
Interactive Geometric Image Transformation Using Texture Mapping

Carl Korobkin

Silicon Graphics Computer Systems�

Abstract

General-purpose computer graphics workstation technology is

rapidly displacing more traditional "black box" image processing

solutions. One core computer graphics technology that is driving

this trend is texture mapping[1][4].

In recent years, the technique of texture mapping has moved from

the domain of software rendering systems to that of high perfor-

mance general-purpose graphics workstation hardware. A graphics

pipeline incorporating a texture mapping (image resampling) engine

is a state-of-the-art geometric image transformation engine.

Shown here is how an advanced form of texture mapping, called

projective texture[10], can be used to interactively perform a full

range of traditional geometric image processing tasks as well as

enabling a wide range of new techniques. These include arbitrary

projection of two-dimensional images onto geometry, realistic light-

ing/transmission effects, and generation of shadows using shadow

maps[12]. These effects are obtained in real time using hardware

that performs correct projective texture mapping.

CR Categories and Subject Descriptors: I.2.0 [Image Pro-

cessing]: Geometric Image Transformation; I.3.3 [Computer

Graphics]: Picture/Image Generation; I.3.7 [Computer Graph-

ics]: Three-Dimensional Graphics and Realism - color, shading,

shadowing, and texture

Additional Key Words and Phrases: warping, texture mapping

1 Introduction

In the domain of image processing, one of the most generic and

common categories of operations is geometric transformation of

imagery. Given a discrete input image, a geometric transformation

operator produces a discrete output image that is the input image

spatially translated, rotated, scaled, nonlinearly warped or viewed

from an alternate perspective.

From a computational standpoint, the process of geometrically

transforming an image is essentially one of calculating linear and

non-linear input image pixel addresses for integer output image

pixel addresses. Such computations are easily described under

the framework of a Cartesian coordinate system and vector-space

representation[9]. Since this mapping process can produce non-

integer input image addresses for integer output image addresses,

geometric resampling of the stored input image array is required.

�2011 N. Shoreline Blvd., Mountain View, CA 94043

What the image processing community refers to as geometric

image transformation is equivalent to what the computer graphics

community calls texture mapping. Texture mapping might alter-

nately be referred to as image mapping – in its most basic form, a

two-dimensional image (the texture) is draped onto a two- or three-

dimensional polygon in a scene. The color of each pixel on the

surface of the output polygon is modified by some corresponding

value(s) in the input image; this correspondence is established by a

series of steps including a resampling of the input image[5]. More

complex geometry in a scene may be approximated by surfaces

composed of facets of polygons – these may conveniently described

in some higher-order surface representation such as non-uniform

rational B-splines (NURBS).

In the context of texture mapping, geometric image transfor-

mation amounts to a mapping between the underlying geometry

(representing the output image space) and a stored image array (tex-

ture) (representing the input image space). With a general-purpose

graphics engine, this output geometry is three-dimensional, viewed

in perspective, and interactively manipulated.

2 Perspective-Correct Texture Mapping

With standard texture mapping, an image is applied to a polygon by

assigning texture coordinates to the polygon’s vertices. These co-

ordinates are interpolated across the surface of the polygon, serving

as an index into the texture image array for each of the polygon’s

pixels.

Producing an image of a three-dimensional scene requires finding

the projection of that scene onto a two-dimensional screen. If the

image of the three-dimensional scene is to appear realistic, then

the projection from three to two dimensions must be a perspective

projection.

For a scene comprised of polygons, the projected vertices of these

polygons determine boundary edges of the geometry. Scan conver-

sion uses iteration to enumerate pixels on the screen that are covered

by each polygon. This iteration in the plane of projection introduces

a homogeneous variation in the texture coordinates. If the homo-

geneous variation is ignored in favor of a simpler linear iteration,

incorrect images are produced that can lead to objectionable effects

such as texture “swimming” during scene animation[5]. Correct

interpolation of texture coordinates requires each to be divided by a

common denominator for each pixel of a projected texture mapped

polygon[6].

2.1 Projective Textures

Projective texture mapping is a generalization of the standard tech-

nique. Here, texture coordinates are assigned to polygon vertices

as a result of a projection rather than being assigned fixed values.

A texture is mapped onto a surface via a projection, after which the

surface is projected onto a two dimensional viewing screen. This

provides for the notion of the texture (image) being associated with

Eye View

 (screen)

Camera View

 (texture)

Object Geometry

yt

xt

zt

ys

xs
zs

(x,y,z,w)

(xcwcyc/wc)

(xc,yc,zc,wc)

(x/w,y/w)

Ep

Cp

Q1

Q2

Q

Figure 1. Object geometry in the camera and clip coordinate sys-

tems.

some "virtual camera" position within the scene; imagery may be

projected (reprojected) onto an arbitrarily oriented surface, which

is then viewed from some viewpoint.

Since two-dimensional images are typically views of three-

dimensional scenes from the physical perspective of a camera imag-

ing the scene, this cabability has huge implications in many appli-

cation areas. It turns out that handling this situation during texture

coordinate iteration is essentially no different from the more usual

case in which a texture is mapped linearly onto a polygon.

2.2 Mathematics of Projective Textures

To aid in describing the iteration process, four coordinate systems

are introduced. The clip coordinate system is a homogeneous rep-

resentation of three-dimensional space, with x, y, z, and w co-

ordinates. The origin of this coordinate system is the viewpoint.

The term clip coordinate system is used because it is this system in

which clipping is often carried out. The screen coordinate system

represents the two-dimensional screen of the viewer (by default, as-

sumed to be attached to the physical display) with two coordinates.

These are obtained from clip coordinates by dividing x and y by w,

so that screen coordinates are given by x

s

= x=w and y

s

= y=w

(the s superscript indicates screen coordinates). The camera co-

ordinate system is a second homogeneous coordinate system with

coordinates xc, yc , zc , and w

c; the origin of this system is at the

camera projection source. Finally, the texture coordinate system

corresponds to a screen of the texture associated with the camera.

Texture coordinates are given by x

t

= x

c

=w

c and y

t

= y

c

=w

c

Given (x

s

; y

s

), a point on a scan-converted polygon, our goal is to

find its corresponding texture coordinates, (xt

; y

t

).

Figure 1 shows a line segment in the clip coordinate system and its

projection onto the two-dimensional screen. This line segment rep-

resents a span between two edges of a polygon. In clip coordinates,

the endpoints of the line segment are given by

Q

1

= (x

1

; y

1

; z

1

; w

1

) and Q

2

= (x

2

; y

2

; z

2

; w

2

):

A point Q along the line segment can be written in clip coordinates

as

Q = (1� t)Q

1

+ tQ

2

(1)

for some t 2 [0; 1]. In screen coordinates, we write the correspond-

ing projected point as

Q

s

= (1� t

s

)Q

s

1

+ t

s

Q

s

2

(2)

where Qs

1

= Q

1

=w

1

and Qs

2

= Q

2

=w

2

.

To find the camera coordinates of Q given Q

s, we must find

the value of t corresponding to t

s (in general t 6= t

s). This is

accomplished by noting that

Q

s

= (1� t

s

)Q

1

=w

1

+ t

s

Q

2

=w

2

=

(1� t)Q

1

+ tQ

2

(1� t)w

1

+ tw

2

(3)

and solving for t. This is most easily achieved by choosing a and b

such that 1 � t

s

= a=(a+ b) and t

s

= b=(a+ b); we also choose

A and B such that (1 � t) = A=(A + B) and t = B=(A + B).

Equation 3 becomes

Q

s

=

aQ

1

=w

1

+ bQ

2

=w

2

(a+ b)

=

AQ

1

+ BQ

2

Aw

1

+ Bw

2

: (4)

It is easily verified thatA = aw

2

andB = bw

1

satisfy this equation,

allowing us to obtain t and thus Q.

Because the relationship between camera coordinates and clip

coordinates is affine (linear plus translation), there is a homogeneous

matrix M that relates them:

Q

l

= MQ =

A

A +B

Q

l

1

+

B

A +B

Q

l

2

(5)

where Q

l

1

= (x

c

1

; y

c

1

; z

c

1

; w

c

1

) and Q

l

2

= (x

c

2

; y

c

2

; z

c

2

; w

c

2

) are the

camera coordinates of the points given by Q

1

and Q

2

in clip coor-

dinates.

We finally obtain

Q

t

= Q

l

=w

c

=

AQ

l

1

+BQ

l

2

Aw

c

1

+Bw

c

2

=

aQ

l

1

=w

1

+ bQ

l

2

=w

2

a(w

c

1

=w

1

) + b(w

c

2

=w

2

)

: (6)

Equation 6 gives the texture coordinates corresponding to a lin-

early interpolated point along a line segment in screen coordinates.

To obtain these coordinates at a pixel, we must linearly interpolate

x

c

=w, yc=w, and wc

=w, and divide at each pixel to obtain

x

c

=w

c

=

x

c

=w

w

c

=w

and y

c

=w

c

=

y

c

=w

w

c

=w

: (7)

(For an alternate derivation of this result, see [6].)

If wc is constant across a polygon, then Equation 7 becomes

s =

s=w

1=w

and t =

t=w

1=w

; (8)

where we have set s = x

c

=w

c and t = y

c

=w

c. Equation 8 governs

the iteration of texture coordinates that have simply been assigned to

polygon vertices. It still implies a division for each pixel contained

in a polygon. The more general situation of a projected texture

implied by Equation 7 requires only that the divisor bewc

=w instead

of 1=w.

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

Geometry

 Engine

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

Host

FrameBuffer
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

Texture

 Engine

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

 Display

Generator

Raster

Engine

Figure 2. RealityEngine Graphics Pipeline

2.3 Compound Perspective Warping

A wide range of interactive geometric image transformations is

realizable with graphics pipeline capable of

� fast transformation of 3-D polygonal surface geometry, and

� high-quality projective texture applied to these surfaces.

Compound perspective warping is the super-set of linear trans-

formation, spatial warping, and perspective and is comprised of

� perspective from texture to geometry (wc term),

� spatial warping approximated by polygonal meshing, and

� perspective from geometry to the viewer (w term).

Affine transformations are descibed whenwc andw are unity and

the texture (image) is mapped to a first-order surface. For example,

for a rectangular image to be transformed, the output image can

be represented as a single flat 4-sided polygon The input image

is mapped to this polygon by assigning texture coordinates to its

vertices as an orthogonal projection. Subsequent rotates, translates,

and scales of the output polygon with the input image "pinned" to

it transform the image.

With a global polynomial transformation, spatial warping is im-

plemented by defining a correspondence between a uniform polyg-

onal mesh (representing the original image) and a warped mesh

(representing the warped image)[8]. A piecewise linear polyno-

mial transformation may be employed to account for local image

geometric distortions[14].

All other geometric transformations are described by all possible

combinations of the above with unity and non-unitywc andw terms.

3 A High-Performance Graphics Worksta-

tion Architecture for Image Processing

The Silicon Graphics Onyx RealityEngine is representative of a

general-purpose computer graphics workstations equipped with ad-

vanced geometric transformation and texture mapping hardware.

The fundamental architecture of the RealityEngine graphics pipeline

is illustrated in Figure 2. There are three principle processing sub-

systems.

The Geometry Engine subsystem is responsible for all affine

and non-affine transformations of object geometry represented as

polygon, vector, and point vertices. Each vertex is described in

terms of its Cartesian coordinates (x,y,z,w), texture coordinates

(xc ,yc ,zc,wc), color (r,g,b), transparency (alpha), and orientation

(normal). Separate homogeneous (4x4) matrix transformation

stacks are maintained for Cartesian and texture coordinates, provid-

ing for a fully flexible and intuitive camera imaging model support-

ing compound projective texture mapping. The Geometry Engine

encapsulates 1.5 gigaflops of single-precision floating capacity and

can sustain transformation rates of up to 975K meshed and textured

polygons per second.

The Texture Engine subsystem is a high-speed resampling unit

that supports both mipmapped[13] and non-mipmapped types of

texture filtering. In non-mipmapped mode, the resampling method

is point sampling, bilinear interpolation, or bicubic interpolation. In

mipmapped mode, the resampling trilinear or quadlinear. The Tex-

ture Engine is capable of a sustained fill rate of up to a 320 million

pixels per second for anti-aliased, trilinear mipmapped, z-buffered,

lit, smooth shaded polygons. The Texture Engine interpolates tex-

ture coordinates as given by Equation 7, thus fully supporting pro-

jective texture mapping.

The Raster Engine subsystem is the scan conversion engine. It

contains the framebuffer memory, texture storage memory (up to 16

megabytes)and all the hardware responsible for color blending, sub-

pixel anti-aliasing, fogging, lighting, and hidden surface removal.

Color computation is maintained at a full 48 bits per pixel (12 bits

each for red, green, blue, and alpha). For hidden surface removal, a

z-buffer with a full 32 bits of precision is maintained.

4 Applications

Real-time projective texture mapping is an extremely powerful tech-

nology that is widely applicable. Presented here are some example

applications developed on the RealityEngine. All images are screen

captures from fully interactive programs (i.e. camera projectors can

be moved interactively, scenes can be flown through at 15 to 30 Hz

frame rates).

4.1 3-D Terrain Reconstruction and Fly-Over

Digital terrain elevation data is used to describe a polygon mesh.

Orthorectified and registered satellite imagery is draped over the

terrain geometry using non-projective texture mapping. (wc

= 1).

Figure 3 shows a flyover of Yellowstone National Park; Performer is

used to create a polygonmesh from a DTEM (digtal terrain elevation

model) and apply the corresponding LandSat image (as texture).

In 2-D, this application reduces to a more conventional roam.

Dynamic image look-ahead and texture resource tiling allows for

imagery of any size to be roamed on at frames rate of up to 60Hz.

Roaming here is any combination of rotates, translates, and scales

(zooms). In this scenario, the underlying geometry can be a simple

4-sided polygon and the texture and viewer projections are typically

both orthographic (wc

= 1 and w = 1).

4.2 Real-Scene Reconstruction and Fly-Through

Projective texture mapping may be used to reproject imagery into a

scene in order to reconstruct and walk (or fly) through the original

scene. This requires a knowledge of the camera positions which

acquired the imagery and the underlying geometry of the scene.

Consider, for instance, a photograph of a building’s facade taken

from some position. The effect of viewing the facade from arbitrary

positions can be achieved by projecting the photograph back onto

the building’s facade and then viewing the scene from a different

vantage point[2][7].

Figure 4 shows a reconstructed scene of downtown San Jose. An

airborne camera acquired the imagery from two perspectives. The

geometry of the buildings was subsequently extracted from these im-

ages using photogrammtric techniques. The scene is reconstructed

on-the-fly (and flown over) on the RealityEngine by drawing the

buildings as polygons described by the extracted geometries and

using projected texture mapping to directly re-project the imagery

onto the buildings, as seen by the original camera locations. (Data

and imagery supplied by ESL Inc., Sunnyvale CA.)

4.3 Satellite Imagery Reprojection

Interactive ortho-rectification of satellite (or any oblique imagery)

is readily accomplished using projected texture. In Figure 5, the

left image shows the satellite camera frustum with the acquired

imagery (texture) on its screen, the center image shows the imagery

reprojected onto the tesselated digital elevation data, and the right

image shows the final rectified view with an additional orthographic

projection applied.

4.4 Lighting/Transmission/Shadow Effects

A similar technique can be used to simulate the effects of some

illumination source on a scene.

Figure 6 shows a texture representing an intensity map of a cross-

section of spotlight’s beam illuminating a section of the Yellowstone

Park data. The Reality engine is capable of computing shadows on

the fly (note shadows cast on mountains). This is an example of

how projective texture mapping with shadows can be applied to

line-of-sight applications.

Another application of projective texture mapping consists of

viewing the projection of a slide or movie on an arbitrary

surface[11][3]. One may also project live video onto geometry

in a scene. Figure 7 shows a slide projected onto a scene (note

shadows).

5 Conclusions

Advanced projective texture mapping is a technology that has huge

implications to change the way things are done in multiple imaging

application areas such photogrammetry, SAR, non-destructive eval-

uation, medical, seismic and sonar interpretation, film and video,

and terrain analysis and scene generation.

High-performance general-purpose graphics workstations which

incorporate this technology are uniquely positioned to replace exist-

ing image processing solutions (array processors, parallel process-

ing, custom "black box" hardware and software) with new levels of

performance and capabilities.

Acknowledgements

Many thanks to Brian Cabral, Nancy Cam, Jim Foran, Chris Tan-

ner, Bob Drebin, Keith Seto, and Bill James for their numerous

contributions, comments, and suggestions.

References

[1] Ed Catmull. A Subdivision Algorithm for Computer Display

of Curved Surfaces. PhD thesis, University of Utah, 1974.

[2] Robert N. Devich and Frederick M. Weinhaus. Image perspec-

tive transformations. SPIE, 238, 1980.

[3] Julie O’B. Dorsey, Francois X. Sillion, and Donald P. Green-

berg. Design and simulation of opera lighting and projection

effects. In Proceedingsof SIGGRAPH ’91, pages41–50, 1991.

[4] Paul S. Heckbert. Survey of texture mapping. IEEE Computer

Graphics and Applications, 6(11):56–67, November 1986.

[5] Paul S. Heckbert. Fundamentalsof texture mapping and image

warping. M.sc. thesis, Department of Electrical Engineering

and Computer Science, University of California, Berkeley,

June 1989.

[6] Paul S. Heckbert and Henry P. Moreton. Interpolation for

polygon texture mapping and shading. In David F. Rogers and

Rae A. Earnshaw, editors, State of the Art in Computer Graph-

ics: Visualization and Modeling, pages 101–111. Springer-

Verlag, 1991.

[7] Kazufumi Kaneda, Eihachiro Nakamae, Tomoyuki Nishita,

Hideo Tanaka, and Takao Noguchi. Three dimensional ter-

rain modeling and display for environmental assessment. In

Proceedings of SIGGRAPH ’89, pages 207–214, 1989.

[8] Masaaki Oka, Kyoya Tsutsui, Akio Ohba, and Yoshitaka Ku-

rauchi. Real-time manipulation of texture-mapped surfaces.

Computer Graphics (Proceedings of SIGGRAPH ’87), July

1987.

[9] W.K. Pratt. Digital Image Processing. John Wiley, 1990.

[10] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran,

and Paul Haeberli. Fast shadows and lighting effects using

texture mapping. Computer Graphics (SIGGRAPH ’92 Pro-

ceedings), 26(2):249–252, July 1992.

[11] Steve Upstill. The RenderMan Companion, pages 371–374.

Addison Wesley, 1990.

[12] Lance Williams. Casting curved shadows on curved surfaces.

In Proceedings of SIGGRAPH ’78, pages 270–274, 1978.

[13] Lance Williams. Pyramidal parametrics. Computer Graphics

(SIGGRAPH ’83 Proceedings), 17(3):1–11, July 1983.

[14] George Wolberg. Digital Image Warping. IEEE, 1990.

