To BE PUBLISHED IN THE
NOVEMBER/DECEMBER ISSUE OF The X Journal.

OpenGL™ and X, Part 1:
An Introduction

Mark J. Kilgard *
Silicon Graphics Inc.
Revision : 1.16

October 4, 1993

Abstract

The OpenGL™ graphics system is a high-performance,
window system independent 2D and 3D graphics inter-
face. The technology was developed by Silicon Graphics
and 1s now controlled by the OpenGL Architecture Review
Board. OpenGL’s GLX extension integrates OpenGL with
the X Window System. This article describes OpenGL’s
functionality and how it is used with X. A simple OpenGL
program using Xlib is presented. OpenGL is compared
and contrasted with PEX| a 3D graphics interface designed
specifically for X. The two subsequent articles in this se-
ries describe how to integrate OpenGL with Xlib and Motif
programs.

1 Introduction

The OpenGL™ graphics system is a powerful software
interface for graphics hardware that allows graphics pro-
grammers to produce high-quality color images of 2D and
3D objects. The technology was developed by Silicon
Graphics Inc. (SGI) and is the result of ten years of ex-
perience designing production software interfaces for a full
spectrum of graphics hardware.

OpenGL is now controlled by an industry consortium
known as the OpenGL Architectural Review Board (ARB)
currently composed of Digital Equipment, IBM, Intel,
Microsoft, and SGI. The interface is licensed to a large
number of computer software and hardware vendors and
OpenGL implementations are now appearing on the mar-
ket.

This article is the first of a series of three articles ex-
plaining OpenGL to the users of the X Window System.
This article introduces the reader to OpenGL’s features,

*Mark graduated with B.A. in Computer Science from Rice Uni-
versity and is a Member of the Technical Staff at Silicon Graphics.
He can be reached by electronic mail addressed to mjk@sgi.com

particularly how they apply to X. This section will in-
troduce the reader to OpenGL’s philosophy and history.
Section 2 will explore OpenGL’s rich feature set. Section
3 discusses OpenGL’s integration with the X Window Sys-
tem via the GLX extension. Section 4 presents a simple
OpenGL program for X. Section b compares and contrasts
OpenGL to PEX| a 3D graphics interface designed specifi-
cally for X. Section 6 tells where to find more information
about OpenGL.

The second article in the series will explain in more de-
tail how to use OpenGL in conjunction with Xlib. The
third article will describe how to use OpenGL with Motif.

1.1 Design Philosophy

To appreciate OpenGL it is useful to understand its de-
sign philosophy. OpenGL provides a layer of abstraction
between graphics hardware and an application program.
It is visible to the programmer as a set of routines con-
sisting of about 120 distinct commands. Together these
routines make up the OpenGL application programming
interface (APT). The routines allow graphics primitives
(points, lines, polygons, bitmaps, and images) to be ren-
dered to a frame buffer. Using the available primitives and
the operations that control their rendering, high-quality
color graphics images of 3D objects can be rendered.

The designers of OpenGL present the graphics system
as a state machine [7] that controls a well-defined set
of drawing operations. The routines that OpenGL sup-
plies provide a means for the programmer to manipulate
OpenGL’s state machine to generate the desired graph-
ics output. Figure 1 shows a simplified view of OpenGL’s
abstract state machine. Specifying OpenGL as a state
machine allows consistent, precise specification and elim-
inates ambiguity about what a given operation does and
does not do.

The model used for interpretation of OpenGL com-

> Display
list
v Per-Vertex
- Operations . Per-
- Evaluator |- Primitive ™ ;lt?cs,:‘enz- — Fragment
Assembly Operations
\
commands
Texture
Memory
\/
| Pixel Frame-
| Operations » | buffer

Figure 1: High-level, abstract OpenGL machine.

mands is client-server. This is an abstract model and does
not demand OpenGL be implemented as distinct client
and server processes. A client-server approach means the
boundary between a program and the OpenGL implemen-
tation is well-defined to clearly specify how data is passed
between the program and OpenGL. This allows OpenGL
to operate over a wire protocol much as the X protocol
operates but does not mandate such an approach.

The OpenGL specification is window system indepen-
dent meaning it provides rendering functionality but does
not specify how to manipulate windows or receive events
from the window system. This allows the OpenGL inter-
face to be implemented for distinct window systems. For
example, OpenGL has been implemented for both the X
Window System and Windows N'T.

The specification which describes how OpenGL inter-
grates with the X Window System is known as GLX. It
is an extension to the core X protocol for communicating
OpenGL commands to the X server. It also supports win-
dow system specific operations such as creating rendering
contexts, binding those contexts to windows, and other
window system specific operations.

GLX does not demand OpenGL commands be executed
by the X server. The GLX specification explicitly allows
OpenGL to render directly to the hardware if supported
by the implementation. This is possible when the program
is running on the same machine as the graphics hardware.
This potentially allows extremely high performance ren-
dering because OpenGL commands do not need to be sent
through the X server to get to the graphics hardware.

Graphics systems are often classified as one of two types:
procedural or descriptive. Procedural means the program-
mer 1s determining what to draw by issuing a specific se-
quence of commands. Descriptive means the programmer
sets up a model of the scene to be rendered and leaves how
to draw the scene up to the graphics system. OpenGL is
procedural. In a descriptive system, the programmer gives
up control of exactly how the scene is to be rendered. Be-
ing procedural allows the programmer a high degree of
control to achieve the best performance. It is expected
that descriptive graphics systems will be implemented us-

ing OpenGL as a low level interface. SGI’s Inventor toolkit
[8] is one example of such a descriptive graphics system.

An overriding goal of OpenGL is to allow the construc-
tion of portable and interoperable 3D graphics programs.
For this reason, OpenGL’s rendering functionality must be
implemented in its entirety. This means all the complex
3D rendering functionality described later in the article
can be used with any OpenGL implementation. Previous
graphics standards often allowed subsetting; too often the
result was programs that could not be expected to work
on distinct implementations.

1.2 History of OpenGL

A brief history of OpenGL explains how OpenGL came
to be and what inspired its development. OpenGL is the
successor to a graphics library known as TRIS GL (GL
stands for graphics library) developed by SGI as a hard-
ware independent graphics interface for use across a full
line of graphics workstations. TRIS GL [4] is used by more
than 1,500 3D graphics applications. IRIS GL was devel-
oped over the last decade and has been implemented on
numerous graphics devices of varying sophistication.

OpenGL i1s not backward-compatible with TRIS GL.
OpenGL has removed dated IRIS GL functionality or
replaced it with more general functionality. The rou-
tines and symbols comprising the OpenGL API have been
named to avoid name space conflicts (all names start with
either gl or GL_). The window system dependent portions
of IRIS GL are not part of OpenGL. What has been pre-
served is the spirit of the API. OpenGL retains IRIS GL’s
ability to render 3D objects quickly and efficiently.

OpenGL has been proposed as a graphics standard to
bring 3D graphics programming into the mainstream of
applications programming. For this reason, the OpenGL
ARB was formed. The ARB licenses OpenGL and directs
further development. Currently, over 20 companies have
licensed OpenGL and intend to release or have already
released commercial implementations. Numerous univer-
sities have also licensed OpenGL.

2 OpenGL’s Functionality

OpenGL is not a high-level 3D graphics interface. When
you build a graphics program using OpenGL, you start
with a few simple primitives. The sophistication comes
from combining the primitives and using them in vari-
ous modes. Figure 2 shows the available geometric prim-
itives. Notice the ordering of the vertices, in particular
for primitives such as the GL_TRIANGLE STRIP and the
GL_TRIANGLE FAN.

To begin a primitive, the glBegin routine passes in the
primitive type as an argument. Then a list of vertex co-
ordinates are given. OpenGL has a family of routines to
specify vertex coordinates. All the routines begin with

1, 4

(]
0.2 °3

GL_POINTS
1 2

0

4

GL_LINE_LOOP GL_POLYGON GL_QUADS

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

Figure 2: OpenGL Geometric Primitives.

the name glVertex. The suffix to a specific glVertex
routine tells the type and number of coordinates for the
vertex. For example, glVertex3f indicates a three coor-
dinate vertex consisting of floating point values is to be
generated.

An OpenGL primitive is completed by calling glEnd.
Along with the coordinates of each vertex, per-vertex in-
formation about color, material, normals, edge drawing,
and texturing can be specified between a glBegin and
glEnd. Figure 3 shows an example of how a polygon might
be generated. Notice how glColor3f is used to change the
current color. Each vertex is drawn according to the cur-
rent color.

glShadeModel (GL_SMOOTH) ;

glBegin(GL POLYGON); /#* pentagon */
glColor3£(0.0, 1.0, 0.0); /* green */
glVertex3£(0.0, 1.0, 0.0);
glVertex3£(0.7, 1.0, 0.0);
glColor3£(0.0, 0.0, 1.0); /* blue */
glVertex3f(1.4, 0.6, 0.0);
glVertex3f(1.4, 0.4, 0.0);
glVertex3£(0.0, 0.0, 0.0);

glEnd();

Figure 3: Example of generating a 3D polygon with
smooth shading between vertices.

2.1 Observations About Primitives

OpenGL tends to be function call intensive. There is not a
complex RenderPolygonWithGratuitousArguments com-
mand. Instead primitives are constructed by calling multi-
ple OpenGL routines. Calling multiple routines gives the
program flexibility and control over the primitives gener-
ated.

OpenGL 1s flexible about what format information is
passed to it. For example, the glVertex3i accepts inte-
gers while glVertex3f and glVertex3d take single and
double precision floating point respectively. It is very ad-
vantageous for OpenGL to have several basically identi-
cal routines which accept different data types. It allows
the programmer the flexibility to decide how to store the
data. A programmer whose data is in integer format does
not want to convert it to floating point to pass it to the
graphics system. And another programmer does not want
to convert floating point data into integers. Conversions
between data types can be expensive. High performance
graphics hardware can be designed to accept multiple data
formats and totally off load the task of format conversion
from the host processor.

You can start to see why 1t makes sense to con-
sider OpenGL as a state machine. Commands such
as glColor3f change the state of the current color.
Subsequent vertices use the current color. glBegin
puts OpenGL into a state to start drawing the spec-
ified primitive. The multiple glVertex routines load
up one at a time the vertices for a given primi-
tive. Nearly all of OpenGL’s state that can be
set by the programmer can also be queried by the
programmer. The glGetFloatv(GL CURRENT COLOR,
&float array) call, for example, will retrieve the setting
of the current color.

2.2 Two Color Models

OpenGL has two different color modes: RGBA and color
index. The glColor3f call has already been demonstrated
but not explained. This call assumes OpenGL’s RGBA
color mode. The routine takes three floating point param-
eters between 0.0 and 1.0 which specify the degree of red,
green, and blue for the current color. For X users, RGBA
roughly corresponds to the TrueColor visual type while
color index corresponds to PsuedoColor. The color mode
is fixed for a given window the same way X windows are
created with a single, fixed visual.

You should be able to guess that the RGB in RGBA
stands for red, green, and blue. The A may be unfamil-
iar. It stands for alpha. The alpha value is used when two
colors are to be averaged together for blending operations.
Alpha represents the opacity of the color. 1.0 is totally
opaque while 0.0 is totally transparent. For example, one
could use alpha to render a scene with green glass. The
frame buffer can support an alpha component which al-

lows alpha values to be stored. Each pixel in the frame
buffer would have an associated alpha value. The alpha
value is not visible on the display. It is just used to deter-
mine how a pixel to be drawn is blended with the current
pixel value in the frame buffer. The glAlphaFunc and
glBlendFunc routines control precisely how alpha buffer-
ing operates. The glColor4f command is a variation on
glColor3f which takes a fourth parameter specifying al-
pha (glColor3f implicitly sets alpha to 1.0).

RGBA supports a tri-linear palette for the full range of
colors, making it very useful for rendering realistic scenes.
OpenGL supports lighting, fog, and smooth shading most
effectively in RGBA mode. Since alot of hardware has lim-
ited color resolution, an application can request OpenGL
use dithering for better color resolution (at the expense of
spatial resolution).

Many modes in OpenGL, such as dithering, are en-
abled and disabled using the glEnable and glDisable
commands. For example, dithering is enabled by call-
ing glEnable (GL DITHER). Then drawing would be done
with dithering enabled. You can think of glEnable and
glDisable as ways to affect the operation of the OpenGL
state machine.

The color index model assumes a readable and writable
linear colormap. Usually window systems specify how col-
ors are allocated and arranged so OpenGL does not have
any specific routines to allocate colors. For example in
X, an Xlib color allocation routine such as XAllocColor
would be used. The glIndex family of routines is used to
set the current color index. The advantage of color index
is that the color of a given pixel value can be changed.
There is a level of indirection between the pixel values in
the frame buffer and the colors on the screen.

2.3 Ancillary Buffers

The drawing surface for OpenGL is generically referred to
as the frame buffer. In actuality, the frame buffer might be
a window created by your computer’s window system or an
in-memory data structure (like an X pixmap). OpenGL’s
frame buffer can logically be considered a set of buffers.
A buffer is logically just a two-dimensional array of val-
ues. The most important buffer is the image buffer which
contains the actual color information and possibly the al-
pha component but there are also other types of buffers.
A window system might support multiple frame buffer
configurations, each supporting different types of buffers.
Multiple windows of different configurations can be dis-
played at one time though a single window has a fixed
frame buffer configuration. In X, visuals are overloaded to
also describe supported OpenGL frame buffer configura-
tions.

The non-image buffers are often referred to as ancillary
or helper buffers. While they do not contain the image
itself, they can be essential in properly generating the im-

age.

2.3.1 The Depth Buffer

For 3D graphics, the depth buffer (also commonly referred
to as a Z buffer) is nearly essential. While the screen only
has two dimensions, 3D graphics seeks to simulate a third.
When 3D primitives are rendered, they are rasterized into
a collection of fragments. Each fragment corresponds to
a single pixel and includes color, depth, and sometimes
texture-coordinate values. The X and Y values for a frag-
ment determine where on the screen the pixel should ap-
pear. A fragment’s Z value or depth is used to determine
how “near” the fragment is. When the depth buffer is en-
abled, the fragment is drawn only if its Z value is “nearer”
than the current Z value for the corresponding pixel in the
depth buffer. When the fragment is drawn into the frame
buffer, its Z value replaces the previous value in the depth
buffer. Normally, when the scene starts to be rendered,
the entire depth buffer is cleared to the “farthest” value.
As a 3D scene is rendered, the depth buffer automatically
sorts the fragments being drawn so only the nearest frag-
ment at each pixel location gets drawn. Things logically
behind other things are automatically eliminated from the
scene. This is the normal use for a depth buffer, although
other uses are possible.

2.3.2 The Stencil Buffer

Another buffer supported by OpenGL 1s the stencil buffer.
Like the depth buffer, the stencil buffer can be used to
eliminate certain pixels from being drawn. The stencil
buffer acts in much the same way as a cardboard stencil
used with a can of spray paint. You can “draw” values
into the stencil buffer using the normal OpenGL render-
ing primitives. Then a stencil test can be defined and
stenciling enabled.

One possible use of the stencil buffer is in a flight sim-
ulator. Imagine that the view outside the plane is to fit
into an irregularly shaped windshield. The rendering of
the view outside the plane should not interfere with the
rendering of the instruments “inside” the cockpit. If the
windshield area is drawn in the stencil buffer, then a sten-
cil test can be set up to make sure the windshield view 1s
only drawn where the windshield stencil has been drawn.
There are many other uses for stencil buffers.

2.3.3 The Accumulation Buffer

Yet another buffer supported by OpenGL is the accumu-
lation buffer [2] which can be used for antialiasing, motion
blur, simulating photographic depth of field, and render-
ing soft shadows from multiple light sources. You do not
render directly into the accumulation buffer. Instead, you
render a series of images, accumulating each into the ac-
cumulation buffer, combining the images. Then the accu-

mulated image can be dumped back into the image buffer
for display. The effect is much the same as the one a pho-
tographer gets from multiply exposing a piece of film.

Motion blur is one use. Imagine drawing a scene several
times with each frame corresponding to a slightly different
point in time. By accumulating the frames (with decayed
intensity for earlier frames), you can achieve an effect sim-
ilar to motion blur since still objects are sharp but moving
objects are blurred by their accumulation in slightly dif-
fering locations.

2.3.4 Double Buffering

Double buffering means having two sets of image buffers,
one front visible buffer and another back non-visible buffer.
Unlike simple 2D, 3D images may take substantially more
time to generate. And depth, alpha, and accumulation
buffers all mean that the image being drawn at any mo-
ment might be quite different from the final image. It
would be quite distracting for the viewer to see each scene
while it was “under construction” and would destroy the
illusion of a smoothly animated scene. Double buffering
allows for one image to be rendered while another is being
displayed.

OpenGL supports this notion. The glDrawBuffer rou-
tine can be used to determine to what buffer primitives
should be drawn. A window system specific routine 1is
available to make the back buffer visible.

Double buffering is often achieved by rendering the non-
visible image buffer into memory and then quickly copying
the buffers contents to screen memory. A better alterna-
tive is to build hardware that actually supports two sets
of image buffers. Then the cost of a buffer swap can be
extremely low since no data has to be copied. Instead, the
video controller can just change to scanning image pixels
out of the other buffer.

2.3.5 Stereo

Stereo is similar to double buffering in that more than one
image buffer is supported. Instead of front and back, left
and right are provided (though generally stereo and dou-
ble buffering are combined, requiring four image buffers).
Special stereo video hardware alternates between scanning
out the left and right buffers every screen refresh. Gog-
gles synchronized with the vertical refresh of the screen
alternately open and close LCD shutters so the left eye
sees the left frame and the right eye sees the right frame.
By carefully drawing the scene twice with slightly differ-
ent perspective into the left and right buffers, the viewer
experiences an optical illusion of 3D.

While double buffering is common on graphics work-
stations, stereo requires special hardware and tends to be
rather expensive so many OpenGL implementations may
not support stereo.

Object |Model-View Clip

| Matrix
Coordinates

Projection
Matrix

Coordinates

Normalized
Device Viewport
| Trans-
formation

Window

B —
Coordinates

| Perspective
Division

Coordinates

Figure 4: Stages of vertex transformation.

2.4 Viewing

One of the most difficult initial hurdles in learning 3D
graphics programming is how to properly set up a view.
It is very easy to get a black screen because the viewing
for the scene is not properly initialized.

3D computer graphics uses matrix transformations to
properly orient, view, clip, and map the model to the
screen. OpenGL’s various stages in mapping vertices in
object coordinates into pixels in window coordinates are
pictured in Figure 4.

An OpenGL programmer is responsible for loading the
modelview and projection matrices. The modelview ma-
trix determines how the vertices of OpenGL primitives
are transformed to eye coordinates. The projection matrix
transforms vertices in eye coordinates to clip coordinates.

A number of OpenGL routines deal with manipulat-
ing these matrices. The glMatrixMode routine is called
with an argument of GL MODELVIEW or GL PROJECTION
to determine what is the current modifiable matrix.
Then glLoadIdentity may be called to set the currently
modifiable matrix to the identity matrix. Then rou-
tines such as glRotatef, glTranslatef, and glScalef
may be called to manipulate the currently modifiable
matrix. glLoadMatrixf loads a specific matrix and
glMultMatrixf multiplies the current matrix by some
specified matrix and store the result as the current ma-
trix. Understanding exactly how these different commands
should be properly used is beyond the scope of this article.

The final step in establishing a view of your model is
the viewport transformation. It determines how the scene
gets mapped onto the computer screen. The glViewport
routine specifies the rectangle in the window of into which
the final image is to be mapped. By default, the entire
window is used. glViewport is commonly invoked when
an OpenGL window 1s resized.

2.5 Other Features

There are a large number of OpenGL features worth men-
tioning but their full introduction is beyond the scope of
this article.

Just specifying 3D primitives and determining how to

map them to the screen is not enough to achieve realis-
tic images. OpenGL also supports a number of lighting
models that simulate the effects of lighting on primaitives.
Light sources can be defined and material properties can
be specified to achieve realistic lighting effects.

So far polygons have been described as basically shaded
or flat surfaces. But OpenGL allows polygons to be ren-
dered which have a 1D or 2D texture mapped onto the
polygon. For example, the surface of a desk could be tex-
tured with a wood grain image for greater realism. Texture
mapping can greatly enhance the visual impact of a scene
without increasing the geometric complexity.

Polygons are the basic primitive for much 3D render-
ing but OpenGL also supports bitmaps and images. And
OpenGL provides evaluator commands for the efficient
rendering of curves and surfaces.

Because 3D rendering eventually appears on a screen
with limited resolution, OpenGL provides various tech-
niques to eliminate “jaggies” resulting from aliasing prob-
lems. OpenGL provides antialiasing support for points,
lines, and polygons. Techniques using the alpha, stencil,
or accumulation buffers can also be used to minimize alias-
ing problems.

Computer images often appear unrealistically sharp and
well-defined. OpenGL supports “fog” to provide an effect
that simulates atmospheric effects. Haze, mist, smoke,
and pollution can all be simulated. When fog is enabled,
objects farther away begin to fade into the specified fog
color.

Users of 3D want to do more than just see 3D images;
they want to interact with them. OpenGL supports a
selection mechanism that allows the user to pick an object
or objects drawn to a certain region of the screen. And
feedback can be used to obtain the results of rendering
calculations.

Often a sequence of OpenGL commands are rendered
repeatedly. OpenGL supports display lists which allow
commands to be compiled for later execution. Display
lists can even call other display lists allowing hierarchies
of display lists. For networked 3D applications, display
lists can greatly minimize the protocol bandwidth needed
and increase performance. The glWewList and glEndList
are used to create a display list. A created display list can
be executed using the glCallList routine.

One thing to keep in mind about OpenGL is that the
features described above are not isolated functionality.
Each feature can be combined with others for advanced
effects. For example, lighting, fog, display lists, texture
mapping, and double buffering can all be used simultane-
ously.

2.6 The GLU Library

The core OpenGL API focuses on rendering functional-
ity but there are a number of tasks common to many

3D programs that are not strictly related to rendering.
For this reason, the OpenGL standard also provides the
OpenGL Utility Library (GLU). The GLU routines (all

prefixed with glu) fall into one of the following areas:
e Manipulating images for use in texturing.

o Transforming Coordinates.

Polygon tessellation.

Rendering spheres, cylinders, and disks.

Non-Uniform Rational B-Spline (NURBS) curves and
surfaces.

e Describing errors.

The GLU is a separate but standard library that any
OpenGL application can use.

3 OpenGL’s X Support

GLX is an official part of the OpenGL standard for sup-
porting the X Window System. It provides additional rou-
tines (prefixed by g1X) for interfacing OpenGL with X. Tt
also defines a wire protocol for supporting OpenGL as an
X server extension. The GLX wire protocol allows work-
stations from different vendors to interoperate using 3D
graphics the same way the X protocol provides 2D graph-
ics interoperability. Some of the issues about integrating
X and OpenGL are discussed by Karlton [3].

GLX allows rendering into X windows and pixmaps. An
X server can support different visuals to describe the dif-
ferent types of windows supported by the server. For the
core X protocol, a visual specifies one (or more) depths for
the frame buffer and how pixel values are mapped to col-
ors on the screen. X treats a drawable as basically a 2D
array of pixels, but OpenGL has a much more sophisti-
cated view of a drawable’s frame buffer capabilities. GLX
overloads the core X notion of a visual by associating ad-
ditional information about OpenGL’s frame buffer capa-
bilities. In addition to an 1image buffer, OpenGL supports
various types of ancillary buffers. For example, a win-
dow might also have a stencil buffer and a depth buffer.
Modes such as stereo and double buffering are also sup-
ported. Multiple different frame buffer configurations can
be supported by a single X server by exporting multiple
visuals.

All OpenGL implementations for the X Window System
must support at least one RGBA visual and at least one
color index visual. Both visuals must support a stencil
buffer of at least 1 bit and a depth buffer of at least 12 bits
The required RGBA visual must have an accumulation
buffer. The alpha component of the image buffer is not
required for the RGBA visual (but input alpha is still used
in all rendering calculations). Many implementations will
supply many more than two visuals.

The GLX API supplies two routines, glXGetConfig and
glXChooseVisual, to help programmers select an appro-
priate visual. Once the appropriate visual is selected, call
XCreateWindow with the selected visual to create the win-
dow.

GLX supports off-screen rendering to pixmaps. First
create a standard X pixmap of the desired depth using
XCreatePixmap. Then call glXCreateGLXPixmap with
the desired OpenGL visual. A new drawable of type
GLXPixmap 1s returned which can be used for drawing
OpenGL into the pixmap.

To render using OpenGL, an OpenGL rendering context
must be created. The glXCreateContext routine creates
such a context. An option to glXCreateContext allows
the programmer to specify that direct rendering to the
hardware should be done if supported by the implementa-
tion.

Before rendering, a rendering context must be bound
to the desired drawable using glXMakeCurrent. OpenGL
rendering commands implicitly use the current bound ren-
dering context and one drawable. Just as a program
can create multiple windows, a program can create mul-
tiple OpenGL rendering contexts. But a thread can
only be bound to one rendering context and drawable
at a time. Once bound, OpenGL rendering can begin.
glXMakeCurrent can be called again to bind to a different
window and/or rendering context.

The GLX stream of commands is considered distinct
from the stream of X requests. Sometimes you may want
to mix OpenGL and X rendering into the same window. If
so synchronization can be achieved using the glXWaitGL
and glXWaitX routines.

To swap the buffers of a double buffered window,
glXSwapBuffers can be called. X fonts can be con-
verted into per-glyph OpenGL display lists using the
glXUseXFont routine.

4 A Simple Example Using X

Appendix A contains the C source code for a simple
OpenGL program. This example demonstrates what is
involved when programming OpenGL with Xlib. The pro-
gram creates a window and draws a 3D cube (missing two
faces) and allows the user to rotate the cube around the
X, Y, and Z axes using the mouse buttons.

Besides demonstrating how to properly establish an X
window for OpenGL rendering, the example demonstrates
the use of double buffering, display lists, and establishing
the proper viewing parameters.

4.1 Initialization

The following describes the steps involved in setting up
a window to render OpenGL into it. The numbers listed

correspond to numbers in the comments of the OpenGL
program in Appendix A.

1. Asin all X programs, XOpenDisplay should be called
to open a connection to the X server.

2. Make sure the OpenGL GLX extension is supported
by the X server.

3. Before creating the window, the program needs to
select an appropriate visual. The GLX routine
glXChooseVisual makes it easy to find the right vi-
sual. In the example, an RGBA (and TrueColor) vi-
sual with a depth buffer is desired and if possible, it
should support double buffering.

4. Create an OpenGL rendering context by calling
glXCreateContext.

5. Create a window with the selected visual. Most X
programs always use the default visual but OpenGL
programmers will need to be comfortable with us-
ing visuals other than the default. XCreateWindow
is called.

6. Bind the rendering context to the window using
glXMakeCurrent. Subsequent OpenGL rendering
commands will use the current window and render-
ing context.

7. To display the window, XMapWindow should be called.

8. Set the desired OpenGL state. In this example, depth
buffering is enabled, the clear color 1s set to black, and
the 3D viewing volume is specified.

9. Begin dispatching X events.

Button presses change the angle of rotation for the ob-
ject to be viewed and cause a redraw. Expose events also
cause a redraw (without changing the rotation). Window
resizes call glViewport to ensure the OpenGL viewport
corresponds to the maximum dimensions of the window.

4.2 Scene Update

The redraw routine does all the OpenGL rendering. The
code 1is slightly complicated by constructing a display
list to draw the cube. The first time redraw is called,
glNewList and glEndList are used to construct a display
list for the object to be rendered. Subsequent redraws call
the display list instead of rendering the object each time.

Creating a display list potentially allows improved per-
formance since the commands can be compiled for faster
execution. In the case of OpenGL across a network, dis-
play lists save having to send all the commands to render
the scene whenever the window is redrawn.

The commands to render the object consist of four
3D rectangles of different colors. Notice the rectangles

Figure 5: Screen snapshot of glxsimple with two other
simple 3D OpenGL programs.

are generated by first calling glBegin(GL QUADS) and
ended with glEnd. FEach rectangle is specified by four
glVertex3f calls that specify the four vertexes of each
rectangle. The glColor3f invocations tell what color each
rectangle should be rendered. Figure 5 shows how the pro-
gram looks.

If the window is double buffered, glXSwapBuffers is
called on the window. By default rendering to dou-
ble buffered windows takes place in the non-visible back
buffer. Swapping buffers will quickly swap the front and
back buffers avoiding any visual artifacts (the contents of
the back buffer should considered undefined after a swap).
In effect, the rendering of each frame can be done “behind
the scenes.”

glFlush is called to ensure that the OpenGL rendering
commands are actually sent to the graphics hardware. A
flush is implicitly done by glXSwapBuffers so the glFlush
is only needed explicitly in the single buffered case.

5 Comparing OpenGL to PEX

OpenGL is not the only means for extending the X Win-
dow System to support 3D. PEX [9] is an extension de-
veloped by the X Consortium to add 3D capabilities to
X. The currently available version is 5.1. A future release
known as PEX 6.0 is intended to address many of PEX
5.1’s problems but its specification is not yet finalized. An
in-depth analysis of PEX 5.1 and OpenGL 1.0 is presented
by Akin [1]. Here we discuss some of the most prominent
distinctions.

5.1 Subsets and Baselines

One thing that makes PEX difficult to compare to
OpenGL 1s that PEX allows much of its functionality to
be optionally implemented. PEX classifies 1ts functional-
ity into one or more of three subsets: the immediate mode
subset, the structure subset, or the PHIGS workstation
subset. (PHIGS is a 3D graphics standard and stands for
Programmer’s Hierarchical Interactive Graphics System.)
The PEX specification explicitly allows implementations to
support one, two, or all three subsets. The result 1s that
an application cannot depend on any given PEX server to
supply the subset functionality the application might de-
pend on. This problem is commonly referred to as “sub-
setting.”

OpenGL mandates that that all its rendering function-
ality be supported. Even advanced features such as depth
buffering, fog, lighting, anti-aliasing, and texturing must
be supported in all implementations.

But still all OpenGL implementations are not totally
identical. Rendering functionality is not a complete pic-
ture of OpenGL’s capability. Rendering performance will
depend on the implementation. And frame buffer capabil-
ities will vary between implementations. Different depths
of ancillary buffers will be supported; stereo and double
buffering hardware may or may not actually be present;
a frame buffer may or may not support the alpha compo-
nent. But despite the possibility for variation, OpenGL for
the X Window System does mandate that two visuals (one
RGBA, the other color index) will be present with frame
buffer capabilities sufficient for most common 3D applica-
tions. Stencil and depth buffers must be supported for the
two required visuals. And an accumulation buffer must be
supported for the RGBA visual. These required visuals
guarantee all OpenGL implementations have a standard
baseline of both rendering and frame buffer functionality
which applications can rely on being present.

5.2 Programming Interfaces

There is an essential difference between PEX and OpenGL
in how the two graphics systems are specified. OpenGL
is fundamentally specified as an application programming
interface. Like the X Window System, the fundamental
specification for PEX is a wire protocol.

In PEX the choice of programming interface is left to
the programmer. In X11Rb5 a PHIGS style API was sup-
plied but this API for PEX has not gained much accep-
tance. Currently the PEX community is standardizing the
PEXIlib API which more readily exposes the wire proto-
col. But PEX implementation dependencies are also ex-
posed, leaving the programmer to work around function-
ality missing due to subsetting in PEX implementations.

With OpenGL there is a single API which promises to be
standard even across differing window systems (such as X
and NT) and the full functionality of the APTis availablein

all OpenGL implementations. The GLX specification does
provide a wire protocol for network-transparent operation
but the wire protocol is not the fundamental specification

of OpenGL.

5.3 Rendering Functionality

PEX and OpenGL both support basic 3D rendering func-
tionality. Both allow 3D and 2D lines and polygons to be
rendered using standard modeling and viewing methods.
PEX (depending on the implementation) and OpenGL
also support picking, lighting, depth cueing, and hidden
line and surface removal.

There are a number of sophisticated rendering features
supported by OpenGL that PEX completely lacks. Alpha
blending, texture and environment mapping, antialiasing
(though some PEX implementations supply it as a non-
standard extension), accumulation buffer methods, and
stencil buffering are all missing from PEX.

PEX does support features not available in OpenGL.
PEX has extensive text support for stroke fonts which are
fully transformable in 3D. B-Spline surfaces and curves
are supported directly by PEX while OpenGL supports
NURBS functionality via routines which are part of the
GLU library. PEX can support cell arrays but the func-
tionality i1s seldom implemented. Markers and quadrilat-
eral meshes are supported by PEX as a rendering primi-
tive; neither are supported as primitives by OpenGL. PEX
supports self-intersecting contours and polygon lists with
shared geometry, while OpenGL does not.

Double buffering and stereo support are built into
OpenGL (though not all implementations will support
double buffered or stereo visuals) while PEX relies on pro-
prietary support or not yet nonstandardized X extensions
for double buffering and stereo.

5.4 Display Lists

PEX and OpenGL both provide a means to store com-
mands for later execution. In PEX (for implementations
that support the structure or PHIGS workstation subsets),
editable structures can be created and edited. A structure
contains graphics primitives such as a polygon. Structures
may also contain calls to execute other structures allow-
ing them to be arranged in a hierarchical fashion. PHIGS
supports structures so PEX does so too. Entire 3D models
can be constructed out of a hierarchy of structures so that
a redraw requires only retraversing the structure hierarchy.

OpenGL does not support structures in the same way
PEX does. Instead display lists can be constructed which
contain sequences of OpenGL commands. Like structures,
a display list can contain a command to execute another
display list, effectively allowing display lists to be com-
bined into arbitrary networks. Unlike structures, OpenGL
display lists are not editable. Once one is created, it

is sealed and cannot be changed (except by destroy and
recreating it). This write-only nature allows optimizations
to be performed on display lists unavailable to structures.
The commands in the display list can be optimized for
faster execution.

Even though display lists cannot be edited, this should
not be considered a disadvantage. The same effect as edit-
ing can be achieved by rewriting display lists called by
other display lists.

Display lists and structures both minimize the amount
of transfer overhead when running PEX or OpenGL over
a network since the commands in a structure or display
list can be executed repeatedly by only calling the dis-
play list by name. The commands themselves need to be
transferred across the wire only once.

5.5 Portability

While PEX was designed to be vendor-independent and
portable, the subsetting allowed by the PEX standard al-
lows implementations of greatly varying functionality to
claim to be “standard” PEX implementations. The fact
that PEX explicitly allows multiple subsets perhaps indi-
cates the PEX standard may be too large to implement
fully and completely in a timely fashion. Anyone who has
been disappointed by the functionality of the X11Rb5 sam-
ple implementation understands the problem.

OpenGL does not allow any subsetting of rendering
functionality and therefore can expect much greater ap-
plication portability. The need for interoperability testing
for OpenGL 1s greatly reduced because OpenGL demands
more consistent implementations.

Neither OpenGL nor PEX is pizel exact. This means
neither specification is completely explicit about what pix-
els must be modified by each rendering operation (the core
X protocol is largely pixel exact). Pixel exactness is not a
totally desirable feature for 3D since much 3D graphics is
done with floating point where numerical errors make ex-
actness nearly impossible. But the OpenGL specification
1s much more rigorous than PEX about what is considered
Not only does this make confor-
mance test design easier, but OpenGL programmers can
have high confidence their scene will be rendered accu-
rately on all compliant OpenGL implementations.

conformant behavior.

The OpenGL release kit includes a suite of conformance
tests to verify rendering accuracy. No comprehensive test
suites are yet available to validate PEX implementations.

5.6 Window System Dependency

PEX is very tightly coupled to the X Window System. Not
only was it designed in the context of X but its semantics
depend on X notions of drawables, events, and execution
requirements.

But X is not the only significant window system on the
market. For this reason, OpenGL was designed to be win-
dow system independent. This means its API can also be
used with Windows NT and future window systems. Ap-
plication developers wishing to develop 3D applications
for both X and Windows machines will appreciate having
a consistent model for 3D across the two window systems.

6 Finding Out More

The best place to find more information about graphics
programming using OpenGL is the OpenGL Technical Li-
brary published by Addison-Wesley. Currently available is
the OpenGL Reference Manual [6] and the OpenGL Pro-
gramming Guide [5]. The first volume contains complete
descriptions of all the OpenGL routines including the GLU
and GLX routines. The second volume is an excellent in-
troduction to OpenGL including all its advanced rendering
features.

Those with Internet access can obtain OpenGL doc-
umentation and sample program source code by using
anonymous ftp to sgi.com. PostScript documentation
for all the routines that are part of the OpenGL, GLU,
and GLX APIs may be obtained. Example code from the
OpenGL Programming Guide (including the aux library)
is also available.

Of course the best way to learn OpenGL is to program
with it. Systems supporting OpenGL are currently ship-
ping from a number of workstation hardware and software
vendors. Check with your vendor for availability.

10

A glxsimple.c

1 /# compile: cc -o glxsimple glxsimple.c -1GL -1X11 %/

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <GL/glx.h> /* this includes the necessary X headers */
5 #include <GL/gl.h>

6 static int snglBuf[] = {GLX_RGBA, GLX_DEPTH_SIZE, 16, None};

7 static int dblBuf[] = {GLX_RGBA, GLX_DEPTH_SIZE, 16, GLX_DOUBLEBUFFER, None};

8 Display *dpy;

9 Window win;

10 GLfloat xAngle = 42.0, yAngle = 82.0, zAngle = 112.0;
11 GLboolean doubleBuffer = GL_TRUE;

12 void

13 fatalError(char *message)

14 {

15 fprintf (stderr, "glxsimple: %s\n", message);

16 exit(1);

17}

18 wvoid

19 redraw(void)

20 {

21 static GLboolean displayListInited = GL_FALSE;
22 if (displayListInited) {

23 /* if display list already exists, just execute it */
24 glCallList(1);

25 } else {

26 /* otherwise compile and execute to create the display list */
27 glNewList (1, GL_COMPILE_AND_EXECUTE);

28 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
29 /* front face */

30 glBegin(GL_QUADS);

31 glColor3f(0.0, 0.7, 0.1); /* green */
32 glVertex3f(-1.0, 1.0, 1.0);

33 glVertex3£(1.0, 1.0, 1.0);

34 glVertex3f(1.0, -1.0, 1.0);

35 glVertex3f(-1.0, -1.0, 1.0);

36 /* back face */

37 glColor3f(0.9, 1.0, 0.0); /* yellow */
38 glVertex3f(-1.0, 1.0, -1.0);

39 glVertex3f(1.0, 1.0, -1.0);

40 glVertex3£(1.0, -1.0, -1.0);

41 glVertex3f(-1.0, -1.0, -1.0);

42 /* top side face */

43 glColor3f(0.2, 0.2, 1.0); /* blue */
44 glVertex3f(-1.0, 1.0, 1.0);

45 glVertex3£(1.0, 1.0, 1.0);

46 glVertex3f(1.0, 1.0, -1.0);

47 glVertex3f(-1.0, 1.0, -1.0);

48 /* bottom side face */

49 glColor3f(0.7, 0.0, 0.1); /* red */

50 glVertex3f(-1.0, -1.0, 1.0);

51 glVertex3f(1.0, -1.0, 1.0);

52 glVertex3£(1.0, -1.0, -1.0);

53 glVertex3f(-1.0, -1.0, -1.0);

11

54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70

71

72
73

74

75

76

77
78
79
80
81
82
83
84

85

86
87
88
89

90

91
92
93
94
95
96
97
98

99

100

glEnd () ;
glEndList () ;
displayListInited = GL_TRUE;
}
if (doubleBuffer) glXSwapBuffers(dpy, win); /* buffer swap does implicit glFlush */
else glFlush(); /# explicit flush for single buffered case */

void
main(int argc, char **argv)

{

XViguallInfo *vi;

Colormap cmap;

XSetWindowAttributes swa;

GLXContext CcX;

XEvent event;

GLboolean needRedraw = GL_FALSE, recalcModelView = GL_TRUE;
int dummy ;

/**%% (1) open a connection to the X server **x/

dpy = XOpenDisplay(NULL);
if (dpy == NULL) fatalError('"could not open display");

/**% (2) make sure OpenGL’s GLX extension supported ***/
if ('glXQueryExtension(dpy, &dummy, &dummy)) fatalError ("X server has no OpenGL GLX extension");
/**%% (3) find an appropriate visual **x*/

/* find an OpenGL-capable RGB visual with depth buffer */

vi = glXChooseVisual(dpy, DefaultScreen(dpy), dblBuf);

if (vi == NULL) {
vi = glXChooseVisual(dpy, DefaultScreen(dpy), snglBuf);
if (vi == NULL) fatalError('"no RGB visual with depth buffer");
doubleBuffer = GL_FALSE;

}

if(vi->class !'= TrueColor) fatalError("TrueColor visual required for this program");
/*** (4) create an OpenGL rendering context *¥*/

/* create an OpenGL rendering context */

cx = glXCreateContext(dpy, vi, /# no sharing of display lists #/ None,
/* direct rendering if possible */ GL_TRUE);

if (cx == NULL) fatalError('could not create rendering context");

/*%% (5) create an X window with the selected visual *%%/

/* create an X colormap since probably not using default visual */

cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen), vi->visual, AllocNone);

swa.colormap = cmap;

swa.border_pixel = 0;

swa.event_mask = ExposureMask | ButtonPressMask | StructureNotifyMask;

win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 300, 300, 0, vi->depth,
InputOutput, vi->visual, CWBorderPixel | CWColormap | CWEventMask, &swa);

XSetStandardProperties(dpy, win, "glxsimple", "glxsimple'", None, argv, argc, NULL);

/*** (6) bind the rendering context to the window ***/

glXMakeCurrent (dpy, win, cx);

12

101 /**%% (7) request the X window to be displayed on the screen ***/

102 XMapWindow (dpy, win);

103 /*** (8) configure the OpenGL context for rendering *¥*/
104 glEnable (GL_DEPTH_TEST); /* enable depth buffering */

105 glDepthFunc (GL_LESS) ; /* pedantic, GL_LESS is the default */
106 glClearDepth(1.0); /* pedantic, 1.0 is the default */
107 /* frame buffer clears should be to black */

108 glClearColor(0.0, 0.0, 0.0, 0.0);

109 /* set up projection transform */

110 glMatrixMode (GL_PROJECTION) ;

111 glLoadIdentity();

112 glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 10.0);

113 /* establish initial viewport */

114 glViewport(0, 0, 300, 300); /* pedantic, full window size is default viewport */
115 /**%% (9) dispatch X events **x/

116 while (1) {

117 do {

118 XNextEvent (dpy, &event);

119 switch (event.type) {

120 case ButtonPress:

121 recalcModelView = GL_TRUE;

122 switch (event.xbutton.button) {

123 case 1: xAngle += 10.0; break;

124 case 2: yAngle += 10.0; break;

125 case 3: zAngle += 10.0; break;

126 }

127 break;

128 case ConfigurelNotify:

129 glViewport (0, O, event.xconfigure.width, event.xconfigure.height);
130 /* fall through... */

131 case Expose:

132 needRedraw = GL_TRUE;

133 break;

134 }

135 } while(XPending(dpy)); /* loop to compress events */
136 if (recalcModelView) {

137 glMatrixMode (GL_MODELVIEW) ;

138 /* reset modelview matrix to the identity matrix */
139 glloadIdentity();

140 /* move the camera back three units */

141 glTranslatef (0.0, 0.0, -3.0);

142 /* rotate by X, Y, and Z angles */

143 glRotatef (xAngle, 0.1, 0.0, 0.0);

144 glRotatef (yAngle, 0.0, 0.1, 0.0);

145 glRotatef (zAngle, 0.0, 0.0, 1.0);

146 recalcModelView = GL_FALSE;

147 needRedraw = GL_TRUE;

148 }

149 if (needRedraw) {

150 redraw();

151 needRedraw = GL_FALSE;

152 }

153 }

154 }

13

References

(1]

[2]

(8]

[9]

Allen Akin, “Analysis of PEX 5.1 and OpenGL 1.0,”
Silicon Graphics, August 3, 1992.

Paul Haeberli, Kurt Akeley, “The Accumulation
Buffer: Hardware Support for High-Quality Render-
ing,” Proceedings of SIGGRAPH ’90, August 1990,
pp. 309-318.

Phil Karlton, “Integrating the GL into the X Envi-
ronment: A High Performance Rendering Extension
Working with and Not Against X,” The X Resource:
Proceeding of the 6th Annual X Technical Conference,
O’Reilly & Associates, Issue 1, Winter 1992.

Patricia McLendon, Graphics Library Programming

Guide, Silicon Graphics, 1991.

Jackie Neider, Tom Davis, Mason Woo, OpenGL
Programming Guide: The official guide to learning
OpenGL, Release 1, Addison Wesley, 1993.

OpenGL Architecture Review Board, OpenGL Ref-
erence Manual: The official reference document for

OpenGL, Release 1, Addison Wesley, 1992.

Mark Segal, Kurt Akeley, The OpenGL™ Graphics
System: A Specification, Version 1.0, Silicon Graph-
ics, June 30, 1992.

Paul Strauss, Rikk Carey, “An Object-Oriented 3D
Graphics Toolkit,” Proceedings of SIGGRAPH 92,
July 1992, pp. 341-347.

Paula Womack, et.al., “PEX Protocol Specification,
Version 5.1,” The X Consortium, August 31, 1992.

14

