
To be published in the

July/August issue of The X Journal.

OpenGL

TM

and X, Part 3:

Integrating OpenGL with Motif

Mark J. Kilgard

�

Silicon Graphics Inc.

Revision : 1:18

April 15, 1994

Abstract

The OpenGL

TM

graphics system can be integrated with

the industry-standard OSF/Motif user interface. This ar-

ticle discusses how to use OpenGL within a Motif applica-

tion program. There are two approaches to using OpenGL

with Motif. One is to render into a standard Motif draw-

ing area widget, but this requires each application window

to use a single visual for its window hierarchy. A better

approach is to use the special OpenGL drawing area wid-

get allowing windows used for OpenGL rendering to pick

freely an appropriate visual without a�ecting the visual

choice for other widgets. An example program demon-

strates both approaches. The X Toolkit's work procedure

mechanism animates the example's 3D paper airplanes.

Handling OpenGL errors is also explained.

1 Introduction

OSF/Motif is the X Window System's industry-standard

programming interface for user interface construction.

Motif programmers writing 3D applications will want to

understand how to integrate Motif with the OpenGL

TM

graphics system. This article, the last in a three-part se-

ries about OpenGL, describes how to write an OpenGL

program within the user interface framework provided by

Motif and the X Toolkit.

Most 3D applications end up using 3D graphics primar-

ily in one or more \viewing" windows. For the most part,

the graphical user interface aspects of such programs use

standard 2D user interface objects like pulldown menus,

sliders, and dialog boxes. Creating and managing such

common user interface objects is what Motif does well.

The \viewing" windows used for 3D are where OpenGL

�

Mark graduated with B.A. in Computer Science from Rice Uni-

versity and is a Member of the Technical Sta� at Silicon Graphics.

He can be reached by electronic mail addressed to mjk@sgi.com

rendering happens. These windows for OpenGL render-

ing can be constructed with standard Motif drawing area

widgets or OpenGL-speci�c drawing area widgets. Bind

an OpenGL rendering context to the window of a drawing

area widget and you are ready for 3D rendering.

ProgrammingOpenGL with Motif has numerous advan-

tages over using \Xlib only" as described in the �rst two

articles in this series [2, 3]. First and most important, Mo-

tif provides a well-documented, standard widget set that

gives your application a consistent look and feel. Second,

Motif and the X Toolkit take care of routine but compli-

cated issues such as cut and paste and window manager

conventions. Third, the X Toolkit's work procedure and

timeout mechanisms make it easy to animate a 3D window

without blocking out user interaction with your applica-

tion.

This article assumes you have some experience program-

ming with Motif and you have a basic understanding of

how OpenGL integrates with X.

Section 2 describes how to use OpenGL rendering

with either a standard Motif drawing area widget or an

OpenGL-speci�c drawing area widget. Section 3 discusses

using X Toolkit mechanisms for seamless animation. Sec-

tion 4 provides advice on how to debug OpenGL programs

by catching OpenGL errors. Throughout the discussion, a

Motif-based OpenGL program named paperplane is used

as an example. The complete source code for paperplane

is found in the appendix. The program animates the 3D

ight paths of virtual paper airplanes. The user can in-

teract with the program via Motif controls. The program

can be compiled to use either a standard Motif drawing

area widget or an OpenGL-speci�c drawing area widget.

Figure 1 shows paperplane running.

1

Figure 1: Screen snapshot of paperplane with another

OpenGL Motif program for molecular modeling.

n it id ts

our application's 3D viewing area can be encapsulated

by an X Toolkit widget. There are two approaches to

rendering OpenGL into a widget. ou can render OpenGL

into a standard Motif drawing area widget, or you can use

a special OpenGL drawing area widget.

The Motif drawing area widget would seem a natu-

ral widget for OpenGL rendering. nfortunately, the X

Toolkit's design (upon which Motif relies) allows program-

mers to specify a widget's visual only if its class is derived

from the shell widget class. Shell widgets are often called

\top level" widgets because they are designed to commu-

nicate with the window manager and act as containers for

other widgets. on-shell widgets inherit the depth and vi-

sual of their parent widget. The Motif drawing area wid-

get class (like most widget classes) is not derived from the

shell widget class. It is impossible (without resorting to

programming widget internals) to set the visual of a stan-

dard non-shell Motif widget di�erently than its ancestor

shell widget.

But in OpenGL, the X notion of a visual has expanded

importance for determining the OpenGL frame bu�er ca-

pabilities of an X window. In many cases, an application's

3D viewing area is likely to demand a deeper, more ca-

pable visual than the default visual which Motif normally

uses.

There are two options:

1. se the standard Motif drawing area widget for your

OpenGL rendering area and make sure that the top

level shell widget is created with the desired visual for

OpenGL's use.

2. se an OpenGL drawing area widget that is specially

programmed to overcome the limitation on setting the

visual and depth of a non-shell widget.

Either approach works.

The paperplane example in the appendix is written to

support either scheme depending on how the code is com-

piled. By default, the code compiles to use the OpenGL-

speci�c widget. If the noGLwidget C preprocessor symbol

is de�ned, the standard Motif drawing area widget will

be used, forcing the use of a single visual throughout the

example's widget hierarchy. The code di�erences between

the two schemes in the paperplane example constitute

seven changed lines of code.

The preferable approach is to use the OpenGL-speci�c

widget, since you can run most of the application's user

interface in the default visual and use a deeper, more ca-

pable visual only for 3D viewing areas. Limiting the use

of deeper visuals can save memory and increase render-

ing speed for the user interface windows. If you use a

24-bit visual for your 3D viewing area and use the same

visual for your entire application, that means that the im-

age memory for pixmaps used by non-OpenGL windows is

four times what it would be for an 8-bit visual.

1

Some X

rendering operations might also be slower for 24-bit win-

dows compared with 8-bit windows.

There can be advantages to running your entire appli-

cation in a single visual. Some workstations with limited

colormap resources might not be capable of showing mul-

tiple visuals without colormap
ashing. Such machines

which support OpenGL should be rare. Even if running

in a single visual is appropriate, nothing precludes doing

so using an OpenGL-speci�c widget.

. -

There are two OpenGL-speci�c drawing area widget

classes. One is derived from the Motif primitive widget

class (not the Motif drawing area widget class). The other

is derived from the X Toolkit core widget class. Both

have the same basic functionality; the main di�erence is

that the Motif-based widget class gains capabilities of the

Motif primitive widget class. If you use Motif, you should

use the Motif OpenGL widget. If you use a non-Motif

widget set, you can use the second widget for identical

functionality.

The Motif OpenGL widget class is named

glw rawing rea idget lass; the non-Motif OpenGL

widget class is named glw rawing rea idget lass (the

di�erence is the lack of an in the non-Motif case). Since

1

ven though a -bit pixel re uires only three bytes of storage,

e cient manipulation of the pixels demands each pixel is stored in

an even bytes.

2

the Motif OpenGL widget is subclassed from the Motif

primitive widget class, the Motif OpenGL widget inher-

its the capabilities of the primitive class like a help call-

back and keyboard traversal support (keyboard traver-

sal is disabled by default for the Motif OpenGL widget).

The paperplane example uses the Motif widget by de-

fault but the non-Motif widget can be used by de�ning

the no oti GLwidget C preprocessor symbol when com-

piling paperplane. . The di�erence is two changed lines

of code with no functional di�erence in the program.

When you create either type of widget, you need

to specify the visual to use by supplying the widget's

GLw is al n o resource. The attribute is of type

is al n o making it easy to �nd an appropriate visual

using gl oose is alwhich returns a is al n o for

a visual with the capabilities you request.

Although this practice is not recommended, the wid-

gets also allow you to specify the OpenGL capabilities you

desire for the widget directly using widget resources. Be-

cause the X Toolkit widget creation process is not expected

to fail, there is no way for a widget creation routine to indi-

cate failure. If a visual that matches the desired OpenGL

capabilities cannot be found, the widget code prints an

error and exits without giving the program a chance to

handle the failure. If you request a speci�c is al n o

that has already been determined to be acceptable using

gl oose is al or calls to gl Get on ig, you will not

have this problem. As a rule, always specify the visual

using the GLw is al n o resource.

The OpenGL widgets also do extra work that might

go unnoticed. Because the OpenGL widget uses a dif-

ferent visual, the widget's creation code creates a col-

ormap matching the visual. It also posts an ICCCM

L top level window property to let

the window manager know that the program uses multiple

colormaps.

More information about the OpenGL widgets can be

found in the Silicon Graphics pen ort n u de [4]

and the widgets' man pages.

.

sing the standard Motif drawing area widget with

OpenGL has some extra caveats. The main caveat is that

you must create the top level widget with the correct vi-

sual for the program's OpenGL rendering.

When you start a widget program, there is generally

a call to t pp nitiali e to establish the connection

to the X server and create the top level widget. Both

steps are done in the same routine. So how can we call

gl oose is al to know what visual the top level wid-

get should use until we have established a connection to

the X server

It would appear that it is impossible to create the

top level widget with an appropriate visual for OpenGL.

paperplane (Paperplane)

mainw (XmMainWindow)

menubar (XmRowColumn) frame
(XmFrame)

Separator1
(XmSeparatorGadget)

Separator2
(XmSeparatorGadget)

Separator3
(XmSeparatorGadget)

 File
(XmCascadeButton)

 Planes
(XmCascadeButton)

popup_menupane
 (XmMenuShell)

menupane
(XmRowColumn)

menupane
(XmRowColumn)

 Quit
(XmPushButton)

 Motion
(XmToggleButton)

 Add plane
(XmPushButton)

Remove plane
 (XmPushButton)

 glxarea
(XmDrawingArea or
 glwMDrawingArea or
 glwDrawingArea)

Figure 2: Diagramof the widget hierarchy for paperplane.

The gl area rawing rea widget is the only widget

rendered using OpenGL.

t pp nitiali e connects to the X server and creates

the top level widget, but it does not real e the top level

widget. The X window for the top level widget is not

created until t eali e idget is called. This allows

t et al es to be used after the top level widget's cre-

ation (and before its reali ation) to specify the widget's

visual. The paperplane sample code in the non-OpenGL

widget case demonstrates this.

A second caveat is due to the X Toolkit's inconsistent

inheritance of the visual, depth, and colormap widget re-

sources. The default visual of a widget's window is copied

from its parent ndo 's visual. But the default colormap

and depth of a widget are copied from the widget's parent

d et.

This means that if you create a widget derived from

the shell widget and the widget's parent uses a non-

default depth or colormap for a non-default visual, you

will need to specify the same visual as the new widget's

parent widget. If you do not, a ad at X protocol er-

ror will result. For this reason the paperplane example's

reate lldown en calls specify the visual of the cre-

ated widget's parent widget in the Motif drawing area ver-

sion of paperplane.

eali e that it is not possible to bind an OpenGL ren-

dering context to a widget's window until the widget

has been reali ed. ntil the widget is reali ed, the wid-

get's window does not yet exist. otice paperplane does

not call gl a e rrent until after t eali e idget has

been called.

To see how the 3D viewing area widget �ts into the

paperplane widget hierarchy example, Figure 2 shows the

complete hierarchy including widget class names.

f the widget has no parent, the depth and colormap are deter-

mined by the default depth and colormap of the screen.

3

These caveats are not unique to OpenGL. The problem

comes from using non-default visuals with the X Toolkit.

PEXlib .1 programs have a similar need for non-default

visuals and require the same jumping through hoops[1].

Fortunately, if you use the OpenGL drawing area wid-

gets, you can avoid the caveats of using the standard Motif

drawing area.

.

Applications using the Motif drawing area widget or the

OpenGL drawing area widgets for their 3D rendering will

want to register routines to handle expose, resi e, and in-

put callbacks using t dd all a . In paperplane. ,

the draw, resi e, and inp t routines handle these call-

backs.

paperplane's drawing area adjusts OpenGL's viewport

by calling gl iewport. ote how the ade rrent vari-

able is used to protect against calling gl iewport be-

fore we have done the gl a e rrent to bind to the

drawing area window. In the X Toolkit, the resi e call-

back can be called before the t eali e idget routine

returns. Since the program does not call gl a e rrent

until after the program returns from t eali e idget,

the OpenGL rendering context would not be bound. Call-

ing an OpenGL routine before a context is bound has no

e�ect but generates an ugly warning message. An ex-

ample of when the resi e callback can be called before

t eali e idget returns is when a -geo etr command

line option is speci�ed.

ote that gl a e rrent is de�ned to set a context's

viewport to the si e of the �rst window it is bound to.

(This happens only on the context's �rst bind.) This is

why paperplane. makes no initial call to gl iewport;

gl a e rrent sets the viewport implicitly.

The paperplane example uses a single window for

OpenGL rendering. For this reason, gl a e rrent

is called only once to bind the OpenGL context to the

window. In a program with multiple OpenGL windows,

each expose and resi e callback should make sure that

gl a e rrent is called so that OpenGL rendering goes

to the correct window.

The draw callback routine issues the OpenGL com-

mands to draw the scene. If the window is double bu�ered,

gl wap ers swaps the window's bu�ers. If the con-

text is not direct, gl inis is called to avoid the latency

from queuing more than one frame at a time; interactiv-

ity would su�er if we allowed more than one frame to be

queued. Direct rendering involves direct manipulation of

the hardware so it generally has less latency than a poten-

tially networked indirect OpenGL context.

ote that you can render OpenGL into an widget (as

long as it is created with an OpenGL capable visual).

The exact behavior is unde ned by the penG speci cation.

There is nothing special about the Motif or OpenGL-

speci�c drawing area widgets, though drawing area wid-

gets tend to be the most appropriate widget type for a 3D

viewing area.

.

The inp t routine handles X events for the drawing area.

Input events require no special handling for OpenGL. But

remember that the coordinate systems for X and OpenGL

are distinct, so pointer locations need to be mapped into

OpenGL's coordinate space. OpenGL generally assumes

that the origin is in the lower left-hand corner, while X

always assumes an origin at the upper left-hand corner.

Ani ation ia or

roc dur s

The X Toolkit's work procedure facility makes it easy to

integrate continuous OpenGL animation with Motif user

interface operation. Work procedures are application sup-

plied routines that execute while the application is idle

waiting for events. Work procedures should be used to do

small amounts of work; if too much time is spent in a work

procedure, X events will not be processed and program in-

teractivity will su�er.

endering a single frame of OpenGL animation is a

good use for work procedures. t pp dd or ro and

t e o e or ro are used to add and remove work pro-

cedures. t pp dd or ro is passed a function pointer

for the routine to be called as a work procedure. The

function to be called returns a oolean. If the function

returns r e, the work procedure should be removed au-

tomatically; returning alse indicates the work proce-

dure should remain active. t pp dd or ro returns

an ID of type or ro d which can later be given to

t e o e or ro to remove the work procedure.

The paperplane example uses a work procedure to

manage the update of its 3D scene. In response to

changing the state of the \Motion" toggle button on the

\Planes" pulldown menu, the toggle callback routine will

add and remove the ani ate work procedure.

The ani ate routine calls ti which advances the po-

sition of each active plane; ani ate then calls draw to

redraw the scene with the new plane locations. Finally,

ani ate returns alse to leave the work procedure in-

stalled so that the animation will continue.

Because paperplane uses a work procedure, animation

of the scene does not interfere with window resi ing and

user input. The X Toolkit manages both the animation

and events from the X server.

4

.

When the paperplane window is open, we want the

ani ate work procedure to update the 3D scene con-

tinuously. If the user iconi�es the window, it would

be wasteful to continue animating a no longer visible

scene. To avoid wasting resources rendering to an un-

mapped window, paperplane installs an event handler

called ap state anged for the top-level widget to no-

tice n ap oti and ap oti events. The handler

makes sure the work procedure is removed or added to

re
ect the map state of the window.

.

X Toolkit timeouts are similar to work procedures, but

instead of being activated whenever event dispatching is

idle, they are called when a given period of time has ex-

pired. The t pp dd i eo t and t e o e i e t rou-

tines can be used to add and remove X Toolkit timeouts.

OpenGL programmers may �nd timeouts useful to

maintain animation at rates slower than \as fast as

OpenGL will render." Timeouts can be used to give ani-

mation a sustained frame rate. Timeouts can also be used

to redraw a scene with higher detail when the user has

stopped interacting with the program. For example, a 3D

modeling program might redraw its model with lighting

enabled and �ner tessellation after the program has been

idle for two seconds. Timeouts can also be used to trigger

simple real-time state changes useful for visual simulation.

bu in i s

As well as demonstrating the use of widgets with OpenGL,

paperplane also demonstrates detection of OpenGL errors

for debugging purposes. Some debugging code has been

added to the bottom of paperplane's draw function to

test for any OpenGL errors. A correct OpenGL program

should not generate any OpenGL errors, but while debug-

ging it is helpful to check explicitly for errors. A good time

to check for errors is at the end of each frame. Errors in

OpenGL are not reported unless you explicitly check for

them, unlike X protocol errors which are always reported

to the client.

OpenGL errors are recorded by setting \sticky"
ags.

Once an error
ag is set, it will not be cleared until

glGet rror is used to query the error. An OpenGL im-

plementation may have several error
ags internally that

can be set (since OpenGL errors might occur in di�erent

stages of the OpenGL rendering pipeline). When you look

for errors, you should call glGet rror repeatedly until it

returns GL indicating that all of the error
ags

have been cleared.

The OpenGL error model is suited for high performance

rendering, since error reporting does not slow down the

error-free case. Because OpenGL errors should not be gen-

erated by bug-free code, you probably want to remove er-

ror querying from your �nal program since querying errors

will slow down your rendering speed.

When an OpenGL error is generated, the command

which generated the error is not recorded, so you may

need to add more error queries into your code to isolate

the source of the error.

The gl rror tring routine in the OpenGL tility li-

brary (GL) converts an OpenGL error number into a

human readable string and helps you output a reasonable

error message.

onc usion

OpenGL and Motif are a powerful combination. sing

both APIs allow X applications programmers to get the

most out of both Motif and OpenGL.

Still another way to integrate OpenGL rendering with

widgets is the Open Inventor object-oriented 3D graphics

toolkit which renders using OpenGL and integrates with

X Toolkit widgets. Open Inventor allows you to specify

3D scenes in an object-oriented fashion instead of low-

level OpenGL rendering primitives. If you are interested

in object-oriented 3D, check out the recently published

n entor entor [].

The source code presented in this series is avail-

able by anonymous ftp to sgigate.sgi. o in the

p opengl o rnal directory.

Ac no d nts

Writing these three articles on OpenGL required the as-

sistance from numerous engineers and managers at Silicon

Graphics. In particular I would like to thank urt Ake-

ley, David Blythe, Simon Hui, Phil arlton, Mark Segal,

evin Smith, oel Tesler, Tom Weinstein, Mason Woo,

and David u.

A a r an .c

" "

" "

" "

" "

" "

" " " "

" "

8

" "

" "

" "

" "

" "

" "

" "

" "

" "

1

" "

" "

" "

" "

" "

" "

" "

" "

" "

" "

11

r nc s

[1] Tom Gaskins, \ sing PEXlib with X Toolkits,"

Xl ro ra n anual, O' eilly Associates,

Inc., 1 2.

[2] Mark ilgard, \OpenGL and X, Part 1: An Introduc-

tion," The X Journal, SIGS Publications, ov/Dec

1 3.

[3] Mark ilgard, \OpenGL and X, Part 2: sing

OpenGL with Xlib," The X Journal, SIGS Publica-

tions, an/Feb 1 4.

[4] Silicon Graphics, The pen ort n u de, sup-

plied with the I IX .2 development option, 1 4.

[] osie Wernecke, The n entor entor ro ra n

ect r ented raph cs th pen n entor,

Addison-Wesley, 1 4.

12

