
Raytrace Workbench Help Index

Introduction

Using the Mouse

The Toolbar

Menu Commands

POV-Ray Quick Reference

RTAG Quick Reference

Contacting the author

Introduction

Raytrace Workbench a copyrighted-but-free program that is designed to facilitate the creation and/or
modification of POV-Ray and RTAG script files. Some of the hilights includes :

* Multiple document interface (work with more than one file at a time)
* Extensive context-sensitive on-line help
* Quick reference to POV-Ray objects, textures and more

Using the Mouse

Selecting text

word double-click on the word
anything else mark the starting point and drag

Context-sensitive help
    Raytrace Workbench allows you to instantly look up a POV-Ray or RTAG command by placing the cursor
on it and pressing the RIGHT mouse button.

Menu Commands

File
          New Create a new file.
          Open... Open an existing file.
          Save Save the current file.
          Save as... Save the current file under a new name.
          Exit Exit Raytrace Workbench.

Edit
          Undo Undo the latest edit
          Cut Cut the marked text to the clipboard.
          Copy Copy the marked text to the clipboard.
          Paste Paste the clipboard contents into the current file.
          Find... Find a text string.
          Replace... Find and replace a text string.
          Find Next... Repeat the last Find or Replace.

Render
          Run POV-RaySave the current file and start POV-Ray.

Options
          POV-Ray Set POV-Ray options.
          RTAG Set RTAG options
          Directories Set POV-Ray directories.
          Font Set the font used in edit windows.

Tools
          RTAG Run RTAG.
          Display Targa Displays the associated Targa file.

Window
          Tile Tile the windows.
          Cascade Cascade the windows.
          Arrange Icons Arrange the icons.
          Close All Close all windows.

Help
          Index Show Raytrace Workbench help.
          Using Help Show Help on Help.
          About... Info about Raytrace Workbench.

File | New

Use this command to create a new file.

How to create a new file

1. Select File from the menu bar.
2. Select New.
3. A new window will be created.

Related topics :
Opening an existing file
Menu commands

File | Open

Use this command to open an existing file.

How to open an existing file

1. Select File from the menu bar.
2. Select Open.
3. A dialog box will pop up. Use the directory list and the file list to select the file you want to open.
4. Press OK.

Related topics :
Creating a new file
Menu commands
The Toolbar

File | Save

Use this command to save the file you are currently working on.

How to save a file

1. Select File from the menu bar.
2. Select Save.

Related topics :
Saving a file under a new name
Menu commands
The Toolbar

File | Save As

Use this command to save the file you are currently working on under a new name.

How to save a file under a new name

1. Select File from the menu bar.
2. Select Save As.
3. A dialog box will pop up. Selct the new directory.
4. Type in the new name.
5. Press OK.

Related topics :
Saving a file
Menu commands
The Toolbar

Edit | Undo

Use this command to undo the latest edit.

How to undo the latest edit

1. Select Edit from the main menu.
2. Select Undo.

Alternatively,

1. Press Shift+Backspace

Related topics :
Menu commands
The Toolbar

Edit | Cut

Use this command to cut out selected text to the clipboard.

How to cut out text to the clipboard

1. Mark the text you want to cut out.
2. Select Edit from the main menu.
3. Select Cut.

Alternatively,

1. Mark the text you want to cut out.
2. Press Shift-Delete

Related topics :
Copying text to the clipboard
Pasting text from the clipboard
Menu commands
The Toolbar

Edit | Copy

Use this command to copy the selected text to the clipboard.

How to copy text to the clipboard

1. Mark the text you want to copy.
2. Select Edit from the main menu.
3. Select Copy.

Alternatively,

1. Mark the text you want to cut out.
2. Press Ctrl-Insert

NOTE: The text will be moved to the clipboard and will be erased from the current document.

Related topics :
Cutting text to the clipboard
Pasting text from the clipboard
Menu commands
The Toolbar

Edit | Paste

Use this command to paste text from the clipboard into the active document.

How to paste text from the clipboard

1. Select Edit from the main menu.
2. Select Paste.

Alternatively,

1. Press Shift-Insert

Related topics :
Cutting text to the clipboard
Copying text to the clipboardard
Menu commands
The Toolbar

Edit | Find...

Use this command to search for a specific word, phrase or sentence in the file.

How to find a word, phrase or sentence

1. Select Edit from the main menu.
2. Select Find.
3. Type in the text you want to find.
4. Press OK.

Eventually, press F3 to find the next occurrence of the text.

Related topics :
Replacing text
Menu commands
The Toolbar

Edit | Replace

Use this command to find a text and replace it with another text.

How to use Replace

1. Select Edit from the main menu.
2. Select Replace.
3. Type in the text you want to replace.
4. Type in the text you want to replace with.
5. Press OK.

Eventually, press F3 to find the next occurrence of the text.

Related topics :
Finding text
Menu commands
The Toolbar

Render | Run POV-Ray

Use this command to start POV-Ray and begin rendering your scene. Raytrace Workbench will save your
file before starting POV-Ray.

How to render a scene

1. First, check the POV-Ray options.
2. Select Render from the main menu.
3. Select Run POV-Ray.

NOTE: Depending on the selected output file format, the output file will be Filename[Ext];

If you have specified an output filename the output will be directed to that file. If not, it will be the name of
the .POV file.

Where [Ext] is.... If you selected....
.TGA Targa file Format
.DIS Dump file format
.R8,.G8 and .B8 Raw file format.

    The output file will be found in the directory specified in the Directory options dialog.

 See POV-Ray options dialog for more information about file formats.

    If you want, you can press <Alt-Tab> to get back to Raytrace Workbench. When you are back, you can
open and render another scene while the first is being rendered.

Troubleshooting :
    If POV-Ray doesn't start, check the following :

1. Are the entries in POV.PIF correct ?
2. Did you follow the steps in SETUP.TXT ?

If the problem remains, contact the author.

Related topics :
Setting POV-Ray options
Menu commands
Conacting the author
The Toolbar

Options | POV-Ray

Use this command to set different POV-Ray options.

How to set POV-Ray options

1. Select Options from the main menu.
2. Select POV-Ray.

A dialog box will pop up.

Related topics :
POV-Ray options dialog
Menu commands

Options | RTAG

This command bring up a dialog box where you can specify RTAG options.

1. Select Options from the main menu.
2. Select RTAG.

A dialog box will pop up.

Related topics :
RTAG options dialog
Menu commands

Options | Directories

Use this command to specify which directories POV-Ray should search when looking for a file and where
the finished image should be placed.

How to set POV-Ray directories

1. Select Options from the main menu.
2. Select Directories.

A dialog box will pop up.

Related topics :
Directory options dialog
Menu commands

Options | Font

Here you set the font Raytrace Workbench should use when displaying your POV-Ray scripts.

How to change the font

1. Select Options from the main menu.
2. Select Font....

A dialog box will pop up

3. Select the font you want.
4. Press OK.

Related topics :
Menu commands

Show color palette

Use this command to view the color palette. This palette is supposed to act as a tool whenever you need to
select a color.

How to activate the color palette

1. Press .

The palette will disappear when you press Insert or when you switch to another window.

Related topics :
The color palette
The Toolbar

Tools | RTAG

    This command executes RTAG with the current file. To set RTAG options, please see the Options | RTAG
menu command.

Troubleshooting :
    If RTAG doesn't start, check the following :

1. Are the entries in RTAG.PIF correct ?
2. Did you follow the steps in SETUP.TXT ?

If the problem remains, contact the author.

Related topics :
Setting RTAG options
Menu commands
Conacting the author

Tools | Display Targa

    Use this command to launch your favorite targa viewer. Use Options | Directories to select viewer.

Related topics :
Menu commands

The Toolbar

Use the toolbar for fast and convenient access to RWB features.

Tool Menu Command

Help | Index

 File | Open

 File | Save

 Edit | Undo

 Edit | Cut

 Edit | Copy

 Edit | Paste

 Edit | Find

 Edit | Find

Edit | Find next

 Render | Run POV-Ray

Show color palette

Insert camera definition

Insert light_source

POV-RAY Quick Reference

NOTE: Most (99%) of the information in this Quick reference was taken from QUICKREF.DOC, written by
Drew Wells and Larry Tweed. The reference for Textures.Inc was written by Dan Farmer. This is not part of
the official release from the POV-Team    and may not be up-to-date.
    This is only intended as a reference for users who are familiar with POV-Ray. For more in-depth coverage
of a topic, please see the POV-Ray manual.

POV-Ray Scene description language
Shapes and Objects
Texture Modifiers
Textures.Inc
Colors.Inc
Stones.Inc

POV-Ray Scene description language

#declare
#include

#declare

The parameters used to describe the scene elements can be tedious to use at times. Some parameters are
often repeated and it seems wasteful to have to type them over and over gain. To make this task easier, the
program allows users to create synonyms for a pre-defined set of parameters and use them anywhere the
parameters would normally be used. For example, the color white is defined in the POV-Ray language as:
 
                    color red 1 green 1 blue 1
 
This can be pre-defined in the scene as:

              #declare White = color red 1 green 1 blue 1
 
and then substituted for the full description in the scene file, for example:
 
object {
            sphere { <0 0 0> 1 }
            texture { color red 1 green 1 blue 1 }
}
 
becomes:
#declare White = color red 1 green 1 blue 1
 
object {
    sphere { <0 0 0> 1 }
    texture { color White }
}
 
This is much easier to type and to read. The pre-defined element may be used many times in a scene.
 
You use the keyword "declare" to pre-define a scene element and give it a one-word synonym. This pre-
defined scene element is not used in the scene until you invoke its
synonym. Shapes, textures, objects, colors, numbers and more can be predefined.
 
Pre-defined elements may be modified when they are used, for example:
 
#declare Mickey = // Pre-define a union called Mickey
      union {
          sphere { <0 0 0> 2 }
          sphere { <-2 2 0> 1}
          sphere { <2 2 0> 1}
      }
 
// Use Mickey
object{
      union {
            Mickey
            scale <3 3 3>
            rotate <0 20 0>
            translate <0 8 10>
      }
      texture {
          color red 1
          phong .7
      }

}
 
This scene will only have one "Mickey", the Mickey that is described doesn't appear in the scene. Notice
that Mickey is scaled, rotated, translated, and a texture is added to it. The Mickey synonym could be used
many times in a scene file, and each could have a different size, position, orientation, and texture.
 
Declare is especially powerful when used to create a complex shape or object. Each part of the shape or
object is defined separately using declare. These parts can be tested, rotated, sized, positioned, and textured
separately then combined in one shape or object for the final sizing, positioning, etc.

Declare can be used anywhere in a scene or include file.
 
NOTE: Declare is not the same as the C language's define. Declare creates an internal object of the type
specified that POV-Ray can recognize when it is prefaced by the object type, while define substitutes like a
macro. The only declared object type that doesn't need to be prefaced with a keyword is numeric, which can
be used wherever a number is expected.

#include

The language allows include files to be specified by placing the line:
 
                      #include "filename.inc"
 
at any point in the input file . The filename must be enclosed in double quotes and may be up to 40
characters long (or your computer's limit), including the two double-quote (") characters.
 
The include file is read in as if it were inserted at that point in the file. Using include is the same as actually
cutting and pasting the entire contents of this file into your scene.
 
Include files may be nested. You may have at most 10 include'd files per scene trace, whether nested or not.
 
Generally, include files have data for scenes, but are not scenes in themselves. Scene files should end
in .pov.

Quick Reference : Shapes and Objects

beizer / bicubic patches
blob
bounded_by
box
camera
clipped_by
composite
difference
direction
height_field
intersection
inverse
light_source
look_at
no_shadow
object
plane
quadric
quartic
right
rotate
scale
sky
smooth_triangle
sphere
spotlight
texture
translate
triangle
union
up

beizer / bicubic patches
Syntax: bicubic_patch {
                    patch_type_#
                    [flatness #]
                    u_steps
                    v_steps
                    < Control point 1 > <CP2> <CP3> <CP4>
                    <CP5> <CP6> <CP7> <CP8>
                    <CP9> <CP10> <CP11> <CP12>
                    <CP13> <CP14> <CP15> <CP16>
                }

Description: A beizer or bicubic patch is a 3D surface created from a mesh of triangles. Every control point
"pulls" the surface towards it. The number of triangles is u_steps*v_steps.

blob
Syntax: blob {
                    threshold #
                    component (strength_val) (radius_val) <component center>
                    component (strength_val) (radius_val) <component center>
                    [any number of components]
                    [sturm]
                }

Description: A blobby shape. Components radii should overlap.

bounded_by
Syntax: object {
                      ...
                      bounded_by {
                            shape {...}
                      }
                }

Description: A bounding shape helps speed rendering time in many cases. The bounding shape is first tested
by the raytracer. If the ray does not strike the bounding shape, the raytracer does not need to test or calculate
any of the bounded objects.

box
Syntax: box { <x1 y1 z1> <x2 y2 z2> }

Description: A box shape is defined by specifying 2 corners. The first corner (<x1 y1 z1> in the example
above) must be smaller than the second corner.

camera
Syntax: camera {
                    location <0 0 0>
                    direction <0 0 1>
                    up <0 1 0>
                    right <1.33 0 0>
                    look_at<0 0 0>
                    sky <0 1 0>
                }

Description: The camera defines the orientation and location in space of the viewer. The values shown
above are the default values. If these items are not specified, the defaults will be used.

clipped_by
Syntax: object {
                    ...
                    clipped_by {
                          object {...}
                    }
                }

Description: clipped_by will "cut off" any part of the object that is outside the clipping shape. This should
not be confused with bounded_by.

composite
Syntax: composite {
                      object1 {...}
                      object2 {...}
                }

Description: composite will "glue together" 2 or more objects. Essentially, the objects can then be
considered as single unit.

difference
Syntax: object {
                    difference {
                          shape1 {...}
                          shape2 {...} // This will be "cut out" of shape1
                          shape3 {...} // This will be "cut out" of shape1
                          shape4 {...} // This will be "cut out" of shape1
                          (...)
                    }
                }

Description: A difference is a CSG shape. All points in shape1 that are not in shape2 will be included in the
final shape. A difference essentially subtracts the shapes following shape1 from shape1. Any number of
shapes may be used.

direction
Syntax: direction <# # #>

Description: The direction vector is used in the camera block and specifies the direction the camera is
pointing with a vector. Normally, this vector points straight ahead (<0 0 1>) and look_at is used to point the
camera. The direction vector should be used to set the "length" of the camera lens. Small values are similar
to a wide-angle lens, large values are like a tele-photo lens.

height_field
Syntax: height_field { gif "file.gif" water_level # }

Description: A height field is a rectangular mesh of triangles where the height of a triangle at a certain X,Z
point is controlled by the number in a file at that same index. GIF, TGA and POT files may be used as height
fields. The water_level is the height below which the untransformed height field is cut off. The
untransformed height field is similar in size to:
        box { <0 0 0> <1 1 1> }

intersection
Syntax:    object {
                      intersection {
                            shape1 {...}
                            shape2 {...}
                      }
                  }

Description: An intersection is a CSG shape composed of 2 or more shapes. All points that are contained in
all the included shapes are included in the final shape. In essence, an intersection is
the space where all the shapes meet.

inverse
Syntax: object {
                    csg_shape_type {
                          shape1 {...}
                          shape2 {... inverse }
                    }
                }

Description: Inverse only has effect when using CSG. When inverse is put into the definition of a shape, it
turns the shape "inside-out". Essentially, every point that was "inside" the shape is now "outside" and vice
versa.

light_source
Syntax: object {
                    light_source { <x y z> color red # green # blue #}
                }
 
Description: To shed a little light on a scene, you must provide a light_source. The center of the light is at
the vector x, y and z. The red, green, and blue color values define the color    of the light which is cast. The
light_source itself is    invisible. A light source is treated as a shape even though it cannot be seen. It may be
used in CSG.

look_at
Syntax: camera {
                    ...
                    look_at <x y z>
                }

Description: look_at defines the point in space at which the camera is pointing, or focused on as defined by
the x, y and z parameters.

no_shadow
Syntax: object {
                    ...
                    no_shadow
                }

Description: no_shadow causes an object to be transparent to all light sources. The object will not cast a
shadow. This feature is especially useful for enclosing a light source to give the illusion that the light source
is actually visible with a shape.

object
Syntax: object {
                    shape_type { ... }
                    texture { ... }
                }
Description: objects are the basic building blocks. An object defines a shape and associated textures.
Objects may not be used in CSG, but they may be used in composite objects.

plane
Syntax: plane { <x y z> d }

Description: A plane is a flat surface which is infinite in all directions. The surface normal (or orientation)
of the plane is determined by the x, y and z arguments. The d parameter specifies the distance of the plane
from the origin in the direction of the surface normal.
                                plane { <0 1 0> 0 } // XZ plane, a floor
                                plane { <0 0 1> 10 }// XY plane, a wall

quadric
Syntax: quadric {
                <A B C>
                <D E F>
                <G H I>
                J
}

Description: A quadric is a surface that satisfies the following equation:

    Some of the predefined quadrics are :
Shapes.Inc : Ellipsoid

Cylinder_X,Cylinder_Y,Cylinder_Z
QCone_X,QCone_Y,QCone_Z
Paraboloid_X,Paraboloid_Y,Paraboloid_Z

quartic

Syntax : quartic {
                <a00 a01 a02 a03 a04 a05 a06 a07 a08 a09 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22
a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34>

                [sturm]
}

Description : Quartics are complex surfaces that are defined by the following formula :

 a00 x^4 + a01 x^3 y + a02 x^3 z+ a03 x^3 + a04 x^2 y^2+a05 x^2 y z+ a06 x^2 y + a07 x^2 z^2+a08 x^2
z+a09 x^2+a10 x y^3+a11 x y^2 z+ a12 x y^2+a13 x y z^2+a14 x y z+ a15 x y a16 x z^3 + a17 x z^2 + a18
x z + a19 x+a20 y^4 + a21 y^3 z + a22 y^3+ a23 y^2 z^2 +a24 y^2 z+ a25 y^2 + a26 y z^3 + a27 y z^2 +
a28 y z + a29 y+ a30 z^4 + a31 z^3 + a32 z^2 + a33 z + a34
 
To declare a quartic surface requires that each of the coefficients (a0 -> a34) be placed in order into a single
long vector of 35 terms.

right
Syntax: right <x y z>

Description: Used in the camera description, it specifies which direction in the ray tracing universe is the
right hand side of the image being generated. Usually, right <1.33 0 0>.

rotate
Syntax: object { ... rotate <x y z> }
                shape    { ... rotate <x y z> }
                texture{ ... rotate <x y z> }
Description: rotate will move any element about the origin in x, y and z degrees. It is important to note that
if the object is not centered at the origin, it will "orbit" the origin rather than its current center.

scale
Syntax: object { ... scale <x y z> }
                shape    { ... scale <x y z> }
                texture{ ... scale <x y z> }

Description: scale will enlarge or reduce the size of any element. If the values for x, y or z are greater than
1.0, the object is enlarged. If the values are between 0.0 and 1.0, the object is shrunk. Scale may also be use
on textures.
                          NOTE: Scaling by zero will cause an error.

sky
Syntax: camera {
                    ...
                    sky <x y z>
                }

Description: sky describes the orientation of the sky, which is not necessarily the same as the UP direction.
If sky is defined, it must be defined before the look_at parameter.

smooth_triangle
Syntax: smooth_triangle {
                              <x1 y1 z1>        <sn1 sn2 sn3>
                              <x2 y2 z2>        <sn4 sn5 sn6>
                              <x3 y3 z3>        <sn7 sn8 sn9>
                        }

Description: The smooth shaded triangles use a formula called Phong normal interpolation to calculate the
surface normal for the triangle. This makes the triangle appear to be a smooth curved surface. In order to
define a smooth triangle, however, you must supply not only the vertices,but also the surface normals at
those vertices.

For example:
 
                        smooth_triangle {
                              <    0    30 0 >        <0    .7071 -.7071>
                              < 40 -20 0 >        <0 -.8664 -.5      >
                              <-50 -30 0 >        <0 -.5        -.8664>
                        }

sphere
Syntax: sphere { <x y z> r }

Description: A sphere is a perfectly round shape. Its location in space is defined by the x, y, and z
arguments. The radius is determined by the r argument. The width of a sphere will be 2 x r. It cannot be
scaled unevenly.

spotlight
Syntax: object {
                        light_source {
                        <x y z> // center of light source
                        color red # green # blue #
                        spotlight
                        point_at <x y z>
                        radius #
                        falloff #
                        tightness #
                    }
                }

Description: A spotlight light_source emulates the behavior of a real spotlight, projecting a cone of light. point_at
specifies the point in space that the light is aimed at. radius is the radius in degrees of the circular "hotspot" at the
center of the spotlight's area of effect. falloff is the radius in degrees that defines the area where the brightness falls
off to zero. Both values may range between 1 and 180. Tightness controls how fast the brightness falls off at the
edges. Low values cause softer edges, high values create sharper edges.

texture
Syntax:    object {
                      ...
                      texture {
                            (texture modifiers)
                      }
                  }
                  shape { ... texture {...} }
Description: The texture keyword begins a block which describes the appearance of an object, but not the
size. See the section on texture modifiers for a list of available modifiers and their defaults. A texture may be
used inside a shape or object, but not in a composite object.

translate
Syntax: object { ... translate <x y z> }
                shape    { ... translate <x y z> }
                texture{ ... translate <x y z> }

Description: translate moves the element in space by the number of units specified by the x, y and z
parameters. Translate is relative to the element's current location. If the element is at <3 4 5> and is
translated by <1 -1 1>, the element is moved to <4 3 6>. Normally, translate is used after scale because the
scale will "scale" the translate.

triangle
Syntax: triangle { <x1 y1 z1> <x2 y2 z2> <x3 y3 z3> }

Description: A triangle is specified by the coordinates of the 3 vertices. Triangles have no inside or outside,
so cannot be used correctly in CSG shapes.

union
Syntax: object {
                    union {
                          shape1 {...}
                          shape2 {...}
                    }
                }

Description: Union is a CSG shape. A union essentially superimposes two or more shapes to create a single
object. All points in the shapes included in a union are included in the final object.

up
Syntax: camera {
                      ...
                      up <x y z>
                }

Description: The up parameter describes the surface normal of the "up" direction. up <0 1 0>, for example
would have a "up" direction in the positive y direction.

Quick Reference : Texture Modifiers

agate
alpha
ambient
bozo
brilliance
bump_map
bumps
checker
color
color_map
default texture
#default
dents
diffuse
fog
gradient
granite
image_map
interpolate
ior
leopard
map_type
marble
material_map
max_trace_level
metallic
octaves
onion
phong
phong_size
reflection
refraction
ripples
roughness
specular
spotted
tiles
turbulence
waves
wood
wrinkles

agate
Syntax: agate color_map {...}

Description: agate is a pattern similar to marble. It is always turbulent and ignores the turbulence keyword.
agate is used within a texture block.

alpha
Syntax: color red # green # blue # alpha #

Description: The alpha property of a color determines how transparent the color is. Values range from 0.0
(opaque) to 1.0 (totally transparent). Transparency is a filter. Black is always opaque. The color red with
alpha 1 will only allow red light through, and so on.

ambient
Syntax: texture {
                      ...
                      ambient #
                }

Description: ambient determines the amount of light an object receives even if it is in complete shadow.
This emulates the light that is just "bouncing around" the room. The default value for ambient is 0.1. Values
range from 0.0 to 1.0.

bozo
Syntax: bozo color_map {...}

Description: A splotchy color pattern. Turbulence works on it. It's often used to create clouds.

brilliance
Syntax: texture {
                      ...
                      brilliance #
                }

Description: brilliance controls the tightness of diffuse illumination on an object and adjusts the appearance
of surface shininess. Values from 3.0 to 10.0 can give a shiny or metallic appearance. The default value is
1.0. There is no limit on the brilliance value.

bump_map
Syntax: bump_map { file_type "filename"
                                      map_type # interpolate # bump_size #
  (use_color) (use_index) }

Ex: bump_map { gif "rough.gif" map_type 1 interpolate 2 bump_size 3 }

Description: Use a graphic image to simulate bumps on a shape.

bumps
Syntax: texture {
                          bumps #
                }

Description: bumps gives the surface of an object a bumpy appearance. Values for bumps range from 0.0
(no bumps) to 1.0 (very bumpy).

checker
Syntax: checker color red # green # blue #
                                color red # green # blue #

Description: the checker pattern gives an object a checkerboad appearance. Two colors must be specified
after the checker keyword. These are the colors that will alternate in the checker pattern. The checker option
is used within the texture block and works best on planes.

color
Syntax: color red # green # blue # alpha #

Description: colors are specified using the red, green, blue and (optionally) alpha components. The values
for each component range form 0.0 to 1.0. If a component is not specified, it is assumed to be 0 (none of that
component color). Alpha specifies the transparency of the color.

color_map
Syntax: color_map {
                    [start_value end_value color1 color2]
                    [start_value end_value color1 color2]
                    ...
                }

Description: A color_map provides a palette for color patterns. A point on the surface is located and it is
determined which start_value end_value pair the points falls within. The color is then determined by
smoothly blending the colors associated with the start_value end_value pair. Values for start_value and
end_value range from 0.0 to 1.0.
Example:
          color_map {
                    [0      .25 color red 1 color red 1]
                    [.25 .5    color red 1 color green 1]
                    [.5 .75    color green 1 color blue 1]
                    [.75 .76 color Yellow color Orange]
                    [.76 1      color Black    color blue 1]
                }

default texture
Description: When a texture is first created, POV-Ray initializes it with default values for all options. The
default values are:

                          color red 0 green 0 blue 0 alpha 0
                          ambient .1
                          diffuse .6
                          phong 0
                          phong_size 40
                          specular 0
                          roughness .05
                          brilliance 1
                          metallic FALSE
                          reflection 0
                          refraction 0
                          ior 1
                          turbulence 0
                          octaves 6
                          texture randomness (dither) 0
                          phase 0
                          frequency 1
                          color map NONE

#default
Syntax: #default { texture { (modifications to default texture) }

Description: The default textures can be modified by using the #default option. Any textures created after
this option has been used will use the new defaults as specified in #default. All other defaults not specified
will remain the unchanged.

dents
Syntax: texture {
                      ...
                      dents #
                }

Description: dents will give the object the appearance of being dented. Values for dents range between 0.0
(no dents) and 1.0 (the dentiest) that determines how dented the surface should be.

diffuse
Syntax: texture {
                      ...
                      diffuse #
                }

Description: The diffuse value specifies how the colors in a texture react to light directly shining on it.
Higher values make the colors very bright, lower values make the colors more subdued. Values for diffuse
range from 0.0 to 1.0. The default value is 0.6.

fog
Syntax: fog { color red # green # blue # distance_val }

Description: Simulate a uniform haze over the entire scene. Fog should be described outside of all other
descriptions. Ie. don't put it inside a texture, object, camera, or shape block.

Example: fog { color red 1 green 1 blue 1 200.0 }

gradient
Syntax: gradient <axis vector> color_map {...}

Description: This is a specialized pattern that uses approximate local    coordinates of an object to control
color map gradients. This texture does not have a default color_map, so one must be specified.

 It has a special <X Y Z> triple called the axis vector given    after the gradient keyword, which specifies any
(or all) axes to perform the gradient action on.

Example: a Y gradient <0.0 1.0 0.0> will give an "altitude color map", along the Y axis.
In the axis vector, values given other than 0.0 are taken as 1.0.

For smooth repeating gradients, you should use a "circular" color map, that is, one in which the first color
value (0.0) is the same as the last one (1) so that it "wraps around" and will cause smooth repeating gradient
patterns.

Scaling the texture is normally required to achieve the number of repeating shade cycles you want.

Transformation of the texture is useful to prevent a "mirroring" effect from either side of the central 0 axes.

Here is an example of a gradient texture which uses a sharp "circular" color mapped gradient rather than a
smooth one, and uses both X and Y gradients to get a diagonally-oriented gradient. It produces a dandy
candy cane texture!

 texture {
        gradient < 1.0 1.0 0.0 >
        color_map {
            [    0 .25    color red 1 green 0 blue 0
                                color red 1 green 0 blue 0]
            [.25 .75    color red 1 green 1 blue 1
                                color red 1 green 1 blue 1]
            [.75      1    color red 1 green 0 blue 0
                                color red 1 green 0 blue 0]
        }
        scale <30 30 30>
        translate <30 -30 0>
 }

You may also specify a turbulence value with the gradient to give a more irregular color gradient. This may
help to simulate things like fire or corona effects. By default, gradient has no turbulence.

granite
Syntax: granite color_map {...}

Description: This will create a granite pattern based on the supplied color_map. granite will respond to the
turbulence keyword, but the default is no turbulence. granite is typically used with small scaling values (2.0
to 5.0).

image_map
Syntax: image_map { file_type "filename" alpha (index # or all) #
  map_type # interpolate # (once) }

Description: Place a graphic image on a shape as surface coloring.

interpolate
Syntax: image_map { gif "file.gif" interpolate # }
 
                interpolate 1    // Norm dist interpolation
                interpolate 2    // Bilinear interpolation (best)

Description: Smooths the jaggies on image_maps and bump_maps.

ior
Syntax: texture {
                    ...
                    refraction 1
                    ior #
                }

Description: The ior is the Index of Refraction. This value determines how far light will bend as it passes
through a texture. To be effective, refraction should be set to 1 and the texture must have some transparent
colors that use alpha. A value of 1.0 will not bend the light. Some typical ior values are 1.0 for air, 1.33 for
water, 1.5 for glass and 2.4 for diamond.

The following ior values are declared in Ior.Inc :

Flint_Glass_Ior = 1.71
Crown_Glass_Ior = 1.51
Diamond_Ior = 2.47
Water_Ior = 1.33
Air_Ior = 1.000292

leopard
Syntax: leopard color_map {...}

Description: Uniform spotted color pattern. Turbulence works.

map_type
Syntax: map_type #

Description: Changes the mapping type used with image_map, bump_map, and
                          material map.
                          0 = Planar
                          1 = Spherical
                          2 = Cylindrical
                          3 = Toroidal (donut)

marble
Syntax: marble color_map {...}

Description: marble creates parallel bands of colors based on the color_map. Adding turbulence will give
the appearance of true marble or other types of stones. The default is no turbulence.

material_map
Syntax: material_map { file_type "filename" map_type #    [once]
  texture {...} texture {...} (...)
                }

Description: Changes the texture on a surface based on the colors in the mapped image.

max_trace_level
Syntax: max_trace_level #

Description: This option will set the number of levels that a ray will be traced. If a ray is reflected or
refracted, it creates another ray. This is 1 level. The default value is 5.

metallic
Syntax: texture {
                      ...
                      metallic
                }

Description: This keyword specifies that the color of specular and phong highlights will be the surface
color rather than the color of the light source. This creates a metallic appearance.

octaves
Syntax: octaves #

Description: Affects turbulenc. Default value is 6. Values range from 1 to 16.

onion
Syntax: onion color_map {...}

Description: onion creates a pattern of concentric circles based on the supplied color_map. By default,
onion has no turbulence.

phong
Syntax: texture {
                      ...
                      phong #
                }

Description: The phong keyword causes a bright shiny spot on the object that is the same color as the light
source. Values for phong range from 0.0 (none) to 1.0 (very bright at the center of the highlight). There is no
phong highlighting by default.

phong_size
Syntax: texture {
                      ...
                      phong_size #
                      phong #
                }

Description: The value for phong_size determines the size of the phong highlight of the object. The larger
the value, the smaller (tighter) the highlight. The smaller the value, the larger (looser) the highlight. Values
range from 1.0 (very dull) to 250 (highly polished). The default phong_size is 40.

reflection
Syntax: texture {
                      ...
                      reflection #
                }

Description: The value of reflection determines how much of the light coming from an object is reflected
from other objects in the scene. Values range from 0.0 (no reflection) to 1.0 (a perfect mirror).

refraction
Syntax: texture {
                      ...
                      refraction #
                }

Description: The value for refraction will affect how light passing through transparent textures is treated.
Values range from 0 to 1. Lower values will make the transparent portions less transparent. This value will
usually be set to 1 with the transparancy amounts controlled by alpha. By default, there is no refraction.

ripples
Syntax: texture {
                    ...
                    ripples #
                  }

Description: Simulates ripples on a shape's surface.

roughness
Syntax: texture {
                      ...
                      roughness #
                }

Description: The roughness value for a surface determines the size of the specular highlight of that object.
Typical values range from 1.0 (Very Rough, large highlight) to 0.0005 (Very Smooth, small highlight). The
default, if no roughness is specified, is 0.05.

specular
Syntax: texture {
                      ...
                      specular #
                }

Description: A specular highlight is similar to a phong highlight, but provides a more credible spreading of
the highlights near the object horizons. Values for specular range from 0.0 (no highlighting) to 1.0 (bright
highlighting). The size of the highlight is determined by the roughness value.

spotted
Syntax: texture {
                      spotted color_map {...}
                }

Description: spotted pattern is a sort of swirled random spotting of the colors of the object. If you've ever
seen a metal organ pipe up close you know about what it looks like (a galvanized garbage can is close...).
Play with this one, it might render a decent cloudscape during a very stormy day.No extra keywords are
required. With small scaling values, looks like masonry or concrete.

tiles
Syntax: texture {
                      tiles {
                            texture {...}
                      tile2
                            texture {...}
                      }
                }

Description: tiles gives an effect similar to checker, but with textures rather than just colors. The textures
for tile1 and tile2 may also be layered, but only the first layer will be seen.

turbulence
Syntax: texture {
                      ...
                      turbulence #
                }

Description: turbulence will distort a pattern so that it is not so "perfect". Typcical values for turbulence
range between 0.0 and 1.0, but any value can be used.

waves
Syntax: waves #

Description: Simulates bumpy waves on a shape's surface.

wood
Syntax: wood color_map {...}

Description: wood used the supplied color map to create concentric cylindrical bands of color centered on
the Z axis. Small amounts of turbulence will make the texture look more like real wood. There is no
turbulence by default.

wrinkles
Syntax: texture {
                    ...
                    wrinkles #
                }

Description: wrinkles is a bump pattern that will give the appearance of a wrinkled surface. Values for
wrinkles range from 0.0 (no wrinkles) to 1.0 (very wrinkled)

Quick Reference : Textures.inc

Syntax : texture { Jade | Red_Marble | White_Marble | etc.... }

Stone Textures
Jade Swirled jade.
Red_Marble Pink and gray.
White_Marble White marble with large "veins".
Blood_Marble Bloody marble.
Blue_Agate Dark purple.
Sapphire_Agate Delicate dark blue stone.
Brown_Agate Brown on white.
Pink_Granite Black, light purple, and orange granite. But no pink !
PinkAlabaster Soft gray/pink alabaster. Subtle !

Sky Textures    - Manipulate the scale and the turbulence for best results.
Blue_Sky Blue sky, with white clouds.
Blue_Sky2 Variation on Blue_Sky.
Blue_Sky3 Small, puffy clouds.
Bright_Blue_Sky Bright blue sky with bright clouds.
Blood_Sky Red sky with stormy yellow clouds.    Surrealistic.
Apocalypse Black sky with red and purple clouds.    (Another CdW dreamscape.)
Clouds Clouds with a clear sky.    Only clouds. Transparent.

Wooden Textures - Again, try manipulating scale, translation, and turbulence.
Cherry_Wood A light reddish wood.
Pine_Wood Light tan wood with greenish growth rings.
Dark_Wood Dark wood with a greenish hue to it.
Tan_Wood Light tan background with brown rings.
White_Wood A very pale wood with tan rings -- kind of balsa-ish.
Tom_Wood Brown wood - looks stained.

Dan Farmer woods
DMFWood1 Kind of like cedar, maybe?
DMFWood2 Light colored wood.
DMFWood3 Rosewood, very pretty red/black.
DMFWood4 Another light, piney wood.
DMFWood5 Grayish-tan.
DMFLightOak A very realistic looking fresh white oak surface.
DMFDarkOak Similar to DMFLightOak, but with a typical oak stain.
Cork A very realistic looking cork texture

Doug Otwell woods
Yellow_Pine A beautiful yellow pine.
Rosewood Deep red/black woodgrain.
Sandalwood Highly turbulated creamy-gray.    Great burled maple, too!

Surface Textures
Dull We all know somebody like this guy, don't we? Uses specular.
Shiny Small, tight highlights.    No reflection.            Uses specular.
Phong_Dull Like a soft rubber ball or flat paint.
Phong_Shiny Some say that phong is less worthy than specular. I use this.
Glossy Shinier than shiny.    Has some reflection included.
Phong_Glossy Similar to Glossy, but uses phong.    Very tight highlight.

Luminous Good for sky-spheres, no shadows will be cast on it.
Mirror A perfect mirror.    The raytraced sphere classic.
Glass Clear glass.    May want to add Gloss.
Glass2 Probably more like acrylic plastic. Softer gloss that glass.
Glass3 An excellent grayish lead crystal. New with POV-Ray 1.0.
Green_Glass Glass3 with a pale green tint to it.

Metal Textures
Metal Add your own color before using this one.
Chrome_Metal Chrome.
Brass_Metal Brass.
Gold_Metal Gold. 24k.
Bronze_Metal Bronze.
Copper_Metal Copper.
Silver_Metal Silver.

Brass_Valley Hmmmm... something like "Black Hills Gold".
Rusty_Iron Oxidated iron.
Rust Oxidated iron.

Special Effect Dept
Candy_Cane Red and white barber pole.
Peel Orange and transparent spiral stripes. Use it to emulate the artist M.C. Escher.
X_Gradient Here as an example more than as a useful texture
Y_Gradient Here as an example more than as a useful texture
Z_Gradient Here as an example more than as a useful texture
Water Requires a sub-surface.    Has transparency and ripples.

Quick Reference : Colors.Inc

Syntax : color Gray05 | Blue | Red | etc...

Gray colors

Gray05 color red 0.05 green 0.05 blue 0.05
Gray10 color red 0.10 green 0.10 blue 0.10
Gray15 color red 0.15 green 0.15 blue 0.15
Gray20 color red 0.20 green 0.20 blue 0.20
Gray25 color red 0.25 green 0.25 blue 0.25
Gray30 color red 0.30 green 0.30 blue 0.30
Gray35 color red 0.35 green 0.35 blue 0.35
Gray40 color red 0.40 green 0.40 blue 0.40
Gray45 color red 0.45 green 0.45 blue 0.45
Gray50 color red 0.50 green 0.50 blue 0.50
Gray55 color red 0.55 green 0.55 blue 0.55
Gray60 color red 0.60 green 0.60 blue 0.60
Gray65 color red 0.65 green 0.65 blue 0.65
Gray70 color red 0.70 green 0.70 blue 0.70
Gray75 color red 0.75 green 0.75 blue 0.75
Gray80 color red 0.80 green 0.80 blue 0.80
Gray85 color red 0.85 green 0.85 blue 0.85
Gray90 color red 0.90 green 0.90 blue 0.90
Gray95 color red 0.95 green 0.95 blue 0.95

DimGray colour red 0.329412 green 0.329412 blue 0.329412
DimGrey colour red 0.329412 green 0.329412 blue 0.329412
Gray colour red 0.752941 green 0.752941 blue 0.752941
Grey colour red 0.752941 green 0.752941 blue 0.752941
LightGray colour red 0.658824 green 0.658824 blue 0.658824
LightGrey colour red 0.658824 green 0.658824 blue 0.658824
VLightGrey color red 0.80 green 0.80 blue 0.80

Pure colors

Clear colour red 1.0 green 1.0 blue 1.0 alpha 1.0
White colour red 1.0 green 1.0 blue 1.0
Red colour red 1.0
Green colour green 1.0
Blue colour blue 1.0
Yellow colour red 1.0 green 1.0
Cyan colour blue 1.0 green 1.0
Magenta colour red 1.0 blue 1.0
Black colour red 0.0 green 0.0 blue 0.0

The rest...

Aquamarine colour red 0.439216 green 0.858824 blue 0.576471
BakersChoc color red 0.36 green 0.20 blue 0.09
BlueViolet colour red 0.62352 green 0.372549 blue 0.623529
Brass colour red 0.71 green 0.65 blue 0.26
BrightGold color red 0.85 green 0.85 blue 0.10
Bronze colour red 0.55 green 0.47 blue 0.14

Bronze2 colour red 0.65 green 0.49 blue 0.24
Brown colour red 0.647059 green 0.164706 blue 0.164706
CadetBlue colour red 0.372549 green 0.623529 blue 0.623529
CoolCopper color red 0.85 green 0.53 blue 0.10
Copper colour red 0.72 green 0.45 blue 0.20
Coral colour red 1.0 green 0.498039 blue 0.0
CornflowerBlue colour red 0.258824 green 0.258824 blue 0.435294
DarkBrown color red 0.36 green 0.25 blue 0.20
DarkGreen colour red 0.184314 green 0.309804 blue 0.184314
DarkOliveGreen colour red 0.309804 green 0.309804 blue 0.184314
DarkOrchid colour red 0.6 green 0.196078 blue 0.8
DarkPurple color red 0.53 green 0.12 blue 0.47
DarkSlateBlue colour red 0.419608 green 0.137255 blue 0.556863
DarkSlateGray colour red 0.184314 green 0.309804 blue 0.309804
DarkSlateGrey colour red 0.184314 green 0.309804 blue 0.309804
DarkTan color red 0.59 green 0.41 blue 0.31
DarkTurquoise colour red 0.439216 green 0.576471 blue 0.858824
DarkWood color red 0.52 green 0.37 blue 0.26
DkGreenCopper color red 0.29 green 0.46 blue 0.43
DustyRose color red 0.52 green 0.39 blue 0.39
Feldspar colour red 0.82 green 0.57 blue 0.46
Firebrick colour red 0.556863 green 0.137255 blue 0.137255
Flesh color red 0.96 green 0.80 blue 0.69
ForestGreen colour red 0.137255 green 0.556863 blue 0.137255
Gold colour red 0.8 green 0.498039 blue 0.196078
Goldenrod colour red 0.858824 green 0.858824 blue 0.439216
GreenCopper color red 0.32 green 0.49 blue 0.46
GreenYellow colour red 0.576471 green 0.858824 blue 0.439216
HuntersGreen color red 0.13 green 0.37 blue 0.31
IndianRed colour red 0.309804 green 0.184314 blue 0.184314
Khaki colour red 0.623529 green 0.623529 blue 0.372549
LightBlue colour red 0.74902 green 0.847059 blue 0.847059
LightSteelBlue colour red 0.560784 green 0.560784 blue 0.737255
LightWood color red 0.91 green 0.76 blue 0.65
LimeGreen colour red 0.196078 green 0.8 blue 0.196078
MandarinOrange color red 0.89 green 0.47 blue 0.20
Maroon colour red 0.556863 green 0.137255 blue 0.419608
MediumAquamarine colour red 0.196078 green 0.8 blue 0.6
MediumBlue colour red 0.196078 green 0.196078 blue 0.8
MediumForestGreen colour red 0.419608 green 0.556863 blue 0.137255
MediumGoldenrod colour red 0.917647 green 0.917647 blue 0.678431
MediumOrchid colour red 0.576471 green 0.439216 blue 0.858824
MediumSeaGreen colour red 0.258824 green 0.435294 blue 0.258824
MediumSlateBlue colour red 0.498039 blue 1.0
MediumSpringGreen colour red 0.498039 green 1.0
MediumTurquoise colour red 0.439216 green 0.858824 blue 0.858824
MediumVioletRed colour red 0.858824 green 0.439216 blue 0.576471
MediumWood color red 0.65 green 0.50 blue 0.39
Mica color Black    needed in textures.inc
MidnightBlue colour red 0.184314 green 0.184314 blue 0.309804
Navy colour red 0.137255 green 0.137255 blue 0.556863
NavyBlue colour red 0.137255 green 0.137255 blue 0.556863
NeonBlue color red 0.30 green 0.30 blue 1.00
NeonPink color red 1.00 green 0.43 blue 0.78
NewMidnightBlue color red 0.00 green 0.00 blue 0.61
NewTan color red 0.92 green 0.78 blue 0.62

OldGold colour red 0.81 green 0.71 blue 0.23
Orange colour red 1 green 0.5 blue 0.0
OrangeRed colour red 1.0 blue 0.498039
Orchid colour red 0.858824 green 0.439216 blue 0.858824
PaleGreen colour red 0.560784 green 0.737255 blue 0.560784
Pink colour red 0.737255 green 0.560784 blue 0.560784
Plum colour red 0.917647 green 0.678431 blue 0.917647
Quartz color red 0.85 green 0.85 blue 0.95
RichBlue color red 0.35 green 0.35 blue 0.67
Salmon colour red 0.435294 green 0.258824 blue 0.258824
Scarlet color red 0.55 green 0.09 blue 0.09
SeaGreen colour red 0.137255 green 0.556863 blue 0.419608
SemiSweetChoc color red 0.42 green 0.26 blue 0.15
Sienna colour red 0.556863 green 0.419608 blue 0.137255
Silver colour red 0.90 green 0.91 blue 0.98
SkyBlue colour red 0.196078 green 0.6 blue 0.8
SlateBlue colour green 0.498039 blue 1.0
SpicyPink color red 1.00 green 0.11 blue 0.68
SpringGreen colour green 1.0 blue 0.498039
SteelBlue colour red 0.137255 green 0.419608 blue 0.556863
SummerSky color red 0.22 green 0.69 blue 0.87
Tan colour red 0.858824 green 0.576471 blue 0.439216
Thistle colour red 0.847059 green 0.74902 blue 0.847059
Turquoise colour red 0.678431 green 0.917647 blue 0.917647
VeryDarkBrown color red 0.35 green 0.16 blue 0.14
Violet colour red 0.309804 green 0.184314 blue 0.309804
VioletRed colour red 0.8 green 0.196078 blue 0.6
Wheat colour red 0.847059 green 0.847059 blue 0.74902
YellowGreen colour red 0.6 green 0.8 blue 0.196078

Quick Reference : Stones.Inc

Syntax : texture { Stone1 | Stone2 | Stone3 | etc... }

The following was taken from STONES.INC by Mike Miller.

Mike Miller says : Grnt0    - Grnt29      color maps (generally) contain no alpha values

Grnt0    Gray/Tan with Rose.
Grnt1    Creamy Whites with Yellow & Light Gray.
Grnt2    Deep Cream with Light Rose, Yellow, Orchid, & Tan.
Grnt3    Warm tans olive & light rose with cream.
Grnt4    Orchid, Sand & Mauve.
Grnt5    Medium Mauve Med.Rose & Deep Cream.
Grnt6    Med. Orchid, Olive & Dark Tan "mud pie".
Grnt7    Dark Orchid, Olive & Dark Putty.
Grnt8    Rose & Light Cream Yellows
Grnt9    Light Steely Grays
Grnt10 Gray Creams & Lavender Tans
Grnt11 Creams & Grays    Kahki
Grnt12 Tan Cream & Red Rose
Grnt13 Cream Rose Orange
Grnt14 Cream Rose & Light Moss w/Light Violet
Grnt15 Black with subtle chroma
Grnt16 White Cream & Peach
Grnt17 Bug Juice & Green
Grnt18 Rose & Creamy Yellow
Grnt19 Gray Marble with White feather Viens
Grnt20 White Marble with Gray feather Viens
Grnt21 Green Jade
Grnt22 Clear with White feather Viens (has some transparency)
Grnt23 Light Tan to Mauve
Grnt24 Light Grays
Grnt25 Moss Greens & Tan
Grnt26 Salmon with thin Green Viens
Grnt27 Dark Green & Browns
Grnt28 Red Swirl
Grnt29 White, Tan, w/ thin Red Viens

Mike Miller says : Grnt0A - Grnt24A    color maps containing alpha

Grnt0a    Translucent Grnt0
Grnt1a    Translucent Grnt1
Grnt2a    Translucent Grnt2
Grnt3a    Translucent Grnt3
Grnt4a    Translucent Grnt4
Grnt5a    Translucent Grnt5
Grnt6a    Translucent Grnt6
Grnt7a    Translucent Grnt7
Grnt8a    Aqua Tints
Grnt9a    Alpha Creams With Cracks
Grnt10a Alpha Cream Rose & light yellow
Grnt11a Alpha Light Grays
Grnt12a Alpha Creams & Tans

Grnt13a Alpha Creams & Grays
Grnt14a Cream Rose & light moss
Grnt15a Alpha Sand & light Orange
Grnt16a Cream Rose & light moss (again?)
Grnt17a ???
Grnt18a ???
Grnt19a Gray Marble with White feather Viens with Alpha
Grnt20a White Feather Viens
Grnt21a Thin White Feather Viens
Grnt22a ???
Grnt23a Transparent Green Moss
Grnt24a ???

Mike Miller says : complete texture statements - edit to your scene & lighting situations.

Stone1 Deep Rose & Green Marble with large White Swirls
Stone2 Light Greenish Tan Marble with Agate style veining
Stone3 Rose & Yellow Marble with fog white veining
Stone4 Tan Marble with Rose patches
Stone5 White Cream Marble with Pink veining
Stone6 Rose & Yellow Cream Marble
Stone7 Light Coffee Marble with darker patches
Stone8 Gray Granite with white patches
Stone9 White & Light Blue Marble with light violets
Stone10 Dark Brown & Tan swirl Granite with gray undertones
Stone11 Rose & White Marble with dark tan swirl
Stone12 White & Pinkish Tan Marble
Stone13 Medium Gray Blue Marble
Stone14 Tan & Olive Marble with gray white veins
Stone15 Deep Gray Marble with white veining
Stone16 Peach & Yellow Marble with white veining
Stone17 White Marble with gray veining
Stone18 Green Jade with white veining
Stone19 Peach Granite with white patches & green trim
Stone20 Brown & Olive Marble with white veining
Stone21 Red Marble with gray & white veining
Stone22 Dark Tan Marble with gray & white veining
Stone23 Peach & Cream Marble with orange veining
Stone24 Green & Tan Moss Marble

Quick Reference : RTAG Script Language

NOTE: This reference was taken from RTAG.DOC. This is NOT an oficial release from Phillip H.
Sherrod. All information is COPYRIGHT PHILLIP SHERROD.

Assignment Statement
Arithmetic And Logical Expressions
Auxiliary Data Files
Break Statement
Comments
Continuation Of Lines
Declaration Of Variables (The VAR Statement)
Epilog Statement
For Statement
If Statement
Nextframe Statement
Output File Declarations
Stop Statement
Subchar Statement
While Statement
Write Statements

ASSIGNMENT STATEMENT
The assignment statement is an executable    statement    that evaluates an expression and assigns its value to
a variable. The syntax for an assignment statement is:
variable = expression
where "variable" is a previously declared variable and "expression" is a valid arithmetic or logical
expression following the rules explained earlier. If the expression involves a relational comparison operator
(e.g., <, >, >=, etc.) or a logical operation (&&, ||, !), the value 1 is used for true and 0 for false.

ARITHMETIC AND LOGICAL EXPRESSIONS

                  Much    of    the    power    of    RTAG    comes from its ability to perform mathematical calculations.
This is important    for    any    type    of animation    generation,    but    is    especially critical for physical
system simulations.        This    section    explains      the      arithmetic operators    and    built in functions that
may be used in arithmetic expressions.

                  Arithmetic Operators

                  The following arithmetic operators may be used in expressions:

+ addition
- subtraction or unary minus
* multiplication
/ division
% modulo
** or ^ exponentiation

                  The following operators compare two values and produce a value of 1 if the comparison is true, or
0 if the comparison is false:

== Equal
!= Not equal
<= Less than or equal
>= Greater than or equal
< Less than
> Greater than

                  The following logical operators may be used:

                          !        Logical NOT (negates true and false)
                          &&      AND
                          ||      OR

                  Operator precedence, in decreasing order, is    as    follows:    unary minus,    logical    NOT,
exponentation, multiplication, division and modulo,    addition    and    subtraction,      relational     
(comparison), logical (AND and OR).    Parentheses may be used to group terms.

Numeric Constants

                  Numeric constants may be written in their    natural    form    (1, 0, 1.5,    .0003, etc.) or in
exponential form, n.nnnEppp, where n.nnn is the base value and ppp is the power of ten by which    the   
base is multiplied.        For    example, the number 1.5E4 is equivalent to 15000.    All numbers    are    treated
as    "floating    point"    values, regardless of    whether a decimal point is specified or not.    As a convenience
for entering time values, if a value contains one    or more    colons,    the portion to the left of the colon is
multiplied by 60.    For    example,    1:00    is    equivalent    to    60;    1:00:00    is equivalent to 3600.

Built-in Constant

                  The    symbolic    name    "PI"    is    equivalent    to    the    value    of pi, 3.14159...    You may write PI
using either upper or lower case.

Built in Functions

                  The following functions are built into RTAG and may    be    used    in

                  expressions:

ABS
ACOS
ASIN
ATAN
CEIL
COS
COSH
COT
CREATE
CSC
DEG
EXP
FAC
FLOOR
GAMMA
INT
LINEAR
LOG
LOG10
MAX
MIN
MOD
MOREDATA
NPD
OPEN
PAREA
PULSE
RAD
RANDOM
ROUND
SEC
SEL
SIN
SINH
SPLINE
SQRT
STEP
TAN
TANH

ABS(x) -- Absolute value of x.

ACOS(x) -- Arc cosine of x.    Angles are measured in degrees.

ASIN(x) -- Arc sine of x.    Angles are measured in degrees.

ATAN(x) -- Arc tangent of x.    Angles are measured in degrees.

CEIL(x)    -- Ceiling of x (an equivalent name for this function is INT).    Returns the smallest integer    that   
is    at    least    as large as      x.            For      example,      CEIL(1.5)=2;    CEIL(4)=4;
CEIL(-2.6)=-2.

COS(x) -- Cosine of x.    Angles are measured in degrees.

COSH(x) -- Hyperbolic cosine of x.

COT(x) -- Cotangent of x. (COT(x) = 1/TAN(x)).    Angle in degrees.

CREATE(file) -- Create a new auxiliary    data    file.        The    value returned    by this function is a file
number that can be used with subsequent WRITE statements.    See    the    description    of
auxiliary file I/O for additional information.

CSC(X) -- Cosecant of x. (CSC(x) = 1/SIN(x)).    Angle in degrees.

DEG(x)    --    Converts    an    angle,    x,    measured    in radians to the equivalent number of degrees.

EXP(x) -- e (base of natural logarithms) raised to the x power.

FAC(x) --    x    factorial (x!).    The FAC function is computed using the    GAMMA    function   
(FAC(x)=GAMMA(x+1))      so      non-integer argument values may be computed.

FLOOR(x) -- Floor of x.    Returns the largest integer that is less than or    equal to x.    For example,
FLOOR(2.5)=2; FLOOR(4)=4; FLOOR(-3.6)=-4.

GAMMA(x) -- Gamma function.    Note, GAMMA(x+1) = x! (x factorial).

INT(x) -- Ceiling of x (an equivalent name for this    function    is CEIL).      Returns    the    smallest    integer
that is at least as large as      x.            For      example,      INT(1.5)=2;        INT(4)=4; INT(-2.6)=-2.

LINEAR(t,      t1,x1,      t2,x2,      ...      tn,xn)      --      Perform    linear interpolation between a set of points.    If
the    value    of    a function    is    x1    at    some    point    t1,    x2 at t2, etc., this function
determines the value at some    arbitrary    point,    t, where t    falls    in the range (t1,tn).    The first
argument to the    LINEAR    function    is    the    value      t      at      which      the interpolation is   
to    be performed.    The remaining arguments are (ti,xi) data pairs.    For example, consider the   
function LINEAR(t, 0,0,    1,6, 2,4).    This specifies that when t is 0, the value of the function is
0, when t is 1, the value is 6, and when t is 2 the value is 4.    If this function is    called with    a    t
value of 0.5, the returned value of the function will be 3.    If the function is called with a t value
of 1.5, the returned value will be 5.    You can    use    expressions    as arguments to    this   
function.        For    example, the following function invocation    is    valid:    LINEAR(t,   
starttime,basex, starttime+3,midx, endtime,midx*2).          If    the    function    is called with a t
value that    is    outside    the    range    (t1,tn) (i.e.,    beyond either end point), then the nearest end
point and the second closest point are used to extrapolate to    the specified t    value.      See also
the description of the SPLINE function.

LOG(x) -- Natural logarithm of x.

LOG10(x) -- Base 10 logarithm of x.

MAX(x1,x2) -- Maximum value of x1 or x2.

MIN(x1,x2) -- Minimum value of x1 or x2.

MOD(x1,x2) -- x1 modulo x2.      The    MOD    function    calculates    the floating-point      remainder,      f,     
of    x1/(i*x2)    such    that x1=i*x2+f, where i is an integer; f has the same sign as x1, and the
absolute value of f is less than the absolute    value of x2.

MOREDATA(file) -- This function checks to see if there is another data record available in the external file
whose file number is specified    as    the    argument.        If    there    is    a    record available, this
function returns the value true (1), if not, it returns    false    (0).      This function does not
consume any data in the    file,    you    must    use    the    READ    statement    to actually read    the
next    record.    You can call MOREDATA any number of times without disturbing the next   
record    in    the file.      See the section on auxiliary file I/O for additional information.

NPD(x,mean,std) -- Normal    probability    distribution    of    x    with specified mean    and    standard   
deviation.      X is in units of standard deviations from the mean.

OPEN("file name") -- Open an existing    file    for    reading.        The value returned by this function is a file
number that can be used with    subsequent    READ statements.    See the description of auxiliary
file I/O for additional information.

PAREA(x) -- Area under the normal probability distribution    curve from    -infinity to x. (i.e., integral from
-infinity to x of NORMAL(x)).

PULSE(a,x,b) -- Pulse function.    If the value of x is less than a or greater than b, the value of the function is
0.    If x    is greater    than or equal to a and less than or equal to b, the value of the function is 1.   
In other words, it is 1 for the domain (a,b) and zero elsewhere.    If    you    need    a    function that
is    zero    in the domain (a,b) and 1 elsewhere, use the expression (1-PULSE(a,x,b)).

RAD(x) -- Converts an angle measured in degrees to the equivalent number of radians.

RANDOM() -- Returns a random value uniformly distributed    in    the range 0    to    1.        You    can use the
srand system variable to specify a starting seed.

ROUND(x) -- Rounds x    to    the    nearest    integer.        For    example, ROUND(1.1)=1; ROUND(1.8)=2;
ROUND(-2.8)=-3;

SEC(x) -- Secant of x. (SEC(x) = 1/COS(x)).    Angle in degrees.

SEL(a1,a2,v1,v2)    --    If a1 is less than a2 then the value of the function is v1.    If a1 is greater than or
equal to a2,    then the value of the function is v2.

SIN(x) -- Sine of x.    Angles are measured in degrees.

SINH(x) -- Hyperbolic sine of x.

SPLINE(t, t1,x1, t2,x2, ... tn,xn)    --    Perform    a    cubic    spline interpolation between a set of points.    A
spline is a smooth path    (continuous    first and second derivatives) that passes through a set of
points.    The SPLINE function is very useful in animations because it allows you to    easily   
construct a smooth path for the motion of some object (or the camera). If the value of a function
is x1 at some point t1, x2 at t2, etc.,    this    function determines the value at some arbitrary point,
t, where t falls in the range    (t1,tn).        The    first argument    to the SPLINE function is the value
t at which the interpolation is to be performed.    The    remaining    arguments are (ti,xi)      data   
pairs.        You    can    use    expressions    as arguments to this function.        For    example,    the   
following function    invocation    is    valid:    SPLINE(t, starttime,basex, starttime+3,midx,
endtime,midx*2).        If    the    function      is called    with    a    t    value    that is outside the range
(t1,tn) (i.e., beyond either end    point),    then    the    value    of    the function    at    the    nearest   
end    point    and the slope of the function at that point are used to extrapolate in    a    linear
fashion to    the specified t value.    See also the description of the LINEAR function.

SQRT(x) -- Square root of x.

STEP(a,x) -- Step function.    If x is less than a,    the    value    of the function    is 0.    If x is greater than or
equal to a, the value of the function is 1.    If you need a function which is 1 up to a certain value
and then 0 beyond    that    value,    use the expression STEP(x,a).

TAN(x) -- Tangent of x.    Angles are measured in degrees.

TANH(x) -- Hyperbolic tangent of x.

AUXILIARY DATA FILES
RTAG provides statements to open, close, read from, and write to auxiliary data files. This is useful if some
other program has computed    object positions or other data that affects the animation.
Up to 30 auxiliary data files can be open at once. The files are identified by numbers (also called file
"handles") that are assigned by RTAG at the time that the file is opened. The file numbers can be reused by
closing and reopening files.    You must use the VAR statement to declare variables to hold the file numbers.

Opening a File for Reading
The form of the statement used to open an existing file for reading is:

variable = OPEN("file name")
where 'variable' is a varible you have previously declared with a VAR statement.    When RTAG opens the
file it generates a unique file number and assignes it to the variable on the left of the equal sign.    This file
number can be used subsequently in READ
statements. An example of this statement is

infile = open("spiral.dat")

Creating an Output File
The form of the statement used to create an auxiliary output file is

variable = CREATE("file name")
When RTAG creates the file it assignes a unique file number to the specified variable.    This file    number   
can    be    used subsequently in WRITE statements. An example of this statement is:

outfile = create("trace.dat")

Closing an Auxiliary File
The statement used to close an auxiliary file is:

CLOSE(file)
where 'file' is a variable that has a file number. For example: close(outfile)
Any open files are closed automatically when your program terminates.

Reading from an Auxiliary File
You may read data from an open auxiliary file by using a READ statement of the following form:

READ (file) variable1,variable2,...
Each READ statement reads the next line of data from the file and assigns numeric values to the list of
variables you specify. There must be at least as many data values on the line as the number of variables
specified with the READ statement (additional values are ignored). The data values may be separated by
spaces, tabs, and/or commas. Numeric values may be specified in the same form as numbers within an
RTAG animation control file (natural, exponential, or dd:dd:dd).
The MOREDATA function can be used to control how many records are read from the file. The value of
MOREDATA(file) is true (1) if there is another, unread, record available in the file; its value is false (0) if
there is no more data available in the file. MOREDATA does not consume any data, it just checks for the
availability of data.    The following statements would read all data in a file and generate a frame file for
each record:
var f,xpos,ypos

f = open("indata.dat")
while (moredata(f)) do nextframe

read (f) xpos,ypos
owrite "#declare xpos=`xpos`" owrite "#declare ypos=`ypos`"
endwhile

Writing to an Auxiliary File
The form of the statement used to write to an auxiliary file is: WRITE (file) "string"
[,expression1,expression2,...]
where 'file' is a variable containing a file number assigned by a previously executed CREATE function.
"string" is a quoted string of the same form as described for the PRINT, OWRITE and BWRITE statements.
The string may include variable and expression replacement operators.      Expression1, expression2, etc. are

optional expressions whose values are to be substituted into the string where "%w.dlf" sequences occur. The
following statements illustrate the use of WRITE statements:

var f,x,y
f = create("sine.out")
for y = 0 while y < 2*pi step .1 do
x = sin(y)
write (f) "x=`x`, y=`y`"
endfor
close (f)

BREAK STATEMENT
The BREAK statement can be used in FOR and WHILE loops to terminate the loop and cause control to
transfer to the statement beyond the end of the loop. The following is an example of a BREAK statement:
for time=0 while time<60 do

x = x + delta * xspeed
if (x > 10) then
break
endif

endfor

COMMENTS
The beginning of a comment is denoted with "//" (two consecutive slash characters).    Everything from the
"//" sequence to the end of the line is treated as a comment. Comments may be on lines by themselves or on
the ends of other statements.    The following lines illustrate both types of comments:

// Begin main simulation loop
y = y + timestep * yvelocity // Advance y position

CONTINUATION OF LINES
Unlike programming languages such as C, the RTAG language is line oriented. That is, statements are
normally terminated by the end of the line rather than using a terminating character such as a semicolon. If
you need to enter a command that is too long to fit on a line (i.e., more than 80 characters), you can continue
it on subsequent lines by placing "\\" (two consecutive left leaning slashes) at the end of each line that is to
be continued. You can also use tabs to indent lines or align portions of statements. The following is an
example of a continued line:
y = spline(t, 0,0, 1,2, 5,8, 10,9, 12,10, \\

15,20, 17,25, 20,30)

DECLARATION OF VARIABLES (The VAR Statement)
All variables used in your animation control file must be declared before they are used.    This is done using
the VAR statement which may optionally assign an initial value to the variable. If no initial value is
specified, 0 is used by default.    VAR is a declarative statement: that is, it declares the existance of the
variable and assigns an initial value, it does not reassign the value to the variable if the VAR statement
appears in a loop.
Variable names may be up to 30 characters long.    They ARE case sensitive. Keywords (FOR, WHILE,
VAR, etc.) and library function names (SIN, COS, ABS, etc.) are NOT case sensitive.
The syntax of the VAR statement is:
VAR variable1[=value], variable2[=value], ...
You may use as many VAR statements as you need. The following are examples of this statement:
var x, y, speed=5
var Acceleration=2.5
In addition to your own variables, RTAG provides several system variables.    If you do not provide VAR
statements for these variables, they are defined automatically at the start of a run and RTAG assigns their
values.

Variable Default Meaning
curframe 0 The current frame number. Set by NEXTFRAME.
firstframe 1 The first frame that will generate output.
lastframe 999999 The last frame that will generate output.
stepinc 1 The step increment between frames.
srand 1 Seed for random number generator.

These variables may be used in your animation control file just like ordinary variables. If you want to set
different default values for firstframe, lastframe, stepinc or srand, use the VAR statement and specify an
initial value.    For example, the following commands would cause frames 20 through 40 to be output:
var firstframe = 20
var lastframe = 40
The default values, or the values specified by VAR statements, can be overridden by qualifiers on the
command line. /F sets firstframe, /L sets lastframe, and /S sets stepinc.

The srand system variable is used to set a starting "seed" value for the RANDOM() function.    The default
value for srand is 1. For a given starting seed value, the pseudorandom sequence is always the same.

EPILOG STATEMENT
The EPILOG statement (which may also be spelled EPILOGUE) informs RTAG that the last frame has been
completed and that subsequent BWRITE statements are unconditionally    to    generate    output regardless of
the setting of the firstframe, lastframe, and stepinc values. Otherwise BWRITE statements do not generate
output if they occur after the last frame, or between frames if stepinc is not 1. Commonly the BWRITE
statement is used after EPILOG to write some "end-of-all-frames" termination statements to the batch file,
such as commands to run DTA to build the animation sequence.

FOR STATEMENT
The FOR statement is a looping control statement similar to the WHILE statement; however, the FOR
statement assigns an initial value to a variable at the top of the loop and increments the variable by a
specified amount at the bottom of the loop. The form of the FOR statement is:
FOR variable=expression1 WHILE expression2 [STEP expression3] DO << controlled statements >>
ENDFOR
At the beginning of the loop expression1 is evaluated and its value is assigned to the variable, then the loop
begins. At the top of the loop expression2 is evaluated. If its value is false (0) control transfers to the
statement beyond the end of the loop. If its value is true (non zero) the controlled statements are executed.   
The "STEP expression3" clause is optional. If specified, expression3 is evaluated at the end of the loop and
its value is algebraically added to the value of the loop variable (the step value may be negative). If the
STEP clause is not specified, 1 is added to the loop variable.    The loop
continues to be executed until expression2 is false or a BREAK statement is executed within the loop.
The following is an example of a FOR statement:
for time=starttime while time<endtime step timestep do

<< controlled statements >>
endfor

IF STATEMENT
The form of the IF statement is:
IF (expression) THEN

<< controlled statements 1 >>
ELSE

<< controlled statements 2 >>
ENDIF
If the expression is true (not zero) the first set of controlled statements is executed, if the expression is false
(0) the second set of controlled statements is executed. The ELSE clause and the second set of controlled
statements are optional. Note that unlike programming languages like C, you cannot    place    a controlled
statement on the same line as the IF statement. For example, "IF (X>5) THEN X=5" is NOT legal.    The
following are examples of valid IF statements:
if (x > bigx) then

bigx = x
endif
if (x <= 10) then

y = linear(x, 0,0, 10,6)
else

y = y + yspeed * timestep
endif

NEXTFRAME STATEMENT
The NEXTFRAME statement performs the following actions: (1) close the currently open output file, if any;
(2) increment the current frame number (and curframe variable); (3) if an OFILE statement was used, open a
new output file with the current frame number substituted for the "###" characters in the file name.
You must execute a NEXTFRAME statement before you can use an OWRITE statement.    PRINT,
BWRITE and WRITE statements can be executed before the first NEXTFRAME command.    The last
output file is closed when your program stops.

OUTPUT FILE DECLARATIONS
RTAG is capable of producing multiple files during each run. Most of these files are optional and will only
be produced if you include the appropriate statements in your control file. The listing file is always
produced. It has the same name as the animation control file but with an extension of ".LST".
Most RTAG runs will produce a batch file to drive the ray tracing program. The batch file may contain
commands to generate the appropriate include file for each frame or you may choose to have RTAG
generate the full set of include files separate from the batch file. If you wish to generate a batch file you
must place a command of the following form in your control file:

BFILE name
where 'name' is the name of the batch file.    The default extension is ".BAT".
The batch file normally contains a set of commands to render each frame. Typically, the commands for each
frame perform the following actions:

1. Generate an include file with object position information.
2. Run the ray tracer using the current include file.

The BWRITE command is used to write to the batch file. The batch file is optional and is generated only if
you use a BFILE statement.
If you wish to have RTAG generate a set of include files, you must use the following command to declare
the names of the files:

OFILE name
If the OFILE statement is used, one output file is generated for each frame. The output file name must
include a string of one to seven '#' characters.    These characters are replaced by the current frame number
when the file is opened. For example, consider the following command:
ofile bounc###.inc
Then for frame 27 the name of the created file will be BOUNC027.INC. The default extension is ".INC".
The NEXTFRAME
command closes the current output file, increments the frame number, and opens the next output file
(assuming the OFILE statement was specified).    The last output file is closed when the program stops. The
OWRITE statement writes lines to the currently open output file.
RTAG can also create or read from auxiliary data files. This is described in a subsequent section.

STOP STATEMENT
The STOP statement terminates the execution of RTAG and closes all output files. An implicit STOP occurs
if you "fall through" the bottom of your animation control file. The following is an example of the STOP
statement:
while (curframe < 60) do

<< controlled statements >>
if (xposition1 >= xposition2) then
stop
endif

endwhile

SUBCHAR STATEMENT
The SUBCHAR statement specifies which character is to be used in write strings to enclose the names of
variables whose values are to be substituted in the string. The default character is "`" -the accent character
which is usually on the same key as the tilde character. The form of the statement is:
SUBCHAR char
where "char" is a single character.

WHILE STATEMENT
The WHILE statement loops until the controlling expression becomes false (0) or a BREAK statement is
executed within the loop. The form of the WHILE statement is:
WHILE (expression) DO

<< controlled statements >>
ENDWHILE
Each time around the loop the expression is evaluated. If it is true (non zero) the controlled statements are
executed up to the ENDWHILE statement and then the process repeats until the expression becomes false.   
If a BREAK statement is executed within the loop, control transfers to the statement that follows the
ENDWHILE statement.    The following is an example of a WHILE statement:
while (x < 5) do

x = x + xmove
y = y + ymove

endwhile

WRITE STATEMENTS
RTAG has three output statements. These statements and the files they write to are as follows:

PRINT -- Listing file (also displayed on screen).
OWRITE -- Output file (OFILE).
BWRITE -- Batch file (BFILE).

Since the form for these statements is the same (except for the keyword), the PRINT statement will be used
in the illustrations. The form of the statements is:
PRINT "string"[,expression1, expression2,...]
where "string" is a quoted text string that may including variable and expression replacement operators. You
can cause the current value of a variable to be substituted into a string by inserting the variable name in the
string enclosed by "`" characters. Note, this is not the apostrophe, it is the accent character that is on the
same key as the tilde on most keyboards. You can use the SUBCHAR statement (see below) to change the
character used to mark a variable value substitution.    For example, the following statement prints the values
of the xpos and ypos variables:
print "X position is `xpos`, and Y position is `ypos`"
When this statement is executed `xpos` and `ypos` are replaced by the current values of the xpos and ypos
variables.
If the sequence `###` (1 to 7 '#' characters) appears in the string, the pound signs are replaced by the current
frame number with leading zeros. In addition, the strings `ofile` and `bfile` are replaced by the names of the
output file, and batch file respectively.    The string `file` is replaced by the name of the input animation
command file with any device, directory, and extension removed.
You can also substitute the values of expressions. To do this, use the C programming notation "%w.dlf"
where 'w' is the overall field width and 'd' is the number of decimal places. For example, the following
statement prints the value    of    an expression:
print "The diagonal distance is %5.1lf", sqrt(xd^2 + yd^2)
Each WRITE statement generates a line of output terminated by carriage-return, line-feed.

POV-Ray Options

These options tell POV-Ray how to render the scene. The command-line equivalents are shown after the
option name.

Width (+w####)
    Specify the width of the image in pixels.

Height (+h####)
    Specify the height of the image in pixels.

Quality (+q#)
    Specifies the quality of the image. Lower quality speeds up rendering, but produces uglier images.

Anti-Aliasing Threshold (+a####)
    Specifies the anti-aliasing threshold. During rendering, POV-Ray will calculate the difference between the
rendered pixel and its neighbors. If the difference is higher than the threshold, POV-Ray will attempt to
smooth the pixel by super-sampling it. A threshold of 0.0 means that every pixel will be super-sampled, and
a threshold of 1.0 means that no pixel will be super-sampled. According to the POV-Ray manual, good
values are around 0.2 to 0.4.

Disable Anti-Aliasing (-a)
    Check this checkbox if you want to disable anti-aliasing.

Display image stats while rendering (+v)
    If on, POV-Ray will display image statistics while rendering.

Display image graphically while rendering (+d)
    If on, POV-Ray will display the image on-screen as it is being traced.

Allow abort with keypress (+x)
    Check this checkbox if you want to be able to abort POV-Ray.

Pause and wait for keypress after tracing image (+p)
    If this checkbox is checked, POV-Ray will pause and wait for you to press a key when it has traced the
image.

Partial Rendering

Activated (+c)
    This option selects partial rendering. When activated, POV-Ray will read and display the unfinished image
and continue rendering. This is useful if your system hangs and forces you to reboot or restart, since you can
continue rendering where you left off.

Start at line (+s####)
    Specifies the line number POV-Ray should start on when using Partial Rendering.

Stop at line (+e####)
    Specifies the line number POV-Ray should stop at when using Partial Rendering.

Output file format

Targa, Raw and Dump radiobuttons (+ft,+fr,+fd)
    Use these radiobuttons to select the output file format. Targa creates a standard Targa 24bit uncompressed

image file. Dump creates a QRT-style file. Raw creates three files; one for red, one for blue and one for
green. These files have the extensions .r8 , .g8 and .b8 respectively. Raw file format is used with PICLAB.

Disable output to file (-f)
    If you check this checkbox, POV-Ray will not write an output file. This option should be used in
conjunction with Display image graphically while rendering and Pause and wait for keypress after
tracing image.

Output Buffering

Buffer Size (+b####)
                  The buffer size option allows you to assign large buffers to the output file. This reduces the
amount of time spent writing to the disk and prevents unnecessary wear. If this parameter is zero, then as
each scanline is finished, the line is written to the file and the file is flushed. On most systems, this operation
insures that the file is written to the disk so that in the event of a system crash or other catastrophic event, at
least part of the picture has been stored properly and retrievably on disk.(see also the Partial Rendering
option.) 30 is a good value to use in order to speed up small renderings.

Directory Options Dialog

Separate the directories with a semicolon (;).

For example :
    C:\POVRAY;C:\POVRAY\SAMPLE;C:\POVRAY\INCLUDE

POV-Ray dirs
    Here you specify which directories POV-Ray should search when looking for a file.

Output dir
    Use this option to specify where the output file should be placed. You may only specify one (1) directory
!

Output File name
    This is equivalent to the +o option. If you specify a filename, all output from POV-Ray will be redirected
to this file.

Targa Viewer
    The path to your favorite Targa viewer.

The Color Palette

    This is used as a tool to specify color. Use the scroll bars to select the color. To the left of the scroll bars,
you can see the RGB value for the color. In the lower right of the window, you'll see Windows'
approximation of the selected color. If you press the Insert button, the current color will be inserted into the
scene description file.

The palette will disappear when you press Insert or when you switch to another window.

Insert camera definition

Can't remember the syntax for the camera definition ? Look no further !

Just fill in the values and press insert!

location
    The position of the camera.

direction
    The "lens length" of the camera.

up
    Tells POV-Ray the "up" or "top of image" direction .

right
    Used to specify the image's aspect ratio. Usually set to 1.333.

look_at
    Where the camera should be pointed at. This point should be the "center of attention" of your image.

sky
    The sky direction.

Insert light_source

Location
    The position of the light source.

Color
    The color of the light.

Spotlight
    Check this checkbox if you want to insert a spotlight light source. If you do then you must also specify the
following parameters :

    Point at
        The spot where the spotlight is aimed at.

    Radius
        The size of the white "hotspot" in the center in degrees.

    Falloff
        The distance from the center to the point where the light intensity is 0, measured in degrees.

    Tightness
        The tightness value specifies how fast the light falls off at the edges. Higher values makes the edges
sharper.

The RTAG Options dialog

First frame
    The first frame to generate output. Output is discarded for frames prior to this number.

Last Frame
    The last frame to generate output.    Output is discarded for frames following this number.

Steps between frames
    Specifies the number of steps between frames. Default is 1.

Include file names
    The names of the include files. The name must include 1 to 5 '#' characters.

Batch File name
    Specifies the name of the batch file.

Disable Output
    Specifies    that no output is to be written to the batch and include files.    This is useful when    you    are   
debugging    an animation      control      file    and    want    to    test    it    without generating the output files.   
Output generated by PRINT and WRITE    commands    always    is    written, even if this option is specified.

List control file
    Causes the entire control file to be listed on    the    screen and written    to    the    listing    file.        Normally
only error messages    and    output    generated    by    PRINT    statements    are displayed.

Display each statement before executing
    Specifies    that    each    source    statement is to be displayed before it    is    executed.        This    is    useful
for    debugging purposes.

The DISABLE checkboxes
    Since you can specify some of the options listed here in your .RTA file, and since these options will
override all the settings in the RTA file, you have the option to disable any one of them. In order to make
life easier, you should specify all options in your .RTA file, since it makes the RTA file easier to share with
others.

Contacting the author

Raytrace Workbench is constantly evolving. If you would like to have a special feature included, write!

Send all your questions, suggestions and opinions about Raytrace Workbench to :

Leo Sutic
CIS ID: 100040,600

