8 October 1993

The OpenGLTM Graphics System Utility
Library

Kevin P. Smith
Silicon Graphics

GLU Spec Version 1.0 1



8 October 1993

Copyright © 1992, 1993 Silicon Graphics, Inc.

The OpenGLTM Specification in this document is protected by International Copy-
right Law, and is proprietary to Silicon Graphics, Inc. You may not copy, adapt,
distribute, or publicly perform or display any portion of such material without the
express, prior written consent of Silicon Graphics, Inc. Your receipt or possession
of the OpenGL Specification does not grant to you or anyone else any right to
reproduce, create derivative works based on or distribute or otherwise disclose any
of its contents, or to manufacture, use or sell anything that embodies any of the
material included herein, in whole or in part, provided, however, that you may
print one interpreted copy of the PostScript(R) version of the OpenGL Specifica-
tion provided herein for your personal reference in connection with your use of a
product that utilizes the OpenGL API.

THE MATERIAL IN THIS DOCUMENT IS PROVIDED TO YOU “AS-IS”
AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL SILICON GRAPHICS, INC. BE LIABLE TO YOU OR ANY-
ONE ELSE FOR ANY DIRECT, SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHAT-
SOEVER, INCLUDING WITHOUT LIMITATION, LOSS OF PROFIT, LOSS
OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF THIRD PARTIES,
WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH
THE POSSESSION OR USE OF THE MATERIAL CONTAINED IN THIS
SPECIFICATION.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set
forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or
successor clauses in the FAR or the DOD or NASA FAR Supplement. Unpub-
lished rights reserved under the copyright laws of the United States. Contractor/
manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94039-7311.

OpenGL is a trademark of Silicon Graphics, Inc. PostScript is a registered
tradmark of Adobe Systems Incorporated.

GLU Spec Version 1.0 2



8 October 1993

1 Overview

The GL Utilities (GLU) library is a set of routines designed to complement the
OpenGL™ graphics system by providing support for mipmapping, matrix manip-
ulation, polygon tessellation, quadrics, NURBS, and error handling. Mipmapping
routines include image scaling and automatic mipmap generation. A variety of
matrix manipulation functions build projection and viewing matrices, or project
vertices from one coordinate system to another. Polygon tessellation routines con-
vert concave polygons into triangles for easy rendering. Quadrics support renders a
few basic quadrics such as spheres and cones. NURBS code maps complicated
NURBS curves and trimmed surfaces into simpler OpenGL evaluators. Lastly, an
error lookup routine translates OpenGL and GLU error codes into strings.

2 Mipmapping

GLU provides image scaling and automatic mipmapping functions to simplify the
creation of textures. The image scaling function can scale any image to a legal tex-
ture size. The resulting image can then be passed to OpenGL as a texture. The
automatic mipmapping routines will take an input image, create mipmap textures
from it, and pass them to OpenGL. With this interface, the user need only supply
an image and the rest is automatic.

2.1 Image Scaling

The following routine magnifies or shrinks an image:

int gluScaleImage(GLenum format, GLsizei widthin, GLsizei heightin,
GLenum typein, const void *datain, GLsizei widthout, GLsizei
heightout, GLenum typeout, void *dataout);

gluScaleImage will scale an image using the appropriate pixel store modes to
unpack data from the input image and pack the result into the output image. format
specifies the image format used by both images (and may be any of the formats
supported by glDrawPixels). The input image is described by widthin, heightin,
typein, and datain, where widthin and heightin specify the size of the image, typein
specifies the data type used (as in glDrawPixels), and datain is a pointer to the
image data in memory. The output image is similarly described by widthout,
heightout, typeout, and dataout, where widthout and heightout specify the desired
size of the image, typeout specifies the desired data type, and dataout points to the
memory location where the image is to be stored.

gluScaleImage reconstructs the input image by linear interpolation, convolves it
with a one-pixel-square box kernel, and then samples the result to produce the out-
put image.

A return value of 0 indicates success. Otherwise the return value is a GLU error

GLU Spec Version 1.0 3



8 October 1993

code indicating the cause of the problem (see gluErrorString below).

2.2 Automatic Mipmapping

These routines will automatically generate mipmaps for any image provided by the
user and then pass them to OpenGL:

int gluBuild1DMipmaps(GLenum farget, GLint components, GLsizei
width, GLenum format, GLenum type, const void *data);

int gluBuild2DMipmaps(GLenum farget, GLint components, GLsizei
width, GLsizei height, GLenum format, GLenum type, const void
*data),

gluBuild1DMipmaps and gluBuild2DMipmaps both take an input image and
derive from it a pyramid of scaled images suitable for use as mipmapped textures.
The resulting textures are then passed to glTexImagelD or glTexImage2D as
appropriate. target, components, format, type, width, height, and data define the
level O texture, and have the same meaning as the corresponding arguments to
glTexImagelD and glTexImage2D. Note that the image size does not need to be a
power of 2, because the image will be automatically scaled to the nearest power of
2 size if necessary.

A return value of O indicates success. Otherwise the return value 1s a GLU error
code indicating the cause of the problem.

3 Matrix Manipulation

The GLU library includes support for matrix creation and coordinate projection
(transformation). The matrix routines create matrices and multiply the current
OpenGL matrix by the result. They are used for setting projection and viewing
parameters. The coordinate projection routines are used to transform object space
coordinates into screen coordinates or vice-versa. This makes it possible to deter-
mine where in the window an object is being drawn.

3.1 Matrix setup

The following routines create projection and viewing matrices and apply them to
the current matrix using glMultMatrix. With these routines, a user can construct a
clipping volume and set viewing parameters to render a scene.

gluOrtho2D and gluPerspective build commonly-needed projection matrices.

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble rop);

GLU Spec Version 1.0 4



8 October 1993

sets up a two dimensional orthographic viewing region. The parameters define the
bounding box of the region to be viewed. Calling gluOrtho2D (left, right, bottom,
top) is equivalent to calling glOrtho(left, right, bottom, top, -1, 1).

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble near,
GLdouble far);

sets up a perspective viewing volume. fovy defines the field-of-view angle (in
degrees) in the y direction. aspect is the aspect ratio used to determine the field-of-
view in the x direction. It is the ratio of x (width) to y (height). near and far define
the near and far clipping planes (as positive distances from the eye point).

gluLookAt creates a commonly-used viewing matrix:

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz,
GLdouble upx, GLdouble upy, GLdouble upz);

The viewing matrix created is based on an eye point (eyex, eyey, eyez), a reference
point that represents the center of the scene (centerx, centery, centerz), and an up
vector (upx, upy, upz). The matrix is designed to map the center of the scene to the
negative Z axis, so that when a typical projection matrix is used, the center of the
scene will map to the center of the viewport. Similarly, the projection of the up
vector on the viewing plane is mapped to the positive Y axis so that it will point
upward in the viewport. The up vector must not be parallel to the line-of-sight
from the eye to the center of the scene.

gluPickMatrix is designed to simplify selection by creating a matrix that restricts
drawing to a small region of the viewport. This is typically used to determine
which objects are being drawn near the cursor. First restrict drawing to a small
region around the cursor, then rerender the scene with selection mode turned on.
All objects that were being drawn near the cursor will be selected and stored in the
selection buffer.

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble deltax,
GLdouble deltay, GLint viewport[4]);

gluPickMatrix should be called just before applying a projection matrix to the
stack (effectively pre-multiplying the projection matrix by the selection matrix). x
and y specify the center of the selection bounding box in pixel coordinates; deltax
and deltay specify its width and height in pixels. viewport should specify the cur-
rent viewport’s x, y, width, and height. A convenient way to obtain this informa-
tion is to call glGetIntegerv(GL_VIEWPORT, viewport).

3.2 Coordinate Projection

Two routines are provided to project coordinates back and forth from object space
to screen space. gluProject projects from object space to screen space, and gluUn-

GLU Spec Version 1.0 5



8 October 1993

Project does the reverse.

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const
GLdouble modelMatrix[16], const GLdouble projMatrix[16],
const GLint viewport[4], GLdouble *winx, GLdouble *winy,
GLdouble *winz);

gluProject performs the projection with the given modelMatrix, projectionMatrix,
and viewport. The format of these arguments is the same as if they were obtained
from glGetDoublev and glGetIntegerv. A return value of GL_TRUE indicates
success, and GL_FALSE indicates failure.

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const
GLdouble modelMatrix[16], const GLdouble projMatrix[16],
const GLint viewport[4], GLdouble *objx, GLdouble *objy,
GLdouble *0bjz);

gluUnProject uses the given modelMatrix, projectionMatrix, and viewport to per-
form the projection. A return value of GL_TRUE indicates success, and
GL_FALSE indicates failure.

4 Polygon Tessellation

The polygon tessellation routines triangulate concave polygons with one or more
contours. To use these routines, first create a tessellation object. Second, define
callback routines that will be used to process the triangles generated by the tessel-
lator. Finally, specify the concave polygon to be tessellated.

The triangles produced by tessellation will be oriented in the same direction as the
largest input contour. For example, if the largest input contour is oriented counter-
clockwise in some plane, then all of the output triangles will also be oriented
counter-clockwise in that plane.

These routines do not support self-intersecting polygons. This includes polygons
with multiple coincident vertices.

4.1 The Tessellation Object

A new tessellation object is created with gluNewTess:

GLUtriangulatorObj *tessoby;
tessobj = gluNewTess(void);

gluNewTess returns a new tessellation object, which is used by the other tessella-
tion functions. A return value of 0 indicates an out-of-memory error.

When a tessellation object is no longer needed, it should be deleted with gluDele-

GLU Spec Version 1.0 6



8 October 1993

teTess:
void gluDeleteTess(GLUtriangulatorObj *tessobj);

This will destroy the object and free any memory used by it.

4.2 Callbacks

When a concave polygon is tessellated, the triangles created by the process are
described to the user by a series of callbacks. These callbacks are specified with
gluTessCallback:

void gluTessCallback(GLUtriangulatorObj *tessobj, GLenum which, void
(*fm)0);

This routine replaces the callback selected by which with the function specified by
fn. If fn is equal to NULL, then any previously defined callback is discarded. Any
callbacks discarded or left unspecified will not be called, and any information that
they would have provided is lost.

It is legal to leave any of the callbacks undefined. However, the information that
they would have provided is lost.

which may be one of GLU_BEGIN, GLU_EDGE_FLAG, GLU_VERTEX, GLU_—
END, or GLU_ERROR. The five callbacks have the following prototypes:

void begin(GLenum type);

void edgeFlag(GLboolean flag);
void vertex(void *data);

void end(void);

void error(GLenum errno);

The begin callback is invoked like glBegin to indicate the start of a triangle primi-
tive. This callback will be called with either GL_TRIANGLE_FAN, GL_TRIAN-
GLE_STRIP, or GL_TRIANGLES.

The edgeFlag callback is similar to glEdgeFlag. It is used to indicate which edges
of the created triangles were part of the original polygon, and which were created
by the tessellation process. If flag is GL_TRUE, then each vertex that follows
begins an edge that was part of the original polygon. If flag is GL_FALSE, then
each vertex that follows begins an edge that was created by the tessellator. To
avoid confusion with the first few edges, the edgeFlag callback will be invoked
before the first vertex callback is made. Since triangle fans and triangle strips do
not support edge flags, the begin callback will not be invoked with GL,_TRIAN-
GLE_FAN or GL_TRIANGLE_STRIP if an edgeFlag callback is provided.
Instead, fans and strips will be converted to independent triangles.

The vertex callback is invoked between the begin and end callbacks. It is similar to
glVertex, and defines the vertices of the triangles created by the tessellation pro-

GLU Spec Version 1.0 7



8 October 1993

cess. data is a copy of the pointer that the user provided when the vertex was spec-
ified (see gluTessVertex below).

The end callback serves the same purpose as glEnd, and indicates the end of a
primitive.

The error callback is invoked when an error is encountered. There are eight errors
unique to polygon tessellation and they are named GLU_TESS_ERROR1 through
GLU_TESS_ERRORS. Character strings describing these errors can be retrieved
with the gluErrorString call (see below).

4.3 Polygon Definition

The input polygon is specified with the following routines:

void gluBeginPolygon(GLUtriangulatorObj *tessobyj);

void gluTessVertex(GLUtriangulatorObj *tessobj, GLdouble location[3],
void *data);

void gluNextContour(GLUtriangulatorObj *fessobj, GLenum type);

void gluEndPolygon(GLUtriangulatorObj *tessobyj);

gluBeginPolygon indicates the start of the polygon, and it must be called first.

gluTessVertex describes a polygon vertex. Successive gluTessVertex calls
describe a closed contour; for example, if the input polygon is a quadrilateral, then
gluTessVertex should be called four times. location specifies the position of the
vertex. data 1s an opaque pointer that is passed back to the user when the vertex
callback is invoked; it typically contains a copy of the vertex location, color, sur-
face normal, and other per-vertex attributes. The current tessellator never generates
new vertices, so it never interpolates these attributes.

gluNextContour is called once before each contour, and specifies the type of con-
tour that follows. type is one of GLU_EXTERIOR, GLU_INTERIOR, GLU_CCW,
GLU_CW, or GLU_UNKNOWN. A GLU_EXTERIOR contour defines an exterior
boundary of the polygon, and a GLU_INTERIOR contour defines an interior
boundary of the polygon (a hole). GLU_UNKNOWN contours will be analyzed by
the library to determine if they are interior or exterior.

The GLU_CCW and GLU_CW contour types are global types, and if one contour is
of type GLU_CCW or GLU_CHW, then all contours must be of the same type (if they
are not, then all GLU_CCW or GLU_CW contours will be changed to GLU_UN-
KNOWN).

The first GLU_CCW or GLU_CW contour defined is considered to be exterior. All
other contours are considered to be exterior if they are oriented in the same direc-
tion (clockwise or counter-clockwise) as the first contour, and interior if they are
not. Note that there is no real difference between the GLU_CCW and GLU_CW

types.

GLU Spec Version 1.0 8



8 October 1993

If gluNextContour is not called before the first contour, then the first contour is
assumed to be a GLU_EXTERIOR contour.

gluEndPolygon defines the end of the polygon. When gluEndPolygon is called
the polygon will be tessellated, and the resulting triangles will be described
through the callbacks.

5 Quadrics

The GLU library quadrics routines will render spheres, cylinders and disks in a
variety of styles as specified by the user. To use these routines, first create a quad-
rics object. This object contains state indicating how a quadric should be rendered.
Second, modify this state using the function calls described below. Finally, render
the desired quadric by invoking the appropriate quadric rendering routine.

5.1 The Quadrics Object

A quadrics object is created with gluNewQuadric:

GLUquadricObj *quadoby;
quadobj = gluNewQuadric(void);

gluNewQuadric returns a new quadrics object. This object contains state describ-
ing how a quadric should be constructed and rendered. A return value of 0 indi-
cates an out-of-memory error.

When the object is no longer needed, it should be deleted with gluDeleteQuadric:
void gluDeleteQuadric(GLUquadricObj *quadobj);

This will delete the quadrics object and any memory used by it.

5.2 Callbacks

To associate a callback with the quadrics object, use gluQuadricCallback:

void gluQuadricCallback(GLUquadricObj *quadobj, GLenum which,
void (*fn)());

The only callback provided for quadrics is the GLU_ERROR callback (identical to
the polygon tessellation callback described above). This callback takes an error
code as its only argument. To translate the error code to an error message, see glu-
ErrorString below.

GLU Spec Version 1.0 9



8 October 1993

5.3 Rendering Styles

A variety of variables control how a quadric will be drawn. These are normals, tex-
tureCoords, orientation, and drawStyle. normals indicates if surface normals
should be generated, and if there should be one normal per vertex or one normal
per face. textureCoords determines whether texture coordinates should be gener-
ated. orientation describes which side of the quadric should be the “outside.”
Lastly, drawStyle indicates if the quadric should be drawn as a set of polygons,
lines, or points.

To specify the kind of normals desired, use gluQuadricNormals:
void gluQuadricNormals(GLUquadricObj *quadobj, GLenum normals);

normals is either GLU_NONE (no normals), GLU_FLAT (one normal per face) or
GLU_SMOOTH (one normal per vertex). The default is GLU_SMOOTH.

Texture coordinate generation can be turned on and off with gluQuadricTexture:

void gluQuadricTexture(GLUquadricObj *quadobj, GLboolean
textureCoords);

If textureCoords is GL_TRUE, then texture coordinates will be generated when a
quadric is rendered. Note that how texture coordinates are generated depends upon
the specific quadric. The default is GL_FALSE.

An orientation can be specified with gluQuadricOrientation:

void gluQuadricOrientation(GLUquadricObj *quadobj, GLenum
orientation);

If orientation is GLU_OUTSIDE then quadrics will be drawn with normals point-
ing outward. If orientation is GLU_INSIDE then the normals will point inward
(faces are rendered counter-clockwise with respect to the normals). Note that “out-
ward” and “inward” are defined by the specific quadric. The default is GLU_OUT-
SIDE.

A drawing style can be chosen with gluQuadricDrawStyle:

void gluQuadricDrawStyle(GLUquadricObj *quadobj, GLenum
drawStyle);

drawStyle 1s one of GLU_FILL, GLU_LINE, GLU_POINT, or GLU_SILHOU-
ETTE. In GLU_FILL mode, the quadric is rendered as a set of polygons, in
GLU_LINE mode as a set of lines, and in GLU_POINT mode as a set of points.
GLU_SILHOUETTE mode is similar to GLU_LINE mode except that edges sepa-
rating coplanar faces are not drawn. The default style is GLU_FILL.

GLU Spec Version 1.0 10



8 October 1993

5.4 Quadrics Primitives

The four supported quadrics are spheres, cylinders, disks, and partial disks. Each
of these quadrics may be subdivided into arbitrarily small pieces.

A sphere can be created with gluSphere:

void gluSphere(GLUquadricObj *quadobj, GLdouble radius, GLint
slices, GLint stacks);

This renders a sphere of the given radius centered around the origin. The sphere is
subdivided along the Z axis into the specified number of stacks, and each stack is
then sliced evenly into the given number of slices. Note that the globe is subdi-
vided in an analogous fashion, where lines of latitude represent stacks, and lines of
longitude represent slices.

If texture coordinate generation is enabled then coordinates are computed so that t
ranges from 0.0 at Z = -radius to 1.0 at Z = radius (t increases linearly along longi-
tudinal lines), and s ranges from 0.0 at the +Y axis, to 0.25 at the +X axis, to 0.5 at
the -Y axis, to 0.75 at the -X axis, and back to 1.0 at the +Y axis.

A cylinder is specified with gluCylinder:

void gluCylinder(GLUquadricObj *quadobj, GLdouble baseRadius,
GLdouble ropRadius, GLdouble height, GLint slices, GLint
stacks);

gluCylinder draws a frustum of a cone centered on the Z axis with the base at Z=0
and the top at Z=height. baseRadius specifies the radius at Z=0, and ropRadius
specifies the radius at Z=height. (If baseRadius equals topRadius, the result is a
conventional cylinder.) Like a sphere, a cylinder is subdivided along the Z axis
into stacks, and each stack is further subdivided into slices. When textured, t
ranges linearly from 0.0 to 1.0 along the Z axis, and s ranges from 0.0 to 1.0
around the Z axis (in the same manner as it does for a sphere).

A disk is created with gluDisk:

void gluDisk(GLUquadricObj *quadobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint loops);

This renders a disk on the Z=0 plane. The disk has the given outerRadius, and if
innerRadius > 0.0 then it will contain a central hole with the given innerRadius.
The disk is subdivided into the specified number of slices (similar to cylinders and
spheres), and also into the specified number of loops (concentric rings about the
origin). With respect to orientation, the +Z side of the disk is considered to be “out-
side”.

When textured, coordinates are generated in a linear grid such that the value of (s,
t) at (outerRadius, 0, 0) is (1, 0.5), at (0, outerRadius, 0) it is (0.5, 1), at (-outerRa-

GLU Spec Version 1.0 11



8 October 1993

dius, 0, 0) it is (0, 0.5), and at (0, -outerRadius, 0) it is (0.5, 0). This allows a 2D
texture to be mapped onto the disk without distortion.

A partial disk is specified with gluPartialDisk:

void gluPartialDisk(GLUquadricObj *quadobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint loops, GLdouble
startAngle, GLdouble sweepAngle);

This function is identical to gluDisk except that only the subset of the disk from
startAngle through startAngle + sweepAngle is included (where 0 degrees is along
the +Y axis, 90 degrees is along the +X axis, 180 is along the -Y axis, and 270 is
along the -X axis). In the case that drawStyle is set to either GLU_FILL or
GLU_SILHOUETTE, the edges of the partial disk separating the included area
from the excluded arc will be drawn.

6 NURBS

NURBS curves and surfaces are converted to OpenGL evaluators by the functions
in this section. The interface employs a NURBS object to describe the curves and
surfaces and to specify how they should be rendered. Basic trimming support is
included to allow more flexible definition of surfaces.

6.1 The NURBS Object

A NURBS object is created with gluNewNurbsRenderer:

GLUnurbsObj *nurbsOby;
nurbsObj = gluNewNurbsRenderer(void);

nurbsObj is an opaque pointer to all of the state information needed to tessellate
and render a NURBS curve or surface. Before any of the other routines in this sec-
tion can be used, a NURBS object must be created. A return value of 0 indicates an
out of memory error.

When a NURBS object is no longer needed, it should be deleted with
gluDeleteNurbsRenderer:

void gluDeleteNurbsRenderer(GLUnurbsObj *nurbsObyj);

This will destroy all state contained in the object, and free any memory used by it.

6.2 Callbacks

To define a callback for a NURBS object, use:

GLU Spec Version 1.0 12



8 October 1993

void gluNurbsCallback(GLUnurbsObj *nurbsObj, GLenum which, void
()0

Currently, the only callback supported is the GLU_ERROR callback (identical to
the GLU_ERROR callback used by gluTessCallback). When a NURBS function
detects an error condition, the error callback is invoked with an error code as its
only argument. There are 37 errors specific to NURBS functions, and they are
named GLU_NURBS_ERROR1 through GLU_NURBS_ERROR37. Strings describ-
ing the meaning of these error codes can be retrieved with gluErrorString (see
below).

6.3 NURBS curves

NURBS curves are specified with the following routines:

void gluBeginCurve(GLUnurbsObj *nurbsObj);

void gluNurbsCurve(GLUnurbsObj *nurbsObj, GLint nknots, GLfloat
*knot, GLint stride, GLfloat *ctlarray, GLint order, GLenum
ype);

void gluEndCurve(GLUnurbsObj *nurbsObj);

gluBeginCurve and gluEndCurve delimit a curve definition. After the gluBegin-
Curve and before the gluEndCurve, a series of gluNurbsCurve calls specify the
attributes of the curve. fype can be any of the one dimensional evaluators (such as
GL_MAP1_VERTEX_3). knot points to an array of non-decreasing knot values,
and nknots tells how many knots are in the array. ctlarray points to an array of con-
trol points, and order indicates the order of the curve. The number of control points
in ctlarray will be equal to nknots - order. Lastly, stride indicates the offset
(expressed in terms of single precision values) between control points.

The NURBS curve attribute definitions must include either a GL_MAP1_VER-
TEX3 description or a GL_MAP1_VERTEX4 description.

At the point that gluEndCurve is called, the curve will be tessellated into line seg-
ments and rendered with the aid of OpenGL evaluators. glPushAttrib and glPop-
Attrib are used to preserve the previous evaluator state during rendering.

6.4 NURBS surfaces

NURBS surfaces are described with the following routines:

void gluBeginSurface(GLUnurbsObj *nurbsObj);

void gluNurbsSurface(GLUnurbsObj *nurbsObj, GLint sknot_count,
GLfloat *sknot, GLint tknot_count, GLfloat *tknot, GLint
s_stride, GLint t_stride, GLfloat *ctlarray, GLint sorder, GLint
torder, GLenum type);

void gluEndSurface(GLUnurbsObj *nurbsObj);

GLU Spec Version 1.0 13



8 October 1993

The surface description is almost identical to the curve description. gluBeginSur-
face and gluEndSurface delimit a surface definition. After the gluBeginSurface,
and before the gluEndSurface, a series of gluNurbsSurface calls specify the
attributes of the surface. type can be any of the two dimensional evaluators (such
as GL_MAP2_VERTEX_ 3). sknot and tknot point to arrays of non-decreasing knot
values, and sknot_count and tknot_count indicate how many knots are in each
array. ctlarray points to an array of control points, and sorder and torder indicate
the order of the surface in both the s and t directions. The number of control points
in ctlarray will be equal to (sknot_count - sorder) x (tknot_count - torder). Finally,
s_stride and t_stride indicate the offset in single precision values between control
points in the s and t directions.

The NURBS surface, like the NURBS curve, must include an attribute definition
of type GL_MAP 2_VERTEX3 or GL_MAP2_VERTEX4.

When gluEndSurface is called, the NURBS surface will be tessellated and ren-
dered with the aid of OpenGL evaluators. The evaluator state is preserved during
rendering with glPushAttrib and glPopAttrib.

6.5 Trimming

A trimming region defines a subset of the NURBS surface domain to be evaluated.
By limiting the part of the domain that is evaluated, it is possible to create NURBS
surfaces that contain holes or have smooth boundaries.

A trimming region is defined by a set of closed trimming loops in the parameter
space of a surface. When a loop is oriented counter-clockwise, the area within the
loop is retained, and the part outside is discarded. When the loop is oriented clock-
wise, the area within the loop is discarded, and the rest is retained. Loops may be
nested, but a nested loop must be oriented oppositely from the loop that contains it.
The outermost loop must be oriented counter-clockwise.

A trimming loop consists of a connected sequence of NURBS curves and piece-
wise linear curves. The last point of every curve in the sequence must be the same
as the first point of the next curve, and the last point of the last curve must be the
same as the first point of the first curve. Self-intersecting curves are not allowed.

To define trimming loops, use the following routines:

void gluBeginTrim(GLUnurbsObj *nurbsObj);

void gluPwlCurve(GLUnurbsObj *nurbsObj, GLint count, GLfloat
*array, GLint stride, GLenum type);

void gluNurbsCurve(GLUnurbsObj *nurbsObj, GLint nknots, GLfloat
*knot, GLint stride, GLfloat *ctlarray, GLint order, GLenum
fype);

void gluEnd Trim(GLUnurbsObj *nurbsObyj);

A NURBS trimming curve is very similar to a regular NURBS curve, with the

GLU Spec Version 1.0 14



8 October 1993

major difference being that a NURBS trimming curve exists in the parameter space
of a NURBS surface.

gluPwlCurve defines a piecewise linear curve. count indicates how many points
are on the curve, and array points to an array containing the curve points. stride
indicates the offset in single precision values between curve points.

type for both gluPwlCurve and gluNurbsCurve can be either GLU_MAP1_T-
RIM_2, or GLU_MAP1_TRIM_3. GLU_MAP1_TRIM_2 curves define trimming
regions in two dimensional (s and t) parameter space. The GLU_MAP1_TRIM_3
curves define trimming regions in two dimensional homogeneous (s, t, and q)
parameter space.

Note that the trimming loops must be defined at the same time that the surface is
defined (between gluBeginSurface and gluEndSurface).

6.6 NURBS properties

A set of properties associated with a NURBS object affects the way that NURBS
are rendered. These properties can be adjusted by the user.

void gluNurbsProperty(GLUnurbsObj *nurbsObj, GLenum property,
GLAfloat value);

allows the user to set one of the following properties: GLU_CULLING, GLU_S—
AMPLING_TOLERANCE, GLU_DISPLAY_ MODE, and GLU_AUTO_LOAD_MA-
TRIX. property indicates the property to be modified, and value specifies the new
value.

The GLU_CULLING property is a boolean value (value should be set to either
GL_TRUE or GL_FALSE). When set to GL_TRUE, it indicates that a NURBS
curve or surface should be discarded prior to tessellation if its control polyhedron
lies outside the current viewport. Note that, in general, NURBS do not fall within
the convex hull of their control points, so the default is GL_FALSE.

GLU_SAMPLING_TOLERANCE specifies the maximum length, in pixels, of edges
of polygons used to render NURBS. The NURBS code is conservative when ren-
dering a curve or surface, so the actual lengths may be somewhat shorter. The
default value is 50.0 pixels.

GLU_AUTO_LOAD_MATRIX is a boolean value. When it is set to GL_TRUE, the
NURBS code will download the projection matrix, the model view matrix, and the
viewport from the OpenGL server in order to compute sampling and culling
matrices for each curve or surface that is rendered. These matrices are required to
tessellate a curve or surface and to cull it if it lies outside the viewport. If this mode
is turned off, then the user needs to provide a projection matrix, a model view
matrix, and a viewport that the NURBS code can use to construct sampling and
culling matrices. This can be done with the gluLLoadSamplingMatrices function:

GLU Spec Version 1.0 15



8 October 1993

void gluL.oadSamplingMatrices(GLUnurbsObj *nurbsObj, const GLfloat
modelMatrix[16], const GLfloat projMatrix[16], const GLint
viewport[4));

Until the GLU_AUTO_LOAD_MATRIX property is turned back on, the NURBS
routines will continue to use whatever sampling and culling matrices are stored in
the NURBS object. The default for GLU_AUTO_LOAD_MATRIX is GL_TRUE.

GLU_DISPLAY_MODE specifies how a NURBS surface should be rendered. value
may be set to one of GLU_FILL, GLU_OUTLINE_POLY, or GLU_OUTLINE_-—
PATCH. When set to GLU_FILL, the surface is rendered as a set of polygons.
GLU_OUTLINE_POLY instructs the NURBS library to draw only the outlines of
the polygons created by tessellation. GLU_OUTLINE_PATCH will cause just the
outlines of patches and trim curves defined by the user to be drawn. The default is
GLU_FILL.

Property values can also be queried by the user:

void gluGetNurbsProperty(GLUnurbsObj *nurbsObj, GLenum property,
GLAfloat *value);

will load value with the value of the property specified.

7 Errors

const GLubyte *gluErrorString(GLenum errorCode);

gluErrorString produces an error string that corresponds to a GL or GLU error
code. The error string is in ISO Latin 1 format. The standard GLU error codes are
GLU_INVALID_ENUM, GLU_INVALID_VALUE, and GLU_OUT_OF_MEMORY.
There are also specific error codes for polygon tessellation, quadrics, and NURBS
as described in their respective sections.

GLU Spec Version 1.0 16



