
Version 1.0 - 8 October 1993

OpenGL

TM

Graphics

with the

X Window System

R

(Version 1.0)

Phil Karlton

Version 1.0 - 8 October 1993

Copyright c

 1992, 1993 Silicon Graphics, Inc.

The OpenGL(TM) Speci�cation in this document is protected by International

Copyright Law, and is proprietary to Silicon Graphics, Inc. You may not copy,

adapt, distribute, or publicly perform or display any portion of such material

without the express, prior written consent of Silicon Graphics, Inc. Your receipt

or possession of the OpenGL Speci�cation does not grant to you or anyone

else any right to reproduce, create derivative works based on or distribute or

otherwise disclose any of its contents, or to manufacture, use or sell anything

that embodies any of the material included herein, in whole or in part, provided,

however, that you may print one interpreted copy of the PostScript(R) version

of the OpenGL Speci�cation provided herein for your personal reference in

connection with your use of a product that utilizes the OpenGL API.

THE MATERIAL IN THIS DOCUMENT IS PROVIDED TO YOU "AS-IS"

AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR

OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SILICON GRAPHICS, INC. BE LIABLE TO YOU

OR ANYONE ELSE FOR ANY DIRECT, SPECIAL, INCIDENTAL, INDI-

RECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAM-

AGES WHATSOEVER, INCLUDING WITHOUT LIMITATION, LOSS OF

PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF

THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR

IN CONNECTION WITH THE POSSESSION OR USE OF THE MATERIAL

CONTAINED IN THIS SPECIFICATION.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions

set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013 and/or

in similar or successor clauses in the FAR or the DOD or NASA FAR Sup-

plement. Unpublished rights reserved under the copyright laws of the United

States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline

Blvd., Mountain View, CA 94039-7311.

OpenGL is a trademark of Silicon Graphics, Inc.
PostScript is a registered trademark of Adobe Systems

Incorporated.
X is a registered trademark of the Massachussetts Institute of

Technology
Unix is a registered trademark of A T & T Bell Laboratories.

1

Version 1.0 - 8 October 1993

2

Version 1.0 - 8 October 1993

OpenGL

TM

Graphics with the X Window

System

R

Phil Karlton

1 Overview

This document describes GLX, the OpenGL extension to the X Window

System. It refers to concepts discussed in the OpenGL speci�cation, and

may be viewed as an X speci�c appendix to that document. Parts of the

document assume some acquaintance with both the OpenGL and X.

In the X Window System, OpenGL rendering is made available as

an extension to X in the formal X sense: connection and authentication

are accomplished with the normal X mechanisms. As with other X ex-

tensions, there is a de�ned network protocol for the OpenGL rendering

commands encapsulated within the X byte stream.

Since performance is critical in 3D rendering, there is a way for

OpenGL rendering to bypass the data encoding step, the data copying,

and interpretation of that data by the X server. This direct rendering is

possible only when a process has direct access to the graphics pipeline.

Allowing for parallel rendering has a�ected the design of the GLX in-

terface. This has resulted in an added burden on the client to explicitly

prevent parallel execution when that is inappropriate.

X and the OpenGL have di�erent conventions for naming entry points

and macros. The GLX extension adopts those of the OpenGL.

2 GLX Operation

2.1 Rendering Contexts and Drawing Surfaces

The OpenGL speci�cation is intentionally vague on how a rendering

context (an abstract OpenGL state machine) is created. One of the

3

Version 1.0 - 8 October 1993

purposes of GLX is to provide a means to create an OpenGL context

and associate it with a drawing surface.

In X, a rendering surface is called a Drawable. Windows, one type

of Drawable, are associated with a Visual.

�

The X protocol allows

for a single VisualID to be instantiated at multiple depths. The GLX

bindings allow only one depth for an OpenGL renderer for any given

VisualID. In GLX the de�nition of Visual has been extended to include

the types, quantities and sizes of the ancillary bu�ers (depth, accumu-

lation, auxiliary, and stencil). Double bu�ering capability is also �xed

by the Visual.

y

The ancillary bu�ers have no meaning within the core

X environment. The set of extended Visuals is �xed at server startup

time. One result is that a server can export multiple Visuals that di�er

only in the extended attributes.

The other type of X Drawable is a Pixmap, a drawing surface that

is maintained o� screen. The GLX equivalent to an X Pixmap is a

GLXPixmap. A GLXPixmap is created using the Visual along with its

extended attributes. The Visual is used to de�ne the type and size of

the Ancillary bu�ers associated with the Pixmap. The Pixmap is used

as the front-left color bu�er. A GLXDrawable is the union fWindow,

GLXPixmapg.

Ancillary bu�ers are associated with a GLXDrawable, not with a ren-

dering context. If several OpenGL renderers are all writing to the same

window, they will share those bu�ers. Rendering operations to one win-

dow never a�ect the unobscured pixels of another window, or of the

corresponding pixels of ancillary bu�ers of that window. If an Exposure

event is received by the client, the values in the ancillary bu�ers for

regions corresponding to the exposed region become unde�ned.

A rendering context can be used with multiple GLXDrawables as long

as those Drawables are similar. Similar means that the rendering con-

texts and GLXDrawables are created with the same XVisualInfo.

An application can use any rendering context (subject to the re-

strictions discussed in the section on address spaces) to render into any

similar GLXDrawable. An implication is that multiple applications can

render into the same window, each using a di�erent rendering context.

�

The association is with a fVisual, screen, depthg triple. An XVisualInfo is used

by GLX functions since it can be interpreted unambiguosly.

y

Any rendering system is free to use the ancillary bu�ers as long as it uses them

in a manner consistent with the use by the OpenGL.

4

Version 1.0 - 8 October 1993

2.2 Using Rendering Contexts

No default window or rendering context is supplied to an application.

The client is responsible for creating them.

Each thread can have at most one current rendering context. In

addition, a rendering context can be current for only one thread at one

time.

Issuing OpenGL commands may cause the X bu�er to be
ushed. In

particular, calling glFlush() will
ush both the X and OpenGL render-

ing streams.

Some state is shared between the OpenGL and X. The pixel values

in the X frame bu�er are shared. The X multi-bu�ering extension has

a de�nition for which bu�er is currently the displayed bu�er. This in-

formation is shared with GLX. The state of which bu�er is displayed

tracks in both extensions, independent of which extension initiates a

bu�er swap. (Multi-bu�ering and OpenGL double bu�ering share state

only in the case where there are exactly two bu�ers.)

2.3 Direct Rendering and Address Spaces

One of the basic assumptions of the X protocol is that if a client can

name an object, then it can manipulate that object. GLX introduces

the notion of an Address Space. A GLX rendering context cannot be

used outside of the address space in which it exists.

In a classic UNIX environment, each process is in its own address

space. In a multi-threaded environment, each of the threads will share a

virtual address space which references a common data region.

A OpenGL client that is rendering to a graphics engine directly con-

nected to the executing CPU may avoid passing the tokens through the

X server. This generalization is made for performance reasons. The

model described here speci�cally allows for such optimizations, but does

not mandate that any implementation support it.

When direct rendering is occurring, the address space of the renderer

is that of the direct process and not that of the X server. The client has

the ability to reject the use of direct rendering, but there may be a

performance penalty in doing so. Direct rendering contexts can only be

used within the same address space in which they were created.

When direct rendering is not being used, the address space of the

renderer is that of the X server. Hence, all indirect renderers created

5

Version 1.0 - 8 October 1993

GLX Client
Xlib

Application

and Toolkit

GLX

X Server
X Renderer

GL Renderer

Dispatch

Framebuffer

Direct GL

Renderer

Figure 1. Direct Rendering Block Diagram.

6

Version 1.0 - 8 October 1993

with the same server may potentially be used by any X client of that

server.

2.4 OpenGL Display Lists

Most OpenGL state is small and easily retrieved using the glGet* com-

mands. This is not true of OpenGL display lists, which are used, for

example, to encapsulate a model of some physical object. First, there is

no mechanism to obtain the contents of a display list from the render-

ing context. Second, display lists may be large and numerous. It may

be desirable for multiple rendering contexts to share display lists rather

than replicating that information in each context.

GLX provides for limited sharing of display lists; the lists can be

shared only if the rendering contexts share a single address space (such

as when the rendering contexts are both within a single X server). Using

this mechanism, a single set of lists can be used, for instance, in each of

a double-bu�ered 4-bit deep RGB visual and a single-bu�ered 8-bit deep

RGB visual.

A group of shared display lists exist until the last referencing ren-

dering context is destroyed. All rendering contexts have equal access to

using lists or de�ning new lists. Implementations sharing contexts must

handle the case where one rendering context is using a display list when

another rendering context destroys that list.

When display lists are shared between OpenGL contexts, the sharing

extends only to the display lists themselves and the information about

which display list numbers have been allocated. In particular, the value

of the base set with glListBase is not shared.

In general, OpenGL commands are not atomic. glEndList and

DeleteList are exceptions. The list named in a glNewList call is not

created or superseded until glEndList is called. If one rendering context

is sharing the same display list arena with another, it will continue to

use the existing de�nition while the second context is in the process of

de�ning it.

2.5 Aligning Multiple Drawables

A client can create one window with an overlay Visual and a second with

a main plane Visual and then move them independently or in concert

to keep them aligned. This is a major change between the OpenGL and

7

Version 1.0 - 8 October 1993

the previous SGI proprietary GL: allocation of overlay planes and main

planes for every window is no longer done automatically. To accomplish

what was done by a drawmode/gcon�g pair in previous versions of the

SGI proprietary GL, the OpenGL client can use the following paradigm:

� Make the windows which are to share the same screen area children

of a single window (that will never be written). Size and position

the children to completely occlude their parent. When the window

combination must be moved or resized, perform the operation on

the parent.

� Make the subwindows have a background of None so that the X

server will not paint into the shared area when you restack the

children.

� Select for device-related events on the parent window, not on the

children. Since device-related events with the focus in one of the

child windows will be inherited by the parent, input dispatching

can be done directly without reference to the child on top.

2.6 Multiple Threads

It is intended that there be a version of the client side library that is

protected against multiple threads attempting to access the same con-

nection. This can be accomplished by having appropriate de�nitions for

LockDisplay and UnlockDisplay. Since there is some performance

penalty for doing the locking, a non-safe version of the library can also

be built. Interrupt routines may not share a connection (and hence a

rendering context) with the main thread. An application may be written

as a set of co-operating processes.

X has atomicity (between clients) and sequentiality (within a sin-

gle client) requirements that limit the amount of parallelism achievable

when interpreting the command streams. GLX relaxes these require-

ments. Sequentiality is still guaranteed within a command stream, but

not between the X and the OpenGL command streams. It is possible, for

example, that an X command issued by a single threaded client after an

OpenGL command might be executed before that OpenGL command.

The X speci�cation requires that commands are atomic.

If a server is implemented with internal concurrency, the over-

all e�ect must be as if individual requests are executed to

8

Version 1.0 - 8 October 1993

completion in some serial order, and requests from a given

connection must be executed in delivery order (that is, the

total execution order is a shu�e of the individual streams).

OpenGL commands are not guaranteed to be atomic. Some OpenGL

rendering commands might otherwise impair interactive use of the win-

dowing system by the user. For instance calling a deeply nested display

list or rendering a large texture mapped polygon on a system with no

graphics hardware could prevent a user from popping up a menu soon

enough to be usable.

Synchronization is in the hands of the client. It can be maintained

with moderate cost with the judicious use of the glFinish, glXWaitGL,

glXWaitX, and XSync commands. OpenGL and X rendering can be

done in parallel as long as the client does not preclude it with explicit

synchronization calls. This is true even when the rendering is being done

by the X server. Thus, a multi-threaded X server implementation may

execute OpenGL rendering commands in parallel with other X requests.

Some performance degradation may be experienced if needless switch-

ing between OpenGL and X rendering is done. This may involve a round

trip to the server, which can be costly.

3 Functions and Errors

3.1 Errors

Where possible, as in X, when a request terminates with an error, the

request has no side e�ects.

The error codes that may be generated by a request are described

with that request. The following table summarizes the GLX-speci�c

error codes that are visible to applications:

GLXBadContext A value for a Context argument does not name a

Context.

GLXBadContextState An attempt was made to switch to another ren-

dering context while the current context was in RenderMode GL FEEDBACK

or GL SELECT.

GLXBadCurrentWindowThe Drawable argument refers to a window that

is no longer valid.

9

Version 1.0 - 8 October 1993

GLXBadDrawable The Drawable argument does not name a Drawable

con�gured for OpenGL rendering.

GLXBadPixmap The Pixmap argument does not name a Pixmap that is

appropriate for OpenGL rendering.

The following error codes may be generated by a faulty GLX imple-

mentation, but would not normally be visible to clients:

GLXBadContextTagA rendering request contains an invalid context tag.

(Context tags are used to identify contexts in the protocol.)

GLXBadRenderRequest A glXRender request is ill-formed.

GLXBadLargeRequest A glXRenderLarge request is ill-formed.

GLXUnsupportedPrivateRequest May be returned in response to ei-

ther a glXVendorPrivate request or a glXVendorPrivateWithReply

request.

3.2 Functions

3.2.1 Initialization

To ascertain if the GLX extension is de�ned for an X server, use

Bool glXQueryExtension(Display *dpy, int *error base,

int *event base) ;

dpy speci�es the connection to the X server. False is returned if the

extension is not present. error base is used to return the value of the

�rst error code. The constant error codes should be added to this base

to get the actual value.

event base is included for future extension. GLX does not currently

de�ne any events.

When the GLX de�nition is extended, it may exist in multiple ver-

sions. Use

Status glXQueryVersion(Display *dpy, int *major,

int *minor) ;

10

Version 1.0 - 8 October 1993

Attribute Type Notes

GLX USE GL boolean True if OpenGL rendering supported

GLX BUFFER SIZE integer depth of the color bu�er

GLX LEVEL integer frame bu�er level

GLX RGBA boolean True if in RGB mode

GLX DOUBLEBUFFER boolean True if color bu�ers have front/back pairs

GLX STEREO boolean True if color bu�ers have left/right pairs

GLX AUX BUFFERS integer number of auxiliary color bu�ers

GLX RED SIZE integer number of bits of Red if in RGB mode

GLX GREEN SIZE integer number of bits of Green if in RGB mode

GLX BLUE SIZE integer number of bits of Blue if in RGB mode

GLX ALPHA SIZE integer number of bits of Alpha if in RGB mode

GLX DEPTH SIZE integer number of bits in the depth bu�er

GLX STENCIL SIZE integer number of bits in the stencil bu�er

GLX ACCUM RED SIZE integer accumulation bu�er Red component

GLX ACCUM GREEN SIZE integer accumulation bu�er Green component

GLX ACCUM BLUE SIZE integer accumulation bu�er Blue component

GLX ACCUM ALPHA SIZE integer accumulation bu�er Alpha component

Table 1: Con�guration attributes.

to discover which version is bound in your server. Upon success, major

andminor are �lled in with the major and minor versions of the extension

implementation. If two versions have the same major version number,

then the protocol will be upwards compatible; that is, a client's behavior

remains unchanged when using a server with an equal or higher minor

version number.

major and minor do not return values if they are speci�ed asNULL.

glXQueryVersion returns zero if it fails. In this case, major and

minor are not updated.

3.2.2 Con�guration Management

The constants shown in Table 1 are passed to glXGetCon�g and glX-

ChooseVisual to specify which attributes are being queried.

Note that GLX BUFFER SIZE gives the total depth of the color bu�er

11

Version 1.0 - 8 October 1993

in bits. For Visuals of type color index, this is exactly the same value

as that reported in the core X11 Visual. For Visuals of type RGB,

GLX BUFFER SIZE will include alpha planes that may or may not be re-

ported in the core X11 Visual.

To obtain a description of an OpenGL attribute exported by a Visual

use

int glXGetCon�g(Display *dpy, XVisualInfo* *vi-

sual, int attribute, int *value) ;

glXGetCon�g returns through value the value of the attribute of

visual.

glXGetCon�g returns one of the following error codes if it fails,

and Success otherwise:

GLX NO EXTENSION dpy does not support the GLX extension.

GLX BAD SCREEN screen of visual does not correspond to a screen.

GLX BAD ATTRIB attribute is not a valid GLX attribute.

GLX BAD VISUAL visual does not support GLX and an attribute other

than GLX USE GL was speci�ed.

Although a GLX implementation can export many visuals that sup-

port OpenGL rendering, it must support at least two. One is an RGBA

visual with at least one color bu�er, a stencil bu�er of at least 1 bit,

a depth bu�er of at least 12 bits, and an accumulation bu�er. Alpha

bitplanes are optional in this visual. However, its color bu�er size must

be as great as that of the deepest TrueColor, DirectColor, Pseudo-

Color, or StaticColor visual supported on framebu�er level zero (the

main image planes), and it must itself be made available on framebu�er

level zero.

The other required visual is of color index type with at least one

color bu�er, a stencil bu�er of at least 1 bit, and a depth bu�er of at

least 12 bits. This visual must have as many color bitplanes as the

deepest PseudoColor or StaticColor visual supported on framebu�er

level zero, and it must itself be made available on level zero.

glXChooseVisual is used to �nd a visual that matches the client's

speci�ed attributes.

12

Version 1.0 - 8 October 1993

XVisualInfo* glXChooseVisual(Display *dpy, int screen,

int *attrib list) ;

glXChooseVisual returns a pointer to a XVisualInfo structure

describing the visual that best meets a minimum speci�cation. The

boolean GLX attributes of the visual that is returned will match the

speci�cation exactly; the integer GLX attributes will meet or exceed

the speci�ed minimum values. If no conforming visual exists, NULL is

returned.

If GLX RGBA is in attrib list then the resulting visual will be TrueColor

or DirectColor. If all other attributes are equivalent, then a TrueColor

visual will be chosen in preference to a DirectColor visual.

If GLX RGBA is not in attrib list then the returned visual will be

PseudoColor or StaticColor. If all other attributes are equivalent then

a PseudoColor visual will be chosen in preference to a StaticColor vi-

sual.

All boolean GLX attributes default to False except GLX USE GL,

which defaults to True. All integer attributes default to zero.

Default speci�cations are superseded by the attributes included in at-

trib list. Integer attributes are immediately followed by the correspond-

ing desired value. Boolean attributes appearing in attrib list have an

implicit True value; such attributes are never followed by an explicit

True or False value. The list is terminated with None.

To free the data returned, use XFree.

NULL is returned if an unde�ned GLX attribute is encountered.

3.2.3 O� Screen Rendering

To create an o� screen rendering area, �rst create an X Pixmap of the

depth speci�ed by the desired Visual, then call

GLXPixmap glXCreateGLXPixmap(Display *dpy, XVisualInfo*

visual, Pixmap Pixmap) ;

glXCreateGLXPixmap creates an o� screen rendering area and

returns its XID. Any GLX rendering context created with respect to

visual can be used to render into this o� screen area.

pixmap is used as the front-left bu�er of the resulting o� screen ren-

dering area. All other ancillary bu�ers speci�ed by visual are created

without externally visible names. GLX pixmaps may be created with

13

Version 1.0 - 8 October 1993

a visual that includes back bu�ers and stereoscopic bu�ers. However,

glXSwapBu�ers is ignored for these pixmaps.

A direct rendering context may not be able to be made current with

a GLXPixmap.

If the depth of pixmap does not match the GLX BUFFER SIZE attribute

of visual, or if Pixmap was not created with respect to the same screen

as visual, then a BadMatch error is generated. If visual is not valid

(e.g., if GLX does not support it), then a BadValue error is generated.

If Pixmap is not a valid pixmap id, then a BadPixmap error is generated.

Finally, if the server cannot allocate the new GLX pixmap, a BadAlloc

error is generated.

A GLXPixmap is destroyed by calling

void glXDestroyGLXPixmap(Display *dpy, GLXPixmap

pixmap) ;

This request deletes the association between the resource ID pixmap

and the GLX pixmap. The storage will be freed when it is not current

to any client.

If pixmap is not a valid GLX pixmap then a GLXBadPixmap error is

generated.

3.2.4 Rendering Contexts

To create an OpenGL rendering context call

GLXContext glXCreateContext(Display *dpy, XVisualInfo*

visual, GLXContext share list, Bool direct) ;

glXCreateContext returns NULL if it fails. If glXCreateContext

succeeds, it returns the handle of a GLX rendering context. This handle

can be used to render to both windows and GLX pixmaps.

If share list is notNULL, then all display list indexes and de�nitions

will be shared by share list and the newly created rendering context. An

arbitrary number ofGLXContexts can share a single display list space.

All sharing contexts must also share a single address space or a BadMatch

error is generated.

If direct is true, then a direct rendering context will be created if the

implementation supports direct rendering and the connection is to an

X server that is local. If direct is False, then a rendering context that

renders through the X server is created.

14

Version 1.0 - 8 October 1993

Direct rendering contexts may be a scarce resource in some imple-

mentations. If direct is true, and if a direct rendering context cannot

be created, then glXCreateContext will attempt to create an indirect

context instead.

glXCreateContext can generate the following GLX extension er-

rors: GLXBadContext if share list is neither zero nor a valid GLX render-

ing context; BadValue if visual is not a valid X Visual or if GLX does not

support it; BadMatch if share list de�nes an address space that cannot

be shared with the newly created context or if share list was created on a

di�erent screen than the one referenced by visual; BadAlloc if the server

does not have enough resources to allocate the new context.

To determine if an OpenGL rendering context is direct call

Bool glXIsDirect(Display *dpy, GLXContext ctx) ;

glXIsDirect returns True if ctx is a direct rendering context, False

otherwise. If ctx is not a valid GLX rendering context, a GLXBadContext

error is generated.

An OpenGL rendering context is destroyed by calling

void glXDestroyContext(Display *dpy, GLXContext

ctx) ;

If ctx is still current to any thread, ctx is not destroyed until it is no

longer current. In any event, the associated XID will be destroyed and

ctx cannot subsequently be made current to any thread.

glXDestroyContext will generate a GLXBadContext error if ctx is

not a valid rendering context.

To copy OpenGL rendering state from one context to another, use

void glXCopyContext(Display *dpy, GLXContext source,

GLXContext dest, unsigned long mask) ;

glXCopyContext copies selected groups of state variables from source

to dest. mask indicates which groups of state variables are to be copied.

mask contains the bitwise OR of the same symbolic names as described

for glPushAttrib in the OpenGL Speci�cation. The single symbolic

constant GL ALL ATTRIB BITS can be used to copy the maximum possible

portion of the rendering state.

If source and dest do not share an address space or were not created on

the same screen, a BadMatch error is generated. (Note that source and

15

Version 1.0 - 8 October 1993

dest may be based on di�erent X visuals and still share an address space;

glXCopyContext will work correctly in such cases.) If the destination

context is current for some thread then a BadAccess error is generated.

If unde�ned mask bits are speci�ed then a BadValue error is generated.

Finally, if either source or dest is not a valid GLX rendering context, a

GLXBadContext error is generated.

glXCopyContext performs an implicit glFlush() if source is the

current context for the calling thread.

Only one rendering context may be in use, or current, for a par-

ticular thread at a given time. The minimum number of current ren-

dering contexts that must be supported by a GLX implementation is

one. (Supporting a larger number of current rendering contexts is essen-

tial for general-purpose systems, but may not be necessary for turnkey

applications.)

To make a context current, call

void glXMakeCurrent(Display *dpy, GLXDrawable draw-

able, GLXContext ctx) ;

If the calling thread already has a current rendering context, then

that context is
ushed and marked as no longer current. ctx is made the

current context for the calling thread.

If the drawable and ctx are not similar, a BadMatch error is gen-

erated. If ctx is current to some other thread, then glXMakeCurrent

will generate a BadAccess error. GLXBadContextState is generated

if there is a current rendering context and its render mode is either

GL FEEDBACK or GL SELECT. If ctx is not a valid GLX render-

ing context, GLXBadContext is generated. If drawable is not a valid GLX

drawable, a GLXBadDrawable error is generated. Finally, note that the

ancillary bu�ers for drawable need not be allocated until a context is

made current for that drawable for the �rst time. A BadAlloc error can

be generated if the server does not have enough resources to allocate the

ancillary bu�ers.

To release the current context without assigning a new one, use NULL

for ctx and None for drawable.

The �rst time ctx is made current to a GLXDrawable, its initial view-

port is set. That viewport must be reset by the client when ctx is sub-

sequently made current.

Note that when multiple threads are using their current contexts

to render to the same drawable, OpenGL does not guarantee atomicity

16

Version 1.0 - 8 October 1993

of fragment update operations. In particular, programmers may not

assume that depth-bu�ering will automatically work correctly; there is

a race condition between threads that read and update the depth bu�er.

Clients are responsible for avoiding this condition. They may use vendor-

speci�c extensions or they may arrange for separate threads to draw in

disjoint regions of the viewport, for example.

glXGetCurrentContext returns the current context.

GLXContext glXGetCurrentContext(void) ;

If there is no current context, NULL is returned. No round trip is

forced to the server; unlike most X calls that return a value, glXGetCur-

rentContext does not
ush any pending requests.

glXGetCurrentDrawable returns the XID of the current drawable.

GLXDrawable glXGetCurrentDrawable(void) ;

If there is no current drawable, None is returned. No round trip is

forced to the server; unlike most X calls that return a value, glXGetCur-

rentDrawable does not
ush any pending requests.

3.2.5 Synchronization Primitives

To prevent X requests from executing until any outstanding OpenGL

rendering is done, call

void glXWaitGL(void) ;

OpenGL calls made prior to glXWaitGL are guaranteed to be executed

before X rendering calls made after glXWaitGL. While the same result

can be achieved using glFinish, glXWaitGL does not require a round

trip to the server, and is therefore more e�cient in cases where the client

and server are on separate machines.

glXWaitGL is ignored if there is no current rendering context. If the

drawable associated with the calling thread's current context is a window

that is no longer valid, a GLXBadCurrentWindow error is generated.

To prevent the OpenGL command sequence from executing until any

outstanding X requests are completed, call

void glXWaitX(void) ;

17

Version 1.0 - 8 October 1993

X rendering calls made prior to glXWaitX are guaranteed to be exe-

cuted before OpenGL rendering calls made after glxWaitX. While the

same result can be achieved using XSync, glXWaitX does not require

a round trip to the server, and is therefore more e�cient in cases where

the client and server are on separate machines.

glXWaitX is ignored if there is no current rendering context. If the

drawable associated with the calling thread's current context is a window

that is no longer valid, a GLXBadCurrentWindow error is generated.

3.2.6 Double Bu�ering

For drawables that are double bu�ered, the contents of the back bu�er

can be made potentially visible, i.e. become the contents of the font

bu�er, by calling

void glXSwapBu�ers (Display *dpy, GLXDrawable draw-

able) ;

The contents of the back bu�er then become unde�ned. This operation

is a no-op if drawable was created with a non-double-bu�ered visual.

All GLX rendering contexts share the same notion of which are front

bu�ers and which are back bu�ers for a given drawable. This notion is

also shared with the X multi-bu�ering extension.

When multiple threads are rendering to the same drawable, only one

of them need call glXSwapBuffers and all of them will see the e�ect

of the swap. The client must synchronize the threads that perform the

swap and the rendering, using some means outside the scope of GLX,

to insure that each new frame is completely rendered before it is made

visible.

If dpy and drawable are the display and drawable for the calling

thread's current context, glXSwapBuffers performs an implicit glFlush().

Subsequent OpenGL commands can be issued immediately, but will not

be executed until the bu�er swapping has completed, typically during

vertical retrace of the display monitor.

If drawable is not a valid GLX drawable, glXSwapBu�ers generates

a GLXBadDrawable error. If dpy and drawable are the display and draw-

able associated with the calling thread's current context, and if drawable

is a window that is no longer valid, a GLXBadCurrentWindow error is

generated.

18

Version 1.0 - 8 October 1993

3.2.7 Access to X Fonts

A shortcut for using X fonts is provided by the command

void glXUseXFont(Display *dpy, Font font, int �rst,

int count, int list base) ;

count display lists are de�ned starting at list base, each list consisting

of a single call on glBitmap. The de�nition of bitmap list base + i is

taken from the glyph �rst + i of font. If a glyph is not de�ned, then an

empty display list is constructed for it. The width, height, xorig, and

yorig of the constructed bitmap are computed from the font metrics

as rbearing-lbearing, ascent+descent, -lbearing, and descent-1

respectively. xmove is taken from the width metric and ymove is set to

zero.

Note that in the direct rendering case, this requires that the bitmaps

be copied to the client's address space.

glXUseXFont performs an implicit glFlush().

glXUseXFont is ignored if there is no current GLX rendering con-

text. BadFont is generated if font is not a valid X font id. GLXBadContextState

is generated if the current GLX rendering context is in display list con-

struction mode. GLXBadCurrentWindow is generated if the drawable as-

sociated with the calling thread's current context is a window and is no

longer valid.

4 Encoding on the X Byte Stream

In the remote rendering case, the overhead associated with interpreting

the GLX extension requests must be minimized. For this reason, all

commands have been broken up into two categories: OpenGL and GLX

commands that are each implemented as a single X extension request

and OpenGL rendering requests that are batched within a GLXRender

request.

4.1 Requests that hold a single extension request

Each of the commands from glx.h (that is, the glX* commands) is en-

coded by a separate X extension request. In addition, there is a separate

X extension request for each of the OpenGL commands that cannot be

19

Version 1.0 - 8 October 1993

put into a display list. That list consists of all the glGet* commands

plus

glDeleteLists

glEndList

glFeedbackBu�er

glFinish

glFlush

glGenLists

glIsEnabled

glIsList

glNewList

glPixelStoref

glPixelStorei

glReadPixels

glRenderMode

glSelectBu�er

The twoPixelStore commands (glPixelStorei and glPixelStoref) are

exceptions. These commands are issued to the server only to allow it to

set its error state appropriately. Pixel storage state is maintained entirely

on the client side. When pixel data is transmitted to the server (by gl-

DrawPixels, for example), the pixel storage information that describes

it is transmitted as part of the same protocol request. Implementations

may not change this behavior, because such changes would cause shared

contexts to behave incorrectly.

4.2 Request that holds multiple OpenGL commands

The remaining OpenGL commands are those that may be put into dis-

play lists. Multiple occurrences of these commands are grouped together

into a single X extension request (GLXRender). This is diagrammed

in Figure 2.

The grouping minimizes dispatching within the X server. The library

packs as many OpenGL commands as possible into a single X request

(without exceeding the maximum size limit). No OpenGL command

may be split across multiple GLXRender requests.

For long OpenGL commands (those longer than a maximum X re-

quest size), a series of GLXRenderLarge commands are issued. The

20

Version 1.0 - 8 October 1993

GLX

Render

GLX
Core

X
data

single
data cmd data cmd data

Figure 2. GLX byte stream.

structure of the OpenGL command within GLXRenderLarge is the

same as for GLXRender.

Note that it is legal to have a glBegin in one request, followed by

glVertex commands, and eventually the matching glEnd in a subse-

quent request. A command is not the same as a OpenGL primitive.

4.3 Wire representations and byte swapping

Unsigned and signed integers are represented as they are represented in

the core X protocol. Single and double precision
oating point numbers

are sent and received in IEEE
oating point format. The X byte stream

and network speci�cations make it impossible for the client to assure

that double precision
oating point numbers will be naturally aligned

within the transport bu�ers of the server. For those architectures that

require it, the server or client must copy those
oating point numbers to

a properly aligned bu�er before using them.

Byte swapping on the encapsulated OpenGL byte stream is per-

formed by the server using the same rule as the core X protocol. Single

precision
oating point values are swapped in the same way that 32-bit

integers are swapped. Double precision
oating point values are poten-

tially swapped across all 8 bytes.

4.4 Sequentiality

There are two sequences of commands: the X stream, and the OpenGL

stream. In general these two streams are independent: Although the

commands in each stream will be processed in sequence, there is no

guarantee that commands in the separate streams will be processed in

the order in which they were issued by the calling thread.

21

Version 1.0 - 8 October 1993

An exception to this rule arises when a single command appears in

both streams. This forces the two streams to rendezvous.

Because the processing of the two streams may take place at di�erent

rates, and some operations may depend on the results of commands in a

di�erent stream, we distinguish between commands assigned to each of

the X and OpenGL streams.

The following commands are in the X stream and obey the sequen-

tiality guarantees for X requests:

glXCreateContext

glXDestroyContext

glXMakeCurrent

glXGetCurrentContext

glXGetCurrentDrawable

glXIsDirect

glXGetCon�g

glXQueryVersion

glXWaitGL

glXCreateGLXPixmap

glXDestroyGLXPixmap

glXChooseVisual

glXSwapBu�ers (but see below)

glXCopyContext (see below)

glXSwapBu�ers is in the X stream if and only if the display and

drawable are not those belonging to the calling thread's current context;

otherwise it is in the OpenGL stream. glXCopyContext is in the X

stream alone if and only if its source context di�ers from the calling

thread's current context; otherwise it is in both streams.

Commands in the OpenGL stream, which obey the sequentiality

guarantees for OpenGL requests:

glXWaitX

glXSwapBu�ers (see below)

All OpenGL Commands

glXSwapBu�ers is in the OpenGL stream if and only if the display

and drawable are those belonging to the calling thread's current context;

otherwise it is in the X stream.

22

Version 1.0 - 8 October 1993

Commands in both streams, which force a rendezvous:

glXCopyContext (see below)

glXUseXFont

glXCopyContext is in both streams if and only if the source context

is the same as the current context of the calling thread; otherwise it is

in the X stream only.

5 Extending OpenGL

OpenGL is extended by adding new GLX requests, OpenGL requests or

additional enumerated values to the OpenGL requests. The OpenGL Ar-

chitectural Review Board maintains a registry of indexes for each vendor

to use as they wish.

New names must clearly indicate to clients whether some partic-

ular feature is in the core OpenGL or is vendor speci�c. To make

a vendor-speci�c name, append a company identi�er (in upper case)

and any additional vendor-speci�c tags (e.g. machine names). For in-

stance, SGI might add new commands and manifest constants of the

form glNewCommandSGI and GL NEW DEFINITION SGI. If

SGI wanted to provide extensions that were speci�c to its Reality En-

gine, then the names might be of the form glNewCommandSGIre and

GL NEW DEFINITION SGI RE.

6 Glossary

Address Space the set of objects or memory locations accessible through

a single name space. In other words, it is a data region that one

or more processes may share through pointers.

Client an X client. An application communicates to a server by some

path. The application program is referred to as a client of the win-

dow system server. To the server, the client is the communication

path itself. A program with multiple connections is viewed as mul-

tiple clients to the server. The resource lifetimes are controlled by

the connection lifetimes, not the application program lifetimes.

23

Version 1.0 - 8 October 1993

Connection a bidirectional byte stream that carries the X (and GLX)

protocol between the client and the server. A client typically has

only one connection to a server.

(Rendering) Context a OpenGL rendering context. This is a virtual

OpenGL machine. All OpenGL rendering is done with respect to

a context. The state maintained by one rendering context is not

a�ected by another except in case of shared display lists.

GLXContext an X ID. A client refers to an OpenGL rendering context

by using this uniquely assigned value. This ID, as with all X IDs,

is shareable between clients.

Similar a potential correspondence among GLXDrawables and render-

ing contexts. Windows and GLXPixmaps are similar to a rendering

context are similar if, and only if, they have been created with

respect to the same VisualID and root window.

Thread one of a group of processes all sharing the same address space.

Typically, each thread will have its own program counter and stack

pointer, but the text and data spaces are visible to each of the

threads. A thread that is the only member of its group is equivalent

to a process.

24

