
I haven't really written any documenation still; I AM LAME, 
okay?

old stuff:

send mail to wave@media.mit.edu with any questions.

The scenario I wished to address was this:

IB, as it currently ships, is designed to be used with a compiled 
language, Objective-C.    Given that, IB is a reasonable 
prototyping environment for applications which use already 
compiled objects, but falls down parts of the interface depend on 
objects which are yet to be written.    Even if they're written, they 
need to be palettized to be useful in "test interface" mode in IB. 



Basically, I wanted to have my cake and eat it too.    To be more 
explicit, there are two incompatible methods of using IB to help 
prototype an app:

Having your cake
 You've already given a lot of thought to the objects you will 
compose your application with.    You've written the code, and 
palettized the objects.    You can now go into IB and prototype 
your application, by dragging objects off your palettes, hooking 
them up, and going into test interface mode.    Unfortunately, you 
can't redesign any of your objects on the fly.    This wouldn't be 
that bad if you weren't crippled by IB's target/action paradigm.    
(more about that later)

Eating your cake
You sit down to IB with some pencil sketches of your app, but 
much of the details are still unformed.    You start dragging out UI 
objects, and you start defining some new classes.    You define 



outlets and action methods, hook things up, think some more, 
change your mind. It's great.    Unfortunately, "test interface" 
mode is now worse than
worseless; it's annoying because since many of the objects in 
your nib file haven't been written yet, it doesn't show you 
anything like what your interface will eventually look like.

So what's the solution?    Well, there are several possibilities.    
Two nice ones I've seen lately is Thomas Burkholder's TBinder 
work (in the TTools mini-example) and VNP Software's UIBinder. 
These are nice because they integrate well with the pure 
Objective-C model that IB promotes.    Unfortunately, these are 
still too limiting for my work.    A different approach would be to 
take some interpreted language which
lends itself to embedding and try to shoe horn it into the IB 
paradigm.    That's the route I've taken.

Tcl



Tcl (pronounced "tickle") stands for the "tool command language", 
an embeddable extension language designed by John 
Ousterhout at the University of California at Berkeley.    The best 
way to learn about tcl is to pick up the Addision Wesley book 
John wrote (coming out sometime in early 1994, preprint 
available in PostScript form from sprite.berkeley.edu).    There is a 
great newsgroup comp.lang.tcl, which spends most of its time 
with issues surrounding Tk, the X toolkit based on top of tcl.    I've 
shipped version 7.3 with these palettes,    which, at the time of 
this writing, is the most current version.

I've been using tcl as a programmer for five years, and think it's 
great.    It has some problems, the most notable one being that 
there is no compiler, but it's advantages (amazingly well 
supported, portably written, rock solid implementation, great 
documentation, fast enough for what you should be using it for) 
far outweigh its problems.

One problem that I've always had with IB is how its target/action 



paradigm promotes a separation of a UI object's state 
dependencies from its actions when used.    In other words, you 
might have a slider which, when grabbed, sends an 
"updateTemperature:" msg to some object. But who updates that 
slider?    Well, the IB answer is that some other object has an 
outlet which is connected to that slider, and it's
responsible for sending messages to update the slider when 
(say) the temperature changes from some other source.    There 
is *no* way to look at that slider and see where it's state comes 
from.    This has driven me nuts for years, but until this summer, I 
didn't really have a clear idea of how to fix it.

Tk, which is the X toolkit which uses tcl, promotes a different UI 
paradigm that I call the "database" paradigm.    The idea is (using 
my temperature slider example from above) there is some tcl 
variable called (say) "temperature" which slider manipulates (by 
sending a message to the tcl interpreter to set the value of the 
variable
temperature) and that the interpreter takes care of sending the 



slider a message to update it's value whenever the variable 
"temperature" changes *for any reason*.    What's especially neat 
about this is that you can inspect the slider widget and all the info 
you need is there: what message does it send whenever it gets 
frobbed, and what is responsible for it's value.

I basically took this idea and extended it to allow a UI element to 
have it's value based on an arbitrary tcl command.    The simple 
case of course is supported (value based on a single variable), 
but I think this arbirtrary command notion is pretty powerful and 
useful.    Whenever any of the variables in that command change, 
the tcl interp automatically tells each UI element that depends on 
it to reevaluate themselves in the current context.    Note that this 
isn't foolproof; I only do a one pass check through the tcl 
command for variable names, so if you're hiding a bunch of 
global variables in some procedure name, I'm not going to 
recurse down through to find them.    This isn't lisp; it's tcl...

This solves a lot of really complex problems (see the 



WW3DPalette and my "malleable media" stuff), but the easy win 
is it obviates the ubiquitous "Controller" class that everyone 
writes for stupid little applets.    For example, take a look at the 
"Calculator" example in NeXT's IB documentation.    Then take a 
look at my version in ../Examples/WavesWorld/TclCalculator.    No 
stinkin' linking, that's    what I say...

Anyway, I realize I need to document stuff more, but play around 
with the calculator demo, then go play with the examples in the 
WW3DPalette, and then try to come up with your own examples. 
I'll be happy to help; I need more examples, and documentation 
gets easier to write the more examples you have to point at.

go play.

- wave


