
Published in the July/August 1993 issue of The X Journal.

Programming X Overlay Windows

Mark J. Kilgard

�

Silicon Graphics Inc.

Revision : 1:12

September 2, 1993

Abstract

Overlay planes provide an alternate set of frame bu�er bit-

planes which can be preferentially displayed instead of the

normal set of bitplanes. Overlay planes have been com-

mon in high-end graphics systems for some time. Recently,

work has been done by Silicon Graphics to integrate over-

lay plane support into the X Window System. A standard

convention proposed and implemented by Silicon Graphics

allows X client writers to create windows in the overlay

planes. This article describes how to write programs to

utilize overlay planes.

1 Introduction

Overlay planes are a common feature of high-end graphics

systems. Overlay planes provide an alternate set of frame

bu�er bitplanes which can be preferentially displayed in-

stead of the standard set of bitplanes (often called the

normal planes). Overlay planes allow avoiding damage to

an image retained in the normal planes by instead render-

ing into the overlay planes. Pop up menus, dialogs, rubber

banding, and text annotation are all functions which can

make use of overlay planes to minimize screen damage.

Overlays can also be used to achieve transparency e�ects.

Silicon Graphics Inc. (abbreviated SGI) supports over-

lay planes across its full range of graphics hardware. A

large amount of e�ort was expended by SGI to seamlessly

integrate overlay planes support with the X Window Sys-

tem [6, 1, 5].

It is worth noting that overlay planes can be generalized

to an arbitrary number of frame bu�er layers. Underlay

planes are bitplanes that can defer their pixel values to the

pixel values in the normal planes. Additionally, multiple

sets of overlay and underlay planes are possible. In theory,

the notion of normal planes is a relative concept. In prac-

�

Mark graduated with B.A. in Computer Science from Rice Uni-

versity and is currently a Member of the Technical Sta� at Sili-

con Graphics and can be reached by electronic mail addressed to

mjk@sgi.com

tice, it is useful to di�erentiate some layer of bitplanes by

calling them the normal planes. Layers above the normal

planes are considered overlays. Layers below the normal

planes are underlays.

For the purpose of this article, we discuss overlay planes

because they tend to be the most useful and only the most

recent SGI graphics hardware is well-suited for supporting

underlay planes for X windows. Keep in mind the same

basic mechanisms described can also be used to support

underlay planes. Other workstation vendors like Hewlett-

Packard also support X overlay windows.

This article describes support for overlay planes from

an X client writer's perspective, detailing how to create

and manage windows created in the overlay planes using

a convention promoted as a standard by SGI. The fol-

lowing section further explores the usefulness of overlay

planes integrated with a window system like X. The third

section details SGI's Server Overlay Visuals proposal [4]

and provides Xlib programming examples of how to utilize

overlay planes in X. The fourth section discusses various

pitfalls and portability issues when using overlay planes.

The �fth section explores the future possibilities for better

supporting overlays.

2 tility of verlays

It is important to recognize the advantages overlay planes

allow. Overlay planes allow screen repainting to be re-

duced and the implementation of e�cient transparency

e�ects. Rob Gabbard of SDRC [2] has also presented a

strong case that overlays can signi�cantly improve the re-

sponsiveness of user interfaces for 3D applications.

2.1 inimizing Screen epaint osts

Anyone familiar with X or most any other window system

understands that programs must be able to \repair" dam-

aged or freshly exposed regions of their windows. For most

simple applications, regenerating a portion of a window is

1

not very arduous. But the fact still remains that a signif-

icant share of compute cycles and graphics bandwidth is

spent regenerating window contents.

The core X protocol supports a notion of backing store

which can minimize the client costs of regenerating win-

dows. But it greatly increases the X server's burden by

asking the server to maintain in o�-screen memory the

contents of obscured or unmapped windows. A related

core X protocol functionality known as save-unders saves

the contents of windows obscured by a window using save-

unders.

Overlay planes provide another means of minimizing

window regeneration. It is notable that a signi�cant

amount of window damage is due to \popping up" tran-

sient windows such as pop-up or pull-down menus and dia-

log boxes. By creating such transient windows in the over-

lay planes, damage to underlying more permanent win-

dows is avoided.

Notice that overlay planes gain advantage in the same

way save-unders do. They both avoid damage to underly-

ing windows.

But if we examine the two mechanisms closely, we see

that overlay planes have some decided advantages over

save-unders and backing store. First, because hardware is

used to implement overlay planes, there is little overhead

to using them. Backing store and save-unders both have

high software overhead. For save-unders even though the

client does not need to be aware that damage is happening

to windows, the server must still save the pixels in the

frame bu�er and be ready to rewrite them back to the

frame bu�er. But in the overlay case, the pixels in the

underlying window never need to be copied or redrawn

even by the server.

Second, rendering to the obscured window while the

window is still obscured can utilize the graphics hardware's

faster rendering path instead of attempting to divert ren-

dering into often slower o�-screen pixmaps as backing store

does.

Third, with modern graphics hardware, particularly

hardware which supports 3D, the frame bu�er holds much

more information than just the pixel's color. It can also

contain alpha bu�er, accumulation bu�er, stencil bu�er,

and depth bu�er information. So called \deep" frame

bu�ers magnify the costs of moving data o�-screen then

back into the frame bu�er again. And in the case of direct

hardware access graphics libraries, the server is not in-

volved in the rendering making it impossible to e�ectively

retain backing store for such windows.

2.2 ransparency

Along with minimizing screen repainting, overlay planes

can be utilized to generate transparency e�ects e�ciently.

Usually overlay hardware supports a special transparent

pixel value. If this value is drawn into the window, the

pixel value in the layer below \shows through."

Imagine an application which generates annotated

weather maps of the United States. The map of the United

States itself is unchanging but the front lines and temper-

atures and other symbols which are painted on top of the

static map do change.

By utilizing overlay planes, we can quickly redraw the

weather map by only redrawing the meteorological anno-

tations for the map. To do this, we draw the static map

in a window located in the normal planes. Then create

an overlay window as a child of the static map's window.

The background pixel for this window is the overlay planes'

transparent pixel. E�ectively, we see through the overlay

to the map. Now we can draw the annotations in the over-

lay window. When a new set of annotations is to be drawn,

we clear only the overlay window, leaving the static map

untouched, and redraw a new set of annotations.

Of course the same application could be written without

overlays but overlays allow a much more e�cient imple-

mentation by eliminating redrawing of the static map.

Video game style animation can also be e�ciently im-

plemented using overlays. Space ships, asteroids, and

sneaker-wearing hedgehogs can be drawn into an overlay

window while an intricate background window scrolls by

in a normal plane window using transparency e�ects.

2.3 Single in ow ierarc y

One thing worth noting about windows which can exist

in overlay planes is that such windows should exist in the

same window hierarchy as the normal plane windows. In-

put distribution should work no di�erent for windows in

di�erent layers. A user should be able to push/pop win-

dows at will, regardless of what layer they are in. There

should be no restrictions about how windows in di�erent

layers should be parented. Layered windows should ob-

serve the same protocol semantics as normal single layer X

server implementations. The only ways layered windows

should a�ect the server is that higher layers do not clip

layers beneath them and in the existence of a transparent

pixel.

This mode of operation ensures a user need not be aware

of what layer a window resides in and is not exposed to

any layering artifacts (modulo transparency e�ects).

e verlay isuals

onvention

One might expect overlay support for X would require an

extension. In fact, no additional requests or events are

needed to support overlays so a true X extension is unnec-

essary. The core X protocol's visual mechanism provides

a way to create windows of di�erent types. The only thing

which is necessary is to support a way to advertise which

2

visuals are overlay visuals since the core X notion of a

visual does not include layer information.

By leaving a properly formatted property on the root

window of each screen describing what visuals are for over-

lay planes, a client can inspect that property knowing its

format and determine which visuals are overlay visuals.

The included information would also indicate what layer

the visual is in (remember, there can be multiple sets of

overlays) and how transparency is implemented.

It is up to the client to select the visual appropriate to

the client's needs. The standard CreateWindow protocol

request is used to create a window. If the visual speci-

�ed for the CreateWindow request is an overlay visual, the

window will be created in the visual's speci�ed layer. An

Xlib programmer can simply call XCreateWindow with a

isua * of an overlay visual to create an overlay window.

So how does an X client determine what visuals are

overlay visuals? The Overlay Visuals Convention speci�es

that a property named I should

be placed on the root window of each screen support-

ing overlays by the X server. The X server itself cre-

ates the property. The property has a standard format.

It consists of elements (as described in Figure 1) which

specify a visual, the type of transparency supported by

the visual, what layer the visual resides in, and a trans-

parency value which can be treated as a mask or a pixel

value depending on the type of transparency supported.

The I root window property is

expected to be of type I and must

be 32-bit in format.

The transparency type is an enumerated value indicat-

ing how transparency works for the visual. The following

transparency types are possible:

o There are no transparent pixels. The value �eld

should be ignored.

s The value �eld explicitly names a

transparent pixel.

s s Any pixel value which has at least

the same bits set as the value �eld is transparent.

The same visual may appear more than once in the list.

In this case, the union of the pixel values described by the

transparent type and value �elds should all be transparent.

The value of the layer �eld will be the same across all

instances of the multiply listed visual.

3.1 Sample li rogramming nter ace

The convention does not specify an Xlib interface to query

the I property. Client program-

mers wishing to use overlay windows have been forced to

query and decode the property without help from utility

routines. This article includes routines that mimic the

Xlib X et isua In o and X atc isua In o routines,

Name
Type Description

overlay visual
VISUALID Visual ID of visual.

transparent type
CARD32 None ()

TransparentPixel (1)

Transparent ask (2)

value
CARD32 Pixel value or

transparency mask.

layer
INT32 Which layer the

visual resides in.

Figure 1: SERVER OVERLA VISUALS property entry

format.

but are augmented to also provide support for querying

the layering and transparency capabilities of visuals. The

implementations of the routines written in C can be found

in appendices A and B.

X et a er isua In o works like X et isua In o but

instead of using a X isua In o structure as a tem-

plate and to return information on each visual, a

X a er isua In o structure is used which has the

X isua In o structure embedded in it but also contains

�elds for layer and transparency. The normal visual infor-

mation mask bits are extended to support the new �elds.

The routine hides all the work done to query and interpret

the I property.

X atc a er isua In oworks like X atc isua In o

but is extended in the same way X et a er isua In o is

using the X a er isua In o structure. ou can supply

an additional a er parameter for matching a visual in a

speci�ed layer.

As mentioned earlier, a single overlay visual may sup-

port several transparency values. These routines only re-

turn a single transparency type and value.

3.2 ample

To illustrate how to use an overlay window, Appendix C

uses the routines described above to query the server for

an overlay visual and then creates a normal plane win-

dow with a child in the overlay planes completely overlap-

ping its parent. The background pixel value is set to a

transparent pixel. Then like in the weather map example

mentioned earlier, a semi-intricate black on white image

is drawn in the normal planes while red text annotation is

drawn in the overlay planes. Each time a mouse button is

clicked, the overlay planes are cleared and the text is re-

drawn in a di�erent position. The example demonstrates

how the overlay planes can be modi�ed without disturbing

the image in the normal planes.

The example tries to �nd two appropriate visuals to use

in making its \layer sandwich." The code �rst looks at

the default visual and tries to �nd a visual \above" it with

transparency supported. If such a visual is not found, the

code looks for a visual \below" the default visual to use but

3

this requires that the default visual supports transparency.

Note this strategy could fail to �nd an appropriate pair of

visuals in some cases even when two potentially layerable

visuals exist on a given server. The code is meant to be

a relatively short, simple example to elucidate how to use

layers in X; it is not meant to be a piece of production

code.

The window created in the lower layer is the parent and

the window created in the higher layer must be the child.

It is important this ordering is not reversed. The lay-

ered transparency e�ect implies lower layers show through

the transparent pixels of higher levels; not the other way

around.

Because the overlaywindow is a child of the toplevel nor-

mal plane window, if we move the client's toplevel window,

the overlay window moves too. Even though the windows

are in di�erent layers, the window hierarchy still dictates

how windows move and interact.

Also consistent with the window hierarchy is the way

events are distributed for overlay windows. In our exam-

ple, the child covers the entire normal plane window so it

receives all button clicks. Note that an overlay window

receives mouse clicks even if the mouse is located on a

transparent pixel. Transparency just a�ects how the pixel

is displayed. Transparency does not a�ect the clipping re-

gion of a window. Similarly, if a transparent pixel is read

from an overlay window using X etI a e the value read is

not the displayed value but the transparent value for the

pixel. So transparency does not change the value of the

pixel in the window; it only a�ects the color displayed on

the screen.

Appendix D presents one more simple example for a pro-

gram called a erin o that lists the visuals supported by

a server including information about layering and trans-

parency e�ects.

3.3 en or S pport or erlays

In IRIX 4. ,

1

overlay plane support was introduced. SGI's

w otif-based window manager and other SGI X

clients such as the ws terminal emulator make use of

the overlay planes to speed pop-up menus and support ef-

�cient rubber banding. Additionally, the IRIS Graphics

Library allows rendering into the overlay planes. Sample

code is provided demonstrating how to support overlay

planes in otif-based applications.

In the 5. release of IRIX, the SGI X product's overlay

support was substantially re-engineered to improve upon

the original implementation. Both overlay and underlay

visuals are supported on some graphics con�gurations such

as the Reality Engine.

Hewlett-Packard [3,] also supports overlays on some

of their workstations in particular those with CRX24 and

CRX4 graphics hardware. Hewlett-Packard implements

R is SG 's version of the Uni operating system.

overlays by making the default visual be in an -bit overlay

(supporting a transparent pixel). This approach means

most X clients automatically run in the overlay planes.

any other vendors have also implemented overlays for

X or are considering implementing them.

The code presented in the appendices works correctly on

Silicon Graphics and Hewlett-Packard workstations which

support X overlay windows.

sa e onsiderations

By overloading the X notion of visual with layering in-

formation, overlays can be integrated into the X Window

System without an extension or other radical restructur-

ing of the server's operation. Even so, there are a number

of considerations to keep in mind when using overlay win-

dows.

.1 S allower ept s

It is common for the overlay planes to not be as deep as

the normal planes. For example, the Indigo with Starter

graphics (SGI's lowest end graphics platform) supports

-bit deep normal planes but only provides a 2-bit deep

overlay plane. id-range SGI graphics platforms support

4-bit overlays while the normal planes support up to 24-bit

deep normal plane windows. SGI's high end Reality En-

gine does support an -bit overlay. ou can expect deeper

overlay planes in the future but do not be surprised by

shallow overlay plane visuals.

Hewlett-Packard avoids this issue of shallow depths by

have an -bit overlay plane.

When you write a program to use overlay planes, you

should remember that the overlay planes may be substan-

tially shallower than the default visual. In the case of a

2-bit overlay visual, keep in mind that you probably only

have 3 colors to use (since one is transparent). E�cient

use of color resources is important.

Also be advised that creating windows in the overlay

planes generally means using visuals other than the de-

fault visual. ost X programmers always use the default

visual and are not aware of the particular rules necessary

to create a window in a visual other than the default. ou

must always specify a colormap and a border pixel color

or pixmap when creating a window not using the default

visual. Otherwise a ad atc protocol error will occur.

XCreate i eWindow will not be su�cient; you will need

to use the more general XCreateWindow.

.2 erlay olormaps

Colormaps create another area of concern. Normally if

you create windows using the default visual, you use the

default colormap and allocate colors from it. Since most

4

windows use the default colormap, occasions when the col-

ormap is not installed are rare. Since overlays can not

typically use the default colormap and each client ends up

needing to create a unique colormap to use with its overlay

windows, colormap ashing problems are easy to create in

the overlay planes. And generally overlay planes do not

support multiple simultaneous colormaps.

However it is generally true that the overlay planes of-

ten have a distinct hardware colormap from the normal

planes meaning a colormap for the overlay planes and a

colormap for the normal planes can usually be installed si-

multaneously. This is the case on SGI graphics hardware.

If you are new to the practice of using non-default

colormaps, you should note that ac i e and

W ite i e return pixel values for the e ault colormap.

Colormaps created with XCreateCo or a are not created

with preallocated black and white pixels. If you need black

and white pixels, you should allocate them yourself.

Also remember to use X etW Co or a Windows if you

have a window using a colormap not the same as the

colormap of your toplevel window. This allows a win-

dowmanager to install the appropriate colormaps for your

client.

There exists one more caveat to using overlay colormaps.

Because the transparent pixel is preallocated as pixel zero

in SGI X servers, it is impossible to allocate all the col-

ormap cells. SGI has opted to generate a ad oc er-

ror if a colormap for an overlay visual is created with the

oc parameter. Client programs should instead use

oc one when creating overlay colormaps and allocate

colormap cells individually.

Hewlett-Packard's implementation puts the default vi-

sual in the overlay planes making it possible to use the

default colormap.

.3 in ow anager nteractions

Window managers are another consideration when pro-

gramming with overlays. Depending on the window man-

ager, border decoration may or may not be created to

exist in the overlay planes. If the borders are not in the

overlay planes, expose events for underlying normal plane

windows will still be generated when the overlay window

is moved or unmapped due to the damage caused by the

window manager borders. The chief advantage of creating

overlay windows is negated. But if the window manager

does create the borders in the overlay planes, the colormap

used by the windowmanager will be di�erent from the col-

ormap for the client window nearly guaranteeing colormap

ashing.

The best advice is to create toplevel overlay plane win-

dows enabling override-redirect or without any window

manager decoration. Since most uses of toplevel overlays

are for transient windows, this advice is generally easy to

follow.

In summary, due to the fact that overlays are generally

shallower than the normal planes visuals and not the de-

fault visual, there are a number of considerations to take

into account when creating overlay windows. E�orts to

avoid exposes or colormap ashing also means window

manager decoration should generally be avoided for over-

lay windows. Because overlays are used for transient win-

dows mostly, these limitations are generally acceptable if

client writers are aware of them.

uture irections

The Server Overlay Visuals convention is only a starting

point for e�ectively utilizing overlays in X. It exposes the

base functionality but more should be done to improve on

the utility of overlay visuals and windows.

.1 olormap oor ination

As discussed in the previous section, the inability to share

colormaps with the window manager's border decoration

makes it visually unappealing to create window manager

decorated windows in the overlay plans. This problem

could be solved if a convention was established where win-

dow managers would make available (probably through

a property on the root window) the colormap the win-

dow manager intended to use for overlay border decora-

tions. Such a convention might be part of a future revision

to the Inter Client Communication Conventions anual

(ICCC). E�ectively, a default colormap for the overlay

planes would be established. ultiple overlay windows

could share the window manager's overlay colormap to

avoid colormap ashing the same way the default colormap

achieves this end for the default visual.

.2 entralize is al Selection

Certainly a standard programming interface should be de-

veloped for querying overlay visuals. The sample routines

provided in the appendices of this article provide a starting

point for such an interface.

The problem of querying the layering capabilities of

visuals is a subset of the larger v sual sele t on prob-

lem in X. Sophisticated extensions such as PEX and

OpenGL are overloading visuals to describe what ca-

pabilities are available for various classes of windows.

The X atc ender ar ets request in PEX 5.1 []

determines what visuals can be used for PEX render-

ing. OpenGL [] supplies the C oose isua and

etCon i routines to perform visual selection.

penG has a very sophisticated notion of frame bu�er capabil-

ities e pressed through visuals. n fact, the frame bu�er layer

in penG terminology is one of many capabilities that

can be ueried via the penG visual selection mechanism.

5

While most X programmers simply use the default vi-

sual, in the future X programmers can expect to choose

non-default visuals to suit sophisticated needs. Imagine

how di�cult visual selection might be if multiple ad hoc

sources of visual information had to be consulted and it

was up to the client program to combine all the infor-

mation and properly select the most appropriate visual.

Anticipating the complexity of this task, progress should

be made in developing a single, centralized mechanism for

determining the capabilities of supported visuals.

In the future, querying the I

property could be denigrated in favor of a more general

mechanism. For now, the property is the standard mecha-

nism and future servers will be expected to continue sup-

porting it even if an improved visual selection mechanism

is introduced.

.3 e a lt erlay is als

As discussed earlier in the paper, it can be reasonable to

start the X server having the default visual be an overlay

visual. This is the approach taken by Hewlett-Packard.

This would mean common X clients automatically use the

overlay planes for creating windows. The normal planes

could then be used for complex, probably 3D applications

with scenes that are di�cult to regenerate. Interacting

with basic X clients in the overlay planes would not disturb

the complicated scene thus avoiding expensive redraws.

. oo s in or erlays

Supporting layers in the X11R5 and previous IT release

of X was di�cult because the the Device Independent X

(DIX) code in the server implicitly assumes that all win-

dows reside in the same layer. For overlays, this assump-

tion is not true. The code to do window tree validation

inside the X server is complicated by layers. With X11R6

you can look forward to the proper hooks existing in DIX

to support layers without vendor modi�cation to the DIX

layer.

onclusions

Overlay visuals and windows are not common across a

wide spectrum of X servers yet. With the implementation

of overlay visuals now properly understood and a standard

convention for advertising such visuals available, overlays

in X should become a common capability of high-end X

servers.

Hopefully the information in this article has provided

programmers with enough information to start experi-

mentingwith overlays in X and integrating overlay support

into their applications. It is also hoped X users will begin

demanding overlay support in their X servers and enjoy

the advantages of overlays in their everyday work.

Ac no led e ents

Phil Karlton (SGI) initially proposed the server overlay

visuals convention to the X Consortium. David Wiggins

(Intergraph) contributed to the proposal. Todd Newman

(SGI) did the �rst implementation of overlay visuals; Pe-

ter Daifuku (SGI) implemented SGI's current implementa-

tion for IRIX 5. . ohn arks (Hewlett-Packard) helped

me ensure the example code worked on Hewlett-Packard

workstations too.

6

A ayer til

.

.

.

ayer til c

.

.

.

.

.

.

.

.

.

.

. .

. .

. .

.

layerde o c

. .

. .

.

.

.

.

.

.

1

. .

.

. .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

11

.

.

.

.

.

.

.

. .

layerinfo c

. .

.

.

12

. .

. .

. .

. .

.

.

.

.

13

eferences

[1] Peter Daifuku, \A Fully Functional Implementation

of Layered Windows," The X esour e ro ee n s

o the th nnual X Te hn al on eren e, O'Reilly

Associates, Issue 5, Winter 1 3.

[2] Rob Gabbard, \Addressing the Problems Facing the

Integration of 3D Applications With odern User In-

terfaces," SDRC Graphics and User Interface Group,

unpublished, uly 1 2.

[3] Steven Hiebert, ohn Lang, Keith archington,

\Sharding Overlay and Image Planes in the Star-

base/X11 erge System," e lett a ar Journal,

December 1 .

[4] Phil Karlton and DavidWiggins, \Describing Overlay

Visuals," X Consortium communication, 1 1.

[5] ark . Kilgard, \Going Beyond the IT Sample

Server: The Silicon Graphics X11 Server," The X

Journal, SIGS Publications, anuary 1 3.

[6] Todd Newman, \How Not to Implement Overlays in

X," The X esour e ro ee n o the th nnual X

Te hn al on eren e, O'Reilly Associates, Issue 1,

Winter 1 2.

[] OpenGL Architecture Review Board, pen e

eren e anual The o al re eren e o ument or

pen elease , Addison Wesley, 1 2.

[] \PEX Protocol Speci�cation and Encoding Version

5.1P," The X esour e, O'Reilly Associates, Spe-

cial Issue A, ay 1 2.

[] Desi Rhoden and Chris Wilcox, \Hardware Accelera-

tion forWindow Systems," omputer raph s, Asso-

ciation for Computing achinery, Volume 23, Num-

ber 3, uly 1 .

14

