
11

Preface

I’ve long dreamt of being able to construct my own characters; characters that had a 

life of their own but were willing and able to let me share in their worlds and experience. 

In my mind’s eye, I always saw them as fully three-dimensional, living in combinations of 

photorealistic and sketchy cartoon worlds. As a child I built characters constantly, acting 

out roles with toy soldiers and “action figures”, building complex structures out of wood 

and mud; moving whole cities and armies around with my hand and my mind. 

In high school and as an undergraduate, I spent an inordinate amount of time 

involved in theater; usually as an actor, but sometimes behind the scenes designing sets 

or managing props. As an actor, I was able to create characters and directly inhabit their 

bodies and minds. As a set designer, I was able to influence the construction of characters 

by enabling or constraining their activity, as well as realize the possibilities of a space itself 

as a kind of character. As a “prop master”, I appreciated the power of the prop; how a 

certain prop could enable the perfect “bit of business” that, in the hands of the right 

actor, make a scene really work. 

It’s a perfectly logical progression then, as my attention and studies turned towards 

computers, that my dissertation would end up addressing issues vital to the problem of 

building computational characters that exist in the digital domain. My interest continues to 

be in the process of bringing a character to life; I am chiefly concerned with its 

construction, in what situations it might find itself in, and how it might handle itself in the 

context of some larger, scripted, narrative activity. 

It should be noted that this approach is in contrast to the equally valid, but different, 

problem of freely interacting with a character in some emergent narrative form (Laurel91, 

Bates93, Blumberg95, Galyean95). I feel that until we can credibly talk about how the 

Introduction

1
Introduction and Overview



12

character was constructed, what trade-offs were made in its design and implementation, 

and what ways we might improve on the current design — in short, until we address the 

character construction process, I would contend that we have little chance of making 

measurable progress in our desire to populate virtual environments with 3D semi-

autonomous animated characters, at least in any way that we can generalize from our 

experience and reuse what we build. 

From an actor’s perspective, this means that I’m concerned with the rehearsal 

process, not the performance. It's not that the performance is not important; it’s clearly 

the final goal. But until we've constructed the character over the course of many 

rehearsals, it makes little sense to invite an audience and raise the curtain. 

What's so fascinating about the promise of doing this in the digital domain is in the 

fact that the experience, the entire experience of what transpired, can be recorded. 

Recorded for reuse, appropriation, reexperience in a different form or resolution — all of 

these become possible as we bring our characters to life in the digital domain. Our task, 

which I’ve taken on for this thesis, is to decide how we can build them so that this can 

happen. 

Background

 Researchers in Artificial Intelligence (AI) and Computer Graphics (CG) have long 

shared a dream that someday they would develop systems to allow the construction of 

three-dimensional animated characters. When given a particular task, such characters 

would be capable of independent activity in a virtual environment, and their activity would 

be purposeful and interesting. They would be able to be integrated into a given 

environment seamlessly, so that the artificial actor was indistinguishable from a human 

participant. Human users would be able to interact with such characters at the task level, 

asking them to perform activities or even join the human in performing some task. 

Over the years, the AI community has made strides in many related areas, including 

reactive planning, constraint systems, and knowledge representation. Computational 

graphicists have made enormous advances in physically-based modeling, photorealistic 

scene description and rendering. Both fields have benefited enormously from fast 

workstations and advanced software development environments. Unfortunately, 

whenever researchers in either of these two domains try to address the larger character 

construction issue, they rarely use state-of-the-art techniques from the other. More 



13

importantly, when researchers do try to integrate techniques from both fields into a 

solution, almost invariably they end up treating the other discipline’s contribution to the 

problem as purely “an implementation issue. “

For example, when considering a scenario in which a character is given the task of 

arranging some items on a table, most AI researchers have concentrated on issues 

surrounding getting the character to decide to “pick up block A first, then block B.” How 

the character goes about picking up block A (text output, robot arm, flat shaded rigid links, 

etc.) is usually considered an “implementation issue.” What matters to the AI researcher 

is that the system decided to engage in the activity based on some internal and external 

motivations, and that the system has some mechanisms for determining, after the fact, if 

the activity was successful or not, and then reacting accordingly. How the actual activity is 

implemented is not usually considered an integral part of the problem. 

Given the same domain, computational graphicists have instead concentrated on the 

issues of describing how the character and its environment’s attributes (i.e. position, 

orientation, coloring, shading, geometric shape) change over the course of actually picking 

up the block, and how these changes occur in three-dimensional space and are eventually 

visualized onto an array of pixels. How the system decided to pick up a given block in the 

first place, or what it did next, were not considered part of the problem. Moreover, the task 

of modulating that instance of behavior during that particular span in time and space is 

almost invariably given over to a human (i.e. an animator). 

While this approach has been successful in coming up with solutions for many of the 

subproblems associated with the larger goal of constructing characters, no single system 

to date satisfactorily meets the goal of allowing the construction of arbitrary three-

dimensional, semi-autonomous, animated characters engaged in purposeful and 

interesting behavior in a virtual environment, such that the virtual actors can be seamlessly 

integrated with real environments. 

The goal of this work has been to address this problem by constructing a testbed for 

experimenting with the issues that arise in the construction of such characters, where the 

result is amenable to the application of state-of-the-art techniques from both the AI and 

CG domains. 



14

 The basic thesis that this dissertation discusses is that by considering computer 

graphics and artificial intelligence techniques as peers in a solution, rather than relegating 

one or the other to the status of an “implementation detail”, we can achieve a synergy 

greater than the sum of the parts. This will allow us to overcome previous limitations and 

allow the development of a character construction system that will foster collaboration 

and foment discussion by practitioners in both domains. 

It is my thesis that by using a single time-based representation for the shape, shading

and state information that both the AI and the CG subsystems can measure and 

manipulate at an appropriate level of detail, I will be able to demonstrate an approach 

that allows and fosters the construction of arbitrary three-dimensional, semi-autonomous, 

animated characters that can engage in purposeful and interesting directed behavior in a 

virtual environment. 

I claim that any such representation must have mechanisms to allow proper sampling 

of behavior, and mechanisms for intelligently reconstructing the results of those behaviors 

later. Ideally, the system should allow for scalable behavior to be built, where 

mechanisms can be put in place to behave differently in the presence of greater or lesser 

sampling of the behavior. The representation should encourage the construction of 

reusable behaviors that can be reused among a range of characters. These behaviors 

should be amenable to composition, so that sets of behaviors can be composed together 

to form more complex behaviors. Finally, the representation should facilitate the 

construction of blendable behavior, where the complementary result of behaviors blend 

together in their manipulation of the representation of the character. 

Finally, we claim that due to the iterative nature of the character construction process, 

and the inherent demand for sophisticated debugging tools, it is imperative that the 

representation be able to be easily built up over time using state-of-the-art data 

manipulation and visualization techniques. 

The Thesis



15

The problem that this thesis addresses can be best summarized as the following set 

of questions: 

• How can we construct virtual actors (three-dimensional, animated semi-
autonomous computer characters) in such a way that they are able to sense 
and act in the virtual environments they inhabit? (.i.e. “it is hot”, “the ball is 
nearby”, “I'm surrounded by enemies”, etc.)

• How we can construct virtual actors such that both end users and character 
designers can interact with them at the task level? (“Open the door”, “clean 
this place up”, “fix the motor”, “look at this”, etc.) 

• What is the computational infrastructure we need to compose such characters 
out of reusable parts authored by disparate groups of modelers/animators/
artisans? 

• How can we construct our characters in such a way that they have an under-
standing of their present resources in the computational infrastructure they 
inhabit and allow them to make use of this information in their activity? In 
other words, how can we reconcile the desire to naturally express behaviors of 
these characters as continuous functions over time with the discrete, sampled 
nature of animation? (i.e. are they running on a fast machine, running on a 
slow network, am I being undersampled with respect to the kind of signal 
(change in the model over time) I am trying to produce, etc.) 

• How can we construct them such that they can be seamlessly integrated into 
virtual environments containing both real and computer generated imagery at 
arbitrarily high levels of quality (i.e. scalable high definition video, 35mm 
motion picture film, ShowScan, etc.)? 

All of these questions are intertwined. The thesis will directly address the first three 

questions, while the latter two are important implementation issues that will be 

addressed in the high level design and implementation of the prototype testbed. 

The Problem Posed as Questions



16

This section provides a brief overview of my answers to the questions posed in the 

previous section. Each of these issues is described and discussed in more detail in the rest 

of the dissertation. Before I begin, though, I feel a short glossary of terms I use frequently 

in WavesWorld (and will be using throughout this dissertation) would be useful to the 

reader unfamiliar with this work. Please note that all these terms will be explained, in 

context, in the following chapters, but this brief glossary of terms will hopefully stem any 

unnecessary initial confusion.

A Quick WavesWorld Glossary

model
A model is an encapsulation of the shape, shading, and state information of a 
character. Shape refers to the geometry of objects. This includes what geometric 
primitives they're composed of (spheres, polygons, patch meshes, etc.), as well 
as what geometric transformations are acting on them (scale, skew, translate, 
rotate, etc.). Shading refers to the subtle surface qualities of an object due to the 
material properties of the objects in the scene, local illumination effects, and 
global illumination effects. State refers to other more ineffable, but still 
perceivable qualities, like elements of personality.

In WavesWorld, a model is an ordered list of renderable objects, some of which 
are animatable. Renderable objects are objects that respond to messages 
instructing them to render themselves over some span of time, and animatable
objects are renderable objects whose properties/slots may change over time. The 
properties/slots of a model that can change over time are called articulated 
variables.

agent
In WavesWorld, an agent really just refers to a software module; an autonomous 
black box that has a well defined purpose, a separate namespace and its own 
thread of control. I use the term very carefully, and whenever it is used in this 
dissertation, it explicitly refers to such a black box that, when opened, is readily 
understandable by someone who might build such things (i.e. a programmer). 

sensor agent
An agent which encapsulates some boolean perceptual mechanism. A sensor 
agent gathers its information by measuring some model(s) that correspond(s) to 
the character, its environment, or both.

goal agent
An agent which encapsulates a desire of the character, in terms of a sensor agent 
that it wants to be True.

skill agent
An agent which generates the behavior of a character. It does this by, over the 
course of some amount of time, measuring and manipulating the articulated 
variables of some model(s) that correspond(s) to the character, its environment, 
or both.

character
A character is the combination of a model and some set of agents, which 
measure and manipulate the model over time. The agents may be in a variety of 
configurations: chained together, competing, cooperating, etc.

My Approach: An Overview



17

My Approach

In order to construct virtual actors which can sense and act in the virtual environment 

they inhabit, we characterize the functional components of a character as an 

interconnected network of goal agents, skill agents, and sensor agents. A given set of 

agents can be connected together in a variety of configurations, with the most complex 

that we've explored is a reactive planner based on an implementation of the “spreading 

activation” planning algorithm described initially in  ( Maes89). We have significantly 

extended this algorithm to allow asynchronous action selection and parallel action 

execution. This work  (Johnson91) was completed in 1991 for my SMVS thesis “Build-a-

Dude: Action Selection Networks for Computational Autonomous Agents.” We have since 

made several extensions to both the algorithm and our way of thinking about it (see 

Chapter 4 and Appendix A). 

Using Rasmussen's characterization of the signs, signals, and symbols to which a 

virtual actor attends (Rasumussen83), we dealt with the issues of dividing the perceptual 

mechanisms of a virtual actor into the discrete sampler of the continuous variable (a 

receptor) and the computational black box which computed the truth value of a given 

assertion based on the current sample set (the sensor agent). This split has powerful 

consequences with regard to graded recruitment of resources and apportionment of 

attention by the virtual actor to itself and its environment. This work is also complete, and 

has been integrated into the current implementation of the distributed, parallel planner 

and agent network, although it is not completely hooked up to the latest release of the 

testbed. 

In order to build actors that we can interact with at the task level, it is necessary to 

facilitate the construction of sophisticated multi-modal user interfaces to measure and 

manipulate our characters. To this end, I have extended the NEXTSTEP® development 

environment to allow both the manipulation and visualization of character components 

(agents, shaders, shape, and behavior). This allows for levels of abstraction to be built up 

for a given character, allowing guiding, animator, and task level interaction with a given 

character (Zeltzer85). This work has been under development for the last few years, and 

is in use by several hundred users over the world. The design of this software and its 

current implementation will be discussed in Chapter 3. 

In order to build the computational infrastructure necessary to build characters out of 



18

reusable parts authored by disparate groups of creators, it was necessary to use a single 

discrete time-based representation for the shape, shading and state of information of the 

characters and their environment. I used the RenderMan® Interface (Pixar89) as a starting 

point for designing the eve object framework to address this need. While the core of the 

framework (a modeling language, compiler, and run-time system) has up and working for 

over two years, we have been successfully using this framework to construct character 

parts over the past year. Like any language, understanding and facility grow over time, and 

my understanding of what we've wrought has come forward in leaps and bounds in the 

last few months, but there is still room left in the learning curve. Examples of using this 

approach are explained in Chapter 3, and some future directions for this will be 

addressed in Chapter 5. 

In order to construct characters that can be seamlessly integrated with both real and 

computer imagery, we must be able to resolve the discrete nature of computational 

simulation/animation with the desire to record a scene continuously (i.e. with no 

sampling artifacts). This means that the underlying representation must maintain some 

continuity over time in order to interpolate parts for moments when it does not already 

have a sample. This problem is also intimately tied to the issue of giving a character's 

components a valid sense of their dynamic computation and communication resources 

while executing. In other words, it's vitally important to allow agents to have an 

understanding of how finely they are being sampled, so that they can adjust the signals 

they are generating accordingly. WavesWorld facilitates this by decentralizing sampling 

frequency to the signal generators (the agents), and by using a framework that allows 

object-based reconstruction and interpolation of signals in the scene (eve). Also, since I 

based my framework atop the RenderMan® Interface, and took full advantage of the 

capabilities provided by it, my system can easily take advantage of the state-of-the-art in 

commercial and research rendering systems (i.e. Pixar’s Academy Award® winning 

PhotoRealistic RenderMan® renderer and Larry Gritz’s hybrid raytracer/radiosity renderer 

from the Blue Moon Rendering Tools).



19

The central contribution of this dissertation is a testbed for experimenting with the 

issues surrounding designing, developing, debugging, and delivering 3D, semi-

autonomous animated characters. 

This testbed sits atop an object-oriented framework for constructing and animating 

models. This framework facilitates iterative construction of the parts and props that 

comprise a character. It also provides facilities for writing and wiring together agents, 

which are processes that measure and manipulate models over time to produce a 

character's behavior. This framework encourages and facilitates encapsulation and reuse 

at many levels, which benefits collaborative character construction. 

This testbed can be used to compose three-dimensional, photorealistic animatable 

characters, where characters are composed of variously interconnected agents and a 

model, where a model is a set of objects encapsulating shape, shading and state 

information over time. It's possible to quickly build reusable, composable, blendable 

behaviors, where a behavior is the result of some set of processes operating on a model 

over time. 

One especially useful result of using this framework to develop media is its facility in 

acting as a very rich and compact storage medium for photorealistic scenes. This storage 

representation builds directly atop the RenderMan® Interface, an industry standard for 

describing photorealistic scenes. In our object-oriented representation, though, since we 

maintain some level of continuity in our scenes over time, such scenes can have 3D 

models that change over time, where different parts of the models in the scene can be 

changing at different rates. Especially interesting is that these scenes need only a very 

modest run-time system for playback at arbitrary frame rates with respect to the scene 

time (in addition to a graphics system for display). 

Assuming the underlying components of the scene were sampled appropriately, the 

scene can be played back at arbitrary spatial and temporal frequency. In other words, the 

scene can be treated as continuous media. With appropriate sampling, the representation 

is not lossy. For a large class of scenes, this allows orders of magnitude of compression of 

the amount of data which need be stored or transmitted. This framework is extensible, so 

compound components of a scene can be encapsulated and efficiently stored and 

transmitted. 

Contributions of this Work



20

By using this framework, I will describe and demonstrate how it is straightforward to 

integrate a variety of animation control mechanisms such as kinematics, motion control, 

and procedural animation, and have high level controls to blend the results together. It 

also facilitates experimentation with a variety of AI techniques, some ethologically based, 

for doing behavior-based animation. This behavior based approach to animation is much 

more conducive to collaboration, as one collaborator usually need only concern 

themselves with the behaviors they are designing and how it manipulates the character, 

and do not necessarily have to coordinate with other behavior designers, especially when 

the behaviors are complementary. 

Chapter 2 begins by discussing a variety of ideas about constructing characters and 

related work in the Media Arts. I begin with examples of characters and character 

construction in the analog domain, and then try to summarize what insights we can carry 

over into the digital domain. I then discuss more technical work related to this 

dissertation, concentrating on the AI and CG communities, with special emphasis on 

hybrid systems which incorporate elements of both. 

Chapter 3 discusses in detail an object-oriented framework for 3D modeling over 

time that facilitates building characters out of composable parts. 

Chapter 4 discussed my parallel, distributed agent architecture, which addresses the 

issues of representing the attitudes and abilities of a character. I discuss the idea that 

animation is really a set of processes measuring and manipulating a model over time. I 

then show how by combining our object oriented modeling approach in Chapter 3 with 

this agent-based approach to generating behavior, we can build three-dimensional, semi-

autonomous animated characters. 

Chapter 5 summarizes what I've presented, and presents several course of direction 

for future work to both extend this work and to use it as a framework for building 

characters today. 

Appendix A discusses in more detail an action selection network algorithm, based on 

work done by Maes (Maes89), and extensions we have made to it. This work is relevant to 

the work presented in Chapter 4, but since it was only one of several action selection 

algorithms (all the rest were much simpler), it was described here instead of there.

Map of the Dissertation


