
Accelerated Volume Rendering and Tomographic

Reconstruction Using Texture Mapping Hardware

Brian Cabral, Nancy Cam, and Jim Foran

�

Silicon Graphics Computer Systems

Abstract

Volume rendering and reconstruction centers around solving two related integral equations: a

volume rendering integral (a generalized Radon transform) and a �ltered backprojection integral

(the inverse Radon transform). Both of these equations are of the same mathematical form

and can be dimensionally decomposed and approximated using Riemann sums over a series of

resampled images. When viewed as a form of texture mapping and frame bu�er accumulation,

enormous hardware enabled performance acceleration is possible.

1 Introduction

Volume Visualization encompasses not only the viewing but also the construction of the volumetric

data set from the more basic projection data obtained from sensor sources. Most volumes used in

rendering are derived from such sensor data. A primary example being Computer Aided Tomo-

graphic (CAT) x-ray data. This data is usually a series of two dimensional projections of a three

dimensional volume. The process of converting this projection data back into a volume is called

tomographic reconstruction.

1

Once a volume is tomographically reconstructed it can be visualized

using volume rendering techniques.[2, 3, 4, 5, 9, 11, 12]

These two operations have traditionally been decoupled, being handled by two separate algo-

rithms. It is, however, highly bene�cial to view these two operations as having the same mathe-

matical and algorithmic form. Traditional volume rendering techniques can be reformulated into

equivalent algorithms using hardware texture mapping and summing bu�er. Similarly, the Filtered

Backprojection CT algorithm can be reformulated into an algorithmwhich also uses texture mapping

in combination with an accumulation or summing bu�er.

The mathematical and algorithmic similarity of these two operations, when reformulated in

terms of texture mapping and accumulation, is signi�cant. It means that existing high performance

computer graphics and imaging computers can be used to both render and reconstruct volumes at

rates of 100 to 1000 times faster than CPU based techniques.

2 Background: The Radon and Inverse Radon Transform

We begin by developing the mathematical basis of volume rendering and reconstruction. The most

fundamental of which is the Radon transform and its inverse. We will show that volume rendering,

as described in [3, 4, 5, 9, 12], is a generalized form of the Radon transform. Finally, we will

demonstrate e�cient hardware texture mapping based implementations of both volume rendering

and it's inverse: volume reconstruction.

The Radon transform de�nes a mapping between the physical object space (x; y) and its projec-

tion space (s; �), as illustrated in �gure 1. The object is de�ned in a cartesian coordinate system

by f(x; y), which describes the x-ray absorption or attenuation at the point (x; y) in the object at a

�xed z-plane. Since the attenuation is directly proportional to the volumetric density of the object

�

e-mail: cabral@sgi.com, nance@asd.sgi.com, and foran@asd.sgi.com

address: 2011 North Shoreline Blvd. M-405

Mountain View, Ca 94043-1389

1

The term tomographic reconstruction or Computed Tomography (CT)[7] is used to di�erentiate it from signal

reconstruction: the rebuilding of a continuous function (signal) from a discrete sampling of that function.

1

2

x

y

f(x,y)

s

θ

[x(l), y(l)]

d

p(s,θ)

Figure 1: The Radon transform represents a generalized line integral projection of a 2-D (or 3-D) function

f(x; y; z) onto a line or plane.

at that spatial position, a reconstructed image of f(x; y) portrays a two dimensional non-negative

density distribution.

The Radon transform can be thought of as an operator on the function f producing function p,

and is given by:

p(s; �) =

1

Z

�1

f(x(l); y(l))dl (1)

The function p(s; �) represents the line integral projection of f(x(l); y(l)), at angle �, along the

ray [x(l); y(l)], where:

x(l) = d cos � + s sin � + l cos �

y(l) = �d sin � + s cos � + l sin �

Note that this assumes that the projection, p, is d distance away from the object coordinate system's

origin and that all the projection rays are parallel. This later assumption can be relaxed as we will

see below.

The function p(s; �) when viewed as a two dimensional image is known as a sinogram. (see plate

1) In this representation, s, is mapped onto horizontal axis and � is the vertical axis. It is known

as a sinogram because a �xed point x; y in the object, f , will trace a sinusodial path through the

projection space, p.

The Radon transform has two notable properties. The �rst is that p is periodic in �: p(s; �) =

p(s; �+�), which means that a full reconstruction of f can occur with projection from 0 to � instead

of 0 to 2�. The second and more important property relates the spatial represention of the object,

f , and it's projection, p, to Fourier space equivalent forms. This property, known as the Fourier

Slice Projection Theorem, states that the inverse Fourier transform of a radial cross section of the

Fourier transform of the object function, F , is equal to p. Stated another way, the Fourier transform

of p is a radial cross section of F .[6, 7, 12, 13] This is more formally denoted as:

P (!; �) =

1

Z

�1

p(s; �)e

j2�!s

ds (2)

=

1

Z

�1

1

Z

�1

f(x; y)e

�j2�!(x cos �+y sin �)

dxdy (3)

3

F (u; v) =

1

Z

�1

1

Z

�1

f(x; y)e

�j2�(ux+yx)

dxdy (4)

Where P is the Fourier transform of the projection p, and F is Fourier thransform of f . By

taking the inverse of F we can derive f .

f(x; y) =

1

Z

�1

1

Z

�1

F (u; v)e

j2�(ux+vy)

dudv (5)

Changing from a cartesian to a polar coordinate system in the Fourier domain, so that P (!; �) =

F (w cos �; w sin �) we get:

f(x; y) =

2�

Z

0

1

Z

0

F (w cos �; w sin �)e

j2�!s

!d!d� (6)

=

�

Z

0

1

Z

�1

F (w cos �; w sin �)e

j2�!s

j!jd!d� (7)

The coordinate system change which takes place when going from the cartesian Fourier domain

to the polar projection domain, means that the samples are concentrated in the center of the two

dimensional Fourier space by the radial frequency, !. This biasing is accounted for by the di�erential

of area between polar and rectangular coordinates, given by dxdy = !d!d�. The biasing can be

removed through a weighting j!j in the Fourier domain. This is equivalent to a convolution in the

spatial domain, but is usually performed in Fourier domain to minimize computations.

2

We can now rewrite equation (7), substituting the two dimensional Fourier transform, F , with

the equivalent Fourier transform of the projection P at angle �.

~p(s; �) =

1

Z

�1

P (!; �)e

j2�!s

j!jd! (8)

f(x; y) =

�

Z

0

~p(s; �)d� (9)

Here, ~p, merely represents a �ltered version of the projection p. f , has a form identical to that

found in equation (1), that of a single integral of a scalar function. These two integral transforms

can be represented in discrete form by:

p(s; �) � �l

M

X

k=1

f(x(l

k

); y(l

k

)) (10)

f(x; y) �

�

N

N

X

k=1

~p(s

k

; �

k

) (11)

Note that both of these equations imply that the summands are resampled as the summation is

taking place. This resampling is inherent in the coordinate system transformation implied by the

projection operation of the Radon transform and its inverse. The resampling can be made more

explicit by rewriting equations (10) and (11)

p(s

i

; �

j

) � �l

M

X

k=1

f(x

k

; y

k

) (12)

f(x

i

; y

j

) �

�

N

N

X

k=1

~p(s

k

; �

k

) (13)

2

The shape of this �lter in the Fourier domain is such that it has in�nite spatial extent and , hence, makes spatial

implementations computationally impractical.

4

where

x

k

= d cos �

j

+ s

i

sin �

j

+ l

k

cos �

j

(14)

y

k

= �d sin �

j

+ s

i

cos �

j

+ l

k

cos �

j

(15)

s

k

= d tan(tan

�1

(

y

j

x

i

)� �

k

) (16)

In particular note that f and ~p in equations (12) and (13) respectively, are being discretely

resampled as a function of the input parameters. Traditionally it has been this resampling and

summation that takes the majority of time in the reconstruction and rendering process.[6, 13] A

problem that is exacerbated when handling the full three dimensional case.

2.1 Orthographic volume rendering and the generalized Radon transform

We can generalize the discrete form of the Radon transform equation (12) to handle all single scat-

tering volume rendering techinques.[1, 2] This is done by multiplying the summand by a weighting

term, c

k

.

p(s

i

; �

j

) � �l

M

X

i=k

c

k

f(x

k

; y

k

) (17)

Here s represents a pixel in a scan line and � the viewing position about the volume, f . The

variations between di�erent volume rendering algorithms focus on determining these weighting values

and choosing an e�cient mechanism for computing equation (17). A simple weighting scheme is to

make c

k

be proportional to l

k

or l

2

k

. This technique is widely used in computer graphics and is more

commonly known as depth queueing. It has been used for volume rendering by [12]. However, most

volume renderers, use a more complicated data dependent weighting scheme. The most common of

which is de�ned by the over operator described in [10] and used in volume rendering by [5]. c

k

can

be de�ned recursively from the de�nition of the over operator as:

c

0

= �

0

c

1

= �

0

(1� �

1

)

c

2

= c

1

(1� �

2

)

.

.

.

c

k

= c

k�1

(1� �

k

)

Since c

k

depends on all previous c's most volume rendering algorithms perform this calculation

iteratively front to back, or visa versa, computing c

k

implicitly as the value of p get summed. By

looking at volume rendering as a generalized Radon transform we keep the mathematical form of

both the forward and inverse Radon transform the same; implying that the same basic hardware

primitives can be used to solve either problem with equal ease. Before describing how one might

create these algorithms it is important to describe two other types of generalizations. The �rst

is fan beam reconstruction. The second is the three dimensional generalization of the fan beam

reconstruction known as cone beam reconstruction, which is particularly interesting because it is

isomorphic to the perspective form of volume rendering.

2.2 Fan beam reconstruction

Parallel ray CT can be generalized to the fan beam case where there is a single source of the x-rays

which go through the object onto a linear array of sensors as before.

3

(see Figure 2) There are two

ways one can go about performing reconstruction using a fan beam data. The �rst and conceptually

the simplest, is to take all the rays from allM projections and sort them into the appropriate parallel

projection. This approach has a very serious draw back because constraints must be placed on the

sampling angles and sensor angles so that the individual rays get sorted into parallel projections

which are exactly parallel to the corresponding fan beam ray. Even if these constraints are met the

resulting parallel projection data will not be evenly sampled in s, introducing additional artifacts in

the resampling process.

3

Fan beam reconstructions usually come in two
avors: the curved equi-angular sensor con�guration; or the equi-

spaced sensor con�guration. It is the later which is the focus of this paper.

5

s’

p(t,β)

x

y

f(x,y)
β

central ray

d’

[x(l),y(l)]

d

Figure 2: Fan beam geometric arrangement.

The second approach is to utilize a direct method; let the detectors be located linearly in s

0

at distance d

0

from the source as shown in �gure 2. First, we will normalize for d

0

, relocating

the detector array to the origin by scaling: s = s

0
d

d

0

. The fan beam projection data must also

be multiplied by a path length di�erence term, d=

p

d

2

+ s

2

. After making these adjustments, the

weighted projection data are convolved as before to yield ~p(s; �).

4

There must also be an inverse projective distance squared normalization term. This will be

explained later. It is given by

1

r

2

, where r is the distance relative to d along the central ray for point

x; y in the object. After making these adjustments the fan beam equations are:

f(x; y) =

2�

Z

0

1

r

2

~p(s; �)d� (18)

f(x

i

; y

j

) � ��

N

X

k=1

1

r

2

~p(s

k

; �

k

) (19)

3 Three dimensional reconstruction and rendering

There are two primary ways in which one can reconstruct a three dimensional volume from CT data

depending on how the data was acquired. Both the parallel and fan beam approaches described above

assume that the sensor array is one dimensional, residing in a constant z-plane. Reconstructing a

three dimensional volume can be done one z-plane at a time until all the slices are reconstructed.

Likewise, one could volume render in this manner one scan line at a time using an inverse form of the

fan beam formula. However, the more compelling case for both volume rendering and reconstruction

occurs if the sensor or pixel array is a two dimensional plane. For volume rendering this is a more

natural approach since the output of any volume renderer is necessarily a two dimensional array of

pixels. For reconstruction it means that data can be gathered at a much higher rate.

3.1 Cone Beam Reconstruction

Consider the case of an X-Ray source which projects through a region of interest onto a rectangular

grid of detectors. Assume that the detector array and X-Ray source are �xed on a rotating gantry

which allows a cylindrical region of interest to be swept out. The projection data p(s

0

; t

0

; �) which

4

The equivalence of the �ltering used in both the parallel and the fan beam cases can be found in [6, 13].

6

Z

X

x−ray sourceY

[x(l), y(l), z(l)] β

Sensor plane

s’

t

r γ

Figure 3: The three dimensional con�guration of a planer sensor array with a point source x-ray

can be measured by X-Ray detectors is:

p(s

0

; t

0

; �) =

p

d

02

+s

02

+t

02

Z

0

f(x(l); y(l); z(l))dl (20)

Here, s

0

and t

0

represent the detector coordinate variables in the detector plane d

0

from the source,

at angle � about the object f(x; y; z); l is the parametric distance along the ray, [x(l); y(l); z(l)].

(see Figure 3) The cone beam can be thought of as fan beam tilted up or down in z by an angle
.

As with the fan beam, we will �rst normalize for detector distance by scaling s

0

and t

0

by d=d

0

. The

formulation for the cone beam is that of the fan beam, with exception that the fan beam rays now

contain a z-component and the fan beam path length di�erence term becomes d=

p

d

2

+ s

2

+ t

2

After convolution, the projection data are used to calculate the three dimensional volume data

in Cartesian coordinates by the operation of weighted backprojection. The weighting factor is

determined by inspecting the relationship of the three dimensional pixel grid x; y; z to the projective

coordinate system of an individual projection. This coordinate system is composed of the s and t

indexes of the normalized projection data set and the perpendicular coordinate r which represents

the direction from the source to the detector array. These three form a projective coordinate system

in that rays emenating from the source to the detector are considered to be at a constant s; t

position. The projective coordinate system can be transformed into a cartesian coordinate system

by multiplying the s and t coordinates by r to yield (rs; rt; r).[14] This cartesian system can be

transformed to the three dimensional volume grid by a standard three dimensional transformation

matrix.

It is now easy to see that the volumetric di�erential in the projective coordinate system of the

beam is related to the three dimensional volumetric di�erential by:

dxdydz = r

2

dsdtdr

Furthermore, it is also easy to see that the weighting factor for the fan beam is also 1=r

2

because

the fan beam is simply the cone beam with t=z=0; the di�erential is unchanged!

The cone beam equations are thus:

f(x; y; z) =

�

Z

0

1

r

2

~p(s; t; �)d� (21)

f(x

i

; y

j

; z

k

) �

2�

N

N

X

k=1

1

r

2

~p(s

k

; t

k

; �

k

) (22)

7

3.2 Perspective volume rendering using the generalized Radon transform

The generalized Radon transform can be further generalized to the three dimensional perspective

case. Like the cone beam one has to take into account both the perspective weighting due to the

o� center traversal of [x(l); y(l); z(l)] and the 1=r

2

volumetric di�erential term. With this in mind

equation (1) can be rewritten as:

p(s; t) =

d

p

s

2

+ t

2

+ d

2

l

max

Z

0

1

r

2

c(l)f(x(l); y(l); z(l))dl (23)

Where, c(l) is the continuous form of the weighting term introduced in section 2.1 and 1=r

2

is the

same projective weighting as described above. p is the image plane for a projective (s; t; r) view

from any arbitrary direction. The perspective weighting term is necessary because the sensor/image

plane resides in a cartesian coordinate system. Since the projective weighting term is constant with

respect to s and t it can be performed as a post multiply on the projection p and is given by:

p(s; t) �

d

p

s

2

+ t

2

+ d

2

d

0

M

M

X

k=1

1

r

2

c

k

f(x

k

; y

k

; z

k

) (24)

Notice how the mathematical form equations (22) and (24) are of the same form: that of a

weighted sum. In particular both sums are being weighted by a projection term. This similarity

means that both techniques are ideally suited for implementation on high performance true three

dimensional texture rendering hardware. We will now show that the di�culty of this problem merits

hardware acceleration.

4 Computational complexity

The computational complexity implied by the discrete form of the Radon transform and the �ltered

backprojection is su�ciently large that most CT scanners include specialized hardware to perform

these tasks. However, two trends are rapidly changing CT medical imaging. One is that increasing

pressure to reduce costs is driving a transition from special purpose hardware to general purpose

\o� the shelf" hardware. The second is that technological advances are increasing the quantity and

quality of the data which can be collected for use in diagnosis.

These trends call for a computer system architecture which addresses data visualization and

reconstruction in a general purpose way. This is not, however, the same as saying that the problem

must be solved by a Von Neuman type processor of su�cient spec mark rating. Although that may

someday be possible it will be quite far in the future. Furthermore, it will always be true that if

su�cient volume is available to drive economics, a dedicated processor will outperform and/or cost

less than a general purpose processor which can accomplish the same function.

A typical modern generation CT scanner has on the order of 512 detectors and is capable of

taking 1024 projections per second. For a fan beam reconstruction each data set must undergo

Fast Fourier Transformation (FFT), a multiply, and inverse FFT to accomplish the \bow tie", !,

convolution operation. To prevent aliasing the data set must be extended to 1024 [6, 13]. The FFT

will then consist of 10 sets of 512 butter
y calculations each of which is a complex multiply and

two complex adds or four simple multiplies and six simple additions. Thus the FFT will require

10�10�512
oating point operations or 50 KFLOPs. This is followed by a complex multiplication of 6

KFLOPs and an inverse transform of 50 KFLOPs for a total of 106 KFLOPs for a single projection.

Multiplying this result by the 1024 projections yeilds 106 MFLOPS.

4.1 Backprojection and Radon transform complexity

Although modern
oating point processors can now handle such magnitude of calculations there is

little spare performance available for the additional required operations. Convolved projection data

must be backprojected to create an image. To create a 512 squared image the contribution to each

pixel of each convolved projection must be calculated and summed. It is this operation which is the

most costly in the reconstruction process.

For each projection each pixel's projection onto the detector data set must be calculated. The

data must then be resampled (usually using linear interpolation) and summed to accumulate the

8

total for that pixel. Since we have 256 K pixels, these operations will need to be performed 256

million times per second. Each operation requires several operations as well as memory fetches.

Present day CPUs are nowhere near being able to attain these performance requirements. How-

ever, a general purpose imaging and graphics architecture which is available today can implement

these algorithms in the one to two second range.

This architecture is truely general purpose, because it can be used in a wide variety of situations

permitting economic bene�t of the economy of scale required to amortize continuing evolutionary

development and practical manufacturability. The same architecture can be economically used

for visual simulation applications as well as photogrammetry, reconnisance imaging, and advanced

design. The Reality Engine architecture, is such an architecture. It comprises a large source image

memory connected to the frame bu�er through a high performance resampling engine. All of this

hardware is under the direct control of a geometry engine subsystem providing
oating point capacity

of 1.2 GFLOPS.

5 A texture map based reconstrution algorithm

The discrete form of the inverse radon transform suggests a spatial implementation of this equation

known as �ltered backprojection. An algorithm to implement this concept is broken up into two

separate passes. The �rst pass �lters, p, to produce, ~p. The second pass performs the backprojec-

tion operation. This is accomplished by smearing ~p back across object space (x; y), at an angle �.

This process is evident in the images found in Plate 2 and the following pseudo-code implementation:

~p Filter(p)

For 8i and j pixels

f(x

i

; y

j

) 0

For 8k angles in �

f(x

i

; y

j

) f(x

i

; y

j

) + ~p(s

k

; �

k

)

f(x

i

; y

j

) f(x

i

; y

j

) ���

After each backprojection the values are summed to complete the calculation of equation (4).

Traditionally the backprojection took orders of magnitude longer to compute than the �ltering of

p. By viewing the heart of backprojection as a resampling problem, one can see how to recast this

process into texture mapping. If we treat ~p(s; �) as a two dimensional texture and reverse the order

of the loops in the above algorihtm. The backprojection algorithm becomes a texture mapping of a

circle rotated by � followed by an accumulation.

~p Filter(p)

For 8k angles in �

Setup the �

k

rotation in Z

Render a texture mapped circle with texture, ~p(!; �

k

)

Accumulate frame bu�er

Return Accumulation and scale by ��

5

The fan beam case is implemented using a similar technique. The major di�erences being the

�ltering as described in section 2.2, the

1

r

2

attenuation term, and the fan beam geometry itself. It

turns out these di�erences will not adversley a�ect the performance the texture mapping imple-

mentation. This is because we can use the z-depth cueing to handle the

1

r

2

behavior at no extra

rendering time cost and because the triangle shape of the fan is no harder to render than the circle

used for the parallel case. Given these changes the above algorithm becomes:

~p Filter(weightedp)

For 8k angles in �

Setup the �

k

rotation in Z

Setup depth queueing for the fan beam

Render a texture mapped fan with texture, p(s; �

k

)

5

Implementation note: Since the accumulation bu�er is a �xed point 24 bit bu�er, data moving in and out of this

bu�er must be appropriately scaled and biased beyond the normal scaling by �� speci�ed in equation (9).

9

Accumulate frame bu�er

Return Accumulation and scale by ��

In all three cases both texture mapping and frame bu�er accumulation is hardware accelerated

on existing state-of-the-art graphics systems. These new algorithms are signi�cantly faster (see

section 7) than previous algorithms and rival specialized hardware designed explicitly to perform

these tasks.

6 Texture mapped volume rendering

Most volume rendering algorithms come in one of two
avors: either backwards projecting or for-

wards projecting. The backwards projecting or ray tracing approach solves equation (23) by iterating

over each s and t and summing along the ray [x(l); y(l); z(l)]. A forwards projecting technique loops

over all values of f in back to front order �nding the appropriate s and t to sum into. Our approach

is a hybrid of these two.

For 8k starting at the image plane and going some �xed distance L

Intersect a slicing plane at l

k

parallel to p and trilinearly interpolate f

Blend (weighted sum) the texture mapped slice into framebu�er, p

(included in the blend is �l weighting)

Attenuate p by d=

p

s

2

+ t

2

+ d

2

The �nal attenuation is necessary, as was mentioned above to handle the path length di�erence

for o� center pixels.

7 Performance results

The hardware accelerated algorithms for volume rendering and reconstruction result in formidable

performance increases. All timing measurements were performed on a four Raster Manager (RM)

Reality Engine Onyx with a 150Mhz R4400 CPU. Since both the reconstruction and volume ren-

dering algorithms are a linear function of the �ll rate, removing RMs a�ects performance in linear

manner. All images in Plates 1-5 are screen captures of the actual test codes used to implement the

algorithms described here.

Of the three texture mapped based reconstruction algorithms only the parallel beam reconstruc-

tion algorithm has been implemented and tested. This algorithm has shown roughly 600 times

speed improvement over a CPU based implementation. Plates 2 and 3 illustrates the quality of the

reconstruction of a 512x804 sinogram into a 512x512 reconstruction space. This normally takes 20+

minutes to reconstruct using a CPU based algorithm. As indicated in the caption the hardware

implementation performs the same task in 2.1 seconds.

6

Preliminary testing of our fan beam case show similar results. Since the cone beam algorithm is

merely a 3-D extension of the 2-D case we expect to see the same level of performance increase over

CPU implementations.

7

We have implemented both the perspective and parallel plane volume rendering algorithm. This

algorithm can render a 512x512x64 8bit volume into 512x512 window in 0.1seconds. This time

includes performing the trilinear interpolation implied by the arbitary slicing of the volume by

the sampling plane. It also includes on-the-
y density to RGB� color look up transfer functions.

Since the planar sampling described in section 6 is arbitrary and oblique with respect to the overall

volume, it is trivial to provide for arbitrary half-plane slicing as seen in Plate 5. When coupled

with arbitrary hardware clipping planes as provided by the graphics hardware it is possible to do

both volume rendering and slicing at the same time with no performance degradation. The Reality

Engine supports up to six concurrent arbitrary clipping planes (in addition to the six viewing frustum

clipping planes).

6

This time does not include the time it takes to �lter p.

7

We will have both types of planar and cone beam three dimensional reconstruction examples available within a

couple of months time.

10

8 Future directions and conclusion

The algorithmic uni�cation of the volume rendering and reconstruction in the spatial domain means

that a single hardware accelerated solution is possible. Future directions include handling curvilinear

coordinate systems and domain iterative solutions[6]. A domain iterative solution is a powerful

technique for handling cases where only a limited number of projections are gathered. This approach

iterates over a cycle of �ltering followed by a backprojection followed by a radon transform (volume

rendering). Since both the backprojection and volume rendering steps can be accelerated with a

single piece of hardware, such domain iterative solutions become practical.

9 Acknowledgements

Thanks to John Airey for many insightful discussions on texture mapping and volume rendering.

Also thanks to Chris Tanner who wrote the original software which inspired the volume rendering

part of this work. Steve Azevedo of Lawrence Livermore National Laboratory and University of

California, Davis deserves special thanks for insightful discussions on CT and for his exceptionally

written Ph.D. thesis on the subject matter. Also thanks to Bob Drebin, Benjamin Zhu, and Carl

Korobkin of Silicon Graphics for discussions and helpful suggestions; and thanks to Amber Denker

for providing color printing assistance.

References

[1] Kajiya, J. The Rendering Equation. Computer Graphics. 20, 4 (August 1986), 143-150.

[2] Kajiya, J. and Von Herzen, B. Ray Tracing Volume Densities. Computer Graphics. 18, 3 (July

1984), 165-174.

[3] Sabella, P. A Rendering Algorithm for Visualizing 3D Scalar Fields. Computer Graphics 22, 4

(August 1988), 51-58.

[4] Upson, C. and Keeler, M. V-BUFFER: Visible Volume Rendering. Computer Graphics 22, 4

(August 1988), 59-64.

[5] Drebin, B., Carpenter, L. and Hanrahan, P. Volume Rendering. Computer Graphics 22, 4

(august 1988), 65-74.

[6] Azevedo. S. Model-based Computed Tomography for Nondestructive Evaluation. Ph.D. thesis.

UCRL-LR-106884. (March 1991).

[7] Russ, J. The Image processing Handbook. CRC Press. (1992), 339-365.

[8] Dorf, R. The Electrical Engineering Handbook. CRC Press. (1993), 1510, 1516.

[9] Westover, L. Footprint Evaluation for Volume Rendering. Computer Graphics 24, 4 (August

1990), 367-376.

[10] Porter, T. and Du�, T. Compositing Digital Images. Computer Graphics 18, 3 (July 1984),

253-259.

[11] Krueger, W. The Application of Transport Theory to the Visualization of 3-D Scalar Fields.

Computers in Physics. (April 1991). 397-406.

[12] Totsuka, T. and Levoy, M. Frequency Domain Volume Rendering. Computer Graphics. (August

1993). 271-278.

[13] Kak, A. and Slaney, M. Principles of Computed Tomographic Imaging. IEEE Press. 1988.

[14] Segal, M., Korobkin, C., van Widenfelt, R., Foran, J. and Haeberli, P. Fast Shadows and

Lighting E�ects Using Texture Mapping. Computer Graphics 26, 2 (July 1992), 249-252.

