To BE PUBLISHED IN THE
JANUARY /FEBRUARY ISSUE OF The X Journal.

OpenGL™ and X, Part 2:
Using OpenGL with Xlib

Mark J. Kilgard *
Silicon Graphics Inc.
Revision : 1.21

October 28, 1993

Abstract

This is the second article in a three-part series about using
the OpenGL™ graphics system and the X Window Sys-
tem. A moderately complex OpenGL program for X is pre-
sented. Depth buffering, back-face culling, lighting, dis-
play list modeling, polygon tessellation, double buffering,
and shading are all demonstrated. The program adheres to
proper X conventions for colormap sharing, window man-
ager communication, command line argument processing,
and event processing. After the example, advanced X and
OpenGL issues are discussed including minimizing col-
ormap flashing, handling overlays, using fonts, and per-
forming animation. The last article in this series discusses
integrating OpenGL with the Motif toolkit.

1 Introduction

In the first article in this series, the OpenGL™ graph-
ics system was introduced. Along with an explanation
of the system’s functionality, a simple OpenGL X pro-
gram was presented and OpenGL was compared to the
X Consortium’s PEX extension. In this article, a more
involved example of programming OpenGL with X is pre-
sented. The example is intended to demonstrate both so-
phisticated OpenGL functionality and proper integration
of OpenGL with the X Window System.

This article is intended to answer questions from two
classes of programmers: first, the X programmer wanting
to see OpenGL used in a program of substance; second, the
OpenGL or IRIS GL programmer likely to be unfamiliar
with the more mundane window system setup necessary
when using the X Window System at the Xlib layer.

*Mark graduated with B.A. in Computer Science from Rice Uni-
versity and is a Member of the Technical Staff at Silicon Graphics.
He can be reached by electronic mail addressed to mjk@sgi.com

The example program called glxdino renders a 3D di-
nosaur model using OpenGL. Hidden surfaces are removed
using depth buffering. Back-face culling improves render-
ing performance by not rendering back-facing polygons.
Hierarchical modeling is used to construct the dinosaur
and render it via OpenGL display lists. The OpenGL
Utility Library (GLU) polygon tessellation routines di-
vide complex polygons into simpler polygons renderable
by OpenGL. Sophisticated lighting lends realism to the
dinosaur. If available, double buffering smoothes anima-
tion.

The program integrates well with the X Window Sys-
tem. The program accepts some of the standard X com-
mand line options: -display, -geometry, and -iconic.
The user can rotate the model using mouse motion. Top-
level window properties specified by the Inter-Client Com-
munication Convention Manual (ICCCM) are properly set
up to communicate with the window manager. Colormap
sharing is done via ICCCM conventions. And the proper
way of communicating to the window manager a desire for
a constant aspect ratio is demonstrated.

A walk through of the glxdino source code is presented
in Section 2. While glxdino tries to demonstrate a good
number of OpenGL features and many of the issues con-
cerning how X and OpenGL integrate, it is only an ex-
ample. Section 3 explores more of the i1ssues encountered
when writing an advanced OpenGL program using Xlib.
The third and last article in this series discusses how to
integrate OpenGL with the Motif toolkit.

2 Example Walk Through

The source code for glxdino can be found in Appendix A.
I will refer to the code repeatedly throughout this section.
Figure 1 shows a screen snapshot of glxdino.

Figure 1: Screen snapshot of glxdino.

2.1 Initialization

The program’s initialization proceeds through the follow-
ing steps:

1. Process the standard X command line options.
2. Open the connection to the X server.

Determine if OpenGL’s GLX extension is supported.

- @

Find the appropriate X visual and colormap.

ot

Create an OpenGL rendering context.

6. Create an X window with the selected visual and
properly specify the right ICCCM properties for the
window manager to use.

7. Bind the rendering context to the window.

8. Make the display list hierarchy for the dinosaur
model.

9. Configure OpenGL rendering state.
10. Map the window.
11. Begin dispatching X events.

Comments in the code correspond to these enumerated
steps.

In the program’smain routine, the first task is to process
the supported command line arguments. Users of the X
Window System should be familiar with -display which
specifies the X server to use, —geometry which specifies
the initial size and location of the program’s main win-
dow, and -iconic which requests the window be initially

iconified. Programmers used to the TRIS GL (the prede-
cessor to OpenGL) may not be familiar with these options.
While nothing requires an X program to accept standard
X options, most do as a matter of consistency and con-
venience. Most X toolkits automatically understand the
standard set of X options

The -keepaspect option is not a standard X command
line option. When specified, it requests that the window
manager ensure that the ratio between the initial width
and height of the window be maintained. Often for 3D
programs, the programmer would like a constant aspect
ratio for their rendering window. In IRIS GL, a call named
keepaspect is available. Maintaining the aspect ratio of
a window 1s something for the window system to do so
there is no call analogous to IRIS GL’s keepaspect in
OpenGL. Remember that the core OpenGL Application
Programmer Interface (API) attempts to be window sys-
tem independent. IRIS GL programmers used to the IRIS
GL interface will need to become aware of X functionality
to do things that used to be done with IRIS GL calls.

Normally glxdino tries to use a double buffered win-
dow but will use a single buffered window if a double
buffered visual is not available. When the -single op-
tion is present, the program will look only for a single
buffered visual. On many machines with hardware double
buffering support, color resolution can be traded for dou-
ble buffering to achieve smooth animation. For example,
a machine with 24 bits of color resolution could support
12 bits of color resolution for double buffered mode. Half
the image bit-planes would be for the front buffer and half
for the back buffer.

Next, a connection to the X server is established using
XOpenDisplay. Since glxdino requires OpenGL’s GLX
extension, the program checks that the extension exists
using glXQueryExtension. The routine indicates if the
GLX extension is supported or not. As is convention for
X routines that query extensions, the routine can also re-
turn the base error code and base event code for the GLX
extension. The current version of GLX supports no exten-
sion events (but does define eight protocol errors). Most
OpenGL programs will need neither of these numbers. You
can pass in NULL as glxdino does to indicate you do not
need the event or error base.

OpenGL 1s designed for future extensibility. The
glXQueryVersion routine returns the major and minor
version of the OpenGL implementation. Currently, the
major version is 1 and the minor version is 0. glxdino
does not use glXQueryVersion but it may be useful for
programs in the future.

2.1.1 Choosing a Visual and Colormap

The GLX extension overloads X visuals to denote sup-
ported frame buffer configurations. Before you create an
OpenGL window, you should select a visual which sup-

ports the frame buffer features you intend to use. GLX
guarantees at least two visual will be supported. An
RGBA mode visual with a depth buffer, stencil buffer, and
accumulation buffer must be supported. Second, a color
index mode visual with a depth buffer and stencil buffer
must be available. More and less capable visuals are likely
to also be supported depending on the implementation.

To make 1t easy to select a visual, glXChooseVisual
takes a list of the capabilities you are requesting and re-
turns an XVisualInfo#* for a visual meeting your require-
ments. NULL is returned if a visual meeting your needs
is not available. To ensure your application will run with
any OpenGL GLX server, your program should be written
to support the base line required GLX visuals. Also you
should only ask for the minimum set of frame buffer ca-
pabilities you require. For example, if your program never
uses a stencil buffer, you will possibly waste resources if
you request one anyway.

Since glxdino rotates the dinosaur in response to user
input, the program will run better if double buffering is
available. Double buffering allows a scene to be rendered
out of view and then displayed nearly instantly to elim-
inate the visual artifacts associated with watching a 3D
scene render. Double buffering helps create the illusion of
smooth animation. Since double buffering support is not
required for OpenGL implementations, glxdino resorts
to single buffering if no double buffer visuals are avail-
able. The program’s configuration integer array tells
what capabilities glXChooseVisual should look for. No-
tice how if a double buffer visual is not found, another
attempt is made which does not request double buffering
by starting after the GLX DOUBLBUFFER token. And when
the -single option is specified, the code only looks for a
singled buffered visual.

glxdino does require a depth buffer (of at least 16 bits
of accuracy) and uses the RGBA color model. The RGBA
base line visual must support at least a 16 bit depth buffer
so glxdino should always find a usable visual.

You should not assume the visual you need is the
default visual. Using a non-default visual means win-
dows created using the visual will require a colormap
matching the visual. Since the window we are inter-
ested in uses OpenGL’s RGBA color model, we want a
colormap configured for using RGB. The ICCCM estab-
lishes a means for sharing RGB colormaps between clients.
XmuLookupStandardColormap is used to set up a colormap
for the specified visual. The routine reads the ICCCM
RGB DEFAULT MAP property on the X server’s root window.
If the property does not exist or does not have an en-
try for the specified visual, a new RGB colormap is cre-
ated for the visual and the property is updated (creat-
ing it if necessary). Once the colormap has been created,
XGetRGBColormaps finds the newly created colormap. The
work for finding a colormap is done by the getColormap
routine.

If a standard colormap cannot be allocated, glxdino
will create an unshared colormap. For some servers,
it is possible (though unlikely) a DirectColor visual
might be returned (though the GLX specification re-
quires a TrueColor visual be returned in precedence to a
DirectColor visual if possible). To shorten the example
code by only handling the most likely case, the code bails
if a DirectColor visual is encountered. A more portable
(and longer) program would be capable of initializing an
RGB DirectColor colormap.

2.1.2 Creating a Rendering Context

Once a suitable visual and colormap are found, the pro-
gram can create an OpenGL rendering context using
glXCreateContext. (The same context can be used for
different windows with the same visual.)

The last parameter allows the program to request a di-
rect rendering context if the program is connected to a
local X server. An OpenGL implementation is not re-
quired to support direct rendering, but if it does, faster
rendering is possible since OpenGL will render directly to
the graphics hardware. Direct rendered OpenGL requests
do not have to be sent to the X server. Even when on the
local machine, you may not want direct rendering in some
cases. For example, if you want to render to X pixmaps,
you must render through the X server.

GLX rendering contexts support sharing of display lists
among one another. To this end, the third parameter to
glXCreateContext is another already created GLX ren-
dering context. NULL can be specified to create an initial
rendering context. If an already existent rendering con-
text is specified, the display list indexes and definitions
are shared by the two rendering contexts. The sharing is
transitive so a share group can be formed between a whole
set of rendering contexts.

To share, all the rendering contexts must exist in the
same address space. This means direct renderers cannot
share display lists with renderers rendering through the
X server. Likewise direct renderers in separate programs
cannot share display lists. Sharing display lists between
renderers can help to minimize the memory requirements
of applications that need the same display lists.

2.1.3 Setting Up a Window

Because OpenGL uses visuals to distinguish various frame
buffer capabilities, programmers using OpenGL need to be
aware of the required steps to create a window with a non-
default visual. As mentioned earlier a colormap created
for the visual is necessary. But the most irksome thing
to remember about creating a window with a non-default
visual 1s that the border pixel value must be specified if
the window’s visual is not the same as its parent’s visual.
Otherwise a BadMatch is generated.

Before actually creating the window, the argument
to the -geometry option should be parsed using
XParseGeometry to obtain the user’s requested size and
location. The size will be needed when we create the win-
dow. Both the size and location are needed to set up the
ICCCM size hints for the window manager. A fixed aspect
ratio is also requested by setting up the right size hints if
the ~keepaspect option is specified.

Once the window is created, XSetStandardProperties
sets up the various standard ICCCM properties including
size hints, icon name, and window name. Then the IC-
CCM window manager hints are set up to indicate the
window’s initial state. The -iconic option sets the win-
dow manager hints to indicate the window should be ini-
tially iconified. XAllocWMHints allocates a hints structure.
Once filled in, XSetWMHints sets up the hint property for
the window.

The final addition to the window is the WM _PROTOCOLS
property which indicates window manager protocols the
client understands. The most commonly used protocol
defined by ICCCM is WM DELETE WINDOW. If this atom is
listed in the WM_PROTOCOLS property of a top-level window,
then when the user selects the program be quit from the
window manager, the window manager will politely send
a WM DELETE WINDOW message to the client instructing the
client to delete the window. If the window is the applica-
tion’s main window, the client is expected to terminate. If
this property is not set, the window manager will simply
ask the X server to terminate the client’s connection with-
out notice to the client. By default, this results in Xlib
printing an ugly message like:

X connection to :0.0 broken
(explicit kill or server shutdown).

Asking to participate in the WM DELETE WINDOW protocol
allows the client to safely handle requests to quit from the
window manager.

The property has another advantage for OpenGL pro-
grams. Many OpenGL programs doing animation will use
XPending to check for pending X events and otherwise
draw their animation. But if all a client’s animation is di-
rect OpenGL rendering and the client does not otherwise
do any X requests, the client never sends requests to the
X server. Due to a problem in XPending’s implementation
on many Unix operating systems,! such an OpenGL pro-
gram might not notice its X connection was terminated
for sometime. Using the WM_DELETE WINDOW protocol elim-
inates this problem because the window manager notifies

1Operating systems using FIONREAD ioct1 calls on file descriptors
using Berkeley non-blocking I/O cannot differentiate no data to read
from a broken connection; both conditions cause the FIONREAD ioctl
to return zero. MIT’s standard implementation of XPending uses
Berkeley non-blocking I/O and FIONREAD ioctls. Eventually, Xlib
will do an explicit check on the socket to see if it closes but only
after a couple hundred calls to XPending.

the client via a message (tripping XPending) and the client
1s expected to drop the connection.

Using the WM_DELETE WINDOW protocol is good practice
even if you do not use XPending and the Xlib message
does not bother you.

All these steps (besides creating a window with a non-
default visual) are standard for creating a top-level X win-
dow. A top-level window is a window created as a child
of the root window (the window manager may choose to
reparent the window when it i1s mapped to add a bor-
der). Note that the properties discussed are placed on the
top-level window, not necessarily the same window that
OpenGL renders into. While glxdino creates a single
window, a more complicated program might nest windows
used for OpenGL rendering inside the top-level window.
The ICCCM window manager properties belong on top-
level windows only.

An TRIS GL programmer not familiar with X will prob-
ably find these details cumbersome. Most of the work will
be done for you if you use a toolkit layered on top of Xlib.

Now a window and an OpenGL rendering context ex-
ist. In OpenGL (unlike Xlib), you do not pass the ren-
dering destination into every rendering call. Instead a
given OpenGL rendering context is bound to a window
using glXMakeCurrent. Once bound, all OpenGL ren-
dering calls operate using the current OpenGL rendering
context and the current bound window. A thread can only
be bound to one window and one rendering context at a
time. A context can only be bound to a single thread
at a time. If you call glXMakeCurrent again, it unbinds
from the old context and window and then binds to the
newly specified context and window. You can unbind a
thread from a window and a context by passing NULL for
the context and None for the drawable.

2.2 The Dinosaur Model

The task of figuring out how to describe the 3D object
you wish to render is called modeling. Much as a plastic
airplane model is constructed out of little pieces, a com-
puter generated 3D scene must also be built out of little
pieces. In the case of 3D rendering, the pieces are generally
polygons.

The dinosaur model to be displayed is constructed out
of a hierarchy of display lists. Rendering the dinosaur is
accomplished by executing a single display list.

The strategy for modeling the dinosaur is to construct
solid pieces for the body, arms, legs, and eyes. Figure
2 shows the 2D sides of the solids to construct the di-
nosaur. Making these pieces solid is done by eztruding the
sides (meaning stretching the 2D sides into a third dimen-
sion). By correctly situating the solid pieces relative to
each other, they form the complete dinosaur.

The work to build the dinosaur model is done by
the routine named makeDinosaur. A helper routine

Figure 2: 2D complex polygons used to model the di-
nosaur’s arm, leg, eye, and body sides.

extrudeSolidFromPolygon is used to construct each solid
extruded object.

2.2.1 The GLU Tessellator

The polygons in Figure 2 are irregular and complex. For
performance reasons, OpenGL directly supports drawing
only convex polygons. The complex polygons that make
up the sides of the dinosaur need to be built from smaller
convex polygons.

Since rendering complex polygons is a common need,
OpenGL supplies a set of utility routines in the OpenGL
GLU library which make it easy to tessellate complex poly-
gons. In computer graphics, tessellation is the process of
breaking a complex geometric surface into simple convex
polygons.

The GLU library routines for tessellation are:

glullewTess - create a new tessellation object.

gluTessCallback - define a callback for a tessellation ob-
ject.

gluBeginPolygon - begin a polygon description to tessel-
late.

gluTessVertex - specify a vertex for the polygon to tes-
sellate.

glullextContour - mark the beginning of another contour
for the polygon to tessellate.

gluEndPolygon - finish a polygon being tessellated.

gluDeleteTess - destroy a tessellation object.

These routines are used in the example code to tessellate
the sides of the dinosaur. Notice at the beginning of the
program static arrays of 2D vertices are specified for the
dinosaur’s body, arm, leg, and eye polygons.

To use the tessellation package, you first create a tes-
sellation object with gluNewTess. An object of type
GLUtriangulatorObj* is returned which is passed into
the other polygon tessellation routines. You do not need
a tessellation object for every polygon you tessellate. You
might need more than one tessellation object if you were
trying to tessellate more than one polygon at a time. In
the sample program, a single tessellation object is used for
all the polygons needing tessellation.

Once you have a tessellation object, you should set up
callback routines using gluTessCallback. The way that
the GLU tessellation package works is that you feed in
vertices. Then the tessellation is performed and your reg-
istered callbacks are called to indicate the beginning, end,
and all the vertices for the convex polygons which correctly
tessellate the points you feed to the tessellator.

Look at the extrudeSolidFromPolygon routine which
uses the GLU tessellation routines. To understand exactly
why the callbacks are specified as they are, consult the
OpenGL Reference Manual [4]. The point to notice is how
a single tessellation object is set up once and callbacks are
registered for it. Then gluBeginPolygon is used to start
tessellating a new complex polygon. The vertices of the
polygon are specified using gluTessVertex. The polygon
is finished by calling gluEndPolygon.

Notice the code for tessellating the polygon lies between
a gllNewList and glEndList; these routines begin and end
the creation of a display list. The callbacks will generate
glVertex2fv calls specifying the vertices of convex poly-
gons needed to represent the complex polygon being tes-
sellated. Once completed, a display list 1s available that
can render the desired complex polygon.

Consider the performance benefits of OpenGL’s polygon
tessellator compared with a graphics system that supplies
a polygon primitive that supports non-convex polygons. A
primitive which supported complex polygons would likely
need to tessellate each complex polygon on the fly. Calcu-
lating a tessellation is not without cost. If you were draw-
ing the same complex polygon more than once, it is bet-
ter to do the tessellation only once. This is exactly what
is achieved by creating a display list for the tessellated
polygon. But if you are rendering continuously changing
complex polygons, the GLU tessellator is fast enough for
generating vertices on the fly for immediate-mode render-
ing.

Having a tessellation object not directly tied to render-
ing is also more flexible. Your program might need to tes-
sellate a polygon but not actually render it. The GLU’s
system of callbacks just generate vertices. You can call
OpenGL glVertex calls to render the vertices or supply

your own special callbacks to save the vertices for your
own purposes. The tessellation algorithm is accessible for
your own use.

The GLU tessellator also supports multiple contours al-
lowing disjoint polygons or polygons with holes to be tes-
sellated. The gluNextContour routine begins a new con-
tour.

The tessellation object 1s just one example of function-
ality in OpenGL’s GLU library which supports 3D ren-
dering without complicating the basic rendering routines
in the core OpenGL API. Other GLU routines support
rendering of curves and surfaces using Non-Uniform Ra-
tional B-Splines (NURBS) and tessellating boundaries of
solids such as cylinders, cones, and spheres. All the GLU
routines are a standard part of OpenGL.

2.2.2 Hierarchical Display Lists

After generating the complex polygon display list for the
sides of a solid object, the extrudeSolidFromPolygon
routine creates another display list for the “edge” of the
extruded solid. The edge is generated using a QUAD STRIP
primitive. Along with the vertices, normals are calculated
for each quad along the edge. Later these normals will
be used for lighting the dinosaur. The normals are com-
puted to be unit vectors. Having normals specified as unit
vectors 18 important for correct lighting. An alternative
would be to use glEnable(GL NORMALIZE) which ensures
all normals are properly normalized before use in lighting
calculations. Specifying unit vectors to begin with and not
using glEnable (GL_NORMALIZE) saves time during render-
ing. Be careful when using scaling transformations (often
set up using glScale) since scaling transformations will
scale normals too. If you are using scaling transforma-
tions, glEnable (GL NORMALIZE) is almost always required
for correct lighting.

Once the edge and side display lists are created, the solid
is formed by calling the edge display list, then filling in the
solid by calling the side display list twice (once translated
over by the width of the edge). The makeDinosaur rou-
tine will use extrudeSolidFromPolygon to create solids
for each body part needed by the dinosaur.

Then makeDinosaur combines these display lists into
a single display list for the entire dinosaur. Translations
are used to properly position the display lists to form the
complete dinosaur. The body display list is called; then
arms and legs for the right side are added; then arms and
legs for the left side are added; then the eye is added (it
is one solid which pokes out either side of the dinosaur’s
head a little bit on each side).

2.2.3 Back-face Culling

A common optimization in 3D graphics is a technique
known as back-face culling. The idea is to treat polygons
as essentially one-sided entities. A front facing polygon

needs to be rendered but a back-facing polygon can be
eliminated.

Consider the dinosaur model. When the model is ren-
dered, the back side of the dinosaur will not be visible. If
the direction each polygon “faced” was known, OpenGL
could simply eliminate approximately half of the polygons
(the back-facing ones) without ever rendering them.

Notice the calls to glFrontFace when each solid dis-
play list i1s created in extrudeSolidFromPolygon. The
argument to the call is either GL_ CW or GL _CCW meaning
clock-wise and counter-clockwise. If the vertices for a poly-
gon are listed in counter-clockwise order and glFrontFace
is set to GL_CCW, then the generated polygon is consid-
ered front facing. The static data specifying the vertices
of the complex polygons is listed in counter-clockwise or-
der. To make the quads in the quad strip face outwards,
glFrontFace(GL_CW) is specified. The same mode ensures
the far side faces outward. But glFrontFace(GL_CCW) is
needed to make sure the front of the other side faces out-
ward (logically it needs to be reversed from the opposite
side since the vertices were laid out counter-clockwise for
both sides since they are from the same display list).

When the static OpenGL
state is set up, glEnable (GL_CULL FACE) is used to enable
back-face culling. As with all modes enabled and disabled
using glEnable and glDisable, it is disabled by default.
Actually OpenGL is not limited to back-face culling. The
glCullFace routine can be used to specify either the back
or the front should be culled when face culling is enabled.

When you are developing your 3D program, it is often
helpful to disable back-face culling. That way both sides of
every polygon will be rendered. Then once you have your
scene correctly rendering, you can go back and optimize
your program to properly use back-face culling.

Do not be left with the misconception that enabling or
disabling back-face culling (or any other OpenGL feature)
must be done for the duration of the scene or program.
You can enable and disable back-face culling at will. It is
possible to draw part of your scene with back-face culling
enabled, and then disable it, only to later re-enable culling
but this time for front faces.

2.3 Lighting

The realism of a computer generated 3D scene is greatly
enhanced by adding lighting. In the first article’s sample
program, glColor3f was used to add color to the faces
of the 3D cube. This adds color to rendered objects but
does not use lighting. In the example, the cube moves but
the colors do not vary the way a real cube might as it is
affected by real world lighting. In this article’s example,
lighting will be used to add an extra degree of realism to
the scene.

OpenGL supports a sophisticated 3D lighting model to
achieve higher realism. When you look at a real object,

its color is affected by lights, the material properties of
the object, and the angle at which the light shines on the
object. OpenGL’s lighting model approximates the real
world.

Complicated effects such as the reflection of light and
shadows are not supported by OpenGL’s lighting model
though techniques and algorithms are available to simu-
late such effects. Environment mapping to simulate re-
flection is possible using OpenGL’s texturing capability.
OpenGL’s stencil buffers and blending support can be used
to create shadows, but an explanation of these techniques
is beyond the scope of this article. (See the topics in the
final chapter of the OpenGL Programming Guide).

2.3.1 Types of Lighting

The effects of light are complex. In OpenGL, lighting is
divided into four different components: emitted, ambient,
diffuse, and specular. All four components can be com-
puted independently and then added together.

Emitted light is the simplest. It is light that originates
from an object and is unaffected by any light sources. Self-
luminous objects can be modeled using emitted light.

Ambient light is light from some source that has been
scattered so much by the environment that its direction 1s
impossible to determine. Even a directed light such as a
flashlight may have some ambient light associated with it.

Diffuse light comes from some direction. The brightness
of the light bouncing off an object depends on the light’s
angle of incidence with the surface it is striking. Once it
hits a surface, the light is scattered equally in all directions
so 1t appears equally bright independent of where the eye
is located.

Specular light comes from some direction and tends to
bounce off the surface in a certain direction. Shiny metal
or plastic objects have a high specular component. Chalk
or carpet have almost none. Specularity corresponds to
the everyday notion of how shiny an object is.

A single OpenGL light source has a single color and
some combination of ambient, diffuse, and specular com-
ponents. OpenGL supports multiple lights simultaneously.
The programmer can control the makeup of a light as well
as 1ts position, direction, and attenuation. Attenuation
refers to how a light’s intensity decreases as distance from
the light increases.

2.3.2 Lighting in the Example

The example uses two lights. Both use only the diffuse
component. A bright, slightly green-tinted positionallight
is to the right, front of the dinosaur. A dim, red-tinted
directional light is coming from the left, front of the di-
nosaur. Figure 3 shows how the dinosaur, the lights, and
the eye-point are arranged. A positional light is located at
some finite position in modeling space. A directional light

green dinosaur +Y axis (out of page)

with red eye

centered at (0,0,0) +X axis
-
. N
bright,
,’ green-tinted

light (10,4,10)

dim, red-tinted
light at infinite
distance on
vector (1,-2,1)

eye at (0,0,30)
Iookmg at dinosaur

O

v +Z axis

Figure 3: Arrangement of lights, eye, and dinosaur in mod-
eling space.

is considered to be located infinitely far away. Using a di-
rectional light allows the OpenGL to consider the emitted
light rays to be parallel by the time the light reaches the
object. This simplifies the lighting calculations needed to
be done by OpenGL.

The lightZeroPosition and lightOnePosition static
variables indicate the position of the two lights. You will
notice each has not three but four coordinates. This is
because the light location is specified in homogeneous co-
ordinates. The fourth value divides the X, Y, and Z
coordinates to obtain the true coordinate. Notice how
lightOnePosition (the infinite light) has the fourth value
set to zero. This is how an infinite light is specified.?

The dinosaur can rotate around the Y axis based on the
user’s mouse input. The idea behind the example’s light-
ing arrangement is when the dinosaur is oriented so its side
faces to the right, 1t should appear green due to the bright
light. When its side faces leftward, the dinosaur should ap-
pear poorly lighted but the red infinite light should catch
the dinosaur’s red eye.

Section 9 of the program initialization shows how light-
ing is initialized. The glEnable(GL LIGHTING) turns on
lighting support. The lights’ positions and diffuse com-

2 Actually all coordinates are logically manipulated by OpenGL
as three-dimensional homogeneous coordinates. The OpenGL Pro-
gramming Guide’s Appendix G [3] briefly explains homogeneous co-
ordinates. A more involved discussion of homogeneous coordinates
and why they are useful for 3D computer graphics can be found in
Foley and van Dam [1].

ponents are set using via calls to glLightfv using the
GL POSITION and GL DIFFUSE parameters. The lights are
each enabled using glEnable.

The attenuation of the green light is adjusted. This
determines how the light intensity fades with distance and
demonstrates how individual lighting parameters can be
set. It would not make sense to adjust the attenuation of
the red light since it is an infinite light which shines with
uniform intensity.

Neither ambient nor specular lighting are demonstrated
in this example so that the effect of the diffuse lighting
would be clear. Specular lighting might have been used to
give the dinosaur’s eye a glint.

Recall when the edge of each solid was generated, nor-
mals were calculated for each vertex along the quad strip.
And a single normal was given for each complex polygon
side of the solid. These normals are used in the diffuse
lighting calculations to determine how much light should
be reflected. If you rotate the dinosaur, you will notice the
color intensity changes as the angle incidence for the light
varies.

Also notice the calls to glShadeModel. OpenGL’s shade
model determines whether flat or smooth shading should
be used on polygons. The dinosaur model uses different
shading depending on whether a side or edge is being ren-
dered. There 1s a good reason for this. The GL_SMOOTH
mode is used on the sides. If flat shading were used in-
stead of smooth, each convex polygon composing the tes-
sellated complex polygon side would be a single color. The
viewer could notice exactly how the sides has been tessel-
lated. Smooth shading prevents this since the colors are
interpolated across each polygon.

But for the edge of each solid, GL_FLAT is used. Because
the edge is generated as a quad strip, quads along the
strip share vertices. If we used a smooth shading model,
each edge between two quads would have a single normal.
Some of the edges are very sharp (like the claws in the
hand and the tip of the tail). Interpolating across such
varying normals would lead to an undesirable visual effect.
The fingers would appear rounded if looked at straight on.
Instead, with flat shading, each quad gets its own normal
and there is no interpolation so the sharp angles are clearly
visible.

2.4 View Selection

In 3D graphics, viewing i1s the process of establishing the
perspective and orientation with which the scene should
be rendered. Like a photographer properly setting up his
camera, an OpenGL programmer should establish a view.
Figure 4 shows how the view is set up for the example
program.

In OpenGL, establishing a view means loading the
projection and model-view matrices with the right
contents. To modify the projection matrix, call

Far plane
(40 units from eye)

One to one
aspect ratio

40 degree 5

field of view /

Near plane
(1 unit from eye)

Eye—point

Origin
(0,0,30)

(0,0,0)

Figure 4: Static view for glxdino.

glMatrixMode (GL PROJECTION). Calculating the right
matrix by hand can be tricky. The GLU library has two
useful routines that make the process easy.

GLU’s gluPerspective routine allows you to specify a
field of view angle, an aspect ratio, and near and far clip-
ping planes. It multiplies the current projection matrix
with one created according to the routine’s parameters.
Since initially the projection matrix is an identity matrix,
glxdino’s gluPerspective call effectively loads the pro-
jection matrix.

Another GLU routine, gluLookAt, can be used to ori-
ent the eye-point for the model-view matrix. Notice
how glMatrixMode(GL MODELVIEW) is used to switch to
the model-view matrix. Using gluLookAt requires you
to specify the eye-point’s location, a location to look
at, and a normal to determine which way is up. Like
gluPerspective, gluLookAt multiplies the matrix it con-
structs from 1ts parameters with the current matrix.
The initial model-view matrix is the identity matrix so
glxdino’s call to gluLookAt effectively loads the model-
view matrix.

After the gluLookAt call, glPushMatrix is called. Both
the model-view and projection matrices exist on stacks
that can be pushed and popped. Calling glPushMatrix
pushes a copy of the current matrix onto the stack. When
a rotation happens, this matrix is popped off and another
glPushMatrix is done. This newly pushed matrix is com-
posed with a rotation matrix to reflect the current absolute
orientation. Every rotation pops off the top matrix and
replaces it with a newly rotated matrix.

Notice that the light positions are not set until after the
model-view matrix has been properly initialized.

Because the location of the viewpoint affects the calcula-
tions for lighting, separate the projection transformation
in the projection matrix and the modeling and viewing
transformations in the model-view matrix.

2.5 Event Dispatching

Now the window has been created, the OpenGL renderer
has been bound to it, the display lists have been con-
structed, and OpenGL’s state has been configured. All
that remains is to request the window be mapped using
XMapWindow and begin handling any X events sent to the
program.

When the window was created, four types of win-
dow events were requested to be sent to our applica-
tion: Expose events reporting regions of the window to be
drawn, ButtonPress events indicating mouse button sta-
tus, KeyPress events indicating a keyboard key has been
presed, MotionNotify events indicating mouse movement,
and ConfigureNotify events indicating the window’s size
or position has changed.

X event dispatching is usually done in an infinite loop.
Most X programs do not stop dispatching events until the
program terminates. XNextEvent can be used to block
waiting for an X event. When an event arrives, its type is
examined to tell what event has been received.

2.5.1 Expose Handling

For an Expose event, the example program just sets a flag
indicating the window needs to be redrawn. The reason is
that Expose events indicate a single sub-rectangle in the
window that must be redrawn. The X server will send a
number of Expose events if a complex region of the window
has been exposed.

For a normal X program using 2D rendering, you might
be able to minimize the amount needed to redraw the win-
dow by carefully examining the rectangles for each Expose
event. For 3D programs, this is usually too difficult to be
worthwhile since it is hard to determine what would need
to be done to redraw some sub-region of the window. In
practice the window is usually redrawn in its entirety. For
the dinosaur example, redrawing involves calling the di-
nosaur display list with the right view. It is not helpful to
know only a sub-region of the window actually needs to be
redrawn. For this reason, an OpenGL program should not
begin redrawing until it has received all the expose events
most recently sent to the window. This practice is known
as expose compresston and helps to avoid redrawing more
than you should.

Notice that all that is done to immediately handle an
expose 1s to set the needRedraw flag. Then XPending is
used to determine if there are more events pending. Not
until the stream of events pauses is the redraw routine
really called (and the needRedraw flag reset).

The redraw routine does three things: it clears the im-
age and depth buffers; executes the dinosaur display list,
and either calls glXSwapBuffers on the window if double
buffered or calls glFlush. The current model-view matrix
determines in what orientation the dinosaur is drawn.

2.5.2 Window Resizing

The X server sends a ConfigureNotify event to indicate
a window resize. Handling the event generally requires
changing the viewport of OpenGL windows. The sample
program calls glViewport specifying the window’s new
width and height. A resize also necessitates a screen re-
draw so the code “falls through” to the expose code which
sets the needRedraw flag.

When you resize the window, the aspect ratio of the
window may change (unless you have negotiated a fixed
aspect ratio with the window manager as the ~keepaspect
option does). If you want the aspect ratio of your final
image to remain constant, you might need to respecify the
projection matrix with an aspect ratio to compensate for
the window’s changed aspect ratio. The example does not

do this.

2.5.3 Handling Input

The example program allows the user to rotate the di-
nosaur while moving the mouse by holding down the first
mouse button. We record the current angle of rotation
whenever a mouse button state changes. As the mouse
moves while the first mouse button is held down, the angle
is recalculated. A recalcModelView flag is set indicating
the scene should be redrawn with the new angle.

When there is a lull in events, the model-view matrix
is recalculated and then the needRedraw flag is set, forc-
ing a redraw. The recalcModelView flag is cleared. As
discussed earlier, recalculating the model-view 1s done by
popping off the current top matrix using glPopMatrix and
pushing on a new matrix. This new matrix is composed
with a rotation matrix using glRotatef to reflect the new
absolute angle of rotation. An alternative approach would
be to multiply the current matrix by a rotation matrix
reflecting the change in angle of rotation. But such a rela-
tive approach to rotation can lead to inaccurate rotations
due to accumulated floating point round-off errors.

2.5.4 Quitting

Because the WM_DELETE WINODW atom was specified on the
top-level window’s list of window manager protocols, the
event loop should also be ready to handle an event sent
by the window manager asking the program to quit. If
glxdino receives a ClientMessage event with the first
data item being the WM_DELETE WINDOW atom, the program
calls exit.

In many IRIS GL demonstration programs, the Escape
key is used by convention to quit the program. So glxdino
shows a simple means to quit in response to an Escape key
press.

3 Advanced Xlib and OpenGL

The glxdino example demonstrates a good deal of
OpenGL’s functionality and how to integrate OpenGL
with X but there are a number of issues that program-
mers wanting to write advanced OpenGL programs for X
should be aware of.

3.1 Colormaps

Already a method has been presented for sharing col-
ormaps using the ICCCM conventions. Most OpenGL pro-
grams do not use the default visual and therefore cannot
use the default colormap. Sharing colormaps is therefore
important for OpenGL programs to minimize the amount
of colormaps X servers will need to create.

Often OpenGL programs require more than one col-
ormap. A typical OpenGL program may do OpenGL ren-
dering in a subwindow but most of the program’s user
interface 1s implemented using normal X 2D rendering. If
the OpenGL window is 24 bits deep, it would be expen-
sive to require all the user interface windows also to be 24
bits deep. Among other things, pixmaps for the user in-
terface windows would need to be 32 bits per pixel instead
of the typical 8 bits per pixel. So the program may use
the server’s (probably default) 8 bit PseudoColor visual
for its user interface but use a 24 bit TrueColor visual for
its OpenGL subwindow. Multiple visuals demand mul-
tiple colormaps. Many other situations may arise when
an OpenGL program needs multiple colormaps within a
single top-level window hierarchy.

Normally window managers assume the colormap that
a top-level window and all its subwindows need is the col-
ormap used by the top-level window. A window manager
automatically notices the colormap of the top-level win-
dow and tries to ensure that that colormap is installed
when the window is being interacted with.

With multiple colormaps used inside a single top-
level window, the window manager needs to be informed
of the other colormaps being used. The Xlib routine
XSetWMColormapWindows can be used to place a standard
property on your top-level window to indicate all the col-
ormaps used by the top-level window and its descendants.

Be careful about using multiple colormaps. It is possi-
ble a server will not have enough colormap resources to
support the set of visuals and their associated colormaps
that you desire. Unfortunately, there i1s no standard way
to determine what sets of visuals and colormaps can be
simultaneously installed when multiple visuals are sup-
ported. Xlib provides two calls, XMaxCmaps0fScreen and
XMinCmapsOfScreen, but these do not express hardware
conflicts between visuals.

Here are some guidelines:

e If XMaxCmapsOfScreen returns one, you are guaran-
teed a single hardware colormap. Colormap flashing

10

is quite likely. You should write your entire applica-
tion to use a single colormap at a time.

If an 8 bit PseudoColor visual and a 24 bit TrueColor
visual are supported on a single screen, it is extremely
likely a different colormap for each of the two visuals
can be installed simultaneously.

If XMaxCmapsOfScreen returns a number higher than
one, it is possible that the hardware supports multiple
colormaps for the same visual. A rule of thumb is the
higher the number, the more likely. If the number is
higher than the total number of visuals on the screen,
it must be true for at least one visual (but you cannot
know which one).

Hopefully multiple hardware colormaps will become more
prevalent and perhaps a standard mechanism to detect
colormap and visual conflicts will become available.

3.2 Double Buffering

If you are writing an animated 3D program, you will prob-
ably want double buffering. It is not always available for
OpenGL. You have two choices: run in single-buffered
mode or render to a pixmap and copy each new frame
to the window using XCopyArea.

Note that when you use glXChooseVisual, booleans
are matched exactly (integers if specified are considered
minimums). This means if you want to support double
buffering but be able to fall back to single buffering, two
calls will be needed to glXChooseVisual. If an OpenGL
application has sophisticated needs for selecting visuals,
glXGetConfig can be called on each visual to determine
the OpenGL attributes of each visual.

3.3 Overlays

X has a convention for supporting overlay window via spe-
cial visuals [2]. OpenGL can support rendering into over-
lay visuals. Even if an X server supports overlay visuals,
you will need to make sure those visuals are OpenGL ca-
pable. The glXChooseVisual routine does allow you to
specify the frame buffer layer for the visual you are in-
terested in with the GLX LEVEL attribute. This makes it
easier to find OpenGL capable overlay visuals.

IRIS GL programmers are used to assuming the trans-
parent pixel in an overlay visual is always zero. For X
and OpenGL, this assumption is no longer valid. You
should query the transparent mode and pixel specified by
the SERVER_OVERLAY _VISUALS property to ensure portabil-
ity.

IRIS GL programmers are also used to considering over-
lay planes as being “built-in” to IRIS GL windows. The
X model for overlay planes considers an overlay window
to be a separate window with its own window ID. To use
overlays as one does in IRIS GL, you need to create a

normal plane window, then create a child window in the
overlay planes with the child’s origin located at the origin
of the parent. The child should be maintained to have
the same size as the parent. Clear the overlay window to
the transparent pixel value to see through to the parent
normal plane window. Switching between the overlay and
normal planes windows requires a glXMakeCurrent call.

It is likely that the overlay visuals will not support the
same frame buffer capabilities as the normal plane vi-
suals. You should avoid assuming overlay windows will
have frame buffer capabilities such as depth buffers, sten-
cil buffers, or accumulation buffers.

3.4 Mixing Xlib and OpenGL Rendering

In IRIS GL, rendering into an X window using core X
rendering after IRIS GL was bound to the window is un-
defined. This precluded mixing core X rendering with GL
rendering in the same window. OpenGL allows its ren-
dering to be mixed with core X rendering into the same
window. You should be careful doing so since X and
OpenGL rendering requests are logically issued in two dis-
tinct streams. If you want to ensure proper rendering,
you must synchronize the streams. Calling glXWaitGL will
make sure all OpenGL rendering has finished before sub-
sequent X rendering takes place. Calling glXWaitX will
make sure all core X rendering has finished before subse-
quent OpenGL rendering takes place. These requests do
not require a protocol round trip to the X server.

The core OpenGL API also includes glFinish and
glFlush commands useful for rendering synchronization.
glFinishensures all rendering has appeared on the screen
when the routine returns (similar to XSync). glFlush only
ensures the queued commands will eventually be executed
(similar to XFlush).

Realize that mixing OpenGL and X is not normally nec-
essary. Many OpenGL programs will use a toolkit like
Motif for their 2D user interface component and use a dis-
tinct X window for OpenGL rendering. This requires no
synchronization since OpenGL and core X rendering go to
distinct X windows. Only when OpenGL and core X ren-
dering are directed at the same window is synchronization
of rendering necessary.

Also OpenGL can be used for extremely fast 2D as well
as 3D. When you feel a need to mix core X and OpenGL
rendering into the same window, consider rendering what
you would do in core X using OpenGL. Not only do you
avoid the synchronization overhead, but you can poten-
tially achieve faster 2D using direct rendered OpenGL
compared to core X rendering.

3.5 Fonts

Graphics programs often need to display text. You can
use X font rendering routines or you can use the GLX

11

glXUseXFont routine to create display lists out of X fonts.

Neither of these methods of font rendering may be flex-
ible enough for a program desiring stroke or scalable fonts
or having sophisticated font needs. In the future, an
OpenGL font manager will be available to meet these
needs. In the meantime, you can use glXUseXFont or X
font rendering or roll your own font support. An easy way
to do this is to convert each glyph of your font into a dis-
play list. Rendering text in the font becomes a matter of
executing the display list corresponding to each glyph in
the string to display.

3.6 Display Lists

OpenGL supports immediate mode rendering where com-
mands can be generated on the fly and sent directly to the
screen. Programmers should be aware that their OpenGL
programs might be run indirectly. In this case, immediate
mode rendering could require a great deal of overhead for
transport to the X server and possibly across a network.

For this reason, OpenGL programmers should try to use
display lists when possible to batch rendering commands.
Since the display lists are stored in the server, executing a
display list has minimal overhead compared to executing
the same commands in the display list immediately.

Display lists are likely to have other advantages since
OpenGL implementations are allowed to compile them for
maximum performance. Be aware you can mix display
lists and 1immediate mode rendering to achieve the best
mix of performance and rendering flexibility.

4 Conclusion

The glxdino example demonstrates the basic tasks that
must be done to use OpenGL with X. The program
demonstrates sophisticated OpenGL features such as dou-
ble buffering, lighting, shading, back-face culling, display
list modeling, and polygon tessellation. And the proper
X conventions are followed to ensure glxdino works well
with other X programs.

The glxdino example program and the hints for ad-
vanced OpenGL programming should provide a good foun-
dation for understanding and programming OpenGL with
Xlib. The next article will explain how to integrate
OpenGL with the Motif toolkit.

A

O W0 N W N =

=
= O

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45

46
47
48
49
50
51
52

53

glxdino.c

/* compile: cc -o glxdino glxdino.c -1GLU -1GL -1Xmu -1X11 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

ttinclude <math.h> /* for cos(), sin(), and sqrt() */

#include <GL/glx.h> /* this includes X and gl.h headers */

#include <GL/glu.h> /* gluPerspective(), gluLookAt(), GLU polygon
* tesselator */

#include <X11/Xatom.h> /* for XA_RGB_DEFAULT_MAP atom */

#include <X11/Xmu/StdCmap.h> /* for XmuLookupStandardColormap() */

#include <X11/keysym.h> /* for XK_Escape keysym */

typedef enum {
RESERVED, BODY_SIDE, BODY_EDGE, BODY_WHOLE, ARM_SIDE, ARM_EDGE, ARM_WHOLE,
LEG_SIDE, LEG_EDGE, LEG_WHOLE, EYE_SIDE, EYE_EDGE, EYE_WHOLE, DINOSAUR

} displayLists;

Display *dpy;

Window win;

GLfloat angle = -150; /% in degrees */

GLboolean doubleBuffer = GL_TRUE, iconic = GL_FALSE, keepAspect = GL_FALSE;

int W = 300, H = 300;

XSizeHints sizeHints =

GLdouble bodyWidth = 2.

int configuration[] = {GLX_DOUBLEBUFFER, GLX_RGBA, GLX_DEPTH_SIZE, 16, None};

GLfloat body[1[2] = { {0, 3}, {1, 1}, {5, 1}, {8, 4}, {10, 4}, {11, 5%},

{11, 11.5%}, {13, 12}, {13, 13}, {10, 13.5}, {13, 14}, {13, 15}, {11, 16},
{8, 16}, {7, 15}, {7, 13}, {8, 12}, {7, 11}, {6, 6}, {4, 3}, {3, 2},
{1, 2} };

GLfloat arm[1[2] = { {8, 10}, {9, 9}, {10, 9}, {13, 8}, {14, 9}, {16, 9},
{15, 9.5}, {16, 10}, {15, 10}, {15.5, 11}, {14.5, 10}, {14, 11}, {14, 10},
{13, 9}, {11, 11}, {9, 11} };

GLfloat leg[1l[2] = { {8, 6}, {8, 4}, {9, 3}, {9, 2}, {8, 1}, {8, 0.5}, {9, 0},
{12, o}, {10, 1}, {10, 2}, {12, 4}, {11, 6}, {10, 7}, {9, 7} };

GLfloat eye[1[2] = { {8.75, 15}, {9, 14.7}, {9.6, 14.7}, {10.1, 153},

{9.6, 15.25}, {9, 15.25} };

GLfloat lightZeroPosition[] = {10.0, 4.0, 10.0, 1.0};

GLfloat lightZeroColor[] = {0.8, 1.0, 0.8, 1.0}; /* green-tinted */

GLfloat lightOnePosition[] = {-1.0, -2.0, 1.0, 0.0};

GLfloat lightOneColor[] = {0.6, 0.3, 0.2, 1.0}; /#* red-tinted */

GLfloat skinColor[] = {0.1, 1.0, 0.1, 1.0}, eyeColor[] = {1.0, 0.2, 0.2, 1.0};

{0};
0;

void

fatalError(char *message)

{
fprintf (stderr, "glxdino: %s\n", message);
exit(1);

}

Colormap

getColormap (XVisualInfo * vi)

{
Status status;
XStandardColormap *standardCmaps;
Colormap cmap;
int i, numCmaps;

/* be lazy; using DirectColor too involved for this example */

12

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

if (vi->class != TrueColor)

fatalError('"no support for non-TrueColor visual");
/* if no standard colormap but TrueColor, just make an unshared one */
status = XmulLookupStandardColormap(dpy, vi->screen, vi->visualid,

vi->depth, XA_RGB_DEFAULT_MAP, /* replace */ False, /* retain */ True);
if (status == 1) {

status = XGetRGBColormaps (dpy, RootWindow(dpy, vi->screen),

4standardCmaps, &numCmaps, XA_RGB_DEFAULT_MAP) ;
if (status == 1)
for (i = 0; i < numCmaps; i++)

if (standardCmaps[i].visualid == vi->visualid) {
cmap = standardCmaps[i].colormap;
XFree(standardCmaps) ;

return cmap;

}

cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
vi->visual, AllocNone);

return cmap;

void

extrudeSolidFromPolygon(GLfloat datal[][2], unsigned int dataSize,

{

GLdouble thickness, GLuint side, GLuint edge, GLuint whole)

static GLUtriangulator0Obj *tobj = NULL;

GLdouble vertex[3], dx, dy, len;
int i;
int count = dataSize / (2 * sizeof(GLfloat));

if (tobj == NULL) {
tobj = glulNewTess(); /* create and initialize a GLU polygon
* tesselation object */
gluTessCallback(tobj, GLU_BEGIN, glBegin);
gluTessCallback(tobj, GLU_VERTEX, glVertex2fv); /* semi-tricky #*/
gluTessCallback(tobj, GLU_END, glEnd);
}
gllewlList (side, GL_COMPILE);
glShadeModel (GL_SMOOTH); /* smooth minimizes seeing tessellation */
gluBeginPolygon(tobj);
for (i = 0; i < count; i++) {
vertex[0] = data[i][0];
vertex[1] = datal[i][1];
vertex[2] 0;
gluTessVertex(tobj, vertex, &datalil);

}
gluEndPolygon(tobj);
glEndList ();
glNewList (edge, GL_COMPILE);
glShadeModel(GL_FLAT); /# flat shade keeps angular hands from being
* "smoothed" */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= count; i++) {
/* mod function handles closing the edge */
glVertex3f(datali % count][0], datali % count][1], 0.0);
glVertex3f(datali % count][0], datali % count][1], thickness);
/* Calculate a unit normal by dividing by Euclidean distance. We
* could be lazy and use glEnable(GL_NORMALIZE) so we could pass in
* arbitrary normals for a very slight performance hit. */
dx = datal(i + 1) % count][1] - datali % count][1];

13

112 dy = datali % count][0] - datal[(i + 1) % count][0];

113 len = sqrt(dx * dx + dy * dy);

114 gllNormal3f(dx / len, dy / len, 0.0);

115 }

116 glEnd();

117 glEndList ();

118 gllewList (whole, GL_COMPILE);

119 glFrontFace (GL_CW) ;

120 glCallList (edge);

121 gllNormal3£(0.0, 0.0, -1.0); /* constant normal for side */
122 glCallList (side);

123 glPushMatrix() ;

124 glTranslatef (0.0, 0.0, thickness);

125 glFrontFace (GL_CCW) ;

126 glNormal3£(0.0, 0.0, 1.0); /* opposite normal for other side */
127 glCallList (side);

128 glPopMatrix () ;

129 glEndList ();

130 }

131 void

132 makeDinosaur(void)

133 {

134 GLfloat bodyWidth = 3.0;

135 extrudeSolidFromPolygon(body, sizeof (body), bodyWidth,

136 BODY_SIDE, BODY_EDGE, BODY_WHOLE);

137 extrudeSolidFromPolygon(arm, sizeof(arm), bodyWidth / 4,
138 ARM_SIDE, ARM_EDGE, ARM_WHOLE);

139 extrudeSolidFromPolygon(leg, sizeof(leg), bodyWidth / 2,
140 LEG_SIDE, LEG_EDGE, LEG_WHOLE);

141 extrudeSolidFromPolygon(eye, sizeof(eye), bodyWidth + 0.2,
142 EYE_SIDE, EYE_EDGE, EYE_WHOLE);

143 gllNewList (DINOSAUR, GL_COMPILE);

144 glMaterialfv(GL_FRONT, GL_DIFFUSE, skinColor);

145 glCallList (BODY_WHOLE);

146 glPushMatrix() ;

147 glTranslatef (0.0, 0.0, bodyWidth);

148 glCallList (ARM_WHOLE) ;

149 glCallList (LEG_WHOLE);

150 glTranslatef (0.0, 0.0, -bodyWidth - bodyWidth / 4);
151 glCallList (ARM_WHOLE) ;

152 glTranslatef (0.0, 0.0, -bodyWidth / 4);

153 glCallList (LEG_WHOLE);

154 glTranslatef (0.0, 0.0, bodyWidth / 2 - 0.1);

155 glMaterialfv(GL_FRONT, GL_DIFFUSE, eyeColor);

156 glCallList (EYE_WHOLE);

157 glPopMatrix () ;

158 glEndList ();

159 }

160 void

161 redraw(void)

162 {

163 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

164 glCallList (DINOSAUR) ;

165 if (doubleBuffer)

166 glXSwapBuffers(dpy, win); /* buffer swap does implicit glFlush */
167 else glFlush(); /* explicit flush for single buffered case */
168 }

14

169 void
170 main(int argc, char **argv)

171
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200

201
202
203

204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220

221

{

XViguallInfo *vi;

Colormap cmap;

XSetWindowAttributes swa;

XWMHints *wmHints;

Atom wmDeleteWindow;

GLXContext CcX;

XEvent event;

KeySym ks;

GLboolean needRedraw = GL_FALSE, recalcModelView = GL_TRUE;
char *display = NULL, *geometry = NULL;

int flags, x, y, width, height, lastX, i;

/*** (1) process normal X command line arguments *¥*/
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-geometry'")) {
if (++i >= argc)
fatalError("follow -geometry option with geometry parameter');
geometry = argv[il;
} else if (!strcmp(argv[i], "-display")) {
if (++i >= argc)
fatalError("follow -display option with display parameter");
display = argv[il;
} else if (!strcmp(argv[i], "-iconic")) iconic = GL_TRUE;
else if ('strcmp(argv[i], "-keepaspect")) keepAspect = GL_TRUE;
else if (!strcmp(argv[i], "-single'")) doubleBuffer = GL_FALSE;
else fatalError("bad option');

/**%% (2) open a connection to the X server **x/
dpy = XOpenDisplay(display);
if (dpy == NULL) fatalError('"could not open display");

/**% (3) make sure OpenGL’s GLX extension supported ***/
if (!'glXQueryExtension(dpy, NULL, NULL))
fatalError ("X server has no OpenGL GLX extension');

/**%% (4) find an appropriate visual and a colormap for it ***/
/* find an OpenGL-capable RGB visual with depth buffer */
if (!'doubleBuffer) goto SingleBufferOverride;
vi = glXChooseVisual(dpy, DefaultScreen(dpy), configuration);
if (vi == NULL) {
SingleBufferOverride:
vi = glXChooseVisual(dpy, DefaultScreen(dpy), &configuration[1]);
if (vi == NULL)
fatalError(''no appropriate RGB visual with depth buffer");
doubleBuffer = GL_FALSE;
}

cmap = getColormap(vi);

/*** (5) create an OpenGL rendering context *¥*/

/* create an OpenGL rendering context */

cx = glXCreateContext(dpy, vi, /# no sharing of display lists %/ NULL,
/* direct rendering if possible */ GL_TRUE);

if (cx == NULL) fatalError('could not create rendering context");

/*** (6) create an X window with selected visual and right properties #**/

15

222 flags = XParseGeometry(geometry, &x, &y,

223 (unsigned int *) &width, (unsigned int *) &height);

224 if (WidthValue & flags) {

225 sizeHints.flags |= USSize;

226 sizeHints.width = width;

227 W = width;

228 }

229 if (HeightValue & flags) {

230 sizeHints.flags |= USSize;

231 sizeHints.height = height;

232 H = height;

233 }

234 if (XValue & flags) {

235 if (XNegative & flags)

236 x = DisplayWidth(dpy, DefaultScreen(dpy)) + x - sizeHints.width;
237 sizeHints.flags |= USPosition;

238 sizeHints.x = x;

239 }

240 if (YValue & flags) {

241 if (YNegative & flags)

242 y = DisplayHeight (dpy, DefaultScreen(dpy)) + y - sizeHints.height;
243 sizeHints.flags |= USPosition;

244 sizeHints.y = y;

245 }

246 if (keepAspect) {

247 sizeHints.flags |= PAspect;

248 sizeHints.min_aspect.x = sizeHints.max_aspect.x = W;

249 sizeHints.min_aspect.y = sizeHints.max_aspect.y = H;

250 }

251 swa.colormap = cmap;

252 swa.border_pixel = 0;

253 swa.event_mask = ExposureMask | StructureNotifyMask |

254 ButtonPressMask | ButtonlMotionMask | KeyPressMask;

255 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen),

256 sizeHints.x, sizeHints.y, W, H,

257 0, vi->depth, InputOutput, vi->visual,
258 CWBorderPixel | CWColormap | CWEventMask, &swa);
259 XSetStandardProperties(dpy, win, "OpenGLosaurus", "glxdino",
260 None, argv, argc, &sizeHints);

261 wmHints = XAllocWMHints();

262 wmHints->initial_state = iconic 7 IconicState : NormalState;
263 wnHints->flags = StateHint;

264 XSetWMHints(dpy, win, wmHints);

265 wnDeleteWindow = XInternAtom(dpy, "WM_DELETE_WINDOW", False);
266 XSetWMProtocols (dpy, win, &wmDeleteWindow, 1);

267 /*** (7) bind the rendering context to the window ***/

268 glXMakeCurrent (dpy, win, cx);

269 /**%% (8) make the desired display lists ***x/

270 makeDinosaur () ;

271 /*** (9) configure the OpenGL context for rendering *¥*/

272 glEnable(GL_CULL_FACE); /* “50% better perfomance than no back-face
273 * culling on Entry Indigo */

274 glEnable (GL_DEPTH_TEST) ; /* enable depth buffering */

275 glEnable(GL_LIGHTING); /* enable lighting */

276 glMatrixMode (GL_PROJECTION) ; /* set up projection transform */
277 gluPerspective(/* field of view in degree */ 40.0, /* aspect ratio */ 1.0,
278 /* Z near */ 1.0, /* Z far */ 40.0);

16

279 glMatrixMode (GL_MODELVIEW); /# now change to modelview */

280 gluLookAt (0.0, 0.0, 30.0, /* eye is at (0,0,30) */

281 0.0, 0.0, 0.0, /* center is at (0,0,0) */

282 0.0, 1.0, 0.); /* up is in postivie Y direction */
283 glPushMatrix () ; /* dummy push so we can pop on model recalc */
284 glLightModeli (GL_LIGHT_MODEL_LOCAL_VIEWER, 1);

285 glLightfv (GL_LIGHTO, GL_POSITION, lightZeroPosition);

286 glLightfv(GL_LIGHTO, GL_DIFFUSE, lightZeroColor);

287 glLightf(GL_LIGHTO, GL_CONSTANT_ATTENUATION, 0.1);

288 glLightf(GL_LIGHTO, GL_LINEAR_ATTENUATION, 0.05);

289 glLightfv(GL_LIGHT1, GL_POSITION, lightOnePosition);

290 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightOneColor);

291 glEnable (GL_LIGHTO);

292 glEnable (GL_LIGHT1); /* enable both lights */

293 /**%% (10) request the X window to be displayed on the screen **x*/
294 XMapWindow (dpy, win);

295 /**%% (11) dispatch X events ***/

296 while (1) {

297 do {

298 XNextEvent (dpy, &event);

299 switch (event.type) {

300 case ConfigurelNotify:

301 glViewport (0, O,

302 event.xconfigure.width, event.xconfigure.height);
303 /* fall through... */

304 case Expose:

305 needRedraw = GL_TRUE;

306 break;

307 case MotionNotify:

308 recalcModelView = GL_TRUE;

309 angle -= (lastX - event.xmotion.x);

310 case ButtonPress:

311 lastX = event.xbutton.x;

312 break;

313 case KeyPress:

314 ks = XLookupKeysym((XKeyEvent *) & event, 0);

315 if (ks == XK_Escape) exit(0);

316 break;

317 case ClientMessage:

318 if (event.xclient.data.l[0] == wmDeleteWindow) exit(0);
319 break;

320 }

321 } while (XPending(dpy));/# loop to compress events */

322 if (recalcModelView) {

323 glPopMatrix(); /* pop old rotated matrix (or dummy matrix if
324 * first time) */

325 glPushMatrix () ;

326 glRotatef (angle, 0.0, 1.0, 0.0);

327 glTranslatef (-8, -8, -bodyWidth / 2);

328 recalcModelView = GL_FALSE;

329 needRedraw = GL_TRUE;

330 }

331 if (needRedraw) {

332 redraw();

333 needRedraw = GL_FALSE;

334 }

335 }

336 1

17

References

[1] James Foley, Andries van Dam, Steven Feiner, and
John Hughes, Computer Graphics: Principles and
Practice, 2nd edition, Addison-Wesley Publishing,
1990.

[2] Mark Kilgard, “Programming X Overlay Windows,”
The X Journal SIGS Publications, July 1993.

[3] Jackie Neider, Tom Davis, Mason Woo, OpenGL
Programming Guide: The official guide to learning
OpenGL, Release 1, Addison Wesley, 1993.

[4] OpenGL Architecture Review Board, OpenGL Ref-
erence Manual: The official reference document for

OpenGL, Release 1, Addison Wesley, 1992.

18

