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At the beginning of our lesson I told Tortsov, the Director of our school and 
theatre, that I could comprehend with my mind the process of planting and 
training with myself the elements necessary to create character, but that it was 
still unclear to me how to achieve the building of that character in physical 
terms. Because, if you do not use your body, your voice, a manner of speaking, 
walking, moving, if you do not find a form of characterization which corresponds 
to the image, you probably cannot convey to others its inner, living spirit. 

“Yes”, agreed Tortsov, “without an external form neither your inner 
characterization nor the spirit of your image will reach the public. The external 
characterization explains and illustrates and thereby conveys to your spectators 
the inner pattern of your part.” 

“That's it!” Paul and I exclaimed. 

“But how do we achieve that external, physical characterization?” I asked.
(Stanislavski49)

In the beginning of Chapter 2, we saw how important the actor's own body, costume 

and props is to the successful creation of a character. In the digital domain, though, 

everything must be constructed, including the actor's body. We clearly need to consider 

the representation of which our character's form will be composed before we address the 

issue of its behavior, i.e. how it changes over time. 

This chapter describes the approach to modeling that has been developed for this 

thesis. It is an object-oriented approach that allows modeling three-dimensional character 

parts (amenable to photorealistic rendering) and a set of tools for facilitating their 

debugging and encapsulation for later reuse. We have implemented this as two large 

groups of object classes (over 150 classes in the WWTCLKit & WW3DKit), that I collectively 

refer to as the eve object framework.

 This framework addresses a myriad of interconnected issues that must be resolved if 

we are going to have photorealistic three-dimensional animated characters, composed of 

cooperating and competing agents, situated in a dynamic environment. I know of no other 

published approach that addresses all of these issues together, and I consider this 

explication of the issues and our representative implementation as one of the central 
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contributions of this thesis work. 

I refer to our solution as an object framework, which may be a confusing term to 

some readers. In our case, eve has several faces: it refers to both a modeling language 

embedded in a computational language and an extensible set of object classes which 

conform to a small set of protocols. 

I have developed an object compiler which transcodes from the modeling language 

to a database of compiled objects (written in Objective-C). There is a run-time system that 

maintains dependencies between variables accessed via the computational language and 

the underlying objects. In addition, we have developed a set of GUI tools to both visualize 

and manipulate the objects in the database. This combination of a dynamic language and 

a fast object compiler, coupled with an interactive GUI toolkit for manipulation and 

visualization of objects and their interrelationships, allows us an unprecedented level of 

flexibility and power in building and debugging the parts that compose a character. 

Because of the object-oriented nature of the framework, appropriately sampled 

scenes constitute a powerful recording mechanism for allowing the events of a character's 

interaction with its environment to be recorded, allowing arbitrary spatial and temporal 

resolution playback of the experience. These can be played back with no simulation 

system present; just a modest run-time system and a graphics subsystem for rendering are 

necessary. 

In this chapter I first describe the requirements for the representation and then 

present several simple examples which build on each other to point out some of the 

capabilities of our approach. I then describe our approach in some detail; discussing the 

process of debugging and the issues of reusability (i.e. the “packaging problem”), which 

is a central issue in using this system for collaborative construction of characters. Finally, I'll 

touch on some of the interesting and novel capabilities of this framework, using more 

complex examples for illustration, and finally summarize what we’ve seen thus far. 



37

The act of the mind, wherein it exerts its power over simple ideas, are chiefly 
these three: 

1. Combining several simple ideas into one compound one, and thus all complex 
ideas are made. 

2. The second is bringing two ideas, whether simple or complex, together, and 
setting them by one another so as to take a view of them at once, without uniting 
them into one, by which it gets all its ideas of relations. 

3. The third is separating them from all other ideas that accompany them in their 
real existence: this is called abstraction, and thus all general ideas are made. 
(Locke1690)

This section briefly discusses the essential requirements for a representation for 

photorealistic three-dimensional data over time, with special consideration given to our 

problem of constructing three-dimensional semi-autonomous animated characters. For 

the larger, general issues involved in describing photorealistic scenes, I would recommend 

Upstill89 or Pixar89. 

Comprehensive CG Vocabulary

 Since our representation is intended to be understood by a computer graphics 

rendering system, it is vital that it contain a comprehensive three-dimensional computer 

graphics vocabulary. This includes support for: 

• hierarchical transformations 

• polygons 

• curved surfaces 

• a materials description language 

The first three requirements are obvious, but the fourth may be unfamiliar to some 

readers. 

Encouraging Encapsulation and Abstraction for Materials

In the computer graphics domain, the more sophisticated modeling and rendering 

systems make a careful distinction between shape and shading. Shape refers to the 

geometry of objects. This includes what geometric primitives they're composed of 

(spheres, polygons, patch meshes, etc.), as well as what geometric transformations are 

acting on them (scale, skew, translate, rotate, etc.). Shading refers to the subtle surface 

qualities of an object due to the material properties of the objects in the scene, local 

illumination effects, and global illumination effects. 

Representation Requirements
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Being able to accurately and expressively describe the properties of light sources and 

the material properties of objects is one of the gulfs that separate limited CG systems from 

powerful production systems capable of rendering photorealistic images. From a character 

constructionist's point of view, a shading (i.e. materials description) language is important 

because we want to be able to “package” a given material and give it understandable 

parameters that can be manipulated and measured. For example, if a robotic character is 

composed of a certain kind of pitted, rusted metal, it would be nice if we were able to 

describe this in whatever complex detail we needed in order to render this material, and 

then be able to abstract it as some function with a set of parameters. This abstraction is 

important to a character builder for several reasons. 

First of all, we want to be able to package up and abstract portions of our character so 

that we're not inundated with details during the iterative construction phases. More 

importantly, though, is the vital role this will play in making characters and their 

environment perceivable to other characters and to the autonomous behavioral 

components (i.e. the agents) that comprise the character. All of these need to be able to 

measure and manipulate parts of the character and the environment, and only by having 

descriptions available at the appropriate level of abstraction can this be achieved. 

Otherwise, we are left with having all of our characters continually forced to work from 

first principles. We shouldn't have to solve the vision problem for the character to know 

it’s on a tile floor, and it should be able to easily determine the size and position of the 

tiles by actively perceiving that from the representation, and not be reduced to only 

working from some static database (i.e. tiles are usually one foot square). 

Such a materials description language is vital to being able to build up a useful 

knowledge base of object properties in a given environment. By constructing and 

experimenting with a variety of ways of describing materials appropriately, we can build 

up abstractions that will allow us to build up stereotypical descriptions that can be reused 

among characters and environments. 

Continuous over Time

 We want our representation to be continuous over time. This means that we don't 

want our representation to consist of a set of disconnected samples (i.e. frames) over 

time, nor do we really want them to be samples at all. Realistically, though, because of the 

discrete nature of animation, we will need to deal with sampling issues. We may have 
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multiple samples of what a portion of our model is at a given point in time, and we also 

may have some set of samples over time that represent some component of our model. If 

so, we'll need reasonable mechanisms for reconstructing the underlying signals that the 

samples represent. We also may have a disparate set of samples at a given point in time 

that represent some set of opinions of the model. In the same way that we need to be 

able reconstruct a signal from a set of samples over time, we should have mechanism for 

reconstructing a single sample at a point in time from some set of weighted samples from 

different sources at that point in time.

Composable

In the same way that we want to be able to “package up” material properties of 

character parts and props, we also want to be able to package the shape and state 

information that comprise the parts of a character. This implies that we have some core 

set of objects and some rules of composition, i.e. building a new class by composing 

together other classes. A key issue here is to come up with a core set of classes that can 

be easily and powerfully composed, whereby newly defined classes have all the flexibility 

of the core classes. This implies that there are some set of messages that all of these core 

objects respond to, and that newly composed objects also respond to these messages. 

Given the fact that we’re trying to build a three-dimensional computer graphics 

representation, these messages would include information for asking the objects to render 

themselves over some span of time, asking them what their bounding box is over some 

span of time, whether they push or pop the current transformation stack, etc.

“The nice thing about standards, there’s so many to choose from”

Given the amount of work that’s gone on in the last twenty year in computer 

graphics, It clearly makes little sense to try and build such a representation from scratch. 

But if we’re to use and build on an existing standard, which ones are appropriate to 

choose from? When this work was initially begun in the late 80s, there were a large 

number of 3D graphics APIs available: GL from SGI, Dore from Ardent, the RenderMan® 

Interface from Pixar, the in-progress ANSI PHIGS, RenderMatic (an in-house Media Lab 

rendering library developed primarily by Dave Chen), etc. There were trade-offs involved 

with each; some scaled well, some ran very fast, some gave high quality results, some 

were procedural, some were object-oriented, some I could get source code to, etc., but 
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none met all the criteria I had. 

Building on the RenderMan® Interface

Of these, though, the RenderMan® Interface was the closest in spirit; it attempted to 

define an interface between a modeler and a renderer, where the 3D scene (a 3D model 

viewed by a camera that had a shutter speed of some duration) was described in great 

enough detail to facilitate photorealistic rendering. The RenderMan® Interface had several 

unique things going for it that were especially appealing to me: a very powerful shading 

language and a set of quadric (sphere, cone, torus, hyperboloid, parabola, disk) and other 

curved surface primitives (uniform and nonuniform patch meshes, with trim curves). I 

discussed the need for a shading language earlier in this section, but the significance of 

having curved surface primitives may not be as obvious. 

One of the underlying concerns in WavesWorld is the fact that parts of the testbed 

may be distributed over a network of computational resources. If so, the size of models 

built out of our representation is an important factor. Curved surface primitives allow us to 

very compactly and exactly specify model parts, as opposed to polygons, which are usually 

a much cruder approximation. Polygons can be useful sometimes (i.e. to represent flat 

things with flat edges), but there are few (if any) good arguments for having only

polygonal primitives at the modeling level. 

The initial versions of software I wrote on the way to WavesWorld used several of 

these graphics APIs, with the current (and final) version using the RenderMan® Interface 

as a basis. The reason for this is that there are only a few downsides to using the 

RenderMan® Interface. The first problem is that it’s just a specification, and if you want to 

use it as a basis for your modeling representation, you’ll need to write a lot of code. There 

are several high quality RenderMan® compliant renderers available, but there are no freely 

available modeling system that use it. Because of this, I needed to develop such a system.

 The second problem is that the RenderMan® Interface is a procedural interface, it 

was necessarily to design and implement an appropriate object-oriented layer above it. 

This was a non-trivial design and engineering task; I spent over two years on this issue. 

There are a myriad of different ways to build such an object-oriented toolkit atop the 

RenderMan® Interface; NeXT’s 3DKit® is one such framework. NeXT’s 3DKit® does not 

deal with the critical issue of time, which the eve object framework that I developed for 

this dissertation does.
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Why not use OpenInventor® (or OpenGL®)?

One question I’m often asked is why I didn’t use OpenGL®, or its corresponding 

object-oriented toolkit, OpenInventor® (both from SGI). There are several reasons. The 

simplest is a matter of maturity: both OpenGL® and OpenInventor® are still young 

software products, with the 2.0 release this past year finally addressing some of the 

serious extensibility and performance issues of the 1.0 release. The RenderMan® Interface, 

on the other hand, was developed and released by Pixar in the late 80s, and has stayed 

stable since its 3.1 release in 1989. RenderMan® Interface compliant renderers have 

existed since that time, with at least one renderer (and in many cases two or more) 

available on all major software platforms, from PCs and Macintoshes, through 

workstations, on up to Crays and CM5s. OpenGL® and OpenInventor® is now becoming 

available on an equivalent range of machines, but this is a very recent (last year or two) 

development, with much of the implementations still in beta.

As opposed to the RenderMan® Interface, which has a complete and general set of 

quadric primitives, OpenInventor® as a somewhat ad-hoc set of curved surface primitives. 

Both have trimmed NURBS (non-uniform rational b-spline) surfaces, which are a very 

general but difficult to specify primitive (i.e. a modeling program can generate a NURBS 

surface, but one rarely writes one by hand). This means a fair amount of work has to go 

into specifying a higher level set of primitives such as partially swept out spheres, cones, 

cylinders, hyperboloids, tori, etc. that can be used directly by a modeler. None of which is 

terribly difficult, but tedious (and time-consuming) nonetheless. 

In short, in the areas that the RenderMan® Interface did not deal with (such as time 

over the course of a scene rather than just a frame, or composability and encapsulation of 

primitives), neither did OpenGL® or OpenInventor®. In the areas that both OpenGL®/

OpenInventor® and the RenderMan® Interface addressed, the RenderMan® Interface 

addressed more elegantly (i.e. intuitive curved surface primitives and materials 

description). Also, the RenderMan® Interface scales well from interactive rendering all the 

way up to the most complex and demanding photorealistic rendering algorithms, such as 

radiosity (Gritz95). 

It’s also interesting to note that it’s relatively straightforward to implement an 

OpenGL®-based renderer that uses the RenderMan® Interface. One of the preview 

renderers I use, rgl (part of the Blue Moon Rendering Tools written by Larry Gritz) uses 

OpenGL®’s predecessor, GL, to do all of its rendering. An OpenGL® version, while not 
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trivial, is reasonably straightforward (Gritz95B). 

On the other hand, adding the functionality needed by WavesWorld to OpenInventor® 

would probably not be straightforward, largely due to deficiencies in C++, 

OpenInventor®’s implementation language (Bell95). It would be difficult to extend the 

base classes in Inventor to respond to the messages need in WavesWorld, which means 

that the entire class hierarchy would have to be subclassed before work could begin. Also, 

since C++ has no run-time system to depend on, the run-time requirements of 

WavesWorld would have to be served by OpenInventor’s run-time system, which may or 

may not suffice.

In short, the only thing that the combination of OpenGL®/OpenInventor® did have 

going for it was that it was a procedural interface married with an object-oriented toolkit, 

while the RenderMan® Interface was strictly a procedural interface, and I needed to design 

and implement the corresponding object-oriented toolkit. Because the superior power, 

flexibility, and scalability of the RenderMan® Interface, that’s what I chose to do.
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Let's begin with some simple examples of building models by writing them in eve, 

the modeling language I developed for WavesWorld. I'll quickly introduce many of the 

issues we're concerned with in practice, and then give a more formal overview and 

exposition of the framework. This section forward references material later in this chapter; 

the interested reader is encouraged to revisit this section after reading the rest of the 

chapter. 

Static Example: A Cylinder

Let's say we want to build a dented metal cylinder. The first thing we would do is 

create a text file containing the following information: 

set radius 1
set zMin -1
set zMax 2
set thetaMax 360
set color {.858913 .960738 1}
set materialName DentedMetal

startShape  example1
Color  $color
Surface  $materialName
Disk  $zMin $radius $thetaMax
Cylinder  $radius $zMin $zMax $thetaMax
Disk  $zMax $radius $thetaMax

endShape

The preceding information is written in eve, a simple modeling language that we'll 

shortly compile into objects. As currently implemented, eve is a modeling language 

embedded in tcl; a popular extensible, embeddable scripting language. Eve extends tcl in 

several ways, most notably by adding a full binding for the RenderMan® scene description 

protocol. We'll talk about both tcl and RenderMan® more later, but for now the only thing 

to point out is that tcl refers to the contents of a variable by using the $ sign, so whenever 

you see $foo , you can read it as “the value in the variable named foo.”

If we compile the preceding file, it will compile the eve code into an ordered list of 

renderable objects. As you might imagine, a “renderable object” in WavesWorld is one 

that can be asked to render itself (either to a file, a framebuffer, etc.). If we ask these 

objects to render themselves to an image, we'd get: 

Three Simple Examples
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Since these are objects, we can inspect them with tools available in WavesWorld. If 

we inspect the instantiated objects, we would see: 

So what does this mean? Well, we have a container object (the “shape”, bounded 

by the startShape  and endShape ) that has an ordered set of renderable objects inside 

of it. When the shape is asked to render itself, it tells each of its renderable objects to draw 

themselves in turn. 

But what happened to the variables? In other words, what about $radius , $zMin , 

$zMax, etc. If we changed those variables now, would they affect the model at all? The 

answer is no, and the reason is that the values of the variables were resolved at the time 

we went from the text file written in eve and compiled into objects.

In WavesWorld, we would say that this model has “no potential for change” or “it's 

not animatable”. In other words, once it is compiled into objects, everything about it is 

fixed; nothing is mutable, there are no degrees of freedom left in the model. 

But what if we wanted the variables to be remembered? What if we wanted to 

change some variable and have the effects of changing it over time be recorded? How 
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could we express that in eve? 

Dynamic Example: Rotatable Cylinder

Let's say we want to build a simple cylinder that can rotate end over end. In contrast 

to the previous example, this model will have one degree of freedom: its rotation in the X 

axis. 

The first thing we would do is create the model file. It will be the same as the 

previous one, with one important change: since we want to give it a degree of freedom in 

rotation, we'll mark the Rotate object as “animatable”, which means that the expression 

the object is based on may change over time: 

set roll 0
set radius 1
set zMin -1
set zMax 2
set thetaMax 360
set color {.858913 .960738 1}
set materialName DentedMetal

startShape  example1
Color  $color
Surface  $materialName
animatable:  { Rotate  $roll 1 0 0}
Disk  $zMin $radius $thetaMax
Cylinder  $radius $zMin $zMax $thetaMax
Disk  $zMax $radius $thetaMax

endShape

If we now compile this eve code, we will again create a dented metal cylinder, which, 

when we ask the objects to render themselves, looks exactly like the first example: 

But what if we inspected the objects—what would we see? Well, using the object 

inspector in WavesWorld (wherein we visualize the model in 3-space, with Z 
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corresponding to time) and here are two views of what our instances look like: 

So what does this mean? Well, we have a model composed of an ordered set of 

renderable objects. When the model is asked to render itself by a camera, it tells each of 

its renderable objects to draw themselves. The difference is that now one of those 

renderable objects is now also an animatable object.

All objects in a model (i.e. all renderable objects) know how to render themselves 

over some interval of time, i.e. from time 1.0 seconds to time 1.033 seconds. A basic 

renderable object, though, has the same way of rendering itself at any time. This means 

that if we asked it to render itself at time 0, time 12.32, or time 543543.12, it would 

render itself exactly the same way. An animatable object, on the other hand, knows that 

any of its instance variables may change over time, and has several other objects inside 

itself to help it keep track of this information: 

ÿ • an object containing its symbolic representation 

ÿ • an object containing its time-stamped, generator-stamped, sampled 
representation

When an animatable object is asked to render itself over a given interval, it asks its list 

of samples for some representative set of samples over that interval. Usually, this means 

that it asks for two samples; a sample at the beginning of the time interval and one at the 

end of the time interval, but it could ask for more if the underlying renderer supported it. 

Either way, the animatable object then tells that list of representative samples to render 

themselves. This is an important process, and will be explained in more detail later in this 

chapter. 

For example, if we rendered our cylinder now from time 1.0 to time 2.0, we'd get the 
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following image: 

Note that this is exactly the same as the image we got when we asked the objects to 

render themselves at time 0. 

This is because so far the animatable object has only has one sampled representation 

of itself—the Rotate  object corresponding to time 0. If at time 1.5, though, the value of 

$roll  suddenly changed, the animatable object would get sent a message to resample

itself. It resamples itself by sending its symbolic representation (the 

expression “ Rotate  $roll 1 0 0 ”) to the eve compiler built into the run-time system, 

which compiles the representation into a new object representing the current sample of 

the animatable command. Let's say that the value of roll  changed to 55. 

Now suppose we again rendered the scene starting at time 1.0 and ends 1/4 of a 
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second later. The rendered image looks like this: 

Notice that the image is a little smeared and blurry; nowhere near as sharp as the first 

image. Why is this? Well, when the objects were asked to render themselves for this frame, 

each instance in turn tries to render itself over the course of the frame. In the current 

implementation, this means that each object tries to render itself at the beginning and end 

of the frame. 

All the instances except the animatable command have only one representation of 

themselves, and use that representation at both the beginning (at time 1.0) and end of 

the frame (at time 1.25). In the case of the animatable object, though, it has a list of 

samples, containing only two samples. The animatable command treats its samples list as 

representative of a continuous signal, though, and asks it to provide a list of samples over 

the span of time bounded by time 1.0 and 1.25. 

The samples list looks at the samples that it does have, which are at 0.0 and 1.5. It 

then tries to manufacture an appropriate intermediate sample at time 1.0 by making a 

copy of the sample at the last point before the current one and asking it to linearly 

interpolate itself appropriately with the first sample after the current one. In this case, this 

means that a new Rotate  object for time 1.0 that has an angle of 36.7. It then generates 

a new intermediate sample at time 1.25, which is a Rotate  object with an angle of 44. 

The animatable object then tells both of these objects to render themselves, which 

when all the commands are finally evaluated by the renderer, yields the motion blurred 

image we see above. 
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But how do they know when to resample and recompile themselves? That's a bit 

more complex. When the animatable command is first instantiated, it hands its symbolic 

representation to the run-time system and asks it to perform a closure on it. In other 

words: 

1. The eve compiler takes the symbolic description and identifies all the variable 
expressions in it. 

2. It then determines which of those variables are local in scope; i.e. they might 
disappear immediately after this command in the model. It evaluates each of 
these variables to their current expression and replaces that in the symbolic 
description. 

3. The other variables, the global ones, are assumed to be persistent over the 
model, and for each global variable in the expression the eve compiler sets up 
a variable trace on it. Each time any of these variables has a value written to it 
(even if it's the same value as the previous one) the WavesWorld run-time 
system will insure that the animatable command will get sent a message to 
resample itself. Each of these variables is called an articulated variable. 

4. When the animatable command is told to resample itself: 

1. it hands its symbolic expression back to the eve compiler (which is part of 
the run-time system) which recompiles it into objects in the current context. 

2. it then ask the run-time system what time it is. 

3. it then asks the run-time system the name of the agent generating this sam-
ple. This information is used later to blend the various samples together; 
each agent’s name can be mapped to a weight value.

5. It then wraps all three pieces of information up in a WWSample object, and 
stores it in its sample list. 

So now let's look at that animatable command again that got saved out when we 

dumped out our scene file. We should now be able to see that the expression: 

animatable:  { Rotate  $roll 1 0 0} {\
             {0   { {{rollAgent} 1 { Rotate  0 1 0 0;}} }} \
             {1.5 { {{rollAgent} 1 { Rotate  55 1 0 0;}} }} \
            };

can be read as: 

“Define an animatable object which has the symbolic expression of 

Rotate $roll 1 0 0 . This animatable object depends on a single articulated variable, 

roll . We have two samples of this expression already; at time equals 0, it compiled to the 

command Rotate  45 1 0 0  which was generated by the agent “rollAgent”, and at 

time 1.5 it compiled to the command Rotate  55 1 0 0  which was also generated by the 

agent “rollAgent.” In both cases, the blending weight of “rollAgent” is 1. We’ll add 

these two samples to the animatable command’s list of samples.” 
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Abstraction Example: Squishy Sphere

 In the previous example, we saw how we could express the potential for change over 

time in a model, and then, by acting on that model's parameters over time, we could 

animate it. But what if we wanted to “package up” our model, and only manipulate it 

via a few simple parameters? In other words, what if we wanted to treat our whole model 

as a single object, and not a complex set of variables and commands? We don't want to 

give up the facilities we just saw, though, such as the ability of the model to automatically 

interpolate the samples of itself over time. How could we express this in eve? 

Let's say we want to build a model of a sphere that we can squash and stretch. To 

that end, we might build a model like this: 

set sphere(v) 1.0

startShape  squishySphere
Color  {1 0 0}
Surface  plastic
animatable:  { wwSet sphere(xScale) [expr 1./sqrt($sphere(v))]}
animatable:  { wwSet sphere(yScale) $sphere(v)}
animatable:  { wwSet sphere(zScale) [expr 1./sqrt($sphere(v))]}
animatable:  { Scale  $sphere(xScale) $sphere(yScale) $sphere(zScale)}
Sphere  1 -1 1 360

endShape

When we compile this code into a model, we would have dependencies set up on 

four articulated variables: sphere(xScale), sphere(yScale), sphere(zScale) , and 

sphere(v) . Whenever sphere(v)  changed, each of the animatable objects containing the 

variable sphere(v)  would get asked to resample themselves (i.e. the three wwSet

commands, which set the value of their first argument to the value of their second 

argument). Those would then trigger a resample message to be sent to the animatable 

Scale  object, which would resample itself with those newly calculated values. 

There's nothing particularly bad about building our model this way, but we can see 

that this level of description can become cumbersome quickly. To help the developer 

build up abstractions, eve allows a developer to define a new class on the fly and make 

any instance of the newly defined class “animatable”, just as they could for any of the 

built-in classes. 
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Using this mechanism, we can do the following: 

defineClass: squishySphere  {squish} {

Color  {1 0 0}
  set xScale [expr 1./sqrt($squish)]
  set yScale $squish
  set zScale [expr 1./sqrt($squish)]

Scale  $xScale $yScale $zScale
Surface  ColoredFilledWeb
Sphere  1 -1 1 360

}

set sphere(v) 1.0

startShape  squishySphere
animatable:  { squishySphere  $sphere(v)}

endShape

What’s especially useful about this approach is that now we suddenly have a new 

primitive that we can use anywhere. Also, since the new class is defined at the scripting 

language level, we can easily download the definition of this new class to some process 

on a network that is running the eve run-time system. This is where the power of eve 

really shines.
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Eve is an object-oriented modeling language which draws heavily on the 

RenderMan® Interface. Eve allows modelers to build arbitrarily complex, photorealistically 

renderable models that can change continuously over time. It allows for packaging up 

arbitrarily complex models into objects which have their own sophisticated multi-modal 

graphical user interface (GUI).

In its current incarnation, eve is based atop tcl, the Tool Command Language 

(Ousterhout94), and uses tcl for doing computation on the arguments given to the 

instance variables of the objects that compose a given model. The choice of tcl is a 

historical artifact; many languages (Scheme, Dylan, Java, etc.) could serve as a base 

language for eve (and probably will, in future work). The best way to think about what eve 

is, is to look at the popular parallel language Linda (Carriero90). In the same way that 

Linda is a coordination language (Gelernter90) that is orthogonal to the computation

language that it is embedded in (i.e. C, C++, LISP, etc.), eve is a modeling language that is 

orthogonal to its computation language (which is currently tcl). 

This section begins with a story of an experience that helped focus the design 

aesthetic behind the language, then segues into a discussion of the three main constructs 

in the language: articulated variables, renderable objects, and animatable objects. I then 

discuss, at a lower, implementation level, the protocols and classes that make up the 

WW3DKit that sits below eve, and then what happens when the object database is asked 

to render itself over time. Finally, I mention some additions I had to make to tcl to make it 

more amenable for use as a computation language for eve. This discussion should be 

useful to readers who want to add eve to other dynamic languages.

Making a Model “Animatable”

A few years ago when I was working out in California, my officemate came in to work 

on a film she was doing some free-lance character animation for. She had a beautiful wax 

maquette of the head of an elf, one of the main characters in the piece she was working 

on. She sat down to her SGI and Alias PowerAnimator to work, and a mere two hours later 

when I looked over to see how she was doing, I was amazed to see the little elf's head, 

fully realized on the screen; a perfect 3D digital version of the wax analogue next to the 

monitor. 

“Annabella”, I exclaimed, “that looks great! You're all done.” 

All About Eve
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“Oh no, wave”, Annabella said. “I'm only halfway done.” 

“But it looks great! What more do you need to do?” I asked. 

“I've built the model, yes, but now I have to make it animatable”, she replied. She 

then spent the next several hours poring over the model, grouping control points, naming 

parts, tweaking here and there. When she finished, the model, to my eyes, looked the 

same, but now, according to Annabella, it was “animatable”. 

Animatable == has the potential for change

Animatable, in this context, refers to the potential for change in a given model. If you 

pull on this part, what happens? If you push here, prod there, what happens? A model is 

an immutable thing; static and stiff. An animated model is one which is changing in some 

particular way over time. An animatable model, on the other hand, is one that has the 

possibility of changing over time, and has appropriate controls for engendering this 

activity.

This vital distinction is one that is usually lost on everyone but animators that work in 

three dimensions (in either the analog or digital domain). As a CG person (but not really 

an animator), I knew that it was essential to build your model carefully so that you could 

manipulate it easier, but I'd not really “gotten it” until Annabella so succinctly summed it 

up for me that day. 

In building a model and then immediately animating it, we can design it with the 

trade-offs for that particular animation in mind. If we need to do simple animation, 

perhaps just affine transformations on a whole hierarchy of objects, it's fine if the 

hierarchy is actually all jumbled up, with coordinate frames at arbitrary locations with 

respect to the various sub-objects. 

If, on the other hand, we'll be doing some inverse kinematics animation on a 

hierarchical chain of joints, we need to be certain we've modeled them in a way that is 

amenable to manipulation by the inverse kinematic routines. If we plan to use physically 

based techniques for animating the model, in addition to such kinematic parameters, we 

also need to make sure that the specification of the various parameters to be used in the 

physical simulation (weight, inertia, plasticity, etc.) all make sense. 

Clearly, a framework that purports to address modeling must give equal attention to 

allowing the construction of “animatable” models, where animatable is loosely defined 

as having degrees of freedom (that we call articulated variables (Reeves90)) that can be 
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manipulated over time in a straightforward manner, where changing the value of a given 

variable will change the model in some well understood manner.

Articulated Variables: A Model's Namespace

Looking at a model from the outside, the only thing that is visible are the variables (or 

slots, for the readers who prefer LISP) in the model. Some of the variables are read only, 

some are both readable and writable. Some change over time, some don't. They can be of 

a wide variety of types (bounded or unbounded floats and integers, colors, normalized 

vectors, enumerated strings, lists, etc.).

Once a model has been compiled, the only way for a process outside of the model to 

manipulate the model is to write a value to one of the model's variables. In order to write 

to a variable, a process must first attach to a variable. Once they've successfully attached 

to a variable, a process can write new values to it. When they are done writing to the 

variable, they must detach from it. Whenever a process attaches to or detaches from a 

variable, all the objects in the model that depend on that variable are notified. 

We'll talk more about this in the next chapter (since this is the responsibility of the 

processes manipulating the variables, not the modeling language), but for now it's only 

important to point out that the only variables that can be attached or detached are ones 

that can change over time, and these variables are normally referred to as articulated

variables, where the term comes from Reeves et.al's (Reeves90) use of it. 

The Model == Renderable Objects (some of which are Animatable)

Once we zoom into the compiled model, we see that these articulated variables are 

directly wired to an ordered list of renderable objects. These renderable objects all 

conform to the WWRenderable protocol, which is a set of messages that all of the objects 

respond to. These messages include messages to ask the object to render itself over the 

course of some amount of time to a variety of output formats, as well as other messages, 

such as what the bounding box of the object is over some span of time. 

In the same way that some model variables can change over time, some of the 

renderable objects in the model can too. Any object which can change over time is called 

animatable. It should be noted that an animatable object is, by definition, a renderable 

object. 

There is a core set of classes provided with the base eve implementation that 
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conform to the WWRenderable protocol. They essentially map directly to calls to the 

RenderMan® Interface, with two vital additional ones: RIBCommandList and WWSet.

RIBCommandList  is a class which contains an ordered list of renderable objects (any 

of which may be instances of RIBCommandList ). By using instances of this class, arbitrary 

new classes can be easily composed; either in eve or in the low-level implementation 

language of the object framework (currently Objective-C). Instances of these new classes 

can be used in models in exactly the same way as any instance of the core classes, since 

they all eventually reduce to lists of instances of objects from the core classes. 

WWSet is a class that facilitates simple constraint chaining (like the abstraction 

example above), by allowing the value of an articulated variable to be calculated 

automatically from the values of other articulated variables. Instances of this class should 

be used sparingly, and almost always for articulated variables that are read-only outside of 

the model.

Sometimes you want to implement a new class directly in a low level language, 

because you need to get at resources that aren't available from the computation language 

hosting eve. This is usually only a problem in languages like tcl, which are intended to be 

extended in their implementation language (namely C).

For example, one especially useful new class that was implemented directly in the 

low-level implementation language is a 3D text object (originally written for me by Ian 

Wilkinson at Canon UK Research). Given a font name, point size, justification (left, right, 

centered) and some piece of text, this object will create a list of corresponding renderable 

objects that will scale, translate, and draw the corresponding polygons. This was 

implemented in Objective-C since getting the geometric information for the fonts involved 

talking to the Postscript WindowServer to get that info, and tcl had no facilities for doing 

this. It’s important to note, though, that for all of the models you’ll see in this dissertation 

(and in the entire WavesWorld examples suite), this is the only class that had to be 

implemented this way. Everything else you see in WavesWorld other than 3D text was 

built through simple composition of other eve objects. 

The Eve Commands

Here is a list of the current core set of eve commands that are accessible from the eve 

language level; you should check the documentation and large examples set that 

accompanies WavesWorld (and also the RenderMan® Interface documentation (Pixar89)) 
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for details of the arguments these objects take and how to use them. The following is 

intended to be a brief summary of the eve commands available in the current 

implementation. Since eve sits atop the RenderMan® Interface, this section borrows 

heavily from (Pixar89).

animatable: eveEpression [samplesList]
Allow the objects defined by eveExpression to change over time. If sampleList is 
present, it is evaluated and added to the list of time-stamped, generator-stamped 
samples of the objects’ representation.

defineClass: className instanceVariables classDefinition
Defines a new eve command named className that takes the arguments 
instanceVariables, defined by the code in eveExpression.

wwSet varName varValue
Sets the global variable varName to varValue.

startShape shapeName [4x4TranformationMatrix]
This maps to a list of objects containing an AttributeBegin  and an Attribute
object, where the Attribute  object has “identifier”, “name”, $shapeName as 
its instance variables. Also, a 4x4 transformation matrix can optionally be added 
after shapeName, at which point there is a ConcatMatrix  object put on the end 
of the list containing that 4x4 transformation matrix.

endShape
Pops the current set of attributes, which includes the current transformation, same 
as AttributeEnd .

ArchiveRecord comment|structure string1 ... stringN
Writes a user data record that is the concatenation of the stringXX arguments with a 
new-line at the end. It’s an error to try and embed a new-line in the stringXX args.

AreaLightSource name lightHandle [parameterList]
Adds the area light source using the shader named name to the current light list.

Atmosphere shaderName [parameterList]
Sets the current atmosphere shader to shaderName.

Attribute name parameterList
Sets the parameters of the attribute name, using the values specified in the token-
value list parameterList.

AttributeBegin 
Pushes the current set of attributes, which includes the current transformation.

AttributeEnd
Pops the current set of attributes, which includes the current transformation.

Basis uName|uBasis uStep vName|vBasis vStep
Sets the current u-basis to either uBasis or uName, and the current v-basis to either 
vBasis or vName, where uName and can be either of the following enumerated 
strings: bezier, b-spline, catmull-rom, hermite, power. The variables ustep and 
vstep specify the number of control points that should be skipped in the u and v 
directions, respectively. The default basis is bezier in both directions.

Color color
Sets the current color. In the current implementation, only rgb is supported, so color 
should be a list of 3 elements, normalized between 0 and 1, respectively 
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corresponding to the red, green and blue intensities.

ConcatTransform 4x4TransformationMatrix
Concatenate the transformation matrix 4x4TransformationMatrix by premultiplying 
it with the current transformation matrix.

Cone height radius thetaMax [parameterList]
Defines a cone height high with a radius of radius, swept thetaMax degrees about 
Z.

CoordinateSystem space
Names the current coordinate system as space.

Cylinder radius zMin zMax thetaMax [parameterList]
Defines a cylinder from zMin to zMax with a radius of radius, swept thetaMax 
degrees about Z.

Declare name declaration
 Declares the variable name using declaration, where it is composed of [class] 
[type] [[n]], where class is one of int, float, color, point, char, and type is either 
varying or uniform, and n is some positive, non-zero integer.

Disk height radius thetaMax [parameterList]
Defines a disk height high with a radius of radius, swept thetaMax degrees about Z.

Displacement shaderName [parameterList]
Sets the current displacement shader to shaderName.

Exterior shaderName [parameterList]
Sets the current exterior volume shader to shaderName.

GeneralPolygon nVertices parameterList
Defines a general polygon of nVertices using the information in parameterList.

Hyperboloid point1 point2 thetaMax [parameterList]
Defines a hyperboloid where a line defined by the endpoints point1 and point2 
swept thetaMax degrees about Z.

Identity 
Sets the current transformation matrix to the identity.

Illuminate lightHandle flag
If flag is true (i.e. non-zero), the light source corresponding to lightHandle is turned 
on, otherwise it’s turned off. 

Interior shaderName [parameterList]
Sets the current interior volume shader to shaderName.

LightSource name lightHandle [parameterList]
Adds the non-area light source using the shader named name to the current light 
list.

MakeBump pictureName textureName sWrap tWrap filter sWdith tWidth 
[parameterList]

 Makes a bump map.

MakeCubeFaceEnvironment pX nX pY nY pZ nZ textureName fov filter sWidth tWidth 
[parameterList]

Makes an environment map from six images.

MakeLatLongEnvironment pictureName textureName filter sWdith tWidth 
[parameterList]

Makes an environment map from a single latitude-longitude image.
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MakeShadow pictureName textureName [parameterList]
Makes a shadow map from pictureName.

MakeTexture pictureName textureName [parameterList]
Makes a texture map from pictureName.

NuPatch nU uOrder uKnot uMin uMax nV vOrder vKnot vMin vMax [parameterList]
Defines a non-uniform rational b-spline surface.

Opacity color
Sets the current opacity. In the current implementation, only rgb is supported, so 
color should be a list of 3 elements, normalized between 0 (completely 
transparent) and 1 (completely opaque), respectively corresponding to the red, 
green and blue opacities.

Paraboloid rMax zMin zMax thetaMax [parameterList]
Defines a paraboloid from zMin to zMax with a maximum radius of rMax, swept 
thetaMax degrees about Z.

Patch type parameterList
Defines a uniform patch of type type, using the information in parameterList.

PatchMesh type nU uWrap nV vWrap parameterList
Defines a uniform patch mesh of type type, using the information in parameterList.

PointsGeneralPolygons nLoops nVertices vertices parameterList
Defines a set of general polygons.

PointsPolygons nVertices vertices parameterList
Defines a set of convex polygons.

Polygon parameterList
Defines a convex polygon.

Rotate angle dX dY dZ
Concatenate a rotation of angle degrees about the given axis onto the current 
transformation.

Scale sX sY sZ
Concatenate a scaling onto the current transformation.

ShadingRate size
Sets the current shading rate to size.

Sides sides
If sides is 2, subsequent surfaces are considered two-sided, and both the inside and 
the outside of the surface will be visible. If sides is 1, subsequent surfaces are 
considered one-sided and only the outside of the surface will be visible.

Skew angle dX1 dY1 dZ1 dX2 dY2 dZ2
Concatenate a skew onto the current transformation.

SolidBegin operation
Begins the definition of a solid. operation may be one of the following: primitive, 
intersection, union, difference.

SolidEnd 
Terminates the definition of a solid.

Sphere radius zMin zMax thetaMax [parameterList]
Defines a sphere from zMin to zMax with a radius of radius, swept thetaMax 
degrees about Z.
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Surface shaderName [parameterList]
Sets the current surface shader to shaderName.

TextureCoordinates s1 t1 s2 t2 s3 t3 s4 t4
Sets the current set of texture coordinates to these values, where (s1,t1) maps to 
(0,0) in uv space, (s2,t2) maps to (1,0), (s3,t3) maps to (0,1), and (s4,t4) maps to 
(1,1).

Torus majorRadius minorRadius phiMin phiMax thetaMax [parameterList]
Defines a torus with a major radius of majorRadius and a minor radius of 
minorRadius, where it is swept in XY from phiMin to phiMax, swept thetaMax 
degrees about Z.

Transform 4x4Matrix
Sets the current transformation matrix to 4x4Matrix.

TransformBegin 
Pushes the current transformation.

TransformEnd 
Pops the current transformation.

Translate dX dY dZ
Concatenate a translation onto the current transformation.

TrimCurve nLoops nCurves order knot min max n u v w 
Sets the current trim curve, which is applied to NuPatch objects.

Composing New Classes

In eve, you can define a new class by simply declaring its name, arguments, and the 

ordered renderable objects that comprise it. For example, as we saw in the last section, 

we could define a “squishy sphere” class with a single instance variable with the 

following eve code: 

defineClass: squishySphere  {squish} {

Color  {1 0 0}
  set xScale [expr 1./sqrt($squish)]
  set yScale $squish
  set zScale [expr 1./sqrt($squish)]

Scale  $xScale $yScale $zScale
Surface  ColoredFilledWeb
Sphere  1 -1 1 360

}

This would compile into a RIBCommandList  object that had 4 objects inside of it: 

Color , Scale , Surface , and Sphere . New instances of this class could now be 

instantiated just like any of the core classes.

Building up the Scene

In WavesWorld, a model is dropped into an on-screen view called a WW3DWell. The 

WW3DWell serves as the gateway to WavesWorld; every object that is in WavesWorld 

passes through the WW3DWell. When a new model is dropped into the WW3DWell, the 
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time in the scene is reset to zero and the model is compiled into an ordered list of 

renderable objects, some of which are also animatable. As we mentioned earlier, when an 

animatable command is first instantiated, it hands its symbolic representation to the run-

time system and asks it to perform a closure on it. In other words: 

1. The eve compiler takes the symbolic description and identifies all the variable 
expressions in it. 

2. It then determines which of those variables are local in scope; i.e. they might 
disappear immediately after this command in the model. It evaluates each of 
these variables to their current expression and replaces that in the symbolic 
description. 

3. The other variables, the global ones, are assumed to be persistent over the 
model, and for each global variable in the expression the eve compiler sets up 
a variable trace on it. Each time any of these variables has a value written to it 
(even if it's the same value as the previous one) the WavesWorld run-time 
system will insure that the animatable command will get sent a message to 
resample itself. Each of these variables is called an articulated variable. 

4. When the animatable command is told to resample itself: 

1. it hands its symbolic expression back to the eve compiler (which is part of 
the run-time system) which recompiles it into objects in the current context. 

2. it then ask the run-time system what time it is. 

3. it then asks the run-time system the name of the agent generating this sam-
ple. This information is used later to blend the various samples together; 
each agent’s name can be mapped to a weight value.

5. It then wraps all three pieces of information up in a WWSample object, and 
stores it in its sample list. 

Once the model has been compiled, time begins moving forward. It may move 

forward at pace with wall clock time, or it may move forward much slower or much faster. 

One important feature of WavesWorld is the lack of an enforced lock-step time increment. 

Time may move forward in increments of seconds, or it may move forward in 1/100th of a 

second. In WavesWorld, everything is discussed with reference to “scene time.”

Either way, outside processes begin contacting the run-time system and asking to 

attach to a given set of articulated variables. Each process (referred to as an agent in 

WavesWorld) provides the run-time system with several pieces of information: its name, 

how long (in the scene’s time, not wall clock time) the agent plans to stay attached to the 

variable (“an indefinite length of time” is a valid response), and the kind of interpolation 

the run-time system should use to interpolate the agents’ sampled signal with respect to 

a given articulated variable (right now, only linear is supported). For each agent, the run-

time system has a weight that it associates with a given named agent, which it will use to 

blend this agent’s contribution to the articulated variable’s value.



61

If the agent gave a finite amount of time that it would stay attached to the articulated 

variable, the run-time system ensures that the connection is closed after that much time 

has elapsed in the scene. If, on the other hand, the agent gave “indefinite” as the length 

of time it would stay attached, it needs to send an explicit “detachFrom” message to the 

run-time system when it is done. Either way, if a process’ connection to the run-time 

system is broken before its allotted time, the run-time system will automatically clean up 

and detach it from all its associated articulated variables.

With respect to the run-time system, agents can do four things: attach to it, set a value 

of a variable managed by it, get a value of a variable managed by it, detach from it. We’ve 

already seen how an agent can attach, set, and detach from the run-time system, but what 

happens when an agent tries to get the value of a variable? If the value is not articulated, 

the current value is simply returned. If, on the other hand, the variable is articulated, the 

run-time system returns the value of the variable “a moment ago”, where this is 

dependent on how time is currently moving forward in WavesWorld. Note that returning 

this value is potentially a very complex operation, especially if there are several agents that 

are contributing to the value of this variable. The run-time system, using the time-

stamped, sampled representations of the variable’s value from the agents that are 

currently contributing to its value are blended together using the weights associated with 

those agents, and that value is returned. 

Shooting the Scene

Once we've built a model by writing eve code and compiling it into objects, and then 

constructed a scene wherein our model changed over the course of some amount of time, 

we can think of our ordered list of renderable objects as an object database. Each object 

in the database is either a single renderable object or a list of renderable objects, where 

this continues recursively until each object reduces to a single atomic (i.e. not an instance 

of RIBCommandList ) object. All objects know how to render themselves at any given 

positive point in time in the scene (in WavesWorld, time always starts at 0 and is never 

negative). In order to render the objects (to a file, the screen, etc.), we ask the first object 

to render itself starting at some point in time, and ending at some later point. In other 

words, we give it some span of time over which we want it to render itself (i.e. 1.1 to 

1.25). It's useful to point out that these two values could be the same, but the second will 

always be equal to or greater than the second. Each object renders itself in turn and sends 
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the message on to its descendant in the list. 

Note that it's very straightforward to have objects that are not animatable render 

themselves at any given point in time, since none of their instance variables ever change. 

Objects that are animatable, though, are more complex, since it is assumed that their 

instance variables can be changing continuously over time. Unfortunately, this continuous 

signal is most likely represented as a series of samples, where interpolation needs to be 

done. Each animatable object has a samplesList  containing time-stamped, agent-

stamped (i.e. which agent generated this sample) instances of this object. For each agent 

that impacts this object, the object has a notion of over what spans of times each of the 

sample generators were active (i.e. that they were attached to the articulated variables

that this animatable object depends on). 

When asked to render itself at time over some span of time, the animatable object 

asks itself (which in turn looks at its samples list object) for a set of samples spanning that 

time. In the simplest case (which we’ll restrict this discussion to), this would yield a list of 

two samples: one at the beginning and one at the end of the span. 

The samples list then tries to provide a sample at the given points in time. It does this 

the same way the run-time system provides a value to an agent; by blending the various 

signals, weighted by the weights corresponding to the agents that generated them. In 

other words, it might have one signal from agent foo  and another signal from one agent 

bar . There might be a weight of 0.5 associated with foo  and 1.0 associated with bar , so 

it would return a signal that was interpolated using both foo  and bar , but twice as much 

credence would be given to bar 's signal. 

Once it has the two samples of the animatable object (one for the start time of the 

frame, one for the end time of the frame it is rendering), the animatable object sends itself 

a renderCompoundCommand::  message with the two samples as arguments. 

At that point, the two samples are asked a series of questions by being sent messages 

in the WWRenderable protocol, which all renderable objects conform to. 

First the two samples are asked if they are instances of the same class. If they aren't, 

the first sample is asked if it is not moot (i.e. does it actually affect the rendering 

environment—a relative translation of (0, 0, 0) would be considered moot) the sample is 

asked to render itself and the method returns. 

If they are the same class, the first sample is asked if it is motion blurrable or not. If it 
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isn't, the first sample is asked if it is not moot (i.e. does it actually affect the rendering 

environment—a relative translation of (0, 0, 0) would be considered moot) the sample is 

asked to render itself and the method returns. 

Now, each of these samples might be instances of either one of the core, atomic 

objects or a RIBCommandList  object (also referred to as a “compound command”). At 

this point the samples are asked if they are compound commands. If they are, it asks for 

the first renderable object from each, and recursively calls renderCompoundCommand::

with those two samples as arguments. 

Eventually, renderCompoundCommand::  is called with two samples that are not

compound commands. 

The two samples are then asked if they are the same (i.e. equivalent values of all of 

their instance variables). If they are, the first sample is asked if it is not moot (i.e. does it 

actually affect the rendering environment—a relative translation of (0, 0, 0) would be 

considered moot) the sample is then asked to render itself and the method returns. 

If the two samples aren't the same, the animatable object being rendered (of which 

these are two samples of it) generates a MotionBegin /End block (Pixar89) and asks both 

samples to render themselves within it. 

The powerful thing to note about this approach is that assuming the original database 

accurately sampled the model over time, it can be rendered accurately at arbitrary spatial 

and temporal resolution, taking full advantage of the RenderMan® Interface and be able 

to produce photorealistic images of 3D scenes. 

Tcl Additions

As I mentioned at the beginning of this section, the fact that eve uses tcl is a historical 

artifact, and eve could be added to any sufficiently dynamic language. We've had to extend 

tcl in several ways, though, and this section discusses these issues, in the hope that it will 

illuminate these topics for others interesting in gaining a better understanding of eve in 

general, or adding eve to their favorite language. 

Types

Tcl is completely string based; that is its only type. This is useful, especially for 

debugging purposes and shipping code around a network of disparate computing 

resources, but can, for obvious reasons, become a performance bottleneck. In practice, 

since most of the modeling we've done with WavesWorld has not involved generating 
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complex curved surfaces on the fly and animating their control points, this has not been 

an issue (which, frankly, surprised me). It's clear, though, that this should be addressed so 

that we can do such things at a reasonable rate on either slower machines or for more 

complex models. 

Because tcl makes it exceptionally easy to trace reads and writes on variables, it is 

easy to add a rich set of types, especially when you are adding your own routines (i.e. a 

RenderMan® binding) which can be built to use these types. The ones we've found useful 

to define for eve include: strings, enumerated strings (specified explicitly or implicitly 

with a regular expression), booleans, integers, bounded integers (i.e. inclusively or 

exclusively bounded by a min, a max, or both a min & a max), floats, bounded floats, 

multi-dimensional arrays of any of those types (although mainly ints and floats), and 

normalized multi-dimensional arrays of floats. 

All of these are straightforward to implement in tcl, although there is an obvious 

performance penalty, since all writes must be monitored by the run-time system. Also, for 

the bounded variables, there's the question of exception/error handling; if someone tries 

to set a variable to an invalid value, should it return an error, log the event, or silently cast 

to the appropriate type or clamp the value within the acceptable range? Clearly, you may 

want any of the three in a given situation, so this needs to be a settable (and gettable) 

parameter in the run-time system. 

Attaching to and Detaching from Variables

One of the key ideas in eve is that a model is defined at time zero, at which point 

dependencies are set up between a set of articulated variables and the objects comprising 

the model. As time moves forward, whenever these variables change, objects that have 

registered a dependency on that variable resample themselves. One key point is that at 

over a given interval of time, there might be several processes (agents, see next chapter) 

manipulating a given articulated variable. In order for eve's run-time system to keep track 

of this, agents must be able to attachTo and detachFrom articulated variables. While the 

generation of these calls lie in the realm of the behavior generating processes and will not 

be visible to the person using eve as a modeling language, these facilities must 

nonetheless be there. I dealt with this issue in two ways: appcom and active objects. 

AppCom is a portable library for “application communication”, which allows easy, 

efficient typed messages to be sent between various UNIX boxes. Active objects are a way 
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of writing a process that has a core set of computation and communication functionality 

and has its own main loop. Active objects act as a “computation substrate” that agents 

and receptors (see next chapter) are embedded in.

Efficient Math on Arrays

The next issue is doing efficient and appropriate math on arrays. One reasonable 

solution to this is what Dave Chen at the MIT Media Lab did for his 3d system (Chen93), 

wherein he used his array handling routines. A more flexible approach, and the one 

currently being integrated into WavesWorld, is the narray package by Sam Shen at 

Lawrence Berkeley Labs (Shen95). His package, like Chen's, allows for the creation of 

arrays which are referenced by name, but while Chen's approach was to create a large set 

of new tcl commands which took these arrays references as arguments, Shen provides a 

single routine, narray , like tcl's expr , for doing matlab-like operations on the arrays. In 

addition, because this package allows expressions to be carried out on elements of arrays, 

this allows points in arrays to be grouped together and manipulated easily and concisely 

(by, for example, assigning their references in a tcl variable which is then passed into the 

narray routine). This kind of point grouping are very useful and are absolutely vital when 

you are manipulating various portions of a single large patch mesh, something which 

comes up frequently in high-end animation production (Serra93). 

More Math Functions

In addition to array operations and types, I found it useful to add all of the built-in 

functions from RenderMan®'s Shading Language. Since I was trying to do this in the most 

appropriate for the host language (i.e. tcl), I added these by extending tcl's expr  routine, 

which unfortunately restricted me to scalar types. I can also add these to narray , though, 

which will give me equivalent functionality for arrays. Currently, these math functions 

include: 

pi 
returns the exact value (to 32 bit IEEE precision) value of PI 

radians angleInDegrees
returns angleInDegrees converted to units of radians. 

degrees angleInRadians
returns angleInRadians converted to units of degrees. 

sign arg
returns -1 if arg is negative, 0 if zero, and +1 is arg is positive 
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min arg1 arg2
returns the minimum of arg1 and arg2

max arg1 arg2
returns the maximum of arg1 and arg2

clamp val min max
returns val clamped between min and max

step min val
returns 0 if val is less than min, otherwise it returns 1 

spline u pt1 pt2 pt3 pt4
returns the point along the spline specified by the 4 control points at u (0<=u<=1) 
on the curve 

smoothstep min max value
if value is less than min, it returns min, if it's above max, it returns max, otherwise it 
smoothly interpolates between them 

lerpDown u min max
if u is less than or equal 0, it returns max, if it's above or equal 1, it returns min, 
otherwise it smoothly interpolates between them, downwards 

lerpUp u min max
if u is less than or equal 0, it returns min, if it's above or equal 1, it returns max, 
otherwise it smoothly interpolates between them, upwards 

noise x y z
it returns some value between 0 and 1 which is a pseudorandom function of its 
argument using Perlin's noise function (see Ch 2 of Ebert94) 

gvnoise x y z
it returns some value between 0 and 1 which is a pseudorandom function of its 
argument using a gradient value noise function (see Ch 2 of Ebert94) 

scnoise x y z
it returns some value between 0 and 1 which is a pseudorandom function of its 
argument using a sparse convolution noise function (see Ch 2 of Ebert94) 

vcnoise x y z
it returns some value between 0 and 1 which is a pseudorandom function of its 
argument using another noise function (see Ch 2 of Ebert94) 

In addition to these new math functions, I added a new base command, spline , that 

takes an arbitrary rank list of numbers of arbitrary length (at least 4 long), along with a u

value from 0 to 1 and returns the point on that curve. I needed to do this because you 

can't have variable length argument lists to tcl's expr  command. 
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One of the most important aspects of any development environment is the ease with 

which code under development can be debugged. From the outset, WavesWorld has been 

driven by the idea of trying to understand how to facilitate the construction of debuggable

characters. As we've seen in this chapter, one of the central activities in building characters 

is the construction of an animatable model. But how are these models constructed? How 

does a model builder test the “animatability” of their model? How do they inspect other 

model parts they've gotten from collaborators? How do they debug their mental model of 

how these parts work and interrelate? 

As with any programming language environment, models written in eve are written 

iteratively: starting with old code, modifying it, running it, tweaking, repeat. To truly 

understand the material in this section, you should get a demonstration of WavesWorld in 

action, but through the use of screen snapshots and explanatory text, I'll do my best to 

convey some of the power of this system for debugging models.

Dealing with a Model as a Database

One powerful way to think of a model is as a database: some set of typed fields that 

can be read and written. There are different levels of access to the fields; some processes 

can read and write values with impunity, some can only read, some can only write a range 

of values. The fields themselves may be strongly or weakly typed; given an inappropriate 

value they may choose to ignore it or modify it to fall within the range of values they 

accept. In the case of models in WavesWorld, these are more complex than many 

traditional databases, since most of the data has a notion of itself over time, and also has 

a notion of “parallel opinions” of the value of a given field, where the number and 

owners of opinions can also vary over time. Given this view, we want to be able to 

manipulate and visualize fields in the database. Let's see how this works in WavesWorld.

Manipulating and Visualizing Model Parameters

An important concept in building and debugging models is that the GUI does not 

have to map directly to the articulated variables of a model. This is useful when we want 

to (say) map several model variables to a single control (i.e. a “mood” control that maps 

to several variables), or perhaps we want to look at some component of a single 

articulated variable (i.e. the red component of a color). This is where having the power of 

Building and Debugging Models
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a computation language available to the GUI environment is vital. 

In general, though, we simply want to be able to manipulate fields in the database 

(i.e. the articulated variables of the model). For example, take the model: 

startShape  aSphere
animatable:  { Color  $s(color)}
animatable:  { Scale  $s(xScale) $s(yScale) $s(zScale)}
animatable:  { Translate  $s(xT) $s(yT) $s(zT)}
animatable:  { Rotate  $s(xRotate) 1 0 0 }
animatable:  { Rotate  $s(yRotate) 0 1 0 }
animatable:  { Rotate  $s(zRotate) 0 0 1 }
animatable:  { Sphere  $s(r) $s(zMin) $s(zMax) $s(thetaMax)}

endShape

that has the following initial values: 

set s(color) {1.0 0.0 0.0}
set s(r) 1.0
animatable:  { wwSet s(zMin) [expr {-1 * $s(radius)}]}
animatable:  { wwSet s(zMax) $s(radius)}
set s(thetaMax) 360.0
set s(xScale) 1
set s(yScale) 1
set s(zScale) 1
set s(xT) 0
set s(yT) 0
set s(zT) 0
set s(xRotate) 0
set s(yRotate) 0
set s(zRotate) 0

Now let's say we wanted to be able to manipulate these variables, say by dragging a 

slider or typing a value in a text box. For example, something like this: 

One nice side effect of this is that all of these GUI controls for manipulation also serve 

equally well as visualization aids. When we manipulate the slider that in turn manipulates 

the radius of the sphere, both the slider itself and the text field that is also tracking that 

variable are both automatically updated with the new value. 
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How Does it Work?

In WavesWorld, the eve compiler and run-time system is embodied in a WW3DWell, 

an on-screen object that you can drop models into: 

Once dropped into the WW3DWell, the eve code comprising the model is compiled 

and displayed: 

The WW3DWell has a “control panel” that can be accessed by clicking the edge of 

the WWW3DWell (similar to clicking a NXColorWell to bring up its control panel). For 

example, here's what a user sees the first time they bring click the edge of the WW3DWell: 
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The WW3DWell’s control panel has many sub-panels, some of which can be pulled 

off and made separate windows (like the “Scene Clock Controls” window in the 

illustration). The user can directly inspect all information in the database, and can freely 

move back and forth in time. Here are some of the sub-panels you would see if you were 

able to click on the control panel now:     
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What we're more interested in, though, is in building custom user interfaces for 

manipulating and visualizing the model we're developing and debugging. So how do we 

do that? Since WavesWorld runs atop NEXTSTEP, I've extended NeXT's InterfaceBuilder 

application to allow me to construct user interfaces out of a set of custom objects I 

designed and implemented (collectively referred to as the WWTCLKit). Within 

InterfaceBuilder, a user can just drag a user interface object from the WWTCLKit palette 

(each of these will be explained shortly): 

Once dragged from the palette, a GUI object can be dropped onto a Window or Panel 

and then inspected. Some of the GUI objects can be used for manipulation, some can be 

used for visualization, and most can be used for both. A slider, for example, can both 

manipulate some variable's value, and reflect it directly in its on-screen representation. 

Each object has several inspectors, and one of them allows the user to enter how they 

want to map this GUI object's on-screen representation to a variable or an expression, and 

also how this object's value will be mapped onto the model. For example, here's the 

inspector for a WWThumbwheel object which is attached to the variable in Robbit (see the 

Examples section later in this chapter) that manages the angle of his tail. 

This GUI object, along with other like it, is put on a Window and saved out as a nib file 

(NeXT InterfaceBuilder's file format), which is “freeze-dried” version of the GUI objects. 

This nib file can then be dragged-and-dropped directly into a WW3DWell. 

Drag and Drop Debugging

When the nib file is dropped into the WW3DWell, all the objects in the file are 

“unfrozen” and examined. Each object is asked if it conforms to the WWTCLUI protocol, 

which is a set of messages that all GUI objects in WavesWorld respond to. If it does, the 

object is asked what expression it is based on. This expression is then analyzed, and for 
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each variable in the expression, a “variable trace” is instantiated. Each time that variable 

is updated, this GUI object will be sent a message to resample itself. This is the exact same 

mechanism that is used when a WW3DKit object is made “animatable”. In addition, for 

each Window or Panel that has any GUI object on it that conforms to the WWTCLUI 

protocol, the WW3DWell's run-time system makes sure that if that window/panel is 

closed, all the variable traces are removed. Also, if the model is removed from the well (by 

perhaps dropping a new model in), the run-time system can ensure that all the windows/

panels are closed when that model is freed. This allows the user complete freedom to 

close windows/panels themselves, to drag a new model in, etc., while ensuring that 

“resample” messages don't get sent to objects that have already been freed. 
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The WWTCLKit: GUI Classes for Manipulation and Visualization

Useful GUI Classes

WWSimpleMovieView 
The WWSimpleMovieView allows the display of an arbitrary color and opacity 
background, a color image (with transparency) and a “movie”, i.e. an image 
sequence running (forward or looping) at some frame rate at some time (always, 
when clicked, or when the mouse enters). The image can be composited over the 
movie or the movie can be composited over the image. This can be useful for 
building general GUIs, or when subclassed (see the WWMovieProcView and the 
WWMovieVarView below). 

WWTTSwitchView 
The WWTTSwitchView allows any number of views to be “swapped in” to a given 
position. This allows things like inspector panels to be easily built, where different 
facets or parts can be put on different views and switched in as appropriate. 

GUI Classes for Manipulation

WWMovieVarView 
The WWMovieVarView is a subclass of WWSimpleMovieView. It adds the ability to 
drag and drop instances on to other instances, where a given instance can be 
designated as a “source” or “sink” for drag and drop operations. A tcl variable 
and value can be attached to a given instance. When one WWMovieVarView 
instance is dropped on another, the receiver sets its variable's value to that of the 
instance being dropped on it. Drag operations can be restricted so that the type of 
source and sink must match up. 

WWMovieProcView 
The WWMovieProcView is a subclass of WWSimpleMovieView. It adds the ability to 
drag and drop instances on to other instances, where a given instance can be 
designated as a “source” or “sink” for drag and drop operations. A tcl “proc” 
name and definition can be attached to a given instance. A tcl proc is essentially a 
procedure, which maps directly to eve’s defineClass: operation. When one 
WWMovieProcView instance is dropped on another, the receiver sets definition of its 
proc to that of the instance being dropped on it. Drag operations are restricted so 
that the name of source and sink's proc must match up. 

WWTTTimer 
A WWTTimer object asks the run-time system to evaluate some piece of tcl code at 
some rate for some amount of time. It can also have some code it asks it to evaluate 
each time it starts up, and each time it quits. The amount of time that it runs can be 
preset or can be based on a conditional (i.e. the result of some expression that the 
run-time system evaluates each time the instance wakes up). 
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WWFishHook 
This object attaches to the Physics & Media Group's “fish” sensor, which has 
(currently) four channels of input. These can be mapped into arbitrary expressions 
which are sent to the run-time system. This object can run at an arbitrary sampling 
rate and can be started and stopped easily by attaching buttons to it. 

GUI Classes for both Manipulation and Visualization

WWSlider 
The WWSlider is a simple slider that can be configured horizontally or vertically. It 
allows a restricted range of values. 

WWTextField 
The WWTextField is a simple text entry and display object that can show text of 
arbitrary color, background, typeface and size. 

WWButton 
The WWButton is a button which can display text of arbitrary color, background, 
typeface and size, and two images; one when pressed, and one when depressed.

WWThumbWheel 
The WWSlider is a better looking slider that can be configured horizontally or 
vertically. It allows a restricted range of values, and can be configured to snap back 
to some predetermined value. 

WWColorWell 
The WWColorWell allows colors to be dragged and dropped into it, as well as serve 
as an on-screen representation of an expression that evaluates to a color. 

This is by no means a complete list of the GUI objects you would like, but it does 

allow (especially by using the WWMovieVarView  and WWMovieProcView ) very 

graphically sophisticated GUIs to be built. Some obvious objects that would extend this set 

nicely would be a suite of curve editing objects that worked in at least one and two 

dimensions. Because of the rich and powerful development environment in NEXTSTEP, 

which has been extensively extended by me for WavesWorld, it is straightforward to build 

new GUI objects.
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 One of the difficult issues in building 3D semi-autonomous animated characters is 

the problems brought on by collaboration. In almost all cases, a character will be 

collaboratively designed and constructed; perhaps because there are several people 

involved from the inception, or perhaps because a character builder is using some set of 

pre-packaged model parts and behavior parts. One of the big problems in these situations 

is that of reusability: how can people “package up” models and agents for their 

collaborators to use? This problem becomes especially difficult when the collaborators 

have disparate abilities, and are not familiar with the particular tools of the other’s 

domain. This section gives some examples of where these issues might come up, and 

then discusses mechanisms that WavesWorld has to facilitate collaboration by addressing 

this question of designing for reuse.

A Quandary in 2D Illustration

 Before we how discuss how WavesWorld addresses these problems, let's look at a 

simpler situation from today's world of desktop illustration. 

Two people are working on a piece, an art director and a free-lance illustrator. The art 

director specs out what she wants the piece to look like, and the illustrator goes off and 

begins working on the images using his favorite applications, MacroMedia FreeHand® and 

Adobe PhotoShop®. 

The illustrator shows the art director a variety of ideas, from which she picks two. The 

main element of their favorite illustration is three people seated on a couch. As the art 

director looks on, the illustrator toys with the facial expressions of the people on the 

couch, and also plays with their features; first all white, then changing one to Hispanic, 

one to Asian, one to African, then back again. Some of these changes are chosen from an 

enumerated set of options that the illustrator skillfully draws ((man, woman), (Hispanic, 

Anglo, Asian, African)), and some are a range over some extremes (facial expressions 

going from bemused to concerned, smiling through taciturn to frowning). 

It's important to note that this is a two-tier control problem. At the top tier, the art 

director gives high level direction to the illustrator: “...make her Hispanic. Yea. Make her 

smile. No, not that sappy. Good. Okay, give him a bemused expression. Yea. Okay. Make 

him white, maybe a little shorter than her. Good.” 

The next level of control is the illustrator working directly with the software 

Reusability: The Packaging Problem
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application, skillfully using his talents as a creative user to get the application to do what 

they want. There are no buttons or sliders for “African” or “bemused”; but the 

illustrator's skills in manipulating colors, blends, splines, lines, perspective, etc. all are 

successfully brought to bear on the task. If asked, at this point, the illustrator could almost 

certainly explain the process he went through, although perhaps in a very task-specific 

way.

Finally, the art director chooses a few options she likes from the many she and the 

illustrator have just explored, which the illustrator polishes and saves out the two they 

decided on. She then thanks him and takes delivery of the final set of illustrations, which 

are both a FreeHand® file and saved out as high quality clip art (i.e. Encapsulated 

PostScript® files). 

She then composes two different versions of the final piece, incorporating the 

illustration work, and takes them to the client. The client and the art director discuss the 

piece, and the client makes several suggestions which the art director agrees would make 

the piece work better in the context the client will be using it. Unfortunately, the changes 

the client suggested all came up when the illustrator and the art director were discussing 

the piece, but the particular configuration is not in the Freehand® files that the illustrator 

left with the art director. Even worse, the free-lance illustrator is now off on another job in 

another state, and the art director is an Adobe Illustrator® maven, and doesn't really know 

how to use FreeHand® to make the changes and generate a new piece of EPS clip art to 

use in the piece. 

If only there had been a way to capture the options that they had explored the other 

day. If only there were a way to encapsulate the variety of constraints (“pull on these 

splines, change this fill to that, change that blend to this, mask off that, etc.”) the 

illustrator had skillfully managed. Nothing magical, just some mechanism to allow the two 

designers—the illustrator and the art director—to “package up” the options and 

interconnected constraints they had easily explored the other day. No AI-complete 

solution, no reimplementation of FreeHand®; just some way of treating the static clip art 

they generated as a more “plastic” material, as a kind of malleable media... 

fade to black... 
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Thinking of Collaborating on A Film Noir

Now let's look at something beyond the scope of the current implementation of 

WavesWorld—imagine trying to build a character to fit in a scene from a 1940's style film 

noir motion picture. What components would we need to synthesize such a film? 

• script 

• actors/characters 

• props (costumes, furniture, etc.) 

• lighting 

• camera work 

• direction

Imagine that there are people or programs who are very good at creating these 

component pieces:

• Would be script-writers, with a gift for hard-boiled detective pulp dialogue. 

• People who delight in creating complicated personalities with conflicting 
desires and goals. Some might enjoy sampling their voice for phrases and 
words, others might write programs in the spirit of Eliza, trying to model a 
detective trying to elicit information from a potential client. Others might work 
on physical simulation of gestures, whether they be facial or hand. 

• Modelers who toil endlessly over an exact mathematical model of a 45 caliber 
Magnum revolver. Others endlessly scan pulp materials and nostalgia kitsch to 
be used texture maps. Others build fish to swim in aquariums, or finite state 
machines to mimic pests like flies or cockroaches. Still others spend cycles 
culling techniques from computational fluid dynamics to simulate (as cheaply 
as possible) cigarette smoke. 

• someone who treats camera motion as an optimization problem, building 
software for juggling various high level requirements (keep the face in the 
frame, pan to the right, truck in, etc.). 

• someone who enjoys building constraints among some of the constituent 
parts of the scene, whether in providing physics to the scene, or emotional 
direction to the various synthetic actors. 

How would these people share information? How would they collaborate, especially 

if they weren't all in the same physical space? How would they collaborate, if some work 

on the problem early and leave for other projects, while others then need to incorporate 

their work later on? 

This is exactly the kind of situation that I hope WavesWorld points in the direction of. 

For today, though, we can only address simpler (but still realistically complex) problems. 

Let's look at one such situation using the tools in WavesWorld. 
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Packaging up a Robot: Collaboratively Building a Character in WavesWorld

Now imagine a modeler working on a head model. They would probably start with a 

simple sphere and its standard GUI controls (included in the large set of Examples that 

comes with the standard WavesWorld software distribution I make available). They then 

might add an eye, then duplicate that, and then add a mouth. As we saw in the “Building 

and Debugging Models” section, it’s straightforward to attach sliders and buttons to 

various variables and procedures in the model. For example, let's say you're working on 

the head of our robot. You first of all might want to attach sliders, text fields, and a color 

well to the various parts of the head to manipulate it. 

Once you've done that, you might start working on making the eyelids animatable. In 

order to think about how you might change the eyelids over time, you might start off by 

attaching a slider to the angles of the eyelids of the eyes of our robot. 

Using these controls, you might develop variations on a simple skill agent and attach 
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still more GUI elements to attach buttons to make the head perform variations on the 

motor skill you're developing. 

Making Choices Map to Other Choices

Now that you have a basic, functioning implementation of the robot and its 

environment, you can now iterate over specific portions and improve them. The first thing 

you might want to do is allow for more variety of shape. You might decide to design 

several different kinds of heads. Using the tools in WavesWorld, you can quickly and easily 

build a user interface to allow manipulation of some set of parameters in a head model 

written in eve. After a bit of experimentation, you might settle on a small variety of heads, 

such as the following: 
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Continuing on that tack, you might decide to allow a variety of shape and shading for 

the various body parts of the virtual actor. Certain combinations of shapes and shading 

parameters might imply particular values of the shared state of the virtual actor, and might 

actually change which of several implementations of the skill or sensor agents are used for 

that particular character. For example, here's a user interface I designed from scratch and 

implemented in a few hours one evening: 

The window on the lower left was a parts palette (containing a WWSwitchView  and a 

large number of WWMovieVarViews), containing samples of various configurations of body 

parts. By dragging the WWVarViews containing images of the various body parts on to the 

diagram on the right, the user made certain choices concerning the character under 

construction (visible in the upper left window). What's especially interesting here is the 

fact that although each particular choice had obvious mappings to shape and shading 

(“choose this head; get this kind of shape, choose this torso, get it shaded that way”), it 

can also be used to control other aspects of the character. For example, if you choose one 

of the heads with the eyes in “prey position” (i.e., on the side of the head, as opposed 

to the front), the virtual actor might act in a more skittish or nervous way as it goes about 

its activities. On the other hand, the fact that you choose one of the peeling, rusted torsos 

might cause the virtual actor that is built to be somewhat brutish and clumsy, intent on its 

task with little regard for what it bumped into along the way. 
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This section presents several examples, of varying complexity, of models we've built in 

WavesWorld. In this section, my emphasis is on the models themselves, and how they are 

constructed in a way that shows their potential for action. In the next chapter, we'll look at 

how we might actually take advantage of that potential by manipulating them (via their 

parameters) over time. 

While building models by only directly writing code in eve is possible, it's not usually 

the way things get done. WavesWorld can directly import RIB® files, which is a popular 

export format for most commercial modelers. By importing the shapes modeled 

elsewhere, we can combine these with other elements and proceed to make them 

animatable. In some cases, the models imported can serve as templates which can be 

rewritten in eve to become more malleable, using some of the components of the original 

model (i.e. the venetian blinds example, below). In other cases, only some affine 

transformations (rotate, translate) are needed, and these are straightforward enough to 

add (i.e. Dimitri’s ring , below). 

Venetian Blinds

One of my hopes for WavesWorld has always been to be able to build the set of a 

1940's/film noir private detective piece. One necessary ingredient of any film noir is a fully 

functioning model of venetian blinds. In 1993, Dan McCoy wrote an excellent plug-in for 

More (Slightly Complex) Examples
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Pixar's ShowPlace product on the Mac. The plug-in only generated static RIB files, though. 

I used the plug-in to generate six different versions of blinds. I saved each out as a RIB® 

file, and dropped them into a WW3DWell. I then saved each out as a .eve  model and 

edited them a bit (taking out extraneous transforms, mainly). I then dropped them back 

into the WW3DWell and, using the shape browser, changed the names of the parts 

(double click on the shape browser in the WW3DWell's control panel and type in a new 

name), and saved the models back out again. 

I then took one of the slats (a trimmed NURBS surface), dropped it into a WW3DWell, 

and determined how much to translate it to center it about its origin (by selecting “draw 

origin” in the qrman controls of the WW3DWell's control panel and then manipulating the 

translate controls until the origin was centered), and added a little GUI to rotate it. 

defineClass: Slat  {angle} {
AttributeBegin

ArchiveRecord  comment aSlat
Rotate  $angle 1 0 0 
Translate  0 -0.32 -0.015
TrimCurve  { 1 1 1  } { 3 3 3  } \

              { 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 8 0 0 0 1 1 2 2 3 3 4 
4 4 0 0 0 1 1 2 2 3 3 4 4 4  } \

              { 0 0 0  } \
              { 8 4 4  } { 17 9 9  } \
              { 0 0 0.2 0.5 0.8 1 1 1 1 1 0.8 0.5 0.2 0 0 0 0 0.33 0.5 0.67 

0.9 0.67 0.5 0.33 0.1 0.33 0.33 0.5 0.67 0.9 0.67 0.5 0.33 0.1 
0.33  } \

              { 0.01 0 0 0 0 0 0.01 0.5 0.99 1 1 1 1 1 0.99 0.5 0.01 0.29 
0.29 0.29 0.3 0.31 0.31 0.31 0.3 0.29 0.69 0.69 0.69 0.7 0.71 
0.71 0.71 0.7 0.69  } { 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  } 

NuPatch  3 3 \
            {0 0 0 1 1 1 }  \
            0 1  \
            2 2  \
            {0 0 1 1 } 0 1 \
            P { -0.25 0.318881 0.002822 -0.25 0.322151 0.016410 -0.25 

0.313243 0.027178 0.25 0.318881 0.002822 0.25 0.322151 0.016410 
0.25 0.313243 0.027178 } ;

AttributeEnd
}

I then took off the pelmet (the top part of the blinds assembly) and the batten (the 

heavy bottom part) and made them into new classes: 

defineClass: Pelmet  {} {

AttributeBegin
ArchiveRecord  comment pelmet
Translate  0 -.5 -0.02
AttributeBegin

ArchiveRecord  comment leftCap
NuPatch  2 2 \

              {0 0 1 1 } \
              0 1 \
              2 2 \
              {0 0 1 1 } \
              0 1 \
              P { -0.25 0.477500 0.04 -0.25 0.5 0.04 -0.25 0.477500 -0.002500 

-0.25 0.5 -0.002500 } ;
AttributeEnd
AttributeBegin

ArchiveRecord  comment rightCap
NuPatch  2 2 \

              {0 0 1 1 } \
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              0 1 \
              2 2 \
              {0 0 1 1 } \
              0 1 \
              P { 0.25 0.477500 0.04 0.25 0.5 0.04 0.25 0.477500 -0.002500 

0.25 0.5 -0.002500 } ;
AttributeEnd
AttributeBegin

ArchiveRecord  comment pelmetBody
NuPatch  5 2 \

              {0 0 0.25 0.5 0.75 1 1 } \
              0 1 \
              2 2 \
              {0 0 1 1 } \
              0 1 \
              P { -0.25 0.477500 0.04 -0.25 0.5 0.04 -0.25 0.5 -0.002500 -

0.25 0.477500 -0.002500 -0.25 0.477500 0.04 0.25 0.477500 0.04 
0.25 0.5 0.04 0.25 0.5 -0.002500 0.25 0.477500 -0.002500 0.25 
0.477500 0.04 } ;

AttributeEnd
AttributeEnd

}

defineClass: Batten  {} {

AttributeBegin
ArchiveRecord  comment batten
Translate  0 0 -0.015
AttributeBegin

ArchiveRecord  comment leftCap
NuPatch  2 2 \

              {0 0 1 1 } \
              0 1  \
              2 2  \
              {0 0 1 1 }  \
              0 1 \ 
              P { -0.25 0 0.032500 -0.25 0.005 0.032500 -0.25 0 -0.002500 -

0.25 0.005 -0.002500 }
AttributeEnd

AttributeBegin
ArchiveRecord  comment rightCap

NuPatch  2 2 \
            {0 0 1 1 } \
            0 1  \
            2 2  \
            {0 0 1 1 }  \
            0 1  \
            P { 0.25 0 0.032500 0.25 0.005 0.032500 0.25 0 -0.002500 0.25 

0.005 -0.002500 }
AttributeEnd
AttributeBegin

ArchiveRecord  comment battenBody
NuPatch  5 2 \

              {0 0 0.25 0.5 0.75 1 1 } \
              0 1 \
              2 2 \
              {0 0 1 1 } \
              0 1 \
              P { -0.25 0 0.032500 -0.25 0.005 0.032500 -0.25 0.005 -0.002500 

-0.25 0 -0.002500 -0.25 0 0.032500 0.25 0 0.032500 0.25 0.005 
0.032500 0.25 0.005 -0.002500 0.25 0 -0.002500 0.25 0 0.032500 } 
;

AttributeEnd
AttributeEnd

}

Finally, I put them all together in a model and tweaked and tweaked and tweaked... 

This model worked fine, and was pretty efficient (it only made the slat rotation 

animatable), but I could only open and close the blinds—I couldn't pull the blinds up and 

down. Because the parts were all interconnected, it was difficult to just make a few 

objects animatable and be done. 

This approach (making small components of a model animatable while the rest is left 
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static) can work for many situations, but when parts are complexly interrelated (i.e. the 

length of the cords, the position of the pelmet, the angle of the slats as they get closer 

together, etc.) it breaks down. What we would like to be able to do is encapsulate the 

model of the blinds into a single object that was animatable. This goal might seem at odds 

with our desire to be able to interrelate any two given samples of an object, but given that 

we can only compose such a complex object out of the core objects that conform to the 

WWRenderable protocol, it turns out that we can do this. It is exactly this power of 

composition that makes the WW3DKit so powerful. Here's the rest of the model: 

defineClass: Handle  {} {
AttributeBegin

ArchiveRecord  comment aHandle
Translate  0.1675 -0.35 -0.033333 
NuPatch  9 3 \

            {0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 } \
            0 1 \
            5 3 \
            {0 0 0 0.5 0.5 1 1 1 } \
            0 1 \
            P { -0.166750 0.334250 0.035 -0.166750 0.334250 0.035750 -

0.167500 0.334250 0.035750 -0.168250 0.334250 0.035750 -0.168250 
0.334250 0.035 -0.168250 0.334250 0.034250 -0.167500 0.334250 
0.034250 -0.166750 0.334250 0.034250 -0.166750 0.334250 0.035 -
0.161500 0.319750 0.035 -0.161500 0.319750 0.041 -0.167500 
0.319750 0.041 -0.173500 0.319750 0.041 -0.173500 0.319750 0.035 
-0.173500 0.319750 0.029 -0.167500 0.319750 0.029 -0.161500 
0.319750 0.029 -0.161500 0.319750 0.035 -0.16 0.321750 0.035 -
0.16 0.321750 0.042500 -0.167500 0.321750 0.042500 -0.175 
0.321750 0.042500 -0.175 0.321750 0.035 -0.175 0.321750 0.027500 
-0.167500 0.321750 0.027500 -0.16 0.321750 0.027500 -0.16 
0.321750 0.035 -0.16 0.335150 0.035 -0.16 0.335150 0.042500 -
0.167500 0.335150 0.042500 -0.175 0.335150 0.042500 -0.175 
0.335150 0.035 -0.175 0.335150 0.027500 -0.167500 0.335150 
0.027500 -0.16 0.335150 0.027500 -0.16 0.335150 0.035 -0.166750 
0.341750 0.035 -0.166750 0.341750 0.035750 -0.167500 0.341750 
0.035750 -0.168250 0.341750 0.035750 -0.168250 0.341750 0.035 -
0.168250 0.341750 0.034250 -0.167500 0.341750 0.034250 -0.166750 
0.341750 0.034250 -0.166750 0.341750 0.035 } 

AttributeEnd
}

defineClass: Blinds  {count separation angle percentExtended} {

  if {$angle >  75} {set angle 75} {}
  if {$angle <  -75} {set angle -75} {}
  if {$percentExtended <  .16} {set percentExtended .16} {}
  set angle [expr {$angle * [expr {$percentExtended - .16}]}]
  set sep [expr {$separation * $percentExtended}]

Surface  plastic
Color  {1 .991012 .853832}

Pelmet
TransformBegin

Rotate  5 1 0 0
ArchiveRecord  comment handleOffset

    set heightExtent [expr {$separation * $count}]
Translate   .1 [expr {-1 * $heightExtent/2 - [expr {$heightExtent * [expr 

{1 - $percentExtended}]}]}] -0.02

Handle
Translate  0 0 .0025
Rotate  90 1 0 0
Color  {.8 .8 .8}
Cylinder  .00125 .015 [expr {-.95 * $heightExtent/2 - [expr 

{$heightExtent * [expr {1 - $percentExtended}]}]}] 360

TransformEnd



87

TransformBegin
ArchiveRecord  comment rightCord
Color  {.8 .8 .8}
Rotate  90 1 0 0

    # add up all the ys...
    # the batten is .005
    # the pelmet is .0225
    # the space between the last slat and the batten is .5 * $separation
    # the space between the slats is $count * $sep
    # the space between pelmet and the first slat is .5 * separation
    set heightExtent [expr {$separation + [expr {$sep * $count}]}]

Translate  .1 0 0
Cylinder  .00125 0 $heightExtent 360
Translate  0 -0.015 0 
Cylinder  .00125 0 $heightExtent 360

TransformEnd

TransformBegin
ArchiveRecord  comment leftInnerCord
Rotate  90 1 0 0
Translate  -.1 0 0
Cylinder  .00125 0 $heightExtent 360
Translate  0 -0.015 0
Cylinder  .00125 0 $heightExtent 360

TransformEnd

Color  {1 .991012 .853832}
ArchiveRecord  comment the slats
Translate  0 [expr {-.5 * $separation}] 0

  for {set i 0} {$i <  $count} {incr i} \
  {  Translate  0 [expr {-1 * $sep}] 0

ArchiveRecord  comment slat # $i
Slat  $angle

  }
Translate  0 [expr {-.5 * $separation}] 0

Batten
}

And then finally: 

set slat(xRotate) 0
set slat(separation) .025
set slat(percentageExtended) 1.0
set slat(count) 10

startShape  theBlinds
animatable:  { Blinds  $slat(count) $slat(separation) $slat(xRotate) 

$slat(percentageExtended)} 
endShape

We therefore end up with a model that only has four articulated variables: how many 

slats compose the blind, the base seperation between the slats, how much they are 

rotated (in degrees), and how far the blinds are extended (normalized between 0 (not 

extended at all) to 1 (fully extended)). The first two parameters are not really 

“animatable”, as you probably wouldn’t want to change them over the course of a 

given scene. The last two variables, though, give very nice high level animation controls 

over the prop, allowing a character to open or close the blind, or to easily perceive how 

open or closed it is.



88

Room

At first glance, this room model seems quite basic. What's interesting about it, though, 

is how malleable and measurable it is. The room can be easily resized, and the elements 

making up the wall and floor stay the appropriate size. In other words, if we make the 

walls 1 foot taller, the bricks don't stretch; more fill in. There are several different materials 

that can make up the floor: wood planks, stone, ceramic tiles, concrete. The walls can be 

brick, or cinder block, be painted or have wall paper on them. An earlier version had 

windows and a doorway, but I removed them in the latest version. There are several 

different pieces of furniture (all the furniture was imported as RIB® from Pixar's 

ShowPlace CD) that can be put in the room, and they can be arranged in different 

locations, some constrained to certain areas.

If a character has knowledge of the kinds of materials that might comprise this room, 

it can perceive quite detailed information about the space. For example, the renderable 

object (a Surface  object) which draws the cinder block walls has a set of articulated 

variables associated with it that would allow a character to perceive the base color of the 

wall, the size and location of the bricks, etc. This means that a character might be told to 

essentially “trace your finger about the second brick up, 7 bricks over” and it could easily 

map this into a location on the wall. By building “sense-able” rooms in this way, we can 

begin to build up a set of prototypes of spaces that we may be able to reuse broadly. 

Using these prototypes, we can build characters with the appropriate perceptual 
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mechanisms for sensing these spaces.

Also, the track light model (near the center and top of the frame) was imported and 

then had a light attached to it. I constrained both to stay on the ceiling (no matter its 

height) using a wwSet. The intensity of the light was constrained to know how high the 

ceiling was, and modulate itself accordingly so that it would always illuminate the floor. 

The light can be turned to shine on various parts of the room, and its twist is coupled to 

what the track light's rotation is. 

One interesting side effect of having this single spotlight as the main source of 

illumination in the room is the fact that it's straightforward to have a character in this room 

“know” if it is in the spotlight or not. By measuring the intensity and width of the light 

(both manipulatable and measurable values on the model), a character that wanted to 

know the intensity or location of the light could easily measure it by a little bit of 

trigonometry. We’ll use this information in the next chapter.
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Dimitri's Ring from “Dizzy Horse”

Early last year, I was asked to help with a short (20 minute) film called “Dizzy 

Horse.” It was a story about a young boy named Dimitri and his warm relationship with 

his grandfather, who used to tell him stories. One in particular concerned a horse on a 

merry go round, where the other horses chided it for being “dizzy”, because it was 

always looking away from the ride, off to the outside world. Originally, there was to be a 

wooden sign that would lead the boy through the forest, and the filmmaker wanted to do 

it digitally. Since this seemed a good test for WavesWorld, I agreed to help. 

As time went on, the story changed, and finally it was to be a ring that the grandfather 

had given Dimitri that would fly through the forest. Also, the writer/director, Gary Cohen, 

didn't want the ring to have too much “character”, he just wanted it to magically move 

through the forest as a kind of beacon. Also, the visual challenge increased, because the 

ring was real; the grandfather gives the boy the ring early in the film and it is seen quite 

clearly by the audience on several occasions. Since the final version would be going to 

35mm film, This implied that the CG version of the ring would need to be photorealistic, 

and it also implied (since the ring would be moving fast) that the shots needed to 

incorporate motion blur. In other words, this was a perfect opportunity to see if 

WavesWorld was up to the task I mentioned in Chapter 1: “How can we construct them 

such that they can be seamlessly integrated into virtual environments containing both real 
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and computer generated imagery at arbitrarily high levels of quality.”

The bulk of the original ring was modeled in Alias PowerAnimator by Chris Perry (with 

kibitzing from me) modeled the basic ring and eye holder in Alias on an SGI. Since we 

didn't have Alias 5.1 (which has native RIB® export), Rick Sayre at Pixar was kind enough 

to take the Alias wire file and export it as a RIB® file. I then took the RIB® file and turned it 

into eve and built a GUI for manipulating and naming the parts. I added the eye as a two 

disks, one differentially scaled, and a hemisphere. Chris then drew the texture map for the 

pupil and iris, and I did the blood vessels. I then experimented with a few environment 

map shaders and tweaked one from (Upstill89). 

The finished model has 33 articulated variables, but only 6 (X, Y, Z rotation and X, Y, Z 

translation) were used to animate the ring for the film. The final 6 second sequence that 

was used for the film was rendered at 1536x1024, 24 frames per second, 1/48 second 

exposure, composited against 35mm background plates I shot and scanned in via 

PhotoCD and finally was put on 35mm film at DuArt, NY.
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In the first 3 seconds, the ring flies from Dimitri's hand 

into the camera, 

and cuts directly to this sequence, where the ring flies over and past the camera's 

“left shoulder” and heads down the path 

to disappear over the ridge over the course of the next 3 seconds 

Note that the camera does a “follow focus” on the ring, so the background starts in 
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focus, gets blurry as the ring approaches the camera, and then gets more in focus as the 

ring goes away from the camera.

SphereHead

 SphereHead is usually seen as a simple head with a sphere for a head, two eyes 

(with pupils), and a mouth. 

The eye and head can change scale (both preserving and not preserving volume) and 

rotate, and the mouth can change size and rotate about the body. Depending on the state 

of a variable, the model may or may not have eyelids. Sometimes another object may be 

substituted for a perfect sphere, like these two: 

SphereHead has at least 34 articulated variables that are useful for animation. Since 

its shape and shading info is so simple, it’s ideal for real-time manipulation and 

prototyping of behaviors modifying a character’s head.
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AudreyeII

AudreyeII is simpler than SphereHead but is more interesting to look at because it has 

several interesting surface shaders attached to it. It's named AudreyeII because its 

demeanor is reminiscent of AudreyeII from the “Little Shop of Horrors” musical. 

Several of the animation possibilities in this model are tied to the surface shader on 

the eyeball (written by Larry Gritz). The pupil can constrict or dilate, and the amount that 

the eye is bloodshot can also change. In addition, the model can be made to blink, and 

the eyeball can look left and right and up and down. Finally, the whole model can be 

squashed and stretched, and because of the way the scaling is set up, the scaling is 

skewed in an interesting way. 

AudreyeII has about fifteen articulated variables that are useful for animation. As with 

many of the models presented in this section, AudreyeII has many more degrees of 

freedom than that, but they’re not really amenable to be changed over the course of a 

scene. For example, changing AudreyeII’s location (i.e. the articulated variables associated 

with its X, Y, and Z position) is quite reasonable over the course of a given scene, but 

changing the surface shader on AudreyeII’s exterior is not. On the other hand, modulating 

a single parameter of a given shader (which is exactly what we’re doing to get the eye 

more or less bloodshot, or dilate the pupil) is, many times, reasonable.
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Rocky da Humanoid

One of the driving images in my head for my graduate work is the notion of a film 

noir private detective slumped over his desk in his office, passed out from the night 

before, with the neon outside his office illuminating the scene. Several years ago, I 

convinced a highly talented modeler (Keith Hunter, now head of modeling at Rhythm & 

Hues in Hollywood), to model a character I called Dexter, from the old Alex Raymond/

Chandler comic strip, Secret Agent X-9. 

Anyway, Keith whipped out a model for me in a few hours on his Mac, and it served 

me in good stead over the years. As I built the latest version of WavesWorld, though, it was 

clear that the polygonal model that Keith had made for me (exactly what I needed at the 

time), was not going to fly in my current system. Also, since I'm not doing legged 

locomotion, I didn't need the lower body. A few months back, in preparation for using the 

data suit (Bers95) they built upstairs, I built a reasonable torso and arms (with fully 

articulated fingers) based on my own proportions so it would easy to map motion capture 

information on to it: 

Well, the torso is nice, but it obviously needed a head to be of any use to me. I talked 

to my friend Gorham Palmer, a free-lance illustrator, who had done some 3D modeling for 

me a few years ago, and he was interested in doing a head for me. He made some 

sketches, which I really liked. We finally sat down a few months ago and made a new 
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head. Unfortunately, it really wasn't Dexter, so I decided that this was really Rocky, the 

dumber, much uglier half-brother of Dexter. Rocky is the most complex of the models in 

terms of degrees of freedom, and consequently he's the most difficult of these models to 

create behaviors for.

Rocky has 10 fingers, with all the appropriate joints and constrained degrees of 

freedom. His wrists, elbows and shoulders can also rotate. He has 3 rotational degrees of 
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freedom in his neck, his jaw can open, rotate, and slide, his eyelids can open and close, 

his eyes have all the degrees of freedom of AudreyeII (they use the same eyeball shader 

with different parameter ranges). Finally, the Rocky model has a prop that is usually 

attached; a matchstick dangling from his mouth, which can be moved up and down and 

around the mouth. 
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Robbit

The model I call Robbit was directly inspired by several pages of drawings in Syd 

Mead's book Kronovecta (Mead90). For those unfamiliar with his work, Mead was the 

“visual futurist” on such films as Blade Runner and Star Trek: The Movie. The other 

models I had done were either designed by myself or done by working in direct 

collaboration with someone. I was interested in seeing how WavesWorld would fare when 

used to build up a character based on someone else’s design, where there could be no 

given and take during the specification phase.

Since my model of Robbit is based directly on Mead's drawings and text, so it's 

probably best to quote him directly: 

“Dogs endear themselves to their owners. Puppies, with their exaggerated 
attitudes and poses, become irresistible. Combining the clumsy posture of a 
puppy and slightly rearranging the mechanical components of “dog”, the 
final proposal captured the essence of “pet.” Since puppies are all head, legs 
and feet, this became the guiding rationale. The head was a large, pear-shaped 
form with a simplified slot at the right position to suggest “face” without 
venturing into complicated separate features. An “eye” spot was to move 
back and forth in the slot to provide expression. The head was mounted on the 
minimal body which, really, was merely a connection element for all of the 
parts. The four legs and feet were rotated 90 degrees so that the feet contacted 
the ground in a diamond pattern. This had the delightful result of reinforcing 
the odd machine look and forcing the “head” to position on either side of the 
front “foot” when the pet layed (sic) down, duplicating the way puppies tend 
to rest their chin on one or the other front paw. The tail, a simple rounded-end 
cylinder, was where the batteries went. 

Motive power was intended to be in the form of powered rollers inside the large 
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paws.” 

Since Mead's drawings were line art, I had to decide on coloration and shading. I 

decided on a completely clean plastic look to robbit, as if he had arrived fresh from the 

robot factory that morning. I made the accordion joints and the head pieces seem to be 

built out of hard rubber, with the intent that the head pieces would act as a bumper, 

allowing him to bump into things. I also gave him a “button” nose, and changed the eye 

slot to a more semi-transparent visor-like piece and hence made the “eye” a green 

glowing sphere. that can move back and forth.
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This chapter introduced and explained much of the substrate of WavesWorld that 

gives it its flexibility and power as a testbed for experimenting with issues surrounding 

building semi-autonomous animated characters. You should now see how we can 

construct models containing the shape, shading, and state information that comprise both 

the static and dynamic elements that compose a character. In the next chapter, we’ll 

finally see how we might go about animating these character parts, getting us another 

step closer to our goal of beginning to understand how to construct 3D, semi-autonomous 

animated characters.

Conclusion


