To BE PUBLISHED IN THE
JuLy /AUGUST 1SSUE OF The X Journal.

OpenGL™ and X, Part 3:
Integrating OpenGL with Motif

Mark J. Kilgard *
Silicon Graphics Inc.
Reviston : 1.18

April 15, 1994

Abstract

The OpenGL™ graphics system can be integrated with
the industry-standard OSF/Motif user interface. This ar-
ticle discusses how to use OpenGL within a Motif applica-
tion program. There are two approaches to using OpenGL
with Motif. One is to render into a standard Motif draw-
ing area widget, but this requires each application window
to use a single visual for its window hierarchy. A better
approach is to use the special OpenGL drawing area wid-
get allowing windows used for OpenGL rendering to pick
freely an appropriate visual without affecting the visual
choice for other widgets. An example program demon-
strates both approaches. The X Toolkit’s work procedure
mechanism animates the example’s 3D paper airplanes.
Handling OpenGL errors is also explained.

1 Introduction

OSF /Motif is the X Window System’s industry-standard
programming interface for user interface construction.
Motif programmers writing 3D applications will want to
understand how to integrate Motif with the OpenGL™T™
graphics system. This article, the last in a three-part se-
ries about OpenGL, describes how to write an OpenGL
program within the user interface framework provided by
Motif and the X Toolkit.

Most 3D applications end up using 3D graphics primar-
ily in one or more “viewing” windows. For the most part,
the graphical user interface aspects of such programs use
standard 2D user interface objects like pulldown menus,
sliders, and dialog boxes. Creating and managing such
common user interface objects is what Motif does well.
The “viewing” windows used for 3D are where OpenGL

*Mark graduated with B.A. in Computer Science from Rice Uni-
versity and is a Member of the Technical Staff at Silicon Graphics.
He can be reached by electronic mail addressed to mjk@sgi.com

rendering happens. These windows for OpenGL render-
ing can be constructed with standard Motif drawing area
widgets or OpenGL-specific drawing area widgets. Bind
an OpenGL rendering context to the window of a drawing
area widget and you are ready for 3D rendering.

Programming OpenGL with Motif has numerous advan-
tages over using “Xlib only” as described in the first two
articles in this series [2, 3]. First and most important, Mo-
tif provides a well-documented, standard widget set that
gives your application a consistent look and feel. Second,
Motif and the X Toolkit take care of routine but compli-
cated issues such as cut and paste and window manager
conventions. Third, the X Toolkit’s work procedure and
timeout mechanisms make it easy to animate a 3D window
without blocking out user interaction with your applica-
tion.

This article assumes you have some experience program-
ming with Motif and you have a basic understanding of
how OpenGL integrates with X.

Section 2 describes how to use OpenGL rendering
with either a standard Motif drawing area widget or an
OpenGL-specific drawing area widget. Section 3 discusses
using X Toolkit mechanisms for seamless animation. Sec-
tion 4 provides advice on how to debug OpenGL programs
by catching OpenGL errors. Throughout the discussion, a
Motif-based OpenGL program named paperplane is used
as an example. The complete source code for paperplane
is found in the appendix. The program animates the 3D
flight paths of virtual paper airplanes. The user can in-
teract with the program via Motif controls. The program
can be compiled to use either a standard Motif drawing
area widget or an OpenGL-specific drawing area widget.
Figure 1 shows paperplane running.

File Edit Effects Function

& Motion
Add plane
Hemove plane

Figure 1: Screen snapshot of paperplane with another
OpenGL Motif program for molecular modeling.

2 OpenGL with Widgets

Your application’s 3D viewing area can be encapsulated
by an X Toolkit widget. There are two approaches to
rendering OpenGL into a widget. You can render OpenGL
into a standard Motif drawing area widget, or you can use
a special OpenGL drawing area widget.

The Motif drawing area widget would seem a natu-
ral widget for OpenGL rendering. Unfortunately, the X
Toolkit’s design (upon which Motif relies) allows program-
mers to specify a widget’s visual only if its class is derived
from the shell widget class. Shell widgets are often called
“top level” widgets because they are designed to commu-
nicate with the window manager and act as containers for
other widgets. Non-shell widgets inherit the depth and vi-
sual of their parent widget. The Motif drawing area wid-
get class (like most widget classes) is not derived from the
shell widget class. Tt is impossible (without resorting to
programming widget internals) to set the visual of a stan-
dard non-shell Motif widget differently than its ancestor
shell widget.

But in OpenGL, the X notion of a visual has expanded
importance for determining the OpenGL frame buffer ca-
pabilities of an X window. In many cases, an application’s
3D viewing area is likely to demand a deeper, more ca-
pable visual than the default visual which Motif normally
uses.

There are two options:

1. Use the standard Motif drawing area widget for your
OpenGL rendering area and make sure that the top

level shell widget is created with the desired visual for
OpenGL’s use.

2. Use an OpenGL drawing area widget that is specially
programmed to overcome the limitation on setting the
visual and depth of a non-shell widget.

Either approach works.

The paperplane example in the appendix is written to
support either scheme depending on how the code is com-
piled. By default, the code compiles to use the OpenGL-
specific widget. If the noGLwidget C preprocessor symbol
is defined, the standard Motif drawing area widget will
be used, forcing the use of a single visual throughout the
example’s widget hierarchy. The code differences between
the two schemes in the paperplane example constitute
seven changed lines of code.

The preferable approach is to use the OpenGL-specific
widget, since you can run most of the application’s user
interface in the default visual and use a deeper, more ca-
pable visual only for 3D viewing areas. Limiting the use
of deeper visuals can save memory and increase render-
ing speed for the user interface windows. If you use a
24-bit visual for your 3D viewing area and use the same
visual for your entire application, that means that the im-
age memory for pixmaps used by non-OpenGL windows is
four times what it would be for an 8-bit visual.! Some X
rendering operations might also be slower for 24-bit win-
dows compared with 8-bit windows.

There can be advantages to running your entire appli-
cation in a single visual. Some workstations with limited
colormap resources might not be capable of showing mul-
tiple visuals without colormap flashing. Such machines
which support OpenGL should be rare. Even if running
in a single visual is appropriate, nothing precludes doing
so using an OpenGL-specific widget.

2.1 The OpenGL-specific Widget

There are two OpenGL-specific drawing area widget
classes. One is derived from the Motif primitive widget
class (not the Motif drawing area widget class). The other
is derived from the X Toolkit core widget class. Both
have the same basic functionality; the main difference is
that the Motif-based widget class gains capabilities of the
Motif primitive widget class. If you use Motif, you should
use the Motif OpenGL widget. If you use a non-Motif
widget set, you can use the second widget for identical
functionality.

The Motif OpenGL widget class is named
gluMDrawinghreaWidgetClass; the non-Motif OpenGL
widget class is named glwDrawinghreaWidgetClass (the
difference is the lack of an M in the non-Motif case). Since

1Even though a 24-bit pixel requires only three bytes of storage,
efficient manipulation of the pixels demands each pixel is stored in
an even 4 bytes.

the Motif OpenGL widget is subclassed from the Motif
primitive widget class, the Motif OpenGL widget inher-
its the capabilities of the primitive class like a help call-
back and keyboard traversal support (keyboard traver-
sal is disabled by default for the Motif OpenGL widget).
The paperplane example uses the Motif widget by de-
fault but the non-Motif widget can be used by defining
the noMotifGLwidget C preprocessor symbol when com-
piling paperplane.c. The difference is two changed lines
of code with no functional difference in the program.

When you create either type of widget, you need
to specify the visual to use by supplying the widget’s
GLwNvisualInfo resource. The attribute is of type
XVisualInfo#* making it easy to find an appropriate visual
using glXChooseVisual which returns a XVisualInfo* for
a visual with the capabilities you request.

Although this practice is not recommended, the wid-
gets also allow you to specify the OpenGL capabilities you
desire for the widget directly using widget resources. Be-
cause the X Toolkit widget creation process is not expected
to fail, there is no way for a widget creation routine to indi-
cate failure. If a visual that matches the desired OpenGL
capabilities cannot be found, the widget code prints an
error and exits without giving the program a chance to
handle the failure. If you request a specific XVisualInfo*
that has already been determined to be acceptable using
glXChooseVisual or calls to glXGetConfig, you will not
have this problem. As a rule, always specify the visual
using the GLwllvisualInfo resource.

The OpenGL widgets also do extra work that might
go unnoticed. Because the OpenGL widget uses a dif-
ferent visual, the widget’s creation code creates a col-
ormap matching the visual. It also posts an ICCCM
WM_COLORMAP WINDOWS top level window property to let
the window manager know that the program uses multiple
colormaps.

More information about the OpenGL widgets can be
found in the Silicon Graphics OpenGL Porting Guide [4]
and the widgets’ man pages.

2.2 The Motif Drawing Area Widget

Using the standard Motif drawing area widget with
OpenGL has some extra caveats. The main caveat is that
you must create the top level widget with the correct vi-
sual for the program’s OpenGL rendering.

When you start a widget program, there is generally
a call to XtAppInitialize to establish the connection
to the X server and create the top level widget. Both
steps are done in the same routine. So how can we call
glXChooseVisual to know what visual the top level wid-
get should use until we have established a connection to
the X server?

It would appear that it is impossible to create the
top level widget with an appropriate visual for OpenGL.

paperplane (Paperplane)

mainw (XmMainWindow)

Separator1
(XmSeparatorGadget)

Separator2
(XmSeparatorGadget)

Separator3
(XmSeparatorGadget)

frame menubar (XmRowColumn)

(XmFrame)

File Planes popup_menupane
(XmMenuShell)

(XmCascadeButton) (XmCascadeButton) \
glxarea /

menupane
A (XmRowColumn)
(XmDrawingArea or menupane
glwMDrawingArea or (XmRowColumn)
glwDrawingArea)

Motion
(XmToggleButton)

Add plane

(XmPushButton)
(XmPushButton)

Remove plane
(XmPushButton)

Figure 2: Diagram of the widget hierarchy for paperplane.
The glxarea XmDrawingArea widget is the only widget
rendered using OpenGL.

XtAppInitialize connects to the X server and creates
the top level widget, but it does not realize the top level
widget. The X window for the top level widget is not
created until XtRealizeWidget is called. This allows
XtSetValues to be used after the top level widget’s cre-
ation (and before its realization) to specify the widget’s
visual. The paperplane sample code in the non-OpenGL
widget case demonstrates this.

A second caveat is due to the X Toolkit’s inconsistent
inheritance of the visual, depth, and colormap widget re-
sources. The default visual of a widget’s window 1s copied
from its parent window’s visual. But the default colormap
and depth of a widget are copied from the widget’s parent
widget.?

This means that if you create a widget derived from
the shell widget and the widget’s parent uses a non-
default depth or colormap for a non-default visual, you
will need to specify the same visual as the new widget’s
parent widget. If you do not, a BadMatch X protocol er-
ror will result. For this reason the paperplane example’s
XmCreatePulldownMenu calls specify the visual of the cre-
ated widget’s parent widget in the Motif drawing area ver-
sion of paperplane.

Realize that it 1s not possible to bind an OpenGL ren-
dering context to a widget’s window until the widget
has been realized. Until the widget is realized, the wid-
get’s window does not yet exist. Notice paperplane does
not call glXMakeCurrent until after XtRealizeWidget has
been called.

To see how the 3D viewing area widget fits into the
paperplane widget hierarchy example, Figure 2 shows the
complete hierarchy including widget class names.

2If the widget has no parent, the depth and colormap are deter-
mined by the default depth and colormap of the screen.

These caveats are not unique to OpenGL. The problem
comes from using non-default visuals with the X Toolkit.
PEXIib 5.1 programs have a similar need for non-default
visuals and require the same jumping through hoops[1].
Fortunately, if you use the OpenGL drawing area wid-
gets, you can avoid the caveats of using the standard Motif
drawing area.

2.3 Drawing Area Callbacks

Applications using the Motif drawing area widget or the
OpenGL drawing area widgets for their 3D rendering will
want to register routines to handle expose, resize, and in-
put callbacks using XtAddCallback. In paperplane.c,
the draw, resize, and input routines handle these call-
backs.

paperplane’s drawing area adjusts OpenGL’s viewport
by calling glViewport. Note how the made current vari-
able is used to protect against calling glViewport be-
fore we have done the glXMakeCurrent to bind to the
drawing area window. In the X Toolkit, the resize call-
back can be called before the XtRealizeWidget routine
returns. Since the program does not call glXMakeCurrent
until after the program returns from XtRealizeWidget,
the OpenGL rendering context would not be bound. Call-
ing an OpenGL routine before a context is bound has no
effect but generates an ugly warning message.> An ex-
ample of when the resize callback can be called before
XtRealizeWidget returns is when a —geometry command
line option is specified.

Note that glXMakeCurrent is defined to set a context’s
viewport to the size of the first window it is bound to.
(This happens only on the context’s first bind.) This is
why paperplane.c makes no initial call to glViewport;
glXMakeCurrent sets the viewport implicitly.

The paperplane example uses a single window for
OpenGL rendering. For this reason, glXMakeCurrent
is called only once to bind the OpenGL context to the
window. In a program with multiple OpenGL windows,
each expose and resize callback should make sure that
glXMakeCurrent is called so that OpenGL rendering goes
to the correct window.

The draw callback routine issues the OpenGL com-
mands to draw the scene. If the window is double buffered,
glXSwapBuffers swaps the window’s buffers. If the con-
text is not direct, glFinish is called to avoid the latency
from queuing more than one frame at a time; interactiv-
ity would suffer if we allowed more than one frame to be
queued. Direct rendering involves direct manipulation of
the hardware so it generally has less latency than a poten-
tially networked indirect OpenGL context.

Note that you can render OpenGL into any widget (as
long as it is created with an OpenGL capable visual).

3The exact behavior is undefined by the OpenGL specification.

There 1s nothing special about the Motif or OpenGL-
specific drawing area widgets, though drawing area wid-
gets tend to be the most appropriate widget type for a 3D
viewing area.

2.4 Handling Input

The input routine handles X events for the drawing area.
Input events require no special handling for OpenGL. But
remember that the coordinate systems for X and OpenGL
are distinct, so pointer locations need to be mapped into
OpenGL’s coordinate space. OpenGL generally assumes
that the origin is in the lower left-hand corner, while X
always assumes an origin at the upper left-hand corner.

3 Animation Via Work
Procedures

The X Toolkit’s work procedure facility makes it easy to
integrate continuous OpenGL animation with Motif user
interface operation. Work procedures are application sup-
plied routines that execute while the application is idle
waiting for events. Work procedures should be used to do
small amounts of work; if too much time is spent in a work
procedure, X events will not be processed and program in-
teractivity will suffer.

Rendering a single frame of OpenGL animation is a
good use for work procedures. XtAppAddWorkProc and
XtRemoveWorkProc are used to add and remove work pro-
cedures. XtAppAddWorkProc is passed a function pointer
for the routine to be called as a work procedure. The
function to be called returns a Boolean. If the function
returns True, the work procedure should be removed au-
tomatically; returning False indicates the work proce-
dure should remain active. XtAppAddWorkProc returns
an 1D of type WorkProcId which can later be given to
XtRemoveWorkProc to remove the work procedure.

The paperplane example uses a work procedure to
manage the update of its 3D scene. In response to
changing the state of the “Motion” toggle button on the
“Planes” pulldown menu, the toggle callback routine will
add and remove the animate work procedure.

The animate routine calls tick which advances the po-
sition of each active plane; animate then calls draw to
redraw the scene with the new plane locations. Finally,
animate returns False to leave the work procedure in-
stalled so that the animation will continue.

Because paperplane uses a work procedure, animation
of the scene does not interfere with window resizing and
user input. The X Toolkit manages both the animation
and events from the X server.

3.1 Handling Iconification

When the paperplane window is open, we want the
animate work procedure to update the 3D scene con-
tinuously. If the user iconifies the window, it would
be wasteful to continue animating a no longer visible
To avoid wasting resources rendering to an un-
mapped window, paperplane installs an event handler
called map _state changed for the top-level widget to no-
tice UnmapNotify and MapNotify events. The handler
makes sure the work procedure is removed or added to
reflect the map state of the window.

scene.

3.2 Timeouts

X Toolkit timeouts are similar to work procedures, but
instead of being activated whenever event dispatching is
idle, they are called when a given period of time has ex-
pired. The XtAppAddTimeout and XtRemoveTimeOut rou-
tines can be used to add and remove X Toolkit timeouts.

OpenGL programmers may find timeouts useful to
maintain animation at rates slower than “as fast as
OpenGL will render.” Timeouts can be used to give ani-
mation a sustained frame rate. Timeouts can also be used
to redraw a scene with higher detail when the user has
stopped interacting with the program. For example, a 3D
modeling program might redraw its model with lighting
enabled and finer tessellation after the program has been
idle for two seconds. Timeouts can also be used to trigger
simple real-time state changes useful for visual simulation.

4 Debugging Tips

As well as demonstrating the use of widgets with OpenGL,
paperplane also demonstrates detection of OpenGL errors
for debugging purposes. Some debugging code has been
added to the bottom of paperplane’s draw function to
test for any OpenGL errors. A correct OpenGL program
should not generate any OpenGL errors, but while debug-
ging it is helpful to check explicitly for errors. A good time
to check for errors is at the end of each frame. Errors in
OpenGL are not reported unless you explicitly check for
them, unlike X protocol errors which are always reported
to the client.

OpenGL errors are recorded by setting “sticky” flags.
Once an error flag is set, it will not be cleared until
glGetError is used to query the error. An OpenGL im-
plementation may have several error flags internally that
can be set (since OpenGL errors might occur in different
stages of the OpenGL rendering pipeline). When you look
for errors, you should call glGetError repeatedly until it
returns GL_NO _ERROR indicating that all of the error flags
have been cleared.

The OpenGL error model is suited for high performance
rendering, since error reporting does not slow down the

error-free case. Because OpenGL errors should not be gen-
erated by bug-free code, you probably want to remove er-
ror querying from your final program since querying errors
will slow down your rendering speed.

When an OpenGL error is generated, the command
which generated the error i1s not recorded, so you may
need to add more error queries into your code to isolate
the source of the error.

The gluErrorString routine in the OpenGL Utility li-
brary (GLU) converts an OpenGL error number into a
human readable string and helps you output a reasonable
error message.

5 Conclusion

OpenGL and Motif are a powerful combination. Using
both APIs allow X applications programmers to get the
most out of both Motif and OpenGL.

Still another way to integrate OpenGL rendering with
widgets is the Open Inventor object-oriented 3D graphics
toolkit which renders using OpenGL and integrates with
X Toolkit widgets. Open Inventor allows you to specify
3D scenes in an object-oriented fashion instead of low-
level OpenGL rendering primitives. If you are interested
in object-oriented 3D, check out the recently published
Inventor Mentor [5].

The source code presented in this series is avail-
able by anonymous ftp to sgigate.sgi.com in the
pub/opengl/xjournal directory.

Acknowledgments

Writing these three articles on OpenGL required the as-
sistance from numerous engineers and managers at Silicon
Graphics. In particular I would like to thank Kurt Ake-
ley, David Blythe, Simon Hui, Phil Karlton, Mark Segal,
Kevin Smith, Joel Tesler; Tom Weinstein, Mason Woo,
and David Yu.

A paperplane.c

paperplane can be compiled to use a "single visual" for the entire window
hierarchy and render OpenGL into a standard Motif drawing area widget:

cc -o sv_paperplane paperplane.c -DnoGLwidget -1GL -1Xm -1Xt -1X11 -1lm

Or paperplane can be compiled to use the default visual for most of
the window hierarchy but render OpenGL into a special "OpenGL widget":

O W0 N W N =

-
o

cc -o glw_paperplane paperplane.c -1GLw -1GL -1Xm -1Xt -1X11 -Im

-
—_

*/
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <math.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <Xm/ToggleB.h>
#include <Xm/CascadeB.h>
#include <Xm/Frame.h>
#ifdef noGLwidget
#include <Xm/Drawingh.h> /* Motif drawing area widget */
#else
#ifdef noMotifGLwidget
#include <GL/GLwDrawh.h> /* pure Xt OpenGL drawing area widget */
#else
#include <GL/GLwMDrawA.h> /* Motif OpenGL drawing area widget */
#endif
#endif
#include <X11/keysym.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>

W W W W WNDNDNDNDNDINDNDDNDNDNRE R = 2=
B W NP O WW N O WNREOOWNO O R WwN

35 static int dblBuf[] = {

36 GLX_DOUBLEBUFFER, GLX_RGBA, GLX_DEPTH_SIZE, 16,

37 GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1,
38 None

39 };

40 static int *snglBuf = &dblBuf[1];
41 static String fallbackResources[] = {
42 #ifdef IRIX_5_2_or_higher

43 "*¥sgiMode: true", /* try to enable IRIX 5.2+ look & feel */
44 "s*useSchemes: all", /* and SGI schemes */

45 #endif

46 "*title: OpenGL paper plane demo",

47 "sglxarea*width: 300", "*glxareaxheight: 300", NULL

48 };

49 Display *dpy;

50 GLboolean doubleBuffer = GL_TRUE, moving = GL_FALSE, made_current = GL_FALSE;
51 XtAppContext app;

52 XtWorkProcld workId = 0;

53 Widget toplevel, mainw, menubar, menupane, btn, cascade, frame, glxarea;
54 GLXContext CcX;

55 XVigualInfo *vi;

56 #ifdef noGLwidget

57 Colormap cmap;

58 #endif
59 Arg menuPaneArgs[1], args[1];

60 #define MAX_PLANES 15

61 struct {

62 float speed; /* zero speed means not flying */
63 GLfloat red, green, blue;

64 float theta;

65 float X, ¥, z, angle;

66 } planes[MAX_PLANES];
67 #define v3f glVertex3f /* v3f was the short IRIS GL name for glVertex3f */

68 void draw(Widget w)

69 {

70 GLfloat red, green, blue;

71 int i;

72 glClear (GL_DEPTH_BUFFER_BIT) ;

73 /* paint black to blue smooth shaded polygon for background */
74 glDisable (GL_DEPTH_TEST);

75 glShadeModel (GL_SMOOTH) ;

76 glBegin (GL_POLYGON) ;

77 glColor3f(0.0, 0.0, 0.0);

78 v3£(-20, 20, -19); v3£(20, 20, -19);

79 glColor3f(0.0, 0.0, 1.0);

80 v3£(20, -20, -19); v3f£(-20, -20, -19);

81 glEnd () ;

82 /* paint planes */

83 glEnable (GL_DEPTH_TEST) ;

84 glShadeModel (GL_FLAT);

85 for (i = 0; i < MAX_PLANES; i++)

86 if (planes[i].speed !'= 0.0) {

87 glPushMatrix () ;

88 glTranslatef(planes[i].x, planes[i].y, planes[i].z);
89 glRotatef(290.0, 1.0, 0.0, 0.0);

90 glRotatef(planes[i].angle, 0.0, 0.0, 1.0);

91 glScalef(1.0 / 3.0, 1.0 / 4.0, 1.0 / 4.0);

92 glTranslatef(0.0, -4.0, -1.5);

93 glBegin(GL_TRIANGLE_STRIP);

94 /* left wing */

95 v3f(-7.0, 0.0, 2.0); v3£(-1.0, 0.0, 3.0);

96 glColor3f(red = planes[i].red, green = planes[i].green,
97 blue = planes[i].blue);

98 v3f(-1.0, 7.0, 3.0);

99 /* left side */

100 glColor3£f(0.6 * red, 0.6 * green, 0.6 * blue);
101 v3£(0.0, 0.0, 0.0); v3£(0.0, 8.0, 0.0);

102 /* right side */

103 v3f(1.0, 0.0, 3.0); v3£f(1.0, 7.0, 3.0);

104 /* final tip of right wing */

105 glColor3f(red, green, blue);

106 v3£(7.0, 0.0, 2.0);

107 glEnd();

108 glPopMatrix();

109 }

110 if (doubleBuffer) glXSwapBuffers(dpy, XtWindow(w));

111 if ('glXIsDirect(dpy, cx))

112 glFinish(); /* avoid indirect rendering latency from queuing */

113 #ifdef DEBUG

114 { /* for help debugging, report any OpenGL errors that occur per frame */
115 GLenum error;

116 while((error = glGetError()) != GL_NO_ERROR)

117 fprintf (stderr, "GL error: %s\n", gluErrorString(error));

118 }

119 #endif

120 }

121 void tick_per_plane(int i)

122 {

123 float theta = planes[i].theta += planes[i].speed;

124 planes[i].z = -9 + 4 # cos(theta);

125 planes[i].x = 4 * sin(2 # theta);

126 planes[i].y = sin(theta / 3.4) * 3;

127 planes[i].angle = ((atan(2.0) + M_PI_2) * sin(theta) - M_PI_2) * 180 / M_PI;
128 if (planes[i].speed < 0.0) planes[i].angle += 180;

129}

130 void add_plane(void)

131 {

132 int i;

133 for (i = 0; i < MAX_PLANES; i++)
134 if (planes[i].speed == 0) {

135 #define SET_COLOR(r,g,b) \

136 planes[i].red=r; planes[i].green=g; planes[i].blue=b; break;
137 switch (random() % 6) {

138 case 0: SET_COLOR(1.0, 0.0, 0.0); /* red */

139 case 1: SET_COLOR(1.0, 1.0, 1.0); /* white */

140 case 2: SET_COLOR(0.0, 1.0, 0.0); /* green */

141 case 3: SET_COLOR(1.0, 0.0, 1.0); /* magenta */

142 case 4: SET_COLOR(1.0, 1.0, 0.0); /* yellow */

143 case 5: SET_COLOR(0.0, 1.0, 1.0); /# cyan */

144 }

145 planes[i].speed = (random() % 20) * 0.001 + 0.02;

146 if (random() & 0x1) planes[i].speed *= -1;

147 planes[i].theta = ((float) (random() % 257)) * 0.1111;
148 tick_per_plane(i);

149 if (!'moving) draw(glxarea);

150 return;

151 }

152 XBell(dpy, 100); /* can’t add any more planes */

153 }

154 void remove_plane(void)

155 {

156 int i;

157 for (i = MAX_PLANES - 1; i >= 0; i--)

158 if (planes[i].speed !'= 0) {

159 planes[i].speed = 0;

160 if (!'moving) draw(glxarea);

161 return;

162 }

163 XBell(dpy, 100); /* no more planes to remove */
164 }

165
166
167

168
169
170
171
172

173
174
175

176
177
178

179
180
181
182
183
184

185
186
187
188
189
190
191
192

193
194
195
196

197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215

void resize(Widget w, XtPointer data, XtPointer callData)

{
Dimensgion width, height;
if (made_current) {
XtVaGetValues (w, XmNwidth, &width, XmNheight, &height, NULL);
glViewport(0, 0, (GLint) width, (GLint) height);
}
}
void tick(void)
{
int 1i;
for (i = 0; i < MAX_PLANES; i++)
if (planes[i].speed !'= 0.0) tick_per_plane(i);
}
Boolean animate(XtPointer data)
{
tick();
draw(glxarea);
return False; /* leave work proc active */
}
void toggle(void)
{
moving = !'moving; /* toggle */
if (moving)
workId = XtAppAddWorkProc(app, animate, NULL);
else
XtRemoveWorkProc (workId);
}
void quit(Widget w, XtPointer data, XtPointer callData)
{
exit (0);
}
void input(Widget w, XtPointer data, XtPointer callData)
{
XmDrawingAreaCallbackStruct *cd = (XmDrawingAreaCallbackStruct #) callData;
char buf[1];
KeySym keysym;
int rc;
if (cd->event->type == KeyPress)
if (XLookupString ((XKeyEvent *) cd->event, buf, 1, &keysym, NULL) == 1)
switch (keysym) {
case XK_space:
if ('moving) { /* advance one frame if not in motion */
tick();
draw(w);
}
break;
case XK_Escape:
exit(0);
}
}

216
217
218
219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

void map_state_changed(Widget w, XtPointer data, XEvent * event, Boolean * cont)
{
switch (event->type) {
case MapNotify:
if (moving && workId !'= 0) workId = XtAppAddWorkProc(app, animate, NULL);
break;
case UnmapNotify:
if (moving) XtRemoveWorkProc(workId);
break;

main(int argc, char *argv[])
{
toplevel = XtAppInitialize(&app, "Paperplane", NULL, 0, &argc, argv,
fallbackResources, NULL, 0);
dpy = XtDisplay(toplevel);
/* find an OpenGL-capable RGB visual with depth buffer */
vi = glXChooseVisual(dpy, DefaultScreen(dpy), dblBuf);
if (vi == NULL) {
vi = glXChooseVisual(dpy, DefaultScreen(dpy), snglBuf);
if (vi == NULL)
XtAppError(app, "no RGB visual with depth buffer");
doubleBuffer = GL_FALSE;

/* create an OpenGL rendering context */
cx = glXCreateContext(dpy, vi, /# no display list sharing */ None,
/* favor direct */ GL_TRUE);
if (cx == NULL)
XtAppError(app, "could not create rendering context");
/* create an X colormap since probably not using default visual */
#ifdef noGLwidget
cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
vi->visual, AllocNone);
/*
* Establish the visual, depth, and colormap of the toplevel
* widget _before_ the widget is realized.
*/
XtVaSetValues(toplevel, XtlNvisual, vi->visual, XtNdepth, vi->depth,
XtNcolormap, cmap, NULL);
#endif
XtAddEventHandler (toplevel, StructureNotifyMask, False,
map_state_changed, NULL);
mainw = XmCreateMainWindow(toplevel, "mainw", NULL, 0);
XtManageChild(mainw) ;
/* create menu bar */
menubar = XmCreateMenuBar(mainw, "menubar", NULL, 0);
XtManageChild(menubar) ;
#ifdef noGLwidget
/% Hack around Xt’s unfortunate default visual inheritance. */
XtSetArg(menuPaneArgs[0], XmNvisual, vi->visual);
menupane = XmCreatePulldownMenu(menubar, '"menupane'", menuPaneArgs, 1);
felse
menupane = XmCreatePulldownMenu(menubar, '"menupane", NULL, 0);
#endif
btn = XmCreatePushButton(menupane, "Quit", NULL, 0);
XtAddCallback(btn, XmNactivateCallback, quit, NULL);
XtManageChild(btn) ;
XtSetArg(args[0], XmNsubMenuId, menupane);
cascade = XmCreateCascadeButton(menubar, "File", args, 1);

10

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

XtManageChild(cascade) ;

#ifdef noGLwidget

menupane = XmCreatePulldownMenu(menubar, '"menupane'", menuPaneArgs, 1);

felse

menupane = XmCreatePulldownMenu(menubar, '"menupane", NULL, 0);

#endif

btn = XmCreateToggleButton(menupane, "Motion", NULL, 0);
XtAddCallback(btn, XmNvalueChangedCallback, (XtCallbackProc)toggle, NULL);
XtManageChild(btn) ;

btn = XmCreatePushButton(menupane, "Add plane", NULL, 0);
XtAddCallback(btn, XmNactivateCallback, (XtCallbackProc)add_plane, NULL);
XtManageChild(btn) ;

btn = XmCreatePushButton(menupane, "Remove plane", NULL, 0);
XtAddCallback(btn, XmNactivateCallback, (XtCallbackProc)remove_plane, NULL);
XtManageChild(btn) ;

XtSetArg(args[0], XmNsubMenuId, menupane);

cascade = XmCreateCascadeButton(menubar, "Planes", args, 1);
XtManageChild(cascade) ;

/* create framed drawing area for OpenGL rendering */

frame = XmCreateFrame(mainw, "frame'", NULL, 0);

XtManageChild(frame) ;

#ifdef noGLwidget

glxarea = XtVaCreateManagedWidget ("'glxarea", xmDrawingAreaWidgetClass,
frame, NULL);

#telse
#ifdef noMotifGLwidget

/* notice glwDrawingAreaWidgetClass lacks an M’ */
glxarea = XtVaCreateManagedWidget ("'glxarea", glwDrawingAreaWidgetClass,

#else
glxarea = XtVaCreateManagedWidget ("'glxarea", glwMDrawingAreaWidgetClass,
#endif
frame, GLwNvisualInfo, vi, NULL);
#endif

}

XtAddCallback(glxarea, XmNexposeCallback, (XtCallbackProc)draw, NULL);
XtAddCallback(glxarea, XmNresizeCallback, resize, NULL);
XtAddCallback(glxarea, XmNinputCallback, input, NULL);
/* set up application’s window layout */
XmMainWindowSetAreas (mainw, menubar, NULL, NULL, NULL, frame);
XtRealizeWidget (toplevel);
/*
* Once widget is realized (ie, associated with a created X window), we
*# can bind the OpenGL rendering context to the window.
*/
glXMakeCurrent (dpy, XtWindow(glxarea), cx);
made_current = GL_TRUE;
/* setup OpenGL state */
glClearDepth(1.0);
glClearColor(0.0, 0.0, 0.0, 0.0);
glMatrixMode (GL_PROJECTION) ;
glFrustum(—l.O, 1.0, -1.0, 1.0, 1.0, 20);
glMatrixMode (GL_MODELVIEW) ;
/* add three initial random planes */
srandom(getpid());
add_plane(); add_plane(); add_plane();
/* start event processing */
XtAppMainLoop (app) ;

11

References

[1] Tom Gaskins, “Using PEXIlib with X Toolkits,”
PEXUib Programming Manual, O’ Reilly & Associates,
Inc., 1992.

[2] Mark Kilgard, “OpenGL and X, Part 1: An Introduc-
tion,” The X Journal, SIGS Publications, Nov/Dec
1993.

[3] Mark Kilgard, “OpenGL and X, Part 2: Using
OpenGL with Xlib,” The X Journal SIGS Publica-
tions, Jan/Feb 1994.

[4] Silicon Graphics, The OpenGL Porting Guide, sup-
plied with the IRIX 5.2 development option, 1994.

[5] Josie Wernecke, The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1994.

12

