Chapter 2

Creating Device Drivers

Writing a Device Driver

This chapter describes the general interface for both user-level and kernel-
level device drivers and introduces the various user-level and kernel-level
device driver models.

It contains the following sections:

* “Creating Device Drivers” on page 21

* “Device-special File” on page 22

* “Including a Device Driver in the Kernel” on page 26

* “Driver Entry Points” on page 28

* “Writing Other Driver Routines” on page 42

There are two levels of device drivers: user-level and kernel-level. For some
devices, such as GIO-bus cards, the device driver must be a kernel-level
driver. You can write a user-level device driver, however, for devices that
interface to a SCSI, EISA, or VME bus.

Creating User-level Device Drivers

User-level device drivers let you use system functions to map the device to
user space and perform simple I/O operations. You do not have to
understand how the software environment affects devices in the IRIX
operating system. However, where specific versions of IRIX, such as 5.2 and
5.3 (both 32-bit) and 6.0 (64-bit), affect your decisions, or the performance of
your driver, the differences are noted.

21

Chapter 2: Writing a Device Driver

Device-special File

22

Creating Kernel-level Device Drivers

If you decide to write a kernel-level device driver, you need to become
familiar with the software environment, conventions, and data structures
that apply to device drivers running under the IRIX operating system. To
create a kernel-level driver from scratch, you must:

Create a device-special file.

Create a master file.

Write and compile the driver code (-coff)!.

Create a kernel that includes the driver object code.

Reboot using the new kernel.

AN L T M

Debug the driver.

Steps 4 and 5 may be omitted if the driver is loadable. See Chapter 11,
“Kernel-level Dynamically Loadable Modules (DLMs),” on how to make a
device driver loadable.

Except for step 3, all the steps in this procedure are simple and mechanical.

Once you write a kernel-level IRIX device driver, communication with a
device is a matter of accessing a file called a device-special file. Each device has
its own device-special file, conventionally kept in the /dev directory. Because
IRIX makes kernel-driven devices look like files, a user-level process can use
the standard operating system calls to open the file/device, read from the
file/device, write to the file/device, and so on. For most I/O operations, the
user program needs no device-specific system call when it deals with a
device driven by a kernel-level device driver. See the ioctl(D2) man page.

! Compile the object file with the -coff compiler flag for all IRIX 5.x drivers but not for
IRIX 6.0 drivers. While Indigo and Indigo2 platforms require this flag, IRIX 64-bit
compilers do not support it. For the most appropriate flags for various system
configurations, see the file /var/sysgen/Makefile.kernio.

Device-special File

Creating Device-special Files

The device-special file is not an ordinary file. You need to use a special
system administration command, mknod, to create a device-special file.
Synopsis

mknod filename class major# minor#

Arguments

filename The pathname of the device-special filename. The directory
the file commonly resides in /dev.

class Specifies the class type of the device—block or character—
to which the device-special file refers.

b specifies a block device. A block device, such as a
magnetic tape or disk drive, transfers data in blocks
through the buf structure.

c specifies a character device. A character device, such as a
terminal or printer, transfers data character-by-character,
perhaps assembling the stream into blocks as needed by
the underlying hardware.

major# The major number of the device.

minor# The minor number of the device.

Major and Minor Device Numbers

Internally, the kernel does not deal with filenames to differentiate among
devices. Instead, the kernel uses major and minor device numbers. The
major device number identifies the driver module to use for a given special
device. This varies among operating systems:

» IRIX 5.2 defines 255 distinct major numbers (0 to 254).
* IRIX 6.0 uses the same numbering scheme as IRIX 5.2.

* IRIX5.3, on the other hand, defines only 511 major device numbers (0 to
510).

23

Chapter 2: Writing a Device Driver

24

While the change from IRIX 5.2 to IRIX 5.3 does not permit the use of all 14
bits of the SVR4 major_t value, it is a compromise between a demand for
more major numbers and conserving kernel data space, since the number of
major values defines the size of the MAJOR table and the [cb]devsw tables.
This increases the size of the variable necessary to contain a major device
number from an unsigned char to at least a short. The master.d/README files
contain further information on this topic.

Most device drivers do not need to know what their major number(s) are;
those that do should use the DDI getmajor() routine and major_t data type
to manipulate them.

If you have been accessing the MAJOR array as an array of unsigned chars,
it is now an array of unsigned shorts. The DONTCARE value has also
changed, and the Iboot program has been modified to accommodate these
alterations.

In any case, the number you choose as the major number for your device
driver must not be assigned to any other device. See /usr/include/sys/major.h
on your system for a list of assigned major numbers.

The minor number is 18 bits long and can contain values from 0 to Ox3FFFE.
The minor device number has no predetermined use, so your device driver
can use the minor device number as you see fit. For example, the driver can
use the minor device number to differentiate multiple devices on the same

controller.

See the man pages for the MAKEDEV(1M), master(4), mknod(1M)
commands for additional information.

Device-special File Example

To create a device-special file, use the mknod command. For example:
mknod /dev/ttyl3 c 2 13
L minor number of the device
major number of the device

specifies a character device

name of the device-special file

Configuration Files

Configuration Files

Device controls are an extensible way to change or query things about
devices. They fall into two categories: those intercepted by the X server and
those used by the device drivers. The server uses the x_init controls, which
change the way the X server views devices. The device drivers use
device_init controls, which change device characteristics.

You can issue X server device controls on the fly by using the devctrl
program (in 4Dgifts") or by calling XSGIDeviceControl from within a
program, or by storing them in configuration files, which reside in the
/ust/lib/X11/input/config directory.

There are (potentially) two configuration files per device in the directory
fust/lib/X11/input/config. The device_init options live in a file with the same
name as the STREAMS module that implements the device (this is also the
name of the link created in /dev/input). The x_init options live in a file with
the X name of the device (as supplied by the STREAMS modules). Some
devices use the same name for the STREAMS module and for the X device
(tablet, mouse), but some use different names for the two:

STREAMS Name X Device Name
sball spaceball
calcomp tablet

When the X server finds a new device (or when it starts up), it:
* opens the device and finds a STREAMS module

* issues device_init controls

* asks the device to describe itself

* issues x_init controls

* closes the device (unless autostart is on for it).

! While some of the files in /usr/poeple/4Dgifts are in the IRIX 6.0 release, 4Dgifts itself is
not included.

25

Chapter 2: Writing a Device Driver

When a program opens a device that is not autostarted or opened by another
program, the X server:

* opens the device and finds the STREAMS module

e issues device_init controls

e issues x_init controls

» starts reporting events from the device.

The X server intercepts about a dozen x_init controls. For a list of the x_init

controls and some of the more common device_init controls, see the
README file in fust/lib/X11/input/config.

Including a Device Driver in the Kernel

26

The Iboot utility allows you to link device drivers to the kernel. It requires
the following files, all of which must reside under the /var/sysgen directory:

boot This file is a symbolic link to the directory /ust/cpu/sysgen/
IPxxboot, where xx represents the CPU type. This directory
contains all the device driver object files and archives. When
your driver is successfully compiled, you must copy it to the
fusr/cpu/sysgen/IPxxboot directory. The name of your driver
must end with an “.0” suffix (or with “.a” if it is a library).
See “CPU Types” on page 320 for a listing of MIPS CPUs
and their IP numbers.

Note: For successful compilation, IRIX 5.x drivers require
the -coff option; IRIX 6.0 drivers cannot use the -coff option.

master This file contains information that Iboot uses to create the
device switch table, as well as to indicate dependencies
among other kernel modules. Each driver must have a
master file stored in the /var/sysgen/master.d directory. The
name of the master file must be the same as the software
module. Among other things, the master file contains the
major device number for the device-special file. It also
contains a prefix used to build the driver entry points. For
more information, see the master(4) man page.

Including a Device Driver in the Kernel

mtune This directory contains information on the external system
tunable parameters of the driver module, including default
values and valid value ranges. For more information, see
the mtune(4) man page.

system This directory contains files with directives that tell Iboot
whether to:

1. Include a driver module.

2. Conditionally include a driver module.

3. Exclude a driver module.
For each driver, you must create a system file in the directory /var/sysgen/
system. The restriction on filenames is that they must end in .sm in order for

Iboot to recognize and process them. See the system(4) man page for more
information.

Chapter 3, “Writing a VME Device Driver,” Chapter 4, “Writing an EISA
Device Driver,” Chapter 5, “Writing a SCSI Device Driver,” and Chapter 6,
“Writing Kernel-level GIO Device Drivers,” provide details on the syntax of
these files.

When these files are present under /var/sysgen, you can create a kernel that
includes the new driver. To create a new kernel:
1. Become root.

2. Copy the current kernel to a safe place before rebooting.!
cp /unix /unix.orig

3. Create the new kernel, /unix.install, by running:
/etc/autoconfig -f

(Use the -v option during debugging.)

1 You can save disk space by using the In command instead of cp; However, when you
reboot, unix.install gets copied to unix, thus wiping out the old kernel if it is linked. Use
In to save space, use cp for reliability.

27

Chapter 2: Writing a Device Driver

Driver Entry Points

28

4. Reboot the system. When you issue the reboot command, the system
removes the current kernel and renames unix.install, the kernel you
have just created, to /unix:

reboot

Note: If you include a just-written and undebugged device driver, create a
debuggable kernel. See “Making a Debuggable Kernel” in Chapter 10 for
more information. It is also useful in this case to examine the generated file
[var/sysgen/master.c to confirm that the entries for your new driver are
correct.

A set of driver entry point routines define what the system must do when a
user-level program executes a system call, such as open(), that accesses the
device. Because the user expects to treat the device as a file, you must write
a driver entry point routine for each operation normally performed on a file,
such as open, read, write, and close. You will probably also have to write
additional driver routines to handle initialization at system power-up.

When you successfully configure a driver into the kernel, Iboot
automatically adds members (one for each entry point in the driver) to the
cdevsw structure, the character device switch table.

Note: The cdevsw structure is used for character device drivers; a block
device driver structure would be named bdevsw. STREAMS drivers, which
have user-accessible device nodes, such as /dev/lic2, also belong in the cdevsw
structure; STREAMS modules, which have no device nodes, belong in
fmodsw.

The section of the cdevsw structure that maintains the pointers to the device
entry points for a device called drv would look like this:

struct cdevsw cdevsw[] = {
{ nodevflag, 0, drvopen, drvclose, drvread, drvwrite,
drvioctl, drvmmap, drvmap, drvunmap, drvpoll, 0, 0 },

}i

When the kernel handles a system call, it can find a specific entry point for a
device if it constructs the name of the appropriate cdevsw member. For

Driver Entry Points

example, if the kernel must handle an open() for a device, drv, the kernel
knows that drvopen is the member of csdevsw that contains a pointer to the
open routine for the drv device.

Missing Driver Entry Points

If your driver is missing a definition for an entry point, Iboot generates a
stub that points to nulldev(). If the user makes the corresponding system call
on that device, the system call returns an error. Your driver must always
include definitions for some driver entry points, such as the device open()
and close() entry points. However, many devices do not perform memory
mapping and, therefore, do not need the map() and unmap() entry points.
You may omit such entry points from the driver object module.

Character and Block Entry Point Driver Routines
Currently, the standard names for entry points are as shown in Table 2-1:

Table 2-1 Standard Entry Points

drvopen() droclose() droread() drowrite()
druinit() drvedinit() drommap) dromap()
drounload() drounmap() drupoll() drvioctl()
drohalt()

Your driver normally contains an entry point named for at least drvopeny),
druclose(), druread(), and drowrite(). See Table 2-2 for a somewhat fuller
description of these entry points.

29

Chapter 2: Writing a Device Driver

30

Table 2-2 Entry Point Driver Routines

Routine Description

open The kernel calls drvopen() when the user process issues an open()
system call.

close The user process invokes the close() system call when it is finished
with a device, but the system does not necessarily execute your
droclose() entry point for that device.

read or The kernel executes the drvread() or drowrite() entry point whenever

write a user process calls the read() or write() system calls

ioctl Character devices may include a “special function” entry point,
drvioctl().

poll A character device driver may include a dropoll() entry point so that

users can use select() or poll() to poll the file descriptors opened on
such devices.

mmap, The System VR4.x mmap() function establishes a mapping between a

map, and process’s virtual address space and a memory object. The IRIX device

unmap drommap(), drvmap(), and drounmap() entry points are used in
device drivers for memory-mapped devices. See the respective man
pages for details.

devflag This sets the bitmask of flags that specify the driver's characteristics to
the system.

The arguments and expected return values of each driver entry point are
described below. The examples use a generic driver prefix drv where
appropriate.

Note: The names of the procedures in your driver must start with the letter
prefix of up to 14 letters for the device as given in the master.d file. For
instance, if you write a driver for a device called cdr, the names of the entry
points (and all the other routines defined in the driver) must start with cdr—
cdropen, cdrclose, cdrread, and so on. Procedures in this manual use the
prefix dro.

Driver Entry Points

open — Gain Access to a Device

The kernel calls the drvopen() routine when the user process issues an open()
system call. You must write your drvopen() entry point so that it prepares the
device for I/O operations.

Your code for the drvopen() routine must be able to handle requests from
multiple processes and to make appropriate responses, depending on the
current state of the device. For example, an exclusive user device may be in
a busy or not busy state; or a multiuser device may be not in use and in need
of initialization; or the same device may be in use, initialized, and able to
handle more users or not.

Also, drivers need a way to determine the ABI (Application Binary Interface)
of the current user process so they can properly interpret structures passed
in for ioctls. By using the following defines, which give the driver the size of
various entities in bytes, a function in usrabi returns an error if no user
process is running or else copies the type size information into a structure
provided by the caller. (See ddi.h for a definition of usrabi.) A good driver will
handle all possibilities or, at least, assert() that 64-bit longs and pointers go
togther.

typedef struct __userabi {
short uabi_szint;
short uabi_szlong;
short uabi_szptr;
short uabi_szlonglong;
} _ userabi_t;

Synopsis

#include <sys/types.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/vmereg.h> /* For VME drivers */

int drvopen (dev_t *devp, int flag, int otyp, cred_t *crp)
{
/* <your code> */
return value; /* 0 or value from errno.h */

31

Chapter 2: Writing a Device Driver

32

Arguments

devp Device major and minor numbers. Use getemajor() and
geteminor() to extract the major and minor device numbers
from this parameter. The minor number helps you identify
which device of a multidevice controller is being opened.

Note: This is a pointer to a device.

flag Mode argument from the open() system call. Your code
must check flag for FREAD and FWRITE bits. Typically, flag
tells your code why the user wants to open the device.

otyp A flag that tells your code the class of the device that it must
open. This is useful if your driver must handle both
character and block devices. For character devices, this flag
is usually OTYP_CHR, but OTYP_LYR is also possible.

Note: For each OTYP_LYR open, you will always get an
OTYP_LYR close. If your close routine actually frees
memory or clears driver data structures, you must track
OTYP_LYR opens and closes separately. Ensure that all
outstanding DMA operations have cleared prior to a free.

crp A pointer to the user credential structure.
Returns

If the device cannot be opened in the way requested, your code for this entry
point must return an appropriate error code from sys/errno.h.

Notes

If you want the driver to enforce mutual exclusion on a device, enforce it by
having the drvopen() routine test to see whether the device is busy. This
requires adding reference counting between your open() and close()
routines, which must be protected. If the device is busy, it can sleep until
completion of the current activity, then awaken.

close — Relinquish Access to a Device

The user program invokes the close() system call when it is finished with a
device, but the system does not necessarily execute your druclose() entry

Driver Entry Points

point for that device. The system executes the drvclose() entry point only
after all processes that have opened the device have also called close().

If the device is opened frequently, you may not actually want drvclose() to
free all the memory and other resources allocated to the open device.

Synopsis

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/vmereg.h>

drvclose (dev_t dev, int flag, int otyp, cred_t *crp)
{
<your code>
return value; /* 0 or value from errno.h */

}

dev Device major and minor numbers. Use getemajor() and
geteminor() to get the major and minor device numbers
from this parameter. The minor number helps you identify
which device of a multidevice driver is being closed.

flag A mode argument from the close() system call. Your code
must check flag for FREAD and FWRITE bits. Typically, flag
tells your code why the user wants to close the device.

otyp A flag that tells your code the class of the device that it must
close. This is useful if your driver must handle both
character and block devices. For character devices, this flag
is usually OTYP_CHR, but OTYP_LYR is also possible.

crp A pointer to the user credential structure.
Returns
If your code for droclose encounters an error, it must return an appropriate

error code from sys/errno.h. Even if it returns an error, your drvclose routine
must really close the device—it won’t be called again.

33

Chapter 2: Writing a Device Driver

34

read or write — Read/Write Data from/to a Device

The kernel executes the drvread() or drvwrite() entry point whenever a user
process calls the read() or write() system call. The following is an outline of
what your driver entry points do:

Validate the addresses.

Protect the data from being paged out.
Start up the data transfer.

Set protection timeout.

Sleep while the data transfers.

Wake up when data transfer is complete.
Check the status of the data transfer.

Clear timers.

O ® N o GOk N =

Report the status of the data transfer.

10. Return to user.

Because IRIX provides you with a rich set of powerful kernel functions, you
can implement the above procedure in a number of ways, each sensitive to
the particular strengths and limitations of the device you are controlling.
However, not all methods of implementing the above procedure work for all
devices. (For example, what works for non-DMA type devices does not
always work for DMA-type devices if the user's virtual addresses are not
currently mapped.)

Using the kernel functions physiock() and biodone() and your own
drustrategy() and drvintr() routines, you can write drowrite() and drvread()
points that are appropriate for all types of character devices (more on
drustrategy() later in this chapter).

Synopsis

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/vmereg.h>
#include <sys/ddi.h>

Driver Entry Points

drvread (dev_t dev, uio_t *uiop, cred_t *crp)
{
<your code>
return physiock (drvstrategy, 0, dev, B_READ,
nblocks_uiocp) ;
}
drvwrite (dev_t dev, uio_t *uiop, cred_t *crp)
{
<your code> (see above)
return physiock (drvstrategy, 0, dev, B_WRITE,
nblocks_uiocp) ;

}

Arguments

dev Major and minor device numbers of the device involved in
the read or write operation. Use getemajor() and
geteminor() to extract this information from dev.

uiop On entry, the uiop parameter contains a pointer to a uiop
structure that contains, among other things, the location
(uiop->uio_iov->iov_base) and size (uiop->uio_iov->iov_len) of
the buffer in user space from which to read or to which to
write information.

crp A pointer to the user credential structure.

Returns

As with the drvopen() and droclose() entry points, your code for the
droread() and the drowrite() entry points must (when necessary) return
appropriate error codes.

ioctl — Control a Character Device

Character devices may include a “special routine” entry point, drvioctl().
You can use this entry point to perform a number of device-dependent
functions other than the standard operations (such as read and write). The
kernel executes the drvioctl() entry point when a user program issues the
ioctl() system call.

35

Chapter 2: Writing a Device Driver

Synopsis

#include <sys/types.h>
#include <sys/file.h>
#include <sys/cred.h>
#include <sys/errno.h>
#include <sys/ddi.h
#include <sys/vme.h

drvioctl (dev_t dev, int cmd, void *arg, int mode,
cred_t *crp, int *rvalp)

<your code>
return value; /* 0 or value from errno.h */

}

Arguments

dev Major and minor device numbers of the device it must
handle. Use getemajor() and geteminor() to extract this
information from dev.

cmd This parameter is useful when you have more than one
“special routine.” The user cannot call these special routines
directly. However, the user can call ioctl() with the
appropriate value as its second parameter, and thus specify
which special routine it wants. Within your code for the
drvioctl() entry point, you must test the cmd parameter and
take the appropriate action.

arg This parameter can be used or ignored by your code as
needed. Its type depends on the cmd argument. It can be
either an integer value or a pointer to a device-specific data
structure. (If it is a pointer, do not reference that address
directly; instead, use copyin() or copyout() to retrieve the
contents.)

Note: The size of int and pointer passed in can vary
depending on the ABI outside a 64-bit kernel. See userabi
and userabi_t. in “Device-special File” on page 22.

mode The file modes set when the device was opened. Your driver
can use this information to determine whether the device
was opened for reading or writing.

crp A pointer to the user credential structure.

36

Driver Entry Points

rvalp Is a pointer to the return value for the calling process. The
driver may elect to set the value if ioctl() succeeds. This is
distinct from the errno return value of the drvioctl() function
itself.

Returns

As with the other driver entry points, your code for the drvioctl() entry point
must return an appropriate error code from sys/errno.h in case of an error.

poll — Poll Entry Point for a Non-STREAMS Character Driver

A character device driver may include a dropoll() entry point so that users

can use select() or poll() to poll the file descriptors opened on such devices.
These system calls tell the user whether input from the device is available or
whether output to the device is possible.

Synopsis

#include <sys/poll.h>
#include <sys/ddi.h>
#include <sys/errno.h>
#include <sys/types.h>

struct drvinfo {

struct pollhead *phead; /* output poll queue */
} drvinfo [MAXUNITS];

drvpoll (dev, events, anyyet, reventsp, phpop)
dev_t dev;
short events;
int anyyet;
short *reventsp;
struct pollhead **phpp

*reventsp = events;
if ((events & (POLLIN|POLLRDNORM)) & no input available) {
*reventsp &= ~ (POLLIN|POLLRDNORM) ;

}

if ((events & (POLLOUT) && output not possible) {

37

Chapter 2: Writing a Device Driver

*reventsp & ~POLLOUT;
}

if ((events & (POLIPRI|POLIRDBAND) && no out of band data) {
*reventsp &= ~ (POLIPRI | POLLRDBAND) ;
}

if (device error) {
*reventsp = POLLERR;
return 0;

}
if (!*reventsp)
return 0;

if (lanyyet) {
*php = drvinfo[getminor (dev)] .phead;
return 0O;

}

Arguments

dev Major and minor device numbers of the device it must
handle. Use getemajor() and geteminor() to extract this
information from dev.

events A mask that indicates the events being polled. The
significance of the bits of this value is defined in sys/poll.h.
When the driver’s poll() entry point is called, the driver
must verify whether any of the events requested in events
have occurred.

anyyet A flag that indicates whether the driver must return a
pointer to its pollhead structure to the caller.! If none of the
events is pending, the driver must check the anyyet flag and,
if it is zero, store the address of the device’s pollhead
structure in the pointer pointed to by phpp.

' Routines that return a pointer to the caller must verify the caller’s ABI and return data
of the correct type without inadvertent conversions.

38

Driver Entry Points

reventsp A pointer to a bitmask of the returned events satisfied. The
driver must store the mask consisting of the subset of events
that are pending in the short pointed to by reventsp. Note
that this mask may be zero if none of the events is pending.

phpp A pointer to a pointer to a pollhead structure (defined in
sys/poll.h).

A driver that supports polling must provide a pollhead structure for each
minor device supported by the driver. Use phalloc() to allocate the pollhead
structure. Use phfree() to free the structure.

When an event occurs, the driver must issue a call to pollwakeup(), passing
it the event that occurred and the address of the pollhead structure associated
with the device. For example, in the device interrupt routine, drvintr():

drvintr ()

{

if (input available)

pollwakeup (drvinfo[getminor (dev)].phead, POLLIN, POLLRDNCRM) ;
if (output possible)

pollwakeup (drvinfo[getminor (dev)] .phead, POLLOUT);

Returns
drupoll can return an error and “hang up” by returning POLLERR and
POLLHUP. You cannot specify these events in *events on entry to dropoll. If

your code for drupoll() encounters an error, it must return an appropriate
error code from sys/errno.h.

map or unmap — Check Virtual Mapping for a Memory-mapped Device
Use the drvmap() and drounmap() entry points in device drivers for

memory-mapped devices. They are described in Chapter 3, “Writing a VME
Device Driver,” in greater detail.

39

Chapter 2: Writing a Device Driver

40

Synopsis

Note: These routines are nonstandard to System VR4.x.

#include "sys/types.h"
#include "sys/region.h"
#include "sys/mman.h"

drvmap (dev_t dev,vhandl_t *vt,off_t off,
int length,int prot)
{
<your code>
return value; /* 0 or value from errno.h */

}

drvunmap (dev,vt)
dev_t dev;
vhandl_t *vt;

<your code>
return value; /* 0 or value from errno.h */

}

Arguments

dev Major and minor device numbers of the device it must
handle. Use getemajor() and geteminor() to extract this
information from dev.

ot A handle to the virtual space in the calling process to which
the device is mapped. (The structure for the handle is
subject to change, so do not attempt to reference the
members of the structure pointed to by the handle directly.)

off An offset to an address within the device memory. This
address is the start of the device memory that the user
wants your code to map into user space. (The user may not
want to map in all of the device memory.)

length The number of bytes to map.

prot A description of the protection to apply to the region it
maps in. The values for this parameter can be found in sys/
man.h.

Driver Entry Points

devflag — driver flags

Synopsis

#include <sys/conf.h>
#include <sys/ddi.h>
int drvdevflag = 0;

Every driver must define a global integer variable called drvdevflag. This
variable contains a bitmask of flags used to specify the driver's
characteristics to the system. (When drodevflag is defined, UNIX SVR4
conventions apply; if it is not defined, UNIX SVR3 conventions apply.)

The valid flags that may be set in drvdevflag are:

D_MP The driver is multithreaded (it handles its own locking and
serialization).

D_WBACK The driver writes back cache before calling its drustrategy
routine.

D_OLD The driver uses the old-style interface (pre-5.0 release). This

flag is not recommended for new work.

If no flags are set for the driver, then drodevflag must be set to 0. If this is not
done, then Iboot will assume that this is an old-style driver, and it will set
D_OLD flag as a default.

1

Chapter 2: Writing a Device Driver

42

Writing Other Driver Routines

In addition to entry points, your device driver may include other routines to
handle interrupts from the device and to handle device initialization at boot
time (see Table 2-3). You may also want your driver to include routines (such
as drustrategy) that are not strictly necessary but that simplify writing the
standard entry point routines.

Table 2-3 Interrupt and Initialization Handling Routines
Routine Description
intr Processes a device interrupt after a transfer terminates, whether

normally (upon completion) or abnormally (due to some error).

strategy Performs block 1/0.

edtinit Initializes the device at boot time. Same as inity().
init Initializes the device at boot time. Same as edtinit().
halt Shuts down the driver when the system shuts down.
start Initializes a device at system startup.

unload Cleans up a loadable kernel module.

Driver Entry Points

intr — Process a Device Interrupt

When your device driver does a read or write, the driver usually puts itself
to sleep while it waits for the transfer to complete. When the transfer
terminates, whether normally (upon completion) or abnormally (due to
some error), the device sends an interrupt to the CPU. When the system
receives the interrupt from the device, it looks in your device driver for the
drvintr() routine and executes that routine. Some devices can interrupt when
the open count is zero. The interrupt still must be handled.

When the device I/O completes., the drvintr() routine awakens the sleeping
process. Within the drvintr() routine, you can use the kernel function
biodone() to awaken the sleeping process and report the status of the
transfer (whether normal or error).

For a SCSI device, there must not be a drvintr() routine because the driver is
a “soft” driver that does not interact directly with the hardware. Instead, a
callback routine is often provided. This routine may be given any name, but
it is often of the form drv_intr():

drv_intr (scsi_request_t *sp);

Arguments

sp A pointer to a scsi_request_t type structure. (See the sample
code in Chapter 5, “Writing a SCSI Device Driver,” for an
example of a drv_intr() routine written for a SCSI type
device.) You must explicitly pass drv_intr() in the sr_notify
member of the scsi_request_t structure allocated for the
device.

43

Chapter 2: Writing a Device Driver

44

strategy — Perform Block I/0

The drustrategy() routine is not a character device driver entry point in the
strictest sense (the user does not call it). However, when writing a device
driver, you will probably want to write a drustrategy() routine. Typically,
you call the drustrategy() routine from the drvread() and drvwrite() routines,
through the physiock() kernel routine:

drvread (dev_t dev, uio_t *uiop, cred_t *crp)
{
return physiock (drvstrategy, 0, dev, B_READ,
nblocks, uiop);
}
drvwrite (dev_t dev, uio_t *uiop, cred_t *crp)
{
return physiock (drvstrategy, 0, dev, B_WRITE,
nblocks, uiop);

}

physiock() is a kernel routine that:

* Verifies whether the requested transfer is valid by checking whether the
offset is at or past the end of the device and verifying that the offset is a
multiple of the block size (512).

* Sets up a buffer header that describes the transfer.

* Faults pages in and locks the pages involved in the I/O transfer so they
cannot be swapped out.

* Calls the strategy routine passed by the first parameter.

* Sleeps until the transfer is complete and awakens when the driver’s
I/0 completion handler calls biodone().

* Performs the necessary cleanup and updates, then returns to the
routine that called it.

physiock() reports a data transfer as valid if the following conditions are

met:

* the specified data location exists on the device

* the user has specified a storage area that exists in user memory space

* the user-space storage area is large enough.

Driver Entry Points

For more information, see the physiock(D3) man page.

Note: In IRIX 5.x and earlier, pages are 4 KB, and the default maximum
DMA size is 4 MB; in IRIX 6.0, pages are 16 KB, and the default maximum
DMA size is 16 MB. You can change the DMA size by modifying maxdmasz,
in fvar/sysgen/mtune/kernel, using page as the basic unit. For other ways to
modify this parameter, see the systune(1M) man page. I/O larger than what
is allowed by maxdmasz produces the UNIX error ENOMEM. See
Appendix B, “SCSI Controller Error Messages”.

If the second argument is 0, physiock() then allocates an IRIX buffer header
(a kernel-level structure of type buf) and primes it with appropriate transfer
information; otherwise, physiock() uses the argument as a pointer to a buf_t.
This structure encapsulates all the information of a single I/O transfer.

physiock() assigns the values of the following buf type structure members:

b_un.b_addr Contains the kernel virtual address from which information
is read or to which information is written.

b_flags Contains a bit mask of flags that describe the transfer.
B_BUSY is set to indicate that the buffer is in use foranI/0
transfer. B_READ is set if the transfer is a read.

b_bcount Contains the number of bytes to be transferred.

b_edev Contains the major and minor device numbers.

b_blkno Contains the device block number to be transferred.

b_resid On completion, before calling biodone(), the driver must set
this member to the number of bytes that were not
transferred.

b_biodone If nonzero, this is taken as a function pointer, and the

routine in question is called from biodone(); all normal
biodone() processing is skipped. b_biodone may also be set
by the user.

Finally, physiock() calls drvstrategy() and hands it a pointer to this buf

structure. (See a description of physiock (D3) in the IRIX Device Driver
Reference Pages for more details on this kernel procedure.)

45

Chapter 2: Writing a Device Driver

46

Synopsis

drvstrategy (struct buf_t *bp)
{

<your code>

}

Your drustrategy() routine programs the device for the transfer. The
information it needs to do this is contained in the structure pointed to by bp.
Typically, your drustrategy() routine starts the I/O by programming
appropriate registers. When drustrategy() is done, control returns to
physiock(). physiock() then calls biowait(), and the process sleeps until the
transfer is complete.

Normally, your interrupt handler will call biodone(bp) on completion. But
before calling biodone(), your driver must have saved the bp value passed
to the strategy routine. (You must awaken the sleeping process even if there
is some initial error condition.) In addition, your drvintr() routine must
indicate the success of the transaction by updating the b_resid member of the
buf_t type structure to contain the number of bytes that were not transferred,
then move to the next page.

To handle any I/O errors that occur, use bioerror (bp, errno), where bp is a
pointer to the buf_t type structure passed in as the first parameter of your
drustrategy(), and errno is the appropriate error number. bioerror() sets the
members of the buffer header so that higher level code can detect the error
and call geterror() to retrieve the error number from the structure.

Caution: Your drvintr() routine and the routines it calls must not try to
access the uiop structure directly. The structure it gets might not belong to the
process that made the I/O request.

Driver Entry Points

edtinit and init — Initialize a Device

Most devices need some initialization at boot time. The system looks in the
object module for the driver for either of two routines, drvinit() or
drvedtinit(), then executes the appropriate routine to initialize the device. If
you use the INCLUDE directive (in the /var/sysgen/system/irix.sm file) to add
a device to the kernel, your driver must use the drvinit() routine to initialize
the device at boot time. If you use the VECTOR directive, your routine must
use the drvedtinit() routine to initialize the device at boot time.

Because you use the INCLUDE directive to include SCSI device drivers in the
kernel, your drivers for SCSI devices must include a drvinit() routine if you
want to initialize the device at boot time (in which case, no edtinit() call will
be generated). See Chapter 5, “Writing a SCSI Device Driver,” for a synopsis
of the drvinit() routine.

Because you use the VECTOR directive to include VME device drivers in the
kernel, your device drivers for VME devices must include a drvedtinit()
routine to initialize the device at boot time. See Chapter 3, “Writing a VME
Device Driver,” for a synopsis of the drvedtinit() routine and a discussion of
VME-bus address space and PIO mapping.

Most device drivers of the general memory-mapping model are for VME
type devices. (See Chapter 7, “Writing Kernel-level General Memory-
mapping Device Drivers.”) Therefore, most device drivers of the general
memory-mapping model are included in the kernel using the VECTOR
directive. Your object module for this type of device driver usually contains
a drvedtinit() routine.

Synopsis

void drvedtinit (struct edt *e);

47

Chapter 2: Writing a Device Driver

48

halt — Shut Down the Driver When the System Shuts Down

The drvhalt() routine, if present, is called to shut the driver down when the
system is shut down. After the drvhalt() routine is called, no more calls are
made to the driver entry points.

This entry point is optional. The device driver can not assume that the
interrupts are enabled. The driver must make sure that no interrupts are
pending from its device and must inform the device that no more interrupts

are to be generated.

Synopsis

void drvhalt (void);
Return Values

None

Driver Entry Points

start — Initialize a Device at System Startup

The drustart() routine is called at system boot time (after system services are
available and interrupts have been enabled) to initialize drivers and the
devices they control.

This entry point is optional. The start routine can perform the following
types of activity:

* initialize data structures

* allocate buffers for private buffering schemes

* map the device into virtual address space

* initialize hardware

* initialize time-outs

A driver that needs to perform setup and initialization tasks that must take
place before system services are available and interrupts are enabled must
use the drvinit() routine to perform such tasks. The drustart() routine must
be used for all other initialization tasks.

Synopsis

void drvstart (void);
Return Values

None

49

Chapter 2: Writing a Device Driver

50

unload - Clean Up a Loadable Kernel Module

The drvunload() routine handles any cleanup a loadable kernel module
must perform before it can be unloaded dynamically from a running system.

This entry point is only required if a module is to be unloaded from the
system. A loadable module’s unload routine is defined in module-specific
initialization code called wrapper code. The drvunload() routine can
perform activities such as:

* Deallocate memory acquired for private data

* Cancel any outstanding itimeout() or bufcall() requests made by the
module

Synopsis

int drvunload(void);
Return Values

The drvunload() routine returns 0 for success or the appropriate error
number.

Synchronization Constraints

The drvunload() routine must not sleep or call any functions that sleep, such
as biowait(), delay(), psema(), or sleep().

Driver Entry Points

STREAMS Driver Entry Points
The STREAMS driver entry points are listed in Table 2-4.

Table 2-4 STREAMS Driver Entry Points

Driver Entry Points

put sIv open close

put — Coordinate Message Passing Between Queues in a Stream

The primary task of the put routine is to coordinate the passing of messages
from one queue to the next in a stream. The put routine is called by the
preceding component (module, driver, or stream head) in the stream. put
routines are designated write or read depending on the direction of message
flow.

This entry point is required in all STREAMS drivers and modules.

Synopsis

drvput (register queue_t *qg, register inblk_t *mp);
Usage

Both modules and drivers must have put routines for writing. Modules must
have put routines for reading, but drivers do not really need them because
their interrupt handlers can do the work intended for the read put routine.
If immediate processing is desired when a message is passed to the put
routine, it can either process the message or queue it so that the service
routine can process it later. See srv(D2).

Note: The majority of STREAMS drivers are software drivers, however, and
do not have interrupt handlers.

The put routine must do at least one of the following when it receives a
message:

* pass the message to the next component in the stream by calling the
putnext(D3) function

51

Chapter 2: Writing a Device Driver

52

* process the message, if immediate processing is required (for example,
high-priority messages)
* queue the message with the putq(D3) function for deferred processing

by the service routine

Typically, the put routine switches on the message type, which is contained
in mp->b_datap->db_type, taking different actions depending on the message
type. For example, a put routine might process high-priority messages and
queue normal messages.

The putq function can be used as a module’s put routine when no special
processing is required and all messages are to be queued for the service
routine.

Notes

Although queue flushing can be done in the service routine, drivers and
modules usually handle it in their put routines.

* Drivers and modules should not call put routines directly.

* Drivers should free any messages they do not recognize.

* Modules should pass on any messages they do not recognize.

* Drivers should fail any unrecognized M_IOCTL messages by
converting them into M_IOCNAK messages and sending them
upstream.

* Modules should pass on any unrecognized M_IOCTL messages.
Return Values

Ignored

Synchronization Constraints

put routines do not have a user context and so may not call any function that
sleeps.

Driver Entry Points

srv — Service Routine

The srv (service) routine may be included in a STREAMS module or driver
for a number of reasons. It provides greater control over the flow of
messages in a stream by allowing the module or driver to reorder messages,
defer the processing of some messages, or fragment and reassemble
messages. The service routine also provides a way to recover from resource
allocation failures.

Synopsis

drvsrv (register queue queue_t *q);
Usage

This entry point is optional and is valid for STREAMS drivers and modules
only.

A message is first passed to a module’s or driver’s put(D2) routine, which
may or may not process it. The put routine can place the message on the
queue for processing by the service routine.

Once a message has been queued, the STREAMS scheduler calls the service
routine at some later time. Drivers and modules should not depend on the
order in which service procedures are run. This is an implementation-
dependent characteristic. In particular, applications should not rely on
service procedures running before returning to user-level processing.

Every STREAMS queue has limit values it uses to implement flow control
(see queue(D4). High and low water marks are checked to stop and restart
the flow of message processing. Flow control limits apply only between two
adjacent queues with service routines. Flow control occurs by service
routines following certain rules before passing messages along. By
convention, high-priority messages are not affected by flow control.

STREAMS messages can be defined to have up to 256 different priorities to
support some networking protocol requirements for multiple bands of data
flow. At a minimum, a stream must distinguish between normal (priority
band zero) messages and high-priority messages (such as M_IOCACK).
High-priority messages are always placed at the head of the queue, after any
other high-priority messages already queued. Next are messages from all
included priority bands, which are queued in decreasing order of priority.

53

Chapter 2: Writing a Device Driver

54

Each priority band has its own flow control limits. By convention, if a band
is stopped, all lower priority bands are also stopped.

Once a service routine is called by the STREAMS scheduler, it must provide
for processing all messages on its queue, restarting itself if necessary.
Message processing must continue until either the queue is empty, the
stream is flow-controlled, or an allocation error occurs. Typically, the service
routine switches on the message type contained in mp->b_datap->db_type,
taking different actions depending on the message type.

Each STREAMS module and driver can have a read and write service
routine. If a service routine is not needed (because the put routine processes
all messages), a NULL pointer should be placed in the module’s ginit(D4)
structure.

If the service routine finishes running for any reason other than flow control
or an empty queue, then it must explicitly arrange for its rescheduling. For
example, if an allocation error occurs during the processing of a message, the
service routine can put the message back on the queue with putbq and,
before returning, arrange to have itself rescheduled at a later time. See
genable(D3), bufcall(D3), and itimeout(D3).

Notes

Service routines can be interrupted by put routines unless the processor
interrupt level is raised.

* Only one copy of a queue’s service routine runs at a time.

* Drivers and modules should not call service routines directly. Use
genable(D3) to schedule service routines to run.

* Drivers (except multiplexors) should free any messages they do not
recognize.

* Modules should pass on any messages they do not recognize.

* Drivers should fail any unrecognized M_IOCTL messages by
converting them into M_IOCNAK messages and sending them
upstream.

* Modules should pass on any unrecognized M_IOCTL messages.

* Service routines should never put high-priority messages back on their
queues.

Driver Entry Points

Return Values
Ignored
Synchronization Constraints

Service routines do not have a user context and so may not call any function
that sleeps.

55

