Writing Kernel-level GIO Device Drivers
For IRIX 4.0.x

This chapter contains the following subsections:

* Section 1, “Determining GIO Device Addresses”

* Section 2, “Including GIO Device Drivers in the Kernel”
* Section 3, “Writing edtinit()”

*  Section 4, “GIO-Specific System Calls”

* Section 5, “GIO Interrupt Handler”

*  Section 6, “Programmed I/O (PIO)”

* Section 7, “DMA Operations”

*  Section 8, “GIO Devices with Hardware Supported Scatter-Gather
Capability”

* Section 9, “DMA on GIO Devices with No Scatter-Gather Capability”

* Section 10, “Device Driver Example”

This chapter provides in-depth information about drivers that interface to the
GIO bus. System configuration for GIO device drivers is described, and
several GIO-specific functions you should include in your device driver are
introduced. This chapter also describes several models for performing DMA
operations. Which model you choose for your device driver depends on the
capability of the device. The device may have hardware support for
scatter-gather or may require a software implementation of scatter-gather.
Memory mapped, user level drivers for GIO devices are not supported. All
GIO drivers must be kernel level, user level drivers are not supported.

This chapter is meant as a supplement to the IRIX Device Driver Programming

Guide, Document number 007-0911-020. Consult this document for additional
information regarding system architecture and device drivers for IRIX.

IRIX Device Driver Programming Guide 1



1

2

Determining GIO Device Addresses

Each GIO device has a range of GIO-bus addresses to which it responds. These
addresses correspond to device registers or on-board memory, depending on
the GIO device. GIO bus addresses cannot be mapped into user address
space. GIO devices can be classified as 32 bit or 64 bit. Unlike VME, where
the class of device determines the address range, GIO devices each respond
to the same address range.

The address range for GIO bus devices is determined by the Slot Number of
the device. The hardware must be designed to determine the slot the device is
in and make the appropriate adjustments to respond to that slot’s address
range.

GIO bus devices use only one interrupt level - interrupt 1. Interrupts 0 and 2
are used by the graphics system and may not be used by GIO bus devices.

Since one interrupt serves multiple GIO devices, the interrupt routine in each
driver must be able to deal with the various interrupt situations:

* the interrupt is for the board

» the interrupt is for some other GIO device

» thereis no interrupt pending.

Including GIO Device Drivers in the Kernel

Chapter 6, “Kernel-Driver Interface Overview,” provides general information
on adding a driver to the kernel. This section describes specifics concerning
GIO drivers. To add a new kernel-level GIO device driver, you must add a
directive to the system file (/usr/sysgen/system). For SCSI drivers, you use the
INCLUDE directive, which unconditionally adds the module to the kernel.
Because Iboot can probe for GIO devices, lboot can conditionally include a GIO
device driver into the kernel.

If the current system contains the GIO device, lboot includes the driver;
otherwise, it saves memory by leaving it out. Use the VECTOR directive to
include a GIO device conditionally. In addition to the module name, the
VECTOR directive requires that you fill out these fields:

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



vector

unit

base

base2, base3

exprobe

the interrupt vector value, as described previously. The
interrupt vector for GIO devices is set using the setgiovector
function (see Section 4.1, “Setgiovector”). Therefore, the
vector in the VECTOR statement should always be 0x0 for
GIO devices.

the device number that differentiates between more than one
device of the same type. This value is related to VME style
devices. For GIO devices this value can be anything, but for
consistency, make it 0.

the device address(es) on the GIO bus. This is determined by
the slot in which the board is installed. This is a K1 address
(see kvtophys(3K) man page).

additional addresses passed to driver edtinit routine via edt
structure. These are K1 addresses (see kvtophys(3K) man
page).

the address read when Iboot determines the existence of the
device. This address is often the same as the base address. If
you do not specify a probe address, the module is
automatically included in the kernel. For GIO bus devices the
exprobe call is used in place of the probe call. The fields used
for this call are as follows:

operation read (“r”) or write (“w”

address address to probe

# of bytes number of bytes to read or write
value expected response value

mask mask to apply to value

Also recall that you should create a master file under /usr/sysgen/master.d. (The
name of the master file is the same as the name of the object file for the driver,
but the master file should not have the “.0” suffix.) The FLAG field of the
master file should at least include the character device flag c.

As an example, suppose you want to add a mythical GIO device driver to the
kernel. You must copy the driver object file gbd.o to /ust/sysgen/boot, and you
must add a line similar to the following to the system file:

VECTOR: module=gbd vector=0x0 unit=0 base=0xBF400000
base2=0xBF410000 exprobe=(r, 0xBF400000,4,0x75,0xff)

IRIX Device Driver Programming Guide



Note that the interrupt vector (vector=), the base addresses, and the probe
address must all be specified in hexadecimal format. The base address and the
address in the exprobe must agree. In the above example, Iboot reads four bytes
at probe address, 0xBF400000, to determine whether the device is present in
slot 0. In this example base? is used to point to the location of on board memory.

In actual use it is advisable to add a second VECTOR line to the system file.
This should perform a probe of the other GIO slot. If only the line above had
been used and the GIO device was physically placed in slot 1 rather than slot
0 as specified in the VECTOR line, the probe would fail and the driver would
not have been included in the kernel. Using this situation as an example the
following line should be added to the system file:

VECTOR: module=gbd vector=0x0 unit=0 base=0xBF600000
base2=0xBF610000 exprobe=(r, 0xBF600000,4,0x75,0xff)

This ensures that a GIO device placed in either slot will be recognized.

After examining /usr/include/sys/major.h, and looking for potential major device
number conflicts in other device files in the /usr/sysgen/master.d directory, you
determine that major device number 51 is available and can be used for this
device. You then create a master file, gbd, and enter:

*FLAG PREFIX SOFT #DEV DEPENDENCIES
c gbd 51 -

Writing edtinit()

Ifyouuse the VECTOR directive to configure adriverinto the kernel, your driver
can use a routine of the form drvedtinit (where drv is the driver prefix). If your
devicedriver objectmoduleincludesadrvedtinit routine, thesystemexecutes the
drvedtinit routine when the system boots. In general, you can use your drvedtinit
routine to perform any device driverinitialization you want. The synopsis of the
drvedtinit routine is:

drvedtinit (e)
struct edt *e

{

your code here

}

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



When the system calls your drvedtinit routine, it hands the routine a pointer toa
structure of type edt. (This structure type is defined in the sys/edt.h header file.)
The definition of the edt type structure is:

struct edt {

paddr_t e_base, e_base2, e_base3;
struct vme_intrs *e_intr_info;
int (*e_1init) ( );

/* device initialization and run-time probe */

}i

The *e_intr_info and (*e_init)() members are of no interest to your drvedtinit
routine. Your driver only uses the e¢_base, e_base2 and e_base3 members:

e_base, e_base2, e_base3
These members give your driver the base addresses as
specified in the VECTOR line. Each is assigned as an unsigned
long data type.

Note: Although Iboot knows not to include in the kernel any GIO device
driver for a device that is not present, it is a good idea for your
drvedtinit routine to probe for its device with badaddr_val(). This allows
you to write a driver that is prepared if the device has been removed
from the system after the kernel has been built or when the kernel runs
on another system.

Continuing with this mythical GIO device driver example, its drvedtinit
routine could look like:

/* early device table initialization routine. The edt
* structure is defined in edt.h.
*/

gbdedtinit (struct edt *e)

{

int slot, wval;

/* Check to see if the device is present */
if (badaddr_val (e->e_base, sizeof (int), &val) ||
(val && GBD_MASK) != GBD_BOARD_ID) ({
if (showconfig)
cmn_err (CE_CONT,
“gbdedtinit: board not installed.”);
return;

IRIX Device Driver Programming Guide 5



/* figure out slot from base on VECTOR line in
* system file *x/
if (e->e_base == 0xBF400000)
slot = GIO_SLOT_O;
else if (e->e_base == 0xBF600000)
slot = GIO_SLOT_1;
else {
cmn_err (CE_NOTE,
“ERROR from edtinit: Bad base address %x\n”, e->e_base);

return;
}
#if IP12 /* for Indigo R3000, set up board as a
* realtime bus master
*/

setgioconfig(slot,0);

#endif

#1f IP20 /* for Indigo R4000, set up board as a
* realtime bus master
*/

setgioconfig(slot, GIO64_ARB_EXPO_RT | GIO64_ARB_EXPO_MST) ;

#endif

#1if IP22 /* for Indigo2, set up board as a pipelined,
* realtime bus master
*/

setgioconfig(slot, GIO64_ARB_EXPO_RT | GIO64_ARB_EXPO_MST
GIO64_ARB_EXPO_PIPED);

#endif

/* Save the device addresses, because
* they won’t be available later. */

gbd_device[slot == GIO_SLOT_O0 ? 0 : 1] =
(struct gbd_device *)e->e_base;
gbd_memory[slot == GIO_SLOT_O0 ? 0 : 1] =

(char *)e—>e_base2;
setgiovector (GIO_INTERRUPT_1,slot,gbdintr,0);

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



4

IRIX Device Driver Programming Guide

GlO-Specific Functions

4.1

There are three GIO Bus specific support routines that must be included in the
init or edtinit section of any GIO driver. These are the setgiovector,
setgioconfig, and splgio(n) routines.

Setgiovector

The setgiovector(2K) routine registers an interrupt service function for a GIO
bus device interrupt with the kernel’s interrupt dispatcher.

setgiovector(level,slot,func,arg)
int slot;
int level;
void (*func)(int);
int arg;

The level parameter specifies which interrupt is used by the device. For GIO
bus boards this should always be GIO_INTERRUPT_1 since
GIO_INTERRUPT_0 and GIO_INTERRUPT_2 are used by the graphics
system.

The slot parameter specifies which physical slot the GIO bus board is plugged
into and should be either GIO_SLOT_0, or GIO_SLOT_1.

The func parameter is a pointer to the interrupt service routine that will get
called when the associated interrupt occurs. Note that func may be called even
when there is no pending interrupt from the particular slot specified, in which
case it should simply return. The interrupt handler therefore needs to be able
to determine when its device is actually interrupting, and when it is not, in a
timely, non-destructive manner.

The arg parameter is passed to the interrupt service routine when it is called
and may contain any value. The interrupt service routine will be called with
the processor interrupt mask set to disable further interrupts from the device.



4.2

Setgioconfig

setgioconfig (2K) sets up the GIO bus arbitration mode for the GIO slot
specified by the slot parameter. The arbitration mode is specified in the flags
parameter as a bit-wise or of the flags documented below.

setgioconfig( slot, flags)
int slot;
int flags;

For R3000 based machines using the GIO32 bus these defines are found in
/usr/include/sys/IP12.h:

GIO_CONFIG_LONG Configure board as a long burst device,
otherwise it will be a realtime device
GIO_CONFIG_SLAVE Configure board as a bus slave,

otherwise it will be a bus master

For R4000 based machines using the GIO32-bis or GIO64 bus these defines are
found in /usr/include/sys/mc.h:

GIO64_ARB_EXPO0_SIZE_64 Configure slot for 64 bit transfers,
otherwise transfers will be 32 bit.
For Indigo, this must not be set.

GIO64_ARB_EXP0_RT Configure slot as a real time device,
otherwise it will be a long burst device.

GIO64_ARB_EXP0_MST Configure slot as a bus master,
otherwise it will be a slave.

GIO64_ARB_EXP0_PIPED Configure slot as a pipelined device,

otherwise it will be a non-pipelined device.
For Indigo, this must not be set.
For Indigoz, this must be set.

On R4000 based Indigos and Indigozs, setgioconfig uses the slot argument to
determine the location of boards.

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



4.3 Splgio0, Splgio1, Splgio2

These functions set the processor interrupt mask to block GIO bus interrupts.

long splgio0();
long splgiol();
long splgio2();

5 GIO Interrupt Handler

Your driver module should contain an interrupt routine. The name of this
routine must agree with that used in the VECTOR line in /usr/sysgen/system.
Normally this routine is called drvintr (where drv is the driver prefix). When
the device generates an interrupt, the general GIO interrupt handler calls your
driver’s drvintr routine. When the GIO interrupt handler calls your drvintr, it
passes it the unit number for the device. Within your drvintr routine, you
should set flags to indicate the state of the transfer, and wake up sleeping
processes (if any) waiting on the transfer to complete. Usually, the interrupt
routine calls iodone(K) to indicate that a block type 1/0 transfer for the buffer
is complete.

Caution: Interrupt routines (drvintr) must not try to sleep themselves by
calling iowait(K), sleep(K), psema(K), or delay(K) kernel calls. Neither
should they try to access the per-process global variables in the u
typestructure directly. The u type structure they can access may not
be that of the process that made the I/O request.

6 Programmed /O (PIO)

When transferring large amounts of data, your device driver should use direct
memory access (DMA). Using DMA, your driver can program a few registers,
return, and put itself to sleep while it awaits an interrupt that indicates the
transfer is complete. This frees up the processor for use by other processes.

IRIX Device Driver Programming Guide 9



10

However, sometimes you must write a driver for a device that does not
support DMA. In addition, even if the device does support DMA, you may not
want to use DMA to transfer amounts of data so small that the overhead of
DMA is not warranted.

In these cases, the host processor usually copies the data from the user space
to on-board memory. Your driver can then program the device registers to
notify the device that the memory is ready. The device controller can then copy
the data from its on-board memory to the peripheral (for example, a printer or
disk).

Listed below is part of a mythical GIO device driver for a printer controller that
does not support DMA. To print data from the user, the driver copies data from
u.u_base to an on-board memory buffer of size GBD_MEMSIZE. Following the
copy of each chunk, the driver programs the device registers to indicate the

size of valid data in the memory and to tell the controller to start the printing.

The driver then sleeps, waiting for an interrupt to indicate that the printing is
complete and that the on-board memory buffer is available again. To prevent
a race condition in which the interrupt responds before the calling process can
sleep, the driver uses the supplement and splx(K) routines.

/* device write routine entry point (for character devices) */
gbdwrite (dev_t dev)
{

int unit = minor (dev)&l;

int size;

int s;

while (u.u_count > 0) {
/* while there is data to transfer */

/* Transfer no more than GBD_MEMSIZE bytes
* to the device */

size = (u.u_count <
GBD_MEMSIZE ? u.u_count : GBD_MEMSIZE);

/* decrements u.u_count while copying data */
iomove (gbd_memory[unit], size, B_WRITE);
if (u.u_error)

break;

/* prevent interrupts until we sleep */
s = splgiol();

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



/* Transfer is complete; start output */

gbd_device[unit]->count = u.u_count;
gbd_device[unit]->command = GBD_GO;
gbd_state[unit] = GBD_SLEEPING;

while (gbd_state[unit] != GBD_DONE) ({

sleep (&gbd_state[unit], PRIBIO);
}

/* restore the process level after waking up */
splx(s);

The driver’s use of the volatile declaration informs the optimizer that this
register points to a hardware value that may change. Otherwise the
optimizer may determine that one write to gbd_device->command is
sufficient.

Note: If your driver uses the sleep and wakeup kernel routines to sleep and
awaken, itisa good idea for the drvintr to verify that theactual eventhas
occurred before actually awakening the sleeping process. (See sleep(K)
for details on the sleep/wakeup process synchronization mechanism.) If
your driver uses the iowait/iodoneroutines or the psema/vsemaroutines to
sleep and awaken, youneed not worry about itawakening by accident.
However, the routines psema and vsema, are specific to IRIX and are
probably not supported on other operating systems.

The iomove(K) kernel routine is a useful procedure to call in these situations
because it automatically updates u.u_count, u.u_offset, and u.u_base and uses
copyout(K) (or copyin(K)) tocheck forinvalid user addresses. Recall that u.u_count
must be left with the number of bytes left untransferred.

7 DMA Operations

As indicated in Section 6, “Programmed I/O (PIO)”, you should use DMA
when the device supports it. In its simplest form, DMA is easy to use: your
driver gives the device the physical memory address, and the transaction
begins. Your driver can then put itself to sleep while it waits for the transfer to
complete, thus freeing the processor for other tasks. When the transfer is
complete, the device interrupts the processor. On most systems, when large
amounts of data are involved, DMA devices obtain higher overall throughput
than devices that do only PIO.

IRIX Device Driver Programming Guide 11



8

12

DMA operations are categorized as a DMA read or a DMA write. DMA
operations that transfer from memory to device, and hence read memory, are
DMA reads. DMA operations that transfer from device to memory are DMA
writes. Thus, the point of view is that of memory. A disk read results ina DMA
write, and a disk write results in a DMA read.

There are some cache considerations for drivers using DMA. The cache
architecture of the machine dictates the appropriate cache operations. Write
back caches require that data be written back from cache to memory before a
DMA read, whereas both write back and write through caches require the cache
to be invalidated before data from a DMA write is used. See Section A.2, “Data
Cache Write Back and Invalidation,” and dki_dcache_wbinval(K) for a discussion
of these issues.

Another concern for driver writers is that DMA buffers may require cache-line
alignment. If adriver allocates a buffer for DMA, it should use the kmem_alloc(K)
function, using the KM_CACHEALIGN flag.

Theinterruptserviceroutine then calls your drvintr routine. Your drvintr routine
can check that the transfer is complete (if necessary), set flags indicating the
status of the transfer, and then awaken the sleeping process.

The GIO bus does not provide any address mapping registers. Any DMA
operation that requires scatter-gather must be supported by GIO board
hardware or a software implementation of scatter-gather.

GIO Devices with Hardware Supported Scatter-Gather Capability

Chapter 5, “Creating User-level Device Drivers,” tells you to use the physio
kernel routine to fault in and lock the physical pages corresponding to the
user's buffer. physio also remaps these physical pages to a kernel virtual
address that remains constant even when the user's virtual addresses are no
longer mapped.

Internally, physio allocates a structure of type buf if you pass a NULL pointer

(physio uses this structure to embody the transfer information.) physio then calls
yourdrustrategy routine and passesita pointer to the buftype structure thatithas
allocated and primed. Your drustrategy routine should then loop through each
page, starting at the kernel virtual address, and load each device scatter-gather

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



register in turn with the corresponding physical address. Use the kvtophys(K)
routine to convert a kernel virtual address to a physical address.

For example, suppose the mythical device is now a GIO device that has
hardware supporting scatter-gather. The scatter-gather registers for the device
are simply a table of integers that store the physical pages corresponding to the
current transfer. To start the transfer, the driver gives the device the beginning
byte offset, byte count, and transfer direction. The code is:

/* block device read/write entry point, if your board has
* hardware scatter/gather DMA support.
*/
gbdstrategy (struct buf *bp)
{
int unit = minor (bp->b_dev)&l;
int npages;
volatile unsigned *sgregisters;
int i, v_addr;

/* Get address of the scatter—-gather registers */
*sgregisters = gbd_device[unit]->sgregisters;

Get the kernel virtual address of the data; note
b_dmaaddr may be NULL if the BP_ISMAPPED (bp) macro
indicates false; in that case, the field bp->b_pages
is a pointer to a linked list of pfdat structure
pointers; that saves creating a virtual mapping and
then decoding that mapping back to physical addresses.
BP_ISMAPPED will never be false for character devices,
only block devices.

L A

~

if (!BP_ISMAPPED (bp)) {
cmn_err (CE_WARN,
“gbd driver can’t handle unmapped buffers”);
bp->b_flags |= B_ERROR;
iodone (bp) ;
return;

v_addr = bp->b_dmaaddr;

Compute number of pages received.

The dma_len field provides the number of pages to
map. Note that this may be larger than the actual
number of bytes involved in the transfer. This is
because the transfer may cross page boundaries,

* % ok k%

IRIX Device Driver Programming Guide 13



* requiring an extra page to be mapped. Limit to
* number of scatter/gather registers on board.
* Note that this sample driver doesn’t handle the
* case of requests > than # of registers!
*/
npages = numpages (v_addr, bp->b_dmalen);
/~k
* Provide the beginning byte offset and count to the
* device.
*/

gbd_device[unit]->offset =
(unsigned int)bp->b_dmaaddr & (NBPC-1);
if (npages > GBD_NUM_DMA_PGS) {
npages = GBD_NUM_DMA_PGS;
cmn_err (CE_WARN,
“request too large, only %d pages max”, npages);
if (gbd_device[unit]->offset)
gbd_device[unit]->count = NBPC -
gbd_device[unit]->offset + (npages-1)*NBPC;
else
gbd_device[unit]->count = npages*NBPC;
bp->b_resid = bp->b_count - gbd_device[unit]->count;
}
else
gbd_device[unit]->count = bp->b_count;

/* Translate the virtual address of each page to a
* physical page number and load it into the next
* scatter-gather register. The btoct (K) macro
* converts the byte value to a page value after
* rounding down the byte value to a full page.

*/
for (i = 0; i < npages; i++) {
*sgregisters++ = btoct (kvtophys (v_addr));

/~k

/* Get the next virtual address to translate.
* (NBPC is a symbolic constant for the page
* size in bytes)

*/

v_addr += NBPC;

14 Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



if ((bp—->b_flags & B_READ) == 0)
gbd_device[unit]->direction = GBD_WRITE;
else
gbd_device[unit]->direction = GBD_READ;
gbd_device[unit]->command = GBD_GO;/* start DMA */

/* and return; upper layers of kernel wait for iodone (bp) */

9 DMA on GIO Devices with No Scatter-Gather Capability

If your device does not provide any scatter-gather capability, your driver must
break up a data transfer so that no transfer crosses a page boundary. The IRIX
operating system provides a utility, sgset(K), that simulates scatter-gather
registers in software. (See Appendix C, “Man Pages for the Kernel Functions,”
for details on this routine.) Your driver can use this facility to perform the
virtual to physical mapping up front. Or, as the example below shows, your
driver can do this mapping following the transfer of each page:

gbdstrategy (struct buf *bp)
{

int unit = minor (bp->b_dev) &1;
/* any checking for initial state here. */

Get the kernel virtual address of the data; note
b_dmaaddr may be NULL if the BP_ISMAPPED (bp) macro
indicates false; in that case, the field bp->b_pages
is a pointer to a linked list of pfdat structure
pointers; that saves creating a virtual mapping and
then decoding that mapping back to physical addresses.
BP_ISMAPPED will never be false for character devices,
only block devices.

0% ok ok X 3 X X %

~

if (!BP_ISMAPPED (bp)) {
cmn_err (CE_WARN,
“gbd driver can’t handle unmapped buffers”);

bp->b_flags |= B_ERROR;
iodone (bp) ;
return;

}

gbd_curbp[unit] = bp;

IRIX Device Driver Programming Guide 15



/*
* Initialize the current transfer address and count.
* The first transfer should finish the rest of the
* page, but do no more than the total byte count.

*/
gbd_curaddr [unit] = bp->b_dmaaddr;
gbd_totcount [unit] = bp->b_count;
gbd_curcount [unit] = NBPC -

((unsigned int)gbd_curaddr[unit] & (NBPC-1));
if (bp—->b_count < gbd_curcount[unit])
gbd_curcount [unit] = bp->b_count;
/* Tell the device starting physical address, count,
* and direction */
gbd_device[unit]->startaddr = kvtophys (gbd_curaddr[unit]);

gbd_device[unit]->count = gbd_curcount [unit];
if (bp—->b_flags & B_READ) == 0)

gbd_device[unit]->direction = GBD_WRITE;
else

gbd_device[unit]->direction = GBD_READ;
gbd_device[unit]->command = GBD_GO;/* start DMA */

/* and return; upper layers of kernel wait for iodone (bp) */

10 Device Driver Example

On the following pages is the complete driver code for the mythical “gbd” GIO
device. Note that it includes strategy routines for devices that have hardware
support for scatter/gather as well as for those devices that have no hardware
scatter /gather support.

Normally defines for a driver are kept in a separate header file. In the case of

this mythical device these defines would be found in gbd.h. For this example
these defines are contained in the driver source file itself.

16 Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



To compile this example, the following command line would be used

assuming the source code is found in a file named gbd.c:

For an Indigo (R3000): cc -DIP12 -DR3000 -cckr -c gbd.c
For an Indigo (R4000): cc -DIP20 -DR4000 -cckr -c gbd.c

Foranlimﬁgoz(R4000y cc -DIP20 -DR4000 -cckr -c gbd.c

#define _

#include
#include
#include
#include
#include
#include
#include

/* NOTE:

KERNEL /* more typically set on compile line

<sys/param.h>
<sys/systm.h>
<sys/cpu.h>
<sys/buf.h>
<sys/user.h>
<sys/cmn_err.h>
<sys/edt.h>

* any real device must deal with that possiblity,

course,

* before changing the board registers..

*/

*/

this sample driver ignores the possiblity that
* the board might be busy handling some earlier request.
of

/* these defines and structures would normally be in a seperate
* header file */

#define GBD_BOARD_ID 0x75
#define GBD_MASK Oxff /* use Oxff if using only first byte

#define

#define GBD_NODMA 0/* non-zero for PIO version of driver */

* of ID word, use Oxffff if using

* whole ID word

*/

GBD_NUM_DMA_PGS 4/* 0 for no hardware scatter/gather
* support, else number of pages of scatter/gather
* supported per request */

#define GBD_MEMSIZE 0x8000

/* command definitions */
#define GBD_GO 1

IRIX Device Driver Programming Guide

17



18

/* state definitions */
#define GBD_SLEEPING 1
#define GBD_DONE 2

/* direction of DMA definitions */
#define GBD_READ 0
#define GBD_WRITE 1

/* status defines */
#define GBD_INTR_PEND 0x80

/* “gbd” is device prefix; also in master.d/xxx file */

/* devices interface to the board */
struct gbd_device {
int command;
int count;
int direction;
off_t offset;
unsigned *sgregisters; /* if scatter/gather supported */
caddr_t startaddr;/* if no scatter/gather on board */
unsigned status; /* errors, interrupt pending, etc. */

}i

/* these are used for no scatter/gather case only, and assume
* (since they aren’t protected!) that the driver is completely
* single threaded. */

struct buf *gbd_curbp[2]; /* current buffer */

caddr_t gbd_curaddr[2]; /* current address to transfer
*/

int gbd_curcount [2];

int gbd_totcount [2];

/* pointer to on-board registers */
volatile struct gbd_device *gbd_device[2];

char *gbd_memory[2]; /* pointer to on-board memory */

static int gbd_statel[2]; /* flag for transfer state
* (PIO driver) */

void gbdintr (int);

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



/* early device table initialization routine. The edt
* structure is defined in edt.h.

*/

gbdedtinit (struct edt *e)

{

int slot, wval;

/* Check to see if the device is present */
if (badaddr_val (e->e_base, sizeof (int), &val) ||
(val && GBD_MASK) != GBD_BOARD_ID) ({
if (showconfig)
cmn_err (CE_CONT,
“gbdedtinit: board not installed.”);
return;

/* figure out slot from base on VECTOR line in
* system file */
if (e->e_base == 0xBF400000)
slot = GIO_SLOT_O;
else if (e->e_base == 0xBF600000)
slot = GIO_SLOT_1;
else {
cmn_err (CE_NOTE,
“ERROR from edtinit: Bad base address %$x\n”, e—>e_base);

return;
}
#if IP12 /* for Indigo R3000, set up board as a
* realtime bus master
*/

setgioconfig(slot,0);

#endif

#1if IP20 /* for Indigo R4000, set up board as a
* realtime bus master
*/

setgioconfig(slot,GIO64_ARB_EXPO_RT | GIO64_ARB_EXPO_MST) ;

#endif

IRIX Device Driver Programming Guide 19



20

#if IP22 /* for Indigo2, set up board as a pipelined,
* realtime bus master

*/

setgioconfig(slot,GIO64_ARB_EXPO_RT | GIO64_ARB_EXPO_MST
GIO64_ARB_EXPO_PIPED);

#endif

/* Save the device addresses, because
* they won’t be available later. */

gbd_device[slot == GIO_SLOT_O0 ? 0 : 1] =
(struct gbd_device *)e->e_base;
gbd_memory[slot == GIO_SLOT_O0 ? 0 : 1] =

(char *)e->e_base2;
setgiovector (GIO_INTERRUPT_1, slot,gbdintr,0);

#ifdef GBD_NODMA

/* device write routine entry point (for character devices) */
gbdwrite (dev_t dev)
{

int unit = minor (dev)&l;
int size;
int s;

while (u.u_count > 0) {
/* while there is data to transfer */

/* Transfer no more than GBD_MEMSIZE bytes
* to the device */

size = (u.u_count <
GBD_MEMSIZE ? u.u_count : GBD_MEMSIZE) ;

/* decrements u.u_count while copying data */
iomove (gbd_memory[unit], size, B_WRITE);
if (u.u_error)

break;

/* prevent interrupts until we sleep */
s = splgiol();

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



/* Transfer is complete; start output */

gbd_device[unit]->count = u.u_count;
gbd_device[unit]->command = GBD_GO;
gbd_state[unit] = GBD_SLEEPING;

while (gbd_state[unit] != GBD_DONE) ({

sleep (&gbd_state[unit], PRIBIO);
}
/* restore the process level after waking up */
splx(s);

/* interrupt routine for PIO only board, just wake up
* upper half of driver
*/
void
gbdintr (int unit)
{
/* read your board’s registers to determine if
* there are any errors or interrupts pending.
* If no interrupts are pending, return without
doing anything.

*/
if (!gbd_device[unit]->status & GBD_INTR_PEND)
return;
if (gbd_state[unit] == GBD_SLEEPING) {

/* Output is complete; wake up top half
* of driver, if it is waiting */

gbd_state[unit] = GBD_DONE;

wakeup (&gbd_state[unit]);

/* do anything else to board to tell it we are done
* with transfer and interrupt here */

#else/* DMA version of driver */

#if GBD_NUM_DMA_PGS > 0

IRIX Device Driver Programming Guide

21



22

/* block device read/write entry point, if your board has
* hardware scatter/gather DMA support.
*/
gbdstrategy (struct buf *bp)
{
int unit = minor (bp->b_dev)&l;
int npages;
volatile unsigned *sgregisters;
int i, v_addr;

/* Get address of the scatter—-gather registers */
*sgregisters = gbd_device[unit]->sgregisters;

Get the kernel virtual address of the data; note
b_dmaaddr may be NULL if the BP_ISMAPPED (bp) macro
indicates false; in that case, the field bp->b_pages
is a pointer to a linked list of pfdat structure
pointers; that saves creating a virtual mapping and
then decoding that mapping back to physical addresses.
BP_ISMAPPED will never be false for character devices,
only block devices.

L A

~

if (!BP_ISMAPPED (bp)) {
cmn_err (CE_WARN,
“gbd driver can’t handled unmapped buffers”);
bp->b_flags |= B_ERROR;
iodone (bp) ;
return;

v_addr = bp->b_dmaaddr;

~
0% ok ok X ok % X o X

~

Compute number of pages received.

The dma_len field provides the number of pages to
map. Note that this may be larger than the actual
number of bytes involved in the transfer. This is
because the transfer may cross page boundaries,
requiring an extra page to be mapped. Limit to
number of scatter/gather registers on board.

Note that this sample driver doesn’t handle the
case of requests > than # of registers!

npages = numpages (v_addr, bp->b_dmalen);

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



/ *
* Provide the beginning byte offset and count to the
* device.
*/
gbd_device[unit]->offset =
(unsigned int)bp->b_dmaaddr & (NBPC-1);
if (npages > GBD_NUM_DMA_PGS) {
npages = GBD_NUM_DMA_PGS;
cmn_err (CE_WARN,
“request too large, only %d pages max”, npages);
if (gbd_device[unit]->offset)
gbd_device[unit]->count = NBPC -
gbd_device[unit]->offset + (npages-1)*NBPC;
else
gbd_device[unit]->count = npages*NBPC;
bp->b_resid = bp->b_count - gbd_device[unit]->count;
}
else
gbd_device[unit]->count = bp->b_count;

/* Translate the virtual address of each page to a
* physical page number and load it into the next
* scatter-gather register. The btoct (K) macro
* converts the byte value to a page value after
* rounding down the byte value to a full page.

*/
for (i = 0; i < npages; i++) {
*sgregisters++ = btoct (kvtophys (v_addr));

/~k

/* Get the next virtual address to translate.
* (NBPC is a symbolic constant for the page
* size in bytes)

*/
v_addr += NBPC;
if ((bp—->b_flags & B_READ) == 0)
gbd_device[unit]->direction = GBD_WRITE;
else
gbd_device[unit]->direction = GBD_READ;

gbd_device[unit]->command = GBD_GO;/* start DMA */

/* and return; upper layers of kernel wait for iodone (bp)

IRIX Device Driver Programming Guide

*/

23



/* not much to do in this interrupt routine, since we are

* assuming for this driver that we can never have to do

* multiple DMA’s to handle the number of bytes requested...
*/

void

gbdintr (int unit)

{

int error;

/* read your board’s registers to determine if
* there are any errors or interrupts pending.
* If no interrupts are pending, return without

doing anything.

*/
if (!'gbd_device[unit]->status & GBD_INTR_PEND)
return;
if (error)
bp->b_flags |= B_ERROR;

iodone (bp) ; /* we are done, tell upper layers */

/* do anything else to board to tell it we are done
* with transfer and interrupt here */

#else /* GBD_NUM_DMA_PGS == 0; no hardware
* scatter/gather support */

gbdstrategy (struct buf *bp)
{

int unit = minor (bp->b_dev)&l;
/* any checking for initial state here. */

Get the kernel virtual address of the data; note
b_dmaaddr may be NULL if the BP_ISMAPPED (bp) macro
indicates false; in that case, the field bp->b_pages
is a pointer to a linked list of pfdat structure
pointers; that saves creating a virtual mapping and
then decoding that mapping back to physical addresses.
BP_ISMAPPED will never be false for character devices,
only block devices.

L T S

Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



if (!BP_ISMAPPED (bp)) {
cmn_err (CE_WARN,
“gbd driver can’t handled unmapped buffers”);

bp->b_flags |= B_ERROR;
iodone (bp) ;
return;

}

gbd_curbp[unit] = bp;

/*
* Initialize the current transfer address and count.
* The first transfer should finish the rest of the
* page, but do no more than the total byte count.

*/
gbd_curaddr [unit] = bp->b_dmaaddr;
gbd_totcount [unit] = bp->b_count;
gbd_curcount [unit] = NBPC -

((unsigned int)gbd_curaddr[unit] & (NBPC-1));
if (bp—->b_count < gbd_curcount[unit])
gbd_curcount [unit] = bp->b_count;
/* Tell the device starting physical address, count,
* and direction */
gbd_device[unit]->startaddr = kvtophys (gbd_curaddr[unit]);

gbd_device[unit]->count = gbd_curcount [unit];
if (bp->b_flags & B_READ) == 0)

gbd_device[unit]->direction = GBD_WRITE;
else

gbd_device[unit]->direction = GBD_READ;
gbd_device[unit]->command = GBD_GO;/* start DMA */

/* and return; upper layers of kernel wait for iodone (bp) */

/* more complicated interrupt routine, not necessarily because
* board has DMA, but more typical of boards that do have
* DMA, since they are typically more complicated.

* Also more typical of devices that support block i/o, as
* opposed to character i/o.
*/

void

gbdintr (int unit)

{

int error;
register struct buf *bp = gbd_curbplunit];

IRIX Device Driver Programming Guide 25



/* read your board’s registers to determine if
* there are any errors or interrupts pending.
* If no interrupts are pending, return without

doing anything.
*/

if (!gbd_device[unit]->status & GBD_INTR_PEND)

return;

if (error) {

bp->b_flags |= B_ERROR;

iodone (bp);/* we are done, tell upper layers */
}
else {

/* On successful transfer of last chunk, continue

* if necessary */

gbd_curaddr [unit] += gbd_curcount [unit];

gbd_totcount [unit] -= gbd_curcount[unit];

if (gbd_totcount [unit] <= 0)

iodone (bp) ;
/* we are done, tell upper layers */
else {
/* else more to do, reprogram board and
* start next dma */
gbd_curcount [unit] =
(gbd_totcount [unit] < NBPC
? gbd_totcount[unit] : NBPC);
gbd_device[unit]->startaddr =
kvtophys (gbd_curaddr[unit]) ;

gbd_device[unit]->count = gbd_curcount [unit];
if (bp->b_flags & B_READ) == 0)

gbd_device[unit]->direction = GBD_WRITE;
else

gbd_device[unit]->direction = GBD_READ;
gbd_device[unit]->command = GBD_GO;
/* start next DMA */

/* do anything else to board to tell it we are done
* with transfer and interrupt here */

}
#endif /* GBD_NUM_DMA_PGS */

#endif /* GBD_NODMA */

26 Writing Kernel-level GIO Device Drivers For IRIX 4.0.x



