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1.0 Introduction

1.1 Scope

This report provides a complete description of the core functionality of IRIS

PerformerTM, and many Performer utility functions. It is intended to help developers

determine whether IRIS Performer is suitable for their application, and to provide an

introductory overview for programmers. For more detailed information on writing

applications using IRIS Performer, see the IRIS Performer Programming Guide.

1.2 Related Documents

IRIS Performer Programming Guide, Silicon Graphics, Inc., 007-1680-020.

IRIS Performer: A High Performance Multiprocessing Toolkit for Real-Time 3D

Graphics, John Rohlf and James Helman, SIGGRAPH ‘96 Conference Proceeding.

Designing Real-Time Graphics for Entertainment, Course notes for SIGGRAPH ‘96

Course #6.

Graphics Library Programming Guide, Volumes I and II. Silicon Graphics, Inc.

Graphics Library Programming Tools and Techniques, Silicon Graphics, Inc.

1.3 Description of IRIS Performer

IRIS Performer is a toolkit for developers of real-time, 3D graphics applications. It is a

set of libraries which run on all Silicon Graphics (graphics-equipped) computer sys-

tems. Performer comes with documentation, sample code and example visual databases.

IRIS Performer provides a consistent set of features and application programming inter-

face (API) across all Silicon Graphics platforms.

1.4 Relationship to IRIXTM and the Graphics Library

Performer encompasses the functionality of the graphics library (OpenGL or IRIS GL)

and IRIX with REACTTM, and provides additional high-level functionality that is useful

in real-time graphic applications. Performer applications have full, direct access to

REACT and the graphics library. Figure 1 shows the relationship of IRIS Performer to

the other elements of the software system.
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FIGURE 1. IRIS Performer Layer Diagram

1.5 Target Applications

IRIS Performer is designed for use by applications which allow their users to interac-

tively “fly through” a visual database in real-time, viewing a subset during each frame.

Performer is designed for applications with the following characteristics:

• Require maximum graphics performance from a Silicon Graphics system

• Render views of a dynamic hierarchical scene graph description

• Require fast and/or fixed visual frame rate

• May run on a multiprocessor system

• Support interactive user interfaces or immersive displays

Some specific applications that Performer is well-suited for include:

• Classic visual simulation for training and engineering

• Development and deployment of interactive games

• Scripted or live character animation

• Virtual sets and other broadcast video applications

• Walk-through of large architectural and CAD databases
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1.6 IRIS Performer Design Objectives

IRIS Performer was created to help software developers use Silicon Graphics systems

successfully in real-time graphics applications. In meeting this overall goal, Performer

fulfills a set of interrelated objectives that are described in the following sections.

1.6.1 Maximum Graphics Performance

The primary objective of Performer is to enable applications to achieve maximum

graphics performance on all Silicon Graphics hardware platforms, both current and

future. All engineering trade-offs encountered during the development of Performer are

resolved in a way that optimizes performance.

1.6.2 Scalable Application Performance

The Silicon Graphics product family spans a broad range from personal desktop

workstations to large multiprocessor racks with multiple graphics subsystems. A

corollary to providing maximum performance on every Silicon Graphics platform is

providing scalable performance across platforms. That is, the same application should

run at maximum speed on every platform without modification. Performer enables an

application developed on an IndyTM to run faster when it is moved to an Indigo2

IMPACTTM, and much faster still when it is moved to a multiprocessor Onyx

RealityEngine2TM. As Silicon Graphics introduces systems with faster CPUs, increased

memory bandwidth, and more powerful graphics subsystems, Performer will enable an

existing application to take full advantage of these improvements without recompilation

or source code changes.

1.6.3 Image Generator Features

Silicon Graphics platforms and the OpenGL library are suitable for a wide range of 3D

graphics applications; including mechanical design, molecular modelling, image pro-

cessing, visual simulation, film and video, location-based entertainment, and scientific

data visualization. The large volume of systems that Silicon Graphics manufactures

allows Silicon Graphics hardware to be significantly less expensive than special-

purpose Image Generators (IGs) of comparable performance. Enhancing the general

purpose functionality of OpenGL, Performer adds specialized functionality that is use-

ful for visual simulation and other real-time graphics applications. A Silicon Graphics

platform with Performer provides the best of both worlds; low cost, open hardware with

a robust and complete IG feature set.

1.6.4 Simple Access to Complex Features

Implementing certain advanced graphics features requires a complex sequence of

graphics library commands.

For each feature supported, Performer provides an identical API for that feature on

every Silicon Graphics platform. This ensures that an application can run across the

product line without modifications, and take full advantage of the acceleration provided

by each platform’s hardware.
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Similarly, Performer enables Silicon Graphics to provide a smooth transition path for

applications using advanced features which will evolve in future hardware generations.

The goal of Performer is to make improved hardware result in immediate improvement

in the application’s performance, without requiring application code changes.

1.6.5 Assist Third-Party Developers

Performer incorporates functionality from which all real-time graphics applications can

benefit, such as the ability to select and render only the visible scene from a larger visual

database. By incorporating commonly used functionality, Performer frees third party

developers to focus on differentiated functionality specific to their target applications.

A developer’s license for Performer is priced low to ensure that its cost never interferes

with a decision to use Performer. Silicon Graphics allows developers to include a run-

time version of Performer with their applications without a license fee.
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2.0 Summary of Features

This chapter describes the features of IRIS Performer, and the benefits those features

offer to developers of real-time graphics applications.

2.1 Graphics Performance Optimizations

To achieve maximum graphics performance in an application, a developer requires not

only mastery of real-time graphics techniques, but also specialized knowledge of the

target graphics subsystem. Performer incorporates both types of expertise. It incorpo-

rates techniques for reducing the amount of data passed to the graphics subsystem, skill

in OpenGL and IRIS GL programming, and detailed knowledge of the operation of the

graphics subsystem’s hardware and firmware. Performer is the vehicle Silicon Graphics

uses to make the benefits of detailed knowledge of its graphics subsystems available to

developers.

While prior experience may lead developers to expect that using a toolkit will simplify

development at the cost of reduced performance, this is not true with Performer.

Because of the specialized knowledge of the hardware that Performer incorporates

and the difficulty of fully matching its performance optimizations (including multipro-

cessing), developers will achieve higher graphics performance using Performer than

using either OpenGL or IRIS GL alone.

The following sections provide an overview of the techniques used by Performer to

optimize graphics performance.

2.1.1 Static Data Optimizations

Performer includes two techniques which increase drawing speed by optimizing the

representation of visual data in memory. These techniques are usually performed at the

time the visual database is initially loaded from disk.

2.1.1.1 Geometric Primitive Optimizations

The graphics primitive that all current Silicon Graphics systems draw fastest is a

triangle strip. Performer will convert as many other graphics primitives as possible into

triangle strips in order to optimize drawing performance. This is a hardware-specific

optimization. If a future graphics subsystem is optimized for drawing some other type

of primitive, an additional database optimization module will be added to Performer to

support this graphics subsystem.

2.1.1.2 Flattening

Another technique for static data optimization is called flattening. Flattening increases

drawing speed at the expense of increased memory usage. This technique can be applied

to objects which appear multiple times in the database, and which are represented as a

master template plus a transformation matrix for each instance. The speed at which

these objects are processed in real-time can be increased by pre-applying the transfor-

mation and storing each instance of the object separately. For example, trees are often

represented as a single object located at the origin, then instanced using a set of transfor-

mation matrices which cause each instance of the tree to be drawn at a different location
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in the scene. When flattening is applied, each transformation matrix is pre-applied to the

object, and the set of objects which result are each stored separately.

Flattening can be used in a similar manner to increase the drawing speed of self-

advancing geometry sequences. These are described in the section “Self-Advancing

Geometry” on page 7.

2.1.2 Visibility Culling

A common technique for improving graphics subsystem performance is to sort the

visual database prior to drawing each frame to determine which objects will be visible

in that frame. Only visible objects are subsequently passed to the graphics subsystem,

thus reducing its load. Because it “culls out” all objects not visible in the current frame,

this technique is called visibility culling. Performer uses the CPU subsystem to perform

visibility culling, which effectively shifts work to the CPUs from the graphics system.

As will be discussed in the section “Transparent Multiprocessing” on page 7, this tech-

nique is easily adapted to utilizing multiple processors when they are available.

2.1.3 Drawing Optimizations

An additional performance benefit of visibility culling is that it enables Performer

(optionally) to sort the geometry in each visual frame into an order that optimizes draw-

ing performance. Sorting the data in each frame before drawing it offers several oppor-

tunities for performance optimization, as described in the following sections.

2.1.3.1 Minimizing Graphics Subsystem State Changes

Each OpenGL or IRIS GL command passed to the graphics subsystem inherits the state

established by the preceding sequence of OpenGL or IRIS GL commands. Changing

graphics subsystem state always incurs overhead that decreases performance, but some

state changes are much more costly than others. Performer can draw a frame in the order

which minimizes the most costly state changes.

2.1.3.2 Eliminating Redundant State Specifications

A related feature of Performer is that it tracks the current state of the graphics subsystem

and avoids issuing state specification commands which would be redundant. This

improves performance because even commands which re-specify the existing state will

incur graphics subsystem overhead.

2.1.3.3 Optimized Rendering Routines

Performer can group the data to be drawn in a frame according to graphics primitive

type. To fully exploit this grouping, Performer includes a set of over 700 unrolled ren-

dering routines; one for each combination of graphics primitive type and graphics sub-

system state. Each rendering routine contains no “if” tests. Once activated, a routine

passes a group of OpenGL or IRIS GL commands to the graphics subsystem using the

tightest code loop possible.

2.1.4 Level of Detail Switching

Another common technique for conserving resources in the graphics subsystem is

level-of-detail (LOD) switching. For each object to which the technique is applied, the
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developer creates a series of models covering a range of polygonal complexity.

Performer will automatically draw progressively simpler models as the object moves

farther away from the eyepoint. Performer enables the developer to specify the range

over which each model is drawn, and offers a choice of techniques for visually smooth-

ing the transition between models. When managed properly, LOD switching can signifi-

cantly reduce the workload on the graphics subsystem without reducing the perceived

resolution of the scene.

In order for Performer to use level of detail switching when drawing an object, a

developer must include multiple models of the object in the visual database, each with

a different level of detail. (Among applications which use this technique, three or four

different levels of detail is common.)

2.1.5 Transparent Multiprocessing

Visibility culling conserves graphics subsystem resources by using the CPU subsystem

to pre-process each frame, thus moving work from the graphics subsystem to the CPU

subsystem. The CPU subsystem also executes the code which passes vertex data to

the graphics subsystem’s hardware. In a typical real-time graphics application, the

application program runs on the CPU subsystem as well. Performer enables these CPU

subsystem tasks (and others described in subsequent sections) to be spread across

multiple CPUs without requiring changes to the application software. By increasing the

amount of work that can be off-loaded from the graphics subsystem to CPU subsystem

without causing it to become the system bottleneck, multiprocessing increases graphics

performance. More generally, Performer enables applications which are much larger

than a single CPU can support to achieve the maximum performance available from the

graphics subsystem.

2.2 Real-Time Graphics Features

Performer is tailored for a particular class of applications; i.e. real-time graphics. The

way in which Performer organizes data, and what Performer “knows” about how that

data will be used enables it to incorporate high-level functionality that is useful in real-

time graphics applications. These features are described in the following sections.

2.2.1 Intersection Testing

Performer will determine the point of intersection between a group of line segments

and a scene. For example, an application can use intersection testing to detect

collisions between objects in a scene, to maintain contact between the “ground” and

a vehicle being driven through the scene, or to pick objects with the mouse. To use

intersection testing, the application passes a set of line segments to Performer. For

each intersection, Performer returns the intersection point and the identification of the

intersected primitive.

2.2.2 Self-Advancing Geometry

Performer supports self-advancing sequences of geometric transformations. These

can be used to add animation to geometric models. During modelling, the programmer

defines the sequence of transformations to be applied to the geometry. When the
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self-advancing geometry sequence is triggered, Performer steps through the sequence of

transformations at a fixed rate (defined in wall clock time). To the person watching the

visual display, the object appears to move or change, just as cartoon characters created

using cell animation appear to move.

A simple example of the application of self-advancing geometry is explosions. When an

explosion is triggered, a self-advancing sequence can be used to display polygons flying

out from the center, followed by rising flames, and then smoke. Self-advancing geo-

metry can be used to handle any non-interactive animated behavior. The behavior is

non-interactive because the self-advancing sequence of spatial translations cannot be

steered by a user, but instead will proceed the same way each time it is triggered.

2.2.3 Fixed Frame-Rate Operation

For applications in which maintaining a fixed frame rate is a primary objective,

Performer provides support for dynamically reducing detail within the frame as needed

to maintain the frame rate. In general, maintaining a fixed frame rate requires that the

CPU and graphics subsystems can complete the processing and drawing of every

possible scene in the visual database within the frame time. Database tuning is the

most important factor in meeting this requirement. From a practical standpoint, how-

ever, tuning for every possible visual scene in a database is usually impossible. The

LOD switching capability provided by Performer can be used to provide additional mar-

gin to ensure that an application with a well-tuned database can maintain a fixed frame

rate in all cases.

There are two capabilities which underlie the fixed-frame-rate support in Performer.

One is the ability to determine when the graphics subsystem is approaching the limit of

its capacity. The other is the ability to dynamically reduce the load on the graphics sub-

system to ensure that it can draw each visual frame within the frame time.

In order to determine when the graphics subsystem is approaching the limit of its capac-

ity, Performer can monitor the percentage of the frame time that is required to draw each

visual frame. This parameter is called stress.

LOD switching (see “Level of Detail Switching” on page 6) provides a means for Per-

former to dynamically reduce the load on the graphics subsystem in high-stress scenes

by drawing less detailed models. When properly applied, the overall visual experience

can be optimized by preventing frame rate changes at the expense of somewhat lower

visual detail.

Performer also makes the stress parameter available to the application. This enables the

application to help maintain a fixed frame rate, provided it has a means of reducing

graphics subsystem load. For example, the application could move the far clipping

plane closer to the eyepoint, or dynamically designate some objects to be omitted from

the rendered frame.
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2.2.4 Database Paging

Performer 2.0 provides support for an application which uses a visual database that is

larger than the physical memory of the system on which it executes. An application can

invoke Performer to replace some portion of the database in memory with a new portion

of the database from disk. These operations can occur in the background without affect-

ing real-time performance. The application is responsible for determining when to load

additional data into memory from disk, and which portion of the existing data in mem-

ory should be overwritten.

2.3 Architectural Features

Silicon Graphics hardware platforms include architectural features that make them

inherently well suited for real-time graphics applications. The following sections

describe Performer functionality that is based on these architectural features.

2.3.1 Immediate Mode Rendering

Onyx incorporates a fully symmetric, shared memory architecture that uses a 1.2GB/S

system bus. (The system bus interconnects the CPUs, graphics subsystem(s), and

I/O subsystems with the shared memory.) Onyx is especially well suited to real-time

graphics applications because its architecture and high speed bus enable it to employ

immediate mode rendering. That is, the entire frame of data is drawn from shared

memory during each frame time.

By contrast, display list systems cache frame data within the graphics subsystem. This is

done to reduce the required data bandwidth into the graphics subsystem. The display list

technique is necessary in systems where a physically separate image generator is inter-

connected with the CPU subsystem using a network or other low-speed link. Display

list techniques pose a significant limitation to the performance of interactive real-time

graphics applications, because they lengthen the time needed for the application to read

the visual data in the current frame. Because the graphics subsystem has the only copy

of the currently visible data, the application must send an inquiry over the low-speed

link to the graphics subsystem, then wait for the graphics subsystem to process the

inquiry and return the results. This approach increases transport delay, and can cause

database inquiries to negatively affect drawing performance.

The shared memory architecture of Onyx allows the application to have direct read/

write access to the same copy of the data that is used by the IG. This approach mini-

mizes transport delay, and enables the application to make inquiries without adding any

additional workload to the IG. The extremely high bus bandwidth of the Onyx architec-

ture ensures that the application’s memory accesses do not affect the performance of the

IG, and vice versa.

Performer delivers the full benefit of the Onyx immediate-mode architecture to real-

time graphics applications. Performer maintains a single copy of the visual data which

can be shared among the application, the draw process, and any other process that needs

access to the data. Instead of copying data between the CPU subsystem and the graphics

subsystem, Performer passes pointers to the single copy of the data, which resides in
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shared memory. An application can directly make inquiries of the data displayed in the

current frame, or modify data which will be drawn during the next frame.

Performer enables an application to modify the position, shape, color, lighting and tex-

ture of objects in the visible scene.

2.3.2 Support for Multiple Graphics Subsystems

Onyx systems can be configured with up to three RealityEngine2 graphics subsystems,

and Performer greatly simplifies utilization of multiple graphics subsystems in an appli-

cation. For example, multiple graphics subsystems can be slaved together to provide

multiple out-the-window views from a single eyepoint. Once the relationship among the

subsystems is established, the application specifies a single viewpoint for each frame,

and Performer renders the correct views.

2.3.3 Support for Multiple Channels

When configured with a Multi-Channel Option (MCO), Onyx can source multiple video

outputs from a single graphics subsystem. Performer enables an application to generate

multiple views into a visual database every frame, and display each view on a separate

video output channel.

The views can either be independent or linked. For example, independent views are use-

ful in a game application where each video output supports a different player. Linked

views could be used to provide multiple out-the-window views for a single player.

Another common use of linked views is to create sensor simulations in military aircraft.

In this case, the sensor viewpoint may be the same as the out-the-window view appear-

ing on a different channel, but a different look-up-table can be used to simulate sensor

effects such as night vision or thermal scans.

Performer applications can employ multiple channels without having separate video

output channels. For instance, a separate channel can be used to generate a radar

display which replaces part of the out-the-window scene in the display of a flight

simulation game.

2.3.4 Scalable Graphics Performance

Performer incorporates a layered architecture which enables application performance to

scale up with increasing hardware capability. The upper layer (libpf) is the same for all

Silicon Graphics platforms, while the lower layer (libpr) comprises a set of hardware-

specific rendering modules. libpf provides a consistent API across platforms and sup-

ports transparent multiprocessing. libpr enables Performer to provide fully optimized

rendering on each graphics subsystem. As a result, the performance of an application

based on Performer will increase when it is moved to a higher performance graphics

subsystem, and will also increase when additional CPUs are made available.
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2.3.5 Database Independence

Performer does not define its own database format. Instead, it can use data that has been

stored in any of a variety of formats. This enables an application to be independent of

the modelling tools used to create the database the application displays. Performer also

enables applications to combine models generated by different tools seamlessly into a

single visual scene.

2.4 Visual Effects

2.4.1 Environmental Model

Performer includes a set of functions that clear the screen between each visual frame,

and implement various atmospheric effects. Collectively, these functions are known as

the earth/sky model. The colors of the sky, horizon and ground can be changed in real-

time to simulate a specific time of day.

The complexities of atmospheric effects on visibility are approximated within

Performer using a multiple-layer sky model, set up as part of the earth/sky. Separate

layers represent the effects of ground fog, clear sky, and clouds.

The earth/sky model in Performer enables an application to easily move from a

featureless background to a natural outdoor background.

2.4.2 Billboards

“Billboards” refers to a technique commonly used in visual simulation applications to

reduce the graphics subsystem resources needed to display complex objects that are

roughly symmetrical about one or more axes. A classic application of billboards is to

represent a tree using a single textured quadrilateral polygon. The billboard automati-

cally rotates to face the viewer at all times. A billboard can produce visually acceptable

results using far fewer polygons than would be required for a solid model. Accordingly,

billboards reduce both transformation and pixel fill demands on the graphics subsystem

at the expense of some additional host processing. Other objects that are well suited to

billboards are smoke, fire and clouds.

2.4.3 Light Points

Light points are light sources which are visible, but which do not illuminate geometry in

the frame. Light points are used in flight simulation applications to simulate runway

lighting, taxiway lights, and street lights. Performer 2.0 can automatically attenuate the

brightness of light points as a function of their distance and angle from the viewpoint.
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3.0 Basic Real-Time Operation

This chapter introduces the dynamic interaction among the functional elements of Per-

former, as well as a number of terms. Both of these will be described in more detail in

subsequent chapters.

The following diagram shows the functional elements and data flow required for basic

Performer operation; i.e. loading a visual database from disk and then drawing frames in

real-time. The relationship among these functions is shown in Figure 2. They are

described in the following sections.

FIGURE 2. Functional Block Diagram for Basic Real-Time Operation

3.1 Loading the Visual Database

Prior to beginning real-time operation, the application invokes a loader to read the

visual database from disk into memory. In some cases the target platform is configured

with enough physical memory to contain the entire database, and database loading is

completed during initialization. In other cases, the application loads a portion of the

database during initialization, then begins real-time operation and concurrently loads

additional segments as needed.

As Performer loads the visual database from disk, the data is converted to a set of

objects called nodes. Performer stores the nodes in a hierarchy called a scene graph.

A scene graph is the in-memory representation of a disk-based visual database. Both

the nodes and their organization contain information that Performer uses to efficiently

render visual frames.
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Once the scene graph has been created, the application can invoke Performer functions

to perform static optimizations which increase the application’s performance during

subsequent real-time operation.

3.2 Visibility Culling

Visibility culling is performed by the cull traversal module. (The performance advan-

tage provided by visibility culling is described on page 6.)

To use visibility culling, the application first defines a viewing frustum in terms of its

angular field-of-view in two dimensions, and its near and far clipping planes. Geometri-

cally, the viewing frustrate is a truncated pyramid like the one in Figure 3.

FIGURE 3. Specification of the Viewing Frustum

For each frame drawn, the application specifies the placement of the viewing frustum

within the visible database by passing eyepoint and gaze direction information to the

cull traversal. The cull traversal then processes (“traverses”) the scene graph to deter-

mine which objects are at least partially visible in the current frame. It does this by

recursively comparing the viewing frustum to the bounding volume which contains all

of the geometry within each node encountered during the traversal. For more informa-

tion on the cull traversal and hierarchical bounding volumes, see the sections “Scene

Graph Characteristics” on page 17, and “Cull Traversal” on page 27.
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Performer supports two operational modes of the cull traversal. In one mode, the cull

traversal passes a pointer to each visible object to the draw function as soon as the

object’s visibility is determined. In the other mode, the cull traversal builds a list of

pointers to nodes containing geometry that is visible in the current frame. This list of

pointers is called a pfDispList (Performer display list)
1
.

As a pfDispList is built, the items in it are sorted by their graphics mode (i.e. primitive

type, attributes, and texture). The sorting order is hardware-specific and corresponds to

the order that will achieve maximum drawing performance on the target graphics sub-

system. Creating a sorted pfDispList enables Performer to organize the nodes in the

scene graph for optimum performance of the cull traversal, yet draw the frame in the

order that is optimal for the hardware. Because the cull traversal sorts pointers to the

data, the actual data is never copied in memory.

The performance benefits of creating a pfDispList are described in the section

“Drawing Optimizations” on page 6. For more information of how pfDispList sorting

is implemented, see the section “Sorting Objects To Optimize Drawing Performance”

on page 28.

3.3 Drawing

Pointers to nodes which contain visible geometry are passed from the cull traversal to

the draw traversal.

The draw traversal makes OpenGL or IRIS GL library calls, which in turn pass

commands to the graphics subsystem hardware. The draw function consists of over

700 routines, each of which is optimized to draw one combination of specifications

(primitive, attribute list, attribute binding). Because the Cull Traversal has already

sorted the display list by specifications, all “if” tests can be eliminated from the draw

routines. For example, for a collection of triangles which have colors defined per-

primitive (i.e. on color per triangle), the corresponding rendering routine does not

need to test whether a color should be sent down with each vertex.

1. Performer employs immediate mode rendering, not display list rendering. Whereas a conven-
tional display list contains the data to be drawn, a pfDispList contains only pointers to the data.
The draw function in Performer reads data from the scene graph and passes it directly to the
graphics subsystem hardware. The data is never copied from one memory location to another.
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4.0 Scene Graph Characteristics

A scene graph is a hierarchical structure composed of interconnected database units

called nodes. Scene graphs and nodes have an implicit set of characteristics which are

integral to the functioning of Performer. These are described in the following sections.

4.1 Traversal Order

Performer processes its database using functions which visit the nodes and operate on

them in a predetermined order: top to bottom; left to right. This database processing is

generically referred to as traversing or traversals. Specific types of traversals are

described in more detail in Section 6.0, “Traversals,” on page 27.

4.2 Traversal Control

Nodes include a traversal mask to allow the application to mask off subgraphs of the

scene from the traversal functions. Separate masks are used for each type of traversal

supported. A node (and the subgraph beneath it) is traversed only if the node’s mask bit

for that traversal is set. This allows multiple databases to coexist in the same scene

graph. For example, a scene graph may contain simpler geometry for intersection test-

ing than for rendering in order to reduce the time spent in the intersection traversal.

4.3 State Inheritance

In addition to providing a logical ordering of its nodes, the scene graph hierarchy

defines how state is inherited between nodes during traversals. Specifically, state is

inherited from top down only. The absence of any left-right or bottom-up inheritance

allows arbitrary pruning of the scene graph during a traversal. It also allows paralleliza-

tion of a single traversal because subgraphs can be traversed independently.

The only type of state for which Performer directly supports inheritance is 3D

transformations, but user callbacks may cause other types of state to be inherited.

3D transformations (or more simply, “transformations”) are 4x4 homogeneous

matrices which specify scaling, rotation, and translation. Both static and dynamic

transformations are inherited, and transformations that inherit other transformations

are combined, allowing chained articulations and complex modelling hierarchies.

Graphics subsystem state variables which the Cull Traversal uses to sort OpenGL or

IRIS GL commands are specifically NOT inherited, since they are always contained in

leaf nodes at the bottom of the hierarchy. Grouping the primary specification of graphics

state in leaf nodes rather than internal nodes greatly simplifies the task of sorting by

graphics mode.
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4.4 Hierarchical Bounding Volumes

The scene graph also defines a hierarchy of bounding volumes which are used to

accelerate the cull and intersection traversals. Each node has a bounding volume that

encloses all geometry defined in the sub-tree lying underneath that node. Performer

automatically recalculates these bounding volumes when geometry or scene graph

topology changes.

While hierarchical bounding volumes support optimization of the cull and intersection

traversal, the application’s scene graph must be structured properly for this optimization

to be realized. In general, objects that are spatially close together should be organized

into one node. For the same reason, nodes that are spatially clustered should be

organized into one group. Also, traversal performance can be better optimized for

a deep hierarchy that for a flat one.

For more information on how to organize data in a scene graph, refer to the IRIS

Performer Programming Guide.
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5.0 Nodes

Performer defines approximately 15 node types. (For a complete list, refer to the IRIS

Performer Programming Guide.) All node types fall into three basic classes: root; inter-

nal; and leaf. Node type names follow the convention pf<name>; e.g. pfSequence.

5.1 Root Nodes

A root node is the top node of a scene graph and is used to refer to the entire scene graph

when invoking a traversal. pfScene is the one type of root node supported by Performer.

5.2 Leaf Nodes

All visual geometry data contained in a scene graph is contained in leaf nodes. These

data consist of geometry, attributes of the geometry, and elements of graphics subsystem

state at the time the geometry is drawn (e.g. texture). The combination of the data in a

leaf node and the global graphics subsystem state data (e.g. lighting model) maintained

by pfState fully specify the rendered appearance of a visual object. See “Managing the

State of the Graphics Subsystem” on page 39 for more details.

pfGeodes (GEometry nODES) are the most commonly occurring leaf nodes because

pfGeodes are used to represent most types of visual geometry that can occur in a scene

graph. In addition to pfGeodes, there are three other types of leaf nodes: pfBillboard

nodes, pfLightSource nodes, and pfLightPoint nodes. These three node types implement

the visual simulation features for which they are named, as described in the section

“Visual Effects” on page 11.

5.2.1 pfGeodes

pfGeodes contain a list of data structures called pfGeoSets, which in turn contain visual

geometry data. Each pfGeoSet references a pfGeoState, which contains the specification

of graphics subsystem state required to correctly render the geometry in the pfGeoSet.

(Note that pfGeoSets and pfGeoStates are not nodes themselves, but are elements of a

PfGeode node.)

5.2.1.1 pfGeoSets

A pfGeoSet is a collection of geometry of a single type, where a type is defined by its:

• Geometric primitive: points, lines, line strips, triangles, quadrilaterals (quads), or

triangle strips

• Attribute lists: vertex coordinates, colors, normal, and texture coordinates

• Attribute bindings: per-vertex, per-primitive, overall, or off
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FIGURE 4. pfGeoSet Structure

By creating a priori groupings of geometric primitive types, pfGeoSets enable Per-

former to use a set of specialized, extremely tight rendering loops to pass the data to the

graphics subsystem. The loops are specialized and extremely tight in that they contain

no “if” statements for determining which geometric primitive type is to be drawn.

Instead, Performer includes a separate rendering routine for each geometric primitive

type. Once Performer has selected the appropriate rendering loop for drawing a

pfGeoSet, no further “if” tests are required to draw that pfGeoSet.
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Enumerating all combinations of characteristics of graphics primitives produces over

700 unique graphics primitive types. Performer includes a specialized, macro-generated

rendering routine for each type.

5.2.1.2 pfGeoStates

A full specification of how a visible object should appear must include not only the

description of the geometry included in a pfGeoSet. It also must include a description of

the state of the graphics pipeline at the time the geometry is drawn. Graphics state is

partitioned into two categories which are called modes and attributes. Modes are graph-

ics subsystem state variables that have simple ON or OFF values, such as transparency

enable or texture enable. Attributes define the more complicated elements of graphics

subsystem state, such as texture or lighting model.

While it is possible to define all state variables directly using pfGeoStates, Performer

also allows an application to establish global default values which prevail unless a

pfGeoState explicitly overrides them. See “Managing the State of the Graphics Sub-

system” on page 39 for more a complete explanation.

5.2.2 pfBillboard

pfBillboard nodes implement billboards, which are described on page 11. A pfBillboard

is a pfGeode in which each pfGeoSet rotates to follow the eyepoint.

A pfBillboard rotates its children’s geometry to follow the view direction or the eye-

point. pfBillboards can either be constrained to rotate about an axis, as is done for a tree

or a lamp post, or constrained only by a point, as when simulating a cloud or puff of

smoke. Since rotating the geometry to the eyepoint doesn’t fully constrain the orienta-

tion of a point-rotating billboard, modes are available to use the additional degree of

freedom to align the billboard in eye space or world space.

5.2.3 pfLightSource

A pfLightSource node defines a light source which illuminates a scene’s geometry, but

is itself invisible.

In order to illuminate the geometry in a scene graph, a light source must be specified to

the graphics subsystem hardware. The pfLightSource node class allows the developer to

add a graphics subsystem lighting specification to a scene graph. While the Performer

primitive pfLight can also be used to define a light source, pfLight is not a node.

Accordingly, it does not benefit from the features provided by a scene graph; e.g.

transformation hierarchy, switches, and animation sequences.

pfLightSource nodes can specify either local or infinite light sources. A local light

source has both a location and spotlight direction. Accordingly, transformations affect

both the location and direction of a local light source. An infinite light source has only a

direction. It emits parallel rays because it is considered infinitely far away. Transfor-

mations change only the direction of an infinite light source. The scope, or area of

illumination of a pfLightSource is global and isn’t affected by the node’s location in

the scene graph, unless it is culled during the cull traversal. If it is not culled, the

pfLightSource illuminates everything in the pfScene of which it is a member.
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A pfLightSource has no default bounding volume, and so by default is not subject to

being removed from the scene by view frustum culling. The developer can assign a

bounding volume to a pfLightSource, thereby subjecting it to view frustum culling.

Like all nodes, a pfLightSource node inherits transformations and switch values from its

parents in the scene graph. This allows the developer to attach a light source to a moving

object and easily turn it on and off. For example, a pfLightSource node could be used to

attach a headlight to a moving automobile.

5.2.4 pfLightPoint

A pfLightPoint is a leaf node that represents a point light or a set of point lights. Point

lights are visible, but do not provide illumination of the scene. Airport runway lights are

a typical use of pfLightPoints.

A pfLightPoint node can contain one or many light points that share common attributes

such as color, intensity, direction and shape.

5.3 Internal Nodes

Internal nodes contain control and state information that is used by the traversal func-

tions. Internal nodes can be used to direct the path of a traversal (and to provide this

capability to the application), to apply transformations to geometry, or to embed macros

of OpenGL commands in a scene graph.

A number of the features offered by Performer are implemented as internal nodes. (See

“Summary of Features” on page 5.) These internal nodes are described in the following

sections.

5.3.1 pfSCS – Static Transformation

A pfSCS node applies an unchangeable transformation to its children. pfSCS nodes are

useful for positioning models within a database. For example, a house that is modelled

at the origin could be placed in the world using a pfSCS.

A pfSCS contains a transformation matrix that cannot be changed once it is created. For

best graphics performance, matrices should be orthonormal (translations, rotations, and

uniform scales). Non-uniform scaling requires renormalization to be performed by the

graphics subsystem. Projections and other non-affine transformations are not supported.

While pfSCS nodes are useful in modelling, too many of them in a scene graph can

reduce culling, rendering, and intersection traversal performance. For this reason, one of

the optimizations provided by pfFlatten is to apply static transformations directly to the

geometry. For more information, refer to the section “pfFlatten” on page 29.
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5.3.2 pfDCS – Dynamic Transformation

A pfDCS node applies a changeable transformation matrix to its children. It can be used

to articulate moving parts and show object motion.

The initial transformation applied by a pfDCS node is the identity matrix. The applica-

tion can modify the transformation (as frequently as each frame) either by specifying a

new transformation matrix, or by replacing the rotation, scale, or translation value in the

current transformation matrix.

5.3.3 pfLOD – Level-of-Detail Control

pfLOD nodes implement level-of-detail switching, described on page 6. A set of

pfGeodes is placed beneath the pfLOD node. Each pfGeode contains a model of the

same object at a different level of detail, as illustrated in Figure 5.

FIGURE 5. pfLOD Node

The application defines the distance for switching between models (called a switch

point) in terms of distance from the eyepoint in world coordinates. For each LOD

model, the pfLOD node contains a “center-of-LOD” value in x,y,z coordinates and a

“switch range” value. The pfLOD node determines which model to draw by comparing
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the difference between the eyepoint and center-of-LOD values with the switch range

value, as illustrated in Figure 6.

FIGURE 6. LOD Switching

Optionally, the application also defines a blend zone. As the object passes through the

blend zone, Performer gradually switches from one model to the other. If the blend zone

value is not defined (or is zero), no blending will occur, and one model will replace the

other in successive frames when the switch range is crossed. This can produce annoying

visible flashes, especially if the eyepoint is moving frequently back and forth across the

switch point. Blending reduces this effect.

Performer 2.0 supports two techniques for LOD blending: fading; and morphing.
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5.3.3.1 Level-of-Detail Blending Using Fading

When fading is used, Performer draws both models while the object is in the blend zone.

The transparency of the two models is varied linearly as the blend zone is transitioned,

so that one model becomes increasingly transparent and the other model becomes

increasingly opaque. Because fading requires drawing the object twice, it increases the

load on the graphics subsystem during the transition.

Currently, LOD blending using fading is supported only on RealityEngine and

RealityEngine2 graphics subsystems.

5.3.3.2 Level-of-Detail Blending Using Morphing

LOD switching using morphing requires that a mapping be established between the ver-

tices in one model and the vertices in the other model. When the object enters the blend

zone, Performer begins morphing the geometry of one model into the geometry of the

other and drawing the hybrid model. The morphing proceeds linearly across the blend

zone. While morphing requires additional work when modelling a database, it imposes

no additional load on the graphics subsystem during real-time operation.

Support for blending using morphing is first included in Performer 2.0, and is not

available in earlier versions.

5.3.4 pfSequence – Self-advancing Geometry

pfSequence nodes implement self-advancing geometry, described on page 7. The

pfSequence node automatically sequences through its children. Each child is assigned

a period of wall clock time during which it is displayed. A sequence can consist of any

number of children, and each child has its own duration. A sequence can be set to

proceed from start to end then either repeat, terminate, or proceed from end to start.

5.3.5 pfLayer – Coplanar Geometry

A pfLayer node resolves the visual priority of coplanar geometry. pfLayer nodes can be

used to overlay markings on a polygon. For example, a pfLayer node can be used to

apply markings to a runway.

pfLayer allows the application to define a set of base geometry and a set of layered or

decaled geometry. The base geometry and the decal geometry should be coplanar, and

the decal geometry must lie within the extent of the base polygons.

5.3.6 pfPartition

A pfPartition node can improve intersection and cull traversal performance on a scene

graph which exhibits poor spatial arrangement. It does this by imposing a specialized

spatial data structure on the scene graph. At the time a database is loaded, the pfPartition

node analyzes the geometry underneath itself and partitions pfGeoSets into a 2D grid

with multiple membership. During the intersection traversal, pfPartition scan-converts

the line segments in the pfSegSet onto the grid to quickly determine which pfGeoSets

must be tested and which can be eliminated.

pfPartition is useful in applications which simulate objects which primarily move in 2D,

such as land vehicles moving across terrain.
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5.4 Instancing Nodes

Instancing is a technique for replicating a node one or more times without duplicating

all of the node’s data in memory. Instancing offers the benefit of reduced memory usage

and simpler modelling. On the other hand, excessive use of instancing can adversely

affect performance. Consequently, one function of pfFlatten is to improve performance

by fully duplicating the data that is shared by instanced nodes. (For more information

see “pfFlatten” on page 29.)

Performer supports two types of instancing: shared and cloned. The difference between

these two lies in how transformations affect their geometry. In both types of instancing

the geometry is shared, rather than duplicated, in memory.

5.4.1 Shared Instancing

Using shared instancing, a node is duplicated by simply adding a pointer to the

instanced node into the new parent node. No data is duplicated. Once instanced,

the entire subgraph rooted by the node that was duplicated appears beneath the new

parent node.

Shared instancing provides the most efficient use of resources, and is appropriate for

duplicating static geometry.

Shared instancing is not appropriate in cases where the duplicate copies of the geometry

must move independently. Because all nodes are shared, all transformations applied to

one instance of the node will also apply to all other instances of the node. For example,

consider an application containing a fleet of identical airplanes which are to be flown

independently. Using shared instancing would result in multiple planes that share the

same articulations. Consequently, it would be impossible for one plane to fly with its

landing gear retracted while another is on a runway with its landing gear down.

Cloned instancing provides the solution for situations where duplicate copies of the

geometry must move independently.

5.4.2 Cloned Instancing

Nodes which are created using cloned instancing share the same leaf nodes (i.e. visible

geometry and graphics subsystem state), but each has its own copy of any internal nodes

(e.g. pfSCS nodes). This enables the visible geometry instances to move independently

of each other. Since leaf nodes consume most of the memory in a scene graph, cloned

instancing provides most of memory-saving benefit provided by shared instancing.



Traversals

IRIS Performer 2.0 Technical Report  27

6.0 Traversals

6.1 Real-Time Traversals

Real-time traversals are ones which must be completed within a single frame time

during real-time operation.

6.1.1 Cull Traversal

The cull traversal determines whether or not a node (and thus the sub-tree underneath

that node) is within the current viewing frustum. Nodes that are not visible are culled

(not drawn) so that the graphics subsystem doesn’t spend time processing primitives

that couldn’t possibly appear in the final image. The output of the cull traversal is a set

of pointers to pfGeoSets and pfGeoStates which contain the geometry and local graph-

ics state information necessary for drawing the current frame.

When enabled by the application, the cull traversal produces a pfDispList in which it

has arranged the list of pfGeoSets and pfGeoStates in an order which optimizes drawing

performance. A pfDispList is always enabled when executing on a multiprocessor, and

can be enabled on a single processor. This is described in more detail in the section

“Rendering Pipeline Models” on page 32. More information on the sorting of a

pfDispList is given later in this section.

6.1.1.1 Using Hierarchical Bounding Volumes

Each node in a scene graph includes a hierarchical bounding volume that spatially

encompasses all geometry in the sub-tree underneath that node. To optimize perfor-

mance, bounding volumes are chosen to be simple geometric shapes whose centers and

edges are easy to locate. A sphere is used as the bounding volume for all internal nodes

because it can quickly be updated, transformed, and tested. Axially aligned boxes are

used as the bounding volume for pfGeoSets because they provide tighter bounds around

the actual geometry.

6.1.1.2 Node Testing

The cull traversal uses the hierarchical bounding volumes to efficiently traverse

the scene graph. Proceeding top-to-bottom, left-to-right, the cull traversal tests the

viewing frustum against the bounding volume of each node. Each test has three

possible outcomes:

1. Node is completely outside the viewing frustum: the node is culled. This means that

the geometry underneath the node will not be drawn, and the cull traversal will pro-

ceed no further down the sub-tree underneath the node. The cull traversal proceeds

to the next node to the right of the culled node.

2. Node is completely inside the viewing frustum: all geometry will be drawn. Again,

no further traversal down the sub-tree is required, and the traversal proceeds to the

next node to the right.

3. Node is partially inside the viewing frustum: proceed down the sub-tree. In this case,

more testing is needed to determine what portion of the geometry underneath the

node should be drawn. The cull traversal proceeds recursively to the left-most node

underneath the node that tested partially visible. If the node is a leaf node, the

pfGeoSets contained in the node are tested against the frustum individually.
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6.1.1.3 Sorting Objects To Optimize Drawing Performance

Changing the state of the graphics subsystem can be quite costly in terms of the time

required. For example, loading a new texture description into the RealityEngine2 is a

costly state change. While the state change is underway, drawing is suspended.

When a pfDispList is enabled, the output of the cull traversal is a pfDispList which

contains a list of pointers to all pfGeoSets that will be drawn during a frame (see

“Rendering Pipeline” on page 31). The cull traversal places objects in the pfDispList

in an order which minimizes the most costly graphics subsystem state changes.

Generically, the optimization is a 2-level sort. The first sort level minimizes the most

time-consuming state change by grouping pfGeoSets which share the same value of this

state. For example, pfGeoSets which share the same texture description are grouped

when the target platform is RealityEngine2. The second-level sort groups pfGeoSets

which share the same pfGeoState. A further optimization places transparent geometry

last in the pfDispList.

Sorting the pfDispList minimizes the number of state changes. A related optimization

eliminates redundant state specifications. (A redundant state specification command is

one which re-specifies the current state.) This optimization is performed by the draw

traversal, and is described in Section 6.1.2.2, “Avoiding Redundant Changes of

Graphics Subsystem State,” on this page.

6.1.2 Draw Traversal

The draw traversal has been kept logically simple in order to minimize drawing time.

All logically complex operations are performed during the cull traversal to help

ensure that the graphics subsystem is never starved for data while waiting for the

draw traversal.

6.1.2.1 Basic Operation

The draw traversal does not traverse the scene graph directly, but instead traverses

the pfDispList that was generated by the cull traversal. Based on the contents of the

pfDispList, the draw traversal grabs geometry and state data from the scene graph. The

draw traversal includes a set of specialized drawing routines, one for each geometric

primitive type. These are described in more detail in the section “pfGeoSets” on

page 19.

The output of the draw traversal is a sequence of OpenGL or IRIS GL commands which

render the visible frame.

6.1.2.2 Avoiding Redundant Changes of Graphics Subsystem State

The pfState object in Performer mirrors the state of the graphics subsystem. The draw

traversal compares each state specification in the pfDispList with the current setting

of that state variable in pfState. If the two are the same, the draw traversal does not

issue a (redundant) OpenGL or IRIS GL command to the graphics subsystem.

(pfState is described more fully in the section “Minimizing OpenGL and IRIS GL State

Commands” on page 39.)
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6.1.3 Intersection Traversal

The intersection traversal {pfSegsIsectNode()} tests for intersections between

application-defined line segments and geometry in the scene graph. The intersection

traversal differs from the cull and draw traversals in that it must be explicitly invoked

by the application.

Intersection testing is based entirely on sets of line segments. The application specifies a

spatially grouped set of line segments to be tested using pfSegSet. Optionally, the appli-

cation can specify a bounding volume which pfSegsIsectNode() will use for intersection

testing. Specifying a bounding volume speeds the intersection traversal. Each pfSegSet

tested requires a separate traversal of the scene graph.

During each traversal, pfSegsIsectNode() tests the pfSegSet against the hierarchical

bounding volumes in the scene graph. The application can direct pfSegsIsectNode() to

return a list of intersection “hits”. The application can choose to receive a list of “hits”

for node bounding spheres, pfGeoSet bounding boxes, or the actual geometry inside

pfGeosets (in order of increasing precision). As the precision of the hit report increases,

so does the intersection traversal time.

pfSegsIsectNode() provides a discriminator callback that enables the application to

examine each “hit” as it is encountered. The callback directs Performer to either accept

or reject the intersection, and then to either continue or terminate the traversal.

For efficiency, pfSegsIsectNode() converts the pfSegSet into local object coordi-

nates rather than transforming the node bounding volumes and pfGeoSets into

world coordinates.

Because intersection traversals do not modify the database, an application may invoke

multiple intersection traversal requests in parallel. Performer will assign each traversal

to a separate processor in the CPU subsystem, if one is available.

6.2 Static Traversals

These traversals modify the structure of a scene graph in order to reduce traversal time,

improve drawing performance, or modify the configuration of the visual database.

6.2.1 pfFlatten

Performer uses the graphics subsystem hardware to apply non-identity pfSCS transfor-

mation matrices to geometry as it is drawn. However, this usually requires sending a

new transformation matrix to the hardware. In turn, this requires the hardware to push

its matrix stack, apply the new matrix to the geometry under the pfSCS node as it is

drawn, then pop its matrix stack. For small models, these stack and matrix operations

can consume more time that the actual rendering.

Applying pfFlatten() improves graphics subsystem performance at a cost of increased

memory usage. pfFlatten() traverses the scene graph and duplicates static, instanced

geometry in memory. It applies the current pfSCS matrix to the geometry, then sets the

pfSCS to the identity matrix.
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7.0 Pipelining, Synchronization and Multiprocessing

Performer implements coarse-grained multiprocessing using a data-pipelined architec-

ture. That is, a relatively small number of processors work concurrently on different

stages of a data pipeline. The processing requirements of real-time graphics mesh well

with the characteristics of a pipelined multiprocessing architecture, in that each frame is

data-independent of all others, and all frames progress through the same set of computa-

tional stages. In a shared memory environment (such as Onyx), data can progress

through the stages of the pipeline without ever being copied.

Figure 2 on page 13 shows a functional block diagram of the real-time elements of a

Performer application. Each functional block repeats its operation for every visual

frame that is drawn. Architecturally, Performer organizes the functional blocks into two

types of data processing pipelines: the rendering pipeline shown in Figure 7; and the

intersection pipeline shown in Figure 9 on page 37. The rendering pipeline displays a

view into the scene graph, and the intersection pipeline identifies intersections between

line segments and geometry in the scene graph.

Performer allows each pipeline stage to be assigned to a separate processor. In general,

adding processors to the pipeline increases throughput, but also increases latency. This

chapter discusses the issues which must be considered when structuring an application

to optimize the trade-off between throughput and latency.

7.1 Rendering Pipeline

The application (APP) is the first stage of all pipelines, and it controls each pipeline’s

execution. A rendering pipeline consists of the APP plus CULL and DRAW stages. The

CULL and DRAW are encapsulated by the pfPipe primitive, as shown in Figure 7.

FIGURE 7. Rendering Pipeline

Scene

graph

Frame BufferCullApplication Draw

pfPipe
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7.1.1 Assigning Pipeline Stages to Unix Processes

Each processor in the pipeline must run a separate Unix process. Applications which are

targeted to run on a multiprocessor platform typically assign each pipeline stage to a

separate Unix process. These multiple-process applications will run correctly on any

number of processors, and will automatically take advantage of multiple processors

when they are available. (To achieve steady frame rate, each Unix process should be

locked onto a processor that is configured for real-time operation. See the REACT

Technical Report for more information.)

For applications which will run only on uniprocessors, configuring all pipeline stages

within a single Unix process eliminates the overhead of performing a Unix context

switch between pipeline stages. (A Unix context switch requires on the order of

100 microseconds.)

Developers can utilize multiple processors within the APP stage, but Performer pro-

vides no support for automatically spreading the APP across multiple processors.

7.1.2 Assigning Pipeline Stages to Processors

On a multiprocessor platform, Performer supports a range of possibilities for assigning

pipeline stages to processors. The optimum solution depends upon the number of pro-

cessors available and the relative amount of computational time required for each stage.

In the case where the number of processors is not a constraint, the trade-off is purely one

of rendering throughput versus rendering latency.

Rendering latency is defined as the elapsed time from viewpoint specification until the

display update is completed. Rendering throughput is defined as the amount of geome-

try processed per unit of time.

7.1.3 Rendering Pipeline Models

Performer enables an application to increase the throughput of its rendering pipeline as

more processors are made available for use by the pipeline, up to a maximum of three.

The options for assigning pipeline stages onto 1–3 processors are enumerated below,

and illustrated in Figure 8.

• PFMPAPPCULLDRAW – Single processor. Each stage is allowed 1/3 frame of

execution time. Pipeline latency is one frame.

• PFMPAPPCULL_DRAW – Two processors; APP and CULL assigned to share a

processor. APP and CULL are each allowed 1/2 frame execution time; DRAW is

allowed a full frame of execution time. Rendering latency is two frames.

• PFMP_APP_CULLDRAW – Two processors; CULL and DRAW assigned to share

a processor. APP is allowed one frame of execution time; CULL and DRAW are

each allowed 1/2 frame of execution time. Rendering latency is two frames.

• PFMP_APP_CULL_DRAW – Three processors; Each stage has its own processor

and is allowed a full frame of execution time. Rendering latency is three frames.

• PFMP_APP_CULLoDRAW (CULL overlap DRAW) – Three processors; APP is

allowed a full frame of execution time; CULL and DRAW are allowed more than

1/2 but less than 1 frame time. Rendering latency is two frames.
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Notice how the amount of time available to each stage (throughput) increases as the

number of processors increases, without any decrease in the frame rate. Notice also that

the time required for data to make its way through the pipeline (latency) increases with

the number of processors. Specifically, the rendering latency of a pipeline (in video

frames) will be equal to the number of processors in the pipeline, except in the

PFMP_APP_CULLoDRAW mode. This mode allows the DRAW stage to begin

processing the pfDispList before the CULL stage has completed building it, and there

by reduces the rendering latency to two frames. Provided that all processors are

well-utilized, the rendering throughput will increase proportionally as the number of

processors is increased.

To specify a pipeline model, the application calls pfMultiprocess().
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FIGURE 8. Multiprocessor Partitioning and Timing Diagram

7.1.4 Synchronizing Pipeline Stages

A pipelined architecture requires a global synchronization mechanism to coordinate the

progression of data through the pipeline stages. (Or, more literally in this case, to coor-

dinate when each pipeline stage begins processing a new buffer of data.) In a Performer

rendering pipeline each stage is allocated the same amount of time.
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Performer uses the V_Sync
2
 interrupt as a timing signal for synchronizing the rendering

pipeline. All synchronization among processors is done at intervals which are an integer

multiple of the V_Sync interval. This has a number of implications: data can be passed

from one stage to another only at video frame boundaries, all pipeline stages execute for

a time that is an integer multiple of the V_Sync interval, the minimum latency imposed

by each processor in the pipeline is one V_Sync interval, any frame overrun by a pipe-

line stage will delay the pipeline by a minimum of one V_Sync interval.

The Performer library call which processes use for synchronizing with V_Sync is

pfSync(). For example, when a process completes its work for a frame, it calls pfSync(),

which suspends the process awaiting a Unix signal. When the next V_Sync interrupt

occurs, the Performer interrupt service routine sends the Unix signal which wakes up

each process suspended using pfSync().

7.1.5 Data Movement

Two data movement issues must be addressed in the design of a rendering pipeline. One

issue is passing the output of one stage on to the next stage. The other issue is ensuring

that each pipeline stage refers to a version of the scene graph that is identical to the one

referred to by the previous stage during the previous frame. This is known as ensuring

“frame accurate” behavior. These issues are discussed in the following two sections.

7.1.5.1 Connecting Pipeline Stages

The APP stage passes viewpoint and gaze direction information to the CULL stage as

arguments to the pfPipe() library call.

Performer supports two options for passing data from the CULL stage to the DRAW

stage. One option is to create a pfDispList which references all of the data needed to

draw a visual frame. In this case, the CULL stage completes the pfDispList for a

frame, then passes it to the DRAW stage. As described in “Sorting Objects To Optimize

Drawing Performance” on page 28, creating a pfDispList enables the CULL stage

to sort the list into optimum drawing order before passing it to the DRAW stage. On

the other hand, it requires that CULL stage processing be completed before DRAW

processing begins.

The other option is for the CULL stage to pass visible data to the DRAW stage

piece-by-piece as soon as it is identified, before continuing with the cull traversal.

This enables the operation of the CULL and DRAW stages to be overlapped, but

does not allow the data to be sorted prior to being drawn.

2. The V_Sync signal is a pulse generated by the graphics subsystem hardware at the start of
each vertical blanking interval. V_Sync triggers an interrupt to the CPU subsystem which is
serviced by Performer. The V_Sync interval is determined by the video frame rate, and is
typically either 16.7mS (60 Hz) or 20mS (50 Hz). For more information, see the setmon()
man page.
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It is usually more efficient not to create a pfDispList when running on a uniprocessor.

This allows the CPU subsystem to proceed with the CULL while the graphics sub-

system hardware processes the OpenGL or IRIS GL commands needed to draw the

previously identified visible geometry. The benefit of the concurrency achieved by this

arrangement usually outweighs the disadvantage of not sorting the objects in the frame

prior to drawing.

7.1.5.2 Ensuring Frame Accurate Behavior

In a pipeline containing three processors, the DRAW stage is working on frame N while

the APP stage is working on frame N-2. This is shown in Figure 8. Because Performer

utilizes immediate mode rendering, pointers to data in the scene graph are passed from

one stage to the next, rather than the actual data. For example, pointers to visible geom-

etry are passed from the CULL stage to the DRAW stage. However, the pointers

received by the DRAW stage refer to the scene graph as it existed one frame earlier.

If the DRAW references the same copy of the scene graph currently being modified

by the APP, it can draw outdated or partially updated objects, resulting in gibberish

on the screen.

Performer offers the developer a choice of two techniques to ensure that this problem

never occurs. In both cases, each stage in the pipeline processes a copy of the scene

graph that is identical to the one processed by the previous stage during the previous

frame time. The two techniques are called pfMultibuffer and pfBuffer.

Using the pfMultibuffer technique, a pointer to a buffer containing a copy of the scene

graph is passed down the pipeline. After being processed by the DRAW stage, each

buffer is recycled to match the state of the APP stage’s current buffer, then started down

the pipeline again. Using the pfBuffer technique, each pipeline stage has its own copy

of the scene graph, and a list of changes to the scene graph is propagated down the

pipeline between each frame. Which method is optimal depends on the amount of

change to the scene graph which typically occurs each frame. Both methods ensure

frame accurate behavior.

7.2 Intersection Pipeline

The intersection pipeline, shown in Figure 9, implements the intersection traversal

described in the section “Intersection Traversal” on page 29.
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FIGURE 9. Intersection Pipeline

Because intersection traversals do not modify the database, multiple intersection

pipelines can be created in parallel. Performer will assign each intersection pipeline

to a separate processor, if one is available.

The intersection traversal is invoked using pfSegsIsectNode().

Scene Intersection/TraversalApplication
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8.0 Managing the State of the Graphics Subsystem

Graphics subsystem state is comprised of the additional information needed to fully

specify how the geometry in a pfGeoSet should appear visually. The elements of

graphics subsystem state (referred to in this section as simply “state”) are listed in

the section “pfGeoStates” on page 21.

8.1 Minimizing OpenGL and IRIS GL State Commands

OpenGL is an immediate-mode state machine, as is IRIS GL. This means that once a

state is set, all subsequent geometry is drawn using that state until a command is

received to modify the state. Consequently, drawing is order-dependent. On the other

hand, the high-level data optimizations provided by Performer (e.g. view frustum cull-

ing) require pfGeodes to be order-independent. Given these conflicting requirements,

there are several choices for ensuring that the graphics subsystem will always be in the

appropriate state to render geometry correctly.

One choice would be to always issue the commands necessary to fully specify the

graphics subsystem state prior to drawing a pfGeoSet. Since many pfGeoSets share

much or all of their state specification, this would result in issuing many redundant state

commands which would greatly reduce drawing performance. Performer does not use

this approach.

Another choice is to group pfGeoSets which share elements of graphics subsystem

state, then insert the state specification commands among the pfGeoSet groups to mod-

ify state only as needed for correct drawing. As described in Section 6.1.1.3, “Sorting

Objects To Optimize Drawing Performance,” on page 28. Performer uses this technique

when operating in pfDispList mode.

When the application has specified an operational mode in which no pfDispList is cre-

ated, Performer tracks the current state of the graphics subsystem hardware using the

pfState object. Every OpenGL or IRIS GL state command passes through pfState,

which compares it with an internal table that contains the current state of the hardware.

If the command will result in a state change, pfState issues the command and updates

its internal table. If the command is redundant, pfState does not issue it to the graphics

subsystem.

pfState enables Performer to draw pfGeoSets in any order without ever incurring the

overhead of a redundant graphics subsystem state change.

8.2 Local and Global State

While it is possible to completely specify graphics subsystem state using a pfGeoSet,

Performer allows the application to split state definition into two pieces: global state and

local state. This split is based on the observation that many elements of graphics state

apply to the entire scene graph. Examples of global state are lighting model, lights, fog,

and transparency.
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Because it is known to apply to the entire scene, global state can be dropped from the

pfGeoSet. This improves performance by reducing the amount of state information

which must be handled.

The pfState object maintains the current definition of global state, which is initialized

by the database loader. Local state elements are stored within the scene graph in

pfGeoStates.

Each time the cull traversal adds a pfGeoSet to a pfDispList, it evaluates the complete

state associated with that pfGeoSet. To create the complete state definition, the cull tra-

versal combines the global state and the pfGeoState as follows: any element of state that

is specified in the pfGeoState takes precedence over the global state, any element of

state that is not specified in the pfGeoState reverts to the global state. Once it has the

complete state for each pfGeoSet, the cull traversal can reduce the set-state commands

in the pfDispList to a minimum.

During the draw traversal, the pfState object combines global and local state into a com-

plete state definition, as follows: any element of state that is specified in the pfGeoState

takes precedence over the global state; any element of state that is not specified in the

pfGeoState assumes the global state.

The pfState object ensures that an element of global state which is overridden by a

pfGeoState does not incorrectly affect drawing of subsequent pfGeoSets. pfState tracks

the global state and the current state of the graphics subsystem and issues OpenGL or

IRIS GL commands to restore elements of global state, as needed.

Global state can be updated at any time by Performer commands from the application.
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9.0 Database Loaders

A number of commercially available programs exist for creating visual models,

including ones tailored for visual simulation, mechanical design, industrial design and

entertainment applications. Typically, each modeler defines its own native file format,

and some also support standard interchange formats. Instead of defining a file format,

Performer defines only an in-memory representation of the visual data (i.e. the scene

graph) which can be created from a wide range of existing file formats.

9.1 Existing Loaders

Performer includes an extensible set of loader programs, each of which can create a

scene graph from a visual database stored in a particular file format. Using multiple

loaders, files in different formats can be combined into a single scene graph. Each type

of file format is identified by an extension to the file name (e.g. <filename>.iv). To load

a database, an application invokes a generic Performer loader which selects the appro-

priate loader program for the indicated file.

Loaders for 19 different file formats are shipped with Performer 2.0. Both binary and

source code are included. This simplifies development of new loaders by enabling

developers to use an existing loader as their starting point for new development.

Additional Performer loaders are commercially available. Refer to the IRIS Performer

2.0 Data Sheet for a list of included loaders and information on the commercially

available loaders.

9.2 Developing New Loaders

The loaders included with Performer use the pfuBuilder utility library (called the

“builder”) to handle construction and triangle meshing of pfGeoSets. The loader appli-

cation feeds independent, potentially concave polygons to pfuBuilder, which passes

back sorted, meshed, and optimized pfGeoSets.

Database file formats which include a hierarchical scene graph map directly to the

Performer scene graph. For those database formats without any hierarchy, the

pfuBuilder provides spatial octree-based breakup of geometry so that even large,

monolithic models can be organized into a hierarchical scene graph to improve culling

and intersection traversal efficiency.
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10.0 Glossary

Cull traversal – The Performer function which processes (traverses) a scene graph to

determine which objects are potentially visible in the current frame. The cull traversal is

an integral part of the real-time functioning of Performer. Also referred to as “CULL”.

Database – See visual database.

Database loader – A program which loads a visual database from disk, converts it to a

scene graph, and stores it in memory.

Draw traversal – The Performer function which issues the OpenGL or IRIS GL

commands required to render an object or frame to the display device. Also referred

to as “DRAW”.

Frame – A real-time graphics frame. The portion of the scene graph that is at least par-

tially contained within the viewing frustum for the current video frame. The geometry

that is drawn during a single video frame.

GeoSet (pfGeoSet) – A group of geometric primitives of the same type. A group of

geometric primitives which refer to a single pfGeoState. An element of a pfGeode.

Graphics subsystem – The hardware elements of a Silicon Graphics platform which

receive OpenGL or IRIS GL commands, perform all functions needed to draw the

geometry, and produce video output signals. Examples are RealityEngine2 and Extreme.

Often referred to as a graphics “pipe”, though not in this document.

Image Generator (IG) – A functional subsystem of a training simulator or other visual

simulation system. A specialized computer that is used to render frames in real-time, but

which does not include a general purpose CPU.

Intersection traversal – The IRIS Performer function which tests for intersections

between line segments and geometry in the scene graph. Also referred to as “ISECT”.

Node – An element of a scene graph which can contain geometry, graphics subsystem

state data, or traversal control data.

Pipe or Pipeline – See graphics subsystem.

Scene graph – The memory resident version of a visual database, including all

geometry and graphics subsystem state information. The data portion of a real-time

graphics application.The memory image created by a Performer loader.

Transformations (3D) – Actions specified by a 4x4 matrix which modify the position

or orientation of geometry. Dynamic transformations are performed every frame; static

transformations are performed infrequently.
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Traverse – To process a scene graph. The action taken by a traversal function such as

the Cull or Draw traversal. To visit the nodes in a scene graph and select the subset that

is relevant to the type of traversal being conducted.

Video frame interval – The duration of each video frame; the complement of the video

frame rate. During each video frame interval, the video circuitry updates the screen

from the frame buffer. The video frame interval is independent of the rate at which

frames are rendered into the frame buffer. Typical video frame intervals are 16.7mS

(60 Hz) and 20mS (50 Hz).

Viewing frustum – A truncated pyramid that contains the geometry that is visible given

an eyepoint, gaze direction, and horizontal and vertical field of view.

Visual database – The disk-based representation of the visual database, contained

in one or more files. As the database is loaded into memory, it is transformed into a

scene graph.

V_Sync – A pulse which occurs at the start of each vertical retrace interval. V_Sync is

generated by the video circuitry, and is used to generate a CPU interrupt.


