
To be published in the

January/February issue of The X Journal.

OpenGL

TM

and X, Part 2:

Using OpenGL with Xlib

Mark J. Kilgard

�

Silicon Graphics Inc.

Revision : 1:21

October 28, 1993

Abstract

This is the second article in a three-part series about using

the OpenGL

TM

graphics system and the X Window Sys-

tem. Amoderately complex OpenGL program for X is pre-

sented. Depth bu�ering, back-face culling, lighting, dis-

play list modeling, polygon tessellation, double bu�ering,

and shading are all demonstrated. The program adheres to

proper X conventions for colormap sharing, window man-

ager communication, command line argument processing,

and event processing. After the example, advanced X and

OpenGL issues are discussed including minimizing col-

ormap 
ashing, handling overlays, using fonts, and per-

forming animation. The last article in this series discusses

integrating OpenGL with the Motif toolkit.

1 Introduction

In the �rst article in this series, the OpenGL

TM

graph-

ics system was introduced. Along with an explanation

of the system's functionality, a simple OpenGL X pro-

gram was presented and OpenGL was compared to the

X Consortium's PEX extension. In this article, a more

involved example of programming OpenGL with X is pre-

sented. The example is intended to demonstrate both so-

phisticated OpenGL functionality and proper integration

of OpenGL with the X Window System.

This article is intended to answer questions from two

classes of programmers: �rst, the X programmer wanting

to see OpenGL used in a program of substance; second, the

OpenGL or IRIS GL programmer likely to be unfamiliar

with the more mundane window system setup necessary

when using the X Window System at the Xlib layer.

�

Mark graduated with B.A. in Computer Science from Rice Uni-

versity and is a Member of the Technical Sta� at Silicon Graphics.

He can be reached by electronic mail addressed to mjk@sgi.com

The example program called glxdino renders a 3D di-

nosaur model using OpenGL. idden surfaces are removed

using depth bu�ering. Back-face culling improves render-

ing performance by not rendering back-facing polygons.

ierarchical modeling is used to construct the dinosaur

and render it via OpenGL display lists. The OpenGL

tility Library (GL ) polygon tessellation routines di-

vide complex polygons into simpler polygons renderable

by OpenGL. Sophisticated lighting lends realism to the

dinosaur. If available, double bu�ering smoothes anima-

tion.

The program integrates well with the X Window Sys-

tem. The program accepts some of the standard X com-

mand line options: -display, -geometry, and -iconic.

The user can rotate the model using mouse motion. Top-

level window properties speci�ed by the Inter-Client Com-

munication Convention Manual (ICCCM) are properly set

up to communicate with the window manager. Colormap

sharing is done via ICCCM conventions. And the proper

way of communicating to the window manager a desire for

a constant aspect ratio is demonstrated.

A walk through of the glxdino source code is presented

in Section 2. While glxdino tries to demonstrate a good

number of OpenGL features and many of the issues con-

cerning how X and OpenGL integrate, it is only an ex-

ample. Section 3 explores more of the issues encountered

when writing an advanced OpenGL program using Xlib.

The third and last article in this series discusses how to

integrate OpenGL with the Motif toolkit.

a l al rou

The source code for glxdino can be found in Appendix A.

I will refer to the code repeatedly throughout this section.

Figure 1 shows a screen snapshot of glxdino.

1



Figure 1: Screen snapshot of glxdino.

.

The program's initialization proceeds through the follow-

ing steps:

1. Process the standard X command line options.

2. Open the connection to the X server.

3. Determine if OpenGL's GLX extension is supported.

. Find the appropriate X visual and colormap.

5. Create an OpenGL rendering context.

6. Create an X window with the selected visual and

properly specify the right ICCCM properties for the

window manager to use.

. Bind the rendering context to the window.

8. Make the display list hierarchy for the dinosaur

model.

. Con�gure OpenGL rendering state.

1 . Map the window.

11. Begin dispatching X events.

Comments in the code correspond to these enumerated

steps.

In the program's main routine, the �rst task is to process

the supported command line arguments. sers of the X

Window System should be familiar with -display which

speci�es the X server to use, -geometry which speci�es

the initial size and location of the program's main win-

dow, and -iconic which requests the window be initially

iconi�ed. Programmers used to the IRIS GL (the prede-

cessor to OpenGL) may not be familiar with these options.

While nothing requires an X program to accept standard

X options, most do as a matter of consistency and con-

venience. Most X toolkits automatically understand the

standard set of X options

The - eepaspect option is not a standard X command

line option. When speci�ed, it requests that the window

manager ensure that the ratio between the initial width

and height of the window be maintained. Often for 3D

programs, the programmer would like a constant aspect

ratio for their rendering window. In IRIS GL, a call named

eepaspect is available. Maintaining the aspect ratio of

a window is something for the window system to do so

there is no call analogous to IRIS GL's eepaspect in

OpenGL. Remember that the core OpenGL Application

Programmer Interface (API) attempts to be window sys-

tem independent. IRIS GL programmers used to the IRIS

GL interface will need to become aware of X functionality

to do things that used to be done with IRIS GL calls.

ormally glxdino tries to use a double bu�ered win-

dow but will use a single bu�ered window if a double

bu�ered visual is not available. When the -single op-

tion is present, the program will look only for a single

bu�ered visual. On many machines with hardware double

bu�ering support, color resolution can be traded for dou-

ble bu�ering to achieve smooth animation. For example,

a machine with 2 bits of color resolution could support

12 bits of color resolution for double bu�ered mode. alf

the image bit-planes would be for the front bu�er and half

for the back bu�er.

ext, a connection to the X server is established using

pen isplay. Since glxdino requires OpenGL's GLX

extension, the program checks that the extension exists

using gl uery xtension. The routine indicates if the

GLX extension is supported or not. As is convention for

X routines that query extensions, the routine can also re-

turn the ase error co e and ase event co e for the GLX

extension. The current version of GLX supports no exten-

sion events (but does de�ne eight protocol errors). Most

OpenGL programs will need neither of these numbers. ou

can pass in as glxdino does to indicate you do not

need the event or error base.

OpenGL is designed for future extensibility. The

gl uery ersion routine returns the ma or and minor

version of the OpenGL implementation. Currently, the

ma or version is 1 and the minor version is . glxdino

does not use gl uery ersion but it may be useful for

programs in the future.

. .

The GLX extension overloads X visuals to denote sup-

ported frame bu�er con�gurations. Before you create an

OpenGL window, you should select a visual which sup-

2



ports the frame bu�er features you intend to use. GLX

guarantees at least two visual will be supported. An

RGBAmode visual with a depth bu�er, stencil bu�er, and

accumulation bu�er must be supported. Second, a color

index mode visual with a depth bu�er and stencil bu�er

must be available. More and less capable visuals are likely

to also be supported depending on the implementation.

To make it easy to select a visual, gl oose isual

takes a list of the capabilities you are requesting and re-

turns an isual n o for a visual meeting your require-

ments. is returned if a visual meeting your needs

is not available. To ensure your application will run with

any OpenGL GLX server, your program should be written

to support the base line required GLX visuals. Also you

should only ask for the minimum set of frame bu�er ca-

pabilities you require. For example, if your program never

uses a stencil bu�er, you will possibly waste resources if

you request one anyway.

Since glxdino rotates the dinosaur in response to user

input, the program will run better if double bu�ering is

available. Double bu�ering allows a scene to be rendered

out of view and then displayed nearly instantly to elim-

inate the visual artifacts associated with watching a 3D

scene render. Double bu�ering helps create the illusion of

smooth animation. Since double bu�ering support is not

required for OpenGL implementations, glxdino resorts

to single bu�ering if no double bu�er visuals are avail-

able. The program's con iguration integer array tells

what capabilities gl oose isual should look for. o-

tice how if a double bu�er visual is not found, another

attempt is made which does not request double bu�ering

by starting after the token. And when

the -single option is speci�ed, the code only looks for a

singled bu�ered visual.

glxdino does require a depth bu�er (of at least 16 bits

of accuracy) and uses the RGBA color model. The RGBA

base line visual must support at least a 16 bit depth bu�er

so glxdino should always �nd a usable visual.

ou should not assume the visual you need is the

default visual. sing a non-default visual means win-

dows created using the visual will require a colormap

matching the visual. Since the window we are inter-

ested in uses OpenGL's RGBA color model, we want a

colormap con�gured for using RGB. The ICCCM estab-

lishes a means for sharing RGB colormaps between clients.

mu oo up tandard olormap is used to set up a colormap

for the speci�ed visual. The routine reads the ICCCM

property on the X server's root window.

If the property does not exist or does not have an en-

try for the speci�ed visual, a new RGB colormap is cre-

ated for the visual and the property is updated (creat-

ing it if necessary). Once the colormap has been created,

et olormaps �nds the newly created colormap. The

work for �nding a colormap is done by the get olormap

routine.

If a standard colormap cannot be allocated, glxdino

will create an unshared colormap. For some servers,

it is possible (though unlikely) a irect olor visual

might be returned (though the GLX speci�cation re-

quires a rue olor visual be returned in precedence to a

irect olor visual if possible). To shorten the example

code by only handling the most likely case, the code bails

if a irect olor visual is encountered. A more portable

(and longer) program would be capable of initializing an

RGB irect olor colormap.

. .

Once a suitable visual and colormap are found, the pro-

gram can create an OpenGL rendering context using

gl reate ontext. (The same context can be used for

di�erent windows with the same visual.)

The last parameter allows the program to request a di-

rect rendering context if the program is connected to a

local X server. An OpenGL implementation is not re-

quired to support direct rendering, but if it does, faster

rendering is possible since OpenGL will render directly to

the graphics hardware. Direct rendered OpenGL requests

do not have to be sent to the X server. Even when on the

local machine, you may not want direct rendering in some

cases. For example, if you want to render to X pixmaps,

you must render through the X server.

GLX rendering contexts support sharing of display lists

among one another. To this end, the third parameter to

gl reate ontext is another already created GLX ren-

dering context. can be speci�ed to create an initial

rendering context. If an already existent rendering con-

text is speci�ed, the display list indexes and de�nitions

are shared by the two rendering contexts. The sharing is

transitive so a share group can be formed between a whole

set of rendering contexts.

To share, all the rendering contexts must exist in the

sa e address space. This means direct renderers cannot

share display lists with renderers rendering through the

X server. Likewise direct renderers in separate programs

cannot share display lists. Sharing display lists between

renderers can help to minimize the memory requirements

of applications that need the same display lists.

. .

Because OpenGL uses visuals to distinguish various frame

bu�er capabilities, programmers using OpenGL need to be

aware of the required steps to create a window with a non-

default visual. As mentioned earlier a colormap created

for the visual is necessary. But the most irksome thing

to remember about creating a window with a non-default

visual is that the border pixel value ust be speci�ed if

the window's visual is not the same as its parent's visual.

Otherwise a ad atc is generated.

3



Before actually creating the window, the argument

to the -geometry option should be parsed using

arse eometry to obtain the user's requested size and

location. The size will be needed when we create the win-

dow. Both the size and location are needed to set up the

ICCCM size hints for the windowmanager. A �xed aspect

ratio is also requested by setting up the right size hints if

the - eepaspect option is speci�ed.

Once the window is created, et tandard roperties

sets up the various standard ICCCM properties including

size hints, icon name, and window name. Then the IC-

CCM window manager hints are set up to indicate the

window's initial state. The -iconic option sets the win-

dow manager hints to indicate the window should be ini-

tially iconi�ed. lloc ints allocates a hints structure.

Once �lled in, et ints sets up the hint property for

the window.

The �nal addition to the window is the

property which indicates window manager protocols the

client understands. The most commonly used protocol

de�ned by ICCCM is . If this atom is

listed in the property of a top-level window,

then when the user selects the program be quit from the

window manager, the window manager will politely send

a message to the client instructing the

client to delete the window. If the window is the applica-

tion's main window, the client is expected to terminate. If

this property is not set, the window manager will simply

ask the X server to terminate the client's connection with-

out notice to the client. By default, this results in Xlib

printing an ugly message like:

connection to : . ro en

explicit ill or ser er s utdo n .

Asking to participate in the protocol

allows the client to safely handle requests to quit from the

window manager.

The property has another advantage for OpenGL pro-

grams. Many OpenGL programs doing animation will use

ending to check for pending X events and otherwise

draw their animation. But if all a client's animation is di-

rect OpenGL rendering and the client does not otherwise

do any X requests, the client never sends requests to the

X server. Due to a problem in ending's implementation

on many nix operating systems, such an OpenGL pro-

gram might not notice its X connection was terminated

for sometime. sing the protocol elim-

inates this problem because the window manager noti�es

perating systems using ioc calls on le descriptors

using Berkeley non-blocking cannot di�erentiate no data to read

froma broken connection; both conditions cause the ioc

to return ero. M T's standard implementation of i g uses

Berkeley non-blocking and ioc s. ventually, lib

will do an e plicit check on the socket to see if it closes but only

after a couple hundred calls to i g.

the client via a message (tripping ending) and the client

is expected to drop the connection.

sing the protocol is good practice

even if you do not use ending and the Xlib message

does not bother you.

All these steps (besides creating a window with a non-

default visual) are standard for creating a top-level X win-

dow. A top-level window is a window created as a child

of the root window (the window manager may choose to

reparent the window when it is mapped to add a bor-

der). ote that the properties discussed are placed on the

to -level window, not necessarily the same window that

OpenGL renders into. While glxdino creates a single

window, a more complicated program might nest windows

used for OpenGL rendering inside the top-level window.

The ICCCM window manager properties belong on top-

level windows only.

An IRIS GL programmer not familiar with X will prob-

ably �nd these details cumbersome. Most of the work will

be done for you if you use a toolkit layered on top of Xlib.

ow a window and an OpenGL rendering context ex-

ist. In OpenGL (unlike Xlib), you do not pass the ren-

dering destination into every rendering call. Instead a

given OpenGL rendering context is bound to a window

using gl a e urrent. Once bound, all OpenGL ren-

dering calls operate using the current OpenGL rendering

context and the current bound window. A thread can only

be bound to one window and one rendering context at a

time. A context can only be bound to a single thread

at a time. If you call gl a e urrent again, it unbinds

from the old context and window and then binds to the

newly speci�ed context and window. ou can unbind a

thread from a window and a context by passing for

the context and one for the drawable.

.

The task of �guring out how to describe the 3D ob ect

you wish to render is called o el n . Much as a plastic

airplane model is constructed out of little pieces, a com-

puter generated 3D scene must also be built out of little

pieces. In the case of 3D rendering, the pieces are generally

polygons.

The dinosaur model to be displayed is constructed out

of a hierarchy of display lists. Rendering the dinosaur is

accomplished by executing a single display list.

The strategy for modeling the dinosaur is to construct

solid pieces for the body, arms, legs, and eyes. Figure

2 shows the 2D sides of the solids to construct the di-

nosaur. Making these pieces solid is done by e tru n the

sides (meaning stretching the 2D sides into a third dimen-

sion). By correctly situating the solid pieces relative to

each other, they form the complete dinosaur.

The work to build the dinosaur model is done by

the routine named ma e inosaur. A helper routine



Figure 2: 2D complex polygons used to model the di-

nosaur's arm, leg, eye, and body sides.

extrude olid rom olygon is used to construct each solid

extruded ob ect.

. .

The polygons in Figure 2 are irregular and complex. For

performance reasons, OpenGL directly supports drawing

only convex polygons. The complex polygons that make

up the sides of the dinosaur need to be built from smaller

convex polygons.

Since rendering complex polygons is a common need,

OpenGL supplies a set of utility routines in the OpenGL

GL library which make it easy to tessellate complex poly-

gons. In computer graphics, tessellation is the process of

breaking a complex geometric surface into simple convex

polygons.

The GL library routines for tessellation are:

glu e ess - create a new tessellation ob ect.

glu ess all ac - de�ne a callback for a tessellation ob-

ect.

glu egin olygon - begin a polygon description to tessel-

late.

glu ess ertex - specify a vertex for the polygon to tes-

sellate.

glu ext ontour - mark the beginning of another contour

for the polygon to tessellate.

glu nd olygon - �nish a polygon being tessellated.

glu elete ess - destroy a tessellation ob ect.

These routines are used in the example code to tessellate

the sides of the dinosaur. otice at the beginning of the

program static arrays of 2D vertices are speci�ed for the

dinosaur's body, arm, leg, and eye polygons.

To use the tessellation package, you �rst create a tes-

sellation ob ect with glu e ess. An ob ect of type

triangulator is returned which is passed into

the other polygon tessellation routines. ou do not need

a tessellation ob ect for every polygon you tessellate. ou

might need more than one tessellation ob ect if you were

trying to tessellate more than one polygon at a time. In

the sample program, a single tessellation ob ect is used for

all the polygons needing tessellation.

Once you have a tessellation ob ect, you should set up

callback routines using glu ess all ac . The way that

the GL tessellation package works is that you feed in

vertices. Then the tessellation is performed and your reg-

istered callbacks are called to indicate the beginning, end,

and all the vertices for the convex polygons which correctly

tessellate the points you feed to the tessellator.

Look at the extrude olid rom olygon routine which

uses the GL tessellation routines. To understand exactly

why the callbacks are speci�ed as they are, consult the

OpenGL Reference Manual . The point to notice is how

a single tessellation ob ect is set up once and callbacks are

registered for it. Then glu egin olygon is used to start

tessellating a new complex polygon. The vertices of the

polygon are speci�ed using glu ess ertex. The polygon

is �nished by calling glu nd olygon.

otice the code for tessellating the polygon lies between

a gl e ist and gl nd ist; these routines begin and end

the creation of a display list. The callbacks will generate

gl ertex calls specifying the vertices of convex poly-

gons needed to represent the complex polygon being tes-

sellated. Once completed, a display list is available that

can render the desired complex polygon.

Consider the performance bene�ts of OpenGL's polygon

tessellator compared with a graphics system that supplies

a polygon primitive that supports non-convex polygons. A

primitive which supported complex polygons would likely

need to tessellate each complex polygon on the 
y. Calcu-

lating a tessellation is not without cost. If you were draw-

ing the same complex polygon more than once, it is bet-

ter to do the tessellation only once. This is exactly what

is achieved by creating a display list for the tessellated

polygon. But if you are rendering continuously changing

complex polygons, the GL tessellator is fast enough for

generating vertices on the 
y for immediate-mode render-

ing.

aving a tessellation ob ect not directly tied to render-

ing is also more 
exible. our program might need to tes-

sellate a polygon but not actually render it. The GL 's

system of callbacks ust generate vertices. ou can call

OpenGL gl ertex calls to render the vertices or supply

5



your own special callbacks to save the vertices for your

own purposes. The tessellation algorithm is accessible for

your own use.

The GL tessellator also supports multiple contours al-

lowing dis oint polygons or polygons with holes to be tes-

sellated. The glu ext ontour routine begins a new con-

tour.

The tessellation ob ect is ust one example of function-

ality in OpenGL's GL library which supports 3D ren-

dering without complicating the basic rendering routines

in the core OpenGL API. Other GL routines support

rendering of curves and surfaces using on- niform Ra-

tional B-Splines ( RBS) and tessellating boundaries of

solids such as cylinders, cones, and spheres. All the GL

routines are a standard part of OpenGL.

. .

After generating the complex polygon display list for the

sides of a solid ob ect, the extrude olid rom olygon

routine creates another display list for the edge of the

extruded solid. The edge is generated using a

primitive. Along with the vertices, normals are calculated

for each quad along the edge. Later these normals will

be used for lighting the dinosaur. The normals are com-

puted to be unit vectors. aving normals speci�ed as unit

vectors is important for correct lighting. An alternative

would be to use gl na le which ensures

all normals are properly normalized before use in lighting

calculations. Specifying unit vectors to begin with and not

using gl na le saves time during render-

ing. Be careful when using scaling transformations (often

set up using gl cale) since scaling transformations will

scale normals too. If you are using scaling transforma-

tions, gl na le is almost always required

for correct lighting.

Once the edge and side display lists are created, the solid

is formed by calling the edge display list, then �lling in the

solid by calling the side display list twice (once translated

over by the width of the edge). The ma e inosaur rou-

tine will use extrude olid rom olygon to create solids

for each body part needed by the dinosaur.

Then ma e inosaur combines these display lists into

a single display list for the entire dinosaur. Translations

are used to properly position the display lists to form the

complete dinosaur. The body display list is called; then

arms and legs for the right side are added; then arms and

legs for the left side are added; then the eye is added (it

is one solid which pokes out either side of the dinosaur's

head a little bit on each side).

. . -

A common optimization in 3D graphics is a technique

known as ac - ace cull n . The idea is to treat polygons

as essentially one-sided entities. A front facing polygon

needs to be rendered but a back-facing polygon can be

eliminated.

Consider the dinosaur model. When the model is ren-

dered, the back side of the dinosaur will not be visible. If

the direction each polygon faced was known, OpenGL

could simply eliminate approximately half of the polygons

(the back-facing ones) without ever rendering them.

otice the calls to gl ront ace when each solid dis-

play list is created in extrude olid rom olygon. The

argument to the call is either or meaning

clock-wise and counter-clockwise. If the vertices for a poly-

gon are listed in counter-clockwise order and gl ront ace

is set to , then the generated polygon is consid-

ered front facing. The static data specifying the vertices

of the complex polygons is listed in counter-clockwise or-

der. To make the quads in the quad strip face outwards,

gl ront ace is speci�ed. The same mode ensures

the far side faces outward. But gl ront ace is

needed to make sure the front of the other side faces out-

ward (logically it needs to be reversed from the opposite

side since the vertices were laid out counter-clockwise for

both sides since they are from the same display list).

When the static OpenGL

state is set up, gl na le is used to enable

back-face culling. As with all modes enabled and disabled

using gl na le and gl isa le, it is disabled by default.

Actually OpenGL is not limited to back-face culling. The

gl ull ace routine can be used to specify either the back

or the front should be culled when face culling is enabled.

When you are developing your 3D program, it is often

helpful to disable back-face culling. That way both sides of

every polygon will be rendered. Then once you have your

scene correctly rendering, you can go back and optimize

your program to properly use back-face culling.

Do not be left with the misconception that enabling or

disabling back-face culling (or any other OpenGL feature)

must be done for the duration of the scene or program.

ou can enable and disable back-face culling at will. It is

possible to draw part of your scene with back-face culling

enabled, and then disable it, only to later re-enable culling

but this time for front faces.

.

The realism of a computer generated 3D scene is greatly

enhanced by adding lighting. In the �rst article's sample

program, gl olor was used to add color to the faces

of the 3D cube. This adds color to rendered ob ects but

does not use lighting. In the example, the cube moves but

the colors do not vary the way a real cube might as it is

a�ected by real world lighting. In this article's example,

lighting will be used to add an extra degree of realism to

the scene.

OpenGL supports a sophisticated 3D lighting model to

achieve higher realism. When you look at a real ob ect,

6



its color is a�ected by lights, the material properties of

the ob ect, and the angle at which the light shines on the

ob ect. OpenGL's lighting model approximates the real

world.

Complicated e�ects such as the re
ection of light and

shadows are not supported by OpenGL's lighting model

though techniques and algorithms are available to simu-

late such e�ects. Environment mapping to simulate re-


ection is possible using OpenGL's texturing capability.

OpenGL's stencil bu�ers and blending support can be used

to create shadows, but an explanation of these techniques

is beyond the scope of this article. (See the topics in the

�nal chapter of the en ro ra n u e).

. .

The e�ects of light are complex. In OpenGL, lighting is

divided into four di�erent components: emitted, ambient,

di�use, and specular. All four components can be com-

puted independently and then added together.

Emitted light is the simplest. It is light that originates

from an ob ect and is una�ected by any light sources. Self-

luminous ob ects can be modeled using emitted light.

Ambient light is light from some source that has been

scattered so much by the environment that its direction is

impossible to determine. Even a directed light such as a


ashlight may have some ambient light associated with it.

Di�use light comes from some direction. The brightness

of the light bouncing o� an ob ect depends on the light's

angle of incidence with the surface it is striking. Once it

hits a surface, the light is scattered equally in all directions

so it appears equally bright independent of where the eye

is located.

Specular light comes from some direction and tends to

bounce o� the surface in a certain direction. Shiny metal

or plastic ob ects have a high specular component. Chalk

or carpet have almost none. Specularity corresponds to

the everyday notion of how shiny an ob ect is.

A single OpenGL light source has a single color and

some combination of ambient, di�use, and specular com-

ponents. OpenGL supports multiple lights simultaneously.

The programmer can control the makeup of a light as well

as its position, direction, and attenuation. Attenuation

refers to how a light's intensity decreases as distance from

the light increases.

. .

The example uses two lights. Both use only the di�use

component. A bright, slightly green-tinted os t onal light

is to the right, front of the dinosaur. A dim, red-tinted

rect onal light is coming from the left, front of the di-

nosaur. Figure 3 shows how the dinosaur, the lights, and

the eye-point are arranged. A positional light is located at

some �nite position in modeling space. A directional light

+X axis

+Z axis

+Y axis (out of page)

bright,
green−tinted
light (10,4,10)

    green dinosaur
         with red eye
centered at (0,0,0)

dim, red−tinted
light at infinite
distance on
vector (1,−2,1)

eye at (0,0,30)
looking at dinosaur

Figure 3: Arrangement of lights, eye, and dinosaur in mod-

eling space.

is considered to be located in�nitely far away. sing a di-

rectional light allows the OpenGL to consider the emitted

light rays to be parallel by the time the light reaches the

ob ect. This simpli�es the lighting calculations needed to

be done by OpenGL.

The lig t ero osition and lig t ne osition static

variables indicate the position of the two lights. ou will

notice each has not three but four coordinates. This is

because the light location is speci�ed in ho o eneous co-

ordinates. The fourth value divides the X, , and

coordinates to obtain the true coordinate. otice how

lig t ne osition (the in�nite light) has the fourth value

set to zero. This is how an in�nite light is speci�ed.

The dinosaur can rotate around the axis based on the

user's mouse input. The idea behind the example's light-

ing arrangement is when the dinosaur is oriented so its side

faces to the right, it should appear green due to the bright

light. When its side faces leftward, the dinosaur should ap-

pear poorly lighted but the red in�nite light should catch

the dinosaur's red eye.

Section of the program initialization shows how light-

ing is initialized. The gl na le turns on

lighting support. The lights' positions and di�use com-

Actually all coordinates are logically manipulated by penG

as three-dimensional homogeneous coordinates. The -

's Appendi G brie y e plains homogeneous co-

ordinates. A more involved discussion of homogeneous coordinates

and why they are useful for computer graphics can be found in

oley and van am .



ponents are set using via calls to gl ig t using the

and parameters. The lights are

each enabled using gl na le.

The attenuation of the green light is ad usted. This

determines how the light intensity fades with distance and

demonstrates how individual lighting parameters can be

set. It would not make sense to ad ust the attenuation of

the red light since it is an in�nite light which shines with

uniform intensity.

either ambient nor specular lighting are demonstrated

in this example so that the e�ect of the di�use lighting

would be clear. Specular lighting might have been used to

give the dinosaur's eye a glint.

Recall when the edge of each solid was generated, nor-

mals were calculated for each vertex along the quad strip.

And a single normal was given for each complex polygon

side of the solid. These normals are used in the di�use

lighting calculations to determine how much light should

be re
ected. If you rotate the dinosaur, you will notice the

color intensity changes as the angle incidence for the light

varies.

Also notice the calls to gl ade odel. OpenGL's shade

model determines whether 
at or smooth shading should

be used on polygons. The dinosaur model uses di�erent

shading depending on whether a side or edge is being ren-

dered. There is a good reason for this. The

mode is used on the sides. If 
at shading were used in-

stead of smooth, each convex polygon composing the tes-

sellated complex polygon side would be a single color. The

viewer could notice exactly how the sides has been tessel-

lated. Smooth shading prevents this since the colors are

interpolated across each polygon.

But for the edge of each solid, is used. Because

the edge is generated as a quad strip, quads along the

strip share vertices. If we used a smooth shading model,

each edge between two quads would have a single normal.

Some of the edges are very sharp (like the claws in the

hand and the tip of the tail). Interpolating across such

varying normals would lead to an undesirable visual e�ect.

The �ngers would appear rounded if looked at straight on.

Instead, with 
at shading, each quad gets its own normal

and there is no interpolation so the sharp angles are clearly

visible.

.

In 3D graphics, v e n is the process of establishing the

perspective and orientation with which the scene should

be rendered. Like a photographer properly setting up his

camera, an OpenGL programmer should establish a view.

Figure shows how the view is set up for the example

program.

In OpenGL, establishing a view means loading the

pro ection and model-view matrices with the right

contents. To modify the pro ection matrix, call

Eye−point
(0,0,30)

Near plane
(1 unit from eye)

Far plane
(40 units from eye)

Origin
(0,0,0)

One to one
aspect ratio

40 degree
field of view

Figure : Static view for glxdino.

gl atrix ode . Calculating the right

matrix by hand can be tricky. The GL library has two

useful routines that make the process easy.

GL 's glu erspecti e routine allows you to specify a

�eld of view angle, an aspect ratio, and near and far clip-

ping planes. It multiplies the current pro ection matrix

with one created according to the routine's parameters.

Since initially the pro ection matrix is an identity matrix,

glxdino's glu erspecti e call e�ectively loads the pro-

ection matrix.

Another GL routine, glu oo t, can be used to ori-

ent the eye-point for the model-view matrix. otice

how gl atrix ode is used to switch to

the model-view matrix. sing glu oo t requires you

to specify the eye-point's location, a location to look

at, and a normal to determine which way is up. Like

glu erspecti e, glu oo tmultiplies the matrix it con-

structs from its parameters with the current matrix.

The initial model-view matrix is the identity matrix so

glxdino's call to glu oo t e�ectively loads the model-

view matrix.

After the glu oo t call, gl us atrix is called. Both

the model-view and pro ection matrices exist on stacks

that can be pushed and popped. Calling gl us atrix

pushes a copy of the current matrix onto the stack. When

a rotation happens, this matrix is popped o� and another

gl us atrix is done. This newly pushed matrix is com-

posed with a rotation matrix to re
ect the current absolute

orientation. Every rotation pops o� the top matrix and

replaces it with a newly rotated matrix.

otice that the light positions are not set until after the

model-view matrix has been properly initialized.

Because the location of the viewpoint a�ects the calcula-

tions for lighting, separate the pro ection transformation

in the pro ection matrix and the modeling and viewing

transformations in the model-view matrix.

8



.

ow the window has been created, the OpenGL renderer

has been bound to it, the display lists have been con-

structed, and OpenGL's state has been con�gured. All

that remains is to request the window be mapped using

ap indo and begin handling any X events sent to the

program.

When the window was created, four types of win-

dow events were requested to be sent to our applica-

tion: xpose events reporting regions of the window to be

drawn, utton ress events indicating mouse button sta-

tus, ey ress events indicating a keyboard key has been

presed, otion oti y events indicating mouse movement,

and on igure oti y events indicating the window's size

or position has changed.

X event dispatching is usually done in an in�nite loop.

Most X programs do not stop dispatching events until the

program terminates. ext ent can be used to block

waiting for an X event. When an event arrives, its type is

examined to tell what event has been received.

. .

For an xpose event, the example program ust sets a 
ag

indicating the window needs to be redrawn. The reason is

that xpose events indicate a single sub-rectangle in the

window that must be redrawn. The X server will send a

number of xpose events if a complex region of the window

has been exposed.

For a normal X program using 2D rendering, you might

be able to minimize the amount needed to redraw the win-

dow by carefully examining the rectangles for each xpose

event. For 3D programs, this is usually too di cult to be

worthwhile since it is hard to determine what would need

to be done to redraw some sub-region of the window. In

practice the window is usually redrawn in its entirety. For

the dinosaur example, redrawing involves calling the di-

nosaur display list with the right view. It is not helpful to

know only a sub-region of the window actually needs to be

redrawn. For this reason, an OpenGL program should not

begin redrawing until it has received all the expose events

most recently sent to the window. This practice is known

as e ose co ress on and helps to avoid redrawing more

than you should.

otice that all that is done to immediately handle an

expose is to set the need edra 
ag. Then ending is

used to determine if there are more events pending. ot

until the stream of events pauses is the redra routine

really called (and the need edra 
ag reset).

The redra routine does three things: it clears the im-

age and depth bu�ers, executes the dinosaur display list,

and either calls gl ap u ers on the window if double

bu�ered or calls gl lus . The current model-view matrix

determines in what orientation the dinosaur is drawn.

. .

The X server sends a on igure oti y event to indicate

a window resize. andling the event generally requires

changing the viewport of OpenGL windows. The sample

program calls gl ie port specifying the window's new

width and height. A resize also necessitates a screen re-

draw so the code falls through to the expose code which

sets the need edra 
ag.

When you resize the window, the aspect ratio of the

window may change (unless you have negotiated a �xed

aspect ratio with the windowmanager as the - eepaspect

option does). If you want the aspect ratio of your �nal

image to remain constant, you might need to respecify the

pro ection matrix with an aspect ratio to compensate for

the window's changed aspect ratio. The example does not

do this.

. .

The example program allows the user to rotate the di-

nosaur while moving the mouse by holding down the �rst

mouse button. We record the current angle of rotation

whenever a mouse button state changes. As the mouse

moves while the �rst mouse button is held down, the angle

is recalculated. A recalc odel ie 
ag is set indicating

the scene should be redrawn with the new angle.

When there is a lull in events, the model-view matrix

is recalculated and then the need edra 
ag is set, forc-

ing a redraw. The recalc odel ie 
ag is cleared. As

discussed earlier, recalculating the model-view is done by

popping o� the current top matrix using gl op atrix and

pushing on a new matrix. This new matrix is composed

with a rotation matrix using gl otate to re
ect the new

absolute angle of rotation. An alternative approach would

be to multiply the current matrix by a rotation matrix

re
ecting the change in angle of rotation. But such a rela-

tive approach to rotation can lead to inaccurate rotations

due to accumulated 
oating point round-o� errors.

. .

Because the atom was speci�ed on the

top-level window's list of window manager protocols, the

event loop should also be ready to handle an event sent

by the window manager asking the program to quit. If

glxdino receives a lient essage event with the �rst

data item being the atom, the program

calls exit.

In many IRIS GL demonstration programs, the Escape

key is used by convention to quit the program. So glxdino

shows a simple means to quit in response to an Escape key

press.



Ad anc d lib and n

The glxdino example demonstrates a good deal of

OpenGL's functionality and how to integrate OpenGL

with X but there are a number of issues that program-

mers wanting to write advanced OpenGL programs for X

should be aware of.

.

Already a method has been presented for sharing col-

ormaps using the ICCCM conventions. Most OpenGL pro-

grams do not use the default visual and therefore cannot

use the default colormap. Sharing colormaps is therefore

important for OpenGL programs to minimize the amount

of colormaps X servers will need to create.

Often OpenGL programs require more than one col-

ormap. A typical OpenGL program may do OpenGL ren-

dering in a subwindow but most of the program's user

interface is implemented using normal X 2D rendering. If

the OpenGL window is 2 bits deep, it would be expen-

sive to require all the user interface windows also to be 2

bits deep. Among other things, pixmaps for the user in-

terface windows would need to be 32 bits per pixel instead

of the typical 8 bits per pixel. So the program may use

the server's (probably default) 8 bit seudo olor visual

for its user interface but use a 2 bit rue olor visual for

its OpenGL subwindow. Multiple visuals demand mul-

tiple colormaps. Many other situations may arise when

an OpenGL program needs multiple colormaps within a

single top-level window hierarchy.

ormally window managers assume the colormap that

a top-level window and all its subwindows need is the col-

ormap used by the top-level window. A window manager

automatically notices the colormap of the top-level win-

dow and tries to ensure that that colormap is installed

when the window is being interacted with.

With multiple colormaps used inside a single top-

level window, the window manager needs to be informed

of the other colormaps being used. The Xlib routine

et olormap indo s can be used to place a standard

property on your top-level window to indicate all the col-

ormaps used by the top-level window and its descendants.

Be careful about using multiple colormaps. It is possi-

ble a server will not have enough colormap resources to

support the set of visuals and their associated colormaps

that you desire. nfortunately, there is no standard way

to determine what sets of visuals and colormaps can be

simultaneously installed when multiple visuals are sup-

ported. Xlib provides two calls, ax maps creen and

in maps creen, but these do not express hardware

con
icts between visuals.

ere are some guidelines:

If ax maps creen returns one, you are guaran-

teed a single hardware colormap. Colormap 
ashing

is quite likely. ou should write your entire applica-

tion to use a single colormap at a time.

If an 8 bit seudo olor visual and a 2 bit rue olor

visual are supported on a single screen, it is extremely

likely a di�erent colormap for each of the two visuals

can be installed simultaneously.

If ax maps creen returns a number higher than

one, it is possible that the hardware supports multiple

colormaps for the same visual. A rule of thumb is the

higher the number, the more likely. If the number is

higher than the total number of visuals on the screen,

it must be true for at least one visual (but you cannot

know which one).

opefully multiple hardware colormaps will become more

prevalent and perhaps a standard mechanism to detect

colormap and visual con
icts will become available.

.

If you are writing an animated 3D program, you will prob-

ably want double bu�ering. It is not always available for

OpenGL. ou have two choices: run in single-bu�ered

mode or render to a pixmap and copy each new frame

to the window using opy rea.

ote that when you use gl oose isual, booleans

are matched exactly (integers if speci�ed are considered

minimums). This means if you want to support double

bu�ering but be able to fall back to single bu�ering, two

calls will be needed to gl oose isual. If an OpenGL

application has sophisticated needs for selecting visuals,

gl et on ig can be called on each visual to determine

the OpenGL attributes of each visual.

.

X has a convention for supporting overlay window via spe-

cial visuals 2 . OpenGL can support rendering into over-

lay visuals. Even if an X server supports overlay visuals,

you will need to make sure those visuals are OpenGL ca-

pable. The gl oose isual routine does allow you to

specify the frame bu�er layer for the visual you are in-

terested in with the attribute. This makes it

easier to �nd OpenGL capable overlay visuals.

IRIS GL programmers are used to assuming the trans-

parent pixel in an overlay visual is always zero. For X

and OpenGL, this assumption is no longer valid. ou

should query the transparent mode and pixel speci�ed by

the property to ensure portabil-

ity.

IRIS GL programmers are also used to considering over-

lay planes as being built-in to IRIS GL windows. The

X model for overlay planes considers an overlay window

to be a separate window with its own window ID. To use

overlays as one does in IRIS GL, you need to create a

1



normal plane window, then create a child window in the

overlay planes with the child's origin located at the origin

of the parent. The child should be maintained to have

the same size as the parent. Clear the overlay window to

the transparent pixel value to see through to the parent

normal plane window. Switching between the overlay and

normal planes windows requires a gl a e urrent call.

It is likely that the overlay visuals will not support the

same frame bu�er capabilities as the normal plane vi-

suals. ou should avoid assuming overlay windows will

have frame bu�er capabilities such as depth bu�ers, sten-

cil bu�ers, or accumulation bu�ers.

.

In IRIS GL, rendering into an X window using core X

rendering after IRIS GL was bound to the window is un-

de�ned. This precluded mixing core X rendering with GL

rendering in the same window. OpenGL allows its ren-

dering to be mixed with core X rendering into the same

window. ou should be careful doing so since X and

OpenGL rendering requests are logically issued in two dis-

tinct streams. If you want to ensure proper rendering,

you ust synchronize the streams. Calling gl ait will

make sure all OpenGL rendering has �nished before sub-

sequent X rendering takes place. Calling gl ait will

make sure all core X rendering has �nished before subse-

quent OpenGL rendering takes place. These requests do

not require a protocol round trip to the X server.

The core OpenGL API also includes gl inis and

gl lus commands useful for rendering synchronization.

gl inis ensures all rendering has appeared on the screen

when the routine returns (similar to ync). gl lus only

ensures the queued commands will eventually be executed

(similar to lus ).

Realize that mixing OpenGL and X is not normally nec-

essary. Many OpenGL programs will use a toolkit like

Motif for their 2D user interface component and use a dis-

tinct X window for OpenGL rendering. This requires no

synchronization since OpenGL and core X rendering go to

distinct X windows. Only when OpenGL and core X ren-

dering are directed at the same window is synchronization

of rendering necessary.

Also OpenGL can be used for extremely fast 2D as well

as 3D. When you feel a need to mix core X and OpenGL

rendering into the same window, consider rendering what

you would do in core X using OpenGL. ot only do you

avoid the synchronization overhead, but you can poten-

tially achieve faster 2D using direct rendered OpenGL

compared to core X rendering.

.

Graphics programs often need to display text. ou can

use X font rendering routines or you can use the GLX

gl se ont routine to create display lists out of X fonts.

either of these methods of font rendering may be 
ex-

ible enough for a program desiring stroke or scalable fonts

or having sophisticated font needs. In the future, an

OpenGL font manager will be available to meet these

needs. In the meantime, you can use gl se ont or X

font rendering or roll your own font support. An easy way

to do this is to convert each glyph of your font into a dis-

play list. Rendering text in the font becomes a matter of

executing the display list corresponding to each glyph in

the string to display.

.

OpenGL supports immediate mode rendering where com-

mands can be generated on the 
y and sent directly to the

screen. Programmers should be aware that their OpenGL

programs might be run indirectly. In this case, immediate

mode rendering could require a great deal of overhead for

transport to the X server and possibly across a network.

For this reason, OpenGL programmers should try to use

display lists when possible to batch rendering commands.

Since the display lists are stored in the server, executing a

display list has minimal overhead compared to executing

the same commands in the display list immediately.

Display lists are likely to have other advantages since

OpenGL implementations are allowed to compile them for

maximum performance. Be aware you can mix display

lists and immediate mode rendering to achieve the best

mix of performance and rendering 
exibility.

onclusion

The glxdino example demonstrates the basic tasks that

must be done to use OpenGL with X. The program

demonstrates sophisticated OpenGL features such as dou-

ble bu�ering, lighting, shading, back-face culling, display

list modeling, and polygon tessellation. And the proper

X conventions are followed to ensure glxdino works well

with other X programs.

The glxdino example program and the hints for ad-

vanced OpenGL programming should provide a good foun-

dation for understanding and programming OpenGL with

Xlib. The next article will explain how to integrate

OpenGL with the Motif toolkit.

11



A l dino c

12



13



1



15



16



1



r nc s

1 ames Foley, Andries van Dam, Steven Feiner, and

ohn ughes, o uter ra h cs r nc les an

ract ce, 2nd edition, Addison-Wesley Publishing,

1 .

2 Mark ilgard, Programming X Overlay Windows,

The X Journal, SIGS Publications, uly 1 3.

3 ackie eider, Tom Davis, Mason Woo, en

ro ra n u e The o c al u e to learn n

en elease , Addison Wesley, 1 3.

OpenGL Architecture Review Board, en e -

erence anual The o c al re erence ocu ent or

en elease , Addison Wesley, 1 2.

18


