
A Producer Library Interface to DWARF

UNIX International Programming Languages Special Interest Group

1. INTRODUCTION

This document describes the proposed interface to libdwarf, a library of functions to provide creation of
DWARF debugging information records, DWARF line number information, DWARF address range and
pubnames information, weak names informatio, and DWARF frame description information.

1.1 Purpose and Scope

The purpose of this document is to propose a library of functions to create DWARF debugging
information. Reading (consuming) of such records is discussed in a separate document.

The functions in this document have been implemented at Silicon Graphics and are being used by the code
generator to provide debugging information.

Additionally, the focus of this document is the functional interface, and as such, implementation as well as
optimization issues are intentionally ignored.

Error handling, error codes, and certain Libdwarf codes are discussed in the "Proposed Interface to
DWARF Consumer Library", which should be read (or at least skimmed) before reading this document.

1.2 Definitions

DWARF debugging information entries (DIE) are the segments of information placed in the .debug_*
sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source-level debugging. Refer to the document "DWARF Debugging Information
Format" from UI PLSIG for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" version 2.
and the "Proposed Interface to DWARF Consumer Library".

In addition, this document refers to ELF, the ATT/USL System V Release 4 object format. This is because
the library was first developed for that object format. Hopefully the functions defined here can easily be
applied to other object formats.

1.3 Overview

The remaining sections of this document describe a proposed producer (compiler or assembler) interface to
Libdwarf, first by describing the purpose of additional types defined by the interface, followed by
descriptions of the available operations. This document assumes you are thoroughly familiar with the
information contained in the DWARF Debugging Information Format document, and "Proposed Interface
to DWARF Consumer Library".

The interface necessarily knows a little bit about the object format (which is assumed to be ELF). We
make an attempt to make this knowledge as limited as possible. For example, Libdwarf does not do the
writing of object data to the disk. The producer program does that.

$Revision: 1.5 $ - 1 - $Date: 1994/05/18 16:56:22 $

- 2 -

1.4 Revision History

March 93 Work on dwarf2 sgi producer draft begins

2. Type Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names
used to reference objects of Libdwarf. The types defined by typedefs contained in libdwarf.h all use the
convention of adding Dwarf_ as a prefix to indicate that they refer to objects used by Libdwarf. The
prefix Dwarf_P_ is used for object referenced by the Libdwarf Producer when there are similar but
distinct objects used by the Consumer.

2.2 Aggregate Types

3. Memory Management

Several of the functions that comprise the Libdwarf interface return values that have been dynamically
allocated by the library. Space is always allocated for an object represented by a Dwarf_P_Debug
descriptor. The Libdwarf typically deals with one object at a time. The dynamically allocated spaces
can not be reclaimed except by dwarf_producer_finish(). This function reclaims all the space,
and invalidates all descriptors returned from Libdwarf functions that add information to be object
specified. After dwarf_producer_finish() is called, the Dwarf_P_Debug descriptor specified
is also invalid.

3.1 Read-only Properties

All pointers returned by or as a result of a Libdwarf call should be assumed to point to read-only memory.
Except as defined by this document, the results are undefined for Libdwarf clients that attempt to write to a
region pointed to by a return value from a Libdwarf call.

3.2 Storage Deallocation

Calling dwarf_producer_finish(dbg) frees all the space, and invalidates all pointers returned
from Libdwarf functions on or descended from dbg).

4. Functional Interface

This section describes the functions available in the Libdwarf library. Each function description includes
its definition, followed by a paragraph describing the function’s operation.

The functions may be categorized into groups: initialization and termination operations, debugging
information entry creation, Elf section callback function, attribute creation, expression creation, line
number creation, fast-access (aranges) creation, fast-access (pubnames) creation, fast-access (weak
names) creation, macro information creation, low level (.debug_frame) creation, and location list
(.debug_loc) creation.

$Revision: 1.5 $ - 2 - $Date: 1994/05/18 16:56:22 $

- 3 -

The following sections describe these functions.

4.1 Initialization and Termination Operations

These functions setup Libdwarf to accumulate debugging information for an object, usually a
compilation-unit, provided by the producer. The actual addition of information is done by functions in the
other sections of this document. Once all the information has been added, functions from this section are
used to transform the information to appropriate byte streams, and help to write out the byte streams to
disk.

Typically then, a producer would create a Dwarf_P_Debug descriptor to gather debugging information
for a particular compilation-unit using dwarf_producer_init(). They would use this
Dwarf_P_Debug descriptor to accumulate debugging information for this object using functions from
other sections of this document. Once all the information had been added, they would call
dwarf_transform_to_disk_form() to convert the accumulated information into byte streams in
accordance with the DWARF standard. They would then repeatedly call
dwarf_get_section_bytes() for each of the .debug_* created. This would give the producer
information about the data bytes to be written to disk. At this point, the producer would release all
resource used by Libdwarf for this object by calling dwarf_producer_finish().

Dwarf_P_Debug dwarf_producer_init(
Dwarf_Unsigned flags,
Dwarf_Callback_Func func,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Error *error)

The function dwarf_producer_init() returns a new Dwarf_P_Debug descriptor that can be
used to add Dwarf information to the object. On error it returns DW_DLV_BADADDR. flags
determine whether the target object is 64-bit or 32-bit. func is a pointer to a function called-back from
Libdwarf whenever Libdwarf needs to create a new object section (as it will for each .debug_* section and
related relocation section). errhand is a pointer to a function that will be used for handling errors
detected by Libdwarf. errarg is the default error argument used by the function pointed to by
errhand.

Dwarf_Signed dwarf_transform_to_disk_form(
Dwarf_P_Debug dbg,
Dwarf_Error* error)

The function dwarf_transform_to_disk_form() does the actual conversion of the Dwarf
information provided so far, to the form that is normally written out as Elf sections. In other words, once
all DWARF information has been passed to Libdwarf, call dwarf_transform_to_disk_form() to
transform all the accumulated data into byte streams. This includes turning relocation information into
byte streams. This function does not write anything to disk. If successful, it returns a count of the number
of Elf sections ready to be retrieved (and, normally, written to disk). In case of error, it returns
DW_DLV_NOCOUNT.

$Revision: 1.5 $ - 3 - $Date: 1994/05/18 16:56:22 $

- 4 -

Dwarf_Ptr dwarf_get_section_bytes(
Dwarf_P_Debug dbg,
Dwarf_Signed dwarf_section,
Dwarf_Signed *elf_section_index,
Dwarf_Unsigned *length,
Dwarf_Error* error)

The function dwarf_get_section_bytes() must be called repetitively, with the index
dwarf_section starting at 0 and continuing for the number of sections returned by
dwarf_transform_to_disk_form(). It returns NULL to indicate that there are no more sections
of Dwarf information. For each non-NULL return, the returned-pointer points to *length bytes of
data that are normally added to the output object in Elf section *elf_section by the producer
application.

Dwarf_Signed dwarf_producer_finish(
Dwarf_P_Debug dbg,
Dwarf_Error* error)

The function dwarf_producer_finish() should be called after all the bytes of data have been wn
copied somewhere (normally the bytes are written to disk). It frees all dynamic space allocated for dbg,
include space for the structure pointed to by dbg. This should not be called till the data have been copied
or written to disk or are no longer of interest. It returns non-zero if successful, and DW_DLV_NOCOUNT if
there is an error.

4.2 Debugging Information Entry Creation

The functions in this section add new DIEs to the object, and also the relatioships among the DIE to be
specified by linking them up as parents, children, left or right siblings of each other. In addition, there is a
function that marks the root of the graph thus created.

Dwarf_Unsigned dwarf_add_die_to_debug(
Dwarf_P_Debug dbg,
Dwarf_P_Die first_die,
Dwarf_Error *error)

The function dwarf_add_die_to_debug() indicates to Libdwarf the root DIE of the DIE
graph that has been built so far. It is intended to mark the compilation-unit DIE for the object represented
by dbg. The root DIE is specified by first_die.

It returns 0 on success, and DW_DLV_NOCOUNT on error.

Dwarf_P_Die dwarf_new_die(
Dwarf_P_Debug dbg,
Dwarf_Tag new_tag,
Dwarf_P_Die parent,
Dwarf_P_Die child,
Dwarf_P_Die left_sibling,
Dwarf_P_Die right_sibling,
Dwarf_Error *error)

The function dwarf_new_die() creates a new DIE with its parent, child, left sibling, and right sibling
DIEs specified by parent, child, left_sibling, and right_sibling, respectively. There is
no requirement that all of these DIEs be specified, i.e. any of these descriptors may be NULL. If none is
specified, this will be an isolated DIE. A DIE is transformed to disk form by

$Revision: 1.5 $ - 4 - $Date: 1994/05/18 16:56:22 $

- 5 -

dwarf_transform_to_disk_form() only if there is a path from the DIE specified by
dwarf_add_die_to_debug to it. This function returns DW_DLV_BADADDR on error.

new_tag is the tag which is given to the new DIE. parent, child, left_sibling, and
right_sibling are pointers to establish links to existing DIEs. Only one of parent, child,
left_sibling, and right_sibling may be non-NULL. If parent (child) is given, the DIE
is linked into the list after (before) the DIE pointed to. If left_sibling (right_sibling) is
given, the DIE is linked into the list after (before) the DIE pointed to.

To add attributes to the new DIE, use the Attribute Creation functions defined in the next
section.

Dwarf_P_Die dwarf_die_link(
Dwarf_P_Die die,
Dwarf_P_Die parent,
Dwarf_P_Die child,
Dwarf_P_Die left-sibling,
Dwarf_P_Die right_sibling,
Dwarf_Error *error)

The function dwarf_die_link() links an existing DIE described by the given die to other existing
DIEs. The given die can be linked to a parent DIE, a child DIE, a left sibling DIE, or a right sibling
DIE by specifying non-NULL parent, child, left_sibling, and right_sibling
Dwarf_P_Die descriptors. It returns the given Dwarf_P_Die descriptor, die, on success, and
DW_DLV_BADADDR on error.

Only one of parent, child, left_sibling, and right_sibling may be non-NULL. If
parent (child) is given, the DIE is linked into the list after (before) the DIE pointed to. If
left_sibling (right_sibling) is given, the DIE is linked into the list after (before) the DIE
pointed to. Non-NULL links overwrite the corresponding links the given die may have had before the
call to dwarf_die_link().

4.3 Attribute Creation

The functions in this section add attributes to a DIE. These functions return a Dwarf_P_Attribute
descriptor that represents the attribute added to the given DIE. In most cases the return value is only
useful to determine if an error occurred.

Some of the attributes have values that are relocatable. They need a symbol with respect to which the
linker will perform relocation. This symbol is specified by means of an index into the Elf symbol table for
the object.

Dwarf_P_Attribute dwarf_add_AT_location_expr(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_P_Expr loc_expr,
Dwarf_Error *error)

The function dwarf_add_AT_location_expr() adds the attribute specified by attr to the DIE
descriptor given by ownerdie. The attribute should be one that has a location expression as its value.
The location expression that is the value is represented by the Dwarf_P_Expr descriptor loc_expr.
It returns the Dwarf_P_Attribute descriptor for the attribute given, on success. On error it returns
DW_DLV_BADADDR.

$Revision: 1.5 $ - 5 - $Date: 1994/05/18 16:56:22 $

- 6 -

Dwarf_P_Attribute dwarf_add_AT_name(
Dwarf_P_Die ownerdie,
char *name,
Dwarf_Error *error)

The function dwarf_add_AT_name() adds the string specified by name as the value of the
DW_AT_name attribute for the given DIE, ownerdie. It returns the Dwarf_P_attribute
descriptor for the DW_AT_name attribute on success. On error, it returns DW_DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_comp_dir(
Dwarf_P_Die ownerdie,
char *current_working_directory,
Dwarf_Error *error)

The function dwarf_add_AT_comp_dir() adds the string given by
current_working_directory as the value of the DW_AT_comp_dir attribute for the DIE
described by the given ownerdie. It returns the Dwarf_P_Attribute for this attribute on success.
On error, it returns DW_DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_producer(
Dwarf_P_Die ownerdie,
char *producer_string,
Dwarf_Error *error)

The function dwarf_add_AT_producer() adds the string given by producer_string as the
value of the DW_AT_producer attribute for the DIE given by ownerdie. It returns the
Dwarf_P_Attribute descriptor representing this attribute on success. On error, it returns
DW_DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_const_value_signedint(
Dwarf_P_Die ownerdie,
Dwarf_Signed signed_value,
Dwarf_Error *error)

The function dwarf_add_AT_const_value_signedint() adds the given Dwarf_Signed
value signed_value as the value of the DW_AT_const_value attribute for the DIE described by
the given ownerdie. It returns the Dwarf_P_Attribute descriptor for this attribute on success.
On error, it returns DW_DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_const_value_unsignedint(
Dwarf_P_Die ownerdie,
Dwarf_Unsigned unsigned_value,
Dwarf_Error *error)

The function dwarf_add_AT_const_value_unsignedint() adds the given
Dwarf_Unsigned value unsigned_value as the value of the DW_AT_const_value attribute for
the DIE described by the given ownerdie. It returns the Dwarf_P_Attribute descriptor for this
attribute on success. On error, it returns DW_DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_const_value_string(
Dwarf_P_Die ownerdie,
char *string_value,
Dwarf_Error *error)

$Revision: 1.5 $ - 6 - $Date: 1994/05/18 16:56:22 $

- 7 -

The function dwarf_add_AT_const_value_string() adds the string value given by
string_value as the value of the DW_AT_const_value attribute for the DIE described by the
given ownerdie. It returns the Dwarf_P_Attribute descriptor for this attribute on success. On
error, it returns DW_DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_targ_address(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_Unsigned pc_value,
Dwarf_Signed sym_index,
Dwarf_Error *error)

The function dwarf_add_AT_targ_address() adds an attribute that belongs to the "address" class
to the die specified by ownerdie. The attribute is specified by attr, and the object that the DIE
belongs to is specified by dbg. The relocatable address that is the value of the attribute is specified by
pc_value. The symbol to be used for relocation is specified by the sym_index, which is the index of
the symbol in the Elf symbol table.

It returns the Dwarf_P_Attribute descriptor for the attribute on success, and DW_DLV_BADADDR
on error.

Dwarf_P_Attribute dwarf_add_AT_unsigned_const(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_Unsigned value,
Dwarf_Error *error)

The function dwarf_add_AT_unsigned_const() adds an attribute with a Dwarf_Unsigned
value belonging to the "constant" class, to the DIE specified by ownerdie. The object that the DIE
belongs to is specified by dbg. The attribute is specified by attr, and its value is specified by value.

It returns the Dwarf_P_Attribute descriptor for the attribute on success, and DW_DLV_BADADDR
on error.

Dwarf_P_Attribute dwarf_add_AT_signed_const(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_Signed value,
Dwarf_Error *error)

The function dwarf_add_AT_signed_const() adds an attribute with a Dwarf_Signed value
belonging to the "constant" class, to the DIE specified by ownerdie. The object that the DIE belongs
to is specified by dbg. The attribute is specified by attr, and its value is specified by value.

It returns the Dwarf_P_Attribute descriptor for the attribute on success, and DW_DLV_BADADDR
on error.

$Revision: 1.5 $ - 7 - $Date: 1994/05/18 16:56:22 $

- 8 -

Dwarf_P_Attribute dwarf_add_AT_reference(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_P_Die otherdie,
Dwarf_Error *error)

The function dwarf_add_AT_reference() adds an attribute with a value that is a reference to
another DIE in the compilation-unit to the DIE specified by ownerdie. The object that the DIE
belongs to is specified by dbg. The attribute is specified by attr, and the other DIE being referred to
is specified by otherdie.

It returns the Dwarf_P_Attribute descriptor for the attribute on success, and DW_DLV_BADADDR
on error.

Dwarf_P_Attribute dwarf_add_AT_flag(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_Small flag,
Dwarf_Error *error)

The function dwarf_add_AT_flag() adds an attribute with a Dwarf_Small value belonging to the
"flag" class, to the DIE specified by ownerdie. The object that the DIE belongs to is specified by
dbg. The attribute is specified by attr, and its value is specified by flag.

It returns the Dwarf_P_Attribute descriptor for the attribute on success, and DW_DLV_BADADDR
on error.

Dwarf_P_Attribute dwarf_add_AT_string(
Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
char *string,
Dwarf_Error *error)

The function dwarf_add_AT_string() adds an attribute with a value that is a character string to the
DIE specified by ownerdie. The object that the DIE belongs to is specified by dbg. The attribute is
specified by attr, and its value is pointed to by string.

It returns the Dwarf_P_Attribute descriptor for the attribute on success, and DW_DLV_BADADDR
on error.

4.4 Expression Creation

The following functions are used to convert location expressions into blocks so that attributes with values
that are location expressions can store their values as a DW_FORM_blockn value. This is for both
.debug_info and .debug_loc expression blocks.

To create an expression, first call dwarf_new_expr() to get a Dwarf_P_Expr descriptor that can
be used to build up the block containing the location expression. Then insert the parts of the expression in
prefix order (exactly the order they would be interpreted in in an expression interpreter). The bytes of the
expression are then built-up as specified by the user.

$Revision: 1.5 $ - 8 - $Date: 1994/05/18 16:56:22 $

- 9 -

Dwarf_Expr dwarf_new_expr(
Dwarf_P_Debug dbg,
Dwarf_Error *error)

The function dwarf_new_expr() creates a new expression area in which a location expression stream
can be created. It returns a Dwarf_P_Expr descriptor that can be used to add operators to build up a
location expression. It returns NULL on error.

Dwarf_Unsigned dwarf_add_expr_gen(
Dwarf_P_Expr expr,
Dwarf_Small opcode,
Dwarf_Unsigned val1,
Dwarf_Unsigned val2,
Dwarf_Error *error)

The function dwarf_add_expr_gen() takes an operator specified by opcode, along with up to 2
operands specified by val1, and val2, converts it into the Dwarf representation and appends the
bytes to the byte stream being assembled for the location expression represented by expr. The first
operand, if present, to opcode is in val1, and the second operand, if present, is in val2. Both the
operands may actually be signed or unsigned depending on opcode. It returns the number of bytes in the
byte stream for expr currently generated, i.e. after the addition of opcode. It returns
DW_DLV_NOCOUNT on error.

The function dwarf_add_expr_gen() works for all opcodes except those that have a target address
as an operand. This is because it does not set up a relocation record that is needed when target addresses
are involved.

Dwarf_Unsigned dwarf_add_expr_addr(
Dwarf_P_Expr expr,
Dwarf_Unsigned address,
Dwarf_Signed sym_index,
Dwarf_Error *error)

The function dwarf_add_expr_addr() is used to add the DW_OP_addr opcode to the location
expression represented by the given Dwarf_P_Expr descriptor, expr. The value of the relocatable
address is given by address. The symbol to be used for relocation is given by sym_index, which is
the index of the symbol in the Elf symbol table. It returns the number of bytes in the byte stream for
expr currently generated, i.e. after the addition of the DW_OP_addr operator. It returns
DW_DLV_NOCOUNT on error.

Dwarf_Unsigned dwarf_expr_current_offset(
Dwarf_P_Expr expr,
Dwarf_Error *error)

The function dwarf_expr_current_offset() returns the number of bytes currently in the byte
stream for the location expression represented by the given W(Dwarf_P_Expr descriptor, expr. It
returns DW_DLV_NOCOUNT on error.

Dwarf_Addr dwarf_expr_into_block(
Dwarf_P_Expr expr,
Dwarf_Unsigned *length,
Dwarf_Error *error)

The function dwarf_expr_into_block() returns the address of the start of the byte stream

$Revision: 1.5 $ - 9 - $Date: 1994/05/18 16:56:22 $

- 10 -

generated for the location expression represented by the given Dwarf_P_Expr descriptor, expr. The
length of the byte stream is returned in the location pointed to by length. It returns
DW_DLV_BADADDR on error.

4.5 Line Number Operations

These are operations on the .debug_line section. They provide information about instructions in the
program and the source lines the instruction come from. Typically, code is generated in contiguous blocks,
which may then be relocated as contiguous blocks. To make the provision of relocation information more
efficient, the information is recorded in such a manner that only the address of the start of the block needs
to be relocated. This is done by providing the address of the first instruction in a block using the function
dwarf_lne_set_address(). Information about the instructions in the block are then added using the
function dwarf_add_line_entry(), which specifies offsets from the address of the first instruction.
The end of a contiguous block is indicated by calling the function dwarf_lne_end_sequence().

Dwarf_Unsigned dwarf_add_line_entry(
Dwarf_P_Debug dbg,
Dwarf_Unsigned file_index,
Dwarf_Addr code_offset,
Dwarf_Unsigned lineno,
Dwarf_Signed column_number,
Dwarf_Bool is_source_stmt_begin,
Dwarf_Bool is_basic_block_begin,
Dwarf_Error *error)

The function dwarf_add_line_entry() adds an entry to the section containing information about
source lines. It specifies in code_offset, the offset from the address set using
dwarfdwarf_lne_set_address(), of the address of the first instruction in a contiguous block. The
source file that gave rise to the instruction is specified by file_index, the source line number is
specified by lineno, and the source column number is specified by column_number.
file_index is the index of the source file in a list of source files which is built up using the function
dwarf_add_file_decl().

is_source_stmt_begin is a boolean flag that is true only if the instruction at code_address is
the first instruction in the sequence generated for the source line at lineno. Similarly,
is_basic_block_begin is a boolean flag that is true only if the instruction at code_address is
the first instruction of a basic block.

It returns 0 on success, and DW_DLV_NOCOUNT on error.

Dwarf_Unsigned dwarf_lne_set_address(
Dwarf_P_Debug dbg,
Dwarf_Addr offs,
Dwarf_Unsigned symidx,
Dwarf_Error *error)

The function dwarf_lne_set_address() sets the target address at which a contiguous block of
instructions begin. Information about the instructions in the block is added to .debug_line using calls to
dwarfdwarf_add_line_entry() which specifies the offset of each instruction in the block relative
to the start of the block. This is done so that a single relocation record can be used to obtain the final target
address of every instruction in the block.

The relocatable address of the start of the block of instructions is specified by offs. The symbol used to
relocate the address is given by symidx, which is the index of the symbol in the Elf symbol table.

$Revision: 1.5 $ - 10 - $Date: 1994/05/18 16:56:22 $

- 11 -

It returns 0 on success, and DW_DLV_NOCOUNT on error.

Dwarf_Unsigned dwarf_lne_end_sequence(
Dwarf_P_Debug dbg,
Dwarf_Error *error)

The function dwarf_lne_end_sequence() indicates the end of a contiguous block of instructions.
To add information about another block of instructions, a call to dwarf_lne_set_address() will
have to be made to set the address of the start of the target address of the block, followed by calls to
dwarf_add_line_entry() for each of the instructions in the block.

It returns 0 on success, and DW_DLV_NOCOUNT on error.

Dwarf_Unsigned dwarf_add_directory_decl(
Dwarf_P_Debug dbg,
char *name,
Dwarf_Error *error)

The function dwarf_add_directory_decl() adds the string specified by name to the list of
include directories in the statement program prologue of the .debug_line section. The string should
therefore name a directory from which source files have been used to create the present object.

It returns the index of the string just added, in the list of include directories for the object. This index is
then used to refer to this string. It returns DW_DLV_NOCOUNT on error.

Dwarf_Unsigned dwarf_add_file_decl(
Dwarf_P_Debug dbg,
char *name,
Dwarf_Unsigned dir_idx,
Dwarf_Unsigned time_mod,
Dwarf_Unsigned length,
Dwarf_Error *error)

The function dwarf_add_file_decl() adds the name of a source file that contributed to the present
object. The name of the file is specified by name. In case the name is not a fully-qualified pathname, it is
prefixed with the name of the directory specified by dir_idx. dir_idx is the index of the directory
to be prefixed in the list builtup using dwarf_add_directory_decl().

time_mod gives the time at which the file was last modified, and length gives the length of the file in
bytes.

It returns the index of the source file in the list built up so far using this function, on success. This index
can then be used to refer to this source file in calls to dwarf_add_line_entry(). On error, it
returns DW_DLV_NOCOUNT.

4.6 Fast Access (aranges) Operations

These functions operate on the .debug_aranges section.

$Revision: 1.5 $ - 11 - $Date: 1994/05/18 16:56:22 $

- 12 -

Dwarf_Unsigned dwarf_add_arange(
Dwarf_P_Debug dbg,
Dwarf_Addr begin_address,
Dwarf_Unsigned length,
Dwarf_Signed symbol_index,
Dwarf_Error *error)

The function dwarf_add_arange() adds another address range to be added to the section containing
address range information,
.debug_aranges. The relocatable start address of the range is specified by begin_address, and the

length of the address range is specified by length. The relocatable symbol to be used to relocate the
start of the address range is specified by symbol_index, which is the index of the symbol in the Elf
symbol table.

It returns a non-zero value on success, and 0 on error.

4.7 Fast Access (pubnames) Operations

These functions operate on the .debug_pubnames section.

Dwarf_Unsigned dwarf_add_pubname(
Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char *pubname_name,
Dwarf_Error *error)

The function dwarf_add_pubname() adds the pubname specified by pubname_name to the section
containing pubnames, i.e.
.debug_pubnames. The DIE that represents the function being named is specified by die.

It returns a non-zero value on success, and 0 on error.

4.8 Fast Access (weak names) Operations

These functions operate on the .debug_weaknames section.

Dwarf_Unsigned dwarf_add_weakname(
Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char *weak_name,
Dwarf_Error *error)

The function dwarf_add_weakname() adds the weak name specified by weak_name to the section
containing weak names, i.e.
.debug_weaknames. The DIE that represents the function being named is specified by die.

It returns a non-zero value on success, and 0 on error.

4.9 Static Function Names Operations

The .debug_funcnames section contains the names of static function names defined in the object, and also
the offsets of the DIEs that represent the definitions of the functions in the .debug_info section.

$Revision: 1.5 $ - 12 - $Date: 1994/05/18 16:56:22 $

- 13 -

Dwarf_Unsigned dwarf_add_funcname(
Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char *func_name,
Dwarf_Error *error)

The function dwarf_add_funcname() adds the name of a static function specified by func_name
to the section containing the names of static functions defined in the object represented by dbg. The
DIE that represents the definition of the function is specified by die.

It returns a non-zero value on success, and 0 on error.

4.10 File-scope User-defined Type Names Operations

The .debug_typenames section contains the names of file-scope user-defined types in the given object, and
also the offsets of the DIEs that represent the definitions of the types in the .debug_info section.

Dwarf_Unsigned dwarf_add_typename(
Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char *type_name,
Dwarf_Error *error)

The function dwarf_add_typename() adds the name of a file-scope user-defined type specified by
type_name to the section that contains the names of file-scope user-defined type. The object that this
section belongs to is specified by dbg. The DIE that represents the definition of the type is specified by
die.

It returns a non-zero value on success, and 0 on error.

4.11 File-scope Static Variable Names Operations

The .debug_varnames section contains the names of file-scope static variables in the given object, and also
the offsets of the DIEs that represent the definition of the variables in the .debug_info section.

Dwarf_Unsigned dwarf_add_varname(
Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char *var_name,
Dwarf_Error *error)

The function dwarf_add_varname() adds the name of a file-scope static variable specified by
var_name to the section that contains the names of file-scope static variables defined by the object
represented by dbg. The DIE that represents the definition of the static variable is specified by die.

It returns a non-zero value on success, and 0 on error.

4.12 Low Level (.debug_frame) operations

These functions operate on the .debug_frame section. Refer to libdwarf.h for the register names and
register assignment mapping. Both of these are necessarily machine dependent.

$Revision: 1.5 $ - 13 - $Date: 1994/05/18 16:56:22 $

- 14 -

Dwarf_P_Fde dwarf_new_fde(
Dwarf_P_Debug dbg,
Dwarf_Error *error)

The function dwarf_new_fde() returns a new Dwarf_P_Fde descriptor that should be used to build
a complete FDE. Subsequent calls to routines that build up the FDE should use the same
Dwarf_P_Fde descriptor.

It returns a valid Dwarf_P_Fde descriptor on success, and DW_DLV_BADADDR on error.

Dwarf_Unsigned dwarf_add_frame_cie(
Dwarf_P_Debug dbg,
char *augmenter,
Dwarf_Small code_align,
Dwarf_Small data_align,
Dwarf_Small ret_addr_reg,
Dwarf_Ptr init_bytes,
Dwarf_Unsigned init_bytes_len,
Dwarf_Error *error);

The function dwarf_add_frame_cie() creates a CIE, and returns an index to it, that should be used
to refer to this CIE. CIEs are used by FDEs to setup initial values for frames. The augmentation string
for the CIE is specified by augmenter. The code alignement factor, data alignment factor, and the
return address register for the CIE are specified by code_align, data_align, and
ret_addr_reg respectively. init_bytes points to the bytes that represent the instructions for the
CIE being created, and init_bytes_len specifies the number of bytes of instructions.

It returns an index to the CIE just created on success. On error it returns DW_DLV_NOCOUNT.

Dwarf_Unsigned dwarf_add_frame_fde(
Dwarf_P_Debug dbg,
Dwarf_P_Fde fde,
Dwarf_P_Die die,
Dwarf_Unsigned cie,
Dwarf_Addr virt_addr,
Dwarf_Unsigned code_len,
Dwarf_Unsigned sym_idx
Dwarf_Error* error)

The function dwarf_add_frame_fde() adds the FDE specified by fde to the list of FDEs for the
object represented by the given dbg. die specifies the DIE that represents the function whose frame
information is specified by the given fde. cie specifies the index of the CIE that should be used to
setup the initial conditions for the given frame. virt_addr represents the relocatable address at which
the code for the given function begins, and sym_idx gives the index of the relocatable symbol to be used
to relocate this address (virt_addr that is). code_len specifies the size in bytes of the machine
instructions for the given function.

It returns an index to the given fde.

$Revision: 1.5 $ - 14 - $Date: 1994/05/18 16:56:22 $

- 15 -

Dwarf_P_Fde dwarf_fde_cfa_offset(
Dwarf_P_Fde fde,
Dwarf_Unsigned reg,
Dwarf_Signed offset,
Dwarf_Error *error)

The function dwarf_fde_cfa_offset() appends a DW_CFA_offset operation to the FDE,
specified by fde, being constructed. The first operand of the DW_CFA_offset operation is specified
by regP. The register specified should not exceed 6 bits. The second
operand of the DW_CFA_offset operation is specified by offset.

It returns the given fde on success, and DW_DLV_BADADDR on error.

Dwarf_P_Fde dwarf_add_fde_inst(
Dwarf_P_Fde fde,
Dwarf_Small op,
Dwarf_Unsigned val1,
Dwarf_Unsigned val2,
Dwarf_Error *error)

The function dwarf_add_fde_inst() adds the operation specified by op to
the FDE specified by fde. Upto two operands can be specified in val1,
and val2. Based on the operand specified Libdwarf decides how many
operands are meaningful for the operand. It also converts the operands
to the appropriate datatypes even they are passed to dwarf_add_fde_inst
as Dwarf_Unsigned.

It returns the given fde on success, and DW_DLV_BADADDR on error.

$Revision: 1.5 $ - 15 - $Date: 1994/05/18 16:56:22 $

CONTENTS

1. INTRODUCTION . 1
1.1 Purpose and Scope 1
1.2 Definitions . 1
1.3 Overview . 1
1.4 Revision History 2

2. Type Definitions . 2
2.1 General Description 2
2.2 Aggregate Types 2

3. Memory Management . 2
3.1 Read-only Properties 2
3.2 Storage Deallocation 2

4. Functional Interface . 2
4.1 Initialization and Termination Operations 3
4.2 Debugging Information Entry Creation 4
4.3 Attribute Creation 5
4.4 Expression Creation 8
4.5 Line Number Operations 10
4.6 Fast Access (aranges) Operations 11
4.7 Fast Access (pubnames) Operations 12
4.8 Fast Access (weak names) Operations 12
4.9 Static Function Names Operations 12
4.10 File-scope User-defined Type Names Operations 13
4.11 File-scope Static Variable Names Operations 13
4.12 Low Level (.debug_frame) operations 13

- i -

A Producer Library Interface to DWARF

UNIX International Programming Languages Special Interest Group

ABSTRACT

This document describes a proposed interface to a library of functions to create DWARF debugging
information entries and DWARF line number information. It does not make recommendations as to how
the functions described in this document should be implemented nor does it suggest possible optimizations.

The document is oriented to creating DWARF version 2. It will be proposed to the PLSIG DWARF
committee as soon as that makes any sense.

No proposals like this have ever been submitted to the PLSIG committee....

The proposals made in this document are subject to change.

$Revision: 1.5 $ $Date: 1994/05/18 16:56:22 $

hhhhhhhhhhhh
 UNIX is a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

