
Final Project

Development and Implementation of the

Realistic Robot Simulation Interface for the

Volkswagen Robot Controller VRS1

Göksel DEDEO�LU

August 1995 - January 1996

Volkswagen AG,Wolfsburg

Advisor: Prof. Seta BO�OSYAN
Istanbul Technical University

Electrical and Electronic Faculty

Control & Computer Engineering Department

Supervised by :

Prof. Dr. -Ing. J. Hesselbach

Dr.-Ing. Kerle

Dipl.-Ing. R. Thoben

Technische Universität Braunschweig

Institut für Fertigungsautomatisierung

und Handhabungstechnik

Dipl.-Ing. P. Beske

Volkswagen AG

Elektroplanung Abt.

Wolfsburg

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

1

Table of Contents

Introduction..2

1. The Realistic Robot Simulation Project .. 3

1.1 The purpose of the RRS Project and its benefits.. 3

1.2 Off-line programming and simulation with Computer-Aided-Robotics Tools 5

1.3 RRS-Interface Specifications ... 10

2. Robotics at Volkswagen ... 20

2.1 VW as an industrial robot controller manufacturer.. 20

2.2 Hardware architecture of a VW Robot Controller VRS1 22

2.3 Software structure of VRS1 .. 23

2.4 Programming with VRS1.. 30

3. RCS-Module for the Volkswagen Robot Controller VRS1 34

3.1 The path module... 34

3.2 RCSVW internals .. 46

4. Integration of the RCSVW-Module with ROBCAD .. 58

4.1 Overview of ROBCAD... 58

4.2 ROBCAD Off-line Programming (OLP) Development Environment 60

4.3 The Controller Modelling Language ... 61

5. Conclusion with comparative evaluation of test motions... 63

5.1 Test motions ... 63

5.2 Implemented RRS-Services .. 71

5.3 Summary of the work .. 73

References ...74

Appendices

 A. Further test motions for comparison with ROBCAD...77

 B. Exemplar log entries of simulation...84

 C. Complete list of RRS-Services...89

 D. Control file and RRS-oriented action program used with ROBCAD......................91

 E. Source code of the RCSVW-Module with compilation directives...........................99

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

2

Introduction

The aim of the Realistic Robot Simulation (RRS) Project has been to define a neutral

software interface which would allow Computer Aided Robotics Tools to use original

robot controller algorithms for a more accurate simulation. Derived from the original

controller software, Robot Controller Simulation (RCS-) Modules can be supplied by

controller manufacturers as black-boxes to any simulation system supporting the RRS-

Interface.

The objective of this work is to develop the RCS-Module for the Volkswagen Robot

Controller VRS1 and to integrate it into the ROBCAD system of Tecnomatix

Technologies. As such, this has been the very first RRS-Software package developed by

the Volkswagen Group, which has been among the project’s partners since its start in

1992.

Design approach

In order to ease future maintenance efforts for the RCS-Software, particular emphasis has

been put on keeping the original controller software parts of the module as intact as

possible. Consequently, the first step has been to implement an interprocess

communication library under the UNIX operating system. As a result, the original path

module has become fully portable on UNIX compatible platforms.

The second step consisted of developing the RRS-Services which could be supported by

the original controller. During this phase, a shell-program has been used for testing the

RCS-Module, making the desired RRS calls instead of the CAR-Tool.

Finally, the module has been integrated into ROBCAD running on a Silicon Graphics-

Indigo platform by using the Controller Modelling Language technique of this CAD

system.

Results

After six months of development which covered the time period from August 1995 until

January 1996, a working RCS-Module has been achieved and put into operation under

ROBCAD. The RRS-Interface for VRS1 has already proven to be of considerable

benefit, since path deviations up to 90 milimeters during PTP-motions could be easily

observed in a number of cases.

Unfortunately, ROBCAD’s limited RRS-Interface capabilities did not allow the

RCSVW-Module to be tested to the desired extend before a possible industrial use.

Moreover, the tight time frame in which the RCSVW-Module has been developed,

implemented and integrated into ROBCAD did not allow a sound investigation of the

sources of deviations between ROBCAD’s motion planner and the original controller

software. For this reason, in most of the available examples, graphical methods have been

used to depict these differences.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

3

1. The Realistic Robot Simulation Project

1.1 The purpose of the RRS Project and its benefits

Various interactive and graphics-based tools have been introduced in industry to enable

computer aided planning, simulation and off-line programming of industrial robots.

These tools usually provide visualizations of robotized production cells, based on

geometrical and kinematic modelling, as well as models for the behaviour of the

controllers involved. Until recently, this modelling was mostly based on default

controller models, whose replacement with the original one usually required extensive

measurements of the robot behaviour in reality. Nevertheless, these efforts did not lead to

sufficient simulation accuracy for down-loading programs and executing them without

reteaching.

In order to improve the situation, the companies from the European Automotive Industry

initiated the project Realistic Robot Simulation (RRS), in which suppliers of robot

controllers and Computer Aided Robotics (CAR-) Tools cooperate in order to define a

common interface for controller simulating software. As technical experts they involved

manufacturers of robots and robot controllers (ABB, Comau, Fanuc, Kuka, Renault

Automation, Siemens, Volkswagen), and manufacturers of off-line programming systems

(Dassault Systeme, Deneb, Silma, Tecnomatix). For neutral project management, the

Fraunhofer-Institute for Production Systems and Design Technology (IPK Berlin) was

selected as an independant research institute.

Benefits of Robot Controller Suppliers

By implementing RRS-Interfaces for their software, controller suppliers can provide

simulation products which assure a better utilization of CAR-Tools at their customer's

site. These simulation softwares can be used in all CAR-Tools supporting this interface.

Hence, controller suppliers do not need to implement different simulation products for

every CAR-Tool. Furthermore, they can focus on the development of dedicated products

without reimplementing the general parts of CAR-Tools. Consequently, this effort allows

the controller supplier to minimize implementation efforts.

Benefits of CAR-Tool Suppliers

Suppliers of CAR-Tools do no longer have to implement and verify specific controller

models for accurate simulation of their CAR-Tools. Since the original controller software

will be used, verification will become obsolete. Up to now, CAR-Tool suppliers have

implemented and verified their controller simulation models for each controller type.

Therefore, this approach saves development resources considerably.

Benefits of CAR-Users

By using original controller software within CAR-Tools, the simulation accuracy of the

industrially applied CAR-Tools will be improved, which will effectively reduce down-

times of the manufacturing equipment. Once a new controller type is acquired, the

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

4

automotive companies can also buy the corresponding simulation product for a precise

simulation. Without a long implementation and verification phase, a precise simulation

can be used during the initial operation phase of a new controller type.

Realization of the project

The RRS-Project was started in January 1992 by defining the requirements of the

interface. As the participants agreed to concentrate on the controller software for motion

behaviour and kinematics, simulation deviations from reality of less than 0.001 radians

for planned joint values and less than 3% for cycle times have been desired. It was

required to have several controllers of the same or different controller type and

manufacturer running in parallel in the same simulation. Finally, the interface had to

support data consistency of simulated and real controllers.

From March '92 on, the first sketch of the interface has been elaborated. The sketch has

been continously enriched and improved by feasability studies and by cross checking

with the functionalities of the involved controllers. After more than 32 project meetings

version 0.0 of the RRS-Interface Specification was available in December '92.

Implementation work on first Robot Control Simulation (RCS-) Modules began in

January '93. Until May '93 RCS-Modules with a dummy functionality have been

implemented and implementations including original controller software have been

distributed to the manufacturers of off-line programming systems in July '93. In

December '93, tested integrations of five RCS-Modules in four simulation systems and

the verified version 1.0 of the RRS-Interface Specification have been presented.

1991 July Formation of the project

1992 January Definition and review of requirements

March First sketches of architecture and services

November Development of calling conventions and test software

December Completion of version 0.0 of the RRS-Interface Specification

1993 January Implementation of shell version with dummy functionality

May Implementation of principal services

July Distribution of object code

September First complete prototypes

December Presentation of results with first working prototypes

1994 January Final review of version 1.0 of the RRS-Interface Specification

1995 August Start for the development of Volkswagen’s RCS-Module

September Version 1.1 of the RRS-Interface Specification

1995 November Integration work of the RCSVW-Module with ROBCAD

1996 January First RCSVW test motions under ROBCAD

Table 1.1 : Development of the RRS-Project

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

5

1.2 Off-line programming and simulation with Computer-Aided-Robotics
Tools

1.2.1 Off-line programming

An off-line programming (OLP) system can be defined as a robot programming language

which has been sufficiently extended, so that the development of robot programs can take

place without access to the robot itself but by means of computer graphics /CRAxx/. Off-

line programming systems are important both as aids in programming industrial

automation as well as platforms involved in robotics research.

The use of off-line programming and simulation systems to program industrial robots

enables the shift of program creation and optimization away from production, thereby

reducing down times in production cells. As such, off-line programming also offers the

possibility of using simulation technology to experiment with a variety of scenarios and

processes, in order to optimize processes without interfering with production or

endangering the cells. Even before a unit is constructed and put into operation, a variety

of errors and weak points can be identified and avoided.

The most important advantages that OLP systems offer may be summarized as follows :

• Possibility of programming during production

 => Increase in availability of production equipment

• Dramatical reduction of on-line programming time in robotized cells

 => Set-up periods are shortened

• Programming in parallel with the construction of equipment

 => Run-up times are reduced

• Determination and optimization of cycle times

• Reachability tests and investigations of collision with the equipment or other robots

• Additional safety during the on-line programming

Today, a great deal of time and expertise is required to install a robot in particular

application and bring the system to production readiness. There are a number of factors

that make robot programming a difficult task. Programming robots, or any programmable

machine, has particular problems which make the development of production-ready

software even more difficult, most of which arise from the fact that a robot manipulator

interacts with its physical environment. Even simple programming systems maintain a

world model of this physical environment in the form of locations of objects and have

knowledge about presence and absence of various objects encoded in program strategies.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

6

Geometrical descriptions

 (VDA_FS)

Computer Aided Design

 Tools
Process planning

Process informations

 (e.g. welding spots)

Robotized cell planning

Robot selection

Path & action definitions
corrections &

optimizationsSimulation

Executable robot

 programs

Program conversion with

 download models

Real robots

Figure 1.1 : Off-line programming

During development of a robot program, it is necessary to keep the internal model

maintained by the programming system in correspondance with the actual state of the

robot's environment. Interactive debugging of programs with a manipulator requires

frequent manual resetting of the state of the robot's environment. Such state resetting

becomes especially difficult when the robot performs an irreversible operation on one or

more parts.

1.2.2 Simulation

The ideal simulation approaches reality so closely that programs developed off-line can

be loaded onto and executed by real controllers without having to correct them at the

shop floor. Although the current technological state does not allow such a precision,

simulators have already proven to be of economic benefit /BER94/.

In contrast to teach-in programming of a robot which requires basically a high accuracy

in terms of repeatability, for off-line programming the accuracy in the positioning of the

robot plays the dominant role /BERN94/. Absolute positioning accuracy depends on the

quality of the manufactured robot and the accuracy of the robot model used for motion

control. To ensure quality manufacturing and to identify robot model parameters

accurately, advanced measuring procedures and model-based parameter identification

methods are required. These procedures and methods make up the techniques called

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

7

robot calibration. Calibration results are a set of identified robot parameters which can be

used by the robot manufacturer as a check on the quality of robot production and by the

robot user to improve the robot's absolute positioning accuracy, using for instance these

data for the compensation of off-line generated robot programs.

Actuator

 Model
World

Model

 Motor

Encoder

 Values

Deformation

 Model

Kinematic

 Model

 TCP

position and

 orientation

Figure 1.2 : Robot model /BERN94/

As illustrated in the figure 1.2, the robot model is defined as an integration of four

models; the actuator model, defining the mechanical relationship between robot motors

and joints; the kinematic model, describing the robot's overall movement; the

deformation model, characterising the compliance in the robot joints and links; and the

measurement target model, specifying the tool-center-point (TCP) with respect to the

robot flange.

The absolute pose accuracy of the robot is today restricted by rough kinematic modelling.

By robot calibration, it can be improved close to repeatability. Research here includes

development of suitable models, low cost measuring equipment, data acquisition and

management systems and automatic generation of appropriate calibration data sets.

A central cause for deviations is the motion behaviour of the robot controller. Its

simulation is still unsatisfactory, despite enormous efforts that have been undertaken to

rebuild the interpolation of real controllers in simulation. Figure 1.3 shows an example of

deviations between the original robot controller’s (RCSVW) and a simulated one’s

(ROBCAD) behaviour.

Figure 1.3 : Deviations between two different robot controllers

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

8

1.2.3 Deviation of Simulation and Reality in Robotics

The nature of simulation implies a certain degree of abstraction from reality /BER95/. For

accurate and realistic simulation of a technical system, each component of the system has

to be modeled in a adequate way. With respect to practical application the relevance of

each component for the simulation purpose as well as the effort required for modelling

have to be considered.

Figure 1.4 illustrates the major components for an industrial robot involved in motion

programming. User interface, language system, path control, transformation and parts of

the servo control are mainly software components. Parts of the servo control, power

amplifier, position measurement and motors are mainly electronic or electromechanical

components, while gears and mechanical structure are pure mechanic components.

Robot controllers of different manufacturers provide different language systems that are

tailored to the specific capabilities of the controllers like interpolation procedures and

condition handlers. On the other hand, most simulation systems provide a general

language that is also used in task specific programming environments. The programs are

translated to the specific native controller language and down-loaded afterwards. In

addition, several simulation systems provide also emulations of native controller

languages. Programs that are up-loaded from the real controller may be executed there.

Servo Control

User Interface

Language System

Path control

Inverse Transformation

Gears

Mechanical Structure

 Position

Measurement
Motors

Figure 1.4 : Major robot components involved in robot programming /BER95/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

9

Several instructions like ptp or linear motion are common to most controllers. But some

other language elements like fly-by have not only a different syntactical structure, but also

different underlying semantics. For instance, fly-by may be commanded and executed

with respect to a fly-by zone, to a speed reduction or to a precision sphere. Providing a

superset of all mechanisms would enable the programmer to specify semantics that may

not be executed by a real controller. Providing no fly-by mechanism would make the

universal language completely inefficient. The problem is principally avoided by

emulating the native language. However, other problems arise : on the one hand, it

requires a considerable effort since the language systems of several controllers have to be

rebuilt for several simulators. On the other hand, rebuilding a system is error-tedious.

The path control of robot controllers provides the widely used motion types as ptp, linear

and circular and often special motion types like weaving, spline motions or optimized

motions. Additionally, features like fly-by, event generation and conveyor tracking are

provided. The corresponding mechanisms may be modified by a variety of parameters

like speed and orientation follow-up.

In order to move simulated robot arms, most simulation systems also provide a path

control system. The path controls of robot controllers and simulation systems provide

similar functionality and parametrization. However, they differ obviously in the extend of

functionality and its performance. Such deviations arise from the orientation follow-up

and fly-by during linear and circular motion. In addition to the inaccuracies in space, also

the execution times of motions deviate. This leads to considerable errors in cycle-time

simulation.

Several attemps have been made for improvement of the simulation accuracy for path

control: Special parametrizable path controls that include a variety of interpolation

procedures with a number of combinations have been developed, the simulation systems

have been extended for open interfaces that allow the integration of path controls, special

interfaces have been designed for the integration of path controls of specific real

controllers into simulation systems.

The inverse transformation of a robot controller converts cartesian set points on paths to

the corresponding joint values of the robot. Since the transformation is computationally

expensive and has to be performed in high frequency, the transformation algorithms are

simplified and do not precisely match the real kinematics of the mechanical arm. This

causes absolute deviations between programmed and executed paths.

The servo control, motors, gears and position measurement for the control loop that keeps

the real robot arm on the path given by the path control. Dependent on path geometry,

speed, acceleration, etc., the mechanical structure follows the path more or less precisely.

In simulation systems, dynamic models of these components are not in common use. One

reason lies in the fact that reliable values for required parameters like friction are difficult

to obtain. Another reason lies in the more important deviations caused by the path

control.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

10

1.3 RRS-Interface Specifications

Using the Realistic Robot Simulation Interface, CAR Tools have access to the original

controller software by means of RRS-Services. These can be categorized as follows :

Base services

INITIALIZE

RESET
TERMINATE

GET_ROBOT_STAMP

GET_RCS_DATA
MODIFY_RCS_DATA

SAVE & LOAD RCS_DATA

Kinematic and conversion services

GET_INVERSE_KINEMATIC

GET_FORWARD_KINEMATIC
MATRIX_TO_CONTROLLER_POSITION

CONTROLLER_POSITION_TO_MATRIX

GET_CELL_FRAME

MODIFY_CELL_FRAME
SELECT_WORK_FRAMES

Principal motion services

SET_INITIAL_POSITION
SET_NEXT_TARGET

GET_NEXT_STEP

SET_INTERPOLATION_TIME

Motion modification services

SELECT_MOTION_TYPE

SELECT_TARGET_TYPE
SELECT_TRAJECTORY_MODE

SELECT_ORIENT_INTERPOL_MODE

SELECT_DOMINANT_INTERPOL
SET_ADVANCE_MOTION

SET_MOTION_FILTER

SET_OVERRIDE_POSITION

REVERSE_MOTION

Motion parameter services

SET_JOINT_SPEEDS

SET_CARTESIAN_POSITION_SPEED
SET_JOINT_ACCELERATIONS

SET_CARTESIAN_POSITION_ACCEL.

SET_CARTESIAN_ORIENTATION_ACCEL
SET_JOINT_JERKS

SET_OVERRIDE_SPEED

SET_OVERRIDE_ACCELERATION

Fly-by and point accuracy services

SELECT_FLYBY_MODE

SET_FLYBY_CRITERIA_PARAMETER

SELECT_FLYBY_CRITERIA

CANCEL_FLYBY_CRITERIA
SELECT_POINT_ACCURACY

SET_POINT_ACCURACY_PARAMETER

GET_CURRENT_TARGETID

Tracking services

SELECT_TRACKING

SET_CONVEYOR_POSITION

Condition handling services

DEFINE_EVENT
GET_EVENT

STOP_MOTION

CONTINUE_MOTION
CANCEL_MOTION

Weaving services

SELECT_WEAVING_MODE

SELECT_WEAVING_GROUP

SET_WEAVING_GROUP_PARAMETER

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

11

1.3.1 Overview of the functionality

CAR-Tools initialize an instance of robot controller model using the service INITIALIZE

/RRS95/. This service returns the parameter RCSHandle, whose value identifies uniquely

this robot instance and which has to be passed to each service call working on it. In case

the service INITIALIZE is successful, the model is considered to be valid, thus all RRS-

Interface services may be applied to it. At this point, GET_ROBOT_STAMP may be called

to get robot's signature data.

For jogging or passing start positions, the service SET_INITIAL_POSITION may be

applied. After calling this service, SET_NEXT_TARGET can be used to pass the target

position for the first move.

The key service for motion reporting is GET_NEXT_STEP. After each call, it reports a

status which gives important information for further possible calls : If the status is 0,

GET_NEXT_STEP returns the next interpolated position. By succesive calls of this

service, motions can be scanned with the highest resolution. If this service returns 1, this

means that the controller needs a new target position. In this case, a new target position is

passed by the service SET_NEXT_TARGET.

The desired type of motion may be specified by SELECT_MOTION_TYPE, SELECT_

TRAJECTORY_MODE, SELECT_ORIENTATION_INTERPOLATION_MODE and

SELECT_DOMINANT_ INTERPOLATION. A number of SET- commands are available

for the modification of the speed profiles. Fly-by behaviour and point accuracy are

determined by the services SELECT_FLYBY_MODE, SET_FLYBY_CRITERIA_

PARAMETER, SELECT_FLYBY_CRITERIA, CANCEL_FLYBY_CRITERIA, SELECT_

POINT_ ACCURACY and SET_ POINT_ ACCURACY_PARAMETER.

To change the look ahead of the interpolation, SET_ADVANCE_MOTION may be called.

REVERSE_MOTION commands the controller to move backwards on a path. SET_

OVERRIDE_SPEED changes the speed and SET_OVERRIDE_ POSITION adds offsets to

the current TCP while the robot moves.

GET_NEXT_STEP returns 2 if the last given target is reached or if the speed is zero

because of a STOP_MOTION command. After STOP_MOTION, moves may be continued

by CONTINUE_ MOTION or all targets given to the controller may be cancelled by

CANCEL_MOTION. These services are provided in order to influence a manipulator’s

motion by external signals.

In order to receive events from a controller, the RRS-Interface provides three services

which cooperate with GET_NEXT_STEP. DEFINE_EVENT allows the programmer to

define events with different modes dependent on combinations of time, traveled distance

and position. GET_NEXT_STEP returns the number of events which occured during the

last interpolation step. If any, detailed information about the events may afterwards be

requested by the service GET_EVENT. With CANCEL_EVENT, one also has the

possibility to cancel an event before it occurs.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

12

Frames of reference

The RRS-interface supports a comprehensive controller internal kinematic model, which

may be accessed and modified by the services GET_CELL_FRAME, MODIFY_CELL_

FRAME and SELECT_WORK_FRAMES.

Using cartesian position data, the movement of the robot can be defined by means of two

frames. These are given by the ToolID and the ObjectID of the service SELECT_WORK_

FRAMES. The cartesian position data is the coordinate of the ToolID frame with respect

to the ObjectID frame. As such, it defines the target to reach in the ObjectID frame by the

ToolID frame.

The cartesian position data is defined with a homogeneous matrix which contains the

position and the orientation values. The names for the elements are chosen according to

/PAU81/

The vectors n,o and a describe the orientation frame and the vector p describes the

position of a frame. The redundant fourth row is omitted.

nx ox ax px o : orientation vector

ny oy ay px a : approach vector

nz oz az px n = o x a

0 0 0 1

Kinematic Models

Besides the two frames TOOL and OBJECT needed to describe the motion of a robot,

some others are used to build or modify the geometrical description of a cell (figure 1.5).

Through the service MODIFY_CELL_FRAME, a programmer can modify the kinematic

model of a robot's environment, which consists of a table containing the kinematic

relations between the frames.

BASE

TRANSLATOR

TRANS-BASE

TOOL

FLANGE

WORLD

TABLE-BASE

OBJECT

CONVEYOR

CONVEYOR-BASE

OBJECT

Figure 1.5 : Kinematic model /RRS95/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

13

Frames are addressed by Frame IDs. Six IDs are reserved and have a unique meaning :

WORLD : This is the origin frame of the cell.

BASE : This frame represents the side of the robot arm which is attached to the
 WORLD

FLANGE : It represents the side of the robot arm which is attached to a tool or an

object.

TOOL : This frame is reserved for tools, which can be attached to the FLANGE

side of the robot or, indirectly, to the BASE side of it.

OBJECT : This frame is reserved for workpieces. They may be attached to the

FLANGE or BASE side of the robot.

CONVEYOR : This frame is reserved for conveyor tracking. The robot controller doesn't

 control the path of the conveyor, but is merely synchronized with it.

Nr FrameName RelativeToName FrameType FrameData Joint Nr.

1 TOOL FLANGE Constant 4x3 -

2 FLANGE BASE Robot - 1 to 6

3 BASE TRANSLATOR Constant 4x3 -

4 TRANSLATOR TRANS_BASE Translate X - 7

5 TRANS_BASE WORLD Constant 4x3 -

6 WORLD - - - -

7 OBJECT TABLE Constant 4x3 -

8 TABLE TABLE_BASE Rotate Z - 8

9 TABLE_BASE WORLD Constant 4x3 -

Table 1.2 : Frames /RRS95/

Transformations

To let the CAR-Tools perform mathematical transformations in the same way as robot

controllers do, RCS-Modules may provide the services GET_FORWARD_KINEMATICS,

GET_INVERSE_KINEMATICS, MATRIX_TO_CONTROLLER_POSITION and

CONTROLLER_ TO_POSITION_MATRIX.

The homogeneous matrix is a unique representation of a TCP location and its orientation.

Though various algorithms can be used to define the relationship between a controller

location and a transformation, these algorithms still exhibit the following problems :

• The definition of the algorithms may be ambiguous, such that one transformation

may yield to multiple solutions or singularities.

• The controller may perform some additional hidden math that is not apperent or

documented, including numerical round-off that is due to the precision differences

between the CAR-Tool and the controller.

• The definition of the algorithms may change, depending on the controller version.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

14

The services GET_INVERSE_KINEMATICS and GET_FORWARD_KINEMATICS provide

transformations from cartesian positions to joint angles and vice versa.

GET_FORWARD_ KINEMATIC computes the TCP-pose with respect to the defined

reference coordinate system for a given joint position. These transformations will be

performed with respect to the current tool and object frames selected by

SELECT_WORK_FRAMES service.

Flyby and Point Accuracy

Flyby means that the controller can look ahead and take into account more than the

current target when planning a path and calculating robot’s motion. The biggest

advantage of the flyby mode is that the corners can be rounded to maintain a constant

speed.

The basic flyby service is the SELECT_FLYBY_MODE, used to turn the mode on and off.

Furthermore, to fully support the flyby programming capabilities of robot controllers,

SELECT_FLYBY_CRITERIA and SET_FLYBY_CRITERIA_PARAMETER services are

defined to allow respectively the selection and setting of flyby parameters. To cancel any

selected criteria, the service CANCEL_FLYBY_CRITERIA should be called.

Point accuracy defines a window which determines when the robot arrives at a target

point. This accuracy can be programmed with SELECT_POINT_ACCURACY and

SET_POINT_ ACCURACY services.

Motion Concept

As illustrated in the figure 1.6, SET_NEXT_TARGET and GET_NEXT_STEP are key

services for motion.

Principally, SET_NEXT_TARGET is used by the CAR-Tool to supply the programmed

target positions to the RCS-Module, one target at a time. Then, GET_NEXT_STEP is

called repeatedly in order to receive information about robot’s motion towards the target.

Each time this service is called, a new interpolation step with the highest possible

resolution is reported.

INITIALIZE

SET_INITIAL_POSITION

SET_NEXT_TARGET

GET_NEXT_STEP

T E R M I N A T E

Figure 1.6 : The principle RRS-services

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

15

In this way, the targets are consumed by the RCS-Module, which may signal the need for

new targets by means of the Status parameter. By using this output parameter, the RCS-

Module has the possibility to look-ahead for an indefinite number of positions.

If the return status of GET_NEXT_STEP is 0, this means that the RCS-Module has

calculated and is reporting a new position of the robot. In such a case, no new target is

needed. Conversely, if the Status is 1, it should be understood that the RCS-Module

needs more target data. In the latter case, an additional output parameter, namely

ElapsedTime, is used to determine the validity of reported positions. If ElapsedTime has a

value other than 0, a new position of the robot is reported, otherwise the RCS-Module is

just asking for more target data.

If the Status of GET_NEXT_STEP is 2, it means that the RCS-Module has calculated and

is reporting the final position of the robot. In this case, the robot is stopped either because

the target is reached or as a result of a STOP_MOTION call.

To summarize the use of these parameters, an example where the path to be followed

consists of four positions (P1 through P4, figure 1.7) may be helpful. Below is an

imaginary robot program for this motion, accompanied with the corresponding RRS-

service calls. After having reached the first target (P2), flyby mode will be turned on.

1 move to P1 SET_INITIAL_POSITION P1

2 move to P2 SET_NEXT_TARGET P2

loop : GET_NEXT_STEP (until Status=2)

3 flyby on SELECT_FLYBY_MODE

4 move to P3 SET_NEXT_TARGET P3

loop : GET_NEXT_STEP (until Status=1)

5 move to P4 SET_NEXT_TARGET P4

loop : GET_NEXT_STEP (until Status=2)

P1

P2 P3

P4

Figure 1.7 : Motion example

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

16

First, the initial pose of the robot and the target are set to P1 and P2 respectively. Then,

the service GET_NEXT_STEP is called in a loop until it returns 2, indicating that the

target has been reached. After turning the flyby mode on, the next target (P3) is supplied.

Somewhere on the way to P3, the RCS-Module demands for the following target so that

it can perform a corner rounding. At this point, P4 is supplied with SET_NEXT_TARGET

again. Since the flyby mode is still on, the RCS-Module will report Status=1 before it

reaches P4. This, however, will be ignored by the CAR-Tool which will keep calling

GET_NEXT_STEP until Status=2.

Interrupting Motion

By using the service STOP_MOTION, it is possible to stop a motion which is currently in

progress. As shown in the figure 1.8, when the RCS-Module receives this command, it

generates a controlled, smooth deceleration until the simulated robot stops. The CAR-

Tool has to call the GET_NEXT_STEP service further in order to get the interpolated

position steps during this deceleration phase, until zero speed is reported from the RCS-

Module. The STOP_MOTION command leaves the on-going motion in a resumable,

pending state, in which the current target position is not cleared from the RCS-Module's

memory and remains valid.

STOP

MOTION

deceleration

time

speed

acceleration

CONTINUE

MOTION

Figure 1.8 : Stopping and continuing motion

The CONTINUE_MOTION service restarts the last non-terminated motion that was

stopped by the STOP_MOTION command. After the receipt of the CONTINUE_MOTION

command, the RCS-Module generates a controlled acceleration for the simulated robot

and considers the actual motion parameters such as speed and motion type for the

continued motion. To get the interpolation steps belonging to the acceleration phase and

to the rest of the path, GET_NEXT_STEP will have to be called again.

The CANCEL_MOTION service can be used after a motion is stopped by STOP_MOTION

in those cases where the motion shall not be resumed. Since the current and all further

target positions are cleared from the memory, the motion can no longer be resumed by

CONTINUE_MOTION and is treated as completed.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

17

1.3.2 RRS Calling Conventions and integration with CAR-Tools

The RRS-Interface requires the controller simulation packages from different controller

vendors to be connectable to different CAR-Tool software packages. Both kinds of

software packages may be written in several languages (C, Pascal, FORTRAN), are

compiled with different compilers and have to run on different hardware platforms (e.g.

HP, IBM, Silicon Graphics, SUN). Furthermore, the RCS-Modules need access to several

operating system features (e.g. memory management, file access, multitasking, task

communication) and finally, the RRS-Interface has to be extendible. In order to manage

all these requirements and to reduce technical risks, rules for calling RCS-Modules and

operating systems have been introduced /RRS95/.

The rules for calling RCS-Modules

• Each RCS-Module exports one function as its main entry point. The desired RRS-

service is passed to this function as a parameter called OPCODE. This avoids linking

problems if an RCS-Module doesn't support all services of the RRS-Interface. In case

of an unsupported service, the RCS-Module must return an error status.

• All parameters of the services are passed within one Input-Data block and one Output-

Data block. References to the Input and Output blocks are passed with the function

call of the main entry point.

• The main entry is an ANSI-C function, which has the form

void rcsx(void *in, void *out);

x has to be substituted by an abbreviation of two characters denoting the RCS-

supplier, to which two digits may be added for a version number. The parameters void

*in and void *out pass the pointers to the Input and Output Blocks.

• The specification makes a distinction between Input/OutputBlocks and

Input/OutputData :

− The Input and OutputBlocks consist of a header, a parameter list and possibly a

String-Data and unused space.

− The Input and OutputData consist of the header, a parameter list and possibly

String-Data.

− The length of the Input and OutputData varies depending on the parameters of the

service called.

input / output

 data input / output

 block

header

unused

parameter list

string data

Figure 1.9 : The structure of the input and output blocks /RRS95/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

18

The header of each InputBlock contains the following elements:

INPUT_DATA_LEN : The number of bytes actually used for input data (including the

header).

OUTPUT_BLOCK_SIZE : The number of bytes that may maximally be used for

OutputData.

OPCODE : The number of the desired service.

The header of each OutputBlock contains the following element :

OUTPUT_DATA_LEN :The number of bytes actually used for output data (including

the header)

INPUT BLOCK :

INPUT_DATA_LENGTH

OUTPUT_BLOCK_SIZE

further intput parameters

string data

unused

OPERATION CODE

RCS_HANDLE

private

RCS_PRIVATE_DATA

OUTPUT BLOCK :

OUTPUT_DATA_LENGTH

STATUS

further output parameters

string data

unused

header

parameter list

Figure 1.10 : Data structures of an RCS-Call /RRS95/

• All parameters of a service are transferred in the parameter list of a block. Each

parameter has a fixed byte offset in the parameter list relative to the starting address of

the block.

• A string is represented as a string-offset and a null terminated array of characters. The

string-offset is placed in the parameter list and the null terminated array of characters

is placed within the string data. The string-offset is the offset to the first character in

the array relative to the start of Input or Output-Block.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

19

• There are two special parameters which are used by all services :

RCS-Handle : RCS-Modules may instantiate any number of robot simulations. An

instance of a robot is created by an INITIALIZE service call. For further access to this

instance, the INITIALIZE service returns to the CAR-Tool a field of eigth bytes called

RCS-Handle. This is the first parameter in the input parameter list of all services

except the INITIALIZE service.

Status : Each RRS-service has this output parameter reporting the success/error status

of the service.

The two module concept for integration

This concept assumes a communication line between the CAR-Tool and the RCS-

Module. A typical solution may be realized with shared memory and semaphores.

Each time the CAR-Tool wants to call an RRS-service, it writes to the shared memory the

contents of the InputBlock and raises a semaphore. The RCS-Module which waits on this

semaphore reads the InputBlock, works, writes the OutputBlock to the shared memory

and raises a semaphore for the CAR-Tool to read the OutputBlock.

Since this method does not require that the object codes are delivered to the user, each

part can supply its module independently. Another advantage of this method is that

problems of calling conventions from one language to another are avoided. The RCS-

Module can be written in any language and the same is true for the CAR-Tool.

CAR-Tool's RCS-Shell

CAR-Tool

signal RCS-Module

write input block

wait signal from RCS-Module

read output block

work

RRS-Interface

CAR-Tool Software

read input block

work

get signal

write output block

signal CAR-Tool

RCS-Module

Shared-

Memory

Figure 1.11 : Two-module concept for integration /RRS95/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

20

2. Robotics at Volkswagen

2.1 VW as an industrial robot controller manufacturer

Volkswagen, besides being the first ranking automobile manufacturer in Europe, is also

one of the most important robot manufacturers of the continent. Having been among the

very first companies to plan and construct robotized production cells in the early 70's, it

has presently got more than 6000 industrial robots, world-wide in use throughout the

group.

In 1972, as the new VW product GOLF required an important variation in terms of

models, single-purpose manufacturing equipments were to be taken out and replaced with

more flexible production facilities. At this point of time, basing on earlier experiences

with some USA-made industrial manipulators, the decision to develop and produce own

robots was taken. During 20 years of independent work, more than twenty kinematical

structures and three controller generations have been developed, by which top

cost/performance ratios were achieved.

In 1993, for reasons of rationalization, VW made a contract with the company KUKA for

the production and delivery of industrial robots consisting of Volkswagen controllers and

KUKA mechanics. As a result, the costs for manipulator mechanics were reduced in

average by 40%. Furthermore, the production of the controllers was taken on by the

company SEF. In 1995, the design of a new robot controller (RCV) in cooperation with

KUKA has been started. This new controller will be PC-based and run under Windows-

95 and VxWorks.

VW Wolfsburg 1092

 Hannover 577

 Braunschweig 246

 Kassel 119

 Emden 1006

 Salzgitter 12

 Mosel 184

 Brussels 194

 U. S. A. 74

 Mexico 6

 Brasil 17

 South Africa 17

 Pamplona 244

AUDI Ingolstadt 1109

 Neckarsulm 677

SEAT Martorell 402

SVW China 2

Volkswagen Group 5978

Sold 104

Total Production 6082

Table 2.1 : Industrial robots

throughout the VW-Group

15,4% 7,2% 67,4% 3,5% 5,1% 1,4%

939 439 4099 205 311 89

H
a

n
d

li
n

g

A
s

s
e

m
b

ly

S
p

o
t

w
e

ld
in

g

A
rc

 w
e

ld
in

g

C
o

a
ti

n
g

O
th

e
rs

 Figure 2.1:Application areas at VW

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

21

Figure 2.2 : Manipulator types used by the Volkswagen Group

Main features of the VRS1 controller

∗ 32-Bit Microprocessor (Motorola 68030 with co-processor 68882)

∗ Joint controller cycle-time : 5 ms (min), 15 ms (standard)

∗ Path module cycle-time : 10 ms (min), 15 ms (standard)

∗ Fast I/O Data-bus (1,5 MBaud)

∗ Absolute measuring systems, up to 24 serial bits

∗ Support of 12 joints

∗ Driver amplifiers (AC or DC) in 19'' card format

∗ Distances up to 100m from the manipulator to the controller

∗ Data archiving via integrated floppy-disk

∗ Operation mode selection from the teach-pendant

∗ Integrated PLC functions

∗ Up to 128 Inputs, 128 Outputs, 127 Sequences, 127 sub-programs

∗ Multi-sensor guidance

∗ Programmable sensor interfaces

∗ Sensor informations taking effect in about 20 ms.

∗ Programmable analogue/serial/parallel interfaces

∗ Off-line programming (upload, download)

∗ Menu oriented teach-in programming

− Sub-program technique

− Conditional branching

− Mirroring of programs

− Interpolation types : Linear, Circular, Spline, Synchro-PTP, Twist

− Weaving with all or only hand axes

− Fly-by mode

Manipulator type Amount

K15, L15, R30, R100 825

G 8, G 10, G 15 460

G 60 832

G 80, G 100 627

G 120, G120A, G121 951

GP 100 129

P 30 20

P 50 260

P 60 22

P 80 8

Manipulator type Amount

P 100 10

P 200 30

P Laser 8

S1, S2 98

VK 10 100

VK 30 46

VK 120 1270

VK 150 105

VK 360/125 281

Total 6082

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

22

2.2 Hardware architecture of a VW Robot Controller VRS1

The modules of a VRS1 robot controller (single CPU version) which are connected by

means of a VME-Bus are illustrated in the figure 2.3.

VME-BUS 32-bit data & address

CPU30ZBE

4 MByte DPR

2 MByte EPROM

RTC, 32 K SRAM

2 Timer / parallel ports

Ethernet

3xRS232

Floppy

SCSI

RAM-SCC

16 K DPR

68302

SSI Ser.1 Ser.2

0,5-2 MB

SRAM

Program

memory

6 (12) Joint amplifiers

SSI

Joint

speed

values

Ring-Bus

Teach-pendant

16x40 character LC-Display

Emergency-Off / Confirmation

 Drives Off buttons

Keypad Serial (Bitbus)

Joint

position

values

Input / Output Unit

System relays

D/A

System & User I/O

18 (12) Analogue outputs

7

Figure 2.3 : Computer architecture of the VRS1 controller

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

23

2.3 Software structure of VRS1

The Volkswagen Robot Controller Software VRS1 consists of many processes which run

in parallel under the PDOS real-time operating system. Even today, its software structure

still keeps the traces of its first implementation which ran on two CPU's, one for the path

module and the other for the task submission and robot operation system.

With the exception of some sub-routines written in assembly, the software part of the

controller is almost totally coded in the C programming language. The underlying real-

time operating system is PDOS. VMEPROM consists of the real-time kernel of PDOS

and is delivered with the controller. Other PDOS utilities are only used for development

purposes.

Power-Up, Power-Down

Safe-guarding memory 32 Kb

Random Access Memory 4 (1) Mb

5

Key-diskette

3,5 "

720 Kb

SRAM-Disk 0,5 - 2 Mb
Program/Data

Diskette

3,5 ""

720 Kb

Resident

Memory

Operating system

& Path module

Eproms

4 (1) Mbit

4 (1) Mbit

4 (1) Mbit

4 (1) Mbit

4

3

7

6

8

910

1 2

1 Power-UP Automatic loading of the operating system from EPROMS
2 Power-UP Automatic loading of the path module from EPROMS
3 Power-UP Automatic warm-up with the data recovered during the Power-DOWN
4 Power-DOWN Automatic saving of the actual data (Sequence, point number and others)

5 Key-Diskette The operating system controls access to protected data.
6 Floppy-Disk Loading of the saved programs or constants from the floppy disk into the

memory and SRAM disk.
7 Data saving Saving of the programs or constants from hard (SRAM) disk to floppies.
8 Verify Data comparison between the floppy and hard (SRAM) disks.
9 Verify Data comparison between the RAM and hard (SRAM) disks.
10 Verify Data comparison between the RAM and the floppy disk.

Figure 2.4 : VRS1 Controller Software /VRS1/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

24

2.3.1 Features of the underlying operating system

VMEPROM is a PDOS based real-time monitor. The main features of its kernel are :

• Multitasking, multiuser scheduling

• System clock

• Memory allocation

• Task synchronization

• Task suspension

• Event processing

• Character I/O including buffering

The PDOS kernel is the multitasking, real time nucleus of the VMEPROM /VME89/.

Tasks are the components comprising mostly a real time application. It is the main

responsibility of the kernel to see that each task is provided with the support it requires in

order to perform its designated function.

The most important responsibilities of the kernel are the allocation of memory and the

scheduling of tasks, since each task must share the system processor with the others. The

kernel saves a task's context when it is not executing and restores it again when it's

scheduled. Among other responsibilities of the kernel, the maintenance of a 24 hour

system clock, task suspension and rescheduling, event processing, character buffering

and other support functions could be stated.

Task
A task is defined as a program entity which can execute independently of any other

program if desired. From this point of view, it is the most basic unit of software within a

real time kernel. A user task consists of an entry in the task queue, task list and a task

control block with user program space.

From the time a task is coded by a programmer until its termination, it is in one of four

task states. Tasks move among these states as they are created, begin execution, are

interrupted, wait for events and finally complete their functions. These states are defined

as follows :

Undefined : A task is in this state before it is loaded into the task list. It can be a block of

code in a disk file or stored in memory.

Ready : When a task is loaded in memory and entered in the task queue and task list but

not executing or suspended, it is said to be ready.

Running : A task is running when scheduled by the VMEPROM kernel from the task list.

Suspended : When a task is stopped pending an event external to the task, it is said to be

suspended. A suspended task moves to the ready or running state when the event occurs.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

25

Undefined Ready

Running Suspended

Figure 2.5 : Task states /VME89/

VMEPROM allows 64 independent tasks to reside in memory and share CPU cycles.

Each task contains its own task control block and thus executes independently of any

other task. Intertask communication and synchronization are integral parts of real time

applications since many functions are too large or complex for any single task. For this

purpose, the kernel uses common or shared data areas called mailboxes, along with a

table of preassigned bit variables, called events, to synchronize tasks. A task can place a

message in a mailbox and suspend itself on an event waiting for a reply. The destination

task is signaled by the event, looks in the mailbox, responds through the mailbox and

resets the event signaling the reply.

Events
Tasks communicate by exchanging data through mailboxes, whereas they synchronize

with each other through events. Events are single bit flags that are global to all tasks.

There are four types of event flags :

1 - 63 software

64 - 80 software resetting

81 - 127 system

128 local to task

Events 1 through 63 are software events. They are set and reset by tasks and not changed

by the task scheduling. It is possible for a task to suspend itself pending a software event

and then be rescheduled when the event is set. Depending on the application, one task

must take the responsibility of resetting the event for the sequence to occur again.

Events 64 through 80 are like the normal software events except that the kernel

automatically resets the event whenever a task suspended on that event is rescheduled.

Thus, only one task is rescheduled when the event occurs. These events are set and reset

by the Send Message Pointer (XSMP) and Get Message Pointer (XGMP) primitives.

Event flags

Event flags are global system memory bits, common to all tasks. They are used in

connection with task suspension or other mailbox functions.

Message buffers

VMEPROM maintains 64 64-byte message buffers for intertask communication. A

message consists of up to 64 bytes plus a destination task number. There is also the

possibility to send more than one message to any task.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

26

Message Pointers

VMEPROM supports shorter message pointer transfers between tasks with the Send

Message Pointer (XSMP) and Get Message Pointer (XGMP) primitives. When a pointer

is sent, the event [destination message slot number + 64] is set. Similarly, in case a

message pointer is retrieved, the corresponding event is cleared.

Task suspension

Any task can be suspended pending one or two events. In such a state, a task will not

receive any CPU cycles until one of the desired events occurs.

2.3.2 Software components of VRS1

Process name Function

INTER1 Receipt of hardware interrupts generated by the co-processor,

determination of the receiver-task and generation of a software

interrupt

BMVERT On-line interpolation and the handling of the on-line tasks

INIT Motion planning

ERTV Used near singularities, where the conventional inverse kinematic

routines do not come up with an optimal behaviour

HTASK Frequently needed computations, mostly transformations

SETINT Conversion of the exception vectors of the MC68020-CPU 29

into those of the co-processor MC 68882

TRACE Buffering of the task and result data structures for tracing

REGLER Control of the joints

ROBO Task-scheduling of the main CPU

HAND Teach-in programming of the robot

HART Critical real-time tasks in Hand operation mode

FYSY Access to the floppy and hard disks

AUTO Automatic and Single-step operation modes

SENSOR Processesing of the sensor informations

SPS Execution of PLC commands

MEMPRO Control of some critical memory areas for security purposes

MEMVERW Memory management on the main CPU

DISPPER Output of the teach-pendant

Table 2.2 : Software components of VRS1 /HOC90/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

27

2.3.3 The path module

The path module consists of the processes INTER1, BMVERT, ERTV and INIT. It is

responsible for the trajectory generation, including the calculation of interpolation steps

which the manipulator joints have to follow for a given motion. To this module are

motion tasks to be submitted, which can be one of the following types :

• Start-task

• Continue-task

• On-line task

Basically, a motion task is a description of the start and target positions together with the

motion type as well as a number of additional parameters. If the robot is not already in

motion, a task of type start has to be submitted. Following the submission, the process

responsible for the control of the joints will pick up the results from a special data

structure until the path module reports that the motion has come to the end.

A task is submitted to the path module through a task structure, which includes the

following informations :

Task code with motion type
Position informations
TCP position
Roll-Pitch-Yaw angles of orientation
Joint values (12)
for
Start point (used only with start-tasks)
Target point
Via point (used for circular& spline motion)
Additional point (for spline motion)
Tool vector
Speeds
at departure
on the path
at arrival
Acceleration at the beginning
Deceleration at arrival
Maximum jerk
Radius of the precision sphere
Weaving parameters
Weaving form
Amplitude
Angle
Plane
Period

Sensor parameters

Figure 2.6 : Task data structure

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

28

The result data structure is described below :

Task code with motion type
Error
Flag variables
Last result
Fly-by mode active
TCP position
Roll-Pitch-Yaw angles of orientation
Joint values (12)

Joint and TCP velocities

Figure 2.7 : Result data structure

If the arrival speed at a target is other than zero, in order to have a smooth corner

rounding at that point, the path module will need to know about the following target. A

continue-task is used to submit motion tasks one step ahead, thereby making some

informations (e.g. speed profile) belonging to the next motion already available for a

proper fly-by behaviour.

An on-line task becomes particularly meaningful when the process in which the

manipulator is involved has to take sensor informations into account and interrupts its

motion. The action to be taken could simply be a velocity change or a jump to another

programmed point or sub-program. On-line tasks are designed to cope with such

situations and bring higher flexibility.

Below is an example for a typical program execution : At the beginning, the TCP is at the

point P1. A start task is submitted to the path module with the coordinates of P2 as target.

During the motion, before entering into the precision sphere covering the target, a

continue task for circular motion is given. As the TCP moves towards P4, a second

continue task is used to describe the next motion, which will be linear. At a point between

P4 and P5, a sensor could indicate that the target object is near enough to halve the

velocity for a smoother approach. For such a change, an on-line task is submitted.

P5

P1 P2

P3

P4

PTP

Circular

via point

Linear

P5

Figure 2.8 : Example of tasks

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

29

The figure below shows how motion tasks are submitted by the controller to the path

module.

Create
 a task

Wait for
 a task

 Copy
the task

next
point

distribute
 task

 Data
exchange

prepare
 task

generate
interrupt

 On-line

interpolation

 End of the

path segment

Controller Software

Off-line process On-line process

Path Module

Figure 2.9 : Task administration in VRS1 /JAN91/

 Determine the

direction vector
and orientation
 matrix

 Determine

 the via-point

and orientation

 matrix

 Determine

spline parameters

 and integrate

 Compute

the speed
 profile

 Compute

the speed
 profile

 Compute

the speed
 profile

 Compute

the speed
 profile

PTP Linear Circular Spline

finished

Distribute
 task

load global
 and task
 data

load global
 and task
 data

load global
 and task
 data

load global
 and task
 data

Figure 2.10 : Task preparation /JAN91/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

30

2.4 Programming with VRS1

2.4.1 The teach-pendant

The basic element used for on-line programming is the teach-pendant. For the ease of

programming, a teach-pendant should be available there, where the manipulator is

planned to be used. This, however, would require that the controller-box stands near to

the robot in the production line, where the space is usually quite limited and estimated at

5000 DM per squaremeter. For this reason, Volkswagen designed its manipulators in a

way which allowed distances up to 100 meters between the controller and manipulator,

letting the teach-pendant be plugged into the installation-box of the robot /BES95/.

By means of the VW teach-pendant (figure 2.11), programmers have access to all

functions that the controller VRS1 offers. The basic elements of this device are :

• Display

• Function keys

• Joint motions/Coordinate systems keys

• Number block

• Drives On/Off

• Operating mode switches

• Approval/Emergency Off keys

• Joystick (optional)

F2 F3 F4 F5

Joy-
stick

Koor
Syst

Neu-
Start

CLR ESC

1V

2V

3V

4V

5V

6V

7V

ZNG
 +

ZNG
AUF

ZNG
 ZU

ZNG
 -

7R

6R

5R

4R

3R

2R

1R
S
H
F

+/-

0 1

2 3

4 5

6 7

8 9

ANTRIEBE
EIN AUS

Single-Step

Auto Hand

F1 Function
Keys

Return Key

Joint/Gripper
motions

Decimal
Keypad

Joystick

Confirmation
button
Operation
Mode Switch

Emergency-
Off Switch

Actuators
On/Off

Display

VRS 1

Figure 2.11 : The VRS1 Teach-pendant /VRS1/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

31

Display

The communication between the programmer and the robot controller takes place through

the display, which often consists of liquid crystal cells. All user inputs as well as system

messages will be echoed on the display.

Function keys
There are three types of function keys. The first group is similar to the one on a personal

computer, allowing the user to move the cursor to a desired location. To confirm the

entry of a variety of parameters, the user is expected to press the enter key or switch the

operation mode.

The second group of function keys guides the user through the menus, where he always

has the possibility to jump from one parameter menu to another and to build up his

program’s flexibility.

By means of the third group, one has access to the tool's functionalities (e.g. grippers,

paint guns or more complex assembly-devices) which are to be executed during the

program.

Joint motions / Coordinate systems
One may use the joint motion keys to move each joint forward or backwards. The

coordinate systems key allows to switch to a variety of motions as well as to select

coordinate systems such as base, tool, flange, joint 1 and external.

The number block is used for numerical entries.

Drives On/Off
During the programming as well as in the automatic operation mode, this button may be

used to turn off the amplifiers of the drives.

Operation mode switch
In the Hand operation mode, programs can be entered or edited. In this mode it is also

possible to change system settings and run diagnostic programs.

In the Single Step mode, the robot executes a program under the control of two buttons.

The release of one of these buttons will cause an immediate braking and stopping of the

manipulator. As a security measure, the programmer must be keeping the Confirmation

button pressed when he is present in robot's workcell to observe the program execution in

real process speed.

In the Automatic operation mode, the manipulator will execute the selected program

without pause. In this mode, nobody should be inside the protected zone which covers the

workcell.

In addition to the robot manipulator, the whole equipment (transport band, elevators) can

be switched off by pressing the Emergency Off button.

The joystick allows the motion of the TCP in cartesian coordinates inside workcell,

thereby defining its speed by integrated potentiometers within the limits.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

32

2.4.2 Teaching-in

The structure of a robot program can be divided into three groups :

• Geometry

• Additional informations

• Text

Each robot joint is equipped with sensors which deliver informations about the position,

speed and motion direction of the joint. At the programming phase of the geometry, the

manipulator is moved via joint-motion buttons or joystick of the teach-pendant to the

desired position and joint encoder values are stored. These positions can be critical, in the

sense that an action might have to be executed there (such as spot welding or gripping of

an object), or they may only be auxiliary points inserted for a collision free path. During

the programming, each stored pose is assigned a position and a predefined sequence

number. These stored positions build up a robot program. Though the geometry of a

program defines the desired robot positions, it does not specify how these positions are to

be reached and what to do there.

As illustrated in the figure 2.12, each programmed pose includes the following

informations :

• Action : In its widest sense, the action specifies the input/output values of the

controller. These may be implemeted as gripper functions, on/off switching of

actuators or output of analogue signals, as well as waiting for a condition before

moving on. As with PLCs, these conditions may be combined in a number of ways as

to achieve well defined dependencies.

• Dynamics/Path geometry : To this category belongs the interpolation type (PTP,

linear, circular, spline, weave, twist), fly-by parameter (radius of the precision sphere),

acceleration (also deceleration and jerk) and speed (beginning, path and arrival speeds)

informations. Beginning from the first pose, all these parameters will be assigned their

default values depending on the manipulator type, some of them will be automatically

copied into the set of the following position.

kinematic

informations
- speed

- precision

- acceleration

- jerk

- interpolation

 type

 geometric

informations
- coordinates

 as joint values

- tool vector

process

informations

organizational

informations
- Sensor

- Weaving

- Search mode

- Pliers

- Ananlogue outputs

- PLC-Functions

- End of path recognition

- Cross-check

- Jump points

- Sub-programs

- Wait-times

- Documentation

Figure 2.12 : Pose informations /VRS1/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

33

• Text : This section offers an on-line documentation of programs for the use of

maintenance personnel.

Testing of programs

After being taught, a program has to be tested before it is executed in the automatic

operation mode. Tests are accomplished in the single-step mode, where the programmer

has two choices: He can either execute the program with a maximum speed of 25 cm/min

and let the controller ignore further security conditions, or use the Confirmation button to

allow the manipulator to move in real process speed. This button is equipped with a

spring which allows three different positions : Released, fully pressed or half-pressed. If

the programmer does not keep the button in the half-pressed state, all drives will be

switched off.. During the test, the biggest advantage of using real magnitudes in terms of

speed will be the availability of realistic cycle times.

If a robot program does not meet the desired criteria at a specific point, the informations

of this point can be directly edited.

The VRS1 controller supports also the shift, mirroring, rotation and copying of whole

programs, which can be very beneficial in symmetrical production lines.

Fly-by capability

Usually, paths to be followed by robot manipulators consist of a set of curves in the

space, at whose intersections different TCP speeds will be expected. Beside this, resulting

sometimes from the motion type being used, the joint drives can be subject to

unacceptably high acceleration rates in order to follow a predefined path.

The VW robot controller VRS1 allows a controlled fly-by at such points, whose crucial

parameter is the radius r of a precision sphere. As shown in the figure 2.13, the controller

will automatically change the radius of this sphere whenever the speed ratio is reduced.

An important drawback of the fly-by mode is that the corners are only reached with a

given degree of precision. If a point has to be reached as exactly as possible, the arrival

speed to it must be programmed as zero.

A

r V=100 %
r'

V= 60 %

A

B
C

B

A

Figure 2.13 : Automatical change of the fly-by zone /VRS1/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

34

3. RCS-Module for the Volkswagen Robot Controller VRS1

The responsibilities of the RCSVW-Module may be summarized as

• to communicate with the CAR-Tool in order to receive RRS service
calls via input blocks and deliver output blocks for them.

• to interpret RRS commands and convert them into VRS1’s internal

format

• to allow simultaneous simulation of multiple robots by means of
initializing as many controller softwares (path modules) as needed

For a better understanding of the data types and algorithms used by the RCSVW-Module,

it would be helpful to have a closer look at each component of the path module to see
their working and the way they communicate with each other.

3.1 The path module

3.1.1 Overview of algorithms

At the beginning of their execution, a common procedure followed by all components of

the path module is to call an initialization function which will register their process
identifiers into a global data structure called system layout. In this way, each process

allocates a slot number for later use.

Secondly, each component initializes its local and some of the global variables. Finally,

they all enter into their endless loops where they wait for specific software events
signaling job-submissions for them. After working and producing output data, they all

signal this situation by means of resetting the events they have waited for and suspend till
the next job.

INTER1

The process INTER1 may be considered as the main entry point of the path module,
because the RRS-Interface uses this process to submit any kind of motion tasks.

Originally, its role is to handle hardware interrupts generated by the co-processor and
give a further software interrupt to the related process.

BMVERT

This process is responsible for the calculation of interpolation steps during a motion.
Before entering into its main loop, this program will first also check the existence of

INTER1, INIT and ERTV by using message slots, and then wait for a reset task. No
motion task will be processed unless these steps are properly taken.

In its endless loop, after being activated by the process INTER1, BMVERT will first
wake up process INIT and wait until the latter computes a number of parameters

indispensable for the on-line interpolation. Then, it will compute a motion step and
generate a result event so that either the joint controller task of the real manipulator or the

RCSVW-Module fetch the new joint values for motion. Before continuing, it will wait
for the resetting of the same result event.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

35

INTER1

Reset all task
event flags

fill in the
system-layout

structure

suspend until
event EV_AINT

reset the event
flag EV_AINT

VRS1 Controller
Software

RCSVW-Module's
RRS service :
GET_NEXT_STEPTask for the

background
mathematics ?

Copy the task
structure

activate the
process HTASK

reset the event
flag EV_AINT

decode the
task-code

Start-type
task ?

STOP
task ?

set event
EV_STOP

Set the event
EV_AINT+1 to

activate BMVERT

The process
HTASK

The process
BMVERT

yes no

yes

yes no

no

Figure 3.1 : Flow chart of the process INTER1

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

36

BMVERT

initialize
memory

fill in the
system-layout

structure

The process
INTER1

available ?

The process
ERTV

available ?

report error

exit

The process
INIT

available ?

suspend until
event EV_AINT+1

RESET
task ?

reset the
event EV_AINT+1

The
process
INIT

suspend until
event EV_AINT+1

reset the
event EV_AINT+1

Start-type
task ?

activate the
process INIT

via event EV_INIT

suspend until
the event EV_INIT

is reset

last
result

?

STOP
event
set ?

Calculate the next
interpolation point

Process the
sensor information

initialize the
global task-

control structure

suspend until the event
RRS_EV_ERG is reset

Copy the computed values
into the result structure

set the event
RRS_EV_ERG

VRS1 Controller
Software

RCSVW-Module's
RRS service :
GET_NEXT_STEP

yes no

noyes

noyes

no

yes

no

yes

no

no

yes

yes

Figure 3.2 : Flow chart of the process BMVERT

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

37

INIT

communicate
with BMVERT

fill in the
system-layout

structure

suspend until
event EV_INIT

make a copy of
the task structure

calculate path
parameters

The process
BMVERT

ERTV

communicate
with BMVERT

fill in the
system-layout

structure

suspend until
event EV_ERTV

reset the
event EV_ERTV

calculate inverse
kinematics

The process
BMVERT

reset the
event EV_INIT

Figure 3.3 : Flow chart of the processes INIT and ERTV

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

38

During the design and development of the RCSVW-Module, particular effort has been

spent to keep the original controller software as intact as possible. This, however,
required the implementation of some interprocess communication tools of PDOS on a

UNIX platform. For this reason, the first step has been to develop a set of communication
services for the path module.

The most important advantage of such an approach is that the original path module

becomes fully portable on UNIX compatible systems. Throughout its design, the
RCSVW-Module has been extensively tested on both IBM RISC/6000 and Silicon

Graphics Indigo machines, running with AIX and IRIX operating systems respectively.

Before describing the implementation of the library, it would be appropriate to give some
basic information about the tools available on most UNIX compatible operating systems.

Interprocess Communication (IPC) tools under UNIX

There are several forms of interprocess communication, ranging from asynchronous
signaling of events to synchronous transmission of messages between the processes.

These mechanisms allow arbitrary processes to exchange data and synchronize execution
/DAN91/ /BAC86/ .

Messages : The message type of IPC allows processes to communicate through the

exchange of data stored in buffers. This data is transmitted between processes in discrete
portions called messages. These can be sent or received by processes, which can also

suspend their execution if they are unsuccessful at performing their operation. In other
words, a process which is attempting to send a message can wait until the receiver is

ready and vice versa.

Before a message can be sent or received, a uniquely identified message queue and data
structure must be created. Each message consists of a message type, message size and

text address as well as a pointer to the next message on queue.

Shared memory : Processes can communicate directly with each other by sharing parts of
their virtual address space and then reading and writing the data stored in the shared

memory. Processes may use system calls to create a new region of shared memory, to
attach them to their virtual address space or to detach them.

Since the system calls for shared memory do not provide locks or access control among

the processes, these must set up a signal or semaphore control method to prevent access
conflicts and to keep one process from changing data that another process is using.

Semaphores : The semaphore system calls allow processes to synchronize execution by

doing a set of operations atomically on a set of semaphores. A semaphore is a positive
integer, which can be incremented or decremented via semaphore operations. A process

can test for a semaphore value to be greater than a certain value by attempting to

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

39

decrement the semaphore by one more than that value. If the process is successful, then

the semaphore value is greater than that certain value. Otherwise, the semaphore value is
smaller than it. While doing this, the process can have ist execution suspended until the

semaphore value would permit the operation, or the semaphore facility is removed. The
ability to suspend execution is called a blocking semaphore operation.

3.1.2 Development of an interprocess communication library under UNIX

In order to be able to let the original path module run on a UNIX platform, one needs to

provide some necessary intertask communication procedures and related data structures.
For the development of the RCSVW-Module, the only functions which needed to be

implemented were the xsev (set event flag), xtef (test event flag), xsui (suspend until
event), xgmp (get message pointer) and xsmp (send message pointer). Some other

functions such as xrts (read task priority), xstp (set task priority), asm and xpel were
written as dummy functions and have no functionality.

Though the system calls mentioned above do originally make use of system signals of

VMEPROM, it has been observed that the standard message utilities on UNIX platforms
were much more suitable for the development of a reliable set of communication

services. For this reason, by using some additional data structures, the 'event signals' have
been implemented as 'messages'. In this way, when a process pends an event, it does not

actually make a pause system call, but gets blocked waiting for a specific type of
message. Similarly, the setting of an event does not cause signals to be generated, but as

many messages to be sent as needed.

To provide such a communication library, the RCSVW-Module needs two Interprocess
Communication (IPC) facilities, namely a message queue and a semaphore set.

Throughout the development of the RRS-Interface, a number of ways of allocating these
IPC resources have been considered in many aspects and finally, the technique which will

be described here has proved to be an acceptable solution.

At this point, it should be indicated that the types of the messages sent throughout these
library calls play the most important role, whereas their contents are fixed and relatively

short strings of rather symbolic values such as „wake up!“. The figure 3.4 illustrates the
distribution of message types for different robot instances and event types.

Message_type = (RobotNumber * 1000) + Events_offset + 128 + event_type

Robot Nr. n

Event_offset

Setting eventsResetting events

Robot Nr. n+1

Event_offset

Setting eventsResetting events

0 Message

type

Figure 3.4 : Message types

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

40

Such a distribution allows the use of a single common message queue by many robot

instances, each of them having their own event flags and message slots, expecting to
communicate with the other members of their path module. As such, the message queue

does not exhibit an important restriction in regard to the maximum number of robot
instances which can be simultaneously instantiated.

An important point to be considered here would be the mutual exclusion of the library

calls by many processes of a path module, which could access to global variables and
change them simultaneously, leading to wrong actions. To prevent such inconsistencies,

semaphores have been used to control access to event flags and message slots /BEN90/.

The RCSVW-Module has been designed to make use of only one semaphore set, whose
variables are separetely dedicated to the use of single robot instances. Hence, the

maximum number of robot instances which can be simulated in parallel is directly limited
with the amount of semaphore counters available in a set. A typical value for the latter on

UNIX systems is 25, being the lowest limit compared with the other system requirements
of the module.

Event flags

Event flags under VMEPROM are global boolean variables, accessible by all processes

running on the system. However, their most important function is the automatic waking
procedure of the processes waiting for their (re)set.

An event flag has been implemented as a character variable together with an array of long

integers. The flag variable is the state of the event flag, whereas the array sleeping is used
to store the process identifiers of the processes pending them. Considering that the path

module itself consists of four processes, the variable MAX_SLEEP_NUM has been
defined as five. Indeed, the array sleeping could have been replaced with a simple counter

variable, but has been kept to ease debugging efforts.

typedef struct {
char flag;

pid_t
sleeping[MAX_SLEEP_NUM];

} event_flag_type;

If a process wishes to access any of the event flags by means of a library function, it first
makes a semaphore operation to decrement the value of a binary semaphore counter (P

operation). After finishing its work, it increments this value again (V operation). In this
way, it can be ensured that processes will not enter into critical code areas at the same

time.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

41

xsev (set event flag)

The setting of an event consists of two steps. First, the flag variable is set to its new

value. Then, the sleeping array is searched for nonzero entries to find out about the
number of processes waiting for messages of this event type. If such an entry is found, a

msgsnd system call is used to send messages of a specific type in order to wake up these
processes.

xsui (suspend until event)

In case a process wants to pend an event, it first checks the state of that event flag. In case

the flag has already got the desired value, the function will simply return, letting the
process continue its execution. Otherwise, the function will look for a free sleeping array

cell to register its process identifier and then make a msgrcv system call to receive a
message, whose type is a function of the robot instance being involved, the event number

as well as the event type (set or reset). In this way, the process can be blocked until such
a message is put into the message queue.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

42

P semaphore

operation

suspended

processes

entry ?

V semaphore

operation

return

V semaphore

operation

return

xsev

send

message

P semaphore

operation

Event

already

(re)set

?

V semaphore

operation

return

enter pid

as sleeping

V semaphore

operation

wait for

message

return

xsui

yes no

yes no

Figure 3.5 : Flow charts of the communication functions xsev and xsui

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

43

P semaphore

operation

any

message

?

any process

suspended ?

V semaphore

operation

send

message

return

xgmp

clear the

message slot

P semaphore

operation

any

message

?

any process

suspended ?

return

OK

V semaphore

operation

send

message

return

error

xsmp

clear the

message slot

V semaphore

operation

noyes

yes no

yes no

yes no

Figure 3.6 : Flow charts of the communication functions xgmp and xsmp

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

44

Message slots

Similar to event flags, message slots are also global variables. They have been

implemented using the following data structure :

typedef struct {
 pid_t taskid;

 void *message;

 } message_slot_type;

xsmp (send message pointer)

This function will assign the process identifier of the calling process to the taskid variable

and store the message pointer argument into the message variable. After this, an event of
type (64+slot number) will be generated to wake up pending processes using the xsev

function.

xgmp (get message pointer)

The function xgmp reads the message variable of a specific message slot and returns its

contents. If the message slot is empty, an error value will be returned.

3.1.3 Memory requirements of the path module

Originally, the path module makes use of a system layout data structure which determines
the beginning addresses of other data structures. With this technique, there is only one

absolute memory address that the controller software (or the RCSVW-Module) has to
determine, namely that of the system layout. The individual processes making up the

controller software do all acquire this address by means of xgmp (get message pointer)
calls, making them fully independent of specific memory partitionings which can be

found on a variety of hardware platforms.

As it can be seen from the data structure below, the controller software accomodates the
necessary data structures and modularity to support up to four simultaneous path control.

However, this feature has only been used for test purposes so far and has never been
implemented for industrial use.

Array of 30 integers The message slot number that process will use

Array of 30 integers The process identifier
Array of 30 integers The process number (internal to the module)

Array of 30 integers Number of the path module to which the process belongs
Arrays of 5 integers

and pointers

Trace pointers and path module numbers for trace-buffers

Array of 4 pointers Pointers to the global data structure of each path module

System-layout data structure

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

45

Although this method brings a high degree of flexibility, processes on a UNIX platform

have to make some additional system calls to attach the shared memory segment to their
virtual address space. Under UNIX, since the shared memory segments are identified by

a system-wide valid integer value, the RCSVW-Module passes this identifier to the
components of the path module as an argument of the execlp call. The next step of these

child processes is therefore to make a shmat (attach shared memory) call for gaining
access to this segment.

The shared memory segment of each robot instance is illustrated in the figure 3.7.

Event flags Message slots

System-layout
Motion-task structure

Result structure

Robot parameters

Motion parameters

Global control structure

Figure 3.7 : Shared memory segment of a robot instance

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

46

3.2 RCSVW internals

3.2.1 Data structures

As described in the Realistic Robot Simulation Interface Specifications, an RCS-Module
must be able to initiate as many robot instances as required by the CAR-Tool and support

simultaneous simulation of all of them. For this purpose, the RCSVW-Module keeps
track of its robot instances by using a data structure of type robot instance, in which the

following informations are stored :

• The stamp of the robot

• Process IDs of the processes making up the path module

• The identifier of the shared memory segment

• The beginning address of the event slots in the shared memory

• The beginning address of the system layout data structure

• Control flags for motion

• The kinematic model of the robot

• Current OBJECT, BASE and TOOL Frames

• Matrices for OBJECT->BASE transformations and vice versa

• Control data for debugging

The robot stamp

The stamp of a robot instance consists of three character strings /RRS95/:

Manipulator type : This string is provided as a parameter by the CAR-Tool during the

INITIALIZE service and determines the robot data file to be opened by the module. The
file name results from the concatenation of the RobotPathName and the ManipulatorType

according to the following rule :

filename = RobotPathName + "r" + ManipulatorType + ".org"

Originally, this robot data is available as an ASCII file on the key-diskette of the
controller. The advantage of this nomenclature is that the present set of available robot

data becomes totally accessible to the CAR-Tool without having to define any additional
data types for the RRS-Interface.

example : RobotPathName : /local/robcad/dat/

ManipulatorType : vk010
filename : /local/robcad/dat/rvk010.org

Controller version : This string has a fixed value, which is "VRS1".

Software version : In the same way as it is done in the original path module, this
parameter is read from a file named "version" under the ModulePathName directory. In

the RCSVW-Module, the date information is also appended to the version string. (e.g.
"VERSION001.9 (date : 20.05.94)") In case such a file can not be found, default values

will be assigned to the related variables.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

47

Process IDs of the components

The process IDs of the child-processes may be extremely useful, in that they provide the

RCSVW-Module with a means of checking whether the components of a path module
still exist or not. In case one of these processes or the operating system generates a kind

of termination signal, the RCSVW-Module must be able to realize this situation, handle it
properly and report it to the CAR-Tool at the next call. For this reason, each RRS-service

call is preceeded by a test of all sub-components of the path module being involved. This
is accomplished by generating kill system calls with null signals, which will perform

normal error checking but will not send any signal /STE92/. If any of these system calls
fail, other processes belonging to this path module will be terminated and the shared

memory segment of that robot instance will be removed from the system.

Control flags for motion

To keep track of some events which are internal to the controller software and to ensure a

proper submission of motion tasks, a control bit-flag variable has been introduced. The
10 least significant bits of this flag variable and their use are described below.

Continue-task

 submitted

Process INTER1

has been activated

 Via-position

for circular motion

 has been given

Target position for circular

 motion has been given

Via-position reached

Stopped during motion

 Ignore last result

flag with CONTINUE

Fly-by mode is on

Target position

 set

 Initial position set

01234567
unused

 bits 89

Figure 3.8 : Motion control bit-flags of a robot instance

• The process INTER1 has been activated.

This bit-flag shows that a motion task has been submitted to the path module by means of
activating the process INTER1. As illustrated in the flow chart of the RRS-service

GET_NEXT_STEP, the normal procedure following such a submission would be to wait
for the event RRS_EV_RESULT, and then to fetch the result from the result structure.

After this, depending on the value of the last result variable, either this flag or the event
RRS_EV_RESULT would be reset to pick up another interpolation point.

• Via-target position (for circular type motion) has been given.
If the motion type is circular, two target positions are needed to define the path

unambiguously. This flag will make it certain that no motion tasks will be submitted
until these two target poses have been set via SET_NEXT_TARGET service.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

48

Target position (for circular type motion) has been given.

Since the order in which the two targets are given is definitive for the selection of the
right arc to follow, this flag is used together with the via-target position flag.

• Via-position (during circular motion) has been reached.
During circular motion, the path module will report that the result is the last one even if

only the via-target position is reached. However, this result status has to be ignored until
the target position is attained. By using this flag, the RCS-Module can find out whether

the last result report is due to via- or target position.

• Robot stopped during motion

This flag enables the module to realize that a motion task has been stopped by the
STOP_MOTION service. The service CONTINUE_MOTION can be successfuly used

when this flag is set.

• Ignore the 'last result=2' when continuing

As a result of the piping of result structures in the path module, it is possible to receive
additional last result reports after a CONTINUE_MOTION task, which indeed belongs to

the last terminated motion. This flag will allow to ignore these results.

• The fly-by mode is on

Though the fly-by mode becomes automatically active whenever a precision sphere is
defined or the end-speed has a value other than zero, this flag has been introduced for

future extensions.

• The target position is set.
This flag will be set whenever a target position is set by the SET_NEXT_TARGET

service.

• A continue-task has been submitted.

In case the conditions for fly-by mode are fulfilled, the path module will need to look one
target ahead. In such a case, a continue type task is used to submit the task belonging to

the following motion. Using this flag, the GET_NEXT_STEP service will be able to
report that it needs more target data by returning status 1.

• Initial position has been set.
Before any motion, the initial position of the robot has to be given with the service

SET_INITIAL_POSITION.

The kinematic model of the robot

Since the original controller software did not make use of any of the frame

representations defined by the RRS-Interface, a simple kinematic model has been
introduced for the support of related services. The most important advantage of this

model is that the CAR-Tool can get the interpolation steps as joint values as well as
cartesian position (and orientation) data.

The kinematic model consists of the BASE, OBJECT and TOOL frames, all defined with

respect to the WORLD frame. These frames are illustrated in the figure 3.9

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

49

BASE

TOOL

OBJECT

WORLD

Figure 3.9 : Kinematic model

Current OBJECT, BASE and TOOL Frames

These frames can be read or modified by the CAR_Tool through RRS-services such as
GET_CELL_FRAME and MODIFY_CELL_FRAME.

Matrices for OBJECT->BASE transformation and vice versa

By definition, the cartesian position data are the coordinates of the TOOL frame with

respect to the OBJECT frame, in other words, it defines the target to reach in the
OBJECT frame by the TOOL frame. However, since the controller software reports the

TCP position merely in the BASE frame, one needs to convert the results into the desired
frame coordinates.

This is done by a transformation of the TCP position and orientation into the TOOL

frame. As it can be seen from the kinematic model table given above, the BASE,
OBJECT and TOOL frames are all defined with respect to the WORLD, which

necessitates two transformations. For computational efficiency, a third frame has been
introduced to combine these two tranformations and is updated with the frames.

Control data for debugging

Debug-control data is an array of debug_service_type, containing the operation codes of

the services which can be debugged and the number of times each service has been called
with debug option.

For all supported RRS-services, additional debug functions have been developed to

enable an easy debugging whenever necessary. Hexadecimal as well as extended debug
format can be selectively used with all of them. Examples of log files in both formats can

be found in the appendix.

As suggested in the RRS-Interface Specifications, the log-files are always opened in
append mode for each RRS service call and closed after usage. This method enables

debugging personnel to browse these files at any time between RRS calls.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

50

3.2.2 Initialization of the RCSVW-Module

The RCSVW-Module has been designed basing on the two module concept introduced in
the RRS-Interface Specifications. As a result of this approach, the interface itself consists

of an executable shell which has to be spawned by the CAR-Tool.

The executable shell is called by the CAR-Tool with three arguments : Two identifiers
belonging to the shared memory segment and semaphore set, and an offset value. Since

the shared memory segment is used for input and output blocks, it must first be attached
to the RCSVW-Module. The offset value which is passed as the third argument indicates

where the output block within this memory segment begins.

The RCSVW-Module itself makes use

of semaphores and message queues.
Therefore, its first step is to set a signal

handler which can catch a number of
termination signals and use this occasion

to kill its child-processes, remove their
shared memory segments and release the

semaphore as well as the message queue
from the system before exiting. After

this, internal data structures for robot
instances are initialized.

Finally, the RCSVW-Module enters into
an endless loop where the semaphore

synchronizes the access to the shared
memory segment.

Initialize data
structures for
robot instances

Call the function
"rcsvw10"

Set signal handlers

Attach the shared
memory segment

Semaphore operation
to communicate with

the CAR-Tool

Semaphore operation
to communicate with

the CAR-Tool

RCS-Shell

Figure 3.10 : Flow chart of the RCS-Shell

The requirements of the RCSVW-Module with regard to the system resources may be

summarized by the following table :

RCSVW-Module per robot instance

Number of semaphore sets 1 none

Number of semaphores in a set 25 none

Number of message queues 1 none

Number of shared memory segments - 1

Size of the shared memory segment - 66 Kb

Number of processes 1 4

Maximum number of robot instances 25

Table 3.1 : Requirements of the RCSVW-Module

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

51

The main entry point function : rcsvw10(void *in, void *out)

The function void rcsvw10(void *in, void *out) is the main entry point of the RCSVW-
Module. As defined in the RRS-Interface Specifications, the two pointers in and out are

pointing to the input and output blocks for the RRS service being called.

Once called, the function rcsvw10 checks first the validity of the operation code indicated
in the input block data. Secondly, the RCS-Handle variable (with INITIALIZE, the

RobotNumber variable) is examined to see whether the robot instance being handled is a
valid one. After having found out for which robot instance the service was called, some

global variables are updated in case of necessity and the existence of the sub-processes of
that specific path module are tested. On success, the operation code is finally used as an

index to an internal table of RRS-functions and the desired service is called with the same
in and out pointers.

valid
op_code

?

return
error

return
error

valid
RCS-Handle

?

Update global
variables if
necessary

does
INTER1
exist ?

return
error

terminate the
robot instance

rcsvw10

does
BMVERT
exist ?

does
INIT

exist ?

does
ERTV

exist ?

call the
RRS Service

Debug entry
for RRS Service

return

no yes

no yes

noyes

noyes

yes no

noyes

Figure 3.11 : Flow chart of the function ‘rcsvw10’

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

52

In case the debugging mode is on, the operation code will be used again as an index to a
table of debug functions. Since each RRS service receives and delivers specific input and

output parameter lists, additional debug functions have been developed to support log
entries with extended format. An example of such a file may be found in the appendix.

3.2.3 Algorithms of basic RRS-Services

INITIALIZE

This service initiates a robot instance by means of spawning a path module with all four

processes and providing them with a shared memory segment for their use. If any child
process does not respond within a given period of time after being spawned or in case the

reset task does not succeed, the service will return an error status.

Valid
RobotNumber

?

return

RobotNumber
out of range

Valid
RobotNumber

?

return

other error

Get & attach
shared memory,
initialize flags
and message slots

INTER1
BMVERT
ERTV
INIT

Spawn the path
module's components,
wait for OK messages

Read manipulator-
specific data file

Submit reset-task

return

INITIALIZE

Input Data
Length OK ?

Output Block
Size OK ?

return

return
Output block
too short

Input block
too short

yes

no

no

yes

no

no

yes

yes

Figure 3.12 : Flow chart of the RRS-Service INITIALIZE

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

53

SET INITIAL POSITION

This function merely copies the joint values to the task structure, without submitting any

kind of motion task to the path module. The conversion of the joint angles from radian
into encoder values is accompanied with a check of joint software limits.

SET INITIAL
POSITION

Input Data
Length OK ?

Output Block
Size OK ?

convert joint values
into VRS1 format

joint
limits

exceeded
?

joint limit exceeded

return return

return

return

set the bit-flag
"initial position set"

Output block
too short

Input block
too short

No such joint

Axes
flags

valid ?

return

yes

yes no

yesno

no

yes no

Figure 3.13 : Flow chart of the RRS-Service SET_INITIAL_POSITION

SET NEXT TARGET

This service is used to copy the joint coordinates of the target position into the task data

structure. For circular motions, the first available target will be considered as via-position
and the following ones will be set as main targets.

In case there is an on-going motion and the fly-by mode conditions are satisfied, this

service will also incorporate the submission of continue motion tasks.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

54

SET NEXT TARGET

Input Data
Length OK ?

Output Block
Size OK ?

circular
motion ?

Via-point
set ?

set the flag
"target given"

return

return

set the flag
"via-point given"

Output block
too short

Input block
too short

convert joint
values into VRS1

No such joint

Axes
flags
valid ?

return

Arrival
speed

nonzero ?

continue
task

submitted
?

submit
continue-task

set the flag
"continue-task

submitted"

INTER1
active ?

return

yes

yes

no yes

yes

yes no

no

no

no

yes

yes

no yes

no

no

Figure 3.14 : Flow chart of the RRS-Service SET_NEXT_TARGET

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

55

GET NEXT STEP

GET NEXT STEP

Input Data
Length OK ?

Output Block
Size OK ?

Output
format

supported ?

return

return

return

Output format
not supported

Output block
too short

Input block
too short

INTER1
active ?

Circular
Motion ?

Via-point
given ?

Target
set ?

Need more data
Elapsed time:0

initial
position
set ?

return

Initial position
not set

return

activate INTER1
by event EV_AINT

B

yes

yes no

no

noyes

noyes

no

yes no

yes no

no

yes

yes

Figure 3.15 : Flow chart of the RRS-Service GET_NEXT_STEP (Part I)

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

56

The service GET NEXT STEP is responsible for both submitting motion tasks of type
start and fetching the results delivered by the BMVERT process. The task submission is

realized with the event EV_AINT, whereas the event RRS_EV_ERG is used to signal the
availability of the result data structure for new interpolation steps.

This service uses the bit-flag „INTER1 activated“ to find out whether there is already an

on-going motion or not. In case the manipulator is in standstill, a new motion task may be
submitted. Otherwise, it will have to wait until the path module sets the event

RRS_EV_ERG to signal the availability of a new set of joint values.

For circular motion, three additional bit-flags are used to interpret the results of the path
module accurately and differentiate between a number of situations which could occur.

B

suspend
until event
RRS_EV_ERG

C

Path
module

last
result=2

?

"ignore"
flag set

?

stopped
during
motion?

reset the event
RRS_EV_ERG

reset the flag
"ignore result=2"

result
error ?

copy the joint
values into

the output block

convert the results
into RRS-formatreset event

RRS_EV_ERG

reset INTER1
active flag

return

yes no

no

no

yes

yes no

yes

Figure 3.16 : Flow chart of the RRS-Service GET_NEXT_STEP (Part II)

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

57

set the flag
"via-point
reached"

C

Last
result=1

?

Circular
motion ?

Via-point
reached?

set the flag
"target reached"

reset the event
RRS_EV_ERG

return

last
result=2

?

set the flag
"stopped during

motion"

Arrival
speed

nonzero ?

continue
task

submitted
?

Need more
target data

last
result

?

continue
task

submitted
?

target reached
speed is zero

update internal
position data

fly-by
on ?

reset the event
RRS_EV_ERG

return

Clear the flag
"continue-task

submitted"

yes no

noyes

noyesyesno

yes no

noyes

yes no

noyes

yes no

Figure 3.17 : Flow chart of the RRS-Service GET_NEXT_STEP (Part III)

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

58

4. Integration of the RCSVW-Module with ROBCAD

4.1 Overview of ROBCAD

The ROBCAD system enables the engineers to perform all of the design work on the
screen of a Computer-Aided-Design (CAD) workstation, independent of the workcell on

the factory floor. It reduces engineering time, design errors, plant down-time, increases
production, throughput, and quality, and let the engineers see with a high degree of

visualization the concept working before its actual implementation /ROB/.

By the use of the ROBCAD engineering system, the risk of selecting wrong approaches
can be eliminated by quickly modelling, modifying and evaluating various concepts for

automating the manufacturing processes and therefore considerable time can be saved.
Furthermore, maximum utilization of the equipment is ensured by accurately simulating

the operation of the system to optimize component selection, placement, motion, control
sequence and cycle time.

By programming the automation system off-line and down-loading the programs
generated in ROBCAD to the various device controllers, installation time is reduced and

the risk of collision between expensive system components is eliminated. It is also
possible to obtain fully-dimensioned hardcopy drawings of individual components or

complete workcells.

Figure 4.1 : ROBCAD environment

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

59

ROBCAD offers a set of tools that allows the user to :

− Create robots and devices with multiple degrees of freedom

− Optimize layouts of the workcells

− Create paths automatically or manually

− Perform dynamic test-reach and automatic placements of the robots
under joint limit constraints

− Verify and assure reachability for all desired devices in the
workcell

− Write interactively, using a high-level programming language or

the robot's own language, programs for each device in the cell

− Test different robot performances of the same tasks

− Check statistically or dynamically, during the design phase or
simulation, interferences, for collisions and user defined near

misses.

− Measure and improve cycle times

− Download program to robot controller directly or through a post-
processor

− Increase the accuracy of the downloaded program by performing
dynamic calibration of ROBCAD workcell

− Upload programs for modification and further OLP work

Create trajectories

Programming

Simulate

Layout

Calibrate

OLP

Download/Upload Controller file

Increase productivity

Debug/Optimize

Detect collisions

Create/Change devices

Redesign

Design Part Import CAD

Video out

Hardcopy out

Draft

Export CAD

Figure 4.2 : Concept of operation /ROB/

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

60

4.2 ROBCAD Off-line Programming (OLP) Development Environment

The OLP Environment is a platform for developing external models of controllers for use
within the ROBCAD system. A controller model enables producing programs that the

ROBCAD system can simulate, upload, download and edit by means of a teach pendant.
The models both generate output files containing controller data, and use data from files

to produce actions to be performed at the ROBCAD workstation.

Figure 4.3 : OLP environment

The ROBCAD OLP Development Environment allows developing and maintaining off-

line programming packages that are based on the Dynamic Controller Model (DCM)
approach. This approach facilitates high-level external controller modeling within

ROBCAD by means of user-accessible ASCII files. Using this model does not require
compilation or linkage to any ROBCAD applications.

An OLP package includes both control files and action files for

1. Accurately simulating the process. The process is stored in the ROBCAD
database as locations, paths, and attributes assigned to the locations and paths.

2. Uploading and downloading the process.
3. Editing the process and adding controller-specific data to it, by means of an

attributes-interface application, also referred as teach-pendant.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

61

4.3 The Controller Modelling Language

The Controller Modelling Language (CML) is used in every case that a controller model
needs to produce an action in ROBCAD.

The basic element in CML is the statement, of which CML accomodates ten types:

− Motion statements initiate motion of mechanisms

− Set motion parameter statements control motion commands by
specifying various motion parameters

− Motion point-definition statements define targets for the next motion

statement: target location, via location, etc...

− Set global statements assign new values to global entities such as the
TCPF and REFRAME.

− RRS motion statements implement RRS within the OLP

development environment

− Control-flow statements enable the CML program to utilize loops
and conditions for enhanced efficiency

− Paint statements incorporate painting functions within the CML
program

− Synchronization statements synchronize multiple robots for use with

the ROBCAD/Session and OLP Application products.

− Message statements send reports to the message window of the
application

− Upload statements define sets, paths and locations in ROBCAD, and

attach properties and attributes to them. They are also used for
workcells and robots.

Control File

ROBCAD makes use of three DCM-based models :

1. simulation model effects attribute-based, controller-specific
simulation

2. download model generates robot native language tasks from sets,
paths and locations, together with their generic and controller-

specific attributes.
3. upload model translates robot native-language tasks to sets, paths

and locations.

The approach accomodates a bidirectional interface with external modelling applications.
In this model, data is retrieved from the ROBCAD database and is sent to the modelling

application. Then, actions are produced in the modelling application and are brought to
the ROBCAD system in order to be executed from within ROBCAD. These actions are

specified in the Controller Modelling Language (CML). A special control file configures
the interface in both directions, by specifying modelling applications for simulation,

download and upload, and the data that need to be retrieved as well as its format.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

62

To integrate the RCSVW-Module into ROBCAD, it has been necessary to develop an
RRS-oriented action file. This awk-program, which can also be found in the Appendix D,

interprets the attributes of work points and generates the necessary RRS-Service calls
through available Controller Modelling Language (CML) functions.

The only additional entry in the control file for RRS-Interface based simulation has been

the „motion engine rrs“ statement.

Problems encountered during the integration

CML functions

Once the RRS-oriented action program for simulation has been developed and executed
for test paths, it has been observed that some of the CML functions of ROBCAD did not

behave as they had been documented.

For instance, the CML function "ExecMotion" should call the RRS-Service
GET_NEXT_STEP as long as the latter returns a nonzero "Status" value. However, this

function stopped in some cases though the RRS-Service had reported zero as "Status".
Another inconsistency which has been noticed with the same function is that it did not

always return immediately after receiving Status=1 (by which the RCSVW-Module
reports its need for more target data), but continued to call the GET_NEXT_STEP service.

Since neither the original controller software nor its RRS-Interface supports any kind of

target buffering, a typical result of the unexpected behaviour mentioned above is that
targets are overwritten by newer ones. As errors of this kind occured steadily when using

paths consisting of more than three locations, the test motions included in this report have
intentionally been limited with three work points, still allowing a comparison of the fly-

by behaviours.

Another erroneous point of ROBCAD which has been discovered during the integration
is that the unit of angles used for setting initial and target positions was not radian but

degrees. In order to be able to perform test motions, the code has been changed for
converting the joint values into radian.

System resources

When exiting after an RRS simulation session, ROBCAD did not remove the shared

memory segment and the semaphore set of the RRS-Shell from the system. The RRS-
Shell had to be extended to make the necessary system calls in order to clear these two

IPC identifiers.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

63

5. Conclusion with comparative evaluation of test motions

5.1 Test motions

Before examining some motions which have been performed for test purposes with a

KUKA-VK10 type manipulator, an important point about VRS1's functionality and its
consequences should be considered : Whatever the type of the programmed motion might

be, the VRS1 controller software always needs to be supplied with initial/target positions
in joint coordinates. Nevertheless, ROBCAD's general working philosophy is based on

locations, whose most important attributes are their position and orientation.

When using the RCSVW-Module with ROBCAD, the locations making up a path have to

be converted into poses. This, however, requires the inverse kinematic to be computed for
the specific robot being involved. Since the RRS-Service GET_INVERSE_KINEMATIC is

not supported, ROBCAD has to compute a pose for each location and then use it with the
services SET_INITIAL_POSITION or SET_NEXT_TARGET.

In order to compare ROBCAD's motion engine with the original controller in a

reasonable way, one should first ensure that both controllers receive the same joint
coordinates as targets. Only if this condition is fulfilled, the joint angle values together

with speed profiles may be examined in order to investigate the sources of deviations.

PTP motion

The following test motion has been performed both with the RCSVW-Module and
ROBCAD's motion engine.

Figure 5.1 : Test motion M_PTP_1

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

64

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P1 0 0 0 0 0 0

P2 20.5 20.1 -45.4 65.4 63.0 0

P3 -24.6 -26.8 -27.8 30.5 28.5 -150.4

Table 5.1 : Joint angles (in degree) for the motion M_PTP_1

During the motion M_PTP_1, the flyby mode of the controller VRS1 was turned off

whereas ROBCAD’s flyby zone was selected as fine. The acceleration and deceleration
values were programmed as 100 % of their maximum values.

Cycle times have been measured for two different speed percentages :

Speed : 100 % Speed : 10 %

Real robot 1.60 sec. 6.55 sec.

RRS-Interface 1.59 sec. 6.55 sec.

ROBCAD 1.56 sec. 6.57 sec.

Table 5.2 : Cycle times of the motion M_PTP_1

In this example, as it can also be seen in the pictures taken from various points of view,

path deviations up to 55 mm have been noticed.

By means of the speed profiles, one has the possibility to see how each controller
computes the joint speeds. In VRS1, PTP-motions are always phase-synchronized. In

other words, the speed profiles of all joints have two common points in time, ta and td,
which determine the beginning of the acceleration and deceleration phases.

time

joint speed

t0 t1ta td

Figure 5.2 : Synchro-PTP speed profile of VRS1

The advantage of such a profile is that stopping and restarting the motion at any point
between to and t1 will not cause any change in the path which will be followed. The

uniqueness of the path is resulting from the fact that joints do always achieve the same
percentage of their total course at any time t.

On the other hand, PTP-motions generated by ROBCAD are time-optimal, in the sense

that joints do not need to meet the additional conditions by which phase-synchronization
is achieved.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

65

RCSVW joint angles for the motion M_PTP_1

-200

-150

-100

-50

0

50

100

0
0.

09
0.

18
0.

27
0.

36
0.

45
0.

54
0.

63
0.

72
0.

81 0.
9

0.
99

1.
08

1.
17

1.
26

1.
35

1.
44

1.
53

time (sec)

J
o

in
t

a
n

g
le

s
 (

d
e

g
)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

ROBCAD's joint angles for the motion M_PTP_1

-200

-150

-100

-50

0

50

100

0.
00

0.
09

0.
18

0.
27

0.
36

0.
45

0.
54

0.
63

0.
72

0.
81

0.
88

0.
97

1.
06

1.
15

1.
24

1.
33

1.
42

1.
51

1.
60

t ime (sec)

J
o
in

t
a
n
g
le

s
 (

d
e
g
) Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

66

RCSVW joint speed profiles for the motion M_PTP_1

-400

-300

-200

-100

0

100

200

0
.0

2

0
.0

9

0
.1

7

0
.2

4

0
.3

2

0
.3

9

0
.4

7

0
.5

4

0
.6

2

0
.6

9

0
.7

7

0
.8

4

0
.9

2

0
.9

9

1
.0

7

1
.1

4

1
.2

2

1
.2

9

1
.3

7

1
.4

4

1
.5

2

1
.5

9

time (sec)

J
o

in
t

s
p

e
e
d

s
 (

d
e
g

/s
e
c
)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

ROBCAD's joint speed profiles for the motion M_PTP_1

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

0
.0

0

0
.0

7

0
.1

5

0
.2

2

0
.3

0

0
.3

7

0
.4

5

0
.5

2

0
.6

0

0
.6

7

0
.7

5

0
.8

2

0
.8

8

0
.9

6

1
.0

3

1
.1

1

1
.1

8

1
.2

6

1
.3

3

1
.4

1

1
.4

8

1
.5

6

t ime (sec)

J
o
in

t
s
p
e
e
d
s
 (

d
e
g
/s

e
c
)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

67

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

68

Linear motion

The joint values used for the test motion M_LIN_1 of linear type are given in the table

5.3.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P4 -53.8 -10.2 27.0 -78.1 -56.6 70.0

P5 -29.7 -34.0 39.4 -80.6 -31.1 80.2

P6 -29.7 -21.9 -0.6 -123.9 -38.2 131.7

Table 5.3 : Joint angles (in degree) for the motion M_LIN_1

Figure 5.6 : M_LIN_1

During the motion M_LIN_1, the path speed was programmed as 1660 mm/sec with an

acceleration/deceleration value of 500 deg/sec2. The flyby parameter of ROBCAD was
selected as „no deceleration“, whereas the VRS1 controller used a precision sphere with

a radius of 100 mm.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

69

RCSVW joint angles for the motion M_LIN_1

-150

-100

-50

0

50

100

150

0.
02

0.
14

0.
26

0.
38

0.
50

0.
62

0.
74

0.
86

0.
98

1.
10

1.
22

1.
34

1.
46

1.
58

1.
70

1.
82

1.
93

2.
05

2.
18

time (sec)

J
o

in
t

a
n

g
le

s
 (

d
e
g

)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

ROBCAD's joint angles for the motion M_LIN_1

-150

-100

-50

0

50

100

150

0
.0

0

0
.1

5

0
.3

0

0
.4

5

0
.6

0

0
.7

5

0
.9

0

1
.0

5

1
.2

0

1
.3

5

1
.5

0

1
.6

5

1
.8

0

1
.9

5

2
.1

0

2
.2

5

2
.4

0

2
.5

5

2
.7

0

2
.8

5

3
.0

0

time (sec)

J
o

in
t

a
n

g
le

s
 (

d
e
g

)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

70

RCSVW joint speed profiles for the motion M_LIN_1

-100

-80

-60

-40

-20

0

20

40

60

80

0
.0

2

0
.1

4

0
.2

6

0
.3

8

0
.5

0
.6

2

0
.7

4

0
.8

6

0
.9

8

1
.1

1
.2

2

1
.3

4

1
.4

6

1
.5

8

1
.7

1
.8

2

1
.9

3

2
.0

5

2
.1

8

time (sec)

J
o

in
t

s
p

e
e
d

s
 (

d
e
g

/s
e
c
)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

ROBCAD's joint speed profiles for the motion M_LIN_1

-60

-40

-20

0

20

40

60

80

0
.0

0

0
.1

5

0
.3

0

0
.4

5

0
.6

0

0
.7

5

0
.9

0

1
.0

5

1
.2

0

1
.3

5

1
.5

0

1
.6

5

1
.8

0

1
.9

5

2
.1

0

2
.2

5

2
.4

0

2
.5

5

2
.7

0

2
.8

5

3
.0

0

time (sec)

S
p

e
e
d

 j
o

in
ts

 (
d

e
g

/s
e
c
)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

71

5.2 Implemented RRS-Services

In order to achieve a high degree of RRS-Interface support, the RCSVW-Module has
been implemented with a number of functionalities which were not found in the original

controller VRS1. The most important extension of this type is the use of a basic
kinematic model, allowing the RCSVW-Module to report the TCP in cartesian

coordinates as defined in the RRS-Specifications.

Though the current version of the VRS1 controller does not accept targets specified in
cartesian coordinates, the necessary data structures together with kinematics-related RRS-

Services (GET_ CELL_FRAME, MODIFY_CELL_FRAME, SELECT_WORK_FRAMES)
have already been made available.

Table 5.4 shows the RRS-Services which have been implemented and their availability

for simulation under the ROBCAD-System. The priorities used in this table have been
suggested by some of the project-partners.

RRS Service by name Priority ROBCAD

support
(1)

RCSVW

support

Available

for

simulation

INITIALIZE 1 + + +

GET CELL FRAME 1 - + -

SELECT WORK FRAMES 1 + + +

GET INVERSE KINEMATIC 1 +(2) - -

SET INITIAL POSITION 1 + + +

MODIFY CELL FRAME 1 + + +

SET NEXT TARGET 1 + + +

GET NEXT STEP 1 + + +

TERMINATE 1 + + +

GET MESSAGE 1 + - -

GET ROBOT STAMP 1 + + +

GET FORWARD KINEMATIC 2 + + +

MODIFY CELL FRAME 2 + + +

CONTROL. POS. TO MATRIX 2 - + -

MATRIX TO CONTROL. POS. 2 - + -

DEFINE EVENT 2 - - -

GET EVENT 2 + - -

CANCEL EVENT 2 - - -

SELECT FLYBY MODE 2 + + +

CANCEL FLYBY CRITERIA 2 + - -

SELECT FLYBY CRITERIA 2 + - -

SET FLYBY CRITERIA PARA 2 + + +

SELECT POINT ACCURACY 2 + - -

SET POINT ACCURACY PAR 2 + - -

SELECT MOTION TYPE 2 + + +

SET CART. ORIENT. ACCEL. 2 + - -

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

72

RRS Service by name Priority ROBCAD

support
(1)

RCSVW

support

Available

for

simulation

SET CART. ORIENT. SPEED 2 + - -

SET CART. POS. ACCEL. 2 + + +

SET CART. POSITION SPEED 2 + + +

SET INTERPOLATION TIME 2 + - -

SET JOINT ACCEL. 2 + - -

SET JOINT SPEEDS 2 + + +

SET MOTION FILTER 2 - - -

SET JOINT JERK 2 - + -

RESET 2 - + -

DEBUG 2 + + +

STOP MOTION 3 - + -(3)

CANCEL MOTION 3 + + -(3)

CONTINUE MOTION 3 + + -(3)

SELECT TARGET TYPE 3 - - -

SELECT ORI. INTERP. MODE 3 + - -

SELECT DOMINANT INTER. 3 - - -

SELECT TRACKING 3 - - -

SELECT TRAJECT. MODE 3 + - -

SET CONVEYOR POSITION 3 - - -

SET OVERRIDE POSITION 3 + + -(3)

SET OVERRIDE SPEED 3 + + -(3)

SET OVERRIDE ACCEL 3 + + -(3)

SELECT WEAVING GROUP 3 - + -

SELECT WEAVING MODE 3 - + -

SET WEAVING GROUP PAR 3 - + -

SET PAYLOAD PARAMETER 3 - - -

SET CONFIG. CONTROL 3 - - -

SET CURRENT TARGET ID 3 - - -

REVERSE MOTION 4 - - -

LOAD RCS DATA 4 - - -

SAVE RCS DATA 4 - - -

GET RCS DATA 4 - - -

MODIFY RCS DATA 4 - - -

Table 5.4 : Table of RRS-Services implemented for VRS1

(1) ROBCAD V 3.2.1, basing on the OLP Development Environment Reference Manual

V3.2.1.
(2) Used only by the „RRS Test Application“ of ROBCAD.
(3) This service can not be used yet due to the lack of ROBCAD’s RRS support.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

73

5.3 Summary of the work

The main objective of this work has been to develop the RRS-Interface for the VRS1
Robot Controller and to come up with a working RCS-Module under ROBCAD. After

six months of intensive programming, it has been ultimately possible to achieve this goal
and evaluate the first simulation results where the original controller’s behaviour could be

compared with that of ROBCAD’s motion planner.

Problems with ROBCAD’s RRS-Interface

Regrettably, the RRS capabilities of the ROBCAD-System proved to be unsatisfactory, in

the sense that a number of inconsistencies encountered throughout the project were
finally accepted as „already recognized problems“ by the company Tecnomatix

Technologies.

In some cases, it has been possible to re-program parts of the RCSVW-Module to enable
the execution of test motions (conversion of joint angles, removal of the IPC facilities at

exit), whereas in some others, severe restrictions (number of locations on a programmed
path) did not allow the simulation of real processes extracted from the manufacturing

environment.

The future of the RCSVW-Module in the Volkswagen Group

The Volkswagen Group is planning to bring the RCSVW-Module into industrial use
beginning from the second quarter of 1996. The first off-line programming tasks will

include the planning of the production lines for new car models such as the B5 PASSAT,
A4 GOLF and A6 AUDI.

With the use of the RRS-Interface in off-line programming systems, the current

simulation accuracy of 95 % is expected to raise to 99 %. Since the manufacturing
processes mentioned above will involve the off-line programming of thousands of

industrial robots, even the short-term benefits of such an improvement can be already
considered of economic significance.

Furthermore, the availability of the original path control routines of VRS1 as an

independent RCSVW-Module enables the portability of this very accurate simulation
package among other CAR-Tools supporting the RRS-Interface. From this point of view,

the RCSVW-Module can be also regarded as a simulation product, deliverable as black-
box to customers desiring to make use of the state-of-the-art simulation tools.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

74

References :

/BAC86/ M. Bach „Design of the UNIX Operating System“

Prentice-Hall, 1986

/BEC92/ J.Bechtloff „Interpolationsverfahren höheren Grades für
Robotersteuerungen“ Braunschweiger Schriften zur Mechanik,

TU-Braunschweig, 1992

/BEN90/ Ben-Ari "Principles of Concurrent and Distributed Programming"
Prentice Hall International Series in Computer Science, 1990

/BER94/ R.Bernhardt, G.Schreck, C.Willnow „Accuracy Enhancement In Off-line

Programming For Industrial Robots“ presented in „Next Steps For
Industrial

Robotics“, May 1994

/BERN94/ R.Bernhardt, G.Schreck, C.Willnow „Time and Cost Saving by Using
Accurate Simulation Tools for Planning Manufacturing Systems with

Robots“, Workshop on Robotics, Industrial Robots Automatic Handling
and Assembly Equipment in Present and Future Manufacturing Systems,

Budapest ‘94.

/BER95/ R.Bernhardt, G.Schreck, C.Willnow „Deviation of Simulation and Reality
in Robotics : Causes and Counter Measures“, International Symposium on

Automotive Technology and Automation“, September 1995, Germany

/BES95/ P. Beske „Programmieren von Robotern, Roboterverkettung und
Zellenlayout“ Volkswagen, Elektroplanung Abt. 1995

/BOY89/ N.P.Boysen „A Robot Controller Concept for Sensory Controlled Motion“

Technical University of Denmark, June 1989

/DAN91/ Danneger "Parallele Prozesse unter UNIX : Simulation und
Anwendung bekannter Synchronisationsmethoden in C unter UNIX",

Hanser Programmtexte, 1991

/HOC90/ C. Hockemeyer „Implementation von Spiegelung und Transformation in
der Robotersteuerung VRS1“, Studienarbeit, TU-Braunschweig.

/JAN91/ D. Janssen „Implementierung Online-fähiger Spline-

Interpolationsalgorithmen in die VW-Bahnsteuerung VRS1“,
Diplomarbeit, TU-Braunschweig.

/PAU81/ R. Paul, „Robot Manipulators: Mathematics, Programming and Control“

MIT Press, 1981

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

75

/ROB/ ROBCAD Technical Description
Tecnomatix Technologies Ltd., Israel

/RRS95/ Realistic Robot Simulation Interface Specifications, Version 1.1, 1995

/STE92/ W.R.Stevens „Advanced UNIX Programming in the UNIX Environment“
Addison-Wesley Professional Computing Series, 1992

/VRS1/ Volkswagen-Roboter-Steuerung (VRS) 1 Programmier-handbuch

Volkswagen, March 1994.

/VME89/ VMEPROM Version 2, Users Manual
Force Computers, June 1989

Other references :

J.Peek, T.O'Reilly, M.Loukides

„UNIX Power Tools“
O'Reilly & Associates, 1994

H.Heroldt

"UNIX und seine Werkzeuge : awk und sed"
Addison Wesley, 1994

IBM RT Advanced Interactive Executive Operating System

AIX Technical Reference : System Calls and Subroutines
Programming Tools and Interfaces, Version 2.2, 1988

IBM AIX Version 3.2 for RISC System/6000

XL C User's guide, XL C Language Reference, 1991

Control Data, Cyber 910
Programmer's Reference Manual, Programmer's Guide, 1990

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

76

Appendices

A. Further test motions for comparison with ROBCAD

B. Exemplar log entries of simulation

C. Complete list of RRS-Services

D. Control file and RRS-oriented action program used with

ROBCAD
E. Source code of the RCSVW-Module with compilation directives

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

77

APPENDIX A : Further test motions for the comparison of the

RCSVW-Module with ROBCAD

Below are a number of simulation results where ROBCAD’s motion engine is being

compared with the RCSVW-Module.

Table A.1 shows the parameters which have been used during these motions and tables
A.2 through A.6 show the positions of the programmed locations in joint coordinates.

M_PTP_2 M_PTP_3 M_PTP_4 M_PTP_5 M_LIN_2

Motion type PTP PTP PTP PTP Linear

Speed 100 % 100 % 100 % 100 % 1660 mm/sec

Fly-by mode off off off off on

Maximum

path deviation

40 mm 90 mm 30 mm 10 mm

fly-by : 25 mm

Table A.1 : Table of test motions performed without speed analysis

M_PTP_2

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P7 0.0 0.0 0.0 0.0 0.0 0.0

P8 0.0 -3.0 -75.0 -76.6 -65.2 0.0

Table A.2 : Joint angles (in degree) of the motion M_PTP_2

M_PTP_3

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P9 0.0 0.0 0.0 0.0 0.0 0.0

P10 13.2 -27.2 -27.2 87.2 -89.4 0.0

Table A.3 : Joint angles (in degree) of the motion M_PTP_3

M_PTP_4

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P14 0.0 0.0 0.0 0.0 0.0 0.0

P15 33.6 36.9 2.1 -7.7 -81.4 41.6

Table A.4 : Joint angles (in degree) of the motion M_PTP_4

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

78

M_PTP_5

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P16 0.0 0.0 0.0 0.0 0.0 0.0

P17 16,5 0.0 0.0 0.0 -50.0 0.0

P18 25.0 -36.8 -26.3 -52.9 47.5 -17.8

Table A.5 : Joint angles (in degree) of the motion M_PTP_5

M_LIN_2

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

P11 -4.5 -19.4 42.2 -11.4 -23.3 -169.7

P12 23.1 35.5 4.3 -74.7 -73.4 -312.1

P13 60.9 50.4 30.9 -29.4 -82.8 3.2

Table A.6 : Joint angles (in degree) of the motion M_LIN_2

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

79

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

80

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

81

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

82

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

83

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

84

APPENDIX B : Exemplar RRS-log entries in extended format

1 >

Opcode: 101 (INITIALIZE)

RobotNumber: 0

RobotPathName: "/u/dede/rrs/robots/"

ModulePathName: "/u/dede/rrs/"

ManipulatorType: "vk010"

CARRRSVersion: 0

Debug: 0

1 <

Status: 0 (The service is successful)

RCSHandle: 00 00 00 00 00 00 00 00

RCSRRSVersion: 101000

RCSVersion: 100000

NumberOfMessages: 0

1 >

Opcode: 104 (GET_ROBOT_STAMP)

1 <

Status: 0 (The service is successful)

Manipulator: "VK010"

Controller: "VRS1"

Software: "VERSION001.9 (date : 20.05.94)"

1 >

Opcode: 116 (SET_INITIAL_POSITION)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0000000 j2: 00.0000000 j3: 00.0000000

 j4: 00.0000000 j5: 00.0000000 j6: 00.0000000

Configuration: ""

1 <

Status: 0 (The service is successful)

JointLimit: 00 00 00 00

1 >

Opcode: 120 (SELECT_MOTION_TYPE)

MotionType: 1 (Joint interpolation)

1 <

Status: 0 (The service is successful)

1 >

Opcode: 117 (SET_NEXT_TARGET)

TargetID: 0 (No identifier given)

TargetParam: 0 (unused, only position data are valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.3577235 j2: 00.3515908 j3: -0.7927651

 j4: 01.1412816 j5: 01.0989452 j6: 00.0000011

Configuration: ""

TargetParamValue: 0.000000

1 <

Status: 0 (The service is successful)

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

85

1 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

1 <

Status: 1 (Need more data)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: -0.0000000 j2: 00.0000000 j3: 00.0000000

 j4: -0.0000000 j5: 00.0000000 j6: 00.0000000

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

2 >

Opcode: 117 (SET_NEXT_TARGET)

TargetID: 0 (No identifier given)

TargetParam: 0 (unused, only position data are valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: -0.4289043 j2: -0.4675541 j3: -0.4847407

 j4: 00.5331523 j5: 00.4970707 j6: -2.6254949

Configuration: ""

TargetParamValue: 0.000000

2 <

Status: 0 (The service is successful)

2 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

2 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: -0.0000000 j2: 00.0000000 j3: 00.0000000

 j4: -0.0000000 j5: 00.0000000 j6: 00.0000000

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

3 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

3 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0000129 j2: 00.0000129 j3: -0.0000344

 j4: 00.0000511 j5: 00.0000454 j6: 00.0000019

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

86

NumberOfEvents: 0

NumberOfMessages: 0

4 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

4 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0000816 j2: 00.0000816 j3: -0.0001848

 j4: 00.0002621 j5: 00.0002525 j6: 00.0000001

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

5 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

5 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0002578 j2: 00.0002535 j3: -0.0005801

 j4: 00.0008309 j5: 00.0008029 j6: 00.0000020

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

6 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

6 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0006273 j2: 00.0006145 j3: -0.0013922

 j4: 00.0020070 j5: 00.0019298 j6: 00.0000071

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

7 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

7 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

87

JointPos axesvalues: j1: 00.0012762 j2: 00.0012547 j3: -0.0028359

 j4: 00.0040778 j5: 00.0039307 j6: 00.0000068

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

8 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

8 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0023160 j2: 00.0022773 j3: -0.0051348

 j4: 00.0073951 j5: 00.0071168 j6: 00.0000039

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

9 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

9 <

Status: 0 (The service is successful)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: 00.0038500 j2: 00.0037855 j3: -0.0085336

 j4: 00.0122846 j5: 00.0118310 j6: 00.0000017

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

NumberOfMessages: 0

.

.

. get_next_step entries

.

.

108 >

Opcode: 118 (GET_NEXT_STEP)

OutputFormat: 6

108 <

Status: 2 (Final step, target reached or speed is zero)

CartPos flag: 00 00 00 00 (CartMatrix is not valid)

JointPos axesformat: 1 (angles and distances)

JointPos flags: 00 00 00 3f

JointPos axesvalues: j1: -0.4289002 j2: -0.4675505 j3: -0.4847379

 j4: 00.5331478 j5: 00.4970652 j6: -2.6256251

Configuration: ""

ElapsedTime: 0015.00000

JointLimit: 00 00 00 00

NumberOfEvents: 0

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

88

NumberOfMessages: 0

1 >

Opcode: 103 (TERMINATE)

1 <

Status: 0 (The service is successful)

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

89

APPENDIX C : List of RRS-Services sorted by operation code

101 INITIALIZE
102 RESET

103 TERMINATE
104 GET_ROBOT_STAMP

105 GET_RCS_DATA
106 MODIFY_RCS_DATA

107 SAVE_RCS_DATA
108 LOAD_RCS_DATA

109 GET_INVERSE_KINEMATIC
110 GET_FORWARD_KINEMATIC

111 MATRIX_TO_CONTROLLER_POSITION
112 CONTROLLER_POSITION_TO_MATRIX

113 GET_CELL_FRAME
114 MODIFY_CELL_FRAME

115 SELECT_WORK_FRAMES
116 SET_INITIAL_POSITION

117 SET_NEXT_TARGET
118 GET_NEXT_STEP

119 SET_INTERPOLATION_TIME
120 SELECT_MOTION_TYPE

121 SELECT_TARGET_TYPE
122 SELECT_TRAJECTORY_MODE

123 SELECT_ORIENT_INTERPOLATION_MODE
124 SELECT_DOMINANT_INTERPOLATION

127 SET_ADVANCE_MOTION
128 SET_MOTION_FILTER

129 SET_OVERRIDE_POSITION
130 REVERSE_MOTION

131 SET_JOINT_SPEEDS
133 SET_CARTESIAN_POSITION_SPEED

134 SET_CARTESIAN_ORIENTATION_SPEED
135 SET_JOINT_ACCELERATIONS

137 SET_CARTESIAN_POSITION_ACCELERATION
138 SET_CARTESIAN_ORIENTATION_ACCELERATION

139 SET_OVERRIDE_SPEED
140 SELECT_FLYBY_MODE

141 SET_FLYBY_CRITERIA_PARAMETER
142 SELECT_FLYBY_CRITERIA

143 CANCEL_FLYBY_CRITERIA
144 SELECT_POINT_ACCURACY

145 SET_POINT_ACCURACY_PARAMETER
146 SELECT_TRACKING

147 SET_CONVEYOR_POSITION

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

90

148 DEFINE_EVENT

149 CANCEL_EVENT
150 GET_EVENT

151 STOP_MOTION
152 CONTINUE_MOTION

153 CANCEL_MOTION
154 GET_MESSAGE

155 SET_OVERRIDE_ACCELERATION
156 SET_MOTION_TIME

157 SELECT_WEAVING_MODE
158 SELECT_WEAVING_GROUP

159 SET_WEAVING_GROUP_PARAMETER
160 SET_PAYLOAD_PARAMETER

161 SET_CONFIGURATION_CONTROL
162 SET_JOINT_JERK

163 GET_CURRENT_TARGETID

1000 DEBUG
1001 EXTENDED_SERVICE

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

91

APPENDIX D : ROBCAD’s controller simulation modelling file

and the RRS-oriented action program

Control file

simulation_model ${CONTROLLER}/vrs_1_sim.awk
representation_mode RPY
motion_engine rrs

robot_start
name
robot_end

path_start
path_end

wp_start

 VRS_TCP_NUM
 VRS_MOTION_TYPE_MERKER
 RRS_MOTION_TYPE
 MOUNTED_WORKPIECE_FRAME_NAME (ext_tool_frame)
 RRS_TOOL_FRAME:absolute (tool_frame)
 RRS_CARTESIAN_POSITION_SPEED
 VRS_SPEED (cart_speed)
 VRS_ENDSPEED
 RRS_CARTESIAN_POSITION_ACCELERATION
 VRS_ENDACCEL
 VRS_RUCK
 VRS_FILTER
 VRS_GENAU
 VRS_ERT

 VRS_UP_CALL (up_call)
 VRS_ANALOG_NR (analog_nr)
 VRS_ANALOG_KANAL_NR (analog_kanal_nr)
 VRS_ANALOG_AUSGART_NR
 VRS_ANALOG_WERT
 VRS_SENSOR_NR
 VRS_SENSOR_WERT
 VRS_SUCHLAUF_FERN_NR
 VRS_SUCHLAUF_NAH_NR
 VRS_SUCHLAUF_GESCH
 VRS_PENDELN_FORM

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

92

 VRS_PENDELN_AMPL
 VRS_PENDELN_PERI
 VRS_PENDELN_WINKEL
 VRS_PENDELN_EBENE
pose
move
 OLP_STRING_NUM
 OLP_STRING_00
 OLP_STRING_01 .. _49
wp_end

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

93

RRS-oriented action program for simulation with ROBCAD

VRS_1 robot simulation model
#
Hans-Hennig Steineke Juli, 95
RRS-Erweiterungen von Goeksel Dedeoglu, November 1995

BEGIN {

##
The following line should be remarked when simulating without RRS
VRS_1_RRS =1
##

extern_point = 0;
__semantic_check = 1
init_EA()
if (VRS_1_RRS==1) {

init_rrs()
}

}

{
robot start
if($1 == name){

}
if($0 == $0) {

text = sprintf("%s ",$0)
command = "cat 1>" "output.txt"

 printf("%s\n ", $0) | command
}

if ($1 == "simulation_start") {
if (VRS1_RRS==0) {

 Execute(SetEnv(MotionType(JOINT))) # example of some default
 Execute(SetEnv(Zone("fine"))) # setting at start

}

if (VRS_1_RRS==1) {
print "Simulation Start" > "/dev/stderr"
Execute(RrsSelectMotionType(1))
print " Execute(RrsSelectMotionType(1))" > "/dev/stderr"
rrs_last_motion_type=1
}

next
}

if ($1 == "path_start") {

if (VRS1_RRS==0) {
Execute(SetAlways(RelJointAccel(1.0))) # example of some default
Execute(SetAlways(RelJointDecel(1.0))) # settings for the path
}

next
}

if ($1 == "wp_start") {
location_name = $2 }

if ($1 == "ext_tool_frame") {
extern_point = 1
print "setze basis Koorinaten =====\n" > "/dev/stderr"
Execute(SetTcpf(CurrToolFrame()))

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

94

next
}

if ($1 == "tool_frame") {
split($2, teiler, ",")
PI = 3.1415926
multi = 2 * PI / 360
R = teiler[4] * multi
P = teiler[5] * multi
Y = teiler[6] * multi
if(extern_point != 1) {

print "setze kopf Koordinaten =====\n" > "/dev/stderr"
Execute(SetTcpf(Frame(CARTESIAN, teiler[1],teiler[2], teiler[3], RPY, R, P, Y)))
if (VRS_1_RRS==1) {

#Execute(RrsModifyCellFrame("TOOL",RelativeFrame(CurrToolFrame(),CurrTcpf())));
#print "

Execute(RrsModifyCellFrame(\"TOOL\",RelativeFrame(CurrToolFrame(),CurrTcpf())))" > "/dev/stderr"
}

}
next
}

if ($1 == "up_call") {
if ($2 > 0) {

unterprogramm = "upfolge"$2
jumpflag = 1
next
}

else {
jumpflag = 0
}

}
if ($1 == "RRS_MOTION_TYPE") {

if (VRS_1_RRS==0) {
if ($2 == "1") { motype = MotionType(JOINT) }
if ($2 == "2") { motype = MotionType(LINEAR) }
if ($2 == "3") { motype = MotionType(SLEW) }
if ($2 == "4" && via_flag) { motype = MotionType(CIRCULAR-VIA)

 }
}

if (VRS_1_RRS==1) {
 if (rrs_last_motion_type!=$2) {

 print "Motion Type" > "/dev/stderr"
 rrs_last_motion_type=$2
 if ($2=="1") {
 Execute(RrsSelectMotionType(1))
 print " Execute(RrsSelectMotionType(1))" > "/dev/stderr"
 next
 }
 if ($2=="2") {
 Execute(RrsSelectMotionType(2))
 print " Execute(RrsSelectMotionType(2))" > "/dev/stderr"
 next
 }
 if ($2=="3") {
 Execute(RrsSelectMotionType(3))
 print " Execute(RrsSelectMotionType(3))" > "/dev/stderr"
 next
 }
 if ($2=="4" && via_flag) {

via_flag = 1
 Execute(RrsSelectMotionType(4))
 print " Execute(RrsSelectMotionType(4))" > "/dev/stderr"

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

95

 next
 }
 print "! No motion "
 }

}
next
}

if ($1 == "cart_speed") {
if (VRS_1_RRS==0) {
 Execute(SetFromNowOn(Speed($2)))

}
if (VRS_1_RRS==1) {

ROBCAD has only one variable (cart_speed) to indicate the speed for all
motion types. In the case of PTP motion this value is a percentage, whereas
with LINEAR it has mm/sec as unit. To differentiate between these two cases,
an additional speed variable is needed to indicate the type of motion.

if (rrs_last_motion_type!=1) {
if (rrs_last_cart_speed!=$2) {

 print $1 > "/dev/stderr"
 rrs_last_cart_speed=$2
 Execute(RrsSetCartPosSpeed($2))
 print " Execute(RrsSetCartPosSpeed(" $2 "))" > "/dev/stderr"

 next
 }

}
else {

if (rrs_last_joint_speed!=$2) {
 print $1 > "/dev/stderr"
 rrs_last_joint_speed=$2

pose_val =Pose($2, $2, $2, $2, $2, $2, $2, $2, $2, $2)
 Execute(RrsSetAllJointsSpeed(pose_val))
 print " Execute(RrsSetAllJointsSpeed(" $2 "))" > "/dev/stderr"
 next

}
}

}
next
}

if (VRS_1_RRS==1) {
if (($1=="RRS_CARTESIAN_POSITION_DECELERATION") || ($1=="VRS_ENDACCEL")) {

if (rrs_last_motion_type!=1) {
if (rrs_last_cart_pos_decel!=$2) {

 print $1 > "/dev/stderr"
 rrs_last_cart_pos_decel=$2
 Execute(RrsSetCartPosAcc($2,2))
 print " Execute(RrsSetCartPosAcc("$2",2))" > "/dev/stderr"
 next
 }

}
else {

if (rrs_last_joint_decel=$2) {
 print $1 > "/dev/stderr"

rrs_last_joint_decel=$2
#pose_val =Pose($2, $2, $2, $2, $2, $2, $2, $2, $2, $2)

 #Execute(RrsSetAllJointsAcc(pose_val,2))
 #print " Execute(RrsSetAllJointsAcc(" $2 ",2))" > "/dev/stderr"
 next

}
}

}
if ($1=="RRS_CARTESIAN_POSITION_ACCELERATION") {

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

96

if (rrs_last_motion_type!=1) {
if (rrs_last_cart_pos_accel!=$2) {

 print $1 > "/dev/stderr"
 rrs_last_cart_pos_accel=$2
 Execute(RrsSetCartPosAcc($2,1))
 print " Execute(RrsSetCartPosAcc("$2",1))" > "/dev/stderr"
 next
 }

}
else {

if (rrs_last_joint_accel=$2) {
 print $1 > "/dev/stderr"

rrs_last_joint_accel=$2
 Execute(RrsSetAllJointsAcc($2,1))
 print " Execute(RrsSetAllJointsAcc(" $2 ",1))" > "/dev/stderr"
 next

}
}

}
}

if ($1=="VRS_GENAU") {
 if (rrs_last_genau!=$2) {
 print "VRS Genau" > "/dev/stderr"
 rrs_last_genau=$2
 Execute(RrsSetFlybyCriteriaParam(0,$2))
 print " Execute(RrsSetFlybyCriteriaParam(0,"$2"))" > "/dev/stderr"
 }
 }
pose never used !!
if($1 == "pose") {

printf(" pose %s ", $0) > "/dev/tty"
command = "cat 1>" "poses.txt"
printf("%s\n ", $0) | "cat 1> poses.txt"

 printf("%s\n ", $0) | command
split($2,pa,",");
pose_val=Pose(pa[1],pa[2],pa[3],pa[4],pa[5],pa[6],0.0,0.0,0.0,0.0);
print pose_val > "/dev/stderr"
Execute(RrsSetNextTargetPos(pose_val))
}

if($1 == "move") {
if (VRS_1_RRS==0) {

Execute(SetOnce(motype))
}

if (via_flag) {
if (VRS_1_RRS==0) {

Execute(DefineViaPoint(LocName($2)))
}

via_flag = 0

if (VRS_1_RRS==1) {
 print "-Via Point" > "/dev/stderr"
 }

}
else {

if (VRS_1_RRS==0) {
Execute(DefineToPoint(LocName($2)))
}

if (VRS_1_RRS==1) {
#Execute(RrsSetNextTargetLoc(location_name))

 #Execute(RrsSetNextTargetPos(LocToPose(location_name)))

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

97

 #print " . Execute(RrsSetNextTargetPos(LocToPose(location_name)))" > "/dev/stderr"
}

}

if (VRS_1_RRS==0) {
Execute(Move())
}

if (VRS_1_RRS==1) {
Execute(RrsExecMotion())

 print " Execute(RrsExecMotion())" > "/dev/stderr"
}

if (jumpflag) {
ruecksprung_loc = $2
Execute(CallPath(unterprogramm))

if (VRS_1_RRS==0) {
Execute(DefineToPoint(LocName(ruecksprung_loc)))
}

if (VRS_1_RRS==1) {
#Execute(RrsSetNextTarget(ruecksprung_loc))
Execute(RrsSetNextTargetPos(LocToPose(ruecksprung_loc)))
}

jumpflag = 0
}

next
 }
/* -------- Example of dealing with text attributes --------- */

if($1 == "OLP_STRING_NUM") {
 olp_string_num = $2
 next
}
if(substr($1, 1, 11) == "OLP_STRING_") {

 line = substr($1, 12, 2)
 if (line < olp_string_num) {

 deal_with_text_attr(substr($0, 15))
 }

}
if($1 == "pose") { print $0 > "poses.txt" }

if($1 == "wp_end") {
extern_point = 0
}

if($1 == "path_end") { }

} #--------- Ende des Ganzen....

function deal_with_text_attr(line_command)
{
Dealing with the line_command can be done with
using $0 = line_command in order to split to fields
$0 = line_command
if ($1=="CALL") ...
if ($1=="OUTPUT") ...

 if (substr($1, 1,1) == "A")
{

if($3 == "EIN") { A_zeile[$1] = 1}
if($3 == "AUS") { A_zeile[$1] = 0}

Execute(SetSignal($1, A_zeile[$1]))

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

98

 next
}

if ($1 == "warte")
{

 if ($2 == "bis") {
if (substr($3,1,1) == "!") { warteauf = 0}
if (substr($3,1,1) == "E") { warteauf = 1}
if (substr($3, 1,1) == "F") { warteauf = 1}
if (substr($3, 1,1) == "A") { warteauf = 1}
if (substr($3, 1,1) == "M") { warteauf = 1}
printf $2 $3 > "/dev/stderr"
Execute(WaitSignal($3,warteauf))
next
}

 if ($2 == "onl")
{

if (substr($3, 1,1) == "!") { warteauf = 0}
if (substr($3, 1,1) == "E") { warteauf = 1}
if (substr($3, 1,1) == "F") { warteauf = 1}
if (substr($3, 1,1) == "A") { warteauf = 1}
if (substr($3, 1,1) == "M") { warteauf = 1}

printf $2 $3 > "/dev/stderr"

Execute(WaitSignal($3,1))
next
}
}

}

function init_EA()
#--
{

moveflag = 0
for(i=1;i<129;i++)

{ e_name = "E"+ i
 a_name = "A"+ i

 E_zeile[e_name] = 0
 A_zeile[a_name] = 0

 }
 }

function init_rrs()
{
rrs_last_joint_speed=-1
rrs_last_cart_speed=-1
rrs_last_cart_pos_accel=-1
rrs_last_cart_pos_decel=-1
rrs_last_genau=-1
rrs_last_motion_type=-1
}

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

99

APPENDIX E : Source code of the RCSVW-Module and its compilation

Software components of the RCSVW-Module

The RCSVW-Module is designed to run on any UNIX compatible operating system. The
original development environment of the module has been an IBM RISC/6000

workstation with the operating system AIX V.3.2, whereas the target system where the
CAR-Tool ROBCAD resides is a Silicon Graphics - Indigo workstation, operating with

IRIX. The compilation and linking procedures described in this document have been
successfuly performed on both systems.

The RCSVW-Module consists of five executable UNIX files, a default manipulator and

an optional version data :

Executables Data files

 rcsvw10 robdaten.txt (ASCII)
 inter1 version (ASCII)

 bmvert
 ertv

 init1

The program rcsvw10 is the RCSVW-Module itself, whereas the other executables are
software components of VRS1-controller's original path module.

Calling the RCSVW-Module

Since the RCSVW-Module has been designed to be integrated into a CAR-Tool

according to „two module concept“, the program rcsvw10 is expected to be spawned by
the CAR-Tool. Indeed, the main() function of this program has been delivered by the

company Tecnomatix Ltd. and extended for the RCSVW-Module.

The other executables making up the path module will be spawned by the module as
necessary.

Compiling and linking

For each executable data (rcsvw10, inter1, bmvert, ertv and init), there is a make file,

whose extension is '.mk'. After the object files are created, the make program will also
link them altogether to produce executables.

As far as the path module is concerned, all dependencies defined in their original make

files have been kept.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

100

To compile the RCSVW-Module, one may use the batch program make_rcsvw10, which

will simply call the standard UNIX make utility for all executables listed above. The
compiler which will be called by make is cc, the standard UNIX C compiler.

Source files needed to compile the RCSVW-Module :

make_rcsvw10 Shell script which will call the make utility

rcsvw10.mk Make file for the RCSVW-Module

inter1.mk Make file for the executable 'inter1'
ertv.mk Make file for the executable 'ertv'

init.mk Make file for the executable 'init1'
bmvert.mk Make file for the executable 'bmvert'

rcsvw10.c C code of the main RCSVW-Module

rcsvw10.h Include file for the main RCSVW-Module
rcsvw10_base.c C code, base RRS services.

rcsvw10_moti.c C code, motion related RRS services
rcsvw10_mopa.c C code, RRS services on motion parameters

rcsvw10_modi.c C code, RRS services for motion modification
rcsvw10_cond.c C code, RRS services for condition handling

rcsvw10_weav.c C code, RRS services for weaving

rcsvw10_base_debug.c C code, debug functions for RRS services
rcsvw10_moti_debug.c C code, debug functions for RRS services

rcsvw10_mopa_debug.c C code, debug functions for RRS services
rcsvw10_modi_debug.c C code, debug functions for RRS services

rcsvw10_cond_debug.c C code, debug functions for RRS services
rcsvw10_weav_debug.c C code, debug functions for RRS services

rcsvw10_strc.h Include file for data structures

rcsvw10_defi.h Include file for definitions

rcsvw10_ipc.c C code, routines for interprocess communication
rcsvw10_ram.c C code, standard routines for all services

rcsvw10_xlib.c C code, x-library functions
rcsvw10_bm.c C code, routines that are copied from the path module.

rcsvw10_lib.c C code, routines common to all executables

The files listed above should all be available under the same directory, where the batch
program will be called.

RRS-Interface for the Volkswagen Robot Controller VRS1 Göksel Dedeo�lu

101

Original path module’s files needed by the RCSVW-Module :

var-bahn.gbl

define.gbl
struct.gbl

milib.h
inter1.c

bmvert.c
init.c

ertv.c
linauf.c

linue.c
ptpauf.c

ptpue.c
splauf.c

splue.c
zirkauf.c

zirkue.c
best_tra.c

eauf.c
iniba.c

joy.c
kms.c

matlib.c
onl.c

pend.c
penini.c

pktv.c
prof.c

regler.c
sen.c

senini.c
simul.c

taskk.c
gblram.c

trans.c
sp_lokal.c

