A Consumer Library Interfaceto DWARF
UNIXO International Programming Languages Special Interest Group

1. INTRODUCTION

This document describes the proposed interface to libdwarf, a library of functions to provide access to
DWARF debugging information records, DWARF line number information, DWARF address range and
global names information, weak names information, DWARF frame description information, DWARF
static function names, DWAREF static variables, and DWARF type information.

1.1 Purpose and Scope

The purpose of this document is to propose a library of functions to access DWARF debugging
information. There is no effort made in this document to address the creation of these records as those
issues will be addressed seperately.

Additionally, the focus of this document is the functional interface, and as such, implementation as well as
optimization issues are intentionally ignored.

1.2 Definitions

DWARF debugging information entries (DIE) are the segments of information placed in the . debug_*
sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source-level debugging. Refer to the document "DWARF Debugging Information
Format" from Ul PLSIG for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format” version 2.
It focuses on the implementation at Silicon Graphics Computer Systems. Although we believe the
interface is general enough to be of interest to other vendors too, there are a few places where changes may
need to be made.

1.3 Overview

The remaining sections of this document describe the proposed interface to | i bdwarf, first by
describing the purpose of additional types defined by the interface, followed by descriptions of the
available operations. This document assumes you are thoroughly familiar with the information contained
in the DWARF Debugging | nformation Format document.

We separate the functions into several categories to emphasize that not all consumers want to use all the
functions. We call the categories Debugger, Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the rather large set of function calls easier to
understand.

Unless otherwise specified, all functions and structures should be taken as being designed for Debugger
CONSUMES.

The Debugger Interface of this library is intended to be used by debuggers. The interface is low-level
(close to dwarf) but suppresses irrelevant detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sections except at need. And even then will probably
want to absorb only the information in a single compilation unit at atime. A debugger does not care about
implementation details of the library.

$Revision: 1.5$ -1- $Date: 1994/06/20 18:53:21 $

The Internal-level Interface isfor a DWAREF prettyprinter and checker. A thorough prettyprinter will want
to know all kinds of internal things (like actual FORM numbers and actual offsets) so it can check for
appropriate structure in the DWARF data and print (on request) all that interna information for human
users and libdwarf authors and compiler-writers. Calls in this interface provide data a debugger does not
care about.

The High-level Interface isfor higher level access (it’s not really a high level interface!). Programs such as
disassemblers will want to be able to display relevant information about functions and line numbers
without having to invest too much effort in looking at DWARF.

The miscellaneous interface isjust what isleft over: the error handler functions.

The following is a brief mention of the changes in this libdwarf from the libdwarf draft for DWARF
Version 1.

1.4 Items Changed

dwarf_nextglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pointer arguments.
This makes writing safe and correct library-using-code far easier. For justification for this approach, see
the book by Steve Maguire titled "Writing Solid Code" at your bookstore.

1.5 Items Removed

Dwarf_Type was removed since types are no longer special.

dwarf_typeof() was removed since types are no longer special.

Dwarf_Ellist was removed since element lists no longer are a special format.
Dwarf_Bounds was removed since bounds have been generalized.

dwarf_nextdie() was replaced by dwarf_next_cu_header() to reflect the real way dwarf is organized. The
dwarf_nextdie() was only useful for getting to compilation unit beginnings, so it does not seem harmful to
remove it in favor of a more direct function.

dwarf_childent() is removed on grounds that no good use was apparent.

dwarf_prevling() and dwarf_nextline() were removed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was removed.

dwarf_islstling() was removed as it was not meaningful for the revised dwarf line operations.

Any libdwarf implementation might well decide to support al the removed functionality and to retain the
DWAREF Version 1 meanings of that functionality. This would be difficult because the original libdwarf
draft specification used traditional C library interfaces which confuse the values returned by successful
calls with exceptional conditions like failures and 'no more data’ indications.

1.6 Revision History
March 93 Work on dwarf2 SGI draft begins

June 94 The function returns are changed to return an error/success code only.

2. Types Definitions

$Revision: 1.5$ -2- $Date: 1994/06/20 18:53:21 $

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names
used to reference objects of libdwarf. The types defined by typedefs contained in libdwarf.h al use the
convention of adding Dwar f _ asaprefix and can be placed in three categories:

o Scalar types : The scalar types defined in libdwarf.h are defined primarily for notational convenience
and identification. Depending on the individual definition, they are interpreted as a value, a pointer, or
asaflag.

« Aggregate types : Some values can not be represented by a single scalar type; they must be represented
by a collection of, or as a union of, scalar and/or aggregate types.

« Opaque types : The complete definition of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opague type to be used in another
query, or an instance of ascalar or aggregate type, which isthe actual result.

2.2 Scalar Types
The following are the defined by libdwarf.h:

typedef int Dwar f _Bool ;

t ypedef unsigned | ong | ong Dwarf_ O f;

t ypedef unsigned | ong | ong Dwarf _Unsi gned;

t ypedef unsi gned short Dwar f _Hal f;

t ypedef unsi gned char Dwar f _Smal | ;

t ypedef signed | ong | ong Dwar f _Si gned;

t ypedef unsigned | ong | ong Dwarf _Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf_Handl er) (Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the library, not for representing pc-
values/addresses within the target object file. Dwarf_Addr is for pc-values within the target object file.
The sample scalar type assignments above are for a libdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types must be defined appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environment is given in
Figure 1.

NAME SIZE ALIGNMENT PURPOSE

Dwarf_Bool 4 4 Boolean states

Dwarf_Off 8 8 Unsigned file offset

Dwarf_Unsigned 8 8 Unsigned lar ge integer

Dwarf_Half 2 2 Unsigned medium integer

Dwarf_Small 1 1 Unsigned small integer

Dwarf_Signed 8 8 Signed large integer

Dwarf_Addr 8 8 Program address (target program)

Dwarf_Ptr 4|8 4|8 Dwarf section pointer (host program)

Dwarf_Handler 4|8 4|8 Pointer to libdwarf error handler
error handler function

Figurel. Scalar Types

$Revision: 1.5$ -3- $Date: 1994/06/20 18:53:21 $

2.3 Aggregate Types

The following aggregate types are defined by the SGI libdwarf.n: Dwarf_Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf_Frame_Qp. While most of |i bdwarf acts on or returns simple values or
opague pointer types, this small set of structures seems useful.

2.3.1 Location Record

The Dwar f _Loc typeidentifies asingle atom of alocation description or alocation expression.

typedef struct {

Dwar f _Smal | Ir_atom

Dwar f _Unsi gned I r_nunber;

Dwar f _Unsi gned I r_nunber2;

Dwar f _Unsi gned Ir_offset;
} Dwarf _Loc;

The | r _at omidentifies the atom corresponding to the DW OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

The | r _nunber field is the operand to be used in the calculation specified by the | r _at omfield; not
all atoms use this field. Some atom operations imply signed numbers so it is necessary to cast thisto a
Dwar f _Si gned type for those operations.

The | r_nunber 2 field is the second operand specified by the | r _at omfield; only DW OP_BREGX
has this field. Some atom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

The | r_of fset field is the byte offset (within the block the location record came from) of the atom
specified by the | r _at omfield. Thisis set on all atoms. This is useful for operations DW OP_SKI P
and DW OP_BRA.

2.3.2 Location Description

The Dwar f _Locdesc type represents an ordered list of Dwar f _Loc records used in the calculation to
locate an item. Note that in many cases, the location can only be calculated at runtime of the associated
program.

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr [d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwarf _Loc* ld_s;

} Dwarf_Locdesc;

The I d_I opc and | d_hi pc fields provide an address range for which this location descriptor is valid.
Both of these fields are set to zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addresses, not offsets-from-something. The virtua
memory addresses do not account for dso movement (none of the pc values from libdwarf do that, it is up
to the consumer to do that).

$Revision: 1.5$ -4- $Date: 1994/06/20 18:53:21 $

The |1 d_cent s field contains a count of the number of Dwar f _Loc entries pointed to by the 1d_s
field.

The | d_s field pointsto an array of Dwar f _Loc records.

2.3.3 Data Block

The Dwarf_Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock2, DW FORM bl ock4, DW FORM bl ock8, or
DW FORM bl ock. Itsintended useisto deliver the value for an attribute of any of these forms.

typedef struct {
Dwar f _Unsi gned bl | en;
Dwarf_ Ptr bl data;
} Dwarf _Bl ock;

The bl _| en field contains the length in bytes of the data pointed to by the bl _dat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Sincewe use a Dwar f _Pt r here one
must copy the pointer to some other type (typicaly an unsi gned char *) so one can add increments
to index through the data. The data pointedto by bl _dat a isnot necessarily at any useful alignment.

2.3.4 Frame Operation Codes

The Dwar f _Frame_Op typeis used to contain the data of a single instruction of an instruction-sequence
of low-level information from the section containing frame information. This is ordinarily used by
Internal-level Consumerstrying to print everything in detail.

typedef struct {
Dwarf_Smal|l fp_base op;
Dwarf_Smal|l fp_extended_op;
Dwar f _Hal f fp_register;
Dwar f _Si gned fp_offset;
Dwarf_ O fset fp_instr_offset;
} Dwarf_Frane_Op;

f p_base_op is the 2-bit basic op code. fp_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register isany (or the first) register value as defined in the Call Frane Instruction
Encodi ngs figureinthe dwar f document. If not used with the OpitisO.

fp_offset is the address, delta, offset, or second register as defined in the Call Framne
I nstruction Encodi ngs figure in the dwarf document. If thisisan addr ess then the value
should be cast to (Dwar f _Addr) before being used. In any implemenation thisfield *must* be as large
asthelarger of Dwarf_Signed and Dwarf_Addr for thisto work properly. If not used with the opitisO.

fp_instr_offset isthe byte offset (within the instruction stream of the frame instructions) of this
operation. It startsat O for a given frame descriptor.

$Revision: 1.5$ -5- $Date: 1994/06/20 18:53:21 $

2.4 Opaque Types

The opaque types declared in libdwarf.h are used as descriptors for queries against dwarf information
stored in various debugging sections. Each time an instance of an opaque type is returned as a result of a
libdwarf operation (Dwar f _Debug excepted), it should be free'd, using dwar f _deal | oc() whenitis
no longer of use. Some functions return a number of instances of an opague type in a block, by means of a
pointer to the block and a count of the number of opague descriptors in the block: see the function
description for deallocation rules for such functions. The list of opaque types defined in libdwarf.h that are
pertinent to the Consumer Library, and their intended use is described below.

typedef struct Dwarf_Debug_s* Dwarf_Debug;

Aninstance of the Dwar f _Debug typeis created as aresult of a successful call to dwarf _init(),or
dwarf _elf_init(), andis used as a descriptor for subsequent access to most | i bdwar f functions
on that object. The storage pointed to by this descriptor should be not be free'd, using the
dwar f _deal | oc() function. Instead freeit with dwarf _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of a Dwar f _Di e type is returned from a successful call to the dwarf _si bl i ngof (),
dwarf _child, or dwarf_offdie() function, and is used as a descriptor for queries about
information related to that DIE. The storage pointed to by this descriptor should be free'd, using
dwar f _deal | oc() withthe alocationtype DW DLA DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances of Dwarf _Li ne type are returned from a successful call to the dwarf _srclines()
function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individualy free'd, using dwarf_deal |l oc() with the alocation type
DW DLA LI NE when no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instancesof Dwar f G obal type are returned from a successful call tothe dwar f _get _gl obal s()

function, and are used as descriptors for queries about global names (pubnames). The storage pointed to by
these descriptors should be individualy free'd, using dwarf _deal | oc() with the allocation type
DW DLA GLOBAL, when no longer needed.

typedef struct Dwarf_Weak s* Dwarf_Weak;

Instances of Dwarf_ Weak type are returned from a successful call to the SGI-specific
dwar f _get weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually free'd, using dwarf _deal | oc() with the
allocation type DW DLA WEAK when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf_ Func type are returned from a successful call to the SGI-specific
dwar f _get funcs() function, and are used as descriptors for queries about static function names. The
storage pointed to by these descriptors should be individually free'd, using dwar f _deal | oc() withthe
alocation type DW DLA FUNC, when no longer needed.

$Revision: 1.5$ -6- $Date: 1994/06/20 18:53:21 $

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specific
dwarf _get types() function, and are used as descriptors for queries about user defined types. The
storage pointed to by this descriptor should be individualy free'd, using dwar f _deal | oc() with the
alocation type DW DLA_TYPENAME when no longer needed.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type ae returned from a successful cal to the SGI-specfic
dwar f _get _var s() function, and are used as descriptors for queries about static variables. The storage
pointed to by this descriptor should be individually free'd, using dwar f _deal | oc() with the allocation
type DW DLA VAR when no longer needed.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detected by
I i bdwar f . Users typically provide a location for | i bdwarf to store this descriptor for the user to
obtain more information about the error. The storage pointed to by this descriptor should be free'd, using
dwar f _deal | oc() with the alocation type DW DLA ERROR when no longer needed.

typedef struct Dwarf_ Attribute_s* Dwarf_Attribute;

Instances of Dwarf_ Attribute type are retuned from a successful cal to the
dwarf _attrlist(), or dwarf_attr() functions, and are used as descriptors for queries about
atribute values. The storage pointed to by this descriptor should be individualy free'd, using
dwar f _deal | oc() withthe alocation type DW DLA ATTR when no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

Aninstance of a Dwar f _Abbr ev type is returned from a successful call to dwar f _get abbrev(),
and is used as a descriptor for queries about abbreviations in the .debug_abbrev section. The storage
pointed to by this descriptor should be free'd, using dwarf _deal | oc() with the alocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf _Fde;

Instances of Dwar f _Fde type are returned from a successful call to the dwarf _get _fde_list(),
dwarf _get fde for_die(), or dwarf_get fde_at_pc() functions, and are used as
descriptors for queries about frames descriptors. The storage pointed to by these descriptors should be
individually free'd, using dwar f _deal | oc() with the alocation type DW DLA FDE when no longer
needed.

typedef struct Dwarf_Cie_s* Dwarf_GCie;

Instances of Dwar f _Ci e type are returned from a successful call to the dwarf_get fde Iist()

function, and are used as descriptors for queries about information that is common to several frames. The
storage pointed to by this descriptor should be individualy free'd, using dwar f _deal | oc() with the
allocation type DW DLA_ClI E when no longer needed.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances of Dwar f _Ar ange type are returned from successful callstothe dwar f _get _ar anges(),
or dwarf _get arange() functions, and are used as descriptors for queries about address ranges. The

$Revision: 1.5$ -7- $Date: 1994/06/20 18:53:21 $

storage pointed to by this descriptor should be individualy free'd, using dwar f _deal | oc() with the
alocation type DW DLA ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during access of debugging
information via libdwarf is consistent across al libdwarf functions that are capable of producing an error.
This section describes the method used by libdwarf in notifying client programs of error conditions.

Most functions within libdwarf accept as an argument a pointer to a Dwar f _Err or descriptor where a
Dwar f _Err or descriptor is stored if an error is detected by the function. Routines in the client program
that provide this argument can query the Dwar f _Err or descriptor to determine the nature of the error
and perform appropriate processing.

A client program can also specify afunction to be invoked upon detection of an error at the time the library
isinitialized (see dwarf _i ni t ()). When alibdwarf routine detects an error, this function is called with
two arguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(again see dwarf _i nit()). This pointer argument can be used to relay information between the error
handler and other routines of the client program. A client program can specify or change both the error
handling function and the pointer argument after initialization using dwarf_seterrhand() and
dwarf _seterrarg().

In the case where libdwarf functions are not provided a pointer to a Dwar f _Er r or descriptor, and no
error handling function was provided at initialization, libdwarf functions terminate execution by calling
abort (3C).

The following lists the processing steps taken upon detection of an error:

1. Check the error argument; if not a NULL pointer, alocate and initiadlize a Dwarf _Error
descriptor with information describing the error, place this descriptor in the area pointed to by
err or, and return avalue indicating an error condition.

2. If an errhand argument was provided to dwarf _i nit () at initialization, call errhand()
passing it the error descriptor and the value of the errarg argument provided to
dwar f _i nit (). If theerror handling function returns, return a value indicating an error condition.

3. Terminate program execution by calling abort (3C).

In all cases, it is clear from the value returned from a function that an error occured in executing the
function, since DW_DLV_ERROR isreturned.

As can be seen from the above steps, the client program can provide an error handler at initialization, and
gtill provide an er r or argument to libdwarf functions when it is not desired to have the error handler
invoked.

If a |ibdwarf function is caled with invalid arguments, the behaviour is undefined. In particular,
supplying a NULL pointer to a | i bdwar f function (except where explicitely permitted), or pointers to
invalid addresses or uninitialized data causes undefined behaviour; the return value in such cases is
undefined, and the function may fail to invoke the caller supplied error handler or to return a meaningful
error number. |mplementations also may abort execution for such cases.

$Revision: 1.5$ -8- $Date: 1994/06/20 18:53:21 $

3.1 Returned valuesin thefunctional interface

Values returned by | i bdwar f functions to indicate success and errors are enumerated in Figure 2. The
DW DLV_NO _ENTRY case is useful for functions need to indicate that while there was no data to return
there was no error either. For example, dwarf _si bl i ngof () may return DW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLICNAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure2. Error Indications
Each function in the interface that returns a value returns one of the integers in the above figure.

If DW DLV_ERRCRIisreturned and a pointer to a Dwar f _Er r or pointer is passed to the function, then
aDwarf_Error handleis returned thru the pointer. No other pointer value in the interface returns avalue.

If DW DLV_NO_ENTRY isreturned no pointer value in the interface returns a value.

If DWDLV_NO Kisreturned the Dwarf _Error pointer, if supplied, is not touched, but any other
values to be returned through pointers are returned.

Pointers passed to alow values to be returned thru them are uniformly the last pointers in each argument
list.

All the interface functions are defined from the point of view of the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of view of the user of the library. The caller might
code:

Dwarf Lineling;

Dwarf_Signed ret_loff;

Dwarf Error err;

int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Lineline,Dwarf_Signed *return_lineoff,
Dwarf_Error* err);

and this document refers to the function as returning the value thru *err or *return_lineoff or uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory Management

Several of the functions that comprise libdwarf return pointers (opaque descriptors) to structures that have
been dynamically allocated by the library. To aid in the management of dynamic memory, the function
dwar f _deal | oc() isprovided to free storage allocated as aresult of a call to alibdwarf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a result of a libdwarf Consumer Library call should be
assumed to point to read-only memory. The results are undefined for libdwarf clients that attempt to write
to aregion pointed to by a value returned by a libdwarf Consumer Library call.

$Revision: 1.5$ -9- $Date: 1994/06/20 18:53:21 $

-10-

4.2 Storage Deallocation

In some cases the pointers returned by a libdwarf call are pointers to data which is not free-able. The
library knows from the allocation type provided to it whether the space is freeable or not and will not free
inappropriately when dwar f _deal | oc() iscaled. Soitisvital that dwarf _deal | oc() becaled
with the proper allocation type.

For most storage alocated by libdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with the Dwar f _Debug descriptor sepcifying the object for which
the storage was allocated, a pointer to the area to be free-ed, and an identifier that specifies what the
pointer points to (the allocation type). For example, to freea Dwar f _Di e di e belonging the the object
represented by Dwarf_Debug dbg, alocated by a cal to dwarf_siblingof (), the cal to
dwar f _deal | oc() would be:

dwar f _deal | oc(dbg, die, DWDLA DI E);

To free storage alocated in the form of a list of pointers (opague descriptors), each member of the list
should be deallocated, followed by deallocation of the actual list itself. The following code fragment uses
an invocation of dwarf _attrlist() asan example to illustrate a technique that can be used to free
storage from any libdwarf routine that returns a list:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;

int errv;
if ((errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error)) == DWDLV_OK) {
for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);
}

dwarf _deal | oc(dbg, atlist, DWDLA LIST);

The Dwarf _Debug returned from dwarf _i ni t () isthe only dynamic storage that cannot be free'd,
using dwarf _deal | oc(). The function dwarf _fi ni sh() will deallocate all dynamic storage
associated with an instance of a Dwar f _Debug type. In particular, it will deallocate all dynamically
allocated space associated with the Dwar f _Debug descriptor, and finally make the descriptor invalid.

The codes that identify the storage pointedtoin callsto dwar f _deal | oc() aredescribed in figure 3.

$Revision: 1.5$ -10- $Date: 1994/06/20 18:53:21 $

-11-

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA_LOC Dwarf_Loc

DW_DLA_L OCDESC Dwarf_L ocdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug

DW_DLA _DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute

DW _DLA TYPE Dwarf_Type (not used)
DW_DLA_SUBSCR Dwarf_Subscr (not used)
DW_DLA_GLOBAL Dwarf_Global

DW_DLA ERROR Dwarf_Error

DW _DLA LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dwarf_Frame_Op
DW_DLA_CIE Dwarf_Cie
DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_L oc Block
DW_DLA FRAME_BLOCK Dwarf_Frame Block (not used)
DW_DLA_FUNC Dwarf_Func
DW_DLA_TYPENAME Dwarf_Type
DW_DLA_VAR Dwarf_Var
DW_DLA_WEAK Dwarf_Weak

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface

This section describes the functions available in the libdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the function’s operation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the functions in
libdwarf and with releasing allocated resources when access is compl ete.

int dwarf_init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returns DW DLV_OK, the function dwarf _init () retuns thru dbg a Dwarf_Debug
descriptor that represents a handle for accessing debugging records associated with the open file descriptor

$Revision: 1.5$ -11- $Date: 1994/06/20 18:53:21 $

-12 -

fd. DWDLV_ERROR is returned if the object does not contain debugging information or an error
occurred. The access argument indicates what access is allowed for the section. The DW DLC_READ
parameter is valid for read access (only read access is defined or discussed in this document). The
er r hand argument is a pointer to a function that will be invoked whenever an error is detected as a result
of alibdwarf operation. The err ar g argument is passed as an argument to the er r hand function. The
file descriptor associated with the fd argument must refer to an ordinary file (i.e. not a pipe, socket,
device, /proc entry, etc.), be opened with the at least as much permission as specified by the access
argument, and cannot be closed or used as an argument to any system calls by the client until after
dwar f _fini sh() iscaled. The seek position of the file associated with f d is undefined upon return
of dwarf _init().

Since dwarf _init () usesthe same error handling processing as other libdwarf functions (see Error
Handling above), client programs will generally supply an er r or parameter to bypass the default actions
during initialization unless the default actions are appropriate.

int dwarf_elf _init(
Elf * elf _file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

The function dwarf_elf _init() isidentica to dwarf_init() except that an open ElIf *
pointer is passed instead of a file descriptor. In systems supporting ELF object files this may be more
space or time-efficient than using dwarf _i nit (). Theclientisallowedtousethe El f * pointer for
its own purposes without restriction during the time the Dwar f _Debug is open, except that the client
shouldnot el f _end() thepointer till after dwarf _fi ni shiscalled.

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

When it returns DW DLV_CXK, the function dwar f _get _el f () returnsthru the pointer el f the El f
* handle used to access the object represented by the Dwarf _Debug descriptor dbg. It returns
DW DLV_ERRORon error.

This function is not meaningful for a system that does not used the Elf format for objects.

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf _Error *error)

The function dwar f _fi ni sh() releases al Libdwarf internal resources associated with the descriptor
dbg, and invalidates dbg. It returns DW DLV_ERRORIf there is an error during the finishing operation.
It returns DW DLV_COK for a successful operation.

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

$Revision: 1.5$ -12- $Date: 1994/06/20 18:53:21 $

-13-

5.2.1 Debugging Information Entry Debugger Delivery Operations

i nt dwarf_next_cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_st anp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *addr ess_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The function dwar f _next _cu_header () returns DW DLV_ERRORIf it fails,and DW DLV_OKif it
succeeds.

If it succeeds, *next_cu_header is set to the offset in the .debug_info section of the next
compilation-unit header if it succeeds. On reading the last compilation-unit header in the .debug_info
section it contains the size of the .debug_info section. The next call to dwar f _next _cu_header ()
returns DW DLV_NO ENTRY without reading a compilation-unit or setting *next _cu_header.
Subsequent callsto dwar f _next _cu_header () repeat the cycle by reading the first compilation-unit
and so on.

The other values returned through pointers are the values in the compilation-unit header. If any of
cu_header _| ength, version_stanp, abbrev_offset, or address_si ze is NULL, the
argument isignored (meaning it is not an error to providea NULL pointer).

i nt dwarf_siblingof(
Dwar f _Debug dbg,
Dwarf_Di e die,

Dwarf _Die *return_sib,
Dwarf _Error *error)

The function dwar f _si bl i ngof () returns DW DLV_ERROR and sets the er r or pointer on error.
If there is no sibling it returns DW DLV_NO_ENTRY. When it succeeds, dwar f _si bl i ngof ()
returns DW DLV_OK and sets *r et urn_si b tothe Dwar f _Di e descriptor of the sibling of di e. If
di e isNULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returned. Thisdie has
the DW TAG conpi |l e_uni t tag.

int dwarf_chil d(
Dwarf_Di e die,
Dwarf _Die *return_Kkid,
Dwarf _Error *error)

The function dwar f_chil d() returns DW DLV_ERROR and setsthe error dieon error. If thereis
no child it returns DW DLV_NO_ENTRY. When it succeeds, dwarf _chil d() returns DW DLV_OK
and sets *return_kid to the Dwarf_Di e descriptor of the first child of di e. The function
dwar f _si bl i ngof () can be used with the return value of dwarf _chil d() to access the other
children of di e.

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf_ O f offset,
Dwarf _Die *return_die,
Dwarf _Error *error)

$Revision: 1.5$ -13- $Date: 1994/06/20 18:53:21 $

-14 -

The function dwar f _chil d() returns DW DLV_ERROR and sets the error die on error. When it
succeeds, dwarf _of fdi e() returns DW DLV_OK and sets *ret urn_di e tothethe Dwarf_Di e
descriptor of the debugging information entry at of f set in the section containing debugging information
entriesi.e the .debug_info section. It isthe user’s responsibility to make surethat of f set isthe start of a
valid debugging information entry. The result of passing it an invalid offset could be chaos.

5.3 Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a descriptor that can be
used on subsequent queries when given a Dwar f _Di e descriptor. Note that some operations are specific
to debugging information entries that are represented by a Dwar f _Di e descriptor of a specific type. For
example, not all debugging information entries contain an attribute having a name, so consequently, a call
to dwarf_di enane() usinga Dwar f_Di e descriptor that does not have a name attribute will return
DW DLV_NO _ENTRY. Thisis not an error, i.e. calling a function that needs a specific attribute is not an
error for adie that does not contain that specific attribute.

There are several methods that can be used to obtain the value of an attribute in a given die:

1. Cadl dwarf_hasattr () to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supply an error argument, and check its value after the call to a query indicates an unsucessful
return, to determine the nature of the problem. The err or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to have an error handling function invoked upon detection of an error (see
dwarf _init()).

4. Cal dwarf_attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

int dwarf_tag(
Dwarf_Di e die,
Dwarf _Hal f *tagval,
Dwarf _Error *error)

The function dwar f _t ag() returnsthetag of di e thruthe pointer tagval if it succeeds. It returns
DW DLV_OK if it succeeds. It returns DW DLV _ERROR on error.

i nt dwarf_di eof fset(
Dwarf_Di e die,
Dwarf O f * return_offset,
Dwarf _Error *error)

When it succeeds, the function dwarf_dieoffset() retuns DWDLV OK and sets
*return_of f set to the position of di e in the section containing debugging information entries. In
other words, it sets ret urn_of f set to the offset of the start of the debugging information entry
described by di e inthe section containing di€’si.e .debug_info. It returns DW DLV_ERROR on error.

$Revision: 1.5$ -14- $Date: 1994/06/20 18:53:21 $

-15-

int dwarf_di e _CU of fset(
Dwarf_Di e die,
Dwarf O f *return_offset,
Dwarf _Error *error)

Thefunction dwarf_di e_CU of fset () issimilarto dwarf _di eof f set (), except that it puts the
offset of the DIE represented by the Dwarf_Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_info.

i nt dwarf_di enanme(
Dwarf_Die die,
char ** return_nane,
Dwarf _Error *error)

When it succeeds, the function dwar f _di enane() returns DW DLV_OK and sets *r et ur n_nane
to a pointer to a null-terminated string of characters that represents the name attribute of di e. It returns
DW DLV_NO ENTRY if di e does not have a hame attribute. It returns DW DLV_ERRCR if an error
occurred. The storage pointed to by a successful return of dwar f _di ename() should be free'd using
the allocation type DW DLA_STRI NGwhen no longer of interest (see dwar f _deal | oc()).

int dwarf_attrlist(
Dwarf_Di e die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returns DW DLV_CX, the function dwarf _attrlist() sets attrbuf to point to an array
of Dwarf _Attri but e descriptors corresponding to each of the attributes in die, and returns the number
of elements in the array thru attrcount. DWDLV_NO ENTRY is returned if the count is zero (no
att rbuf isallocated in thiscase). DW DLV_ERRORsreturned on error. On a successful return from
dwarf _attrlist(),eachofthe Dwarf _Attri but e descriptors should be individually free'd using
dwar f _deal | oc() withtheallocationtype DW DLA ATTR, followed by free-ing the list pointed to by
*attrbuf using dwarf _deal | oc() with the allocation type DW DLA LI ST, when no longer of
interest (see dwar f _deal | oc()).

Freeing the attrlist:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;

int errv;
if ((errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error)) == DWDLV_K) {
for (i =0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);
}

dwarf _deal | oc(dbg, atlist, DWDLA LIST);

$Revision: 1.5$ -15- $Date: 1994/06/20 18:53:21 $

-16 -

int dwarf_hasattr(
Dwarf_Di e die,
Dwarf_ Hal f attr,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

When it succeeds, the function dwar f _hasattr () returns DW DLV_OK and sets *r et ur n_bool
tonon-zero if di e hastheattribute at t r and zero otherwise. If it fails, it returns DW DLV _ERROR.

int dwarf_attr(
Dwarf_Die die,
Dwarf_ Hal f attr,
Dwarf Attribute *return_attr,
Dwarf _Error *error)

When it returns DW DLV_CK, the function dwarf_attr() sets *return_attr to the
Dwar f _Attri but e descriptor of di e having the attribute attr. It returns W DLV_NO_ENTRY if
attr isnot containedin di e. Itreturns W DLV_ERRCRIf an error occurred.

i nt dwarf_| owpc(
Dwarf Die di e,
Dwarf _Addr * return_I| owpc,
Dwarf _Error * error)

The function dwar f _| owpc() returns DW DLV_OK and sets *r et ur n_| owpc to the low program
counter value associated with the di e descriptor if di e represents a debugging information entry with
this attribute. It returns DW DLV_NO ENTRY if di e does not have this attribute. It returns
DwW DLV_ERROCRIf an error occurred.

i nt dwarf _hi ghpc(
Dwarf_Di e die,
Dwar f _Addr * return_highpc,
Dwarf _Error *error)

The function dwar f _hi ghpc() returns DW DLV_OK and sets *r et ur n_hi ghpc the high program
counter value associated with the di e descriptor if di e represents a debugging information entry with
this attribute. It returns DW DLV_NO ENTRY if di e does not have this attribute. It returns
DwW DLV_ERROCRIf an error occurred.

Dwar f _Si gned dwarf byt esi ze(

Dwarf Die di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeeds, dwarf_bytesize() returns DWDLV_OK and sets *return_si ze to the
number of bytes needed to contain an instance of the aggregate debugging information entry represented by
die. It returns DWDLV_NO ENTRY if die does not contain the byte size attribute
DW AT byt e_si ze. Itreturns DW DLV_ERRORIf an error occurred.

$Revision: 1.5$ -16- $Date: 1994/06/20 18:53:21 $

-17 -

int dwarf_bitsize(
Dwarf_Di e die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeeds, dwarf _bit si ze() returns DW DLV_OK and sets *r et ur n_si ze to the number
of bits occupied by the bit field value that is an attribute of the given die. It returns DW DLV_NO_ENTRY
if di e does not contain the bit size attribute DW AT _bit _size. It returns DW DLV_ERROR if an
error occurred.

int dwarf_bitoffset(
Dwarf_Die die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeeds, dwarf_bitoffset() returns DWDLV_OK and sets *return_si ze to the
number of bits to the left of the most significant bit of the bit field value. It returns DW DLV_NO_ENTRY
if di e doesnot contain the bit offset attribute DW AT _bit _of f set. Itreturns DW DLV_ERRORIf an
error occurred.

i nt dwarf_srcl ang(
Dwarf_Di e die,
Dwarf _Unsigned *return_|ang,
Dwarf _Error *error)

When it succeeds, dwarf _srclang() returns DW DLV _OK and sets *return_| ang to a code
indicating the source language of the compilation unit represented by the descriptor di e. It returns
DW DLV_NO ENTRY if di e does not represent a source file debugging information entry (i.e. contain
the attribute DW AT _| anguage). It returns DW DLV_ERRORIf an error occurred.

i nt dwarf_arrayorder(
Dwarf_Di e die,
Dwar f _Unsigned *return_order,
Dwarf _Error *error)

When it succeeds, dwarf _arrayorder () returns DW DLV_OK and sets *r et ur n_or der acode
indicating the ordering of the array represented by the descriptor di e. It returns DW DLV_NO _ENTRY if
di e does not contain the array order attribute DW AT_or deri ng. It returns DW DLV_ERROR if an
error occurred.

5.4 Attribute Form Queries

Based on the attribute’s form, these operations are concerned with returning uninterpreted attribute data.
Since it is not always obvious from the return value of these functions if an error occurred, one should
always supply an error parameter or have arranged to have an error handling function invoked (see
dwarf _init()) to determine the validity of the returned value and the nature of any errors that may
have occurred.

A Dwarf_Attribute descriptor describes an attribute of a specific die. Thus, each
Dwar f _Attri but e descriptor isimplicitly associated with a specific die.

$Revision: 1.5$ -17 - $Date: 1994/06/20 18:53:21 $

-18-

nt dwarf _hasf orn(
Dwarf Attribute attr,
Dwarf_ Hal f form
Dwarf _Bool *return_hasform
Dwarf _Error *error)

Thefunction dwar f _hasf or m() returns DW DLV_OK and and puts a hon-zero

value in the *return_hasf or mboolean if the attribute represented by the Dwarf_Attri bute
descriptor attr has the attribute form f or m If the attribute does not have that form zero is put into
*return_hasform DW DLV _ERRORisreturned on error.

i nt dwarf_what f ornm(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeeds, dwarf_whatform() returns DWDLV_OK and sets *return_formto the
attribute form code of the attribute represented by the Dwar f _At t ri but e descriptor attr. It returns
DW DLV_ERROR on error.

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_ attr,
Dwarf _Error *error)

When it succeeds, dwarf_whatattr() returns DWDLV_OK and sets *return_attr to the
attribute code represented by the Dwar f _At tri but e descriptor attr. It returns DW DLV_ERROR
on error.

int dwarf_fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeeds, dwarf_fornref() returns DWDLV_OK and sets *return_of fset to the
offset represented by the descriptor at t r if the form of the attribute belongs to the REFERENCE class.
It isan error for the form to not belong to thisclass. It returns DW DLV_ERROR on error.

i nt dwarf _fornaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwarf _Error *error)

When it succeeds, dwarf_formaddr () returns DWDLV_OK and sets *return_addr to the
address represented by the descriptor at t r if the form of the attribute belongs to the ADDRESS class. It
isan error for the form to not belong to thisclass. It returns DW DLV_ERROR on error.

int dwarf_fornflag(
Dwarf Attribute attr,
Dwarf _Bool * return_bool,
Dwarf _Error *error)

When it succeeds, dwar f _fornfl ag() returns DW DLV_OK and sets *r et ur n_bool 1 (i.e. true)
(if the attribute has a non-zero value) or 0 (i.e. fase) (if the attribute has a zero value). It returns

$Revision: 1.5$ -18- $Date: 1994/06/20 18:53:21 $

-19-

DW DLV_ERRORoOnN error or if the att r doesnot have form flag.

i nt dwarf_formnudat a(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf _fornudata() returns DWDLV_OK and sets *return_uval ue to the
Dwar f _Unsi gned value of the attribute represented by the descriptor at t r if the form of the attribute
belongs to the CONSTANT class. It is an error for the form to not belong to this class. It returns
DW DLV_ERROR 0N error.

i nt dwarf_formnsdat a(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwarf _Error *error)

The function dwarf _fornsdata() returns DWDLV_OK and sets *return_sval ue to the
Dwar f _Si gned vaue of the attribute represented by the descriptor attr if the form of the attribute
belongs to the CONSTANT class. It isan error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size of the Dwar f _Si gned type, its value is sign extended.
It returns DW DLV_ERROR on error.

i nt dwarf_fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwarf _Error * error)

The function dwar f _f or nbl ock() returns DW DLV_COK and sets *r et ur n_bl ock to a pointer to
a Dwar f _BI ock structure containing the value of the attribute represented by the descriptor at t r if the
form of the attribute belongs to the BLOCK class. It is an error for the form to not belong to this class.
The storage pointed to by a successful return of dwarf _f or mbl ock() should be free'd using the
alocation type DW DLA BLOCK, when no longer of interest (see dwarf _deal | oc()). It returns
DW DLV_ERRORon error.

int dwarf_formstring(
Dwarf Attribute attr,
char ** return_string,
Dwarf _Error *error)

The function dwarf _fornstri ng() returns DW DLV_OK and sets *r et ur n_stri ng to a pointer
to a null-terminated string containing the value of the attribute represented by the descriptor att r if the
form of the attribute belongs to the STRI NG class. It is an error for the form to not belong to this class.
The storage pointed to by a successful return of dwarf _formstring() should be free'd using the
alocation type DW DLA STRI NG when no longer of interest (see dwarf _deal | oc()). It returns
DW DLV_ERRORon error.

int dwarf_loclist(
Dwarf Attribute attr,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The function dwarf _|oclist() sets *I I buf to point to an array of Dwarf_Locdesc pointers

$Revision: 1.5$ -19- $Date: 1994/06/20 18:53:21 $

-20-

corresponding to each of the location expressions in alocation list, and sets *1i st | en to the number of
elementsin the array and returns DW DLV _OK if the attribute is appropriate. It returns DW DLV_ERROR
on error. dwarf | oclist() works on DW AT | ocati on,
DW AT dat a_nenber | ocati on, DW AT vtabl e el em | ocati on,
DW AT _string_I| ength, DWAT use_| ocati on,and DW AT _ret urn_addr attributes.

Storage allocated by a successful call of dwarf _| ocli st () should be deallocated when no longer of
interest (see dwar f _deal | oc()). The block of Dwar f _Loc structs pointed to by the | d_s field of
each Dwar f _Locdesc structure should be deallocated with the allocation type DW DLA LOC BLOCK.
This should be followed by deallocation of the | | buf using the allocation type DW DLA L OCDESC.

Dwar f _Si gned | cnt;
Dwar f _Locdesc *I | buf;

int Ires;
if ((Ires = dwarf_loclist(soneattr, & |buf,& cnt &error)) == DWDLV_OK) {
for (i =0; i <lcnt; ++i) {
/[* use Ilbuf[i] */
/* Deallocate Dwarf_Loc bl ock of Ilbuf[i] */
dwarf _deal | oc(dbg, Ilbuf[i].ld_s, DWDLA LOC BLOCK);
}

dwar f _deal | oc(dbg, |Ibuf, DWDLA LOCDESC);

5.5 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the interface talks of "lines" what is really meant is "statements’. In case there
is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line number. If column number is also being represented they will have the column numbers of the
start of the statements also represented.

There can aso be more than one Dwarf_Line per statement. For example, if afile is preprocessed by a
language trandator, this could result in trandator output showing 2 or more sets of line numbers per
translated line of output.

55.1 Get A Setof Lines

The function returns information about every source line for a particular compilation-unit. The
compilation-unit is specified by the corresponding die.

int dwarf_srclines(
Dwarf_Di e die,
Dwarf _Line **|inebuf,
Dwar f _Si gned *1inecount,
Dwarf _Error *error)

Thefunction dwar f_srcl i nes() placesal line number descriptors for a single compilation unit into a
single block, sets *1 i nebuf to point to that block, sets *1 i necount to the number of descriptorsin
thisblock and returns DW DLV_OK. The compilation-unit isindicated by the given di e which must be a
compilation-unit die. It returns DW DLV_ERROR on error. On successful return, each line number

$Revision: 1.5$ -20- $Date: 1994/06/20 18:53:21 $

-21-

information structure pointed to by an entry in the block should be free'd using dwar f _deal | oc()
with the alocation type DW DLA LI NE when no longer of interest. Also the block of descriptors itself
should be free'd using dwar f _deal | oc() with the allocation type DW DLA LI ST when no longer of
interest.

Dwar f _Si gned cnt;
Dwarf _Line *linebuf;

int sres;
if ((sres = dwarf_srclines(sonmedie, & inebuf, &error)) == DWDLV_OK) {
for (i =0; i <ecnt; ++i) {
/* use linebuf[i] */
dwarf _deal | oc(dbg, linebuf[i], DWDLA LINE);
}

dwar f _deal | oc(dbg, |inebuf, DWDLA LIST);

5.5.2 Get the set of Source File Names

The function returns the names of the source files that have contributed to the compilation-unit represented
by the given DIE. Only the source files named in the statement program prologue are returned.

int dwarf_srcfil es(
Dwarf_Di e die,
char ***srcfiles,
Dwar f _Si gned *srccount,
Dwarf _Error *error)

When it succeeds dwarf_srcfiles() returns DW DLV_OK and puts the number of source files
named in the statement program prologue indicated by the given di e into *srccount. Source files
defined in the statement program are ignored. The given die should have the tag
DW TAG conpi | e_uni t. The location pointed to by srcfil es isset to point to alist of pointers to
null-terminated strings that name the source files. On a successful return from this function, each of the
strings returned should be individually free'd using dwarf _deal | oc() with the alocation type
DW DLA STRI NG when no longer of interest. This should be followed by free-ing the list using
dwar f _deal | oc() withthe alocationtype DW DLA LI ST. It returns DW DLV_ERROR on error. It
returns DW DLV_NO_ENTRY if there is no corresponding statement program (i.e., if there is no line
information).

Dwar f _Si gned cnt;
char **srcfil es;

int res;
if ((res = dwarf_srcfiles(sonedie, &srcfiles,&nt &error)) == DWDLV_K) {
for (i =0; i <cnt; ++i) {
/* use srcfiles[i] */
dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;
}

dwarf _deal | oc(dbg, srcfiles, DWDLA LIST);

$Revision: 1.5$ -21- $Date: 1994/06/20 18:53:21 $

-22-

5.5.3 Get information about a Single TableLine

The following functions can be used on the Dwarf_Line descriptors returned by
dwar f _srclines() toobtaininformation about the source lines.

int dwarf _I|inebegi nstatenment (
Dwarf_Line |ine,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

The function dwar f _| i nebegi nst at enent () returns DW DLV_OK and sets *r et ur n_bool to
non-zero (if | i ne represents a line number entry that is marked as beginning a statement). or zero ((if
i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoOn error. It never returns DW DLV_NO_ENTRY.

int dwarf_I|ineendsequence(
Dwarf_Line |ine,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

The function dwarf _| i neendsequence() returns DW DLV _OK and sets *r et ur n_bool non-
zeroif |i ne represents aline number entry that is marked as ending a text sequence) or zero ((if 1 ne
represents a line number entry that is not marked as ending a text sequence). It returns DW DLV_ERROR
onerror. It never returns DW DLV_NO_ENTRY.

int dwarf_lineno(
Dwarf _Line l'ine,
Dwar f _Unsigned * returned_Ilineno,
Dwar f _Error * error)

The function dwarf _|ineno() returns DWDLV_CK and sets *return_l i neno to the source
statement line number corresponding to the descriptor 1i ne. It returns DW DLV_ERROR on error. It
never returns DW DLV_NO_ENTRY.

int dwarf _|ineaddr(
Dwarf _Li ne l'ine,
Dwarf Addr *return_lineaddr,
Dwarf _Error *error)

The function dwarf _|ineaddr () returns DWDLV_OK and sets *return_I| i neaddr to the
address associated with the descriptor | i ne. It returns DW DLV_ERROR on error. It never returns
DW DLV_NO_ENTRY.

int dwarf _lineoff(
Dwarf_Line |ine,
Dwar f _Si gned * return_lineoff,
Dwarf _Error *error)

The function dwarf _| i neof f () returns DW DLV_OK and sets *ret ur n_I i neof f to the column
number at which the statement represented by | i ne begins. It sets return_I i neoff to -1 if the
column number of the statement is not represented. On error it returns DW DLV _ERROR. It never returns
DW DLV_NO_ENTRY.

$Revision: 1.5$ -22- $Date: 1994/06/20 18:53:21 $

-23-

int dwarf _linesrc(
Dwarf_Line |ine,
char ** return_linesrc,
Dwarf _Error *error)

The function dwarf _|i nesrc() returns DW DLV_OK and sets *ret urn_I| i nesr ¢ to a pointer to
a null-terminated string of characters that represents the name of the source-file where | i ne occurs. It
reeurns DW DLV_ERROR on error. The storage pointed to by a successful return of
dwarf _linesrc() should be freed using dwarf_deall oc() with the allocation type
DW DLA STRI NGwhen no longer of interest. It never returns DW DLV_NO_ENTRY.

int dwarf_Iinebl ock(
Dwarf_Line |ine,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

The function dwar f _| i nebl ock() returns DW DLV_OK and sets *r et urn_I i nesr ¢ to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line is marked as not
beginning a basic block). It returns DW DLV _ERROR on error. It never returns DW DLV_NO_ENTRY.

5.6 Global Name Space Operations
These operations operate on the .debug_pubnames section of the debugging information.

5.6.1 Debugger Interface Operations

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwar f _Si gned * return_count,
Dwarf _Error *error)

The function dwar f _get gl obal s() returns DW DLV_OK and sets *r et ur n_count to the count
of pubnames represented in the section containing pubnames i.e. .debug pubnames. It aso stores at
*gl obal s, a pointer to a list of Dwarf _d obal descriptors, one for each of the pubnames in the
.debug_pubnames section. It returns DW DLV_ERRCR on error. It returns DW DLV_NO_ENTRY if the
.debug_pubnames section does not exist.

On a successful return from this function, the Dwar f _Gd obal descriptors should be individually free'd

using dwar f _deal | oc() with the allocation type DW DLA GLOBAL, followed by the deallocation of
thelist itself with the allocation type DW DLA LI ST when the descriptors are no longer of interest.

$Revision: 1.5$ -23- $Date: 1994/06/20 18:53:21 $

-24-

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

if ((res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error)) == DWDLV_K) {

for (i =0; i <ecnt; ++i) {
/* use globs[i] */
dwarf _deal | oc(dbg, globs[i], DWDLA G.OBAL);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

i nt dwarf _gl obnanme(
Dwar f _d obal gl obal,
char ** return_nane,
Dwarf _Error *error)

The function dwar f _gl obnane() returns DW DLV_OK and sets *r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented by the Dwar f _Gd obal descriptor, gl obal .
It returns DW DLV_ERROR on error. On a successful return from this function, the string should be free'd
using dwarf _deal | oc(), with the alocation type DW DLA_STRI NG when no longer of interest. It
never returns DW DLV_NO_ENTRY.

i nt dwarf_gl obal die_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwarf _Error *error)

The function dwarf _gl obal _die_of fset () returns DW DLV_(K and sets *r et ur n_of f set
to the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the pubname that is
described by the Dwar f _d obal descriptor, gl ob. It returns DW DLV_ERROR on error. It never
returns DW DLV_NO_ENTRY.

i nt dwarf_gl obal _cu_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwarf _Error *error)

The function dwar f _gl obal _cu_of fset () returns DW DLV_OK and sets *ret ur n_of f set to
the offset in the section containing DIE'S, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the pubname described by the Dwar f _G obal descriptor, gl obal . It
returns DW DLV_ERRORoon error. It never returns DW DLV_NO_ENTRY.

i nt dwarf_gl obal name_of f set s(
Dwar f _d obal gl obal,
char **return_narme,
Dwarf O f *di e _offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The function dwar f _gl obal _nanme_of f set s() returns DW DLV_OK and sets *r et ur n_narmne
to a pointer to a null-terminated string that gives the name of the pubname described by the

$Revision: 1.5$ - 24 - $Date: 1994/06/20 18:53:21 $

-25-

Dwar f _d obal descriptor gl obal . It returns DW DLV_ERROR on error. It never returns
DW DLV_NO _ENTRY. It also returns in the locations pointed to by di e_of f set, and cu_of f set,
the offsets of the DIE representing the pubname, and the compilation-unit header of the compilation-unit
containing the pubname, respectively. On a successful return from
dwar f _gl obal _nane_of f set s() the storage pointed to by r et ur n_name should be free'd using
dwar f _deal | oc() , withtheallocation type DW DLA STRI NGwhen no longer of interest.

5.7 Weak Name Space Oper ations
These operations operate on the .debug_weaknames section of the debugging information.
These operations are SGI specific, not part of standard DWARF.

5.7.1 Debugger Interface Operations

i nt dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwarf _Error *error)

The function dwar f _get weaks() returns DW DLV_(K and sets *weak_count to the count of
weak names represented in the section containing weak names i.e. .debug weaknames. It returns
DW DLV_ERRCRon error. It returns DW DLV_NO _ENTRY if the section does not exist. It also storesin
*weaks, a pointer to a list of Dwarf_Weak descriptors, one for each of the weak names in the
.debug_weaknames section. On a successful return from this function, the Dwar f _Weak descriptors
should be individually free'd using dwarf _deal | oc() with the alocation type DW DLA WEAK,
followed by the deallocation of the list itself with the allocation type DW DLA_LI ST when the descriptors
are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;

int res;
if ((res = dwarf_get weaks(dbg, &weaks, &nt, &error)) == DWDLV_OK) {
for (i =0; i <cnt; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK);
}

dwar f _deal | oc(dbg, weaks, DWDLA LI ST);

i nt dwarf_weaknane(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The function dwar f _weaknane() returns DW DLV_OK and sets *r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented by the Dwar f _\Weak descriptor, weak. It
returns DW DLV_ERROR on error. It never returns DW DLV _NO_ENTRY. On a successful return from
this function, the string should be freed using dwarf _deal | oc(), with the allocation type

$Revision: 1.5$ -25- $Date: 1994/06/20 18:53:21 $

-26-

DW DLA STRI NGwhen no longer of interest.

int dwarf_weak _die_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The function dwarf_weak_di e_of fset () returns DW DLV_OK and sets *ret urn_of f set to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the weak name that is
described by the Dwarf_Weak descriptor, weak. It returns DW DLV_ERROR on error. It never
returns DW DLV_NO _ENTRY.

i nt dwarf_weak cu_offset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The function dwarf_weak_cu_of f set () returns DW DLV_OK and sets *r et ur n_of f set tothe
offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by the Dwarf_Weak descriptor, weak. It returns
DW DLV_ERRORoOn error. It never returns DW DLV_NO_ENTRY.

i nt dwarf_weak name_of f set s(
Dwar f _Weak weak,
char ** weak nane,
Dwarf O f *di e offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The function dwar f _weak_ nane_of f set s() returns DW DLV_OK and sets *weak_nane to a
pointer to a null-terminated string that gives the name of the weak name described by the Dwar f _\Weak
descriptor weak. It also returns in the locations pointed to by di e_of f set, and cu_of f set, the
offsets of the DIE representing the weak name, and the compilation-unit header of the compilation-unit
containing the weak name, respectively. It returns DW DLV _ERROR on error. It never returns
DW DLV_NO ENTRY. On a successful return from dwarf_weak nane_of f set s() the storage
pointed to by the return value should be free'd using dwarf _deal | oc(), with the alocation type
DW DLA STRI NGwhen no longer of interest.

5.8 Static Function Names Operations
This section is SGI specific and is not part of standard DWARF version 2.

These function operate on the .debug_funcnames section of the debugging information. The
.debug_funcnames section contains the names of static functions defined in the object, the offsets of the
Dl Es that represent the definitions of the corresponding functions, and the offsets of the start of the
compilation-units that contain the definitions of those functions.

5.8.1 Debugger Interface Operations

$Revision: 1.5$ -26- $Date: 1994/06/20 18:53:21 $

-27 -

i nt dwarf_get funcs(
Dwar f _Debug dbg,
Dwarf _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf _Error *error)

The function dwarf_get funcs() returns DW DLV_(K and sets *f unc_count to the count of
static function names represented in the section containing static function names, i.e. .debug_funcnames. It
also stores, at *funcs, a pointer to a list of Dwarf _Func descriptors, one for each of the static
functions in the .debug funcnames section. It returns DW DLV_NOCOUNT on error. It returns
DW DLV_NO _ENTRY if the .debug_funcnames section does not exist. On a successful return from this
function, the Dwar f _Func descriptors should be individually free'd using dwar f _deal | oc() with
the allocation type DW DLA _FUNC, followed by the deallocation of the list itself with the allocation type
DW DLA LI ST when the descriptors are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

if ((fres = dwarf_get _funcs(dbg, &funcs, &error)) == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC);

}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);

i nt dwarf_funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf _Error *error)

The function dwar f _funcnane() returns DW DLV_OK and sets *r et ur n_nane to a pointer to a
null-terminated string that names the static function represented by the Dwar f _Func descriptor, f unc.
It returns DW DLV_ERROR on error. It never returns DW DLV_NO ENTRY. On a successful return
from this function, the string should be free'd using dwarf _deal | oc(), with the alocation type
DW DLA STRI NGwhen no longer of interest.

int dwarf_func_di e_of fset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The function dwarf _func_di e_offset (), returns DW DLV_OK and sets *r et urn_of f set to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the static function that
is described by the Dwar f _Func descriptor, func. It returns DW DLV_ERROR on error. It never
returns DW DLV_NO_ENTRY.

$Revision: 1.5$ -27 - $Date: 1994/06/20 18:53:21 $

-28-

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The function dwarf _func_cu_of fset () returns DW DLV_OK and sets *r et ur n_of f set tothe
offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by the Dwarf _Func descriptor, func. It returns
DW DLV_ERRORoONn error. It never returns DW DLV_NO_ENTRY.

int dwarf_func_name_of f set s(
Dwar f _Func func,
char **func_nane,
Dwarf O f *di e offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The function dwarf_func_nanme_of f set s() returns DW DLV_OK and sets *func_nane to a
pointer to a null-terminated string that gives the name of the static function described by the
Dwar f _Func descriptor func. It aso returns in the locations pointed to by di e_of f set, and
cu_of f set , the offsets of the DIE representing the static function, and the compilation-unit header of the
compilation-unit containing the static function, respectively. It returns DW DLV_ERROR on error. It
never returns DW DLV_NO _ENTRY. On a successful return from dwarf _func_nanme_of f set s()
the storage pointed to by the return value should be free’'d using dwar f _deal | oc() , with the allocation
type DW DLA STRI NGwhen no longer of interest.

5.9 User Defined Type Names Oper ations
This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug typenames section of the debugging information. The
.debug_typenames section contains the names of file-scope user-defined types, the offsets of the DI Esthat
represent the definitions of those types, and the offsets of the compilation-units that contain the definitions
of those types.

5.9.1 Debugger Interface Operations

i nt dwarf_get _types(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The function dwarf_get types() retuns DW DLV _K and sets *t ypecount to the count of
user-defined type names represented in the section containing user-defined type names, i.e.
.debug_typenames. It adlso stores at *t ypes, a pointer to alist of Dwarf _Type descriptors, one for
each of the user-defined type names in the .debug_typenames section. It returns DW DLV_NOCOUNT on
error. It returns DW DLV_NO_ENTRY if the .debug_typenames section does not exist. On a successful
return from this function, the Dwarf_Type descriptors should be individually free'd using
dwar f _deal | oc() with the allocation type DW DLA TYPENAME, followed by the deallocation of the
list itself with the allocation type DW DLA LI ST when the descriptors are no longer of interest.

$Revision: 1.5$ -28- $Date: 1994/06/20 18:53:21 $

-29-

Dwar f _Si gned cnt;
Dwar f _Type *types;

int res;
if ((res = dwarf_get_types(dbg, &t ypes,&nt, &error)) == DWDLV_OK) {
for (i =0; i <cnt; ++i) {
/* use types[i] */
dwarf _deal | oc(dbg, types[i], DWDLA TYPENAME);
}

dwar f _deal | oc(dbg, types, DWDLA LIST);

i nt dwarf _typenange(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The function dwar f _t ypenane() returns DW DLV_OK and sets *r et ur n_nane to a pointer to a
null-terminated string that names the user-defined type represented by the Dwarf _Type descriptor,
type. It returns DW DLV_ERROR on error. It never returns DW DLV_NO ENTRY. On a successful
return from this function, the string should be free'd using dwar f _deal | oc() , with the allocation type
DW DLA STRI NGwhen no longer of interest.

int dwarf_type_die_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The function dwarf_type_di e_of fset() returns DW DLV_OK and sets *ret urn_of f set to
the offset in the section containing DIE's, i.e. .debug_info, of the DIE representing the user-defined type
that is described by the Dwar f _Type descriptor, t ype. It returns DW DLV_ERRCR on error. It never
returns DW DLV_NO_ENTRY.

int dwarf_type_cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The function dwarf _type_cu_of fset () returns DW DLV_OK and sets *r et ur n_of f set tothe
offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the user-defined type described by the Dwar f _Type descriptor, type. It returns
DW DLV_ERRORoOn error. It never returns DW DLV_NO_ENTRY.

int dwarf_type_name_of fset s(
Dwar f _Type type,
char ** returned_nane,
Dwarf O f * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The function dwarf _t ype_name_of fset s() returns DW DLV_COK and sets *r et ur ned_nane
to a pointer to a null-terminated string that gives the name of the user-defined type described by the

$Revision: 1.5$ -29- $Date: 1994/06/20 18:53:21 $

-30-

Dwar f _Type descriptor type. It aso returns in the locations pointed to by di e_of f set, and
cu_of f set, the offsets of the DIE representing the user-defined type, and the compilation-unit header of
the compilation-unit containing the user-defined type, respectively. It returns DW DLV _ERROR on error.
It never returns DW DLV_NO_ENTRY. On a successful return from
dwarf _type_name_of f set s() the storage pointed to by the return value should be free'd using
dwar f _deal | oc() , withtheallocation type DW DLA STRI NGwhen no longer of interest.

5.10 User Defined Static Variable Names Oper ations
This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug varnames section of the debugging information. The
.debug_varnames section contains the names of file-scope static variables, the offsets of the DI Es that
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.10.1 Debugger Interface Operations

i nt dwarf_get_vars(
Dwar f _Debug dbg,
Dwarf_Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The function dwarf _get _vars() returns DW DLV_OK and sets *var _count to the count of file-
scope static variable names represented in the section containing file-scope static variable names, i.e.
.debug_varnames. It also stores, at *var s, a pointer to alist of Dwar f _Var descriptors, one for each
of the file-scope static variable names in the .debug_varnames section. It returns DW DLV_ERROR on
error. It returns DW DLV_NO_ENTRY if the .debug_varnames section does not exist. On a successful
return from this function, the Dwarf_Var descriptors should be individually free'd using
dwar f _deal | oc() with the allocation type DW DLA VAR, followed by the deallocation of the list
itself with the allocation type DW DLA LI ST when the descriptors are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _Var *vars;

int res;
if ((res = dwarf_get_vars(dbg, &vars,&cnt &error)) == DWDLV_K) {
for (i =0; i <cnt; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR);
}

dwarf _deal | oc(dbg, vars, DWDLA LIST);

i nt dwarf_varnanme(
Dwarf _Var var,
char ** returned_nane,
Dwarf _Error *error)

The function dwar f _var name() returns DW DLV_OK and sets *r et ur ned_nane to a pointer to a

$Revision: 1.5$ -30- $Date: 1994/06/20 18:53:21 $

-31-

null-terminated string that names the file-scope static variable represented by the Dwar f _Var descriptor,
var. It returns DW DLV_ERROR on error. It never returns DW DLV_NO ENTRY. On a successful
return from this function, the string should be free'd using dwar f _deal | oc() , with the allocation type
DW DLA STRI NGwhen no longer of interest.

int dwarf_var_die_offset(
Dwar f _Var var,
Dwarf O f *returned_of fset,
Dwarf _Error *error)

The function dwarf_var _di e_of fset () returns DW DLV_OK and sets *r et ur ned_of f set to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the file-scope static
variable that is described by the Dwar f _Var descriptor, var. It returns DW DLV_ERROR on error. It
never returns DW DLV_NO_ENTRY.

int dwarf_var_cu_of fset(
Dwarf _Var var,
Dwarf O f *returned_of fset,
Dwarf _Error *error)

The function dwarf_var_cu_of fset () returns DW DLV_OK and sets *r et ur ned_of f set to
the offset in the section containing DIE's, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the file-scope static variable described by the Dwarf _Var descriptor,
var. Itreturns DW DLV_ERRORon error. It never returns DW DLV_NO_ENTRY.

i nt dwarf_var_name_of f set s(
Dwarf _Var var,
char **returned_narne,
Dwarf O f *di e _offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The function dwar f _var _nanme_of f set s() returns DW DLV_OK and sets *r et ur ned_nane to
a pointer to a null-terminated string that gives the name of the file-scope static variable described by the
Dwar f _Var descriptor var. It aso returns in the locations pointed to by di e_offset, and
cu_of f set, the offsets of the DIE representing the file-scope static variable, and the compilation-unit
header of the compilation-unit containing the file-scope static variable, respectively. It returns
DW DLV_ERRCR on error. It never returns DW DLV _NO ENTRY. On a successful return from
dwar f _var_nane_of f set s() the storage pointed to by the return value should be free'd using
dwar f _deal | oc() , withtheallocation type DW DLA STRI NGwhen no longer of interest.

5.11 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack traces. The
information is an abstraction of a table with a row per instruction and a column per register and a column
for the canonical frame address (CFA, which corresponds to the frame pointer), as well as a column for the
return address. Each cell in the table contains one of the following:

1. Aregister + offset

2. Aregister

$Revision: 1.5$ -31- $Date: 1994/06/20 18:53:21 $

-32-

3. A marker (DW_FRAME_UNDEFINED_VAL) meaning register value undefined

4. A marker (DW_FRAME_SAME_VAL) meaning register value same asin caller

Figure 3 is machine dependent and represents MI1PS cpu register assignments.

NAME value PURPOSE
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer regster 1
DW_FRAME_REG2 2 integer register 2

obvious names and values here
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREGO 32 floating point register 0
DW_FRAME_FREG1 33 floating point register 1
obvious names and values here
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG3l 63 floating point register 31
DW_FRAME_RA_COL 64 column recordingra
DW_FRAME_UNDEFINED_VAL1034 register val undefined
DW_FRAME_SAME_ VAL 1035 register sameasin caller

Figure4. Frame Information Rule Assignments

The following table shows SGI/MIPS specific special cell values: these values mean that the cell has the
value undefined or same value respectively, rather than containing aregister or register+ offset.

NAME value PURPOSE

DW_FRAME_UNDEFINED_VAL 1034 meansundefined value.
Not a column or register value
DW_FRAME_SAME_VAL 1035 means’samevalue as
caller had. Not a column or
register value

Figure5. Frame Information Special Values

int dwarf_get fde_ |ist(
Dwar f _Debug dbg,
Dwarf Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf _get _fde_|ist() storesapointer to alist of Dwarf _Ci e descriptorsin *ci e_dat a, and
the count of the number of descriptorsin *ci e_el ement _count . Thereisadescriptor for each CIE in
the .debug_frame section. Similarly, it stores a pointer to a list of Dwarf _Fde descriptors in
*f de_dat a, and the count of the number of descriptors in *f de_el ement _count. There is one
descriptor per FDE in the .debug_frame section. dwarf _get _fde_list() returns DW DLV_EROR
on error. It returns DW DLV_NO _ENTRY if it cannot find frame entries. It returns DW DLV_OK on a
successful return.

$Revision: 1.5$ -32- $Date: 1994/06/20 18:53:21 $

-33-

On successful return, each of the structures pointed to by a descriptor should be individually free'd using
dwar f _deal | oc() with either the allocation type DW DLA Cl E, or DW DLA FDE as appropriate
when no longer of interest. Each of the blocks of descriptors should be free'd using
dwar f _deal | oc() withthe alocationtype DW DLA LI ST when no longer of interest.

Dwar f _Si gned cnt;
Dwarf_ _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

if ((fres = dwarf_get _fde_ |ist(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &rror)) == DWDLV_OK) {

for (i =0; i < cie_count; ++i) {
/* use cie[i] */
dwarf _deal | oc(dbg, cie_data[i], DWDLA CIE);

}
for (i =0; i < fde_count; ++i) {

/* use fde[i] */

dwarf _deal | oc(dbg, fde_data[i], DWDLA FDE);
}

dwar f _deal | oc(dbg, cie_data, DWDLA LIST);
dwar f _deal | oc(dbg, fde_data, DWDLA LIST);

Each Dwarf _Fde descriptor describes information about the frame for a particular subroutine or
function.

int dwarf_get fde_for_dieisSGI/MIPS specific.

int dwarf_get fde for_die(
Dwar f _Debug dbg,
Dwarf_Di e die,
Dwarf _Fde * return_fde,
Dwarf _Error *error)

When it succeeds, dwarf_get _fde_for_die() returns DW DLV _Kandsets *return_fdetoa
Dwar f _Fde descriptor representing frame information for the given die. It looks for the
DW AT_M PS_f de attribute inthe given di e. If it findsit, is uses the value of the attribute as the offset
in the .debug_frame section where the FDE begins. If there is no DW AT_M PS fde it returns
DW DLV_NO _ENTRY. If thereisan error it returns DW DLV_ERROR.

$Revision: 1.5$ -33- $Date: 1994/06/20 18:53:21 $

int dwarf_get fde_range(
Dwar f _Fde fde,
Dwar f _Addr *I| ow_pc,
Dwar f _Unsi gned *func_I engt h,
Dwarf_Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte_ | ength,
Dwarf O f *cie_offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf O f *fde_offset,
Dwarf_Error *error);

On success, dwarf _get fde_range() returns DW DLV_OK. The location pointed to by | ow_pc
is set to the low pc value for this function. The location pointed to by f unc_I engt h is set to the length
of the function in bytes. This is essentially the length of the text section for the function. The location
pointed to by f de_byt es is set to the address where the FDE begins in the .debug_frame section. The
location pointed to by fde_byt e | engt h is set to the length in bytes of the portion of .debug_frame
for thisFDE. Thisisthe same asthevauereturned by dwar f _get fde_range. Thelocation pointed
toby cie_offset issettothe offset in the .debug_frame section of the CIE used by this FDE. The
location pointed to by ci e_i ndex is set to the index of the CIE used by this FDE. The index is the
index of the CIE in thelist pointedto by ci e_dat a asset by the function dwarf _get fde_list().
However, if the function dwarf _get fde_for_di e() was used to obtain the given f de, thisindex
may not be correct. Thelocation pointedtoby f de_of f set isset to the offset of the start of thisFDE in
the .debug_frame section. dwarf_get fde_range() returns DW DLV_ERROR on error.

int dwarf_get _cie_info(

Dwarf Cie cie,
Dwar f _Unsi gned *bytes_in_cie,
Dwar f _Smal | *version,

char **augment er,

Dwar f _Unsi gned *code_al i gnnent _fact or,
Dwar f _Si gned *dat a_al i gnment _f act or,
Dwar f _Hal f *return_address_register_rule,
Dwarf_ Ptr *initial _instructions,

Dwarf _Unsigned *initial _instructions_I|ength,
Dwar f _Error *error);

dwarf _get _cie_info() isprimarily for Internal-level Interface consumers. If successful, it returns
DW DLV _OK and sets *byt es_i n_ci e to the number of bytesin the portion of the frames section for
the CIE represented by the given Dwar f _Ci e descriptor, ci e. The other fields are directly taken from
the cie and returned, via the pointersto the caller. 1t returns DW DLV_ERROR on error.

int dwarf_get fde_info_for_reg(
Dwar f _Fde fde,
Dwarf _Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwar f _Si gned *of fset_rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of f set,
Dwar f _Addr *row_pc,
Dwarf _Error *error);

dwarf _get _fde_info_for_reg() returns DW DLV_OK and sets *of f set _r el evant to non-
zero if the offset is relevant for the row specified by pc_request ed and column specified by
t abl e_col umm, for the FDE specified by f de. The intent is to return the rule for the given pc value

$Revision: 1.5$ -34- $Date: 1994/06/20 18:53:21 $

-35-

and register. The location pointed to by regi st er _numis set to the register value for the rule. The
location pointed to by of f set is set to the offset value for the rule. If offset isnot relevant for thisrule,
*of f set _rel evant isset to zero. Since more than one pc value will have rows with identical entries,
the user may want to know the earliest pc value after which the rules for all the columns remained
unchanged. Recall that in the virtua table that the frame information represents there may be one or more
table rows with identical data (each such table row at a different pc value). Given a pc_r equest ed
which refers to a pc in such a group of identical rows, the location pointed to by row_pc is set to the
lowest pc value within the group of identical rows. The value put in *regi st er _numany of the
DW FRAME_* table columnsvalues specifiedin | i bdwar f. h or dwarf. h.

dwarf _get fde_info_for_regreturns DW DLV_ERRORIf thereisan error.

It isusable with either dwarf _get _fde_n() or dwarf_get fde_at_pc().

i nt dwarf _get fde_n(
Dwarf Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned_fde
Dwarf _Error *error);

dwarf _get fde_n() retuns DWDLV K and sets returned_fde to the Dwarf_Fde
descriptor whose index is fde_i ndex in the table of Dwarf_Fde descriptors pointed to by
fde_data. The index starts with 0. Returns DW DLV_NO _ENTRY if the index does not exist in the
table of Dwar f _Fde descriptors. Returns DW DLV_ERRORIf thereisan error. This function cannot be
used unless the block of Dwarf_Fde descriptors has been crested by a cal to
dwarf _get _fde list().

i nt dwarf _get fde_at pc(
Dwarf Fde *fde_dat a,
Dwar f _Addr pc_of _interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,
Dwarf _Error *error);

dwarf _get fde_at _pc() returns DWDLV_K and sets returned_fde to a Dwarf_Fde
descriptor for a function which contains the pc value specified by pc_of _i nt er est. Inaddition, it sets
the locations pointed to by | opc and hi pc to the low address and the high address covered by this FDE,
respectively. It returns DWDLV_ERROR on eror. It returns DWDLV_NO ENTRY if
pc_of _interest isnot in any of the FDEs represented by the block of Dwarf _Fde descriptors
pointed toby f de_dat a. Thisfunction cannot be used unless the block of Dwar f _Fde descriptors has
been created by acall to dwarf _get _fde_list().

i nt dwarf_expand_franme_instructions(
Dwar f _Debug dbg,
Dwarf Ptr instruction,
Dwar f _Unsigned i _| ength,
Dwarf_Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf _Error *error);

dwar f _expand_frame_i nstructi ons() isaHigh-level interface function which expands a frame
instruction byte stream into an array of Dwar f _Frame_QOp structures. To indicate success, it returns
DW DLV_OK. The address where the byte stream begins is specified by i nst ruct i on, and the length

$Revision: 1.5$ -35- $Date: 1994/06/20 18:53:21 $

-36-

of the byte stream is specified by i _| engt h. The location pointed to by returned_op_I|i st isset
to point to atable of returned_op_count pointersto Dwar f _Fr ame_QOp which contain the frame
instructions in the byte stream. It returns DW DLV _ERROR on error. It never returns
DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation type DW DLA FRANME BLOCK (when they are no longer of
interest).

Dwar f _Si gned cnt;
Dwar f _Frame_Op *frameops;
Dwarf Ptr instruction;
Dwar f _Unsi gned | en;

int res;

i f (expand_frame_instructions(dbg,instruction,len, &frameops, &nt, &error)
== DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use frameops[i] */
}
dwar f _deal | oc(dbg, franeops, DWDLA FRAME BLOCK) ;

5.12 L ocation Expression Evaluation

An "interpreter” which evaluates a location expression is required in any debugger. There is no interface
defined here at thistime.

One problem with defining an interface is that operations are machine dependent: they depend on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.12.1 Location List Internal-level I nterface

int dwarf_get loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *1 opc_of f set,
Dwarf_ Ptr *data,
Dwar f _Unsigned *entry_len,
Dwar f _Unsi gned *next_entry,
Dwarf _Error *error)

dwarf _dwarf_get loclist_entry() returns DW DLV_OK if successful. DW DLV_ERROR is
returned on error. The function reads alocation list entry starting at of f set and returns through pointers
(when successful) the high pc hi pc_offset, low pc | opc_of fset, a pointer to the location
description data dat a, the length of the location description data ent ry_| en, and the offset of the next

$Revision: 1.5$ -36- $Date: 1994/06/20 18:53:21 $

-37-

location description entry next _ent ry. When hi pc and | opc are zero, thisisthe end of a particular
location list.

The hi pc_of fset, low pc | opc_of f set are offsets from the beginning of the current procedure,
not genuine pc values.

5.13 Abbreviations access

These are Internal-level Interface functions. Debuggers can ignore this.

i nt dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsi gned *attr_count,
Dwarf _Error *error)

The function dwarf _get abbrev() retuns DWDLV_OK and sets *returned_fde to
Dwar f _Abbr ev descriptor for an abbreviation at offset *of f set in the abbreviations section (i.e
.debug_abbrev) on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreviations section. The location pointed to by | engt h is set to the length in bytes of
the abbreviation in the abbreviations section. The location pointed to by attr_count is set to the
number of attributes in the abbreviation. An abbreviation entry with a length of 1 is the O byte of the last
abbreviation entry of acompilation unit. dwar f _get _abbrev() returns DW DLV_ERROR on error.

i nt dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwar f _Hal f return_tag,
Dwarf _Error *error);P

If successfull, dwarf_get abbrev_t ag() returns DW DLV_OK and sets *r et ur n_t ag to thetag
of the given abbreviation. It returns DW DLV_ERROR on error. It never returns DW DLV_NO_ENTRY.

int dwarf_get abbrev_chil dren_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwarf _Error *error)

The function dwarf_get_abbrev_children_flag() retuns DWDLV OK and sets
returned _flag to DWchil dren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) or DW chi | dr en_yes (if the given abbreviation indicates that a die with
that abbreviation has a child). It returns DW DLV_ERRCR on error.

int dwarf_get _abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwar f _Si gned *form
Dwarf O f *of fset,
Dwarf _Error *error)

$Revision: 1.5$ -37- $Date: 1994/06/20 18:53:21 $

-38-

If successful, dwarf _get abbrev_entry() returns DWDLV_OK and sets *attr_numto the
attribute code of the attribute whose index is specified by i ndex in the given abbreviation. The index
starts at 0. The location pointed to by f or mis set to the form of the attribute. The location pointed to by
of fset is sat to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this abbreviation. It returns
DW DLV_ERROR 0N error.

5.14 String Section Operations

The .debug_str section contains only strings. Debuggers need never use this interface: it is only for
debugging problems with the string section itself.

int dwarf_get _str(
Dwar f _Debug dbg,
Dwarf O f of f set,
char **string,
Dwarf _Signed returned_str_Ien,
Dwarf _Error *error)

The function dwarf_get _str() returns DWDLV_OK and sets *returned_str_l| en to the
length of the string, not counting the null terminator, that begins at the offset specified by of f set inthe
.debug_str section. The location pointed to by st ri ng isset to apointer to thisstring. The next string in
the .debug_str section begins at the previous of fset + 1+ *returned_str_I| en. A zero-length
string is NOT the end of the section. If there is no .debug_str section, DW DLV_NO_ENTRY is returned.
If thereisan error, DW DLV_ERRORsreturned.

5.15 Address Range Operations

These functions provide information about address ranges. Address ranges map ranges of pc values to the
corresponding compilation-unit die that covers the address range.

i nt dwarf_get _aranges(
Dwar f _Debug dbg,
Dwar f _Arange **ar anges,
Dwarf _Si gned * returned_arange_count,
Dwarf _Error *error)

The function dwar f _get _aranges() returns DW DLV K and sets
*returned_arange_count to the count of the number of address ranges in the .debug_aranges
section. It sets *ar anges to point to a block of Dwar f _Ar ange descriptors, one for each address
range. It returns DW DLV_ERROR on error. It returns DW DLV_NO _ENTRY if there is no
.debug_aranges section.

$Revision: 1.5$ -38- $Date: 1994/06/20 18:53:21 $

-39-

Dwar f _Si gned cnt;
Dwar f _Arange *arang;

if ((dwarf_get aranges(dbg, &arang, &nt, &error)) == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use arang[i] */
dwarf _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);

i nt dwarf_get arange(
Dwar f _Arange *aranges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Ar ange *returned_ar ange,
Dwarf _Error *error)

The function dwar f _get _ar ange() takesasinput a pointer to ablock of Dwar f _Ar ange pointers,
and a count of the number of descriptors in the block. It then searches for the descriptor that covers the
given address. If it finds one, it returns DW DLV_OK and sets *ret urned_ar ange to the
descriptor. It returns DW DLV_ERROR on error. It returns DW DLV_NO ENTRY if there is no
.debug_aranges entry covering that address.

Dwarf O f dwarf_get _cu_di e_of fset(
Dwar f _Arange ar ange,
Dwarf O f *returned_of fset,
Dwarf _Error *error)

The function dwarf _get _cu_di e_of fset () takesa Dwarf _Arange descriptor as input, and if
successful returns DW DLV_OK and sets *r et ur ned_of f set to the offset in the .debug_info section
of the compilation-unit DIE for the compilation-unit represented by the given address range. It returns
DW DLV_ERRORon error.

i nt dwarf_get _arange_i nfo(
Dwar f _Arange ar ange,
Dwarf _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die_offset,
Dwarf _Error *error)

The function dwarf_get _arange_i nfo() returns DW DLV_OK and stores the starting value of the
address range in the location pointed to by st art , the length of the address range in the location pointed
toby | engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It returns DW DLV_ERROR on error.

5.16 Utility Operations

These functions aid in the management of errors encountered when using functions in the libdwarf library
and releasing memory allocated as aresult of alibdwarf operation.

$Revision: 1.5$ -39- $Date: 1994/06/20 18:53:21 $

-40 -

Dwar f _Unsi gned dwarf _errno(
Dwarf _Error error)

The function dwarf _errno() returns the error number corresponding to the error specified by
error.

const char* dwarf_errmnmsg(
Dwarf _Error error)

The function dwarf_errnsg() returns a pointer to a null-terminated error message string
corresponding to the error specified by error. The string returned by dwar f _errmsg() should not
be deallocated using dwar f _deal | oc() .

The set of errors enumerated in Figure 3 below were defined in Dwarf 1. These errors are not used by the
current implementation of Dwarf 2.

SYMBOLIC NAME DESCRIPTION

DW_DLE_NE Noerror (0)

DW _DLE VMM Version of DWARF information newer than libdwar f
DW_DLE _MAP Memory map failure

DW _DLE LEE Propagation of libelf error

DW_DLE_NDS No debug section

DW _DLE NLS No line section

DW _DLE_ID Requested infor mation not associated with descriptor
DW_DLE_IOF I/O failure

DW_DLE_MAF Memory allocation failure

DW_DLE_IA Invalid argument

DW_DLE_MDE Mangled debugging entry

DW _DLE MLE Mangled line number entry
DW_DLE_FNO File descriptor does not refer to an open file
DW_DLE _FNR Fileisnot aregular file

DW_DLE_FWA Fileis opened with wrong access
DW_DLE_NOB Fileisnot an object file

DW_DLE _MOF Mangled object file header

DW _DLE EOLL End of location list entries

DW_DLE NOLL No location list section

DW_DLE_BADOFF Invalid offset

DW_DLE_EOS End of section

DW_DLE_ATRUNC Abbreviations section appearstruncated
DW_DLE BADBITC Addresssize passed to dwarf bad

Figure6. List of Dwarf Error Codes

The set of errors returned by SGI Li bdwar f functions is listed below. Some of the errors are SGI
specific.

$Revision: 1.5$ -40- $Date: 1994/06/20 18:53:21 $

-41 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FSTAT_ERROR
DW_DLE_FSTAT_MODE_ERROR
DW_DLE_INIT_ACCESS WRONG
DW_DLE_ELF_BEGIN_ERROR
DW_DLE_ELF_GETEHDR_ERROR
DW_DLE_ELF_GETSHDR_ERROR
DW_DLE_ELF_STRPTR_ERROR
DW_DLE_DEBUG_INFO_DUPLICATE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICATE
DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES DUPLICATE
DW_DLE_DEBUG_ARANGES NULL
DW_DLE_DEBUG_LINE_DUPLICATE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICATE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICATE
DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES DUPLICATE
DW_DLE_DEBUG_PUBNAMES NULL
DW_DLE_DEBUG_STR_DUPLICATE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERROR
DW_DLE_VERSION_STAMP_ERROR
DW_DLE_ABBREV_OFFSET_ERROR
DW_DLE_ADDRESS SIZE_ERROR
DW_DLE_DEBUG_INFO_PTR_NULL
DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_BAD
DW_DLE_DEBUG_LINE_LENGTH_BAD
DW_DLE_LINE_PROLOG_LENGTH_BAD
DW_DLE_LINE_NUM_OPERANDS BAD
DW_DLE_LINE_SET_ADDR_ERROR
DW_DLE_LINE_EXT_OPCODE_BAD
DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD
DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_FAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BAD
DW_DLE_FRAME_VERSION_BAD
DW_DLE_CIE_RET_ADDR_REG_ERROR
DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_BAD

Could not allocate Dwarf_Debug struct
Error in fstat()-ing object

Error in mode of object file

Incorrect access to dwarf_init()

Error in elf_begin() on object

Error in elf_getehdr() on object

Error in elf_getshdr() on object

Error in ef_strptr() on object
Multiple .debug_info sections

No data in .debug_info section
Multiple .debug_abbrev sections

No data in .debug_abbrev section
Multiple .debug_arange sections

No data in .debug_arange section
Multiple .debug_line sections

No datain .debug_line section
Multiple .debug_loc sections

No datain .debug_loc section

Multiple .debug_macinfo sections

No data in .debug_macinfo section
Multiple .debug_pubnames sections
No data in .debug_pubnames section
Multiple .debug_str sections

No datain .debug_str section

Length of compilation-unit bad
Incorrect Version Stamp

Offset in .debug_abbrev bad

Size of addressesin target bad

Pointer into .debug_infoin DIE null
Null Dwarf_Die

Offset in .debug_str bad

Length of .debug_line segment bad
Length of .debug_line prolog bad
Number of operandsto lineinstr bad
Error in DW_LNE_set addressinstruction
Error in DW_EXTENDED_OPCODE instruction
Null Dwarf_line argument

Error inincluded directory for given line
Filenumber in .debug_linebad

Failed to allocate required structs

Null Dwarf_Debug argument

Error in length of frame

Bad version stamp for frame

Bad register specified for return address
Null Dwarf_Fde argument

No Dwarf_Debug associated with FDE
Null Dwarf_Cie argument

No Dwarf_Debug associated with CIE
Bad column in frame table specified

Figure7. List of Dwarf 2 Error Codes (contd.)

$Revision: 1.5$

-41-

$Date: 1994/06/20 18:53:21 $

-42-

SYMBOLIC NAME

DESCRIPTION

DW_DLE_PC_NOT_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERROR
DW_DLE_FRAME_INSTR_EXEC_ERROR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET_OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NOT_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICATE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERROR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_BAD
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BAD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET_BAD
DW_DLE_LINE_OFFSET_BAD
DW_DLE_DEBUG_STR_OFFSET_BAD
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERROR
DW_DLE_PUBNAMES LENGTH_BAD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD
DW_DLE_LOC_EXPR_BAD
DW_DLE_DIE_LOC_EXPR_BAD
DW_DLE_OFFSET_BAD
DW_DLE_MAKE_CU_CONTEXT_FAIL
DW_DLE_ARANGE_OFFSET_BAD
DW_DLE_SEGMENT_SIZE_BAD
DW_DLE_ARANGE_LENGTH_BAD
DW_DLE_ARANGE_DECODE_ERROR
DW_DLE_ARANGES NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR
DW_DLE_CU_ADDRESS SIZE_BAD
DW_DLE_ELF_GETIDENT_ERROR
DW_DLE_NO_AT_MIPS FDE
DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL
DW_DLE_DEBUG_FUNCNAMES_DUPLICATE
DW_DLE_DEBUG_FUNCNAMES NULL

PC requested not in address range of FDE
Error in executing instructionsin CIE

Error in executing instructionsin FDE

Null Pointer to Dwarf_Fde specified

No location to store pointer to Dwarf_Frame Op
Dwarf_Line hasno context

dbg hasno CU context for dwarf_siblingof()
Dwarf_Die hasno CU context

First DIE in CU not DW_TAG_compilation_unit
Error in moving to next DIE in .debug_info
Multiple .debug_frame sections

No datain .debug_frame section

Error in decoding abbreviation

Null Dwarf_Abbrev specified

Null Dwarf_Attribute specified

DIE bad

No abbreviation found for codein DIE
Inappropriate attribute form for attribute

No CU context for Dwarf_Attribute struct

Size of block in attribute value bad

No Dwarf_Debug for Dwarf_Attribute struct
Inappropriateform for reference attribute
Offset reference attribute outside current CU
Offset of linesfor current CU outside .debug_line
Offset into .debug_str past itsend

Pointer to pointer into .debug_str NULL
Version stamp of pubnamesincorrect

Read pubnames past end of .debug_pubnames
Null Dwarf_Global specified

No contect for Dwarf_Global given

Error indirectory index read

Bad operator read for location expression
Expected block valuefor attribute not found
Offset for next compilation-unit in .debug_info bad
Could not make CU context

Offset into .debug_infoin .debug_aranges bad
Segment size should be 0 for MIPS processor s
Length of arange section in .debug_arange bad
Arangesdo not end at end of .debug_aranges
NULL pointer to Dwarf_Arange specified
NULL Dwarf_Arange specified

No filenamefor Dwarf_Linestruct

No Compilation directory for compilation-unit
CU header address size not match EIf class
Error in elf_getident() on object

DIE doesnot have DW_AT_MIPS fdeattribute
No CIE specified for FDE

No abbreviation for the codein DIE found
Multiple .debug_funcnames sections

No data in .debug_funcnames section

Figure8. List of Dwarf 2 Error Codes (contd.)

$Revision: 1.5$ -42-

$Date: 1994/06/20 18:53:21 $

-43-

SYMBOLIC NAME DESCRIPTION

DW_DLE DEBUG_FUNCNAMES VERSION_ERROR Version stamp in .debug_funcnames bad
DW_DLE DEBUG_FUNCNAMES LENGTH_BAD Length error in reading .debug funcnames
DW_DLE_FUNC_NULL NULL Dwarf_Func specified

DW_DLE _FUNC_CONTEXT_NULL No context for Dwarf_Func struct
DW_DLE_DEBUG_TYPENAMES DUPLICATE Multiple .debug_typenames sections
DW_DLE DEBUG TYPENAMES NULL No data in .debug_typenames section
DW_DLE DEBUG _TYPENAMES VERSION_ERROR Version stamp in .debug_typenames bad
DW_DLE DEBUG TYPENAMES LENGTH_BAD Length error in reading .debug_typenames
DW_DLE_TYPE_NULL NULL Dwarf_Type specified

DW_DLE TYPE_CONTEXT_NULL No context for Dwarf_Type given

DW_DLE DEBUG_VARNAMES DUPLICATE Multiple .debug_varnames sections
DW_DLE DEBUG_VARNAMES NULL No data in .debug_varnames section
DW_DLE DEBUG_VARNAMES VERSION_ERROR Version stamp in .debug_varnames bad
DW_DLE DEBUG_VARNAMES LENGTH_BAD Length error in reading .debug_varnames
DW_DLE_VAR_NULL NULL Dwarf_Var specified

DW _DLE VAR _CONTEXT_NULL No context for Dwarf_Var given
DW_DLE_DEBUG_WEAKNAMES DUPLICATE Multiple .debug_weaknames section
DW_DLE DEBUG WEAKNAMES NULL No data in .debug_varnames section
DW_DLE DEBUG _WEAKNAMES VERSION_ERROR Version stamp in .debug_varnames bad
DW_DLE DEBUG WEAKNAMES LENGTH_BAD Length error in reading .debug weaknames
DW_DLE_WEAK_NULL NULL Dwarf_Weak specified

DW_DLE WEAK_CONTEXT_NULL No context for Dwarf_Weak given

Figure9. List of Dwarf 2 Error Codes

Thislist of errorsis not necessarily complete; additional errors might be added when functionality to create
debugging information entries are added to libdwarf and by the implementors of libdwarf to describe
internal errors not addressed by the above list. Some of the above errors may be unused. Errors may not
have the same meaning in different implementations.

Dwar f _Handl er dwarf _set errhand(
Dwar f _Debug dbg,
Dwar f _Handl er errhand)

The function dwarf _seterrhand() replaces the error handler (see dwarf _init()) with
err hand. Theold error handler isreturned. Thisfunction is currently unimplemented.

Dwarf _Ptr dwarf_seterrarg(
Dwar f _Debug dbg,
Dwarf _Ptr errarg)

The function dwarf _seterrarg() replaces the pointer to the error handler communication area (see
dwarf _init()) with errarg. A pointer to the old area is returned. This function is currently
unimplemented.

voi d dwarf_deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The function dwar f _deal | oc frees the dynamic storage pointed to by space, and allocated to the
given Dwarf_Debug. The argument type is an integer code that specifies the alocation type of the
region pointed to by the space. Refer to section 4 for details on libdwarf memory management.

$Revision: 1.5$ -43- $Date: 1994/06/20 18:53:21 $

$Revision: 1.5$ -44 - $Date: 1994/06/20 18:53:21 $

CONTENTS

. INTRODUCTION 1
1.1 Purpose and Scope 1
1.2 Déefinitions . 1
1.3 Overview 1
1.4 Items Changed 2
15 Items Removed 2
1.6 Revision History 2

. Types Definitions 2
2.1 General Description 3
2.2 Scaar Types 3
2.3 Aqggregate Types . 4
2.4 OpaqueTypes . 6

. Error Handling 8
3.1 Returned valuesin thefunctlonal mterface 9

. Memory Management 9
4.1 Read-only Properties . 9
4.2 Storage Deallocation . 10

. Functiona Interface . . 11
5.1 Initiaization Operations . . 11
5.2 Debugging Information Entry Dehvery Operat|ons . 12
5.3 Debugging Information Entry Query Operatlons 14
5.4 Attribute Form Queries . 17
5.5 Line Number Operations 20
5.6 Globa Name Space Operations 23
5.7 Weak Name Space Operations . 25
5.8 Static Function Names Operations . 26
5.9 User Defined Type Names Operations 28
5.10 User Defined Static Variable Names Operatlons 30
5.11 Low Level Frame Operations .o 31
5.12 Location Expression Evaluation 36
5.13 Abbreviations access . 37
5.14 String Section Operations 38
5.15 Address Range Operations 38
5.16 Utility Operations 39

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

LIST OF FIGURES

Scalar Types .

Error Indications
Allocation/Desallocation Identifiers
Frame Information Rule Assignments
Frame Information Special Values
List of Dwarf Error Codes .

List of Dwarf 2 Error Codes (contd.)
List of Dwarf 2 Error Codes (contd.)
List of Dwarf 2 Error Codes

11
32
32
40
41
42
43

A Consumer Library Interfaceto DWARF
UNIXO International Programming Languages Special Interest Group

ABSTRACT

This document describes an interface to a library of functions to access DWARF debugging information
entries and DWAREF line number information. It does not make recommendations as to how the functions
described in this document should be implemented nor does it suggest possible optimizations.

The document is oriented to reading DWARF version 2. There are certain sections which are SGI-specific
(those are clearly identified in the document). We intend to propose this to the PLSIG committee as the
basis for a standard libdwarf interface.

The proposals made in this document are subject to change.
$Revision: 1.5$
$Date: 1994/06/20 18:53:21 $

0 UNIX isaregistered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

