
154

This appendix details one particular configuration of agents that embody a particular

approach towards perception and action in WavesWorld. Portions of this chapter are

based on Chapter 3 of my SMVS thesis (Johnson91), although it has been updated to

reflect my current research results and implementation. The original planning algorithm

was developed and described first by Maes’ (Maes89) and this particular implementation

and extensions (for parallel skill execution and distributed execution) was first described

in (Zeltzer91) and in more detail in my SMVS thesis (Johnson91). The extensions with

regard to sampling behaviors and perceptual sampling controls have not been discussed

elsewhere.

The notion of using a network of inter-connected motor skills to control the behavior

of a virtual actor was first described by Henry Jappinen in 1979 (Jappinen79). My advisor

David Zeltzer discussed this notion in the context of computer animation in1983

(Zeltzer83). This was later independently elaborated and first implemented by Pattie

Maes in1989 (Maes89) for physical robots. Her algorithm was used as the starting point

for the work done in my SMVS thesis, which was reused and extended for this work. In

addition to implementing her algorithm, I have extended the original in several ways, with

an emphasis on the issues involved in a robust, parallel, distributed implementation.

This chapter begins with an algorithm for the problem of action selection for an

autonomous agent as presented by Maes, and then goes into some detail about

extensions which have been made during the course of implementing it. The

mathematical model presented here differs slightly from Maes’ original in that it corrects

two errors I found while implementing it, as first noted in my SMVS thesis. Finally, a note

on naming: where Maes speaks of competence module, I use the term skill agent.

Maes’ set of propositions P map to sensor agents in WavesWorld, and the members of

both G(t) and R(t) are referred to as goal agents in WavesWorld.

Introduction

A
Reactive Planning in WavesWorld

155

This section presents a mathematical description of the algorithm so as to make

reproduction of the results possible. Given:

• a set of competence modules 1…n

• a set of propositions P

• a function S(t) returning the propositions that are observed to be true at time t
(the state of the environment as perceived by the agent); S being imple-
mented by an independent process (or the real world)

• a function G(t) returning the propositions that are a goal of the agent at time t;
G being implemented by an independent process

• a function R(t) returning the propositions that are a goal of the agent that have
already been achieved at time t; R being implemented by an independent pro-
cess (e.g., some internal or external goal creator)

• a function executable(i,t), which returns 1 if competence module i is execut-
able at time t (i.e., if all of the preconditions of competence module i are
members of S(t)), and 0 otherwise

• a function M(j), which returns the set of modules that match proposition j, i.e.,
the modules x for which j ∈ cx

• a function A(j), which returns the set of modules that achieve proposition j,
i.e., the modules x for which j ∈ ax

• a function U(j), which returns the set of modules that undo proposition j, i.e.,
the modules x for which j ∈ dx

• π, the mean level of activation

• θ, the threshold of activation, where θ is lowered 10% every time no module
was selected, and is reset to its initial value whenever a module becomes
active

• φ, the amount of activation energy injected by the state per true proposition

• γ, the amount of activation energy injected by the goals per goal

• δ, the amount of activation energy taken away by the protected goals per pro-
tected goal

Given competence module x = (cx, ax, dx, αx), the input of activation to module x

from the state at time t is:

inputFromState(x, t) =

 where j ∈ S(t) ∩ cx and where # stands for the cardinality of a set.

The input of activation to competence module x from the goals at time t is:

inputFromGoals(x, t) =

where j ∈ G(t) ∩ ax.

The removal of activation from competence module x by the goals that are protected

Maes’ Mathematical Model

() xj

φ 11
c#jM#

() xj

γ 11
a#jA#

156

at time t is:

takenAwayByProtectedGoals(x, t) =

where j ∈ R(t) ∩ dx.

The following equation specifies what a competence module x = (cx, ax, dx, αx),

spreads backward to a competence module y = (cy, ay, dy, αy):

spreadsBW(x, y, t) =

where j ∉ S(t)∧j∈cx ∩ ay.

The following equation specifies what module x spreads forward to module y:

spreadsFW(x, y, t) =

where j ∉ S(t) ∧ j ∈ ay ∩ cy.

The following equation specifies what module x takes away from module y:

takesAway(x, y, t) =

where j ∈ cx ∩ dy ∩ S(t).

The activation level of a competence module y at time 0 is and for time t > 0, is

defined as:

where x ranges over the modules of the network, z ranges over the modules of the

network minus the module y, t > 0, and the decay function is such that the global

activation remains constant:

() xj

δ 11
d#jU#

() (){ −α jAtxj
if executable(x,t) = 10

if executable(x,t) = 0a#
1

#
11

y

() () ()

(){ =

=γ
φ−α

0t,xelbatucexefi0

1t,xelbatucexefic#
1

jM#
11txj y

() ()() ()() ?

() () ()() ?{ otherwise1ty,d#
1

jU#
11txjnim

xdyctSi1ty1txif0

−αγ
δ−α

∩∩∈∃Λ−α<−α

y

()

() ()()
()
()

()
()
()
()


































+
++

−
+
+

−−−α

=α

tyzyawAsekat
tyxWFsdaerps
tyxWBsdaerps

tyslaoGdetcetorPyByawAnekat
tyslaoGmorFtupni
tyetatSmorFtupni

tyevitcaty

yacedty

,,
,,
,,

,
,
,

1,11,

,

zx,

() π= nty
y

α

157

The competence module that becomes active at time t is module i such that:

 active(t, i) = 1 if

 active(t, i) = 0 otherwise

Maes’ Algorithm: Pros and Cons

The Good News

Maes’ algorithm is notable on several accounts. First of all, without reference to any

ethological theories, she captured many of the important concepts described in the

classical studies of animal behavior. Her view of activation and inhibition, especially as a

continuously varying signal, are in step with both classical and current theories of animal

behavior (Sherrington06, McFarland75). Secondly, the algorithm can lend itself to a very

efficient implementation, and allows for a tight interaction loop between the agent and its

environment, making it suitable for real robots and virtual ones that could be interacted

with in real time.

Her enumeration of how and in what amount activation flows between modules is

refreshingly precise:

“the internal spreading of activation should have the same semantics/effects as
the input/output by the state and goals. The ratios of input from the state versus
input from the goals versus output by the protected goals are the same as the
ratios of input from predecessors versus input from successors versus output by
modules with which a module conflicts. Intuitively, we want to view preconditions
that are not yet true as subgoals, effects that are about to be true as predictions,
and preconditions that are true as protected subgoals.” (Maes89)

This correspondence gives her theory an elegance which stands head and shoulders

above the tradition of hacks, heuristics, and kludges that AI is littered with.

The Bad News

As with any new and developing theory, Maes’ currently suffers from several

drawbacks. I’ll first list what I feel to be the problems with the algorithm as stated above,

and then discuss each in turn.

• the lack of variables

• the fact that loops can occur in the action selection process

•the selection of the appropriate global parameters (θ, φ, γ, δ) to achieve a spe-
cific task is an open question

• the contradiction that “no ‘bureaucratic’ competence modules are neces-
sary (i.e., modules whose only competence is determining which other mod-
ules should be activated or inhibited) nor do we need global forms of
control” (Maes89) vs. efficiently implementing it as such

• the lack of a method of parallel skill execution

() ()
() ()
() () () () ()α=>αΛ∀

=
θ=>α

tjtignilliflufj
tielbatucexe

ti

3,,:21
21,
1,

158

Lack of Variables

Maes asserts that many of the advantages of her algorithm would disappear if

variables were introduced. She uses indexical-functional aspects to sidestep this problem,

an approach which I originally thought would be too limiting for anything more than toy

networks built by hand. I felt that any implementor would soon tire of denoting every item

of interest to a virtual actor in this way. Maes argues that the use of indexical-functional

notation makes realistic assumptions about what a given autonomous agent can sense in

its environment. This is perhaps true in the physical world of real robots, but in the virtual

worlds I am concerned with, this is much less an issue.

My original solution was to posit a sort of generic competence module, which I called

a template agent. These template agents would be members of the action selection

network similar to competence modules, except they do not send or receive activation.

When a fully specified proposition is entered in G(t), relating to the template agent, it

would instance itself with all of its slots filled in. For example, a generic competence

module walk-to X might have on its add-list the proposition actor-at-X, where X was some

location to be specified later. If the proposition actor-at-red-chair became a member of

G(t), this would cause the template agent walk-to X to instance itself as a competence

module walk-to-red-chair with, among other things, the proposition actor-at-red-chair on

its add-list. This instanced competence module would then participate in the flow of

activation just like any other competence module. When the goal was satisfied, or when it

was removed from G(t), the competence module could be deleted, to be reinvoked by the

template agent later if needed. If the number of modules in a given network was not an

issue, any instanced modules could stay around even after the proposition which invoked

them disappeared.

The template idea is a reasonable start, but it helps to think about this algorithm in

the context of a larger system, where given a particular situation, a piece of software might

analyze the scenario and generate a action selection network, with all the requisite

receptors and agents from a set of high level, general template skill and sensor agents.

My current solution is to allow the sensor agents to communicate to skill agents by

manipulating shared state in the virtual actor. For example, suppose you have a character

Some Proposed Solutions

159

with a sensor agent aCupIsNearby and a skill agent pickUpCup. The skill agent keys

off (among other things) that sensor agent. When the sensor agent computes itself, it has

access to the virtual environment via its receptors. If it computes itself to be True, it has, at

that time, access to information concerning the particular cup that it has decided “is

nearby.” It stores this information by sending a message to the virtual actor and then

returns True. That message is stored in the character’s shared state as short term memory.

Some time later, after the appropriate activation has flowed around the action selection

network, the skill agent pickUpCup is called. The first thing the skill agent does is

retrieve the necessary information about the particular cup it is supposed to be picking up

from shared state of the virtual actor. This information might be stored as some static

piece of data regarding some aspect of the object (i.e., where it was when it was sensed

by the sensor that put it there) or it might be a piece of active data, like a pointer or

handle to the actual object in the environment. Either way, this allows agents to

communicate via the shared state of the virtual actor, using it as a blackboard (Hayes-

Roth88). Blumberg and Galyean (Blumberg95) uses a similar mechanism, which they call

a Pronome, after (Minsky87).

Loops

The second major difficulty with the original algorithm is that loops can occur. From

my perspective, this isn’t necessarily a bad thing, since this sort of behavior is well

documented in ethology, and could be used to model such behavior in a simulated

animal. From the broader perspective of trying to formulate general theories of action

selection, it remains a problem to be addressed. Maes suggests a second network, built

using the same algorithm, but composed of modules whose corresponding competence

lies in observing the behavior of a given network and manipulating certain global

parameters (θ, φ, γ, δ) to effect change in that network’s behavior. This is an idea much in

the spirit of Minsky’s B-brains (Minsky87), in which he outlines the notion of a B-brain

that watches an A-brain, that, although it doesn’t understand the internal workings of the

A-brain, can effect changes to the A-brain. Minsky points out that this can be carried on

indefinitely, with the addition of a C-brain, a D-brain, etc. While this idea is interesting, it

does seem to suffer from the phenomenon sometimes referred to as the homunculus

problem, or the meta-meta problem. The basic idea is that any such system which has

some sort of “watchdog system” constructed in the same fashion as itself, can be

160

logically extended through infinite recursion ad infinitum.

A more interesting solution, and one that has its basis in the ethological literature, is

to introduce a notion of fatigue to competence module execution. By introducing some

notion of either skill-specific or general fatigue levels, the repeated selection of a given

competence module (or sequence of competence modules) can be inhibited.

How to Select θ, φ, γ, δ

The selection of the global parameters of the action selection network is an open

issue. To generate a given task achieving behavior, it is not clear how to select the

appropriate parameters. From the perspective of a user wishing to direct the actions of a

virtual actor, this is a grievous flaw which must be addressed. A similar solution to the one

proposed for the loops problem could be used, namely using another network to select

appropriate values. Unfortunately, this doesn’t really address the problem of

accomplishing a specific task. One idea is to use any of several learning methods to allow

the network to decide for itself appropriate parameters. Learning by example could be

used to excellent effect here.

Another interesting notion which is applicable is to allow the network to have some

memory of past situations it has been in before. If we allow it to somehow recognize a

given situation (“I’m going to Aunt Millie’s. I’ve done this before. Let’s see: I get up,

close all the windows, lock all the doors, and walk down the street to her house?”), we

could allow the network to bias its actions towards what worked in that previous situation.

If we allowed additional links between competence modules called follower links, we

could modulate the activation to be sent between modules which naturally follow each

others’ invocation in a given behavioral context. This idea has similarities to Minsky’s K-

lines (Minsky86) and Schank’s scripts and plans (Schank77), but is more flexible

because it isn’t an exact recipe, it’s just one more factor in the network’s action selection

process. This allows continuous control over how much credence the network gives the

follower links, in keeping with the continuous quality of the algorithm.

Supposedly No Global Forms of Control

Maes considers her algorithm to describe a continuous system, both parallel and

distributed, with no global forms of control. One of her stated goals in the development of

this algorithm was to explore solutions to the problem of action selection in which:

161

“no ‘bureaucratic’ competence modules are necessary (i.e., modules whose
only competence is determining which other modules should be activated or
inhibited) not do we need global forms of control.” (Maes89)

Unfortunately, by the use of coefficients on the activation flow which require global

knowledge (i.e., every term which involves the cardinality of any set not completely local

to a competence module), there is no way her stated goal can be achieved. Secondly, it

seems that any implementation of the algorithm has to impose some form of

synchronization of the activation flow through the network. These two problem are

inextricably linked, as I’ll discuss below. Maes asserts that the algorithm is not as

computationally complex as a traditional AI search, and that it does not suffer from

combinatorial explosion (Maes89). She also asserts that the algorithm is robust and

exhibits graceful degradation of performance when any of its components fail.

Unfortunately, any implementation which attempts to implement the robustness implied

in the mathematical model begins to exhibit complexity of at least O(n2), since each

module needs to send information to the process supplying the values for M(j), A(j), and

U(j). Also, information concerning the cardinality of cx, ax, dx, cy, ay, and dy must also be

available to calculate the activation flow. This implies either a global database/shared

memory in which these values are stored, or direct communication among the

competence modules and the processes managing G(t), S(t), and R(t). Either method

implies some method of synchronizing the reading and writing of data. Unfortunately,

Maes asserts that the process of activation flow is continuous, which implies that

asynchronous behavior of the component modules of the network is acceptable, which it

clearly is not.

If we are to implement this algorithm in a distributed fashion, which is desirable to

take advantage of the current availability of networked workstations, we need to choose

between a shared database (containing data concerning the cardinality of M(j), A(j), U(j),

cx, ax, dx, cy, ay, and dy) and direct communication among competence modules. If we are

to assume a direct communication model, a given module would need to maintain a

communication link to each other module that held pertinent information to it (i.e., would

be returned by any of the functions M(j), A(j), U(j) or would be involved in the calculation

of the cardinality of ax, dx, cy, ay, and dy). Additionally, a module would need some way of

being notified when a new module was added to the network, and have some way of

establishing a communication link to that new module. In the limit, this implies that every

162

module would need to maintain (n-1) communication links, where the network was

composed of n modules. Although necessary values to calculate the spreading of

activation could be gotten and cached by each agent, to implement the robustness

implied in the mathematical model, we need to recalculate each assertion for each

proposition for each agent every time-step. This implies a communication bottleneck, and

semi-formidable synchronization issues.

Alternatively, if it was implemented by a shared database or global memory, each

agent would need only a single connection to the shared database. Some process external

to the agents could manage the connection of new agents to the database and removal of

agents which become disabled. This would allow the agents not to have to worry about

the integrity of the other members of the network, and would reduce the complexity of

the communication involved to O(n). Given that an agent’s accesses to the database are

known (i.e., a given agent would need to access the database the same number of times

as any other agent in the network), synchronization could be handled by a simple round-

robin scheme, where each agent’s request was handled in turn. When an agent wished to

add itself to a given action selection network, it would need to register itself with the

shared database by giving it information about itself (i.e., the contents of its condition-,

add-, and delete-list). This would allow the database to answer questions from other

agents about M(j), A(j), U(j) and the cardinality of ax, dx, cy, ay, and dy. Such a registry

could also have a way of marking agents which didn’t respond to its requests for updated

information, and perhaps even have the ability to remove agents from the network which

didn’t respond or whose communication channels break down.

In either method, there needs to be some agreed upon method of synchronizing

messages so that activation flow proceeds according to the algorithm, and that only one

action is selected at a given time step. If we postulate some agency which dispatches

which action is selected, we fly in the face of Maes’ assertion of no global forms of

control. Unfortunately, if we are to implement the algorithm in the distributed fashion

described so far, I don’t see any way around having such a task fragment dispatcher.

No Parallel Skill Execution

Another problem is the assumption built into the algorithm that no competence

module takes very long to execute. This seems implicit in the fact that Maes does not

seem to consider the lack of a method for having parallel executing modules as a

163

problem. For my purposes, this is a serious problem, since without such a capability, I

could never have a virtual actor that could walk and chew gum at the same time. More

specifically, a network containing a walk competence module and a chewGum module

could never have both of them executing in parallel. Maes’ view of the granularity of time

in the system is very fine, while my view is that there should be some parameter which

allows control from fine to coarse.

Summary of My Algorithm Extensions

Asynchronous Action Selection

A crucial difference between my algorithm and Maes' original is that (in mine) once a

skill has been selected, an execute message is dispatched to it, and the action selection

process continues actively trying to select the next action. Since the process actually

executing the action is distinct from the process in which action selection is taking place,

there is no need to enforce synchronicity at this point (i.e. we don't have to wait for that

function call to return). At some point in the future, a finished message will probably be

received by the registry/dispatcher, signifying that the skill agent has finished attempting

to achieve the task.

Parallel Skill Execution

An executing skill agent will tie up some of the network's resources in the world,

thereby inhibiting other similar skill agents from executing, while still allowing skill agents

which don't need access to the same resources the ability to be selected. For example, if

the walk-to-door skill is selected, it will engage the legs resources, and other skill agents

(run-to-door, sit-down, etc.) will be inhibited from executing because one of their

preconditions (legs-are-available) is no longer true. Other skill agents, such as close-

window, or wave-good-bye, can still be selected, because the resources they require are

available, and they are (possibly) receiving enough activation energy to be selected.

Adding Fatigue

At the beginning of each step of the action selection algorithm's loop, the registry/

dispatcher checks for messages from any currently executing skill agents. When a given

skill agent has finished executing (either believing it accomplished its task or giving up for

some reason), it sends a message back to the registry/dispatcher. At this point, and not

before, the skill agent's activation level is reset. This is analogous to the last section of

164

Maes' mathematical model in which the selected competence module's activation level is

reset to zero. In our implementation, the skill agent's activation level is reset taking into

account how successful it was in affecting the world in the way it predicted it would,

combined with some hysteresis to avoid continually executing a skill agent which always

fails to do what it promised.

If a skill agent has been called (i.e. sent an execute message) consecutively for its

maximum number of times (this can be network dependent, skill agent dependent, time

dependent, or some combination of all three), its activation level is reset to zero. If

however, the skill agent has not been called consecutively more than its maximum, its

new activation level is calculated thus:

The intuitive idea here is that if a skill agent has seemingly done what it said it would,

its goal has been achieved and its activation level should be reset to zero (just as in Maes'

original algorithm). If however, the world state as measured differs significantly from what

the skill agent predicted, the obvious course of action is to allow that skill agent a high

probability of being selected again (by not reducing its activation level much). The

likelihood of calling a given skill agent consecutively should decrease over time, thereby

building some hysteresis into the action selection. For example, if you dial a phone

number and get a wrong number, you usually attempt to dial the phone number again. If

the second attempt fails, you start looking around for some other way to accomplish your

goal-rechecking the number in your address book, calling directory assistance, etc.

Perceptual Sampling Controls

In Maes’ original system, while provisions are made for the fact that a given skill may

or may not be successful, there is no discussion of sensor fallibility. Two situations may

lead to a sensor reporting incorrect information: incorrect assumptions by the sensor

designer, or undersampling of the phenomena that the sensor is built to perceive. While

there is little we can explicitly do about a badly designed sensor, we can discuss sampling.

The solution I developed was inspired by a notion from Rasmussen who talked about the

signals, signs, and symbols to which a virtual actor attends:

“Signals represent sensor data — e.g., heat, pressure, light — that can be
processed as continuous variables. Signs are facts and features of the
environment or the organism.” (Rasmussen83)

I realized that sensor agents corresponded directly to signs, but I needed some sort of

()() ()()αcurrent
totalPredictionsAboutWorldState

correctPredictionsAboutWorldState
1

maximumCalls
consecutiveCalls

1 −−

165

representation for signals. In WavesWorld, these would be something that digitally

sampled continuous signals in either the virtual actor or the virtual environment. I termed

these perceptual samplers receptors. Receptors are code fragments that are “injected”

by sensor agents into either the virtual actor or the virtual environment. Each receptor has

a sampling frequency associated with it that can be modified by the sensor agent which

injected it. These probes sample at some rate (say, every 1/30 of a second or every 1/2

hour) and if their value changes from one sample to the next they send a message to the

sensor agent, which causes the sensor agent to recalculate itself.

Receptors are shared among sensor agents, and their information is also available to

skill agents. Because their sampling frequency can be modulated, it is possible to trade off

the cost of sampling the world at a high frequency vs. the possibility of aliased signals.

Each receptor computes its value at a given sampling rate. If the
value changes from the last time, it sends a message to the sensor
agents it is connected to.

1/30 sec. 1/60 sec.5 sec.
environment character

