
Server ulti-rendering for

pen L and

To be presented at the

8th Annual X Technical Conference,

Boston, Mass., January 25, 1994

Mark J. Kilgard

Simon Hui

Allen A. Leinwand

Dave Spalding

Abstract

To support OpenGL

TM

and PEX rendering within the Silicon Graphics X server without

compromising interactivity, we devised and implemented a scheme named multi-rendering.

Making minimal changes to the X Consortium sample server's overall structure, the scheme

allows independent processes within the X server's address space to perform OpenGL render-

ing asynchronously to the X server's main thread of execution. The IRIX operating system's

process share group facility, user-level and pollable semaphores, and support for virtualized

direct access rendering are all leveraged to support multi-rendering. The Silicon Graphics im-

plementation of PEX also uses the multi-rendering facility and works by converting rendering

requests into OpenGL commands. Multi-rendering is contrasted with other schemes for im-

proving server interactivity. Unlike co-routines, multi-rendering supports multi-processing;

unlike multi-threading, multi-rendering requires minimal locking overhead.

Introduction

The current version

1

of the Silicon Graphics, Inc. (SGI) X server [11] supports both stan-

dards for 3D graphics for the X Window System: the OpenGL

TM

graphics system [16, 15, 14]

and PEX 5.1 [20]. OpenGL is an Application Programming Interface (API) for 3D interac-

tive graphics developed by SGI and now administered by the OpenGL Architecture Review

Board. OpenGL is the successor to the proprietary IRIS GL graphics interface (the GL

stands for graphics library). OpenGL supports the X Window System via the GLX exten-

1

Shipping with IRIX 5.1; IRIX is the Silicon Graphics version of the Unix operating system.

The authors are Members of the Technical Sta� at Silicon Graphics, Inc. Mark, Allen, and Dave work

in the X Window System group; Simon works in the OpenGL group. Electronic mail can be addressed to

mjk@sgi.com, shui@sgi.com, aal@sgi.com, and spalding@sgi.com.

1

sion [10]. PEX is an X protocol extension developed by the X Consortium to support 3D

graphics for X. PEX's rendering functionality and style are largely in uenced by the P IGS

and P IGS PLUS 3D graphics standards [3].

Both extensions create interactivity problems for single-threaded X servers because both

OpenGL and PEX requests can take substantial amounts of time to complete. Most X

servers based on the X Consortium's sample server dispatch one request at a time and

execute each request to completion. This works quite well for the core X protocol since most

requests are completed in mere fractions of a second. When requests take a few milliseconds

or less to execute, the X server can dispatch requests from all active clients fast enough to

create an appearance of simultaneous execution and the user perceives the X server as being

both interactive and fair to the clients using it.

But OpenGL and PEX can easily generate requests with arbitrarily long execution times.

Even common requests can take several seconds to execute. or an X server that dispatches

requests serially and each to completion, the result is an extremely non-interactive X server.

Users perceive such X servers as sluggish and di cult to interact with.

The problem is not unique to OpenGL and PEX. Any extension with requests that take

considerably more time to execute than the typical core X request can cause interactivity

problems for an X server that executes one request at a time to completion.

This paper describes a solution to the interactivity problem named multi-rendering used to

implement OpenGL and PEX in the Silicon Graphics X server. Multi-rendering involves cre-

ating separate threads of execution for rendering inside the X server's address space. These

separate threads only interact with the X server's main thread during thread initialization

and destruction, when locking a shared memory pool, and to communicate requests to exe-

cute and request completion status. Otherwise multi-rendering threads never touch X server

data structures such as the window tree and never call core X rendering routines. The main

X server thread continues to perform all core X request dispatching and rendering. The

rendering threads render directly to the hardware making use of virtualized direct access to

avoid needing knowledge of window origins or clip regions.

The IRIX operating system's process share group facility, user-level and pollable semaphores,

and support for virtualized direct access rendering provide su cient machinery to implement

multi-rendering. The only performance overhead introduced for core X request execution is

very inexpensive memory pool locking. OpenGL and PEX requests are executed without

compromising the interactivity of the X server.

The next section describes the goals and requirements for our multi-rendering implementa-

tion. The third section considers other approaches to solve the interactivity problem. The

fourth section describes operating system facilities used to support multi-rendering. The fth

section details how multi-rendering is implemented in the our X server. The sixth section

presents a performance analysis of multi-rendering support.

e uire ents and oals

Multi-rendering is the means, not the end. The concept grew from a set of requirements

for the current generation Silicon Graphics X server and the operating system and hardware

2

capabilities at our disposal. The requirements are:

� Support both indirect and direct OpenGL rendering. Indirect rendering is render-

ing done by the X server on behalf of the client. Direct rendering is done by the

client directly manipulating the hardware. Direct rendering is optionally supported by

OpenGL implementations.

� Support the X Consortium's PEX 5.1 extension.

� The same OpenGL rendering library used for direct rendering OpenGL programs \out-

side" the X server should be used inside the X server.

� The solution must not diminish X server interactivity.

Along with these requirements, we needed a mechanism that would let us meet a number of

important goals:

� Do not compromise X server reliability.

� Limit changes to the X Consortium's sample server organization to keep manageable

the task of integrating future X Consortium releases and bug xes.

� Do not require changes to extensions not using multi-rendering.

� Support dynamic loading of the OpenGL and PEX extensions to reduce overhead when

not using these extensions.

� Minimize synchronization and locking overhead when using multi-rendering.

� Add no measurable overhead when not using multi-rendering.

� Render PEX using OpenGL to require only a single 3D device-dependent component.

� Provide a single mechanism to work across SGI's full line of graphics hardware.

� Minimize use of expensive operating systems resources. In particular, processes and

rendering nodes should be allocated judiciously.

� Meet the schedule for release.

The goals re ect the desire to keep the X server maintainable, to minimize the overall

engineering e ort required, and to maintain high overall performance. We feel the multi-

rendering scheme we have implemented meets all of the above stated requirements and goals.

Other sets of requirements, goals, and system capabilities are likely to lead to other ap-

proaches. or example, IBM's OpenGL implementation [12] has a similar set of requirements

but does not adopt multi-rendering.

3

BlockHandler

select

WakeupHandler

Read and process
 requests and I/O

Flush ouput

enter
Dispatch

if DPS to execute, then
 set immediate timeout

if DPS to execute, then

For each DPS context to execute,

Start CoRoutine

Yield

igure 1: dobe's is la ost cri t extension uses co-routines run rom an server a eu

andler enever ost cri t commands are read to be executed. re uent co-routine ielding

maintains server interactivit .

t er A roac es

Previous work has been done to solve the interactivity problems that arise when combin-

ing lengthy rendering commands with the X Window System. This section surveys three

mechanisms. SGI's multi-rendering approach is novel because it supports X extensions that

would otherwise cause interactivity problems with minimal X server changes and supports

true concurrency with coarse-grain synchronization.

oroutines in is la ost cri t

Adobe's Display PostScript (DPS) extension for X [1] uses a co-routine mechanism for the

interpretation of PostScript. A client can create a o and send arbitrary PostScript

commands to be interpreted. Unlike core X requests which execute immediately, DPS's

request only places PostScript commands in some o 's bu er. Then

the X server invokes the PostScript interpreter on the contents of each o with

input to process.

igure 1 shows how DPS's co-routine execution mechanism is integrated into the X server's

dispatch loop using the o and facility. The co-routine mech-

anism has two advantages: no locking is necessary, and operating system process context

switching is minimized. The mechanism has the disadvantage that true parallelism is im-

possible.

The DPS extension is supported by the Silicon Graphics X server using co-routines as de-

scribed. Multi-rendering and DPS co-exist. either mechanism interferes with the other.

ulti-t reading t e erver

Data General and Omron in association with the X Consortium have designed and imple-

mented a multi-threaded version of the X server called MTX [1]. The project has two major

goals:

� Improved interactivity for long duration protocol requests, and

� Better utilization of multi-processor platforms.

4

Main
Server
Thread

Client
Connection
Thread

Device
Input
Thread

per−client

Client Data

Client resources

Event Data

Device Info

Led,
Bell

Graphics
Hardware

Kbd,
Mouse,
etc.

 X
Client

Client
Output
Thread

Client
Input
Thread

igure : server t reads organi ation. ircles re resent t reads s uares re resent

sources arallel lines re resent monitors.

A prototype of MTX will be made available in the X Consortium's X11R6. MTX is an object-

based design which assumes inexpensive threads and the use of monitors for synchronization.

igure 2 shows how MTX uses threads.

MTX allows X requests from multiple connections to be dispatched concurrently. On a

multi-processor machine, overall throughput could be increased. The server overhead of

multiplexing multiple connections is reduced because two threads are dedicated to each

client connection; all client I O does not have to be dispatched by a single thread using

.

But MTX does have disadvantages. It uses relatively ne-grain locking (particularly com-

pared to the locking required for multi-rendering) on nearly all X server data structures.

While minimizing the costs of locking and synchronization was a primary performance con-

cern, locks add overhead to all operations requiring locking. Compare this with no locks

needed for a single-threaded X server.

The most recent publicly available performance characterization of an MTX server indicates

5 of the tested tests were within plus or minus 10 of a comparable X11R5

single-threaded server.

2

It should be noted that involves only a single client so

no lock con icts were likely to be encountered. In real use, lock con icts would add extra

overhead which is hard to characterize based on results. It is claimed that \in

general, clients do not seem to generate many resource con icts," though window managers

2

his information is ase on a performance characterization from a . le availa le to X

onsorti m mem ers. he le is time stampe ay , 1 . res ma ly the X tests were r n on a

m lti-processor machine.

5

do tend to create con icts. A subjective characterization of the performance indicates that

using MTX, interactivity is improved compared to a single-threaded server.

MTX does introduce substantial changes to the general organization of the X server. Locking

and other concurrency issues diverge the MTX server source code from the X Consortium's

current single-threaded sample implementation and complicate X server maintenance. The

design speci cation for MTX [] is comprehensive and does include guidelines for writing

extensions; but code added to the MTX server must be re-entrant, thread-safe, and abide

by MTX locking rules. The burden for X server maintenance complexity should be included

in the appraisal of the MTX approach.

irect endering

SGI's proprietary IRIS GL, while not an X server extension like the rst two examples, does

handle the broader problem of maintaining interactivity for simultaneous 3D rendering from

multiple programs. IBM also supports a version of IRIS GL [6].

In IRIX 4.0.x as well as IRIX 5.x, IRIS GL programs cooperate with the SGI X server for

validation of rendering resources but render directly to the hardware. Operating system

support, window system support, and hardware support all combine to provide virtualized

direct access rendering. This system support is discussed in the next section.

Our multi-rendering scheme uses much of the same system support originally implemented

for IRIS GL, though a good deal of the support needed to be enhanced to support new

capabilities allowed by OpenGL such as binding multiple renderers to a single window.

Even though IRIS GL rendering is primarily designed for local use where the graphics pro-

gram directly accesses the graphics hardware, a network extensible component known as

DGL allows IRIS GL programs to run over the network connecting to an SGI workstation

supporting IRIS GL. In this case, a program known as runs as a proxy for the remote

program. The is connected to the remote program via a byte-stream network connec-

tion. DGL protocol is sent across the connection to the . IRIS GL commands which

are normally sent directly to the hardware are encoded using the DGL protocol and sent to

the proxy to be executed. A separate runs for every remote IRIS GL program

using DGL.

In some respects, this scheme is very similar to multi-rendering except that the proxy executes

outside of the X server's address space and a totally separate protocol is used for IRIS GL

requests. The DGL proxy scheme has a potential reliability advantage over multi-rendering

since bugs or crashes of the do not a ect the integrity of the X server. A multi-rendering

approach requires the rendering processes to maintain higher standards of reliability than a

proxy requires.

The proxy scheme is inappropriate for OpenGL and PEX because both OpenGL's GLX

protocol and the PEX protocol are X extension protocols. Like all X extensions, the GLX

and PEX protocols are embedded in the X11 protocol stream. Since the X server must read

the OpenGL and PEX requests, it is most e cient for the rendering processes to execute

in the same address space as the X server so that requests can be communicated to the

rendering threads via shared memory.

6

ste u ort or ulti-renderin

SGI's multi-rendering scheme leverages a number of system facilities supported by IRIX and

SGI's graphics hardware. Process share groups are the basis for the concurrency needed to

support multi-rendering. User-level and pollable semaphores are the basis for the e cient

synchronization. And virtualized direct access rendering provides the support for context

switching and virtualizing the graphics hardware.

rocess are rou s

Process share groups [4] provide a way for multiple related processes to share an address

space. These processes are not very di erent from normal Unix processes except for the

sharing that they support. Unlike light-weight, user-level threads, processes in a share group

are scheduled by the kernel. or multi-processor machines, processes in a share group can

execute concurrently.

ser-level and ollable ema ores

User-level semaphores are provided by IRIX and accessible to programmers via the s ared

arena facility [1]. A shared arena allows related or unrelated processes to allocate and share

semaphores [5], locks, and memory. SGI's X server multi-rendering facility uses the shared

arena's semaphore mechanism. The semaphores are termed user-level because only when a

process must block on a semaphore does the process need to enter the kernel. In the common

case of no contention on the semaphore, the semaphore can be acquired (P) and released

() with no kernel intervention. This means user-level semaphores are considerably more

e cient than a semaphore mechanism that requires a system call per semaphore access.

A variation on user-level semaphores (requiring more kernel support than simple user-level

semaphores) is the pollable semaphore. When an acquire operation is attempted by a process

and the semaphore is not immediately available, instead of blocking, the process is queued

to receive the semaphore and the process continues to execute. A pollable semaphore has an

accompanying le descriptor. This le descriptor can be speci ed in the system call

read mask. When the semaphore is acquirable, the next call on the accompanying

le descriptor will fall through with the semaphore acquired by the selecting process.

In the case of multi-rendering, a pollable semaphore is used to coordinate request completion

with the X server's main thread. The X server can select on the pollable semaphore's

accompanying le descriptor just like the le descriptors for client and device input.

The user-level and pollable semaphores are designed to be used with process share groups. In

conjunction, true multi-processor concurrency with minimal synchronization overhead can

be achieved. The pollable semaphores are particularly well suited for a program like the X

server which multiplexes several input sources and sinks via the system call.

irtuali ed irect ccess endering

SGI designs graphics hardware to permit both direct and virtualized rendering. Direct

rendering refers to the ability for normal programs to manipulate the graphics hardware

directly. Users are hidden from the actual details of the hardware by either the OpenGL or

IRIS GL graphics interfaces (implemented as shared libraries). irtualized rendering refers

to the ability to interleave rendering with other rendering processes and properly constrain

rendering to any designated window.

Direct rendering is common on personal computers; on a PC, a program may directly manip-

ulate the frame bu er. Direct rendering allows maximum graphics performance. irtualized

rendering is a must for window systems since rendering must be clipped to the window's

drawable region. The X Window System is a good example of virtualized rendering. or

common graphics architectures, direct access and virtualized access are traded against each

other. Either a single application has direct access to the entire graphics subsystem for its

own purposes, or a process, such as the X server, or perhaps the operating system kernel

arbitrates access to the graphics resources.

SGI (along with other vendors of sophisticated graphics hardware) [1] provides bot direct

and virtualized rendering using hardware and operating system support. SGI graphics hard-

ware does not expose a frame bu er for direct manipulation. Instead a bank of registers is

mapped into the address space of a process wishing to utilize the graphics hardware. Graph-

ics commands are generated by manipulating the banks of graphics registers. In conjunction

with operating system support for virtual memory, the graphics hardware interface can be

context switched between multiple processes, all apparently using the graphics hardware

simultaneously.

Direct access to the graphics hardware is also virtualized. Rendering is window relative;

arbitrary window clipping is performed by the hardware. A window's origin and clip can be

updated by the window system without the knowledge or consent of a process rendering into

the updated window.

The operating system resource which implements a virtual graphics pipeline is known in

IRIX as a rendering node. Programs desiring to perform virtualized direct access allocate a

rendering node and bind it to the window they are interested in rendering to. The rendering

node may be rebound to other windows. Allocation and manipulation of rendering nodes is

hidden by the graphics library implementation. Rendering nodes are a virtual abstraction of

a particular graphics board's graphics context, so a rendering node is allocated for use with

a single graphics board.

Like any virtualized resource, there is always the potential for thrashing. In SGI's architec-

ture, there are a limited number of physical hardware contexts (sometimes only one); there

are a limited number of clipping planes (necessary for arbitrary clipping); and there are a

limited number of unshared display IDs (used for instantaneous bu er swaps when double

bu ering). The graphics systems are designed to handle average to heavy loads, but the

potential for thrashing does exist. Even under extremely heavy loads, the operating system

is designed to context switch the available graphics resources transparently.

The SGI X server plays a special role in virtualizing the hardware. The X server and the

operating system kernel coordinate through a facility known as the Rendering Resource

Manger (RRM). Only the X server has complete knowledge of every window's drawable

region, origin, and display mode. Even without multi-rendering for PEX and OpenGL

support, IRIS GL support requires that the X server must correctly maintain hardware

clips and display IDs. The X server and the operating system kernel coordinate via special

 GL

program

 IRIX

kernel

 X

server A) GL program with invalid clip resource

 faults when accessing graphics registers.

B) Kernel trap handler determines fault

 caused by invalid clip for the rendering node.

C) Send message to the X server telling the

 server to validate the rendering node’s clip.

D) X server generates a clip list for the

 rendering node’s window.

E) X server performs ioctl to inform kernel of

 new valid clip list.

F) Kernel updates the rendering node to

 reflect its new clip, validates the node’s clip

 resource, maps in the graphics registers,

 and restarts the program where it stopped.

G) GL program continues running with no

 knowledge of the interruption.

!!!!!
!!!!!
!!!!!
!!!!!

A !!!!!
!!!!!
!!!!!
!!!!!

B

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

C

!!!!!
!!!!!
!!!!!
!!!!!

D

!!!!!
!!!!!
!!!!!
!!!!!

E

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

F
!!!!!
!!!!!
!!!!!
!!!!!

G

igure : cli validation assisted b t e server.

messages.

When the window layout changes, any window used for virtualized direct access rendering

and whose drawable region was a ected by the change must have the window's clip invali-

dated by the X server. A special RRM o is used by the X server to communicate clip

invalidations to the kernel. The kernel will mark any rendering nodes bound to the window

with an invalid clip resource and unmap the virtual pages corresponding to the graphics

hardware banks. The next time the process attempts to use the rendering node, the process

will generate a page fault. The kernel will determine that the fault corresponds to the ad-

dress of the unmapped graphics hardware. An RRM message will be sent to the X server

to validate the clip of the window. The X server will receive the message, determine the

correct clip for the window, and revalidate the window's clip and origin. The kernel will then

remap the graphics hardware pages and resume the execution of the process. This entire

sequence is transparent to the faulting graphics process. igure 3 shows an example of how

clip validation works.

ulti-renderin I le entation

When the X server rst starts, no multi-rendering threads exist. either the PEX nor the

OpenGL extension have been initialized. The main X server process creates a rendering

thread for a client when the client rst uses either the OpenGL or PEX extensions. Once

created, the rendering thread exists for the lifetime of the client. A per-thread structure

associated with the client holds the semaphores, data, and pointers that the main thread

and the rendering thread need to communicate with each other. There is at most one

rendering thread per client.

Each newly created rendering thread performs some basic initialization, then waits on a

blocking user-level semaphore until the main thread commands it to perform some item of

work. When the main thread decodes a protocol request that requires access to rendering

hardware, it creates a command structure and lls it with information about the protocol

request to be executed. The main thread then \hands o " the command structure to the

rendering thread by releasing the semaphore that the rendering thread was waiting on. The

main thread continues servicing client connections and device input. Request dequeueing

and dispatch for the multi-rendering client are suspended until the main thread is informed

that the rendering thread has completed its task.

The mechanism that reports completion back to the main thread must be non-blocking. The

main thread must be free to service other clients while multi-rendering is in progress. So when

the rendering thread has completed, it alerts the main thread via a pollable semaphore. If the

main thread is blocked in when the completion occurs, it is awakened immediately,

and resumes request processing for the multi-rendering client. If instead it is busy processing

a request for some other client when the completion occurs, the main thread will be informed

of the multi-rendering completion the next time it calls .

When a request is handed o to the client's rendering thread, the main server thread \pushes

back" the current request on the client's input connection while waiting for completion. This

allows completion status to be reported synchronously back to the client.

Because any PEX request can fail and report an error condition, a push-back mechanism is

always used for PEX rendering requests. A push-back means that when the client processing

is resumed, it is still at the same request. In contrast, most OpenGL rendering does not

de ne protocol replies or errors so the OpenGL extension can avoid push-back for most

OpenGL commands.

Pre-existing capabilities in the X server are used to implement the scheme described above

[13]. The o function is used to suspend processing on the client until the

multi-rendering task is completed; then allows that processing to continue.

Block and wakeup handlers are used to modify the X server's mask to add the le

descriptors for the pollable semaphores used to signal multi-renderer command completion.

The server function performs the push-back operation.

xam le o xecution

igure 4 shows the synchronization that takes place between a client, the X server, and a

rendering thread when an OpenGL rendering request is executed.

1. An OpenGL client sends a GLX extension request, which contains a batch of OpenGL

commands.

2. The X server receives the request and dispatches it to the GLX extension.

3. The request is handed over to the client's rendering thread. Request input from this

client is suspended by calling o .

4. The rendering thread wakes up to receive the request.

5. The rendering thread decodes the batch of commands in the request, issuing a call to

the OpenGL rendering library for each command. The rendering library attempts to

access the graphics hardware pages.

6. Assuming an invalid RRM resource for the rendering node, the page access causes a

fault, and the kernel sends an RRM message to the X server for resource validation.

. The X server receives and dispatches the RRM message.

10

Wait for I/O
 (select)

Do Core
X Request

Do RRM
Request

Do
OpenGL
Request

Flush Any
Client Output

Wait for
Commands

Do Commands

RRM Resource
Pipe Fault

Notify
Commands
Completed

Send X
Request

Get X
Response

????
????
????
????

STOP

????
????
????
????

STOP

????
????
????
????

STOP

????
????
????STOP

(1)

(2,7,11)

(3)

(4)

(5)

(6,9)

(8)

(10)(12)

OpenGL
X Client

 X Server
Main Thread

 OpenGL
Renderer Thread

igure : im li ed diagram s o ing t e s nc roni ation oints or an client rendering

en t roug t e server using multi-rendering. olid lines re resent o o control

das ed lines indicate ere one t read resumes anot er.

. Resources are validated and a response is sent to the kernel.

. The kernel remaps the graphics hardware pages and resumes execution of the rendering

thread.

10. The rendering thread announces that it has completed the rendering request by releas-

ing the polling semaphore.

11. The semaphore release causes the X server to wake up from . A wakeup handler

notices that the OpenGL thread has nished rendering, and resumes request input from

the client by calling .

12. Returned data, if any, is sent to the client.

Steps 6 through demonstrate the handling of an invalid RRM resource. In this case,

the operating system has unmapped the renderer's graphics pipe due to some invalid RRM

resource. The X server's main thread and kernel conspire to validate the invalid resource

transparently. This is not the common case but does happen when the window's drawable

clip changes or the rendering node is requesting a bu er swap and the window does not have

an unshared display ID. It is possible for multiple RRM resource validations to occur during

a rendering thread's execution.

ote that in igure 4, there is only a single point where the main X server thread blocks.

This allows the main X server thread to avoid deadlock when it is both waiting for a render-

11

ing thread request to complete and handling RRM resource validation requests for blocked

rendering threads.

eliabilit ssurances

A few basic rules keep the main server thread and the multi-rendering threads from dead-

locking or colliding with each other.

� Semaphored memory allocation functions - these keep collisions from occurring in dy-

namic memory allocation and deallocation routines.

� One thread per client - no matter how many rendering contexts (OpenGL contexts, or

PEX renderers) a client has, this ensures sequentiality of requests by only processing

one protocol request at a time for each client. Therefore only one rendering thread is

needed per client.

� Specialization - in order to minimize the number of locks (and opportunities for dead-

lock), some tasks are restricted to the main server thread. These include anything that

manipulates the server's data structures. or example, any creating, destroying, and

looking up X resources is onl done by the main X server thread. OpenGL and PEX

rendering requests are likewise onl executed by the client's rendering thread.

This creates certain implementation requirements for extension request processing

functions. or example, in the OpenGL extension the main X server thread decodes

protocol requests, looks up X resource IDs, and either increments reference counts or

copies data from X internal structures so that a structure will never disappear while it

is being referenced in a rendering thread. Even when a client connection closes, some

data structures cannot be freed immediately. A special interface is provided so that the

rendering thread can perform clean-up operations after the client connection is closed;

only after the rendering thread clean-up action is done can the main X server thread

be allowed to free the client's resources.

� and-o and rendezvous - the mechanisms described in the previous section allow the

main thread to relinquish control of the client's shared data until it is informed that

the rendering thread has completed its task. This cooperative processing eliminates

the need for more locks.

� Pure procedures - rendering state data is unique per client. The only static variables

allowed are those containing constant data. Any exception to this rule would require

a lock, thus defeating potential concurrency among rendering threads.

The GLX extension was implemented with these rules in mind. The GLX code neatly

segregates the parts of request processing functions that are performed in the main X server

thread in separate source les from the processing done by the rendering thread.

12

eci c ntegration ssues

The PEX extension was not written to adhere to these rules; rather, it was adapted from

an external body of code,

3

so the distinction between code executed by the main thread and

that executed in the rendering thread was retro tted into the imported PEX code.

We did this in a way that does not change the directory structure and le names of the

imported code, so that future releases of the original PEX code can be easily integrated

into our PEX implementation. or each PEX protocol request, we asked the question: does

the code to process this request need access to rendering hardware, or need access to data

structures owned by the rendering thread If the answer is no, then that code was left

unchanged; it will be executed only from the main X server thread. Code in the other

category was divided into the part to be executed in the X server's main thread and the part

to be executed in the rendering thread. ortunately we were able to t all of the PEX code

into this simple model. Where the code originally was something like this template:

ocess oo a e ues ...o iginal a gs...

check o iginal a gs

look up esou ces

i an e o s

e u n some e o ;

p ocess e ues

e u n esul o p ocessing e ues ;

We changed it to:

ocess oo a e ues ...o iginal a gs...

check o iginal a gs

look up esou ces

i an e o s

e u n some e o ;

sgi s nc ec _ ocess oo a e ues , a g , ... a g ;

e u n uccess ;

_ ocess oo a e ues a g , ... a g

p ocess e ues

e u n esul o p ocessing e ues ;

In this scheme the function performs all of the processing necessary to package

up the request arguments into a command packet and hand that packet o to the rendering

3

e chose to ase o r X implementation on igital ipment orporation's X pro ct, t

that fact is irrelevant to m lti-threa ing. he same techni es that we escri e co l e applie to the X

onsorti m's X implementation.

13

graphics hardware

xdps.so pex.so glx.so

libGLcore.soddx.so

Xsgi

igure : o rendering re uests o rom t e device-inde endent main server module

t roug t e d namicall loaded s ared ob ects.

thread, using the push-back mechanism described above. A modi cation to the PEX dis-

patch function detects when a pushed-back request has completed, and passes the request

completion status back to the client instead of dispatching the request a second time.

This approach works well when the original PEX request processing code looks like the rst

template above. Where this was not the case, the code was massaged to t this model. ote

that the parameters passed to must be simple variables (but not X resource

IDs) or pointers to structures which are guaranteed not to change or disappear until the

rendering thread has completed its processing.

namic xtension in ing

One of our goals was to support dynamic extension loading. This allows the OpenGL and

PEX extensions to be loaded and initialized only when a client rst uses either extension.

We already supported dynamic loading of the Device-Dependent X (DDX) server code as

well as the Display PostScript extension.

To support dynamic loading of an X extension, \stub" code must exist in the X server

executable to register the extension. Then the rst time an extension request is executed,

the stub code uses o and to load the extension dynamically. The extension's

initialization is performed, the stub extension entry points are replaced with the actual entry

points, and the client's request is dispatched.

The OpenGL GLX extension code is contained in a . o shared object module []. This

module has all of the code for dispatching GLX protocol and multi-rendering. The actual

OpenGL device-dependent code is in the o . o shared object module. This module

contains the exact same code used by direct rendering OpenGL programs. In fact, SGI

OpenGL programs that link with the . o OpenGL shared library, implicitly pull in

the same o . o object module used inside the X server. The . o only contains

GLX routines; the OpenGL \proper" routines are in o . o. Once . o decodes

an OpenGL command, it calls the corresponding OpenGL routine in o . o just as

a direct rendering program would.

Since our PEX implementation renders via OpenGL, using PEX not only loads the . o

shared object module; it also forces the GLX extension to be loaded. PEX calls OpenGL

14

System Using display lists Using immediate mode

Con guration
Direct Indirect Direct Indirect

Onyx, 4 processors
5 .0 45.5 () 5 .0 25 .0 (34)

Indigo

2

Extreme
143.2 125.4 () 143.1 2.1 (5)

R4000 Indigo Entry
34.4 2 .5 (6) 35.2 24.0 (6)

Indy SC
36.4 31.5 (6) 36. 23.5 (64)

able 1: l nt tones o en rendering er ormance, com aring direct and indirect or

bot dis la list and immediate mode rendering.

routines in o . o but also needs multi-rendering support routines in . o.

igure 5 shows how the various shared object modules dynamically loaded into the X server

interact. A rendering request for core X, Display PostScript, PEX, or OpenGL would log-

ically travel from the main executable to the graphics hardware by passing through

the appropriate request dispatching code to be rendered by either the X device-dependent

rendering code or the OpenGL rendering code.

er or ance

Multi-rendering has three primary performance objectives. irst, as stated in the goals, no

measurable overhead should be added when not using multi-rendering. X server benchmark-

ing of core X rendering using shows no measurable performance di erences between

our X server with multi-rendering support and our X server compiled without multi-rendering

support.

The second performance objective is that indirect OpenGL rendering should add minimal

overhead compared with direct rendering. To measure the overhead added by indirect render-

ing, we implemented a benchmark that renders an animated, lighted, shaded, depth bu ered

hierarchical dinosaur model composed of 261 medium-sized polygons per frame. The 300 by

300 pixel rendering window is cleared every frame. We measured the number of dinosaurs

that could be rendered per second (a.k.a. l nt tones).

The dinosaur can be rendered using display lists or in immediate mode. Also the benchmark

can be executed using either direct or indirect rendering. When performing indirect rendering

using display lists, the client down loads the display lists required to render the dinosaur

into the X server; each frame consists of rotating the model-view matrix and executing

the dinosaur display list. The time to download the display list is not included in the

measurements. The X protocol overhead per frame should be marginal in this case.

When performing indirect, immediate mode rendering, all of the OpenGL commands needed

to render the dinosaur must be sent via the X protocol to the X server for execution. The

X protocol overhead per frame will be higher than the overhead using display lists.

Table 1 presents performance results spanning the breadth of SGI's current product line

[, 2]. The overhead of multi-rendering when using display lists appears to be under 15 ,

15

except in the case of the multi-processor system where the overhead is a negligible 2 -

demonstrating the ability of multi-rendering to utilize multiple processors. As expected, the

immediate mode results show a higher overhead due to the added transport and dispatching

overhead inherent in immediate mode OpenGL command execution. The penalty for indi-

rect, immediate mode rendering is higher for faster and relatively less host-limited systems

like the Onyx.

The nal performance objective is an assurance that X server interactivity has indeed been

maintained using multi-rendering. Tests running six or more continuously animated, indirect

rendering, immediate mode OpenGL programs still allow interactive movement of windows

using the window manager, typing into shells proceeds at normal rates, and pop-up menus

continue to activate in under a second. The same applies to PEX programs.

Ac no led ents

The authors would like to thank the following Silicon Graphics engineers and managers for

their assistance in implementing X server multi-rendering: David Blythe, Peter Daifuku,

ipp ickman, Deanna ohn, Phil arlton, Robert eller, Todd ewman, evin Smith,

Mark Stadler, and David u.

e erences

[1] Adobe Systems, Inc., e is la ost cri t stem, ersion 1.0, 1 1.

[2] urt Akeley, \RealityEngine Graphics," om uter ra ics: on er-

ence roceedings, August 1 3.

[3] American ational Standards Institute, \Computer Graphics - Programmer's ierarchi-

cal Interactive Graphics System (P IGS) Part 4 - Plus Luumiere und Surfaces (P IGS

PLUS)," Draft Proposed Standard X3 31- -05, uly 25, 1 .

[4] im Barton, Chris Wagner, \Enhanced Resource Sharing in Unix," om uting stems,

olume 1, umber 2, Spring, 1 .

[5] E.W. Dijkstra, \Cooperating Sequential Processes," ec nical e ort -1 , Tech-

nological University, Eindhoven, etherlands, 1 65.

[6] Edward aletky and Linas epstas, \Integration of GL with the X Window System,"

ibition 1 roceedings, 1 1.

[] Chandlee arrell, arhad ouladi, \Graphics Rendering Architecture for a igh Per-

formance Desktop Workstation," om uter ra ics: on erence ro-

ceedings, August 1 3.

[] Mike aynes, et.al., om onent esign eci cation or t e ulti- readed

indo am le erver, ersion 5.0, The X Consortium, April 15, 1 3.

[] Mark imelstein, \An Implementation of Dynamic Shared Objects," MIPS Computer

Systems, Inc., unpublished, September 1 , 1 2.

16

[10] Phil arlton, en

TM

ra ics it t e indo stem, ersion 1.0, Silicon

Graphics, April 30, 1 3.

[11] Mark . ilgard, \Going Beyond the MIT Sample Server: The Silicon Graphics X11

Server," e ournal, SIGS Publications, anuary 1 3.

[12] Chandrasekhar arayanawami, et.al., \Software OpenGL: Architecture and Implemen-

tation," stem ec nolog : olume , 1 3.

[13] Elias Israel and Erik ortune, e indo stem erver, Digital Press, 1 2.

[14] ackie eider, TomDavis, Mason Woo, en rogramming uide: e o cial guide

to learning en , elease 1, Addison Wesley, 1 3.

[15] OpenGL Architecture Review Board, en e erence anual: e o cial re erence

document or en , elease 1, Addison Wesley, 1 2.

[16] Mark Segal, urt Akeley, e en

TM

ra ics stem: eci cation, ersion

1.0, Silicon Graphics, April 30, 1 3.

[1] Silicon Graphics, arallel rogramming on ilicon ra ics om uter stems, ersion

1.0, Document umber 00 -0 0-010, December 1 0.

[1] ohn Allen Smith, \The Multi-Threaded X Server," e esource: roceeding o t e

t nnual ec nical on erence, O'Reilly Associates, Issue 1, Winter 1 2.

[1] Doug oorhies, David irk, Olin Lathrop, \ irtual Graphics," om uter ra ics,

olume 22, umber 4, August 1 .

[20] Paula Womack, et.al., \PEX Protocol Speci cation, ersion 5.1," The X Consortium,

August 31, 1 2.

1

