A Producer Library Interfaceto DWARF
UNIXO International Programming Languages Special Interest Group

1. INTRODUCTION

This document describes the proposed interface to libdwarf, a library of functions to provide creation of
DWARF debugging information records, DWARF line number information, DWARF address range and
pubnames information, weak names informatio, and DWARF frame description information.

1.1 Purpose and Scope

The purpose of this document is to propose a library of functions to create DWARF debugging
information. Reading (consuming) of such records is discussed in a separate document.

The functions in this document have been implemented at Silicon Graphics and are being used by the code
generator to provide debugging information.

Additionally, the focus of this document is the functional interface, and as such, implementation as well as
optimization issues are intentionally ignored.

Error handling, error codes, and certain Libdwarf codes are discussed in the "Proposed Interface to
DWARF Consumer Library", which should be read (or at least skimmed) before reading this document.

1.2 Definitions

DWARF debugging information entries (DIE) are the segments of information placed in the . debug_*
sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source-level debugging. Refer to the document "DWARF Debugging Information
Format" from Ul PLSIG for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format” version 2.
and the "Proposed Interface to DWARF Consumer Library”.

In addition, this document refers to ELF, the ATT/USL System V Release 4 object format. Thisis because
the library was first developed for that object format. Hopefully the functions defined here can easily be
applied to other object formats.

1.3 Overview

The remaining sections of this document describe a proposed producer (compiler or assembler) interface to
Libdwarf, first by describing the purpose of additional types defined by the interface, followed by
descriptions of the available operations. This document assumes you are thoroughly familiar with the
information contained in the DWARF Debugging Information Format document, and "Proposed Interface
to DWARF Consumer Library".

The interface necessarily knows a little bit about the object format (which is assumed to be ELF). We
make an attempt to make this knowledge as limited as possible. For example, Libdwarf does not do the
writing of object datato the disk. The producer program does that.

$Revision: 1.5$ -1- $Date: 1994/05/18 16:56:22 $

1.4 Revision History
March 93 Work on dwarf2 sgi producer draft begins

2. Type Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names
used to reference objects of Libdwarf. The types defined by typedefs contained in libdwarf.h al use the
convention of adding Dwar f _ as a prefix to indicate that they refer to objects used by Libdwarf. The
prefix Dwarf _P_ isused for object referenced by the Li bdwar f Producer when there are similar but
distinct objects used by the Consumer.

2.2 Aggregate Types

3. Memory M anagement

Severa of the functions that comprise the Libdwarf interface return values that have been dynamically
allocated by the library. Space is aways allocated for an object represented by a Dwar f _P_Debug
descriptor. The Li bdwar f typically deals with one object at atime. The dynamically allocated spaces
can not be reclaimed except by dwar f _producer _fini sh(). This function reclaims all the space,
and invalidates all descriptors returned from Li bdwar f functions that add information to be object
specified. After dwarf _producer _fini sh() iscaled, the Dwarf _P_Debug descriptor specified
isalsoinvalid.

3.1 Read-only Properties

All pointers returned by or as a result of a Libdwarf call should be assumed to point to read-only memory.
Except as defined by this document, the results are undefined for Libdwarf clients that attempt to write to a
region pointed to by areturn value from a Libdwarf call.

3.2 Storage Deallocation

Cdling dwarf_producer _fini sh(dbg) frees al the space, and invalidates al pointers returned
from Li bdwar f functions on or descended from dbg).

4. Functional Interface

This section describes the functions available in the Libdwarf library. Each function description includes
its definition, followed by a paragraph describing the function’s operation.

The functions may be categorized into groups: initialization and termination operations, debugging
information entry creation, Elf section callback function, attribute creation, expression creation, line
number creation, fast-access (aranges) creation, fast-access (pubnames) creation, fast-access (weak
names) creation, macro information creation, low level (.debug frame) creation, and location list
(.debug_loc) creation.

$Revision: 1.5$ -2- $Date: 1994/05/18 16:56:22 $

The following sections describe these functions.

4.1 Initialization and Termination Oper ations

These functions setup Li bdwarf to accumulate debugging information for an object, usualy a
compilation-unit, provided by the producer. The actual addition of information is done by functionsin the
other sections of this document. Once al the information has been added, functions from this section are
used to transform the information to appropriate byte streams, and help to write out the byte streams to
disk.

Typically then, a producer would create a Dwar f _P_Debug descriptor to gather debugging information
for a particular compilation-unit using dwarf _producer_init(). They would use this
Dwar f _P_Debug descriptor to accumulate debugging information for this object using functions from
other sections of this document. Once al the information had been added, they would call
dwarf _transformto_di sk _form) toconvert the accumulated information into byte streams in
accordance with the DWARF standard. They would then repeatedly call
dwarf _get _secti on_bytes() for each of the . debug_* created. Thiswould give the producer
information about the data bytes to be written to disk. At this point, the producer would release all
resource used by Li bdwar f for thisobject by calling dwar f _producer _fi ni sh().

Dwar f _P_Debug dwarf _producer _init(
Dwar f _Unsi gned fl ags,
Dwarf _Cal | back_Func func,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwarf _Error *error)

The function dwar f _producer _init() returns a new Dwarf _P_Debug descriptor that can be
used to add Dwarf information to the object. On error it returns DW DLV_BADADDR. fl ags
determine whether the target object is 64-bit or 32-bit. f unc is a pointer to a function called-back from
Libdwarf whenever Libdwarf needs to create a new object section (as it will for each .debug_* section and
related relocation section). errhand is a pointer to a function that will be used for handling errors
detected by Li bdwarf. errarg is the default error argument used by the function pointed to by
err hand.

Dwar f _Si gned dwarf_transformto_di sk_form
Dwar f _P_Debug dbg,
Dwarf _Error* error)

The function dwarf _transformto_di sk _form() does the actual conversion of the Dwar f
information provided so far, to the form that is normally written out as El f sections. In other words, once
all DWARF information has been passed to Libdwarf, call dwarf _transformto_di sk_form() to
transform all the accumulated data into byte streams. This includes turning relocation information into
byte streams. This function does not write anything to disk. If successful, it returns a count of the number
of Elf sections ready to be retrieved (and, normally, written to disk). In case of error, it returns
DW DLV_NOCOUNT.

$Revision: 1.5$ -3- $Date: 1994/05/18 16:56:22 $

Dwarf _Ptr dwarf_get _section_bytes(
Dwar f _P_Debug dbg,
Dwar f _Si gned dwarf _secti on,
Dwarf _Si gned *el f_section_i ndex,
Dwar f _Unsi gned *I engt h,
Dwarf _Error* error)

The function dwarf_get _section_bytes() must be caled repetitively, with the index
dwarf _section dtating a O and continuing for the number of sections returned by
dwarf _transformto_di sk _form(). It returns NULL to indicate that there are no more sections
of Dwarf information. For each non-NULL return, the returned-pointer pointsto *1 engt h bytes of
data that are normally added to the output object in El f section *el f _secti on by the producer
application.

Dwar f _Si gned dwarf _producer _fi ni sh(
Dwar f _P_Debug dbg,
Dwarf _Error* error)

The function dwar f _producer _fi ni sh() should be called after all the bytes of data have been wn
copied somewhere (normally the bytes are written to disk). It frees all dynamic space alocated for dbg,
include space for the structure pointed to by dbg. This should not be called till the data have been copied
or written to disk or are no longer of interest. It returns non-zero if successful, and DW DLV_NOCOUNT if
thereisan error.

4.2 Debugging Information Entry Creation

The functions in this section add new DI Es to the object, and also the relatioships among the DI E to be
specified by linking them up as parents, children, |eft or right siblings of each other. In addition, thereisa
function that marks the root of the graph thus created.

Dwar f _Unsi gned dwarf_add_di e_t o_debug(
Dwar f _P_Debug dbg,
Dwarf P Die first _die,
Dwarf _Error *error)

The function dwarf_add_di e_t o_debug() indicates to Li bdwarf the root DI E of the DI E
graph that has been built so far. It isintended to mark the compilation-unit DI E for the object represented
by dbg. Theroot DI Eisspecifiedby first_die.

It returns O on success, and DW DLV_NOCOUNT on error.

Dwarf P _Die dwarf_new die(

Dwar f _P_Debug dbg,

Dwar f _Tag new_t ag,

Dwarf P _Di e parent,

Dwarf P Die child,

Dwarf P Die | eft_sibling,

Dwarf_P _Die right_sibling,

Dwarf _Error *error)
Thefunction dwarf _new _di e() createsanew DI E with itsparent, child, left sibling, and right sibling
DI Es specified by parent, child, | eft_sibling,and right_sibling, respectively. Thereis
no requirement that all of these DI Es be specified, i.e. any of these descriptors may be NULL. If noneis
specified, this will be an isolaaed DIE. A DIE is transformed to disk form by

$Revision: 1.5$ -4- $Date: 1994/05/18 16:56:22 $

dwarf _transformto_disk form() only if there is a path from the DI E specified by
dwar f _add_di e_t o_debug toit. Thisfunction returns DW DLV_BADADDR on error.

new_t ag is the tag which is given to the new DIE. parent, child, left_sibling, and
ri ght _si bling are pointers to establish links to existing DI Es. Only one of parent, child,
left_sibling,and right_sibling may benon-NULL. If parent (chil d)isgiven, the DI E
is linked into the list after (before) the DI E pointed to. If | eft_sibling (ri ght_sibling)is
given, the DI Eislinked into the list after (before) the DI E pointed to.

To add attributes to the new DI E, use the Attribute Creation functions defined in the next
section.

Dwarf P Die dwarf_die_link(
Dwarf P Die die,
Dwarf P _Di e parent,
Dwarf P Die child,
Dwarf P Die | eft-sibling,
Dwarf_P _Die right_sibling,
Dwarf _Error *error)

The function dwar f _di e_| i nk() linksan existing DI E described by the given di e to other existing
Dl Es. Thegiven di e can belinked to aparent DI E, achild DI E, aleft sibling DI E, or aright sibling
DI E by specifying non-NULL parent, child, left_sibling, and right_sibling
Dwarf _P_Di e descriptors. It returns the given Dwarf _P_Di e descriptor, di e, on success, and
DW DLV_BADADDR on error.

Only one of parent, child, left_sibling, and right_sibling may be non-NULL. If
parent (child) is given, the DI E is linked into the list after (before) the DI E pointed to. If
left_sibling (ri ght_sibling)isgiven the DI E is linked into the list after (before) the DI E
pointed to. Non-NULL links overwrite the corresponding links the given di e may have had before the
calto dwarf _die_link().

4.3 Attribute Creation

The functions in this section add attributesto a DI E. These functionsreturna Dwarf P _Attri bute
descriptor that represents the attribute added to the given DI E. In most cases the return value is only
useful to determine if an error occurred.

Some of the attributes have values that are relocatable. They need a symbol with respect to which the
linker will perform relocation. This symbol is specified by means of an index into the EIf symbol table for
the object.

Dwarf P _Attribute dwarf_add_AT | ocati on_expr(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwarf _P_Expr | oc_expr,
Dwarf _Error *error)

The function dwar f _add_AT_| ocat i on_expr () adds the attribute specified by attr tothe DI E
descriptor given by owner di e. The attribute should be one that has a location expression as its value.
The location expression that is the value is represented by the Dwar f _P_Expr descriptor | oc_expr .
It returns the Dwarf _P_At tri but e descriptor for the attribute given, on success. On error it returns
DW DLV_BADADDR.

$Revision: 1.5$ -5- $Date: 1994/05/18 16:56:22 $

Dwarf P _Attribute dwarf_add_ AT _nane(
Dwarf P Di e ownerdi e,
char *nane,
Dwarf _Error *error)

The function dwarf_add_AT _name() adds the string specified by nane as the value of the
DW AT _nane atribute for the given DI E, ownerdie. It returns the Dwarf P _attri bute
descriptor for the DW AT _narme attribute on success. On error, it returns DW DLV _BADADDR.

Dwarf_P_Attribute dwarf_add_AT_conp_dir(
Dwarf P Di e ownerdi e,
char *current _working_directory,
Dwarf _Error *error)

The function dwar f _add_AT_conp_dir () adds the string given by
current _working_directory as the vaue of the DW AT conp_dir attribute for the DI E
described by the given owner di e. It returnsthe Dwarf_P_At t ri but e for this attribute on success.
On error, it returns DW DLV_BADADDR.

Dwarf_P_Attribute dwarf_add_AT_producer (
Dwarf P Di e ownerdi e,
char *producer_string,
Dwarf _Error *error)

The function dwarf _add_AT_producer () adds the string given by producer _string as the
value of the DW AT producer attribute for the DI E given by ownerdie. It returns the
Dwarf _P_Attribute descriptor representing this attribute on success. On error, it returns
DW DLV_BADADDR.

Dwarf _P_Attribute dwarf_add_AT const_val ue_si gnedi nt (
Dwarf P Di e ownerdi e,
Dwar f _Si gned si gned_val ue,
Dwarf _Error *error)

The function dwarf_add_AT _const_val ue_si gnedi nt () adds the given Dwarf _Si gnhed
value si gned_val ue asthe value of the DW AT_const _val ue attribute for the DI E described by
the given ownerdi e. It returns the Dwarf _P_Attri but e descriptor for this attribute on success.
On error, it returns DW DLV_BADADDR.

Dwarf P _Attribute dwarf_add_AT const_val ue_unsi gnedi nt (
Dwarf P Di e ownerdi e,
Dwar f _Unsi gned unsi gned_val ue,
Dwarf _Error *error)

The function dwar f _add_AT_const _val ue_unsi gnedi nt () adds the given
Dwar f _Unsi gned value unsi gned_val ue asthevalue of the DW AT_const _val ue attribute for
the DI E described by the given owner di e. It returnsthe Dwarf _P_At tri but e descriptor for this
attribute on success. On error, it returns DW DLV _BADADDR.

Dwarf P _Attribute dwarf_add_ AT const_val ue_stri ng(
Dwarf P Di e ownerdi e,
char *string_val ue,
Dwarf _Error *error)

$Revision: 1.5$ -6- $Date: 1994/05/18 16:56:22 $

The function dwarf_add_AT const_value_string() adds the string value given by
string_val ue as the value of the DW AT_const _val ue attribute for the DI E described by the
given ownerdi e. It returnsthe Dwarf P_Attri but e descriptor for this attribute on success. On
error, it returns DW DLV_BADADDR.

Dwarf P _Attribute dwarf_add_AT targ_address(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwar f _Unsi gned pc_val ue,
Dwar f _Si gned sym i ndex,
Dwarf _Error *error)

The function dwar f _add_AT_t arg_address() adds an attribute that belongs to the "address" class
to the die specified by owner di e. The attribute is specified by attr, and the object that the DI E
belongs to is specified by dbg. The relocatable address that is the value of the attribute is specified by
pc_val ue. The symbol to be used for relocation is specified by the sym i ndex, which is the index of
the symbol in the EIf symbol table.

It returns the Dwarf _P_Attri but e descriptor for the attribute on success, and DW DLV_BADADDR
on error.

Dwarf _P_Attribute dwarf_add_AT unsi gned_const (
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwar f _Unsi gned val ue,
Dwarf _Error *error)

The function dwar f _add_AT_unsi gned_const () adds an attribute with a Dwar f _Unsi gned
value belonging to the "constant” class, to the DI E specified by owner di e. The object that the DI E
belongstois specified by dbg. The attribute is specified by att r, and itsvalueis specified by val ue.

It returns the Dwarf _P_Attri but e descriptor for the attribute on success, and DW DLV_BADADDR
on error.

Dwarf P _Attribute dwarf_add_AT_si gned_const (
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwar f _Si gned val ue,
Dwarf _Error *error)

The function dwarf _add_AT_si gned_const () adds an attribute with a Dwar f _Si gned value
belonging to the "constant” class, to the DI E specified by owner di e. The object that the DI E belongs
toisspecified by dbg. Theattribute is specified by at tr, and itsvalueis specified by val ue.

It returns the Dwarf _P_Attri but e descriptor for the attribute on success, and DW DLV_BADADDR
on error.

$Revision: 1.5$ -7- $Date: 1994/05/18 16:56:22 $

Dwarf P _Attribute dwarf_add_AT reference(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwarf P Di e otherdie,
Dwarf _Error *error)

The function dwarf _add_AT reference() adds an attribute with a value that is a reference to
another DI E in the compilation-unit to the DI E specified by owner di e. The object that the DI E
belongsto is specified by dbg. The attribute is specified by at t r, and the other DI E being referred to
isspecified by ot herdi e.

It returns the Dwarf _P_Attri but e descriptor for the attribute on success, and DW DLV_BADADDR
on error.

Dwarf P _Attribute dwarf_add_ AT fl ag(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,

Dwarf_ Hal f attr,
Dwarf_Smal |l fl ag,
Dwarf _Error *error)

Thefunction dwar f _add_AT _fl ag() addsan attribute witha Dwar f _Smal | value belonging to the
"flag" class, to the DI E specified by owner di e. The object that the DI E belongs to is specified by
dbg. Theattributeis specified by attr, anditsvalueisspecifiedby fl ag.

It returns the Dwarf _P_Attri but e descriptor for the attribute on success, and DW DLV_BADADDR
on error.

Dwarf P _Attribute dwarf_add AT _string(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
char *string,
Dwarf _Error *error)

The function dwarf _add_AT_stri ng() adds an attribute with a value that is a character string to the
DI E specified by owner di e. The object that the DI E belongs to is specified by dbg. The attribute is
specified by attr,anditsvalueispointedtoby string.

It returns the Dwarf _P_Attri but e descriptor for the attribute on success, and DW DLV_BADADDR
on error.

4.4 Expression Creation

The following functions are used to convert location expressions into blocks so that attributes with values
that are location expressions can store their values as a DW FORM bl ockn vaue. This is for both
.debug_info and .debug_loc expression blocks.

To create an expression, first call dwar f _new _expr () togeta Dwarf _P_Expr descriptor that can
be used to build up the block containing the location expression. Then insert the parts of the expression in
prefix order (exactly the order they would be interpreted in in an expression interpreter). The bytes of the
expression are then built-up as specified by the user.

$Revision: 1.5$ -8- $Date: 1994/05/18 16:56:22 $

Dwar f _Expr dwarf _new_expr (
Dwar f _P_Debug dbg,
Dwarf _Error *error)

The function dwar f _new_expr () creates a new expression areain which alocation expression stream
can be created. It returnsa Dwar f _P_Expr descriptor that can be used to add operators to build up a
location expression. It returns NULL on error.

Dwar f _Unsi gned dwarf_add_expr _gen(
Dwar f _P_Expr expr,
Dwarf _Smal | opcode,
Dwar f _Unsi gned val 1,
Dwar f _Unsi gned val 2,
Dwarf _Error *error)

The function dwar f _add_expr _gen() takes an operator specified by opcode, aong with up to 2
operands specified by val 1, and val 2, converts it into the Dwar f representation and appends the
bytes to the byte stream being assembled for the location expression represented by expr. The first
operand, if present, to opcode isin val 1, and the second operand, if present, isin val 2. Both the
operands may actually be signed or unsigned depending on opcode. It returns the number of bytesin the
byte stream for expr currently generated, i.e. after the addition of opcode. It returns
DW DLV_NOCOUNT on error.

The function dwar f _add_expr _gen() works for all opcodes except those that have a target address
as an operand. This is because it does not set up a relocation record that is needed when target addresses
areinvolved.

Dwar f _Unsi gned dwarf_add_expr _addr (
Dwar f _P_Expr expr,
Dwar f _Unsi gned addr ess,
Dwar f _Si gned sym i ndex,
Dwarf _Error *error)

The function dwarf _add_expr _addr () is used to add the DW OP_addr opcode to the location
expression represented by the given Dwar f _P_Expr descriptor, expr. The value of the relocatable
address isgiven by addr ess. The symbol to be used for relocation is given by sym i ndex, which is
the index of the symbol in the EIf symbol table. It returns the number of bytes in the byte stream for
expr currently generated, i.e. after the addition of the DW OP_addr operator. It returns
DW DLV_NOCOUNT on error.

Dwar f _Unsi gned dwarf_expr_current _of fset (
Dwar f _P_Expr expr,
Dwarf _Error *error)

The function dwar f _expr _current _of fset () returns the number of bytes currently in the byte
stream for the location expression represented by the given W Dwar f _P_Expr descriptor, expr. It
returns DW DLV_NOCOUNT on error.

Dwar f _Addr dwarf _expr _into_bl ock(
Dwar f _P_Expr expr,
Dwar f _Unsi gned *I engt h,
Dwarf _Error *error)

The function dwarf _expr _into_bl ock() returns the address of the start of the byte stream

$Revision: 1.5$ -9- $Date: 1994/05/18 16:56:22 $

-10-

generated for the location expression represented by the given Dwar f _P_Expr descriptor, expr. The
length of the byte stream is returned in the location pointed to by |ength. It returns
DW DLV_BADADDR on error.

4.5 Line Number Operations

These are operations on the .debug_line section. They provide information about instructions in the
program and the source lines the instruction come from. Typically, code is generated in contiguous blocks,
which may then be relocated as contiguous blocks. To make the provision of relocation information more
efficient, the information is recorded in such a manner that only the address of the start of the block needs
to be relocated. Thisis done by providing the address of the first instruction in a block using the function
dwarf | ne_set _address() . Information about the instructions in the block are then added using the
function dwarf_add_l i ne_entry(), which specifies offsets from the address of the first instruction.
The end of a contiguous block isindicated by calling the function dwar f _| ne_end_sequence().

Dwar f _Unsi gned dwarf_add_line_entry(
Dwar f _P_Debug dbg,
Dwar f _Unsigned fil e_index,
Dwar f _Addr code_of fset,
Dwar f _Unsi gned | i neno,
Dwar f _Si gned col um_nunber,
Dwarf _Bool is_source_stnt_begin,
Dwar f _Bool is_basic_bl ock_begin,
Dwarf _Error *error)

The function dwarf_add_| i ne_entry() adds an entry to the section containing information about
source lines. It gpecifies in code_offset, the offsst from the address set using
dwar f dwarf | ne_set _address(), of the address of the first instruction in a contiguous block. The
source file that gave rise to the instruction is specified by fil e_i ndex, the source line number is
specified by |ineno, and the source column number is specified by col um_nunber.
file_index istheindex of the source file in a list of source files which is built up using the function
dwarf _add_file_decl ().

i s_source_stm _begin isaboolean flag that is true only if the instruction at code_addr ess is
the first instruction in the sequence generated for the source line a |ineno. Similarly,
i s_basi c_bl ock_begi n isaboolean flag that is true only if the instruction at code_addr ess is
the first instruction of a basic block.

It returns O on success, and DW DLV_NOCOUNT on error.

Dwar f _Unsi gned dwarf _I| ne_set _address(
Dwar f _P_Debug dbg,
Dwar f _Addr offs,
Dwar f _Unsi gned symi dx,
Dwarf _Error *error)

The function dwarf _| ne_set address() sets the target address at which a contiguous block of
instructions begin. Information about the instructions in the block is added to .debug_line using calls to
dwar f dwar f _add_I i ne_entry() which specifies the offset of each instruction in the block relative
to the start of the block. Thisis done so that a single relocation record can be used to obtain the final target
address of every instruction in the block.

The relocatable address of the start of the block of instructions is specified by of f s. The symbol used to
relocate the address is given by sym dx, which istheindex of the symbol in the EIf symbol table.

$Revision: 1.5$ -10- $Date: 1994/05/18 16:56:22 $

-11-

It returns O on success, and DW DLV_NOCOUNT on error.

Dwar f _Unsi gned dwarf _I ne_end_sequence(
Dwar f _P_Debug dbg,
Dwarf _Error *error)

The function dwar f _| ne_end_sequence() indicates the end of a contiguous block of instructions.
To add information about another block of instructions, a call to dwarf _| ne_set _address() will
have to be made to set the address of the start of the target address of the block, followed by calls to
dwarf _add_I i ne_entry() for each of theinstructionsin the block.

It returns O on success, and DW DLV_NOCOUNT on error.

Dwar f _Unsi gned dwarf_add_di rectory_decl (
Dwar f _P_Debug dbg,
char *nane,
Dwarf _Error *error)

The function dwarf _add_directory_decl () adds the string specified by name to the list of
include directories in the statement program prologue of the .debug line section. The string should
therefore name a directory from which source files have been used to create the present object.

It returns the index of the string just added, in the list of include directories for the object. Thisindex is
then used to refer to this string. It returns DW DLV _NOCOUNT on error.

Dwar f _Unsi gned dwarf_add_fil e_decl (
Dwar f _P_Debug dbg,
char *nane,
Dwar f _Unsi gned dir _i dx,
Dwar f _Unsi gned ti me_nod,
Dwar f _Unsi gned | engt h,
Dwarf _Error *error)

The function dwarf _add_fil e_decl () addsthe name of a source file that contributed to the present
object. The name of thefileis specified by nane. In case the nameis not afully-qualified pathname, itis
prefixed with the name of the directory specified by di r _i dx. dir_i dx istheindex of the directory
to be prefixed in thelist builtup using dwar f _add_di rect ory_decl ().

t i me_nod gives the time at which the file was last modified, and | engt h gives the length of thefilein
bytes.

It returns the index of the source file in the list built up so far using this function, on success. This index

can then be used to refer to this source file in callsto dwarf_add_line_entry(). On error, it
returns DW DLV_NOCOUNT.

4.6 Fast Access (aranges) Operations

These functions operate on the .debug_aranges section.

$Revision: 1.5$ -11- $Date: 1994/05/18 16:56:22 $

-12 -

Dwar f _Unsi gned dwarf_add_ar ange(
Dwar f _P_Debug dbg,
Dwar f _Addr begi n_addr ess,
Dwar f _Unsi gned | engt h,
Dwar f _Si gned synbol _i ndex,
Dwarf _Error *error)

The function dwar f _add_ar ange() adds another address range to be added to the section containing
address range information,

.debug_aranges. The relocatable start address of the range is specified by begi n_addr ess, and the
length of the address range is specified by | engt h. The relocatable symbol to be used to relocate the
start of the address range is specified by synbol _i ndex, which is the index of the symbol in the EIf
symbol table.

It returns a non-zero value on success, and 0 on error.

4.7 Fast Access (pubnames) Operations

These functions operate on the .debug_pubnames section.

Dwar f _Unsi gned dwarf_add_pubnane(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *pubnane_nane,

Dwarf _Error *error)

Thefunction dwar f _add_pubnamne() addsthe pubname specified by pubnamne_narne to the section
containing pubnames, i.e.
.debug_pubnames. The DI E that represents the function being named is specified by di e.

It returns a non-zero value on success, and 0 on error.

4.8 Fast Access (weak names) Operations

These functions operate on the .debug_weaknames section.

Dwar f _Unsi gned dwarf_add_weaknane(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *weak nane,

Dwarf _Error *error)

The function dwar f _add_weakname() addsthe weak name specified by weak_namne to the section
containing weak names, i.e.
.debug_weaknames. The DI E that represents the function being named is specified by di e.

It returns a non-zero value on success, and 0 on error.
4.9 Static Function Names Oper ations

The .debug_funcnames section contains the names of static function names defined in the object, and also
the offsets of the DI Esthat represent the definitions of the functionsin the .debug_info section.

$Revision: 1.5$ -12- $Date: 1994/05/18 16:56:22 $

-13-

Dwar f _Unsi gned dwarf_add_f uncnane(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *func_nane,

Dwarf _Error *error)

The function dwar f _add_f uncnane() addsthe name of a static function specified by f unc_namne
to the section containing the names of static functions defined in the object represented by dbg. The
DI E that represents the definition of the function is specified by di e.

It returns a non-zero value on success, and 0 on error.

4.10 File-scope User-defined Type Names Operations

The .debug_typenames section contains the names of file-scope user-defined types in the given object, and
also the offsets of the DI Esthat represent the definitions of the types in the .debug_info section.

Dwar f _Unsi gned dwarf_add_t ypenane(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *type_nane,

Dwarf _Error *error)

The function dwar f _add_t ypenane() adds the name of a file-scope user-defined type specified by
t ype_name to the section that contains the names of file-scope user-defined type. The object that this
section belongs to is specified by dbg. The DI E that represents the definition of the type is specified by
di e.

It returns a non-zero value on success, and 0 on error.

4.11 File-scope Static Variable Names Oper ations

The .debug_varnames section contains the names of file-scope static variables in the given object, and also
the offsets of the DI Esthat represent the definition of the variables in the .debug_info section.

Dwar f _Unsi gned dwarf_add_var nanme(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *var_nane,

Dwarf _Error *error)

The function dwarf _add_var nane() adds the name of a file-scope static variable specified by
var _nane to the section that contains the names of file-scope static variables defined by the object
represented by dbg. The DI E that represents the definition of the static variable is specified by di e.

It returns a non-zero value on success, and 0 on error.

4.12 Low Level (.debug_frame) operations

These functions operate on the .debug_frame section. Refer to libdwarf.h for the register names and
register assignment mapping. Both of these are necessarily machine dependent.

$Revision: 1.5$ -13- $Date: 1994/05/18 16:56:22 $

-14 -

Dwarf _P_Fde dwarf_new fde(
Dwar f _P_Debug dbg,
Dwarf _Error *error)

Thefunction dwarf_new f de() returnsanew Dwarf _P_Fde descriptor that should be used to build
a complete FDE. Subsequent calls to routines that build up the FDE should use the same
Dwar f _P_Fde descriptor.

It returnsavalid Dwar f _P_Fde descriptor on success, and DW DLV_BADADDR on error.

Dwar f _Unsi gned dwarf_add_frane_ci e(
Dwar f _P_Debug dbg,
char *augnenter,
Dwarf _Smal | code_al i gn,
Dwarf_Smal | data_align,
Dwarf_Smal | ret_addr_reg,
Dwarf _Ptr init_bytes,
Dwarf _Unsigned init_bytes |en,
Dwarf _Error *error);

Thefunction dwarf _add_franme_ci e() createsa Cl E, and returns an index to it, that should be used
torefer tothis Cl E. Cl Esare used by FDEsto setup initial values for frames. The augmentation string
for the Cl E is specified by augnent er. The code alignement factor, data alignment factor, and the
return address register for the CIE are specified by code_align, data_align, and
ret _addr _reg respectively. init_bytes pointsto the bytes that represent the instructions for the
Cl Ebeing created, and i ni t _byt es_| en specifies the number of bytes of instructions.

It returns an index to the Cl E just created on success. On error it returns DW DLV_NOCOUNT.

Dwar f _Unsi gned dwarf_add_frane_fde(
Dwar f _P_Debug dbg,
Dwarf P Fde fde,

Dwarf P Die die,
Dwar f _Unsi gned ci e,

Dwarf _Addr virt_addr,
Dwar f _Unsi gned code_lI en,
Dwar f _Unsi gned sym i dx
Dwarf _Error* error)

The function dwar f _add_frame_f de() addsthe FDE specified by f de tothelist of FDEsfor the
object represented by the given dbg. di e specifiesthe DI E that represents the function whose frame
information is specified by the given fde. ci e specifies the index of the Cl E that should be used to
setup the initial conditions for the given frame. vi rt _addr represents the relocatable address at which
the code for the given function begins, and sym i dx givesthe index of the relocatable symbol to be used
to relocate this address (vi rt _addr that is). code_| en specifies the size in bytes of the machine
instructions for the given function.

It returns an index to the given f de.

$Revision: 1.5$ -14- $Date: 1994/05/18 16:56:22 $

-15-

Dwarf _P_Fde dwarf_fde_cfa_offset(
Dwarf P Fde fde,
Dwar f _Unsi gned reg,
Dwar f _Si gned of f set,
Dwarf _Error *error)

The function dwarf _fde_cfa_offset() appends a DW CFA of f set operation to the FDE,
specified by f de, being constructed. The first operand of the DW CFA_of f set operation is specified
by regP. The register specified should not exceed 6 bits. The second
operand of the DW CFA offset operation is specified by offset.

It returns the given fde on success, and DW DLV_BADADDR on error.

Dwarf _P_Fde dwarf_add_fde_inst(
Dwarf P Fde fde,
Dwarf _Smal | op,
Dwar f _Unsi gned val 1,
Dwar f _Unsi gned val 2,
Dwarf _Error *error)

The function dwarf_add fde_inst() adds the operation specified by op to
the FDE specified by fde. Upto two operands can be specified in vall,
and val 2. Based on the operand specified Libdwarf decides how many
operands are neani ngful for the operand. It also converts the operands
to the appropriate datatypes even they are passed to dwarf_add_fde_inst
as Dwarf _Unsi gned.

It returns the given fde on success, and DW DLV_BADADDR on error.

$Revision: 1.5$ -15- $Date: 1994/05/18 16:56:22 $

CONTENTS

NTRODUCTI ON .
1 Pur pose and Scope
2 Definitions

3 Overvi ew
4
p

e S

Revi si on History

Type Definitions .
CGeneral Descri pt| on

2.1

2.2 Aggregate Types

Menmory Managenent .

3.1 Read-only Properties

3.2 St orage Deal | ocati on

Functional Interface .

4.1 Initialization and Termnat|0n Operat|0ns

4.2 Debuggi ng I nformation Entry Creation .

4.3 Attribute Creation

4.4 Expression Creation

4.5 Li ne Nunber Operations . .

4.6 Fast Access (aranges) Operations

4.7 Fast Access (pubnanes) Operations

4.8 Fast Access (weak names) Operations

4.9 Static Function Names Operations . .
4.10 File-scope User-defined Type Nanes Operat| ons .
4.11 File-scope Static Variable Nanes Operations
4.12 Low Level (.debug frane) operations

COOTHAWN NDNNN NNN NRPRPPRPPE

A Producer Library Interfaceto DWARF
UNIXO International Programming Languages Special Interest Group

ABSTRACT

This document describes a proposed interface to a library of functions to create DWARF debugging
information entries and DWARF line number information. It does not make recommendations as to how
the functions described in this document should be implemented nor does it suggest possible optimizations.

The document is oriented to creating DWARF version 2. It will be proposed to the PLSIG DWARF
committee as soon as that makes any sense.

No proposals like this have ever been submitted to the PLSIG committee....
The proposals made in this document are subject to change.
$Revision: 1.5 $ $Date: 1994/05/18 16:56:22 $

0 UNIX isaregistered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

