
Published in the

January/February 1993 issue of The X Journal.

Going Beyond the MIT Sample Server:

The Silicon Graphics X11 Server

Mark J. Kilgard

Silicon Graphics Inc.

Revision : 1:20

April 21, 1993

Abstract

The MIT X11 Sample Server is the starting point for

nearly all X11 server implementations. Most server ven-

dors add value beyond the sample server. Silicon Graphics

has done extensive work to enhance the performance and

functionality of its X server implementation. The server

supports X across Silicon Graphics' entire line of high-

performance graphics hardware. This article describes

six important areas of enhancement made to the Silicon

Graphics server: integration with the IRIS GL graphics li-

brary, a high performance input subsystem, the non-frame

bu�er porting layer, support for speci�c hardware features,

the dynamic linking of hardware support, and the Display

PostScript extension.

1 Introduction

Nearly all X11 server implementations use the MIT X11

Sample Server as a starting point. The sample server is

a mature, reasonably portable implementation of an X11

server written in C and extensively tuned for e�cient and

fast performance.

While many X users do in fact run the MIT Sample

Server as their actual X server, most vendors do distribute

their own modi�ed version of the sample server. Indeed,

this is a primary purpose for the MIT Sample Server. Ven-

dors modify the sample server for numerous reasons in-

cluding:

� The vendor's particular hardware and operating sys-

tem are not supported by the MIT Sample Server.

1

� The vendor wishes to support an optimized version of

the server for its proprietary graphics hardware.

1

It should be noted that MIT's X11 Release 5 distribution does

have client and library support for Silicon Graphics workstations.

� The vendor wishes to integrate X with other non-X

based graphics systems.

� The vendor desires to add enhancements to the server

through X extensions or other server modi�cations.

In the case of Silicon Graphics, all these reasons apply.

The purpose of this article is to describe some innova-

tive ways in which the Silicon Graphics X server goes be-

yond the MIT Sample Server. The hope is such a descrip-

tion will raise the expectations users have for the quality,

performance, and functionality of production X11 servers.

This article serves as a \tour" of various additions Sili-

con Graphics has made to the core MIT Sample Server.

While many features and modi�cations have been added

to the Silicon Graphics X server, certain improvements

stand out as important features worth examining. These

features are:

� The X Window System is integrated with the IRIS

GL graphics library. The X server plays a critical

role in allocating and arbitrating access to display re-

sources. This is what makes possible the seamless in-

terleaving of X windows and GL windows performing

high-performance 3D rendering.

� The X server manages an advanced input subsystem

including a shared memory input queue and kernel

supported hardware cursor tracking.

� The Non-Frame Bu�er porting layer provides a

machine-independent way to take advantage of high

performance features of non-frame bu�er graphics

hardware.

� The dynamic linking of DDXs (the device dependent

part of the server) allows smaller server executables

and the ability to support new graphics hardware by

only supplying a new DDX.

1

user

space

kernel

space

graphics

subsystem

hardware

graphics boards

X client GL program

X server

Figure 1: How the X server and GL and X programs \talk"

to graphics resources and each other.

� The server is well tuned to graphics capabilities of Sil-

icon Graphics hardware. Cross hair cursors, multiple

hardware colormaps, and overlay plane support are

some examples.

� Adobe's Display PostScript extension is available.

Together these enhancements provide a feature-rich

production-quality X server which greatly extends the ca-

pabilities of the MIT Sample Server upon which it is based.

Certainly, many other vendors o�er features with the

similar capabilities. The intent of this article is neither

to hype the Silicon Graphics X server nor be an extensive

review of the capabilities of production X servers. Instead

the intent is to make X users aware of server features avail-

able today which will in all likelihood become common in

the future. Vaporware and theoretical features are left to

marketing brochures and academic papers.

The Silicon Graphics X server is named Xsgi (after the

command used to invoke it) and will be referred to as such

through the remainder of this article. SGI is an abbrevia-

tion for Silicon Graphics Incorporated. The speci�c server

discussed is currently available in IRIX 4.0.x. IRIX is the

SGI version of Unix.

Inte ration it t e I I

Any user of Silicon Graphics workstations is familiar with

the 3D capabilities of the machines. All SGI machines

support a high-performance 3D rendering library known as

the IRIS GL (which stands for Graphics Library). The GL

Application Programmer Interface (API) is not dependent

on a particular windowing system. In fact, before SGI

standardized on the X Window System, SGI implemented

the GL for the NeWS window system. When SGI made

the transition to X, the GL needed to be reimplemented

for use with X.

The current IRIS GL 4.0

2

is implemented through a sys-

tem called virtualized direct access renderingmeaning that

each GL program sees and communicates directly with the

graphics hardware of the machine. The GL library hides

the device dependencies of talking directly to the hard-

ware.

Using direct access rendering is in contrast to the philos-

ophy of X where programs talk to the graphics hardware

only indirectly via X protocol requests to the X server.

But direct access does make possible the extremely fast

3D rendering available on SGI machines. Figure 1 shows

how X clients and GL programs access the graphics re-

sources they need. Notice that GL programs do talk di-

rectly to the X server via an X protocol connection. The

GL library communicates to the X server but this is totally

hidden from the GL programmer. The X server is used by

GL programs for non-rendering tasks such as window cre-

ation and input delivery. So in a strict sense, GL programs

are X clients but are distinguished for the purpose of this

discussion.

3

Since the X server wants to control the real estate on

the screen, GL programs are forced to coordinate how they

use graphics resources with the X server. This is the major

challenge of seamlessly integrating GL with X. The current

Xsgi achieves this quite admirably. Excepting the di�er-

ence in quality of rendering for GL windows and the speed

of some window management operations, GL windows are

otherwise indistinguishable to the naive user.

So how is this accomplished? The Xsgi had to be sub-

stantially enhanced to support GL. Also the operating sys-

tem kernel and GL libraries required major modi�cations

to achieve seamless GL integration.

2. le ra ics ar are

Understanding how SGI supports the GL requires a more

detailed explanation of the type of graphics hardware SGI

develops. The major way SGI graphics hardware di�ers

from its PC and low-end workstation counterparts is that

the rame bu er is not directly available for manipulation.

SGI hardware does contain a frame bu�er but it is

manipulated by sending rendering commands through a

memory bank of registers to the graphics pipeline. The

hardware then performs the speci�ed requests. This ap-

2

The new OpenGL will also be available as an X extension but

this article focuses on the currently available GL. See Karlton [6] for

information about the OpenGL.

3

SGI does support a mixed-model which allows a programmer to

use both X and GL in the same programbut programmers must deal

with added programming complexity.

2

proach is well-suited to the type of highly-pipelined, high-

performance graphics subsystems developed by SGI.

4

In virtualized direct access rendering, each program de-

siring direct graphics hardware access requests from the

operating system a rendering node which consists of a vir-

tualized bank of the graphics registers mapped into the

program's address space and the necessary kernel main-

tained state. Each program manipulates the registers as

if it were the only one using the graphics subsystem. Be-

fore using its rendering node, the program binds the node

to an X window. The operating system via virtual mem-

ory takes the responsibility of virtualizing access to the

graphics registers. This is done by only actually mapping

the registers to one program at a time. ther programs

using the graphics registers have invalid virtual memory

mappings to the registers.

When a second program tries to access the registers,

the registers are not actually mapped into its memory.

The operating system detects this memory access excep-

tion, saves the graphics context of the currently execut-

ing graphics program, restores the graphics context of the

program now wishing to use the graphics hardware, and

restarts the second program. This whole process is trans-

parent to the programs accessing the graphics hardware.

The idea is very similar to techniques used by demand

paged virtual memory to allow the appearance of more

physical memory than a system actually has.

SGI graphics systems are also capable of hardware dou-

ble bu�ering. Double bu�ering allows images to be gener-

ated in a frame by frame style very conducive to computer

animation. Double bu�ering can hide image generation

from user sight and avoid other visual artifacts such as

icker. The GL supports rendering into double bu�ered

windows as well as normal single bu�ered windows.

Double bu�er hardware works by splitting the frame

bu�er's bitplanes in half. The video controller selects pix-

els to be displayed from whichever bu�er is considered the

ront one. The hardware's sense of front and back can in-

stantaneously be reversed. This operation is called a bu er

swa .

A CRT display performs a vertical retracewhen the elec-

tron guns must be reset to the top corner of the screen

after each screen refresh (typically around 60 times per

second). If the bu�er swap can be synchronized to hap-

pen during the vertical retrace, a icker-free bu�er swap

can be achieved. SGI hardware interrupts the CPU during

a vertical retrace for this reason.

Bu�er selection needs to be supported on a per-pixel

basis so windows of arbitrary shape can be bu�er swapped.

The bu�ering status of a given pixel depends on its dis lay

identi er (DID). By properly ainting the DIDs to re ect

window layout, bu�er swaps can be performed on a per-

4

Readers interested advanced graphics subsystems are referred to

the \ dvanced Raster Graphics rchitecture" chapter of oley [3]

which includes a discussion of SGI's GTX hardware.

window basis.

2.2 e e eri es rce a a er

Virtualized direct access rendering is managed by a piece

of the IRIX operating system known as the Rendering Re-

source Manager (RRM). The RRM is also responsible for

maintaining window clipping and ensuring properly timed

bu�er swaps for double bu�ered windows.

Window clipping can not be done wholely in the kernel

because only the X server has the centralized knowledge

about the window hierarchy and window layout. For this

reason, the RRM treats the X server process in a special

way. The X server registers itself with RRM as the board

manager. The board manager is informed about how ren-

dering nodes are associated with X windows.

When the window layout changes (for example by a win-

dow resize), the X server can inform the kernel that the

clip of a rendering node is invalid if the clip of its associated

window changes. A rendering node with an invalid clip has

its bank of graphics registers mapped as invalid and the

node is marked as having an invalid clip. The next time

the node is used, the kernel will trap the access and in-

form the X server that the rendering node's clip should be

validated. The X server determines the rendering node's

proper clip and performs a special i c reserved for the

board manager to revalidate the node's clip. nce reval-

idated, the process using the node is restarted. The clip

validation is transparent to the process using the render-

ing node. Figure 2 outlines how a clip validation would

take place.

To make the clipping scheme work, rendering nodes

must be able to have their window clip updated without

any program knowledge of the change. This is possible be-

cause arbitrary hardware clipping is available and all GL

rendering is window relative.

The X server must also become involved in performing

some bu�er swaps. The number of DIDs a piece of hard-

ware supports is limited. This means DIDs sometimes

need to be shared between windows. But when a double

bu�ered window needs to perform a bu�er swap, it needs

to have an unshared DID. The X server manages DID allo-

cation. Reallocation of DIDs requires the server to re aint

the DIDs for the screen.

Normally when a GL program wants to swap the bu�er

of its window, it does a special bu�er swap i c . This

requests the kernel to schedule a bu�er swap operation for

the window's DID during the next vertical retrace inter-

rupt. But if the window's DID is currently shared, the

kernel must request the window be reallocated to use an

unshared DID. The kernel communicates with Xsgi as in

the clip validation case. nce a rendering node is using

an unshared DID, the bu�er swap can be scheduled.

This discussion has been simpli�ed by limiting it to how

RRM interacts with the X server. It is important to note

3

 GL

program

 IRIX

kernel

 X

server

A) GL program with invalid clip resource faults when accessing

graphics registers.

B) Kernel trap handler determines fault caused by invalid clip for the

rendering node.

C) Message put in shmiq telling X server to validate the rendering

node’s clip.

D) X server generates a clip list for the rendering node’s window.

E) X server performs ioctl to inform kernel of new valid clip list.

F) Kernel updates the rendering node to reflect its new clip, validates

the node’s clip resource, maps in the graphics registers, and

restarts the program where it stopped.

!!!!!
!!!!!
!!!!!
!!!!!

A !!!!!
!!!!!
!!!!!
!!!!!

B

!!!!!
!!!!!
!!!!!
!!!!!

C

!!!!!
!!!!!
!!!!!
!!!!!

D

!!!!!
!!!!!
!!!!!
!!!!!

E

!!!!!
!!!!!
!!!!!
!!!!!

F
!!!!!
!!!!!
!!!!!
!!!!!

G

Figure 2: RRM clip validation assisted by the X server.

that the GL completely hides all knowledge of RRM re-

lated issues from the GL programmer.

Despite the complexity of the RRM, the system achieves

quite amazing performance. In part, this is because re-

sources such as window clipping are only validated when

they must be and the need for such validations is relatively

rare when compared to the amount of graphics rendering

commands being generated.

SGI is not the only company to have integrated the GL

into the X Window System. IBM also supports GL in

certain RISC System 6000 platforms. Their approach is

described in Haletky [4] and Tucker [].

e In ut ubs ste

While X mandates that every X server support a keyboard

and mouse, there is no standard system interface for ac-

cessing such devices on Unix systems. This means each

vendor has its own input subsystem for its X server. SGI's

input subsystem not only meets the basic requirement to

support a keyboard and mouse but also has the following

features:

� A shared memory input queue is supported for high-

performance.

� A wide variety of input devices are supported, includ-

ing 3D devices such as the Spaceball. The X Input

extension is used to support such devices.

� Input devices are supported abstractly; knowledge of

speci�c input devices is isolated to modular kernel

device drivers.

� Hardware cursor tracking is supported in the kernel.

As will be seen, these features provide a more functional,

more responsive input subsystem than that available in

the MIT Sample Server.

. are e r e e r

A shared memory input queue (called a shmiq by SGI and

pronounced shmic) is a fast way of receiving input de-

vice events by eliminating the operating system overhead

to read input devices. Instead of reading the input de-

vices through Unix �le descriptors, the operating system

deposits input events directly into a region of the server's

address space. The region is organized as a ring bu�er.

A head and tail variable are used to tell what is available

in the bu�er. If the head and tail are equal the bu�er is

empty. The operating system updates the head as events

are deposited into the ring bu�er while the server updates

the tail as events are read out.

A hook for supporting the shmiq is provided by MIT's

device independent X code (DIX). It allows a vendor to

supply a pointer to two words of memory by calling a rou-

tine named e ec . These words can be used as

the head and tail of a shmiq. This interface is described in

Angebranndt [2]. A test exists in the i e i g

routine in the server's operating system code (S). It com-

pares the values pointed to by the passed parameters to

e ec ; if they are not equal, input is assumed

to be available and cess e s is called to read

the input out of the shmiq.

By default, the DIX code registers pointers to unequal

variables. In this way, unless a server explicitly calls

e ec , the support for a shmiq has no e�ect.

The ability of an X server to use a shmiq is dependent

on whether the operating system implements the appro-

priate user kernel interface. The IRIX shmiq device driver

is implemented as a STREAMS multiplexor. STREAMS

is a exible device driver interface developed by AT T

[1]. The shmiq driver is implemented this way becauses it

allows an arbitrary number of input sources to be linked

to it so all input sources are unneled through the shmiq.

Figure 3 how the shmiq interacts with other system com-

ponents.

.2 e er ace

The input devices can be supported by implementing

STREAMS modules which translate the raw device input

into abstract events which will be sent to the shmiq driver

(and on to the server). This interface is known as IDEV.

The shmiq driver expects messages from the input devices

4

user

space

kernel

space

hardware

Xsgi

device

dependent

graphics

shared memory

graphics board

graphics

gfx

user input

device

hardware

msekeybrddials

duart

driver

qcntl shmiq

6666666666
6666666666
6666666666
6666666666
6666666666

666666
666666
666666
666666
666666

6666666
6666666
6666666
6666666
6666666

6666666
6666666
6666666
6666666
6666666

6666666
6666666
6666666
6666666
6666666
6666666

6666666
6666666
6666666
6666666
6666666
6666666
6666666

666666666
666666666
666666666
666666666

STREAMS

Figure 3: How the shmiq interacts with input devices,

graphics, and Xsgi. (The qcntl driver is an implementa-

tion wart which allows Xsgi to wait via the se ec system

call on shmiq input.)

to be in the form of IDEV events. IDEV device events ap-

pear as valuator, button, and pointer state changes. Along

with a uniform set of events, Xsgi can send down a stan-

dard set of abstract commands to control the various input

devices.

This allows the server to see input devices as abstract

input sources and does not require special server code to

be written every time a new input device is supported.

Instead, device speci�c knowledge of input devices is en-

capsulated in an IDEV-based STREAMS module linked

into the kernel.

IDEV modules currently exist for the SGI mouse and

keyboard, a dial box, a Spaceball, and graphics tablets.

Prototypes have even been implemented to support MIDI

based keyboards and musical instruments!

. er el rs r rac i

Figure 3 also shows the shmiq driver associated with the

kernel graphics drivers. Two points should be made. First,

the shmiq driver is not only used for user input devices but

is also the mechanism used to receive RRM events when

GL programs need resources validated. The second reason

is because the on-screen cursor is actually positioned by

the shmiq driver. This allows very smooth cursor move-

ment since the cursor is updated independently of how

busy the X server might be. X servers without this fea-

ture require the server to reposition the cursor each time

the pointer is moved.

Without a hardware cursor, cursor positioning is partic-

ularly ine�cient because it requires the cursor to be un-

drawn, moved, and redrawn each time the cursor moves.

It also means the cursor must be removed when graphics

near or under the cursor are drawn. Then the cursor is

redrawn. This makes for a very jerky cursor with a lot of

icker. Xsgi avoids this problem.

When the shmiq driver receives a new cursor location

from the mouse (or other pointer device), it calls into the

graphics driver to position the cursor. This tracking hap-

pens without any intervention from Xsgi.

ernel cursor tracking has less overhead and also has an

important psychological e�ect. When the server gets busy

and the cursor has jerky movement, the user perceives a

less interactive workstation. ernel cursor tracking allows

the cursor to move smoothly independent of how busy the

server is, so the user perceives a more interactive system

overall.

. e e si

The core X protocol only speci�es a mouse and keyboard

device. Additional devices can be supported through the

X Consortium's standard X Input extension speci�ed in

Patrick []. While a sample implementation of the X In-

put extension is supplied in MIT's X11R distribution, no

versions of the MIT Sample Server use the code.

The X Input extension is supported by Xsgi. SGI's

implementation understands IDEV events read from the

shmiq. In this way, the X Input extension support avoids

having to understand speci�c input devices. All the in-

put devices mentioned earlier are accessible through the

X Input extension.

e on- ra e u er a er

In order to support the large, growing number of graph-

ics subsystems that SGI develops, SGI X server engineers

developed a porting layer well-suited for porting X to ad-

vanced hardware with acceleration features and without

exposed frame bu�ers. The Non-Frame Bu�er (NFB) layer

resulted. The goals of NFB are the following:

� Allow quick server bring up for new hardware with

reasonable initial performance.

� Allow incremental software tuning to improve perfor-

mance.

� Provide machine independent support for advanced

hardware features such multiple hardware colormaps

and overlays.

� Provide machine independent rendering optimiza-

tions.

666666666
666666666
666666666
666666666
666666666
666666666
666666666

dix

nfb mi

mfb

cfb

cfb16

cfb32

SGI

gfx

hw

R

R

M

os

Xau

Xdmcp font

IRIX

sgi

common

user input device

& RRM requests
graphics

hardware

clients

xdm graphics

operations

non−graphics

operations

multiple format

fonts files

666666666
666666666
666666666
666666666
666666666
666666666
666666666
666666666
666666666

6666
6666
6666
6666
6666
6666
6666
6666
6666
6666

6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666
6666666

wholely SGI

developed code

Figure 4: Xsgi internal organization.

� Ability to easily track MIT changes.

Experience has shown these goals are well met by the NFB.

Currently, SGI supports eleven distinct pieces of hard-

ware using NFB. With respect to tracking MIT changes,

only very minor changes are needed to put the NFB in an

X11R -based server.

It is important to note that the NFB layer does not ob-

solete MIT supplied code such as the color frame bu�er

(CFB), monochrome frame bu�er (MFB), and machine

independent (MI) pieces of code. All these chunks of soft-

ware are still in Xsgi. The MFB and CFB code is used

for managing pixmaps. Most routines in the MI code are

used, particularly the complex rendering algorithms (wide

lines, dashed arcs, etc.) that could not easily be better

supported by NFB. But some MI code like the software

cursor routines are not needed by Xsgi.

To see how all the various layers and pieces of X server

internal code �t together, see Figure 4. A more techni-

cal discussion of the details of the NFB can be found in

Weinstein [10].

ra ics ard are u ort

The NFB is the framework in which all of SGI's graphics

hardware is supported for X. But each piece of hardware

still requires its own device dependent bottom layer to talk

directly to the hardware.

As mentioned earlier, no SGI graphics hardware has

an exposed frame bu�er. Instead of manipulating a

frame bu�er, graphics commands are sent down a graph-

ics pipeline. The sophistication of the pipeline varies. n

low end machine such as the Indigo with Starter graph-

ics, the pipeline is rather short and the commands are

rather primitive (most complex GL operations are imple-

mented in software). n high end machines, very complex,

highly pipelined hardware is available for the highest per-

formance.

. er r a ce

SGI hardware and system software has always been tuned

for the highest possible GL performance. As mentioned

earlier, NeWS was SGI's previous window system. For

this reason, some early SGI graphics hardware is not well

suited for X.

An example of this is the lack of support of hardware

support for logical pixel operations make some early sys-

tems slow at non-source logical pixel operations. (NeWS is

based on PostScript which does not support logical opera-

tions on pixels). Another example is the lack of two color

hardware cursors on old hardware (some early Personal

Iris models).

Since X has become SGI's standard windowing system

in IRIX 4.0, hardware is now designed to suit X's capabili-

ties as well as GL's needs. For example, the Indigo Starter

graphics has special commands tuned to X rendering.

End users of X servers may be surprised by the amount

of tuning that goes into a production X server (not just by

SGI but nearly all vendors of production X servers). MIT

can supply fast machine independent algorithms and good

frame bu�er manipulation layers (CFB andMFB) but only

vendors are in a position to best utilize the capabilities of

their proprietary graphics hardware features. Tools such

as e and pro�lers are used to locate performance

problems and squeeze out all the performance available.

Using NFB lets SGI split optimizations into two cate-

gories: those generally available to non-frame bu�er hard-

ware and those optimizations for a particular graphics

board.

An example of a general non-frame bu�er optimization

is the use of screen-to-screen copies (via bitblit hardware)

to quickly replicate a pattern (such as the root window

stipple) across the screen. The pattern can be drawn once,

then successive fast screen-to-screen copies are used to

draw larger and larger chunks of the pattern in avalanche

fashion. This optimization rightly belongs in NFB since

the algorithm is generally useful to lots of non-frame bu�er

hardware. An example of an optimization suited for a par-

ticular piece of hardware is the use of Starter Indigo's Di-

rect Memory Access (DMA) to drive a memory-to-screen

copy at the maximum ossible system throughput.

.2 r ss air rs r

SGI also tries to support speci�c hardware features be-

yond what MIT's Sample Server generally allows. A good

example of a hardware feature supported by Xsgi outside

the normal capabilities of X is the ability to display a hard-

6

ware cross hair cursor. A cross hair cursor consists of a

horizontal and vertical line which intersect at the cursor

screen position. All SGI hardware supports such a cursor

and the GL provides software support. When the GL was

ported to X, support for a cross hair cursor needed to be

available via the X server.

Cross hair cursor support could have been provided via

a proprietary X extension. But an extension is a heavy-

weight solution and would be overkill. In the case of a cross

hair cursor, it can be supported by allocating an XID for

the cross hair cursor and placing a property on the root

window of each screen named

which contains the XID of the cross hair cursor for that

screen. Then clients use the cross hair cursor by query-

ing the property and associating the cross hair cursor XID

with the window desiring a cross hair cursor. Xsgi treats

the cross hair cursor XID specially and requests the hard-

ware to generate a cross hair cursor when installed for a

window.

By not requiring an extension, cross hair cursor support

requires a minimum of code support and clients do not

need a special library to use the feature. An example of a

program which makes the root cursor a cross hair cursor

is presented in Appendix A.

. ar are l r a s

Another very important hardware feature SGI supports in

Xsgi where it is available is the use of multiple hardware

colormaps. All recent SGI hardware has this feature. This

can eliminate much of the ugly and distracting e�ects of

colorma ashing which occurs when clients try to allo-

cate their own colormaps. The vast majority of graphics

hardware supports only a single colormap. This makes col-

ormap ashing inevitable when X clients allocate multiple

colormaps on such servers.

X11 has always supported multiple hardware colormaps.

Part of the information passed to a client when the server

starts is the minimum and maximum number of installed

colormaps that can be supported per screen. For screens

without multiple hardware colormaps, both values are one.

The minimum number of colormaps is the minimum

number guaranteed to be installed simultaneously. The

maximum number of colormaps is the maximum number

of colormaps that \might possibly be installed simultane-

ously." n SGI equipment which supports multiple hard-

ware colormaps, the maximum number will be greater

than one. Generally, the minimum number will still be

one for Xsgi. This is because a simultaneous installation

is di�cult to guarantee on a server like Xsgi where visu-

als such as those for overlay planes may not be capable of

supporting multiple hardware colormaps.

But for common uses of common visuals, the multiple

hardware colormaps are extremely useful. Instead of shar-

ing the default colormap, programmers with applications

which demand a large number of colors �nd the being able

to allocate their own entire colormap is very useful.

As with any hardware resource, you can eventually run

out of hardware colormaps and colormap ashing will still

result on SGI machines in this case, but it is a much less

likely occurrence. Users who deal with applications that

generously use color resources will de�nitely appreciate the

multiple hardware colormaps of Xsgi.

Because many pieces of hardware support hardware col-

ormaps, the code for managingmultiple colormaps is in the

NFB layer so only the hardware dependent code for up-

dating the colormap resources needs to be in the hardware

dependent section.

. erla la e r

verlay planes are another set of graphics planes which

overla the normal set of graphics planes. It is much like

having a front and back frame bu�er. A trans arent value

for a pixel in the front frame bu�er allows the correspond-

ing pixel in the back frame bu�er to show through. ver-

lay planes are useful when temporary graphics (text an-

notations for example) are placed atop complex images.

The text can be removed or redrawn without disturbing

the underlying image. Pop up menus are another use for

overlay planes.

verlays planes are in some sense a performance hack.

The same visual e�ect could be achieved without overlays

but with much more work. They attempt to provide bet-

ter performance by minimizing the amount of redrawing

necessary for programs that use them.

All SGI graphics subsystems support overlay planes.

While traditional X does not support overlay planes, the

GL does. MIT's Sample Server was not designed with

overlays in mind and so X support for overlay planes

needed to be added by SGI.

The current implementation of Xsgi supports X clients

and GL clients using overlay planes. By default the SGI

window manager places its menus in the overlay

planes. The basic idea is to treat overlay planes as an-

other type of X visual. verlay planes do greatly compli-

cate many areas of the server. When overlay planes are

in use, the region of a window to be rendered and the re-

gion of a window that is visible are not always identical.

Colormaps, event distribution, exposure generation, and

backing store are all complicated by introducing overlay

planes. A technical survey of all these concerns and SGI's

solution can be found in Newman [].

Despite these hurdles, overlay planes can be used e�ec-

tively to achieve graphics e�ects very di�cult to achieve

without the overlays. For this reason, vendors will con-

tinue to supply and users will continue to use overlay

planes in applications. As sophisticated graphics hard-

ware becomes more common, more X users and vendors

will be dealing with the capabilities of overlay planes.

na ic in in o s

Supporting a large number of graphics devices has reper-

cussions beyond simply writing the necessary graphics

code to make X work. It has a tendency to create very

large server executables necessary to support all available

hardware. Not only does the server become bulky but new

versions of the server must be released to support each new

piece of hardware.

To remedy this situation, Xsgi supports dynamically

linkable DDXs which encapsulate the device dependent

portion of the server. A DDX is X server jargon for De-

vice Dependent X. When the server starts it looks in the

s i X X directory to �nd the installed DDXs

which are available. Each DDX in the directory is dynam-

ically linked into the server while the server is running. A

probe routine is run. If the probe routine detects the hard-

ware the DDX is intended for, the DDX will install itself

into the server. If the hardware is not found, the server

will unload the DDX and continue looking for a DDX that

matches the available hardware.

It is possible if multiple pieces of di�erent graphics hard-

ware is found, multiple DDXs will be linked and installed.

Normally, only a single DDX for a machine's available

graphics hardware needs to be installed. This conserves

disk space.

In the case of the MIT Sample Server, the server is en-

tirely linked as one monolithic server which only supports

the graphics hardware it was compiled to support.

Currently Silicon Graphics supports eleven di�erent

DDXs for each of its available pieces of graphics hardware.

ther advantages exist to this approach. The hardware

independent portion of the X server can be upgraded with-

out changing any of the DDXs. And a given DDX can be

upgraded to �x a bug or use a better tuned version of

the DDX. It is possible a major change in Xsgi will cause

the interface between the core server and the DDXs to

change (as was the case in moving from R4 to R). To

handle this eventuality, version numbers are encoded in

each server and DDX to avoid mismatches.

Silicon Graphics licensed this same dynamic DDX link-

ing technology (along with the NFB) to Santa Cruz p-

eration for use in their Xsight X server because SC had

to support the tremendous number of advanced graphics

adapters available to PCs. The technology is a proven,

exible way to support multiple pieces of graphics hard-

ware without compromising server size or upgradability.

is a ost cri t

Adobe's Display PostScript is a valuable X extension

which adds PostScript's powerful rendering model to Xsgi.

It is the enabling software that allows programs such as

Frame Technology's FrameMaker to include encapsulated

PostScript in documents and the Silicon Graphics bundled

program s ie to preview PostScript documents. More

on Display PostScript can be found in Holzgang [].

Because Adobe's Display PostScript extension is propri-

etary, it is not available in the MIT Sample Server. Many

vendors have licensed Adobe's Display PostScript exten-

sion and make it available in their production server.

Xsgi allows the Display PostScript to be dynamically

linked in just like dynamically linked DDXs. Xsgi oper-

ates in such a way that the extension is only loaded if

Display PostScript extension requests are actually made.

This reduces the size of the server when not using Display

PostScript in your session.

Additionally, just like graphics hardware dynamic

DDXs, the Display PostScript DDX allows Xsgi exe-

cutable and the Display PostScript subsystem to be up-

graded independently.

onc usions

verall, Xsgi makes signi�cant improvements in the state

of X server technology. While many features and concerns

Xsgi addresses are not common to today's X servers, al-

most certainly X graphics hardware and X servers will in-

crease in sophistication and production servers with Xsgi's

features will be commonplace. Many vendors today are

supplying similar features and many more will follow.

It is hoped users will understand and appreciate the type

of features Xsgi showcases and demand servers which not

only implement the X protocol but do so to the best that

technology will allow.

Ac no ed ents

The SGI X server is the result of many engineers most no-

tably Peter Daifuku, Erik Fortune, Robert eller, Spencer

Murray, Todd Newman, Tom Paquin, Paul Shupak, Dave

Spalding, and e� Weinstein.

The words IRIS and IRIX are trademarks of Silicon

Graphics, Inc. RISC System 6000 is a trademark of IBM.

Spaceball is a trademark of Spatial Systems Incorporated.

X Window System is a trademark of the Massachusetts

Institute of Technology.

A ross air ursor a e

c i e: cc - c ss i c ss i .c - X _s - s

i c e X X i .

i c e X X .

i c e s i .

i gc, g

i gc;

c g ;

is is ;

i ;

c ss i _ , _ e;

i c, ;

sig e g i e s, e i i g;

X e;

is = X e is ;

i is ==

i s e , "c ss i : c e is s ",

X is e ;

e i ;

c ss i _ = X e is , "_ _ _ ", e ;

i c ss i _ == e

i s e , "c ss i : c i e _ _ _ " ;

e i ;

= e i is ;

c = X e i e is , , c ss i _ , , , se,

X _ , _ e, , i e s, e i i g,

sig e c e ;

i c != ccess

i s e , "c ss i : X e i e i e " ;

e i ;

X e i e s is , , e ;

X se is is ;

e erences

[1] AT T, X ystem elease , rogrammer's

uide: T , Prentice Hall, 1 0.

[2] Susan Angebranndt, Raymond Drewry, Phil arlton,

and Todd Newman, Bob Schei er, eith Packard,

\De�nition of the Porting Layer for the X v11 Sam-

ple Server," X elease documentation, April 22,

1 1.

[3] ames Foley, Andries van Dam, Steven Feiner, and

ohn Hughes, om uter ra hics: rinci les and

ractice, 2nd edition, Addison-Wesley Publishing,

1 0.

[4] Edward Haletky and Linas Vepstas, \Integration of

GL with the X Window System," Xhibition ro-

ceedings, 1 1.

[] David A. Holzgang, is lay ost cri t rogramming,

Addison-Wesley, 1 0.

[6] Phil arlton, \Integrating the GL into the X Envi-

ronment: A High Performance Rendering Extension

Working with and Not Against X," The X esource:

roceeding o the th nnual X Technical on erence,

'Reilly Associates, Issue 1, Winter 1 2.

[] Todd Newman, \How Not to Implement verlays in

X," The X esource: roceeding o the th nnual X

Technical on erence, 'Reilly Associates, Issue 1,

Winter 1 2.

[] Mark Patrick and George Sachs, \X11 Input Exten-

sion Library Speci�cation" and \X11 Input Exten-

sion Protocol Speci�cation," X elease documen-

tation, 1 1.

[] C. H. Tucker and C. . Nelson, \Extending X for High

Performance 3D Graphics," Xhibition roceedings,

1 1.

[10] e� Weinstein, \NFB, an X Server Porting Layer,"

The X esource: roceeding o the th nnual X

Technical on erence, 'Reilly Associates, Issue 1,

Winter 1 2.

10

