject context is an SNMPv1 construct, then
the implementation returns the raw community string (which may contain non-printable byte values).    If
the subject context is an SNMPv2 construct, then the implementation behaves as though the
entity/context translation mode setting were SNMPAPI_UNTRANSLATED_V2 for the purposes of this
call only.

If the setting is SNMPAPI_UNTRANSLATED_V2 and the subject context is an SNMPv2 construct, then
the implementations returns the raw ContextID (in textual form).    If the subject entity is an SNMPv1
construct, then the implementation behaves as though the entity/context translation mode setting were
SNMPAPI_UNTRANSLATED_V1 for the purposes of this call only.

SnmpFreeContext()

The SnmpFreeContext function releases resources associated with a context returned by the
SnmpStrToContext    function.

Syntax:

 SNMPAPI_STATUS SnmpFreeContext (
IN HSNMP_CONTEXT context);

Parameter Description

context A context handle to be released.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_CONTEXT_INVALID Indicates context parameter is invalid.

Comments:

Un-freed resources created on behalf of the application will be freed by the implementation upon
execution of an associated SnmpClose function or upon execution of an SnmpCleanup function.   
Nonetheless, a well-behaved WinSNMP application will individually free all such resources using the
atomic "free" functions.    The reason for this is to eliminate or, at least, minimize any "batch-like" loads
on the implementation, so that other applications can be serviced in a timely fashion.

PDU Functions

This section defines functions which construct PDUs for use in the SnmpSendMsg and
SnmpEncodeMsg functions and which decompose PDUs received via the SnmpRecvMsg and
SnmpDecodeMsg functions.    The following section--Variable Binding Functions--also pertains to PDU
[de]composition, but is retained as a separate section both for consistency with the earlier versions of
this document and for modularization.

Actual PDU and variable binding data structures are private to the WinSNMP implementation.    The
PDU and Variable Binding functions enable applications to extract the component data elements which
are then available for whatever use the application deems appropriate.    The elements comprising a
PDU from the perspective of a WinSNMP application are:

/* This typedef is for expository purposes only.    It is not a required component of WinSNMP */

typedef struct {

smiINT PDU_type;

smiINT32 request_id;

smiINT error_status; -- "non_repeaters" for BulkPDU

smiINT error_index; -- "max_repetitions" for BulkPDU

HSNMP_VBL varbindlist;} -- we'll examine this one in the next section

PDU;

The functions in this section are:

Return Type Procedure Name Parameters

HSNMP_PDU SnmpCreatePdu (IN HSNMP_SESSION session,

IN smiINT PDU_type,

IN smiINT32 request_id,

IN smiINT error_status/non_repeaters,

IN smiINT error_index/max_repetitions,

IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpGetPduData (IN HSNMP_PDU PDU,

OUT smiLPINT PDU_type,

OUT smiLPINT32 request_id,

OUT smiLPINT error_status/non_repeaters,

OUT smiLPINT error_index/max_repetitions,

OUT LPHSNMP_VBL vbl);

SNMPAPI_STATUS SnmpSetPduData (IN HSNMP_PDU PDU,

IN const smiINT FAR *PDU_type,

IN const smiINT32 FAR *request_id,

IN const smiINT FAR *non_repeaters,

IN const smiINT FAR *max_repetitions,

IN const HSNMP_VBL FAR *vbl);

HSNMP_PDU SnmpDuplicatePdu (IN HSNMP_SESSION session,

IN HSNMP_PDU PDU);

SNMPAPI_STATUS SnmpFreePdu (IN HSNMP_PDU PDU);

The following table illustrates the possible PDU_type values used in WinSNMP functions:

PDU_types Table

SNMP_PDU_GET Indicates a Get Request-PDU

SNMP_PDU_GETNEXT Indicates a GetNextRequest-PDU

SNMP_PDU_GETBULK Indicates a GetBulkRequest-PDU

SNMP_PDU_V1TRAP Indicates an SNMPv1-Trap-PDU

SNMP_PDU_SET Indicates a SetRequest- PDU

SNMP_PDU_INFORM Indicates an InformRequest-PDU

SNMP_PDU_RESPONSE Indicates a Response-PDU

SNMP_PDU_TRAP Indicates an SNMPv2-Trap-PDU

The following table illustrates the possible SNMP error values used in the error_status element of an
SNMP PDU:

SNMP Error Values Table

SNMP_ERROR_NOERROR Specifies the noError error.

SNMP_ERROR_TOOBIG Specifies the tooBig error.

SNMP_ERROR_NOSUCHNAME Specifies the noSuchName error.

SNMP_ERROR_BADVALUE Specifies the badValue error.

SNMP_ERROR_READONLY Specifies the readOnly error.

SNMP_ERROR_GENERR Specifies the genErr error.

SNMP_ERROR_NOACCESS Specifies the noAccess error.

SNMP_ERROR_WRONGTYPE Specifies the wrongType error.

SNMP_ERROR_WRONGLENGTH Specifies the wrongLength error.

SNMP_ERROR_WRONGENCODING Specifies the wrongEncoding error.

SNMP_ERROR_WRONGVALUE Specifies the wrongValue error.

SNMP_ERROR_NOCREATION Specifies the noCreation error.

SNMP_ERROR_INCONSISTENTVALUE Specifies the inconsistentValue error.

SNMP_ERROR_RESOURCEUNAVAILABL
E

Specifies the resourceUnavailable error.

SNMP_ERROR_COMMITFAILED Specifies the commitFailed error.

SNMP_ERROR_UNDOFAILED Specifies the undoFailed error.

SNMP_ERROR_AUTHORIZATIONERROR Specifies the authorizationError error.

SNMP_ERROR_NOTWRITABLE Specifies the notWritable error.

SNMP_ERROR_INCONSISTENTNAME Specifies the inconsistentName error.

SnmpCreatePdu()

The SnmpCreatePdu function allocates and initializes an SNMP protocol data unit for subsequent use

in SnmpSendMsg, SnmpEncodeMsg, and other functions.

Note that all input parameters to SnmpCreatePdu must be present; but, with the exception of the
"session" parameter, all may be NULL, resulting in a default PDU as defined below.

Syntax:

HSNMP_PDU SnmpCreatePdu (
IN HSNMP_SESSION session,
IN smiINT PDU_type,
IN smiINT32 request_id,
IN smiINT error_status, -- "non_repeaters" for BulkPDU
IN smiINT error_index, -- "max_repetitions" for BulkPDU
IN HSNMP_VBL vbl;

Parameter Description

session Handle of the allocating session.

PDU_type NULL or one of the values shown in the PDU_types table shown in the
introduction to the PDU Functions section.    If NULL, the WinSNMP
implementation will supply SNMP_PDU_GETNEXT.

request_id An application-supplied value used to identify the PDU or NULL, in which
case the WinSNMP implementation will supply a value.

error_status Ignored (and may be NULL) on input for all PDU types except
SNMP_PDU_GETBULK, in which case it represents the value for
non_repeaters.    For all other PDU types, the WinSNMP implementation
will supply SNMP_ERROR_NOERROR.

error_index Ignored (and may be NULL) on input for all PDU types except
SNMP_PDU_GETBULK, in which case it represents the value for
max_repetitions.    The WinSNMP implementation returns 0 (zero) for all
other PDU types.

vbl A handle to a varbindlist data structure (or NULL).

Returns:

If the function is successful, the return value identifies the created SNMP protocol data unit

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates an invalid session handle.

SNMPAPI_PDU_INVALID Indicates an invalid PDU_type value.

SNMPAPI_VBL_INVALID Indicates an invalid vbl.

Comments:

Assuming NULL values for all input parameters (other than "session"), the created protocol data unit
defaults to the following attributes:

PDU_type: SNMP_PDU_GETNEXT

request_id: <WinSNMP-generated value>

error_status: SNMP_ERROR_NOERROR

error_index: 0

vbl: NULL

After completing operations with the created PDU, the SnmpFreePdu function should be called to
release the resources allocated to the PDU by the SnmpCreatePdu function..

SnmpGetPduData()

The SnmpGetPduData function extracts selected data elements from the specified PDU and copies
them to the respective locations given as corresponding output parameters.

Note that all output parameters must be supplied to the function call, but any (or all) of them may be
NULL.    No values are returned for output parameters passed as NULL.

Syntax:

SNMPAPI_STATUS SnmpGetPduData (
IN HSNMP_PDU PDU,
OUT smiLPINT PDU_type,
OUT smiLPINT32 request_id,
OUT smiLPINT error_status, -- "non_repeaters" for GetBulkRequest-PDU
OUT smiLPINT error_index, -- "max_repetitions" for GetBulkRequest-PDU
OUT LPHSNMP_VBL vbl);

Parameter Description

PDU Identifies the SNMP protocol data unit.

PDU_type If not NULL, points to an smiINT variable that will receive the PDU_type
of the PDU.

request_id If not NULL, points to an smiINT32 variable that will receive the
request_id of the PDU.

error_status If not NULL, points to an smiINT variable that will receive the error_status
(or non_repeaters) of the PDU.

error_index If not NULL, points to an smiINT variable that will receive the error_index
(or max_repetitions) of the PDU.

vbl If not NULL, points to an HSNMP_VBL variable that will receive the
handle to the varbindlist of the PDU.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

SNMPAPI_NOOP Indicates that all output parameters were NULL

Comments:

On a successful return and if the parameter was not NULL, PDU_type will contain one of the values
from the PDU_Types Table shown in the introduction to the PDU Functions section.

On a successful return and if the parameter was not NULL, error_status will contain one of the values
from the SNMP Error Values Table shown in the introduction to the PDU Functions section.

As always, a well-behaved application must handle the case when an unexpected value (PDU_type and
error_status are just possible examples) might be returned by a procedure call.

SnmpSetPduData()

The SnmpSetPduData function updates selected data elements in the specified PDU.

Note that all parameters must be supplied to the function call, but any (or all) of them--except the PDU--
may be NULL.    No values are changed in the PDU for input parameters passed as NULL (and they are
passed as pointers to values to allow for the case when NULL is the desired update value).

Syntax:

SNMPAPI_STATUS SnmpSetPduData (
IN HSNMP_PDU PDU,
IN smiLPINT PDU_type,
IN smiLPINT32 request_id,
IN smiLPINT non_repeaters, -- for GetBulkRequest-PDU only
IN smiLPINT max_repetitions, -- for GetBulkRequest-PDU only
IN LPHSNMP_VBL vbl);

Parameter Description

PDU Identifies the SNMP protocol data unit.

PDU_type If not NULL, points to an smiINT variable that will update the PDU_type
of the PDU.

request_id If not NULL, points to an smiINT32 variable that will update the
request_id of the PDU.

non_repeaters If not NULL, points to an smiINT variable that will update the
non_repeaters of the GetBulkRequest-PDU (ignored for other
PDU_types).

max_repetitions If not NULL, points to an smiINT variable that will update the
max_repetitions of the GetBulkRequest-PDU (ignored for other
PDU_types).

vbl If not NULL, points to an HSNMP_VBL variable that will update the
handle to the varbindlist of the PDU.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

SNMPAPI_VBL_INVALID Indicates an invalid vbl parameter.

SNMPAPI_NOOP Indicates that all input parameters were NULL

Comments:

Not all possible combinations of individually legal component values are valid.    Ultimately, the
WinSNMP implementation must verify the validity of the PDU (and other message elements) when the
application calls the SnmpSendMsg or SnmpEncodeMsg function and reject and ill-formed or
otherwise illegal PDU structures

SnmpDuplicatePdu()

The SnmpDuplicatePdu function duplicates an SNMP protocol data unit structure identified by the PDU
parameter.

Syntax:

HSNMP_PDU SnmpDuplicatePdu (
IN HSNMP_SESSION session,
IN HSNMP_PDU PDU);

Parameter Description

session Handle of the allocating session.

PDU Identifies the SNMP protocol data unit to duplicate.

Returns:

If the function is successful, the return value is a handle which identifies the new (duplicated) SNMP
protocol data unit.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates an invalid session handle.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

Comments:

After using the duplicated message, SnmpFreePdu function should be called to release the resources
allocated to the PDU by the SnmpDuplicatePdu function.

Note:    The handle returned by a successful call to SnmpDuplicatePdu will be unique among active
PDU handles, at least within the calling application.

SnmpFreePdu()

The SnmpFreePdu function releases resources associated with a protocol data unit previously created
by the SnmpCreatePdu or SnmpDuplicatePdu function.

Syntax:

SNMPAPI_STATUS SnmpFreePdu (
IN HSNMP_PDU PDU);

Parameter Description

PDU Identifies the SNMP protocol data unit to be freed.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

Comments:

Un-freed resources created on behalf of the application will be freed by the implementation upon
execution of an associated SnmpClose function or upon execution of an SnmpCleanup function.   
Nonetheless, a well-behaved WinSNMP application will individually free all such resources using the
atomic "free" functions.    The reason for this is to eliminate or, at least, minimize any "batch-like" loads
on the implementation, so that other applications can be serviced in a timely fashion.

Varbinds and VarBindLists are re-usable independently of any given PDU.    In WinSNMP, a varbind
does not exist outside of a varbindlist (even if the latter consists of only a single varbind).    There is a
separate atomic function--SnmpFreeVbl--to deallocate varbindlist resources.    Of course, upon
execution of SnmpFreePdu, the WinSNMP implementation must free any internal resources allocated
to VBLs for that PDU.    That's different from the HSNMP_VBL resources requested and held by a
session in the calling application.

Variable Binding Functions

WinSNMP relies on a varbindlist structure (VBL), and drops the concept of a separate varbind structure
(VB).    No capability is lost, since an individual varbind structure can be represented by a varbindlist
structure of one member.    A WinSNMP application accesses the varbindlist structure via handles--of
type HSNMP_VBL.    A WinSNMP implementation hides the details of this structure from the application
using whatever proprietary mechanisms and techniques it considers optimal.

These functions allow applications to easily construct and manipulate VarBindLists for inclusion in
PDUs.    Note that a varbind is not directly associated with a PDU, only indirectly through inclusion in a
varbindlist.    A varbindlist gets associated with and dereferenced from a PDU with the
SnmpSetPduData and SnmpGetPduData, respectively.

The functions in this section are:

Return Type Procedure Name Parameters

HSNMP_VBL SnmpCreateVbl (IN HSNMP_SESSION session,

IN smiLPCOID name,

IN smiLPCVALUE value);

HSNMP_VBL SnmpDuplicateVbl (IN HSNMP_SESSION session,

IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpFreeVbl (IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpCountVbl (IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpGetVb (IN HSNMP_VBL vbl,

IN smiUINT32 index,

OUT smiLPOID name,

OUT smiLPVALUE value);

SNMPAPI_STATUS SnmpSetVb (IN HSNMP_VBL vbl,

IN smiUINT32 index,

IN smiLPCOID name,

IN smiLPCVALUE value);

SNMPAPI_STATUS SnmpDeleteVb (IN HSNMP_VBL vbl,

IN smiUINT32 index);

Table of Syntax Values Used in Variable Binding Data Structures

SNMP_SYNTAX_INT32

SNMP_SYNTAX_OCTETS

SNMP_SYNTAX_OID

SNMP_SYNTAX_BITS

SNMP_SYNTAX_IPADDR

SNMP_SYNTAX_CNTR32

SNMP_SYNTAX_GAUGE32

SNMP_SYNTAX_TIMETICKS

SNMP_SYNTAX_OPAQUE

SNMP_SYNTAX_NSAPADDR

SNMP_SYNTAX_CNTR64

SNMP_SYNTAX_UINT32

SNMP_SYNTAX_NULL

SNMP_SYNTAX_NOSUCHOBJECT

SNMP_SYNTAX_NOSUCHINSTANCE

SNMP_SYNTAX_ENDOFMIBVIEW

SnmpCreateVbl()

The SnmpCreateVbl function creates a new varbindlist structure for the calling application.    If the
"name" and "value" parameters are not NULL, SnmpCreateVbl uses them to construct the initial varbind
member of the varbindlist.

Syntax:

HSNMP_VBL SnmpCreateVbl (
IN HSNMP_SESSION session,
IN smiLPCOID name,
IN smiLPCVALUE value);

Parameter Description

session Handle of the allocating session.

name If not NULL, points to an OID for initialization of the varbindlist.

value If not NULL, points to a value for initialization of the varbidlist.

Returns:

If the function is successful, the return value identifies a newly created varbindlist structure.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates an invalid session handle.

SNMPAPI_OID_INVALID Indicates that the name parameter referenced
an invalid OID structure.

SNMPAPI_SYNTAX_INVALID Indicates that the syntax field of the value
parameter is invalid.

 

Comments:

IF the "name" parameter is not NULL and the "value" parameter is NULL, the varbindlist will still be
initialized, with the value set to NULL and with syntax of SNMP_SYNTAX_NULL.    If the "name"
parameters is NULL, the varbindlist will not be initialized, and the "value" parameter will be ignored.

Every call to SnmpCreateVbl must be matched with a corresponding call to SnmpFreeVbl to release
the resources associated with the varbindlist.    A memory leak will result if a variable used to hold an
HSNMP_VBL value returned by SnmpCreateVbl (or SnmpDuplicateVbl) is re-used for a subsequent
SnmpCreateVbl (or SnmpDuplicateVbl) operation before it has been passed to SnmpFreeVbl.

SnmpDuplicateVbl()

The SnmpDuplicateVbl function creates a new varbindlist structure for the specified session in the
calling application and initializes it with a copy of the input vbl (which may be empty).

Syntax:

HSNMP_VBL SnmpDuplicateVbl (
IN HSNMP_SESSION session,
IN HSNMP_VBL vbl);

Parameter Description

session Handle of the allocating session.

vbl Identifies the varbindlist to be duplicated.

Returns:

If the function is successful, the return value identifies a newly created varbindlist structure.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates an invalid session handle.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is invalid.

Comments:

Every call to SnmpDuplicateVbl must be matched with a corresponding call to SnmpFreeVbl to
release the resources associated with the varbindlist.    A memory leak will result if a variable used to
hold an HSNMP_VBL value returned by SnmpDuplicateVbl (or SnmpCreateVbl) is re-used for a
subsequent SnmpDuplicateVbl (or SnmpCreateVbl) operation before it has been passed to
SnmpFreeVbl.

Note:    The handle returned by a successful call to SnmpDuplicateVbl will be unique among active
VBL handles, at least within the calling application.

SnmpFreeVbl()

The SnmpFreeVbl function releases resources associated with a varbindlist structure previously
allocated by SnmpCreateVbl or SnmpDuplicateVbl.    It is the responsibility of WinSNMP applications
to free varbindlist resources allocated through calls to SnmpCreateVbl and SnmpDuplicateVbl.

Syntax:

SNMPAPI_STATUS SnmpFreeVbl (
IN HSNMP_VBL vbl);

Parameter Description

vbl Identifies the varbindlist to be released.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is invalid.

Comments:

Every call to SnmpCreateVbl must be matched with a corresponding call to SnmpFreeVbl to release
the resources associated with the varbindlist.    A memory leak will result if a variable used to hold an
HSNMP_VBL value returned by SnmpCreateVbl is re-used for a subsequent SnmpCreateVbl
operation before it has been passed to SnmpFreeVbl.    The foregoing comments apply equally to
VarBindLists originating via the SnmpDuplicateVbl function.

Un-freed resources created on behalf of the application will be freed by the implementation upon
execution of an associated SnmpClose function or upon execution of an SnmpCleanup function.   
Nonetheless, a well-behaved WinSNMP application will individually free all such resources using the
atomic "free" functions.    The reason for this is to eliminate or, at least, minimize any "batch-like" loads
on the implementation, so that other applications can be serviced in a timely fashion.

SnmpCountVbl()

The SnmpCountVbl function counts the number of varbinds in the varbindlist identified by the vbl input
parameter.

Syntax:

SNMPAPI_STATUS SnmpCountVbl (
IN HSNMP_VBL vbl);

Parameter Description

vbl Identifies the subject varbindlist.

Returns:

If the function is successful, the return value is the count of varbinds in the varbindlist.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is invalid.

SNMPAPI_NOOP Indicates that the vbl resources contained no
varbinds at this time.

Comments:

The value returned when the result is SNMPAPI_SUCCESS represents the maximum "index" value in
the SnmpGetVb and SnmpSetVb functions.

SnmpGetVb()

The SnmpGetVb function retrieves the object instance name and its associated value from the varbind
identified by the index parameter.    The SnmpGetVb function returns the object instance name in the
descriptor pointed to by the name parameter and its associated value in the descriptor pointed to by the
value parameter.

Syntax:

SNMPAPI_STATUS SnmpGetVb (
IN HSNMP_VBL vbl,
IN smiUINT32 index,
OUT smiLPOID name,
OUT smiLPVALUE value);

Parameter Description

vbl Identifies the subject varbindlist.

index Identifies the position of the subject varbind within the varbindlist.

name Points to a variable to receive the OID portion of the varbind.

value Points to a variable to receive the value portion of the varbind.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is invalid.

SNMPAPI_INDEX_INVALID Indicates that the index parameter is invalid.

Comments:

Valid values for the "index" parameter come from the SnmpCountVbl function and from the
"error_index" component of GetResponse PDUs returned via the SnmpRecvMsg function.    These
values range from 1 to n, where n is the total number of varbinds in the varbindlist.

The member elements of the smiOID    and smiVALUE structures pointed to by the name and value
parameters are ignored on input    and will be overwritten by the implementation upon a successful
execution of this function.

On a successful return, the syntax field of the "value" variable will contain one of the object syntax types

shown in the Table of Syntax Values included in the introduction to this section.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to
free any resources that might have been allocated to populate the ptr members of the name and
(depending upon its syntax member) value structures.

SnmpSetVb()

The SnmpSetVb function adds and updates varbind entries in a varbindlist.

Syntax:

SNMPAPI_STATUS SnmpSetVb (
IN HSNMP_VBL vbl,
IN smiUINT32 index,
IN smiLPCOID name,
IN smiLPCVALUE value);

Parameter Description

vbl Identifies the target varbindlist.

index Identifies the position of the subject varbind within the varbindlist for an
update operation or is zero for an add/append operation.

name Points to a variable containing the object instance name to be set.

value Points to a variable containing the associated value to be set.

Returns:

If the function is successful, the return value is the position (index value) of the affected varbind.    In the
case of successful update operations, the return value will equal the index parameter.    In the case of
add/append operations (in which the index parameter will have been zero), the return value will be n+1,
where n was the previous total count of varbinds in the varbindlist (per SnmpCountVbl).

f the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is invalid.

SNMPAPI_INDEX_INVALID Indicates that the index parameter is invalid.

SNMPAPI_OID_INVALID Indicates that the name parameter is invalid.

SNMPAPI_SYNTAX_INVALID Indicates that the syntax field of the value
parameter is invalid.

Comments:

Valid values for the "index" parameter range from 0 (zero) to n, where n is the total number of varbinds
currently in the varbindlist as reported by the SnmpCountVbl function.    An index value of 0 (zero)
indicates the addition of a varbind to the varbindlist.

If the "value" parameter is NULL, the varbind will still be initialized, with the value set to NULL and with
syntax of SNMP_SYNTAX_NULL.

SnmpDeleteVb()

The SnmpDeleteVb function removes a varbind entry from a varbindlist.

Syntax:

SNMPAPI_STATUS SnmpDeleteVb (
IN HSNMP_VBL vbl,
IN smiUINT32 index);

Parameter Description

vbl Identifies the target varbindlist.

index Identifies the position of the subject varbind within the varbindlist.

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is invalid.

SNMPAPI_INDEX_INVALID Indicates that the index parameter is invalid.

Comments:

Valid values for the "index" parameter come from the SnmpCountVbl function and from the
"error_index" component of GetResponse PDUs returned via the SnmpRecvMsg function.    These
values range from 1 to n, where n is the total number of varbinds in the varbindlist.

A typical use for this function will be when a GetResponse PDU includes an SNMP error and the user
elects to resubmit the original "request" PDU sans the offending varbind.

Note that following a successful SnmpDeleteVb operation, any varbinds that previously came after the
deleted varbind will logically move up in the varbindlist--that is, their index values will decrement by one
position and the total number of varbinds in the varbindlist, as returned by SnmpCountVbl will likewise
decrement by one.

It is legal to end up with an empty varbindlist by executing SnmpDeleteVb (hVBL, 1) on the last
remaining varbind in a varbindlist.    In this case, the varbindlist itself (as a HANDLEd object) is still valid
and must eventually be released via SnmpFreeVbl.

Sample pseudo-code for SnmpDeleteVb:

-- Omitting error-checking the function calls for clarity's sake...

nReqID = SnmpRecvMsg (session, &rSrc, &rDst, &rCtx, &rPDU);

SnmpGetPduData (rPDU, &rType, &rReqid, &rErrstat, &rErridx, &rVBL);

-- Assuming type == GetResponse-PDU and

-- Assuming error_status != SNMP_ERROR_NOERROR...

-- Assuming the error is something we cannot or do not want to fix...

-- If error_index == 1, do an SnmpCountVbl ();

-- if count <= 1 follow another strategy (like SnmpFreeVbl (sVBL))

-- Assuming error_index > 1 || count > 1...

SnmpDeleteVb (sVBL, rErridx);

-- And assuming we want to re-try the SNMP operation

-- ...with a new Request_ID just for good measure...

sReqid++;

SnmpSetPduData (sPDU, NULL, &sReqid, NULL, NULL, &sVBL);

SnmpSendMsg (session, sSrc, sDst, sCtx, sPDU);

-- No need for the received PDU or VBL any longer...

SnmpFreePdu (rPDU);

SnmpFreeVbl (rVBL);

-- Go back to doing what we were doing before all of this started...

Utility Functions

The utility functions are offered to ease the tasks of bookkeeping and dealing with objects passed
across the Windows SNMP interface.

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpGetLastError (IN HSNMP_SESSION session);

SNMPAPI_STATUS SnmpStrToOid (IN LPCSTR string,
OUT smiLPOID dstOID);

SNMPAPI_STATUS SnmpOidToStr (IN smiLPCOID srcOID,
IN smiUINT32 size,
OUT LPSTR string);

SNMPAPI_STATUS SnmpOidCopy (IN smiLPCOID srcOID,
OUT smiLPOID dstOID);

SNMPAPI_STATUS SnmpOidCompare (IN smiLPCOID xOID,
IN smiLPCOID yOID,
IN smiUINT32 maxlen,
OUT smiLPINT result);

SNMPAPI_STATUS SnmpEncodeMsg (IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN HSNMP_PDU pdu,

OUT smiLPOCTETS msgBufDesc);

SNMPAPI_STATUS SnmpDecodeMsg (IN HSNMP_SESSION session,

OUT LPHSNMP_ENTITY srcEntity,

OUT LPHSNMP_ENTITY dstEntity,

OUT LPHSNMP_CONTEXT context,

OUT LPHSNMP_PDU pdu,

IN smiLPCOCTETS msgBufDesc);

SNMPAPI_STATUS SnmpFreeDescripto
r

(IN smiUINT32 syntax,

IN smiLPOPAQUE descriptor);

SnmpGetLastError()

The SnmpGetLastError function returns an indication of why the last WinSNMP operation executed by
the application failed.

Syntax:

SNMPAPI_STATUS SnmpGetLastError (
IN HSNMP_SESSION session);

Parameter Description

session Indicates the session for which error information is requested.    If NULL,
the application-wide error information is returned.

Returns:

This function returns the last WinSNMP error that occurred for the indicated session or for the
application (task) if the session is NULL (as when, for example, SnmpStartup fails.)

Comments:

See Section 2.9. Error Handling

This function should be called immediately after any API call that fails, as the value is overwritten after
each API call which fails.

The session input parameter is provided to facilitate accommodation of multi-threaded Windows
operating environments.    Single-threaded applications can always pass a NULL session value and
retrieve the last error information for the overall application.

Note that SnmpGetLastError must be able to return a value to a WinSNMP application even when
SnmpStartup fails, and/or before any sessions are created with SnmpOpen, and/or after all sessions
are closed with SnmpClose and/or the application disconnects from the implementation with the
SnmpCleanup function.

SnmpStrToOid()

The SnmpStrToOid function converts a textual representation of the dotted numeric form of an OBJECT
IDENTIFIER into an internal OBJECT IDENTIFIER representation.

Syntax:

SNMPAPI_STATUS SnmpStrToOid (
IN    LPCSTR string,
OUT smiLPOID dstOID);

Parameter Description

string Points to a NULL terminated string to be converted.

dstOID Points to an smiOID variable to receive the converted value.

Returns:

If the function is successful, the return value is the number of sub-identifiers in the output OBJECT
IDENTIFIER.    This number will also be the value of the "len" member of the dstOID structure upon
return..

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_OID_INVALID Indicates that the string was invalid.

Comments:

The member elements of the smiOID structure pointed to by the dstOID structure are ignored on input
and will be overwritten by the implementation upon a successful execution of this function.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to
free any resources that might have been allocated to populate the ptr member of the dstOID structure.

This function has nothing to do with the MIB database APIs described elsewhere.    The purpose of this
function is to translate from the dotted numeric string representation of an OID (e.g. "1.2.3.4.5.6") to the
internal object identifier format.

This function can fail with SNMPAPI_OID_INVALID, for example, if the "string" input parameter is not
NULL terminated, is of insufficient length, is longer than MAXOBJIDSTRSIZE, or does not constitute the
textual form of a valid OID.

SnmpOidToStr()

The SnmpOidToStr function converts an internal representation of an OBJECT IDENTIFIER into a
dotted numeric string representation of an OBJECT IDENTIFIER.

Syntax:

SNMPAPI_STATUS SnmpOidToStr (
IN    smiLPCOID srcOID,
IN smiUINT32 size,
OUT LPSTR string);

Parameter Description

srcOID Points to a variable holding an object identifier to be converted.

size The size of the buffer the application is providing to contain the string.

string Points to a buffer that will receive the string that identifies the
management entity.

Returns:

If the function is successful, the return value is the number of bytes, including the NULL terminating byte,
output to "string"--this value may be less than or equal to "size", but not greater.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_OID_INVALID Indicates that the srcOID was invalid.

SNMPAPI_OUTPUT_TRUNCATED Indicates that the buffer was too small.

Comments:

This function has nothing to do with the MIB database APIs described elsewhere.    The purpose of this
function is to translate from the internal object identifier format to the dotted numeric string
representation of the OID (e.g., "1.2.3.4.5.6").

Note that the application should use a string buffer of MAXOBJIDSTRSIZE length for this call, to be
safe.    If, as will normally be true, a shorter OID is actually decoded, the application can copy the
resulting string to one of appropriate length and either re-use or free the space allocated to the original
buffer.

Note that a NULL-terminated string is returned for convenience.    The return value, upon success, will
include the terminating NULL byte.

SnmpOidCopy()

The SnmpOidCopy function copies the srcOID to the dstOID.

Syntax:

SNMPAPI_STATUS SnmpOidCopy (
IN smiLPCOID srcOID,
OUT smiLPOID dstOID);

 

Parameter Description

srcOID Points to a variable holding an object identifier.

dstOID Points to a variable to receive a copy of the srcOID.

Returns:

If the function is successful, the return value is the number of sub-identifiers in the output OBJECT
IDENTIFIER.    This number will also be the value of the "len" member of the dstOID structure upon
return.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_OID_INVALID Indicates that the srcOID was invalid.

Comments:

The member elements of the smiOID structure pointed to by the dstOID structure are ignored on input   
and will be overwritten by the implementation upon a successful execution of this function.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to
free any resources that might have been allocated to populate the ptr member of the dstOID structure.

SnmpOidCompare()

The SnmpOidCompare function lexicographically compares two OIDs.    If "maxlen" is non-zero, then its
value is used as an upper limit on the number of sub-identifiers to compare.    This approach will most
often be used to identify whether two OIDs have common prefixes or not.    If "maxlen" is zero, then the
"len" members of the two smiOID structures will determine the maximum number of sub-identifiers to
compare.

Syntax:

SNMPAPI_STATUS SnmpOidCompare (
IN smiLPCOID xOID,
IN smiLPCOID yOID,
IN smiUINT32 maxlen,
OUT smiLPINT result);

 

Parameter Description

xOID Points to a variable holding an object identifier to compare.

yOID Points to a variable holding an object identifier to compare.

maxlen If non-zero, Indicates the number of sub-identifiers to compare.    Must be
less than MAXOBJIDSIZE.

result Points to a variable to receive the result of the comparison:

> 0 if xOID is greater than yOID
= 0 if xOID equals yOID
< 0 if xOID is less than yOID

Returns:

If the function is successful, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE.    Use the SnmpGetLastError function to
obtain extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_OID_INVALID Indicates that either or both of the input OIDs
were invalid.

SNMPAPI_SIZE_INVALID Indicates that the "maxlen" parameter was
invalid; that is, greater than MAXOBJIDSIZE.

Comments:

The SnmpOidCompare function combines the functionality of the SnmpOidCmp and SnmpOidNCmp
functions which appeared in versions earlier that v1.0g of this specification.

When "maxlen" is non-zero (but not greater than MAXOBJIDSIZE), the maximum number of sub-
identifiers that will be compared is the minimum of the "maxlen" input parameter and the two "len"
members of the input OID structures.    Either or both of the input OIDs can have a zero length without
causing an error.

When "maxlen" is zero, the maximum number of sub-identifiers that will be compared is the minimum of
the two "len" members of the input OID structures.    Either or both of the input OIDs can have a zero
length without causing an error.

If the two OIDs are lexicographically equal when the maximum number of sub-identifiers have been
compared, then:

If the "maxlen" parameter value was used as the maximum number of sub-identifiers to compare,
or if the two OID parameters have equal "len" members which are less than the "maxlen" input
parameter, the "result" value will be 0 (equal).

If an OID "len" member was used as the value for the maximum number of sub-identifiers to
compare (because it was less than the non-zero "maxlen" input parameter or because "maxlen"
was equal to zero), and the other OID "len" member value is greater, the "result" value will be <0
or >0, depending on which OID parameter had which "len" value.

SnmpEncodeMsg()

The SnmpEncodeMsg routine takes as its first five input parameters the same parameters passed to
SnmpSendMsg.    The implementation will use these parameters to form an SNMP "message" as though
they had arrived via the SnmpSendMsg function.    The implementation will not, however, attempt to
transmit the resulting message to the 'dstEntity'.    It will, instead, use the 'msgBufDesc' parameter as
described herein to return to the application the encoded/serialized SNMP message that it would have
transmitted to the 'dstEntity' if SnmpSendMsg had been called.

Syntax:

SNMPAPI_STATUS SnmpEncodeMsg (
IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN HSNMP_PDU pdu,
OUT smiLPOCTETS msgBufDesc);

Parameter Description

session Identifies the session that will perform the operation.

srcEntity Identifies the subject management entity.

dstEntity Identifies the target management entity.

context Identifies the target context of interest.

PDU Identifies the SNMP protocol data unit containing the requested
operation.

msgBufDesc Identifies the variable to receive the encoded SNMP message.

Returns:

Upon success, SnmpEncodeMsg returns the length, in bytes, of the encoded SNMP message.    (This
value will also be in the len member of the msgBufDesc output parameter.)

If the function fails, the return value is SNMPAPI_FAILURE.    Use SnmpGetLastError to obtain
extended error information.

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates that a session parameter is invalid.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is invalid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

Comments:

The member elements of the smiOCTETS structure pointed to by the msgBufDesc structure are ignored

and will be overwritten by the implementation upon a successful execution of this function.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to
free any resources that might have been allocated to populate the ptr member of the msgBufDesc
structure.

If any of the first five input parameters fail the normal integrity checks performed for SnmpSendMsg
then SnmpEncodeMsg will return SNMPAPI_FAILURE and SnmpGetLastError will be set to return the
appropriate extended error code.

SnmpDecodeMsg()

The SnmpDecodeMsg function is the converse of the SnmpEncodeMsg function.    It takes as input a
session identifier and a far pointer to an smiOCTETS structure which describes an encoded/serialized
SNMP message to be decoded into its constituent components.    The session identifier is required since
new resources will be created by the implementation and allocated to the application as a result of
calling this function, if it is successful.    The 'msgBufDesc' input parameter consists of two elements:   
The "len" member identifies the maximum number of bytes to process; the "ptr" member points to the
encoded/serialized SNMP message to decode.

Syntax:

SNMPAPI_STATUS SnmpDecodeMsg (
IN HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT context,
OUT LPHSNMP_PDU pdu,
IN smiLPCOCTETS msgBufDesc);

Parameter Description

session Identifies the session that will perform the operation.

srcEntity Identifies the subject management entity.

dstEntity Identifies the target management entity.

context Identifies the target context of interest.

PDU Identifies the SNMP protocol data unit.

msgBufDesc Identifies the buffer holding the encoded SNMP message.

Returns:

Upon successful completion, SnmpDecodeMsg returns the actual number of bytes decoded.    This may
be equal to or less than the "len" member of the 'msgBufDesc' input parameter.    Also, upon success,
SnmpDecodeMsg returns handle values in the 'srcEntity', 'dstEntity', 'context', and 'pdu' output
parameters.    Note that these resources are to be freed by the application using the appropriate
SnmpFree<xxx> functions, or by the implementation in response to an SnmpClose or SnmpCleanup
function call.

If SnmpDecodeMsg fails, the return value will be SNMPAPI_FAILURE and SnmpGetLastError will be
set to report one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SESSION_INVALID Indicates that a session parameter is invalid.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is invalid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is invalid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is invalid.

SNMPAPI_OUTPUT_TRUNCATED Indicates that the buffer was too small.    That is,
"len" bytes of "ptr" were consumed before
reaching the end of the encoded message; no
output parameters are    created.

SNMPAPI_MESSAGE_INVALID The SNMP message described by the
'msgBufDesc' parameter is invalid; no output
resources are created.

Comments:

The SmnpDecodeMsg function is meant to be symmetrical with the SnmpEncodeMsg function.    Refer
to SnmpEncodeMsg for additional insight into the operation and possible failure modes of the
SnmpDecodeMsg function.

SnmpFreeDescriptor()

The SnmpFreeDescriptor function is used by the application to inform the implementation that it no
longer requires access to a WinSNMP descriptor object that had been populated earlier on its behalf by
the implementation.

Syntax:

SNMPAPI_STATUS SnmpFreeDescriptor (
IN smiUINT32 syntax,
IN smiLPOPAQUE descriptor);

Parameter Description

syntax Identifies the syntax (data type) of the target descriptor.

descriptor Identifies the target descriptor object..

Returns:

Upon successful completion, SnmpFreeDescriptor returns SNMPAPI_SUCCESS.

If SnmpFreeDescriptor fails, the return value will be SNMPAPI_FAILURE and SnmpGetLastError will
be set to report one of the following:

SnmpGetLastError() Description

"Common Error Codes" See Section 2.9.1. Common Error Codes

SNMPAPI_SYNTAX_INVALID Indicates that the syntax parameter is invalid for
this function.

SNMPAPI_OPERATION_INVALID Indicates that the descriptor parameter is invalid
for this function.

Comments:

See Section 2.10.4. Descriptors

WinSNMP descriptor objects are either smiOID or smiOCTETS structures (or equivalents, such as
smiIPADDR and smiOPAQUE) and consist of a len member and a ptr member.

These objects are populated by the implementation on behalf of the application in response to any OUT
parameter of type smiOID, smiOCTETS, and smiVALUE.    (Note that any smiVALUE structure may or
may not contain an smiOID or smiOCTETS structure in its value member upon return from SnmpGetVb,
as will be indicated by the associated syntax member of the smiVALUE structure.)    In addition to
SnmpGetVb, the following functions also result in the implementation populating a descriptor object for
the application:    SnmpContextToStr, SnmpStrToOid, SnmpOidCopy, SnmpEncodeMsg.    Others
may be added later.

Note that applications should not attempt to free memory returned in the ptr member of descriptor
objects that have been populated by the implementation.    The method of memory allocation and,
consequently, deallocation, for these variables is private to the implementation, and hidden from the
application except for the SnmpFreeDescriptor interface described above.

Note that the syntax parameter can be used by implementations to distinguish among different varieties
of    descriptor objects, if necessary.    The SNMPAPI_OPERATION_INVALID error can be returned if, for
example, the descriptor parameter does not satisfy implementation-specific requirements (e.g., the
implementation can recognize that the ptr member does not identify an allocation that it has made on
behalf of the calling application or if the indicated allocation had already been released by the
application in a prior call to SnmpFreeDescriptor).

