
To be published in the

November/December issue of The X Journal.

OpenGL

TM

and X, Part 1:

An Introduction

Mark J. Kilgard

�

Silicon Graphics Inc.

Revision : 1:16

October 4, 1993

Abstract

The OpenGL

TM

graphics system is a high-performance,

window system independent 2D and 3D graphics inter-

face. The technology was developed by Silicon Graphics

and is now controlled by the OpenGL Architecture Review

Board. OpenGL's GLX extension integrates OpenGL with

the X Window System. This article describes OpenGL's

functionality and how it is used with X. A simple OpenGL

program using Xlib is presented. OpenGL is compared

and contrasted with PEX, a 3D graphics interface designed

speci�cally for X. The two subsequent articles in this se-

ries describe how to integrate OpenGL with Xlib andMotif

programs.

1 Introduction

The OpenGL

TM

graphics system is a powerful software

interface for graphics hardware that allows graphics pro-

grammers to produce high-quality color images of 2D and

3D objects. The technology was developed by Silicon

Graphics Inc. (SGI) and is the result of ten years of ex-

perience designing production software interfaces for a full

spectrum of graphics hardware.

OpenGL is now controlled by an industry consortium

known as the OpenGL Architectural Review Board (ARB)

currently composed of Digital Equipment, IBM, Intel,

Microsoft, and SGI. The interface is licensed to a large

number of computer software and hardware vendors and

OpenGL implementations are now appearing on the mar-

ket.

This article is the �rst of a series of three articles ex-

plaining OpenGL to the users of the X Window System.

This article introduces the reader to OpenGL's features,

�

Mark graduated with B.A. in Computer Science from Rice Uni-

versity and is a Member of the Technical Sta� at Silicon Graphics.

He can be reached by electronic mail addressed to mjk@sgi.com

particularly how they apply to X. This section will in-

troduce the reader to OpenGL's philosophy and history.

Section 2 will explore OpenGL's rich feature set. Section

3 discusses OpenGL's integration with the X Window Sys-

tem via the GLX extension. Section 4 presents a simple

OpenGL program for X. Section 5 compares and contrasts

OpenGL to PEX, a 3D graphics interface designed speci�-

cally for X. Section 6 tells where to �nd more information

about OpenGL.

The second article in the series will explain in more de-

tail how to use OpenGL in conjunction with Xlib. The

third article will describe how to use OpenGL with Motif.

1.1 esign iloso

To appreciate OpenGL it is useful to understand its de-

sign philosophy. OpenGL provides a layer of abstraction

between graphics hardware and an application program.

It is visible to the programmer as a set of routines con-

sisting of about 120 distinct commands. Together these

routines make up the OpenGL application programming

interface (API). The routines allow graphics primitives

(points, lines, polygons, bitmaps, and images) to be ren-

dered to a frame bu er. sing the available primitives and

the operations that control their rendering, high-quality

color graphics images of 3D objects can be rendered.

The designers of OpenGL present the graphics system

as a state machine [7] that controls a well-de�ned set

of drawing operations. The routines that OpenGL sup-

plies provide a means for the programmer to manipulate

OpenGL's state machine to generate the desired graph-

ics output. Figure 1 shows a simpli�ed view of OpenGL's

abstract state machine. Specifying OpenGL as a state

machine allows consistent, precise speci�cation and elim-

inates ambiguity about what a given operation does and

does not do.

The model used for interpretation of OpenGL com-

1

Display
list

commands

Evaluator

Per−Vertex
Operations
Primitive
Assembly

Pixel
Operations

Rasteriz−
ation

Texture
Memory

Per−
Fragment
Operations

Frame−
buffer

Figure 1: igh-level, abstract OpenGL machine.

mands is client-server. This is an abstract model and does

not demand OpenGL be implemented as distinct client

and server processes. A client-server approach means the

boundary between a program and the OpenGL implemen-

tation is well-de�ned to clearly specify how data is passed

between the program and OpenGL. This allows OpenGL

to operate over a wire protocol much as the X protocol

operates but does not mandate such an approach.

The OpenGL speci�cation is window system indepen-

dent meaning it provides rendering functionality but does

not specify how to manipulate windows or receive events

from the window system. This allows the OpenGL inter-

face to be implemented for distinct window systems. For

example, OpenGL has been implemented for both the X

Window System and Windows T.

The speci�cation which describes how OpenGL inter-

grates with the X Window System is known as GLX. It

is an extension to the core X protocol for communicating

OpenGL commands to the X server. It also supports win-

dow system speci�c operations such as creating rendering

contexts, binding those contexts to windows, and other

window system speci�c operations.

GLX does not demand OpenGL commands be executed

by the X server. The GLX speci�cation explicitly allows

OpenGL to render directly to the hardware if supported

by the implementation. This is possible when the program

is running on the same machine as the graphics hardware.

This potentially allows extremely high performance ren-

dering because OpenGL commands do not need to be sent

through the X server to get to the graphics hardware.

Graphics systems are often classi�ed as one of two types:

procedural or descriptive. Procedural means the program-

mer is determining what to draw by issuing a speci�c se-

quence of commands. Descriptive means the programmer

sets up a model of the scene to be rendered and leaves how

to draw the scene up to the graphics system. OpenGL is

procedural. In a descriptive system, the programmer gives

up control of exactly how the scene is to be rendered. Be-

ing procedural allows the programmer a high degree of

control to achieve the best performance. It is expected

that descriptive graphics systems will be implemented us-

ing OpenGL as a low level interface. SGI's Inventor toolkit

[8] is one example of such a descriptive graphics system.

An overriding goal of OpenGL is to allow the construc-

tion of portable and interoperable 3D graphics programs.

For this reason, OpenGL's rendering functionalitymust be

implemented in its entirety. This means all the complex

3D rendering functionality described later in the article

can be used with any OpenGL implementation. Previous

graphics standards often allowed subsetting; too often the

result was programs that could not be expected to work

on distinct implementations.

1. is or o en

A brief history of OpenGL explains how OpenGL came

to be and what inspired its development. OpenGL is the

successor to a graphics library known as IRIS GL (GL

stands for graphics library) developed by SGI as a hard-

ware independent graphics interface for use across a full

line of graphics workstations. IRIS GL [4] is used by more

than 1,500 3D graphics applications. IRIS GL was devel-

oped over the last decade and has been implemented on

numerous graphics devices of varying sophistication.

OpenGL is not backward-compatible with IRIS GL.

OpenGL has removed dated IRIS GL functionality or

replaced it with more general functionality. The rou-

tines and symbols comprising the OpenGL API have been

named to avoid name space con icts (all names start with

either l or). The window system dependent portions

of IRIS GL are not part of OpenGL. What has been pre-

served is the spirit of the API. OpenGL retains IRIS GL's

ability to render 3D objects quickly and e ciently.

OpenGL has been proposed as a graphics standard to

bring 3D graphics programming into the mainstream of

applications programming. For this reason, the OpenGL

ARB was formed. The ARB licenses OpenGL and directs

further development. urrently, over 20 companies have

licensed OpenGL and intend to release or have already

released commercial implementations. umerous univer-

sities have also licensed OpenGL.

n 's unctiona it

OpenGL is not a high-level 3D graphics interface. When

you build a graphics program using OpenGL, you start

with a few simple primitives. The sophistication comes

from combining the primitives and using them in vari-

ous modes. Figure 2 shows the available geometric prim-

itives. otice the ordering of the vertices, in particular

for primitives such as the I I and the

I .

To begin a primitive, the l e in routine passes in the

primitive type as an argument. Then a list of vertex co-

ordinates are given. OpenGL has a family of routines to

specify vertex coordinates. All the routines begin with

2

GL_POINTS GL_LINES GL_LINE_STRIP

GL_LINE_LOOP GL_POLYGON

GL_QUAD_STRIP GL_TRIANGLES

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

GL_QUADSBBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

0

0

0

0
0

0

0

0

0

1

1

1

1 1

1

1

1

1

2 2 2

2
2

2

2

2

2

3

3
3

3

3

3

3

3

3

4

5 4

4
4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

7

7

7

8

BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

0

1

2
3 4

5

Figure 2: OpenGL Geometric Primitives.

the name l e e . The su x to a speci�c l e e

routine tells the type and number of coordinates for the

vertex. For example, l e e indicates a three coor-

dinate vertex consisting of oating point values is to be

generated.

An OpenGL primitive is completed by calling l n .

Along with the coordinates of each vertex, per-vertex in-

formation about color, material, normals, edge drawing,

and texturing can be speci�ed between a l e in and

l n . Figure 3 shows an example of how a polygon might

be generated. otice how l l is used to change the

current color. Each vertex is drawn according to the cur-

rent color.

l e el ;

l e in ; en n

l l . , 1. , . ; een

l e e . , 1. , . ;

l e e . , 1. , . ;

l l . , . , 1. ; l e

l e e 1. , . , . ;

l e e 1. , . , . ;

l e e . , . , . ;

l n ;

Figure 3: Example of generating a 3D polygon with

smooth shading between vertices.

.1 ser ions o ri i i es

OpenGL tends to be function call intensive. There is not a

complex en e l n i i s en s com-

mand. Instead primitives are constructed by calling multi-

ple OpenGL routines. alling multiple routines gives the

program exibility and control over the primitives gener-

ated.

OpenGL is exible about what format information is

passed to it. For example, the l e e i accepts inte-

gers while l e e and l e e take single and

double precision oating point respectively. It is very ad-

vantageous for OpenGL to have several basically identi-

cal routines which accept di erent data types. It allows

the programmer the exibility to decide how to store the

data. A programmer whose data is in integer format does

not want to convert it to oating point to pass it to the

graphics system. And another programmer does not want

to convert oating point data into integers. onversions

between data types can be expensive. igh performance

graphics hardware can be designed to accept multiple data

formats and totally o load the task of format conversion

from the host processor.

ou can start to see why it makes sense to con-

sider OpenGL as a state machine. ommands such

as l l change the state of the current color.

Subsequent vertices use the current color. l e in

puts OpenGL into a state to start drawing the spec-

i�ed primitive. The multiple l e e routines load

up one at a time the vertices for a given primi-

tive. early all of OpenGL's state that can be

set by the programmer can also be queried by the

programmer. The l e l ,

l call, for example, will retrieve the setting

of the current color.

. o olor o els

OpenGL has two di erent color modes: and color

inde . The l l call has already been demonstrated

but not explained. This call assumes OpenGL's RGBA

color mode. The routine takes three oating point param-

eters between 0.0 and 1.0 which specify the degree of red,

green, and blue for the current color. For X users, RGBA

roughly corresponds to the e l visual type while

color index corresponds to s e l . The color mode

is �xed for a given window the same way X windows are

created with a single, �xed visual.

ou should be able to guess that the RGB in RGBA

stands for red, green, and blue. The A may be unfamil-

iar. It stands for alpha. The alpha value is used when two

colors are to be averaged together for blending operations.

Alpha represents the opacity of the color. 1.0 is totally

opaque while 0.0 is totally transparent. For example, one

could use alpha to render a scene with green glass. The

frame bu er can support an alpha component which al-

3

lows alpha values to be stored. Each pixel in the frame

bu er would have an associated alpha value. The alpha

value is not visible on the display. It is just used to deter-

mine how a pixel to be drawn is blended with the current

pixel value in the frame bu er. The l l nc and

l len nc routines control precisely how alpha bu er-

ing operates. The l l command is a variation on

l l which takes a fourth parameter specifying al-

pha (l l implicitly sets alpha to 1.0).

RGBA supports a tri-linear palette for the full range of

colors, making it very useful for rendering realistic scenes.

OpenGL supports lighting, fog, and smooth shading most

e ectively in RGBAmode. Since a lot of hardware has lim-

ited color resolution, an application can request OpenGL

use dithering for better color resolution (at the expense of

spatial resolution).

Many modes in OpenGL, such as dithering, are en-

abled and disabled using the l n le and l is le

commands. For example, dithering is enabled by call-

ing l n le I . Then drawing would be done

with dithering enabled. ou can think of l n le and

l is le as ways to a ect the operation of the OpenGL

state machine.

The color index model assumes a readable and writable

linear colormap. sually window systems specify how col-

ors are allocated and arranged so OpenGL does not have

any speci�c routines to allocate colors. For example in

X, an Xlib color allocation routine such as ll c l

would be used. The lIn e family of routines is used to

set the current color index. The advantage of color index

is that the color of a given pixel value can be changed.

There is a level of indirection between the pixel values in

the frame bu er and the colors on the screen.

. n ill r ers

The drawing surface for OpenGL is generically referred to

as the rame u er. In actuality, the frame bu er might be

a window created by your computer's window system or an

in-memory data structure (like an X pixmap). OpenGL's

frame bu er can logically be considered a set of bu ers.

A bu er is logically just a two-dimensional array of val-

ues. The most important bu er is the image bu er which

contains the actual color information and possibly the al-

pha component but there are also other types of bu ers.

A window system might support multiple frame bu er

con�gurations, each supporting di erent types of bu ers.

Multiple windows of di erent con�gurations can be dis-

played at one time though a single window has a �xed

frame bu er con�guration. In X, visuals are overloaded to

also describe supported OpenGL frame bu er con�gura-

tions.

The non-image bu ers are often referred to as ancillary

or helper bu ers. While they do not contain the image

itself, they can be essential in properly generating the im-

age.

. .

For 3D graphics, the depth u er (also commonly referred

to as a bu er) is nearly essential. While the screen only

has two dimensions, 3D graphics seeks to simulate a third.

When 3D primitives are rendered, they are rasteri ed into

a collection of ra ments. Each fragment corresponds to

a single pixel and includes color, depth, and sometimes

texture-coordinate values. The X and values for a frag-

ment determine where on the screen the pixel should ap-

pear. A fragment's value or depth is used to determine

how near the fragment is. When the depth bu er is en-

abled, the fragment is drawn only if its value is nearer

than the current value for the corresponding pixel in the

depth bu er. When the fragment is drawn into the frame

bu er, its value replaces the previous value in the depth

bu er. ormally, when the scene starts to be rendered,

the entire depth bu er is cleared to the farthest value.

As a 3D scene is rendered, the depth bu er automatically

sorts the fragments being drawn so only the nearest frag-

ment at each pixel location gets drawn. Things logically

behind other things are automatically eliminated from the

scene. This is the normal use for a depth bu er, although

other uses are possible.

. .

Another bu er supported by OpenGL is the stencil bu er.

Like the depth bu er, the stencil bu er can be used to

eliminate certain pixels from being drawn. The stencil

bu er acts in much the same way as a cardboard stencil

used with a can of spray paint. ou can draw values

into the stencil bu er using the normal OpenGL render-

ing primitives. Then a stencil test can be de�ned and

stenciling enabled.

One possible use of the stencil bu er is in a ight sim-

ulator. Imagine that the view outside the plane is to �t

into an irregularly shaped windshield. The rendering of

the view outside the plane should not interfere with the

rendering of the instruments inside the cockpit. If the

windshield area is drawn in the stencil bu er, then a sten-

cil test can be set up to make sure the windshield view is

only drawn where the windshield stencil has been drawn.

There are many other uses for stencil bu ers.

. .

et another bu er supported by OpenGL is the accumu-

lation bu er [2] which can be used for antialiasing, motion

blur, simulating photographic depth of �eld, and render-

ing soft shadows from multiple light sources. ou do not

render directly into the accumulation bu er. Instead, you

render a series of images, accumulating each into the ac-

cumulation bu er, combining the images. Then the accu-

4

mulated image can be dumped back into the image bu er

for display. The e ect is much the same as the one a pho-

tographer gets from multiply exposing a piece of �lm.

Motion blur is one use. Imagine drawing a scene several

times with each frame corresponding to a slightly di erent

point in time. By accumulating the frames (with decayed

intensity for earlier frames), you can achieve an e ect sim-

ilar to motion blur since still objects are sharp but moving

objects are blurred by their accumulation in slightly dif-

fering locations.

. .

Double bu ering means having two sets of image bu ers,

one ront visible bu er and another ac non-visible bu er.

nlike simple 2D, 3D images may take substantially more

time to generate. And depth, alpha, and accumulation

bu ers all mean that the image being drawn at any mo-

ment might be quite di erent from the �nal image. It

would be quite distracting for the viewer to see each scene

while it was under construction and would destroy the

illusion of a smoothly animated scene. Double bu ering

allows for one image to be rendered while another is being

displayed.

OpenGL supports this notion. The l e rou-

tine can be used to determine to what bu er primitives

should be drawn. A window system speci�c routine is

available to make the back bu er visible.

Double bu ering is often achieved by rendering the non-

visible image bu er into memory and then quickly copying

the bu ers contents to screen memory. A better alterna-

tive is to build hardware that actually supports two sets

of image bu ers. Then the cost of a bu er swap can be

extremely low since no data has to be copied. Instead, the

video controller can just change to scanning image pixels

out of the other bu er.

. .

Stereo is similar to double bu ering in that more than one

image bu er is supported. Instead of front and back, left

and right are provided (though generally stereo and dou-

ble bu ering are combined, requiring four image bu ers).

Special stereo video hardware alternates between scanning

out the left and right bu ers every screen refresh. Gog-

gles synchroni ed with the vertical refresh of the screen

alternately open and close L D shutters so the left eye

sees the left frame and the right eye sees the right frame.

By carefully drawing the scene twice with slightly di er-

ent perspective into the left and right bu ers, the viewer

experiences an optical illusion of 3D.

While double bu ering is common on graphics work-

stations, stereo requires special hardware and tends to be

rather expensive so many OpenGL implementations may

not support stereo.

 Object

Coordinates

Model−View

Matrix

 Eye

Coordinates

Projection

Matrix

 Clip

Coordinates

Perspective

Division

Normalized

Device

Coordinates

Window

Coordinates

Viewport
Trans−
formation

Figure 4: Stages of vertex transformation.

. ie ing

One of the most di cult initial hurdles in learning 3D

graphics programming is how to properly set up a view.

It is very easy to get a black screen because the viewing

for the scene is not properly initiali ed.

3D computer graphics uses matrix transformations to

properly orient, view, clip, and map the model to the

screen. OpenGL's various stages in mapping vertices in

object coordinates into pixels in window coordinates are

pictured in Figure 4.

An OpenGL programmer is responsible for loading the

modelview and pro ection matrices. The modelview ma-

trix determines how the vertices of OpenGL primitives

are transformed to eye coordinates. The projection matrix

transforms vertices in eye coordinates to clip coordinates.

A number of OpenGL routines deal with manipulat-

ing these matrices. The l i e routine is called

with an argument of I or I

to determine what is the current modi�able matrix.

Then l I en i may be called to set the currently

modi�able matrix to the identity matrix. Then rou-

tines such as l e , l nsl e , and l c le

may be called to manipulate the currently modi�able

matrix. l i loads a speci�c matrix and

l l i multiplies the current matrix by some

speci�ed matrix and store the result as the current ma-

trix. nderstanding exactly how these di erent commands

should be properly used is beyond the scope of this article.

The �nal step in establishing a view of your model is

the viewport transformation. It determines how the scene

gets mapped onto the computer screen. The l ie

routine speci�es the rectangle in the window of into which

the �nal image is to be mapped. By default, the entire

window is used. l ie is commonly invoked when

an OpenGL window is resi ed.

. er e res

There are a large number of OpenGL features worth men-

tioning but their full introduction is beyond the scope of

this article.

ust specifying 3D primitives and determining how to

5

map them to the screen is not enough to achieve realis-

tic images. OpenGL also supports a number of lighting

models that simulate the e ects of lighting on primitives.

Light sources can be de�ned and material properties can

be speci�ed to achieve realistic lighting e ects.

So far polygons have been described as basically shaded

or at surfaces. But OpenGL allows polygons to be ren-

dered which have a 1D or 2D texture mapped onto the

polygon. For example, the surface of a desk could be tex-

tured with a wood grain image for greater realism. Texture

mapping can greatly enhance the visual impact of a scene

without increasing the geometric complexity.

Polygons are the basic primitive for much 3D render-

ing but OpenGL also supports bitmaps and images. And

OpenGL provides evaluator commands for the e cient

rendering of curves and surfaces.

Because 3D rendering eventually appears on a screen

with limited resolution, OpenGL provides various tech-

niques to eliminate jaggies resulting from aliasing prob-

lems. OpenGL provides antialiasing support for points,

lines, and polygons. Techniques using the alpha, stencil,

or accumulation bu ers can also be used to minimi e alias-

ing problems.

omputer images often appear unrealistically sharp and

well-de�ned. OpenGL supports fog to provide an e ect

that simulates atmospheric e ects. a e, mist, smoke,

and pollution can all be simulated. When fog is enabled,

objects farther away begin to fade into the speci�ed fog

color.

sers of 3D want to do more than just see 3D images;

they want to interact with them. OpenGL supports a

selection mechanism that allows the user to pick an object

or objects drawn to a certain region of the screen. And

eed ac can be used to obtain the results of rendering

calculations.

Often a sequence of OpenGL commands are rendered

repeatedly. OpenGL supports display lists which allow

commands to be compiled for later execution. Display

lists can even call other display lists allowing hierarchies

of display lists. For networked 3D applications, display

lists can greatly minimi e the protocol bandwidth needed

and increase performance. The l e is and l n is

are used to create a display list. A created display list can

be executed using the l ll is routine.

One thing to keep in mind about OpenGL is that the

features described above are not isolated functionality.

Each feature can be combined with others for advanced

e ects. For example, lighting, fog, display lists, texture

mapping, and double bu ering can all be used simultane-

ously.

. e i r r

The core OpenGL API focuses on rendering functional-

ity but there are a number of tasks common to many

3D programs that are not strictly related to rendering.

For this reason, the OpenGL standard also provides the

OpenGL tility Library (GL). The GL routines (all

pre�xed with l) fall into one of the following areas:

Manipulating images for use in texturing.

Transforming oordinates.

Polygon tessellation.

Rendering spheres, cylinders, and disks.

on- niform Rational B-Spline (RBS) curves and

surfaces.

Describing errors.

The GL is a separate but standard library that any

OpenGL application can use.

n 's u ort

GLX is an o cial part of the OpenGL standard for sup-

porting the X Window System. It provides additional rou-

tines (pre�xed by l) for interfacing OpenGL with X. It

also de�nes a wire protocol for supporting OpenGL as an

X server extension. The GLX wire protocol allows work-

stations from di erent vendors to interoperate using 3D

graphics the same way the X protocol provides 2D graph-

ics interoperability. Some of the issues about integrating

X and OpenGL are discussed by arlton [3].

GLX allows rendering into X windows and pixmaps. An

X server can support di erent visuals to describe the dif-

ferent types of windows supported by the server. For the

core X protocol, a visual speci�es one (or more) depths for

the frame bu er and how pixel values are mapped to col-

ors on the screen. X treats a drawable as basically a 2D

array of pixels, but OpenGL has a much more sophisti-

cated view of a drawable's frame bu er capabilities. GLX

overloads the core X notion of a visual by associating ad-

ditional information about OpenGL's frame bu er capa-

bilities. In addition to an image bu er, OpenGL supports

various types of ancillary bu ers. For example, a win-

dow might also have a stencil bu er and a depth bu er.

Modes such as stereo and double bu ering are also sup-

ported. Multiple di erent frame bu er con�gurations can

be supported by a single X server by exporting multiple

visuals.

All OpenGL implementations for the X Window System

must support at least one RGBA visual and at least one

color index visual. Both visuals must support a stencil

bu er of at least 1 bit and a depth bu er of at least 12 bits

The required RGBA visual must have an accumulation

bu er. The alpha component of the image bu er is not

required for the RGBA visual (but input alpha is still used

in all rendering calculations). Many implementations will

supply many more than two visuals.

6

The GLX API supplies two routines, l e n i and

l se is l, to help programmers select an appro-

priate visual. Once the appropriate visual is selected, call

e e in with the selected visual to create the win-

dow.

GLX supports o -screen rendering to pixmaps. First

create a standard X pixmap of the desired depth using

e e i . Then call l e e i with

the desired OpenGL visual. A new drawable of type

i is returned which can be used for drawing

OpenGL into the pixmap.

To render using OpenGL, an OpenGL rendering context

must be created. The l e e n e routine creates

such a context. An option to l e e n e allows

the programmer to specify that direct rendering to the

hardware should be done if supported by the implementa-

tion.

Before rendering, a rendering context must be bound

to the desired drawable using l e en . OpenGL

rendering commands implicitly use the current bound ren-

dering context and one drawable. ust as a program

can create multiple windows, a program can create mul-

tiple OpenGL rendering contexts. But a thread can

only be bound to one rendering context and drawable

at a time. Once bound, OpenGL rendering can begin.

l e en can be called again to bind to a di erent

window and or rendering context.

The GLX stream of commands is considered distinct

from the stream of X requests. Sometimes you may want

to mix OpenGL and X rendering into the same window. If

so synchroni ation can be achieved using the l i

and l i routines.

To swap the bu ers of a double bu ered window,

l e s can be called. X fonts can be con-

verted into per-glyph OpenGL display lists using the

l se n routine.

A i a sin

Appendix A contains the source code for a simple

OpenGL program. This example demonstrates what is

involved when programming OpenGL with Xlib. The pro-

gram creates a window and draws a 3D cube (missing two

faces) and allows the user to rotate the cube around the

X, , and axes using the mouse buttons.

Besides demonstrating how to properly establish an X

window for OpenGL rendering, the example demonstrates

the use of double bu ering, display lists, and establishing

the proper viewing parameters.

.1 ni i li ion

The following describes the steps involved in setting up

a window to render OpenGL into it. The numbers listed

correspond to numbers in the comments of the OpenGL

program in Appendix A.

1. As in all X programs, en is l should be called

to open a connection to the X server.

2. Make sure the OpenGL GLX extension is supported

by the X server.

3. Before creating the window, the program needs to

select an appropriate visual. The GLX routine

l se is l makes it easy to �nd the right vi-

sual. In the example, an RGBA (and True olor) vi-

sual with a depth bu er is desired and if possible, it

should support double bu ering.

4. reate an OpenGL rendering context by calling

l e e n e .

5. reate a window with the selected visual. Most X

programs always use the default visual but OpenGL

programmers will need to be comfortable with us-

ing visuals other than the default. e e in

is called.

6. Bind the rendering context to the window using

l e en . Subsequent OpenGL rendering

commands will use the current window and render-

ing context.

7. To display the window, in should be called.

8. Set the desired OpenGL state. In this example, depth

bu ering is enabled, the clear color is set to black, and

the 3D viewing volume is speci�ed.

. Begin dispatching X events.

Button presses change the angle of rotation for the ob-

ject to be viewed and cause a redraw. Expose events also

cause a redraw (without changing the rotation). Window

resi es call l ie to ensure the OpenGL viewport

corresponds to the maximum dimensions of the window.

. ene e

The e routine does all the OpenGL rendering. The

code is slightly complicated by constructing a display

list to draw the cube. The �rst time e is called,

l e is and l n is are used to construct a display

list for the object to be rendered. Subsequent redraws call

the display list instead of rendering the object each time.

reating a display list potentially allows improved per-

formance since the commands can be compiled for faster

execution. In the case of OpenGL across a network, dis-

play lists save having to send all the commands to render

the scene whenever the window is redrawn.

The commands to render the object consist of four

3D rectangles of di erent colors. otice the rectangles

7

Figure 5: Screen snapshot of l si le with two other

simple 3D OpenGL programs.

are generated by �rst calling l e in and

ended with l n . Each rectangle is speci�ed by four

l e e calls that specify the four vertexes of each

rectangle. The l l invocations tell what color each

rectangle should be rendered. Figure 5 shows how the pro-

gram looks.

If the window is double bu ered, l e s is

called on the window. By default rendering to dou-

ble bu ered windows takes place in the non-visible back

bu er. Swapping bu ers will quickly swap the front and

back bu ers avoiding any visual artifacts (the contents of

the back bu er should considered unde�ned after a swap).

In e ect, the rendering of each frame can be done behind

the scenes.

l l s is called to ensure that the OpenGL rendering

commands are actually sent to the graphics hardware. A

ush is implicitly done by l e s so the l l s

is only needed explicitly in the single bu ered case.

o arin n to

OpenGL is not the only means for extending the X Win-

dow System to support 3D. PEX [] is an extension de-

veloped by the X onsortium to add 3D capabilities to

X. The currently available version is 5.1. A future release

known as PEX 6.0 is intended to address many of PEX

5.1's problems but its speci�cation is not yet �nali ed. An

in-depth analysis of PEX 5.1 and OpenGL 1.0 is presented

by Akin [1]. ere we discuss some of the most prominent

distinctions.

.1 se s n selines

One thing that makes PEX di cult to compare to

OpenGL is that PEX allows much of its functionality to

be optionally implemented. PEX classi�es its functional-

ity into one or more of three subsets: the immediate mode

subset, the structure subset, or the P IGS workstation

subset. (P IGS is a 3D graphics standard and stands for

Programmer's ierarchical Interactive Graphics System.)

The PEX speci�cation e plicitly allows implementations to

support one, two, or all three subsets. The result is that

an application cannot depend on any given PEX server to

supply the subset functionality the application might de-

pend on. This problem is commonly referred to as sub-

setting.

OpenGL mandates that that all its rendering function-

ality be supported. Even advanced features such as depth

bu ering, fog, lighting, anti-aliasing, and texturing must

be supported in all implementations.

But still all OpenGL implementations are not totally

identical. Rendering functionality is not a complete pic-

ture of OpenGL's capability. Rendering performance will

depend on the implementation. And frame bu er capabil-

ities will vary between implementations. Di erent depths

of ancillary bu ers will be supported; stereo and double

bu ering hardware may or may not actually be present;

a frame bu er may or may not support the alpha compo-

nent. But despite the possibility for variation, OpenGL for

the X Window System does mandate that two visuals (one

RGBA, the other color index) will be present with frame

bu er capabilities su cient for most common 3D applica-

tions. Stencil and depth bu ers must be supported for the

two required visuals. And an accumulation bu er must be

supported for the RGBA visual. These required visuals

guarantee all OpenGL implementations have a standard

baseline of both rendering and frame bu er functionality

which applications can rely on being present.

. rogr ing n er es

There is an essential di erence between PEX and OpenGL

in how the two graphics systems are speci�ed. OpenGL

is fundamentally speci�ed as an application programming

interface. Like the X Window System, the fundamental

speci�cation for PEX is a wire protocol.

In PEX the choice of programming interface is left to

the programmer. In X11R5 a P IGS style API was sup-

plied but this API for PEX has not gained much accep-

tance. urrently the PEX community is standardi ing the

PEXlib API which more readily exposes the wire proto-

col. But PEX implementation dependencies are also ex-

posed, leaving the programmer to work around function-

ality missing due to subsetting in PEX implementations.

With OpenGL there is a single API which promises to be

standard even across di ering window systems (such as X

and T) and the full functionality of the API is available in

8

all OpenGL implementations. The GLX speci�cation does

provide a wire protocol for network-transparent operation

but the wire protocol is not the fundamental speci�cation

of OpenGL.

. en ering n ion li

PEX and OpenGL both support basic 3D rendering func-

tionality. Both allow 3D and 2D lines and polygons to be

rendered using standard modeling and viewing methods.

PEX (depending on the implementation) and OpenGL

also support picking, lighting, depth cueing, and hidden

line and surface removal.

There are a number of sophisticated rendering features

supported by OpenGL that PEX completely lacks. Alpha

blending, texture and environment mapping, antialiasing

(though some PEX implementations supply it as a non-

standard extension), accumulation bu er methods, and

stencil bu ering are all missing from PEX.

PEX does support features not available in OpenGL.

PEX has extensive text support for stroke fonts which are

fully transformable in 3D. B-Spline surfaces and curves

are supported directly by PEX while OpenGL supports

RBS functionality via routines which are part of the

GL library. PEX can support cell arrays but the func-

tionality is seldom implemented. Markers and quadrilat-

eral meshes are supported by PEX as a rendering primi-

tive; neither are supported as primitives by OpenGL. PEX

supports self-intersecting contours and polygon lists with

shared geometry, while OpenGL does not.

Double bu ering and stereo support are built into

OpenGL (though not all implementations will support

double bu ered or stereo visuals) while PEX relies on pro-

prietary support or not yet nonstandardi ed X extensions

for double bu ering and stereo.

. is l is s

PEX and OpenGL both provide a means to store com-

mands for later execution. In PEX (for implementations

that support the structure or P IGS workstation subsets),

editable structures can be created and edited. A structure

contains graphics primitives such as a polygon. Structures

may also contain calls to execute other structures allow-

ing them to be arranged in a hierarchical fashion. P IGS

supports structures so PEX does so too. Entire 3D models

can be constructed out of a hierarchy of structures so that

a redraw requires only retraversing the structure hierarchy.

OpenGL does not support structures in the same way

PEX does. Instead display lists can be constructed which

contain sequences of OpenGL commands. Like structures,

a display list can contain a command to execute another

display list, e ectively allowing display lists to be com-

bined into arbitrary networks. nlike structures, OpenGL

display lists are not editable. Once one is created, it

is sealed and cannot be changed (except by destroy and

recreating it). This write-only nature allows optimi ations

to be performed on display lists unavailable to structures.

The commands in the display list can be optimi ed for

faster execution.

Even though display lists cannot be edited, this should

not be considered a disadvantage. The same e ect as edit-

ing can be achieved by rewriting display lists called by

other display lists.

Display lists and structures both minimi e the amount

of transfer overhead when running PEX or OpenGL over

a network since the commands in a structure or display

list can be executed repeatedly by only calling the dis-

play list by name. The commands themselves need to be

transferred across the wire only once.

. or ili

While PEX was designed to be vendor-independent and

portable, the subsetting allowed by the PEX standard al-

lows implementations of greatly varying functionality to

claim to be standard PEX implementations. The fact

that PEX explicitly allows multiple subsets perhaps indi-

cates the PEX standard may be too large to implement

fully and completely in a timely fashion. Anyone who has

been disappointed by the functionality of the X11R5 sam-

ple implementation understands the problem.

OpenGL does not allow any subsetting of rendering

functionality and therefore can expect much greater ap-

plication portability. The need for interoperability testing

for OpenGL is greatly reduced because OpenGL demands

more consistent implementations.

either OpenGL nor PEX is pi el e act. This means

neither speci�cation is completely explicit about what pix-

els must be modi�ed by each rendering operation (the core

X protocol is largely pixel exact). Pixel exactness is not a

totally desirable feature for 3D since much 3D graphics is

done with oating point where numerical errors make ex-

actness nearly impossible. But the OpenGL speci�cation

is much more rigorous than PEX about what is considered

conformant behavior. ot only does this make confor-

mance test design easier, but OpenGL programmers can

have high con�dence their scene will be rendered accu-

rately on all compliant OpenGL implementations.

The OpenGL release kit includes a suite of conformance

tests to verify rendering accuracy. o comprehensive test

suites are yet available to validate PEX implementations.

. in o s e e en en

PEX is very tightly coupled to the XWindow System. ot

only was it designed in the context of X but its semantics

depend on X notions of drawables, events, and execution

requirements.

But X is not the only signi�cant window system on the

market. For this reason, OpenGL was designed to be win-

dow system independent. This means its API can also be

used with Windows T and future window systems. Ap-

plication developers wishing to develop 3D applications

for both X and Windows machines will appreciate having

a consistent model for 3D across the two window systems.

indin ut or

The best place to �nd more information about graphics

programming using OpenGL is the OpenGL Technical Li-

brary published by Addison-Wesley. urrently available is

the OpenGL Reference Manual [6] and the OpenGL Pro-

gramming Guide [5]. The �rst volume contains complete

descriptions of all the OpenGL routines including the GL

and GLX routines. The second volume is an excellent in-

troduction to OpenGL including all its advanced rendering

features.

Those with Internet access can obtain OpenGL doc-

umentation and sample program source code by using

anonymous to s i.c . PostScript documentation

for all the routines that are part of the OpenGL, GL ,

and GLX APIs may be obtained. Example code from the

OpenGL Programming Guide (including the aux library)

is also available.

Of course the best way to learn OpenGL is to program

with it. Systems supporting OpenGL are currently ship-

ping from a number of workstation hardware and software

vendors. heck with your vendor for availability.

10

A si .c

:

:

11

12

:

:

:

:

:

:

13

r nc s

[1] Allen Akin, Analysis of PEX 5.1 and OpenGL 1.0,

Silicon Graphics, August 3, 1 2.

[2] Paul aeberli, urt Akeley, The Accumulation

Bu er: ardware Support for igh- uality Render-

ing, roceedin s o , August 1 0,

pp. 30 -318.

[3] Phil arlton, Integrating the GL into the X Envi-

ronment: A igh Performance Rendering Extension

Working with and ot Against X, The X esource

roceedin o the th nnual X Technical on erence,

O'Reilly Associates, Issue 1, Winter 1 2.

[4] Patricia McLendon, raphics i rary ro rammin

uide, Silicon Graphics, 1 1.

[5] ackie eider, Tom Davis, Mason Woo, pen

ro rammin uide The o cial uide to learnin

pen elease , Addison Wesley, 1 3.

[6] OpenGL Architecture Review Board, pen e -

erence anual The o cial re erence document or

pen elease , Addison Wesley, 1 2.

[7] Mark Segal, urt Akeley, The pen

TM

raphics

ystem peci cation, ersion 1.0, Silicon Graph-

ics, une 30, 1 2.

[8] Paul Strauss, Rikk arey, An Object-Oriented 3D

Graphics Toolkit, roceedin s o ,

uly 1 2, pp. 341-347.

[] Paula Womack, et.al., PEX Protocol Speci�cation,

ersion 5.1, The X onsortium, August 31, 1 2.

14

