
Webots User Guide
release 3.2.9

copyright c© 2002 Cyberbotics Ltd.
www.cyberbotics.com

July 10, 2002

2

copyright c© 2002 Cyberbotics Ltd.
All rights reserved

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on anas-isbasis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

This software was initially developped at the Laboratoire de Micro-Informatique (LAMI) of
the Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no
warranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

JavaTM is a registered trademark of Sun MicroSystems, Inc.

KheperaTM and KoalaTM are registered trademarks of K-Team S.A.

LinuxTM is a registered trademark of Linus Torwalds.

PentiumTM is a registered trademark of Intel Corp.

Red HatTM is a registered trademark of Red Hat Software, Inc.

Visual C++TM, WindowsTM, Windows 95TM, Windows 98TM, Windows METM, Windows NTTM,
Windows 2000TM and Windows XPTMare registered trademarks of Microsoft Corp.

UNIXTM is a registered trademark licensed exclusively by X/Open Company, Ltd.

Foreword

Webots is a three-dimensional mobile robot simulator. It was originally developed as a research
tool for investigating various control algorithms in mobile robotics.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics, in C programming and in VRML 2.0 (Virtual Reality
Modeling Language).

The great innovation of the third version of Webots is that any robot with two-wheel differential
steering can be modelled and simulated. Predefined objects like shapes, sensors and axles allow
users to create and run their own simulated robot. Thus, Webots is no longer limited to the
Khepera and Alice robots.

The GUI of Webots version 2 has been replaced by GTK+, an Open Source Free Software GUI
toolkit.

If you have already developed programs using Webots 2.0, please read chapter 2 to update your
programs to run with the new version.

We hope that you will enjoy working with Webots .

3

4

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots web
site, including Jordi Porta, Emanuele Ornella, Yuri Lopez de Meneses, Auke-Jan Ijspeert, Gerald
Foliot, Allen Johnson, Michael Kertesz, Aude Billiard, and many others.

Moreover, many thanks are due to Prof. J.-D. Nicoud (LAMI-EPFL) and Dr. F. Mondada for
their valuable support.

Finally, thanks to Skye Legon, who proof-read this guide.

5

6

Contents

1 Installing Webots 11

1.1 Hardware requirements . 11

1.2 Registration Procedure . 11

1.2.1 Webots license . 11

1.2.2 Registering . 12

1.3 Installation procedure . 13

1.3.1 RedHat 7.2 Linux i386 . 13

1.3.2 Windows 95, 98, ME, NT, 2000 and XP 13

2 Upgrading from Webots 2 15

2.1 World . 15

2.1.1 Header of the file . 15

2.1.2 Nodes . 16

2.2 Controller . 16

2.2.1 Location . 16

2.2.2 Khepera . 17

2.2.3 Alice . 17

2.2.4 GUI . 17

2.2.5 Supervisor . 17

3 Getting Started with Webots 19

3.1 Launching Webots . 19

3.1.1 On Linux . 19

3.1.2 On Windows . 19

7

8 CONTENTS

3.2 Main Window: menus and buttons . 19

3.2.1 File menu and shortcuts . 20

3.2.2 Edit menu . 21

3.2.3 Simulation menu and the simulation buttons 21

3.2.4 Help menu . 23

3.2.5 Navigation in the scene . 23

3.2.6 Moving a solid object . 23

3.2.7 Selecting a solid object . 24

3.3 Scene Tree Window . 24

3.3.1 Buttons of the Scene Tree Window . 24

3.3.2 VRML nodes . 26

3.3.3 Webots specific nodes . 27

3.3.4 Writing a Webots file in a text editor . 37

4 Tutorial: Modelling and simulating your robot 39

4.1 My first world: kiki.wbt . 39

4.1.1 Environment . 39

4.1.2 Robot . 41

4.1.3 A simple controller . 48

4.2 My second world: akiki robot with a camera 51

4.3 My third world: pioneer2.wbt . 52

4.3.1 Environment . 52

4.3.2 Robot with 16 sonars . 53

4.3.3 Controller . 55

5 Robot and Supervisor Controllers 61

5.1 Overview . 61

5.2 Setting Up a New Controller . 61

5.3 Webots Execution Scheme . 62

5.3.1 From the controller’s point of view . 62

5.3.2 From the point of view of Webots . 62

5.3.3 Synchronous versus Asynchronous controllers 62

CONTENTS 9

5.4 Reading Sensor Information . 63

5.5 Controlling Actuators . 63

5.6 Going further with the Supervisor Controller . 63

6 Tutorial: Using the KheperaTM robot 65

6.1 Hardware configuration . 65

6.2 Running the simulation . 65

6.3 Understanding the model . 66

6.3.1 The 3D scene . 66

6.3.2 The Khepera model . 68

6.4 Programming the Khepera robot . 69

6.4.1 The controller program . 69

6.4.2 Looking at the source code . 70

6.4.3 Compiling the controller . 72

6.5 Transfering to the real robot . 73

6.5.1 Remote control . 73

6.5.2 Cross-compilation and upload . 73

6.6 Working extension turrets . 74

6.6.1 The K213 linear vision turret . 74

6.6.2 The Gripper turret . 74

6.7 Support for other K-Team robots . 76

6.7.1 KoalaTM . 76

6.7.2 AliceTM . 76

7 ALife Contest 79

7.1 Previous Editions . 79

7.2 Rules . 79

7.2.1 Subject . 79

7.2.2 Robot Capabilities . 80

7.2.3 Programming Language . 81

7.2.4 Scoring Rule . 81

7.2.5 Schedule . 82

10 CONTENTS

7.2.6 Prize . 82

7.3 Web Site . 82

7.4 How to Enter the Contest . 83

7.4.1 Obtaining the software . 83

7.4.2 Running the software . 83

7.4.3 Creating your own robot controller . 83

7.4.4 Submitting your controller to the ALife contest 85

7.5 Developers’ Tips and Tricks . 86

7.5.1 Practical issues . 86

7.5.2 Java Security Manager . 86

7.5.3 Levels of Intelligence . 86

Chapter 1

Installing Webots

1.1 Hardware requirements

Webots is available for RedHat 7.2 Linux i386, Windows 95, Windows 98, Windows ME, Win-
dows NT, Windows 200 and Windows XP. Other versions of Webots for other UNIX systems
(MacOS X, Solaris, Linux PPC, Irix) may be available upon request.

OpenGL hardware acceleration is supported on Windows and in some Linux configurations. It
may also be available on other UNIX systems.

1.2 Registration Procedure

1.2.1 Webots license

Starting with Webots , a new license system has been introduced to facilitate the use of Webots.

When installing Webots, you will get a license file, calledwebots.key , containing your name,
address and user ID. This encrypted file will enable you to use Webots according to the license
you purchased. This file is stricly personal: you are not allowed to provide copies of it to any
third party in any way, including publishing that file on any Internet server (web, ftp, or any other
server). Any copy of your license file is under your responsibility. If a copy of your license file is
used by an unauthorized third party to run Webots, then Cyberbotics may engage legal procedures
against you. Webots licenses are (1) non-transferable and (2) non-exclusive. This means that (1)
you cannot sell or give your Webots license to any third party, and (2) Cyberbotics and its official
Webots resellers may sell or give Webots licenses to third parties.

If you need further information about license issues, please send an e-mail to:

<license@cyberbotics.com >

11

12 CHAPTER 1. INSTALLING WEBOTS

Please read your license agreement carefully before registering. This license is provided within
the software package. By using the software and documentation, you agree to abide by all the
provisions of this license.

1.2.2 Registering

In order to register your copy of Webots and get the license file, you will have to fill out a form1

on the website of Cyberbotics (see figure 1.1). You will then receive an e-mail containing the
webots.key file corresponding to your license.

Figure 1.1: Webots registration page

Please take care to properly fill in each field of this form. TheSerial Numberis the serial number
of your Webots package which is printed on the back side of the CD-ROM package under the
headingS/N:.

1http://www.cyberbotics.com/registration/webots.html

http://www.cyberbotics.com/registration/webots.html

1.3. INSTALLATION PROCEDURE 13

After completing this form, click on theSubmit button. You will receive shortly thereafter an
e-mail containing your personal license filewebots.key which is needed to install a registered
copy of Webots as described below.

1.3 Installation procedure

To install Webots, you must follow the instructions corresponding to your computer / operating
system listed below:

1.3.1 RedHat 7.2 Linux i386

1. Log on asroot

2. Insert the Webots CD-ROM, mount it (this might be automatic) and install the following
packages

mount /mnt/cdrom
rpm -Uvh /mnt/cdrom/linux/lib/miniGLU-3.0-1.i386.rpm
rpm -Uvh /mnt/cdrom/linux/lib/solid-2.1.0-1.i386.rpm
rpm -Uvh /mnt/cdrom/linux/lib/gnet-1.1.0-1.i386.rpm
rpm -Uvh /mnt/cdrom/linux/lib/gtkglarea-1.2.2-2.i386.rpm
rpm -Uvh /mnt/cdrom/linux/lib/mpeg_encode-1.5b-4.i386.rpm
mpeg_encode is useful only if you want to export MPEG movies
rpm -Uvh /mnt/cdrom/linux/webots/webots-3.2.9-1.i386.rpm
rpm -Uvh /mnt/cdrom/linux/webots/webots-kros-1.0.1-1.i386.rpm
webots-kros is useful only if you want to cross-compile
controllers for the Khepera robot

You may need to use the--nodeps or the--force if the rpm fails to install the packages.

3. Copy your personalwebots.key file into the/usr/local/webots/server/resources

directory where Webots was just installed.

1.3.2 Windows 95, 98, ME, NT, 2000 and XP

1. Uninstall any previous release of Webots, if any, from theStart menu,Control Panel , Add /
Remove Programs . or from theStart menu,Cyberbotics , Unistall Webots .

2. Insert the Webots CD-ROM and open it.

3. Go to thewindows directory on the CD-ROM.

14 CHAPTER 1. INSTALLING WEBOTS

4. Double click on theWEBOTS-3.2.9 SETUP.EXE.

5. Follow the installation instructions.

6. Copy your personalwebots.key file into theC: \Program Files \Webots \resources

directory where Webots was just installed.

In order to be able to compile controllers, you will need to install a C/C++ development envi-
ronment. We recommand to use Dev-C++ which is provided on the Webots CD-ROM (in the
windows/utils directory) as well as from the Bloodshed.net2 web site. Dev-C++ is an inte-
grated development environment (IDE) for C/C++ with syntax highlighing running on Windows.
It includes the MinGW distribution with the GNU GCC compiler and utilities. This software is
distributed under the terms of the GNU public license and hence is free of charge.

You may also choose to use Microsoft Visual C++TM if you own a license of this software.

2http://www.bloodshed.net

http://www.bloodshed.net

Chapter 2

Upgrading from Webots 2

If you have already worked with Webots 2, your existing programs need to be modified for use
with Webots .

2.1 World

You first have to edit your Webots 2.0 world with a text editor to make it understandable by We-
bots . This operation is however fairly straightforward as explained in the following instructions:

2.1.1 Header of the file

The first line of the file has to be changed as follows:

Replace

#WEBOTS V2.0 utf8

by

#VRML_SIM V3.0 utf8

After this header, remove

Group { children [

at the beginning of the file and

] }

at the end of the file.

15

16 CHAPTER 2. UPGRADING FROM WEBOTS 2

2.1.2 Nodes

Some Webots 2 nodes no longer exist:Ball , Can, Ground , KheperaFeeder , Lamp, Wall ,
Alice , AliceIRCom , Khepera , KheperaK213 , KheperaK6300 , KheperaGripper , KheperaPanoramic .
They must be replaced by their new equivalents, as illustrated in table 2.1.

Nodes in Webots 2 Nodes in Webots including (Webots)

Ball Solid Sphere
Can Solid Cylinder
Ground Solid ElevationGrid
Lamp PointLight
Wall Solid Extrusion
Alice DifferentialWheels DistanceSensor
AliceIRCom Receiver
Khepera DifferentialWheels DistanceSensor
KheperaFeeder Charger
KheperaGripper Servo Gripper
KheperaK213 Camera
KheperaK6300 Camera
KheperaPanoramic several Camera

Table 2.1: Node equivalents between Webots 2 and Webots

2.2 Controller

2.2.1 Location

The controller program is still found in thecontrollers directory of your user directory
defined in the Webots preferences. However, the name of the directory for each controller
has changed: renameyourcontroller.khepera to yourcontroller (simply remove the
.khepera extension). The same applies for the alice and supervisor controller directories
where the.alice and .supervisor extensions must be removed. Note that if you used the
same prefix for both khepera and a supervisor controller (e.g.stick pulling.khepera and
stick pulling.supervisory), you will have to rename one of them because you cannot
have two directories with the same name. For example, thestick pulling.khepera direc-
tory can be renamed tostick pulling and thestick pulling.supervisor directory can
be renamed tostick pulling supervisor .

2.2. CONTROLLER 17

2.2.2 Khepera

Thekhepera xxx functions have disappeared. You must replace them with their counterparts
of the new API as illustrated on table 2.2:

Webots 2 Webots

khepera live robot live

khepera die robot die

khepera step robot step

khepera set speed differential wheels set speed

khepera enable proximity distance sensor enable

khepera disable proximity distance sensor disable

khepera get proximity distance sensor get value

Table 2.2: Some equivalent function calls between Webots 2 and Webots

Morover, the#include <Khepera.h> must be replaced by the following:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

2.2.3 Alice

Thealice xxx functions have also disappeared. Now you can program the Alice robot (indeed a
differentially wheeled robot) just like any other robot in Webots. Thus all the functions described
in the above subsection also apply to an Alice robot model.

2.2.4 GUI

The gui xxx functions have all disappeared and should now be replaced by GTK+ functions.
GTK+ is much more powerful than the GUI provided with Webots 2 and is well documented.
You can find the GTK+ documentation (Tutorial and Reference Manual) on the Webots CD-
ROM, in books available in computer science libraries, and on the GTK+ web site1.

2.2.5 Supervisor

The syntax of supervisor functions has changed a lot from Webots 2 to be more consistent
with the rest of the API. For example, a supervisor is now considered as a robot, hence the
supervisor step function has been replaced by therobot step function. However,the way
in which the supervisor interacts with webots remains unchanged.

1http://www.gtk.org

http://www.gtk.org

18 CHAPTER 2. UPGRADING FROM WEBOTS 2

Chapter 3

Getting Started with Webots

To run a simulation in Webots, you need two things:

This chapter gives an overview of the basics of Webots, including the display of the world in the
main window and the structure of the.wbt file appearing in the scene tree window.

Robot and Supervisor controllers will be explained in detail later on in this book.

3.1 Launching Webots

3.1.1 On Linux

From an X terminal, typewebots to launch the simulator. You should see the world window
appear on the screen (see figure 3.1).

3.1.2 On Windows

From theStart menu, go to theProgram Files — Cyberbotics menu and click on theWebots 3.2.9
menu item. You should see the world window appear on the screen (see figure 3.1).

3.2 Main Window: menus and buttons

The main window allows you to display your virtual worlds and robots described in the.wbt

file. Four menus and a number of buttons are available.

19

20 CHAPTER 3. GETTING STARTED WITH WEBOTS

Figure 3.1: Webots main window

3.2.1 File menu and shortcuts

TheNew menu item opens a new default world representing a chessboard of 10 x 10 plates on a
surface of 1 m x 1 m. The following button can be used as a shortcut:

New

TheFile menu will also allow you to perform the standard file operations:Open... , Save andSave
As... , respectively, to load, save and save with a new name the current world.

The following buttons can be used as shortcuts:

Open...

3.2. MAIN WINDOW: MENUS AND BUTTONS 21

Save

TheExport VRML item allows you to save the.wbt file as a.wrl file, conforming to the VRML
2.0 standard. Such a file can, in turn, be opened with any VRML 2.0 viewer. This is especially
useful for publishing a world created with Webots on the Web.

TheRevert item allows you to reload the most recently saved version of your.wbt file.

The following button can be used as a shortcut:

Revert

ThePreferences item pops up a window with the following panels:

• General : TheStartup mode allows you to choose the state of the simulation when We-
bots is launched (stop, run, fast; see theSimulation menu).

TheRefresh rate corresponds to the speed of the simulation when Webots is launched.

TheHyperGate port specifies the computer port used for HyperGate networking.

• Rendering : this tab controls the 3D rendering in the simulation window.

Checking theDisplay sensor rays check box displays the distance sensor rays of the
robot(s) as red lines.

Checking theDisplay lights check box displays the lights (PointLight in the world
so that they can be moved more accurately).

• Files and paths : The default.wbt world which is open when launching Webots and
the user directory are defined here. The user directory should contain at least aworlds ,
controllers , andobjects directories where Webots will be looking for files.

3.2.2 Edit menu

TheScene Tree Window item opens the window in which you can edit the world and the robot(s).
A shortcut is available by double-clicking on a solid in the world. A solid is a physical object in
the world (see subsubsection 3.3.3).

3.2.3 Simulation menu and the simulation buttons

In order to run a simulation a number of buttons are available corresponding to menu items found
under theSimulation menu:

Stop : interruptRun or Fast modes.

22 CHAPTER 3. GETTING STARTED WITH WEBOTS

Step : execute one simulation step.

Run : execute simulation steps until theStop mode is entered.

Fast : same asRun , except that no display is performed.

TheFast mode performs a very fast simulation mode suited for heavy computation (genetic algo-
rithms, vision, learning, etc.). However, as the world display is disabled during aFast simulation,
the scene in the world window stays blank until theFast mode is stopped.

TheWorld View / Robot View item allows you to switch between two different points of view:

• World View : this view corresponds to a fixed camera standing in the world.

• Robot View : this view corresponds to a mobile camera following a robot.

The default view is the world view. If you want to switch to theRobot View , first select the robot
you want to follow (click on the pointer button then on the robot), and then chooseRobot View
in theSimulation menu. To return to theWorld View mode, reselect this item.

A speedometer (see figure 3.2) allows you to observe the speed of the simulation on your com-
puter. It indicates how fast the simulation runs compared to real time. In other words, it rep-
resents the speed of the virtual time. If the value of the speedometer is 2, it means that your
computer simulation is running twice as fast as the corresponding real robots would. This infor-
mation is relevant both inRun mode andFast mode.

Figure 3.2: Speedometer

The time step can be chosen from the popup menu situated next to the speedometer. It indicates
how frequently the display is refreshed. It is expressed in virtual time milliseconds. The value
of this time step also defines the duration of the time step executed during theStep mode. The
time step can be chosen from the popup menu situated next to the speedometer. It indicates how
frequently the display is refreshed. It is expressed in virtual time milliseconds. The value of this
time step also defines the duration of the time step executed during theStep mode.

In Run mode, with a time step of 64 ms and a fairly simple world displayed with the default
window size, the speedometer will typically indicate approximately 0.5 on a Pentium II / 266
without hardware acceleration and 4 on an Ultra Sparc 10 Creator 3D.

3.2. MAIN WINDOW: MENUS AND BUTTONS 23

3.2.4 Help menu

In the Help menu, theAbout... item opens theAbout... window, displaying the license infor-
mation.

The Introduction item is a short introduction to Webots (HTML file). You can access the User
Guide and the Reference Manual with theUser Guide andReference Manual items (PDF files).
TheWeb site of Cyberbotics item lets you visit our Web site.

3.2.5 Navigation in the scene

The view of the scene is generated by a virtual camera set in a given position and orientation.
You can change this position and orientation to navigate in the scene using the mouse buttons.
Thex, y, zaxes mentioned below correspond to the coordinate system of the camera;z is the axis
corresponding to the direction of the camera.

• Rotate viewpoint: To rotate the camera around thex andy axis, you have to click on the
left mouse button in the scene and then:

if you click on a solid object and drag the mouse in the scene, the rotation will be centered
around the origin of the local coordinate system of this solid object.

if you click outside of any solids and drag the mouse the rotation will be centered around
the origin of the world coordinate system.

• Translate viewpoint: To translate the camera in thex andx directions, you can click the
right mouse button and drag the mouse on the scene.

• Zoom / Tilt viewpoint: set the mouse over the scene, then:

if you click on the middle button and drag the mouse vertically, the camera will zoom in
or out.

if you click on the middle button and drag the mouse horizontally, the camera will rotate
around itsz axis.

if you use the wheel of the mouse, the camera will zoon in or out.

if you have a two-button mouse, hold down the control key while pressing the left mouse
button to be able to zoom in the scene.

3.2.6 Moving a solid object

In order to move object, hold the shift key down while using the mouse.

• Translation: Pressing the left mouse button while the shift key is pressed allows you to
drag solid objects on the ground (xz plan).

24 CHAPTER 3. GETTING STARTED WITH WEBOTS

• Rotation: Pressing the right mouse button while the shift key is pressed rotates solid ob-
jects: a first click is necessary to select a solid object, then a second click-and-drag rotates
the selected object around itsy axis.

• Lift: Pressing the middle mouse button (or rolling the mouse wheel) while the shift key is
pressed allows you to lift up or down the selected solid object. If you have a two-button
mouse, you will need to hold down both the shift and control keys to lift solid objects.

3.2.7 Selecting a solid object

Simply clicking on a solid object allows you to select this object. Selecting a robot enables the
choice ofRobot View in thesimulation menu. Double-clicking on a solid object opens the scene
tree window where the world and robots can be edited. The selected solid object appears selected
in the scene tree window as well.

3.3 Scene Tree Window

As seen in the previous section, to access to the Scene Tree Window you can either chooseScene
Tree Window in theEdit menu, or click on the pointer button and double-click on a solid object.

The scene tree contains all information necessary to describe the graphic representation and sim-
ulation of the 3D world. A world in Webots includes one or more robots and their environment.

The scene tree of Webots is structured like a VRML file. It is composed of a list of nodes, each
containing fields. Fields can contain values (text string, numerical values) or nodes.

Some nodes in Webots are VRML nodes, partially or totally implemented, while others are
specific to Webots. For instance theSolid node inherits from theTransform node of VRML
and can be selected and moved with the buttons in the World Window.

This section describes the buttons of the Scene Tree Window, the VRML nodes, the Webots
specific nodes and how to write a.wbt file in a text editor.

3.3.1 Buttons of the Scene Tree Window

The scene tree with the list of nodes appears on the left side of the window. Clicking on the+ in
front of a node or double-clicking on the node displays the fields inside the node, and similarly
expands the fields. The field values can be defined on the top right side of the window. Five
editing buttons are available on the bottom right side of the window:

Cut

3.3. SCENE TREE WINDOW 25

Figure 3.3: Scene Tree Window

Copy

Paste after

These three buttons let you cut, copy and paste nodes and fields. However, you can’t perform
these operations on the three first nodes of the tree (WorldInfo, Viewpoint andBackground).
These nodes are mandatory and don’t need to be duplicated. Similarly, you can’t copy the
Supervisor node because only one supervisor is allowed. Please note that when you cut or
copy a robot node, like aDifferentialWheels or Supervisor node, thecontroller field
of this node is reset to"void" .

Delete : This button allows you to delete a node. It appears only if a node is selected. If a
field is selected, theDefault Value button appears instead.

Default Value : You can click on this button to reset the default value(s) of a field. A field
with values must be selected in order to perform this button. If a node is selected, theDelete
button replaces it.

26 CHAPTER 3. GETTING STARTED WITH WEBOTS

Transform : This button allows you to transform a node into another one.

Insert after : With this button, you can insert a node after the one currently selected. This
new node contains fields with default values, which you can of course modify to suit your needs.
This button also allows you to add a node to achildren field. In all cases, the software only
permits you to insert a coherent node.

Insert Node : Use this to insert a node into a field whose value is a node. You can insert
only a coherent node.

Export Node : Use this button to export a node into a file. Usually, nodes are saved in your
objects directory. Such saved nodes can then be reused in other worlds.

Import Node : Use this button to import a previously saved node into the scene tree. Usually,
saved nodes are located in the Webotsobjects directory or in your ownobjects directory.
The Webotsobjects directory already contains a few nodes that can be easily imported.

3.3.2 VRML nodes

A number of VRML 2.0 nodes are partially or completely supported in Webots.

The exact features of VRML 2.0 are the subject of a standard managed by the International
Standards Organization (ISO/IEC 14772-1:1997).

You can find the complete specifications on the official VRML Web site:\texttt{http://www.vrml.org}.

The VRML nodes supported in Webots are the following:

• Appearance

• Background

• Box

• Color

• Cone

• Coordinate

• Cylinder

• DirectionalLight

3.3. SCENE TREE WINDOW 27

• ElevationGrid

• Fog

• Group

• ImageTexture

• IndexedFaceSet

• IndexedLineSet

• Material

• PointLight

• Shape

• Sphere

• Switch

• TextureCoordinate

• TextureTransform

• Transform

• Viewpoint

• WorldInfo

The Reference Manual gives a more comprehensive list of nodes with associated fields.

3.3.3 Webots specific nodes

In order to implement powerful simulations including mobile robots with two-wheel differential
steerings, a number of nodes specific to Webots have been added to the VRML set of nodes.

VRML uses a hierarchical structure for nodes. For example, theTransform node inherits from
the Group node, such that, like theGroup node, theTransform node has achildren field,
but it also adds three additional fields:translation , rotation andscale .

In the same way, Webots introduces new nodes which inherit from the VRMLTransform node,
principally theSolid node. Other Webots nodes (DifferentialWheels , DistanceSensor ,
Camera, etc.) inherit from thisSolid node.

The different fields of the Webots nodes are explained below.

The Reference Manual gives a complete list of Webots nodes and their associated fields along
with a brief description of each field.

28 CHAPTER 3. GETTING STARTED WITH WEBOTS

The Solid node

A solid is a group of shapes that you can drag and drop in the world, using the mouse. Moreover,
the sensors of the robots and the collision detector of the simulator are able to detect solids. The
Solid node represents this group of shapes in the scene tree.

Principle of the collision detection of the simulator:

The collision detection engine is able to detect a collision between twoSolid nodes. It calculates
the intersection between the bounding objects of the solids. A bounding object (described in the
boundingObject field of theSolid node) is a geometric shape or a group of geometric shapes
which bounds the solid. If theboundingObject field is NULL, then no collision detection is
performed for thisSolid node. list ofchildren of the Solid node are used to compute the
bounding object.

The collision detection is mainly of use between a robotDifferentialWheels node) and an
obstacle (Solid node), and between two robots. TwoSolid nodes can never interpenetrate each
other; their movement is stopped just before the collision.

A description of the fields of theSolid node is given below.

TheSolid node inherits from the VRMLTransform node. The additional fields are:

• name: individual name of the solid (e.g.: ””my blue chair”).

• model : generic name of the solid (e.g.: ”chair”).

• author : name of the author of the simulation model of the solid.

• constructor : name of the company or individual who made the real solid.

• description : short description (1 line) of the solid.

• boundingObject : shape or a group of shapes which bound the solid for collision detec-
tion. If the value of this field isNULL, the collision detection is computed from the children
list of theSolid node. In any other case, theShape node is not used, because a bounding
box is not a filled object. TheShape node is replaced directly by aBox or aCylinder

node for example. See the example below.

• physics : this field is used when it is necessary to model a minimum of physics for a
Solid object. In this case, it contains aPhysics object which defines a number of phys-
ical properties for the solid. This is especially useful when implementing a robot pushing
an object like a ball. In this case, both the robot and the ball should have aPhysics node
in their physics field. If not used, this field is left to NULL.

• joint : unused at the moment (reserved for future use).

• locked : if TRUE, the solid object cannot be moved using the mouse. This is useful to
prevent moving an object by error.

3.3. SCENE TREE WINDOW 29

Example: a solid with a bounding box different from its list of children.

Let us consider the Khepera robot model. It is not exactly aSolid node, but the principle for the
boundingObject is the same. Open thekhepera.wbt file and look at theboundingObject

field of theDifferentialWheels node. The bounding object is a cylinder which has been
transformed. See figure 3.4.

Figure 3.4: The bounding box of the Khepera robot

The DifferentialWheels node

The DifferentialWheels node inherits from theSolid node. It is used to represent any
robot with two-wheel differential steering. The two specific fields which are essential for the
simulation areaxleLength andwheelRadius . The value ofaxleLength is the distance (in
meters) between the two wheels of the robot, and the value ofwheelRadius is the radius (in
meters) of the wheels.

Moreover, the origin of the robot coordinate system is the projection on the ground plane of the
center of the axle of the wheels.x is the axis of the wheel axle,y is the vertical axis andz is the
axis pointing towards the rear of the robot (the front of the robot has negativez coordinates).

TheDifferentialWheels node inherits from theSolid node. The additional fields are:

• controller : name of the program controlling the robot. This program lies in the direc-
tory with the same name in the controllers directory; for example, thevoid (or void.exe)

30 CHAPTER 3. GETTING STARTED WITH WEBOTS

controller is found in thewebots/controllers/void/ directory . The simulator will
use this program to control the robot.

• synchronozation : if the value isTRUE(default value), the simulator is synchronized
with the controller; if the value isFALSE, the simulator runs as fast as possible, without
synchronization.

• battery : this field should contain three values: the first one corresponds to the current
energy of the robot in Joules(J), the second one is the maximum energy the robot can
hold in Joules, the third one is the speed of energy recharge in Watts ([W]=[J]/[s]). The
simulator updates the first value, while the two others remain constant.

• cpuConsumption : consumption of the CPU (central processing unit) of the robot in
Watts.

• motorConsumption : consumption of the the motor in Watts.

• axleLength : distance between the two wheels in meters.

• wheelRadius : radius of the wheels in meters. Both wheels must have the same radius.

• maxSpeed: maximum speed of the wheels, expressed inrad/s.

• maxAcceleration : maximum acceleration of the wheels, expressed inrad/s2̂.

• speedUnit : defines the unit used in thedifferential wheels set speed function,
expressed inrad/s.

• slipNoise : slip noise added to each move expressed in percent. If the value is 0.1, a
noise of +/- 10 percent is added to the command for each simulation step.

• encoderNoise : noise added to the incremental encoder. If the value is -1, the encoders
are not simulated. If the value is 0, encoders are simulated without noise. Otherwise a
noise is added to encoder values. When the robot faces an obstacle, the robot wheels do
not slip, hence the encoder values are not incremented. This is very useful to detect that a
robot has hit an obstacle.

• encoderResolution : defines the number of encoder incrementations per radian of the
wheel. AnencoderResolution of 100will make the encoders increment their value of
about628each times the wheel makes a complete revolution.

The DistanceSensor node

The DistanceSensor node is used to model sonar sensors, infra-red sensors and laser range
finders. It uses a ray casting algorithm to detect collision between the sensor ray andSolid

nodes in the world. TheDistanceSensor node inherits from theSolid node. it includes two
additional specific fields:

3.3. SCENE TREE WINDOW 31

• type : type of sensor: currently only the ”infra-red” type is supported, but upcoming
versions of Webots may include ”sonar” or ”laser” types. Infra red sensors have a special
property: the are color sensitive and will see better light or red obstacles than dark or black
ones.

• lookupTable : This field is best explained through an example: Let us consider an infra-
red sensor. The white noise on the return value is 10 percent. For an obstacle made of
a given material and color and for a given ambient light, the response of the sensor is as
shown in figure 3.5

Given material and color
Given ambient light

���
���
���
���

Measured
Value

Distance to
the wall (m)

0.370.30.20.10

400

1000

50

noise

Figure 3.5: Measurements of the light reflected by an obstacle

The values of thelookupTable will be:

lookupTable [0 1000 0,
0.1 1000 0.1,
0.2 400 0.1,
0.3 50 0.1,
0.37 30 0]

This means that for a distance of 0 meter, the sensor will return a value of 1000 without
noise (0), for a distance of 0.1 meter, the sensor will return 1000 with a noise of 10 percent,
for a distance value of 0.2 meters, the sensor will return 400 plus or minus 10 percent of
noise, etc. For distance values not specified in the lookup table, the simulator will perform
a linear interpolation to compute the value returned by the sensor and its associated noise.
The first distance value of a lookup table must always be 0.

32 CHAPTER 3. GETTING STARTED WITH WEBOTS

Note:

the ray of a sensor can be displayed in the world view by selectingDisplay sensor rays in the
File/Preferences menu under theRendering panel.

In the case of an ”infra-red” sensor, the value returned by the lookup table is modified by a
reflection factor depending on the color properties of the object hit by the sensor ray. This
reflection factor is computed as follow:f = 0.2 + 0.8 * red levelwherered level is the level of
red color of the object hit by the sensor ray. This factor is then multiplicated to the return value
computed from the lookup table.

Please note that a primtive support forDistanceSensor nodes used for reading the red color
level of a textured ground was implemented. This is useful to simulate line following behaviors.
This feature is demonstrated in theground color.wbt example. In short, the ground texture
should lie in a rectangularIndexedFaceSet node centered at (0,0,0).

The LightSensor node

TheLightSensor node is used to model a phototransistor-like sensor which measure the level
of ambiant light in a given direction. The light level measured by theLightSensor node is
computed from eachPointLight node in the scene, taking into account the distance between
the sensor and the light, the orientation of the sensor relatively to the light, the intensity of the
light (computed from its ambient intensity, intensity and color). TheLightSensor node inherits
from theSolid node. it includes an additional specific field:

• lookupTable : similar to the one of theDistanceSensor node except that the distance
values (first column) are replaced by intensity values. This intensity value results from the
sum of intensity values computed for eachPointLight as follow:

distanceis the distance between theLightSensor and thePointLight .

dot is the dot product between the normalized sensor direction and the normalized vector
defined by theLightSensor location and thePointLight location.

att = attenuation.x + attenuation.y * distance + attenuation.z * distance * distance

cf = color.red * color.green * color.blue

intensityvalue = (ambiantIntensity + intensity) * cf * dot / att

The Camera node

TheCamera node is used to model a robot’s on-board camera. TheCamera node inherits from
theSolid node. The fields specific to theCamera node are:

• fieldOfView : horizontal field of view angle of the camera. The value ranges from0 to pi
radians. Since camera pixels are squares, the vertical field of view can be computed from
thewidth , height and horizontalfieldOfView :

3.3. SCENE TREE WINDOW 33

vertical FOV = fieldOfView * height / width

• width : width of the image in pixels.

• height : height of the image in pixels.

• type : type of the camera: ”color” or ”black and white”.

The Charger node

The Charger node is used to model a special kind of battery charger for the robots. A robot
has to get close to a charger in order to recharge itself. A charger is not like a standard battery
charger you plug to the power supply. Instead, it is a battery itself: it accumulates energy with
time. It could be compared to a solar power plan loading a battery. When the robot comes to get
energy, it can’t get more than the charger has currently accumulated.

TheCharger node inherits from theSolid node. The fields specific to theCharger node are:

• battery : this field should contain three values: the current energy of the charger (J), its
maximum energy (J) and its charging speed (W=J/s).

• radius : radius of the charging area in meters. The charging area is a disk centered on the
origin of the charger coordinate system. The robot can recharge itself if its origin is in the
charging area. See figure 3.6.

The Emitter node

The Emitter node is used to model an infra-red or radio emitter on-board a robot. You must
insert theEmitter node into the list of children of the robot. Please note that an emitter can only
emit data but it cannot receive any information. In order to enable a bi-directional communication
system, a robot needs both anEmitter and aReceiver node.

TheEmitter node inherits from theSolid node. The fields specific to theEmitter node are:

• type : type of the emitted signals: ”infra-red” or ”radio”.

• range : radius of the emission area in meters. The origin of the coordinate system of a
receiver must be in this area to allow this receiver to pick up the signal.

• channel : channel of emission. The value is an identification number for an infra-red
emitter or a frequency for a radio emitter. The receiver must use the same channel to
receive the emitted signals. It can be any positive integer value.

• baudRate : the baudRate value is the communication speed expressed in number of bits
per second.

34 CHAPTER 3. GETTING STARTED WITH WEBOTS

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

First case: the origin of the charger
coordinate system is at the center
of the charger.

Robot

Charger

origin of the charger coordinate system is
not at the center of the charger.

RobotCharger

Charging area

Charging area

Second case: Using a "Transform", the

Figure 3.6: The sensitive area of a charger

• byteSize : the byteSize value is the number of bits used to represent one byte (usually 8,
but may be more depending on whether control bits are used).

• bufferSize : the buffer is a memory area, its size is specified in bytes. The size of the
data to be emitted cannot exceed the buffer size, otherwise data is lost. When the emitter
emits the data, it flushes the buffer.

The Receiver node

The Receiver node is used to model an infra-red or radio receiver. A receiver, just like an
emitter, is usually on-board a robot. Please note that a receiver can only receive data but it
cannot emit any information. In order to enable a bi-directional communication system, a robot
needs both anEmitter and aReceiver node.

The fields and values of theReceiver node are nearly the same as those of theEmitter node.
As theEmitter node, theReceiver node inherits from theSolid node. The fields specific to
theReceiver node are:

3.3. SCENE TREE WINDOW 35

• type : type of the received signals: ”infra-red” or ”radio”.

• channel : channel of reception. The value is an identification number for an infra-red
receiver or a frequency for a radio receiver. The emitter must use the same channel to
detect the emitted signals.

• baudRate : the baudRate value is the communication speed expressed in bits per second.
It must be the same as the speed of the emitter.

• byteSize : the byteSize value is the number of bits used to represent one byte (usually 8,
but may be more if control bits are used). It must be the same size as the emitter buffer.

• bufferSize : the buffer is a memory area, its size is specified in bytes. The size of the
received data can’t exceed the buffer size, otherwise data is lost. When the receiver reads
the data, it flushes the buffer. If the old data has not been read when the new data is
received, the former is lost.

The HyperGate node

A hypergate is defined as a cylindrical area in the world. When a robot (more precisely the
origin of the robot coordinate system) enters it, it disappears and gets transferred to another
world specified in theHyperGate node.

TheHyperGate node inherits from theSolid node. The fields specific to theHyperGate node
are:

• url : destination URL of the form"wtp://host.domain.com/file#name" .

• radius : radius of the transfer cylinder.

• height : height of the transfer cylinder.

• maxFileSize : maximum file size for theRobot node accepted by the hypergate.

For example, an hypergate can look like an arch with the transfer cylinder lying inside the
arch. See figure 3.7.

The Physics node

This node is used to specify a number of physical properties associated to aSolid node, like its
mass, friction coefficient, energy absobtion, etc.

It was implemented to enable the modelling robot soccer systems, where a robot, or several robots
can push a ball which can roll and bounce against the walls. An example of using thePhysics

node is provided in thealice soccer.wbt world. The list of available fields is mentioned in
the reference manual and in theresources/nodes/Physics.wrl file with the physical unit
for each field.

36 CHAPTER 3. GETTING STARTED WITH WEBOTS

Arch

Transfer cylinder

Figure 3.7: An example of an Hypergate

The Supervisor node

A supervisor is a program which controls a world and its robots. For convenience it is represented
as a robot without any wheels, driven by a controller with extended capabilities which supervises
the whole world. A world cannot have more than one supervisor.

The Supervisor node inherits from theSolid node. Its other fields include some of the
DifferentialWheels node fields:

• controller

• synchronisation

• battery : usually meaningless for aSupervisor node.

• cpuConsumption : usually meaningless for aSupervisor node.

The TouchSensor node

The TouchSensor node is used to model bumper sensors. A bumper sensor will detect the
collision with anySolid object in the world, including otherDifferentialWheels nodes.
Collision detection is based upon theboundingObject field of theTouchSensor node and
the boundingObject field of otherSolid nodes. TheTouchSensor node inherits from the
Solid node. It includes two additional specific fields:

• lookupTable : similar to the one of theDistanceSensor node.

• type : type of sensor: ”bumper”.

3.3. SCENE TREE WINDOW 37

Note:

only the ”bumper” type is currently supported, but other types, including ”button”, ”force” or
”whisker” are likely to be implemented in a forthcoming version of Webots.

3.3.4 Writing a Webots file in a text editor

It is possible to write a Webots world file (.wbt) using a text editor. A world file contains a
header, nodes containing fields and values. Note that only a few VRML nodes are implemented,
and that there are nodes specific to Webots. Moreover, comments can only be written in the DEF,
and not like in a VRML file.

The Webots header is:

#VRML_SIM V3.0 utf8

After this header, you can directly write your nodes. The three nodesWorldInfo , Viewpoint

andBackground are mandatory.

Note:

we recommend that you write your file using the tree editor. However it may be easier to make
some particular modifications using a text editor (like using the search and replace feature of a
text editor).

38 CHAPTER 3. GETTING STARTED WITH WEBOTS

Chapter 4

Tutorial: Modelling and simulating your
robot

The aim of this chapter is to give you several examples of robots, worlds and controllers. The first
world is very simple, nevertheless it introduces the construction of any basic robot, and explains
how to program a controller. The second example will show you how to model a camera on this
simple robot. The third example will show you how to build a virtual Pioneer 2TM robot from
ActivMedia Robotics. The fourth part will explain how to work with robots from K-Team.

4.1 My first world: kiki.wbt

As a first introduction, we are going to simulate a very simple robot made up of a box, two wheels
and two infra-red sensors (see figure 4.1), controlled by a program inspired by a Braitenberg
algorithm, in a simple environment surrounded by a wall.

4.1.1 Environment

We just want to have a simple world with a surrounding wall. We will represent this wall using
anExtrusion node in the tree editor. The coordinates of the wall are shown in figure 4.2.

First, go to theFile menu,New item to open a new world. Then open the tree editor (in theEdit
menu). We are going to change the lighting of the scene:

1. Select thePointLight node, and click on the + just in front of it. You can now see the
different fields of thePointLight node. SelectambientIntensity and enter 0.5 as a
value, then selectintensity and enter 0.8, then selectlocation and enter 0.5 0.5 0.5
as values. Pressreturn .

39

40 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

wheels

IR sensors

Figure 4.1: Thekiki robot

2. Select thePointLight node, copy and paste it. In this newPointLight node, type -0.5
0.5 0.5 in thelocation field.

3. Repeat this copy/paste twice again with -0.5 0.5 -0.5 in thelocation field of the third
PointLight node, and 0.5 0.5 -0.5 in thelocation field of the fourth and lastPointLight

node.

4. The scene is now better lit.

Secondly, let us create the wall:

1. Select the lastSolid node and click on theinsert after button.

2. Choose aSolid node.

3. Fill in the text fields with your desired text, e.g., ”wall” for the name.

4. Select thechildren field andInsert after a Shape node.

5. Insert a newAppearance node in theappearance field. Insert a newMaterial node
in thematerial field of theAppearance node. Select thediffuseColor field of the
Material node and choose a color to define the color of the wall.

6. Now insert anExtrusion node in thegeometry field of theShape .

7. Set the wall corner coordinates in thecrossSection field and setconvex to FALSE.

8. In thespine field, write that the wall ranges between 0 and 0.1 along the y axis.

9. As we want our robot to detect the wall, we have to fill in theboundingObject field. The
bounding object can have exactly the same shape as the wall, soinsert a DEF at the level of
geometry Extrusion : WALL. Then, in theboundingObject field, insert USE WALL.

4.1. MY FIRST WORLD: KIKI.WBT 41

0

x

1 2

34

8

9
5

0 (−0.489, −0.5)

5 (−0.49, −0.5)

1 (−0.489, −0.49)
2 (0.49, −0.49)
3 (0.49, 0.49)
4 (−0.49, 0.49)

6 (−0.5, −0.5)
7 (−0.5, 0.5)
8 (0.5, 0.5)
9 (0.5, −0.5)

6

7

z

(x,z) coordinates:

Figure 4.2: Thekiki world

10. Close the tree editor, save your file and look at the result.

The wall in the tree editor is represented in figure 4.3, while the same wall in the world editor is
visible in figure 4.4

4.1.2 Robot

The aim of this subsection is to model thekiki robot. This robot is made up of aDifferentialWheels

node, in which we find several children: aTransform node for the body, twoSolid nodes for
the wheels, twoDistanceSensor nodes for the infra-red sensors and aShape node with a
texture.

The origin and the axis of the coordinate system of the robot and its dimensions are shown in
figure 4.5.

To model the body of the robot:

1. Open the tree editor.

2. Select the lastSolid node.

3. Insert after a DifferentialWheels node, give it a name: ”kiki”.

42 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Figure 4.3: The wall in the tree editor

4. In thechildren field, first introduce aTransform node that will contain a box shape.
In the newchildren field, insert after a Shape node. Choose a color, as described
previously. In thegeometry field, insert a Box node. Set the dimension of the box to
[0.08 0.08 0.08]. Now set thetranslation values to [0 0.06 0] in theTransform node
(see figure 4.6)

To model the left wheel of the robot:

1. Select the previousTransform and insert after a Solid node in order to model the left
wheel. Type ”left wheel” in the name field, so that thisSolid node is recognized as the
left wheel of the robot and will rotate according to the motor command.

2. The axis of rotation of the wheel isx. Moreover, a wheel is made of aCylinder rotated
of pi/2 radians around thez axis. To obtain proper movement of the wheel, you must pay
attention not to confuse these two rotations. consequently, you must add aTransform

node to the children of theSolid node.

3. After adding thisTransform node, introduce aShape with aCylinder in its geometry

field. The dimensions of the cylinder are 0.01 for theheight and 0.025 for theradius .
Set therotation to [0 0 1 1.57]. Pay attention to the sign of the rotation; if it is false,
the wheel will turn in the wrong direction.

4. In theSolid node, set the translation to [-0.045 0.025 0] to position the left wheel, and set
the rotation of the wheel around thex axis: [1 0 0 0].

4.1. MY FIRST WORLD: KIKI.WBT 43

Figure 4.4: The wall in the world window

5. Give aDEFname to yourTransform : WHEEL; notice that you positionned the wheel in
translation at the level of theSolid node, so that you can reuse theWHEEL Transform

for the right wheel.

6. Close the tree window, look at the world and save it. Use the navigation buttons to change
the point of view.

To model the right wheel of the robot:

1. Select the left wheelSolid node andinsert after anotherSolid node. Type ”right wheel”
in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0 0 0].

2. In thechildren , insert after USE WHEEL. PressReturn , close the tree window and save
the file. You can examine your robot in the world editor, move it and zoom in on it.

The robot and its two wheels are shown in figure 4.7 and figure 4.8.

The two infra-red sensors are defined as two cylinders on the front of the robot body. Their
diameter is 0.016 m and their height is 0.004 m. You must position these sensors properly so that
the sensor rays point in the right direction, towards the front of the robot.

44 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

0.08

y

LEFT SIDE VIEW

z

y

0.05

0.08

0.01

0.08

Ø 0.050.02

x

FRONT VIEW

Figure 4.5: Coordinate system and dimensions of thekiki robot

1. In thechidren of the DifferentialWheels node, insert after a DistanceSensor

node.

2. Type the name ”ir0”. It will be used by the controller program.

3. Now, we will attach a cylinder shape to this sensor. In thechidren of theDistanceSensor

node,insert after a Tranform node. Give aDEFname to it: INFRARED, which you will
use for the second IR sensor.

4. In thechidren of theTranform node,insert after a Shape node. Choose an appearance
andinsert a Cylinder in thegeometry field. Type 0.004 for the height and 0.08 for the
radius.

5. Set the rotation for theTranform node to [0 0 1 1.57] to adjust the orientation of the
cylinder.

6. In theDistanceSensor node, set the translation to position the sensor and its ray: [0.02
0.08 -0.042]. In theFile menu,Preferences , Rendering , check theDisplay sensor rays box.

4.1. MY FIRST WORLD: KIKI.WBT 45

Figure 4.6: Body of thekiki robot: a box

In order to have the ray directed towards the front of the robot, you must set the rotation to
[0 1 0 1.57].

7. In theDistanceSensor node, you must introduce some values of distance measurements
of the sensors to thelookupTable field, according to figure 4.9. These values are:

lookupTable [0 1024 0,
0.05 1024 0,
0.15 0 0]

8. To model the second IR sensor, select theDistanceSensor node andinsert after a new
DistanceSensor node. Type ”ir1” as a name. Set its translation to [-0.02 0.08 -0.042]
and its rotation to [0 1 0 1.57]. In thechildren , insert after USE INFRARED. In the
lookupTable field, type the same values as shown above.

The robot and its two sensors are shown in figure 4.10 and figure 4.11.

Note:

a texture can only be mapped on an IndexedFaceSet shape. ThetexCoord andtexCoordIndex

entries must be filled. The image used as a texture must be a.png or a .jpg file, and its size
must be(2n̂) * (2n̂) pixels (for example 8x8, 16x16, 32x32, 64x64, 128x128 or 256x256 pixels).
Transparent images are not allowed in Webots. Moreover, PNG images should use either the 24
or 32 bit per pixel mode (lowerbpp or gray levels are not supported). Beware of the maximum
size of texture images depending on the 3D graphics board you have: some old 3D graphics

46 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Figure 4.7: Wheels of thekiki robot

boards are limited to 256x256 texture images while more powerful ones will accept 2048x2048
texture images.

To paste a texture on the face of the robot:

1. Select the lastDistanceSensor node andinsert after a Shape node.

2. In theappearance field, insert anAppearance node. In thetexture field of this node,
insert an ImageTexture node with the following URL:"kiki/kiki.png" .

3. In thegeometry field, insert an IndexedFaceSet node, with aCoordinate node in
thecoord field. Type the coordinates of the points in thepoint field.

[0.015 0.05 -0.041,
0.015 0.03 -0.041,

4.1. MY FIRST WORLD: KIKI.WBT 47

Figure 4.8: Body and wheels of thekiki robot

-0.015 0.03 -0.041,
-0.015 0.05 -0.041]

andinsert after thecoordIndex field the values 0, 1, 2, 3, -1.

4. In thetexCoord field, insert a TexureCoordinate node. In thepoint field, enter the
coordinates of the texture:

[0 0
1 0
1 1
0 1]

and in thetexCoordIndex field, type 3, 0, 1, 2.

5. The texture values are shown in figure 4.12.

To finish with theDifferentialWheels node, you must fill in a few more fields:

48 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Measured
value

Distance to
the wall

1024

0
0.05 0.15

Figure 4.9: Distance measurements of thekiki sensors.

1. In thecontroller field, type the name ”simple”. It will be used by the controller pro-
gram.

2. The boundingObject field can contain aTransform node with aBox, as a box as
a bounding object for collision detection is sufficient to bound thekiki robot. Insert a
Transform node in theboundingObject field, with thetranslation set to [0 0.05
-0.002] and aBox node in itschildren . Set the dimension of theBox to [0.1 0.1 0.084].

3. In theaxleLength field, enter the length of the axle between the two wheels: 0.09 (ac-
cording to figure 4.5).

4. In thewheelRadius field, enter the radius of the wheels: 0.025.

5. Values for other fields are shown in figure 4.13 and the finished robot in its world is shown
in figure 4.14.

Thekiki.wbt is included in the Webots distribution, in theworlds directory.

4.1.3 A simple controller

This first controller is very simple and thus namedsimple . The controller program simply reads
the sensor values and sets the two motors speeds, in such a way thatkiki avoids the obstacles.

Below is the source code for thesimple.c controller:

#include <robot.h>
#include <differential_wheels.h>
#include <distance_sensor.h>

4.1. MY FIRST WORLD: KIKI.WBT 49

Figure 4.10: The DistanceSensor nodes of thekiki robot

#define SPEED 100

static DeviceTag ir0,ir1;

void reset(void) {
ir0 = robot_get_device("ir0");
ir1 = robot_get_device("ir1");
// g_print("ir0=134530019 ir1=1076052308\n",ir0,ir1);

}

int main() {
gint16 left_speed,right_speed;
guint16 ir0_value,ir1_value;

robot_live(reset);
distance_sensor_enable(ir0,64);
distance_sensor_enable(ir1,64);
for(;;) { /* The robot never dies! */

50 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Figure 4.11: Thekiki robot and its sensors

ir0_value = distance_sensor_get_value(ir0);
ir1_value = distance_sensor_get_value(ir1);
if (ir1_value>200) {

left_speed = -20;
right_speed = 20;

}
else if (ir0_value>200) {

left_speed = 20;
right_speed = -20;

}
else {

left_speed =SPEED;
right_speed=SPEED;

}
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
robot_step(64); /* run one step */

}
return 0;

4.2. MY SECOND WORLD: A KIKI ROBOT WITH A CAMERA 51

Figure 4.12: Defining the texture of thekiki robot

4.2 My second world: akiki robot with a camera

The camera to be modelled is a color 2D camera, with an image 80 pixels wide and 60 pixels
high, and a field of view of 60 degrees (1.047 radians).

We can model the camera shape as a cylinder, on the top of thekiki robot at the front. The
dimensions of the cylinder are 0.01 for the radius and 0.03 for the height. See figure 4.15.

Try modelling this camera. Thekiki camera.wbt file is included in the Webots distribution,
in theworlds directory, in case you need any help.

A controller program for this robot, namedcamera is also included in the Webots distribution,
in thecontrollers directory.

52 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Figure 4.13: The other fields of the DifferentialWheels node

4.3 My third world: pioneer2.wbt

We are now going to model and simulate a commercial robot from Activmedia Robotics: Pioneer
2-DXTM, as shown on the Activmedia Web site: http://www.activrobots.com. First, you must
model the robots environment. Then, you can model a Pioneer 2TM robot with 16 sonars and
simulate it with a controller.

Please refer to theworlds/pioneer2.wbt andcontrollerss/pioneer2 files for the world
and controller details.

4.3.1 Environment

The environment consists of:

• a chessboard: aSolid node with anElevationGrid node.

• a wall around the chessboard:Solid node with anExtrusion node.

• a wall inside the world: aSolid node with anExtrusion node.

This environment is shown in figure 4.16.

4.3. MY THIRD WORLD: PIONEER2.WBT 53

Figure 4.14: Thekiki robot in its world

4.3.2 Robot with 16 sonars

The robot (aDifferentialWheels node) is made up of six main parts:

1. the body: anExtrusion node.

2. a top plate: anExtrusion node.

3. two wheels: twoCylinder nodes.

4. a rear wheel: aCylinder node.

5. front an rear sensor supports: twoExtrusion nodes.

6. sixteen sonars: sixteenDistanceSensor nodes.

The Pioneer 2 DXTM robot is depicted in figure 4.17.

Open the tree editor and add aDifferentialWheels node.Insert in thechildren field:

1. for the body: aShape node with ageometry Extrusion . See figure 4.18 for the coor-
dinates of theExtrusion .

54 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Figure 4.15: Thekiki robot with a camera

2. for the top plate: aShape node with ageometry Extrusion . See figure 4.19 for the
coordinates of theExtrusion .

3. for the two wheels: twoSolid nodes. EachSolid node children contains aTransform

node, which itself contains aShape node with ageometry Cylinder . EachSolid

node has a name: ”left wheel” and ”right wheel”. See figure 4.20 for the wheels dimen-
sions.

4. for the rear wheel: aTransform node containing aShape node with ageometry Cylinder

, as shown in figure 4.21

5. for the sonar supports: twoShape nodes with ageometry Extrusion . See figure 4.22
for theExtrusion coordinates.

6. for the 16 sonars: 16DistanceSensor nodes. EachDistanceSensor node contains
a Transform node. TheTransform node has aShape node containing ageometry

Cylinder . See figure 4.23 and the text below for more explanation.

Modelling the sonars:

The principle is the same as for thekiki robot. The sonars are cylinders with a radius of 0.0175
and a height of 0.002. There are 16 sonars, 8 on the front of the robot and 8 on the rear of the

4.3. MY THIRD WORLD: PIONEER2.WBT 55

Figure 4.16: The walls of the Pioneer 2TM robot world

robot (see figure 4.23). The angles between the sonars and the initial position of theDEF SONAR

Transform are shown in figure 4.24. ADEF SONAR Transform contains aCylinder node in
a Shape node with a rotation around thez axis. ThisDEF SONAR Transform must be rotated
and translated to become the sensors FL1, RR4, etc.

Each sonar is modelled as aDistanceSensor node, in which can be found a rotation around
they axis, a translation, and aUSE SONAR Transform, with a name (FL1, RR4, ...) to be used
by the controller.

To finish modelling the Pioneer 2TM robot, fill in the remaining fields of theDifferentialWheels

node as shown in figure 4.25.

4.3.3 Controller

The controller of the Pioneer 2TM robot is fairly complex. It implements a Braitenberg controller
to avoid obstacles using its sensors. An activation matrix was determined by trial and error to
compute the motor commands from the sensor measurements. However, since the structure of
the Pioneer 2TM is not circular some tricks are used, such as making the robot go backwards
in order to rotate safely when avoiding obstacles. The source code of this controller is a good
programming example. The name of this controller ispioneer2 .

56 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Figure 4.17: The Pioneer 2 DXTM robot

z

x

01

2

3

4 5

6

7

Coordinates of the crossSection field of
the extrusion node:
0: x=−0.1, z=0.215
1: x=0.1, z=0.215
2: x=0.135, z=0.185
3: x=0.135, z=−0.095
4: x=0.08, z=−0.11
5: x=−0.08, z=−0.11
6: x=−0.135, z=−0.095
7: x=−0.135, z=0.185

FRONT

BACK

0.059 < y <0.234

Figure 4.18: Body of the Pioneer 2TM robot

4.3. MY THIRD WORLD: PIONEER2.WBT 57

z

x

FRONT

BACK

0
1

2

3

4

5
6

7
8

9
10 11 12

13
14

15

16
17

18

19

20
21

Coordinates of the crossSection field
of the Extrusion node:
0: x=0 z=−0.174
1: x=−0.056 z=−0.166
2: x=−0.107 z=−0.145
3: x=−0.155 z=−0.112
4: x=−0.190 z=−0.064
5: x=−0.190 z=0.074
6: x=−0.160 z=0.096
7: x=−0.160 z=0.151
8: x=−0.155 z=0.2
9: x=−0.107 z=0.236
10: x=−0.056 z=0.256
11: x=0 z=0.264
12: x=0.056 z=0.256
13: x=0.107 z=0.236
14: x=0.155 z=0.2
15: x=0.160 z=0.151
16: x=0.160 z=0.096
17: x=0.190 z=0.074
18: x=0.190 z=−0.064
19: x=0.155 z=−0.112
20: x=0.107 z=−0.145
21: x=0.056 z=−0.166

0.234 < y < 0.24

Figure 4.19: Top plate of the Pioneer 2TM robot

x

y

RIGHT
WHEEL

LEFT
WHEEL

0.3206

Z

Radius of the wheels: 0.0825
Depth of the wheels: 0.037

Figure 4.20: Wheels of the Pioneer 2TM robot

58 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

y

x

z

REAR
WHEEL

0.2147

Radius of the wheel: 0.0325
Width of the wheel: 0.024

Figure 4.21: Rear wheel of the Pioneer 2TM robot

z

x

0

1

2

3
4

5

6

7

8

0

1

2

3
4

5

6

7

8

Coordinates of the crossSection field of the

4: x=0 z=−0.168

Coordinates of the crossSection field of the

 4: x=0 z=0.258

0.184 < y < 0.234

0: x=−0.136 z=0.135
1: x=−0.136 z=0.185
2: x=−0.101 z=0.223

5: x=0.054 z=0.248

3: x=−0.054 z=0.248

6: x=0.101 z=0.223
7: x=0.136 z=0.185
8: x=0.136 z=0.135

0: x=0.136 z=−0.046
1: x=0.136 z=−0.096
2: x=0.101 z=−0.134
3: x=0.054 z=−0.159

5: x=−0.054 z=−0.159
6: x=−0.101 z=−0.134
7: x=−0.136 z=−0.096
8: x=−0.136 z=−0.046

 REAR SONAR
SUPPORT

FRONT SONAR
SUPPORT

Extrusion node "Rear sonar support":

Extrusion node "Front sonar support":

Figure 4.22: Sonar supports of the Pioneer 2TM robot

4.3. MY THIRD WORLD: PIONEER2.WBT 59

z

x

RL4

RL3

RL2

RL1RR1

RR2

RR3

RR4

FL3

FL4

FL2

FL1FR1

FR2

FR3

FR4

RR: Rear Right Sonar
RL: Rear Left Sonar
FR: Front Right Sonar
FL: Front Left SonarREAR SONAR

SUPPORT

FRONT SONAR
SUPPORT

Figure 4.23: Sonars location on the Pioneer 2TM robot

FR1

FR2

FR3

FR4

z

x

80 degrees

40

60

DEF SONAR Transform
Sonar ray

Figure 4.24: Angles between the Pioneer 2TM sonar sensors

60 CHAPTER 4. TUTORIAL: MODELLING AND SIMULATING YOUR ROBOT

Sonar name translation rotation

FL1 -0.027 0.209 -0.164 0 1 0 1.745
FL2 -0.077 0.209 -0.147 0 1 0 2.094
FL3 -0.118 0.209 -0.11 0 1 0 2.443
FL4 -0.136 0.209 -0.071 0 1 0 3.14
FR1 0.027 0.209 -0.164 0 1 0 1.396
FR2 0.077 0.209 -0.147 0 1 0 1.047
FR3 0.118 0.209 -0.116 0 1 0 0.698
FR4 0.136 0.209 -0.071 0 1 0 0
RL1 -0.027 0.209 0.253 0 1 0 -1.745
RL2 -0.077 0.209 0.236 0 1 0 -2.094
RL3 -0.118 0.209 0.205 0 1 0 -2.443
RL4 -0.136 0.209 0.160 0 1 0 -3.14
RR1 0.027 0.209 0.253 0 1 0 -1.396
RR2 0.077 0.209 0.236 0 1 0 -1.047
RR3 0.118 0.209 0.205 0 1 0 -0.698
RR4 0.136 0.209 0.160 0 1 0 0

Table 4.1: Translation and rotation of the Pioneer 2TM DEF SONAR Transforms

Figure 4.25: Some fields od the Pioneer 2TMDifferentialWheels node

Chapter 5

Robot and Supervisor Controllers

5.1 Overview

A robot controller is a program usually written in C, C++ or Java used to control one robot. A
supervisor controller is a program usually written in C or C++ used to control a world and its
robots.

5.2 Setting Up a New Controller

In order to develop a new controller, you must first create acontrollers directory in your user
directory to contain all your robot and supervisor controller directories. Each robot or supervisor
controller directory contains all the files necessary to develop and run a controller. In order
to tell Webots where your controllers are, you must set up your user directory in the Webots
preferences. Webots will first search for acontrollers directory in your user directory, and if
it doesn’t find, it will then look in its owncontrollers directory. Now, in your newly created
controllers directory, you must create a controller subdirectory, let’s call itsimple . Inside
simple , several files must be created:

• a number of C source files, likesimple.c which will contain your code.

• a Makefile which can be copied (or inspired) from the Webotscontrollers direc-
tories. Note that Windows users have several alternatives to the Makefile: They can
use a Dev-C++ project or a Microsoft Visual C++ project, as examplified in the Webots
controllers/braiten directory.

You can compile your program by typingmake in the directory of your controller.

As an introduction, it is recommanded that you copy thesimple controller directory from the
Webotscontrollers to your owncontrollers directory and then try to compile it.

61

62 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

5.3 Webots Execution Scheme

5.3.1 From the controller’s point of view

Each robot controller program is built in the same manner. An initialization with the func-
tion robot live is necessary before starting the robot. A callback function is provided to the
robot live function in order to identify the devices of the robot (see section 5.4). Then an end-
less loop (usually implemented as afor(;;) { } statement) runs the controller continuously
until the simulator decides to terminate it. This endless loop must contain at least one call to
therobot step function which asks the simulator to advance the simulation time a given num-
ber of milliseconds, thus advancing the simulation. Before callingrobot step , the controller
can enable sensor reading and set actuator commands. Sensor data can be read immediately af-
ter callingrobot step . Then you can perform your calculations to determine the appropriate
actuator commands for the next step.

5.3.2 From the point of view of Webots

Webots receives controller requests from possibly several robots controllers. Each request is
divided into two parts: an actuator command part which takes place immediately, and a sensor
measuring part which is scheduled to take place after a given number of milliseconds (as defined
by the parameter of the step function). Each request is queued in the scheduler and the simulator
advances the simulation time as soon as it receives new requests.

5.3.3 Synchronous versus Asynchronous controllers

Each robot (DifferentialWheels or Supervisor) may be either synchronous or asynchronous.
Webots waits for the requests of synchronous robots before it advances the simulation time; it
doesn’t wait for asynchronous ones. Hence an asynchronous robot may be late (if the controller
is computationally expensive, or runs on a remote computer with a slow network connection).
In this case, the actuator command occurs later than expected. If the controller is very late, the
sensor measurement may also occur later than expected. However, this delay can be verified by
the robot controller by reading the return value of therobot step function (see the Reference
Manual for more details). In this way the controller can adapt its behavior and compensate.

Synchronous controllers are recommended for robust control, while asynchronous controllers
are recommended for running robot competitions where computer resources are limited, or for
networked simulations involving several robots dispatched over a computer network with an
unpredictable delay (like the Internet).

5.4. READING SENSOR INFORMATION 63

5.4 Reading Sensor Information

To obtain sensor information, the sensor must be:

1. identified: this is performed by therobot get device function which returns a handler
to the sensor from its name. This needs to be done only once in the reset callback function,
which is provided as an argument to therobot live function. The only exception to this
rule concerns the root device of a robot (DifferentialWheels or CustomRobot node) which
doesn’t need to be identified, because it is the default device (it always exists and there is
only one of such device in each robot).

2. enabled: this is performed by the appropriateenable function specific to each sensor (see
distance sensor enable for example). It can be done once, before the endless loop,
or several times inside the endless loop if you decide to disable and enable the sensors
from time to time to save computation time.

3. run: this is performed by therobot step function inside the endless loop.

4. read: finally, you can read the sensor value using a sensor specific function call, like
distance sensor get value inside the endless loop.

5.5 Controlling Actuators

Actuators are easier to handle than sensors. They don’t need to be enabled. To control an actuator,
it must be:

1. identified: this is performed by therobot get device function which returns a handler
to the actuator from its name. This needs to be done only once in the reset callback func-
tion, which is provided as an argument to therobot live function. As with sensors, the
only exception to this rule concerns the root device of a robot.

2. set: this is performed by the appropriateset function specific to each actuator (seedifferential wheels set speed

for an example). It is usually called in the endless loop with different computed values at
each step.

3. run: this is done by therobot step function inside the endless loop.

5.6 Going further with the Supervisor Controller

The supervisor can be seen as a super robot. It is able to do everything a robot can do, and more.
This feature is especially useful for sending messages to and receiving messages from robots,

64 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

using theReceiver andEmitter nodes. Additionally, it can do many more interesting things.
A supervisor can move or rotate any object in the scene, including theViewpoint , change the
color of objects, and switch lights on and off. It can also track the coordinate of any object which
can be very useful for recording the trajectory of a robot. As with any C program, a supervisor
can write this data to a file. Finally, the supervisor can also take a snapshot of the current scene
and save it as ajpeg or PNGimage. This can be used to create a ”webcam” showing the current
simulation in real-time on the Web!

Chapter 6

Tutorial: Using the KheperaTM robot

The goal of this chapter is to explain you how to use Webots with your Khepera robot. Khepera
is a mini mobile robot developed by K-Team SA, Switzerland (www.k-team.com).

Webots can use the serial port of your computer to communicate with the Khepera robot.

6.1 Hardware configuration

1. Configure your Khepera robot in mode 1, for serial communication protocole at 9600 baud
as described in figure 6.1.

2. Plug the serial connection cable between your Khepera robot and the Khepera interface.

3. Plug the Khepera Interface into a serial port of your computer (eitherCOM1or COM2, at
your convenience).

4. Check the the Khepera robot power switch is OFF and plug the power supply to the Khep-
era Interface.

That’s it. Your system is operational: you will now be able to simulate, remote control and
transfer controllers to your Khepera robot.

6.2 Running the simulation

Launch Webots: on Windows, double click on the lady bug icon, on linux, typewebots in a
terminal. Go to theFile Open menuitem and open the file namedkhepera.wbt , which contains
a model of a Khepera robot (see figure 6.2) associated with a Khepera controller (see figure 6.3).
If the Khepera controller window do not show up, press theStep button in the main window of
Webots.

65

66 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

0
246

8
A C E

leds mode selector
set to 1

serial port

Top View

Figure 6.1: Khepera II mode selection

You can navigate in the scene using the mouse pointer. To rotate the scene, click on the left
button and drag the mouse. To translate the scene, use the right button. To zoom and tilt, use the
middle button. You may also use the mouse wheel to zoom in or out.

Using these controls, try to find a good view of the Khepera robot. You have probably noticed
that clicking on an object in the scene would select it. Select the Khepera robot and choose the
Simulation Robot View menuitem. This way, the camera will follow the robot moves. Then,
click on theRun button to start up the simulation. You will see the robot moving, while avoiding
obstacles.

To visualize the range of the infra red distance sensors, go to theFile Preferences... menu item to
pop up the Preferences window. Then, check theDisplay sensor rays check box in theRendering
tab.

In the controller windows, the values of the infra-red distance sensors are displayed in blue,
while the light measurement values are displayed in light green. You can also observe the speed
of each motor, displayed in red and the incremental encoder values displayed in dark green (see
figure 6.3).

6.3 Understanding the model

6.3.1 The 3D scene

In order to better understand what is going on with this simulation, let’s take a closer look at the
scene structure. Double click on an object in the scene, or select theEdit Scene Tree Window to

6.3. UNDERSTANDING THE MODEL 67

Figure 6.2: Khepera example world

open the scene tree window. If you double clicked on an object, you will see that object selected
in the scene tree (see figure 6.4). Clicking on the little cross icon of an object name in the scene
tree, will expand that object, displaying its properties.

We will not describe in details the Webots scene structure in this chapter. It is build as an
extension of the VRML97 standard. For a more complete description, please refer to the Webots
user guide and reference manuals. However, let’s have a first overview.

You can see that the scene contains several objects, which we call nodes. You can play around
with the nodes, expanding them to look into their fields, and possibly change some values. The
WorldInfo node contains some text description about the world. TheViewpoint node defines
the camera from which the scene is viewed. TheBackground node defines the color of the
background of the scene which is blue in this world. ThePointLight node defines a light
which is visible from the light sensors of the robot. The light location can be displayed in the
scene by checkingDisplay Lights in theRendering tab of the preferences window. The remaining
nodes are physical objects and have aDEFname for helping identifying them.

The GROUND Transform is not a Solid which means no collision detection is performed
with this node. On the other hand, theWALLandBOXnodes areSolid nodes. They have a
boundingObject field used for collision detection. Finally, theKHEPERA DifferentialWheels

node defines the Khepera robot.

68 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Figure 6.3: Khepera Controls

6.3.2 The Khepera model

As you can guess, aDifferentialWheels node defines any differentially wheeled robot. The
parameters provided here correspond to the size and functionalities of a Khepera robot. For
example, if you expand the children list, you will be able to find some shapes defining the body of
the robot and a number of sensors, including distance and light sensors. Although on the Khepera
robot, the light and distance sensors are the same device, they are divided into two logical devices
in the Webots model. This makes the simulator more modular and generic. Moreover, you will
notice that each device (DifferentialWheels , DistanceSensor , LightSensor , etc.) has
a list of children defining either sub devices or 3D shapes.

The differential wheels model

The differential wheels model of a robot is defined by a number of parameters, including the
axle length, the wheel radius, the maximum speed, maximum acceleration, the speed unit, slip
noise and encoder noise. Values for these parameters are provided in this example to match
approximately a Khepera robot. You may need to refine them if you need a very precise model.
Please refer to the Webots user guide for a complete description of these parameters.

6.4. PROGRAMMING THE KHEPERA ROBOT 69

Figure 6.4: Scene tree window for the Khepera world

The sensor model

The distance sensors are simulated by computing the collision between a single sensor ray and
objects in the scene. The response of the sensor is computed according to itslookupTable and
modulated by the color of the object (since these sensors are of ”infra-red”type , red objects are
seen better than green ones). ThelookupTable is actually a table of floating point values which
is extrapolated to compute the response of the sensor. The first value is the distance expressed
in meters (increasing the biggest distance value will make the sensor look further). The second
value is the response read by the controller of the robot and the third value is the percentage of
white noise associated to the distance and response, expressed in the range [0;1]. For a more
complete discussion on the distance sensor model, please refer to the Webots user guide.

Light sensors are pretty similar to distance sensors. They also rely on alookupTable for
computing their return value according the measured value.

6.4 Programming the Khepera robot

6.4.1 The controller program

Among the fields of aDifferentialWheels node, you may have notived thecontroller

field. This field defines an executable program that will control the robot. By default executable

70 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

programs are searched in the Webotscontrollers directory, but you can define another lo-
cation in the PreferencesFiles and paths tab, under theUser path: label. This path define a
directory in webots will look for aworlds and acontrollers directory. Thecontrollers

directory should contain subdirectories named after the names of the controllers (i.e.,khepera

in our case). Thiskhepera directory should contain an executable file namedkhepera.exe

on Windows orkhepera on Linux. Moreover, along with the executable file, you will also find
sources files and possibly makefiles or project files used to build the executable from the sources.

6.4.2 Looking at the source code

The source code of the example controller is located in the following file under the Webots
directory:

controllers/khepera/khepera.c

It contains the following code:

#include <stdio.h>
#include <transfer/khepera.h>
#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>
#include <device/light_sensor.h>

#define FORWARD_SPEED 8
#define TURN_SPEED 5
#define SENSOR_THRESHOLD 40

DeviceTag ds1,ds2,ds3,ds4,ls2,ls3;

void reset(void) {
ds1 = robot_get_device("ds1"); /* distance sensors */
ds2 = robot_get_device("ds2");
ds3 = robot_get_device("ds3");
ds4 = robot_get_device("ds4");
ls2 = robot_get_device("ls2"); /* light sensors */
ls3 = robot_get_device("ls3");

}

int main() {
gint16 left_speed=0,right_speed=0;
guint16 ds1_value,ds2_value,ds3_value,ds4_value,ls2_value,ls3_value;
guint32 left_encoder,right_encoder;

khepera_live(reset);

6.4. PROGRAMMING THE KHEPERA ROBOT 71

distance_sensor_enable(ds1,64);
distance_sensor_enable(ds2,64);
distance_sensor_enable(ds3,64);
distance_sensor_enable(ds4,64);
light_sensor_enable(ls2,64);
light_sensor_enable(ls3,64);
differential_wheels_enable_encoders(64);
for(;;) { /* The robot never dies! */

ds1_value = distance_sensor_get_value(ds1);
ds2_value = distance_sensor_get_value(ds2);
ds3_value = distance_sensor_get_value(ds3);
ds4_value = distance_sensor_get_value(ds4);
ls2_value = light_sensor_get_value(ls2);
ls3_value = light_sensor_get_value(ls3);
if (ds2_value>SENSOR_THRESHOLD &&

ds3_value>SENSOR_THRESHOLD) {
left_speed = -TURN_SPEED; /* go backwards */
right_speed = -TURN_SPEED;

}
else if (ds1_value<SENSOR_THRESHOLD &&

ds2_value<SENSOR_THRESHOLD &&
ds3_value<SENSOR_THRESHOLD &&

ds4_value<SENSOR_THRESHOLD) {
left_speed = FORWARD_SPEED; /* go forward */
right_speed = FORWARD_SPEED;

}
else if (ds3_value>SENSOR_THRESHOLD ||

ds4_value>SENSOR_THRESHOLD) {
left_speed =-TURN_SPEED; /* turn left */
right_speed = TURN_SPEED;

}
if (ds1_value>SENSOR_THRESHOLD ||

ds2_value>SENSOR_THRESHOLD) {
right_speed=-TURN_SPEED; /* turn right */
left_speed=TURN_SPEED;

}
left_encoder = differential_wheels_get_left_encoder();
right_encoder = differential_wheels_get_right_encoder();
if (left_encoder>9000)

differential_wheels_set_encoders(0,right_encoder);
if (right_encoder>1000)

differential_wheels_set_encoders(left_encoder,0);
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
robot_step(64); /* run one step */

72 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

}
return 0;

}

This program is made up of two functions: a main function, as in any C program and function
namedreset which is a callback function used for getting references to the sensors of the
robot. A number of includes are necessary to use the different devices of the robot, including the
differential wheels basis itself.

The main function starts up by initializing the library by calling thekhepera live function,
passing as an argument a pointer to thereset function declared earlier. Thisreset function
will be called each time it is necessary to read or reread the references to the devices, called
device tags. The device tag names, like ”ds1”, ”ds2”, etc. refer to thename fields you can see in
the scene tree window for each device. The reset function will be called the first time from the
khepera live function. So, from there, you can assume that the device tag values have been
assigned.

Then, it is necessary to enable the sensor measurements we will need. The second parameter of
the enable functions specifies the interval between updates for the sensor in millisecond. That is,
in this example, all sensor measurements will be performed each 64 ms.

Finally, then main function enters an endless loop in which the sensor values are read, the motor
speeds are computed according to the sensor values and assigned to the motors, and the encoders
are read and sometimes reset (although this make no special sense in this example). Please note
the robot step function at the end of the loop which takes a number of milliseconds as an
argument. This function tells the simulator to run the simulation for the specified amount of
time. It is necessary to include this function call, otherwise, the simulation may get frozen.

6.4.3 Compiling the controller

To compile this source code and obtain an executable file, a different procedure is necesseray
depending on your development environment. On Linux, simply go to the controller directory
where thekhepera.c resides, and typemake. On Windows, you may do exactly the same if
you are working with cygwin. If you use Dev-C++ or Microsoft Visual C++, you will need to
create a project file and compile your program from your Integrated Development Environment.
Template project files for both Dev-C++ and Visual C++ are available in thebraiten controller
directory.

Once compiled, reload the world in Webots using theRevert button (or relaunch Webots) and
you will see your freshly compiled run in Webots.

6.5. TRANSFERING TO THE REAL ROBOT 73

6.5 Transfering to the real robot

6.5.1 Remote control

The remote control mode consists in redirecting the inputs and outputs of your controller to a real
Khepera robot using the Khepera serial protocol. Hence your controller is still running on your
computer, but instead of communicating with the simulated model of the robot, it communicates
with the real device via connected to the serial port.

To switch to the remote control mode, your robot needs to be connected to your computer as de-
scribed in section 6.1. In the robot controller window, select theCOM popup menu corresponding
to the serial port to which your robot is connected. Then, just click on thesimulation popup menu
in the controller window and selectremote control instead. After a few seconds, you should see
your Khepera moving around, executing the commands sent by your controller. The controller
window now displays the sensor and motor values of the real Khepera.

You may press thestop / go button to prevent or allow you robot to move. To return to the
simulation mode, just use the popup menu previously used to start the remote control mode. You
may remark that it is possible to change the baud rate for communicating with the robot. The
default value is 57600 baud, but you may choose another value from the popup menu.

Important:

If you change the baud rate with the popup menu, don’t change the mode on the Khepera robot,
since the baud rate is changed by software. The mode on the Khepera robot should always remain
set to 1 (i.e., serial protocole at 9600 bauds).

6.5.2 Cross-compilation and upload

We assume in this subsection, that you have installed thewebots-kros package provided with
Webots.

Cross-compiling a controller program creates a executable file for the Khepera micro-controller
from your C source file. In order to produce such an executable, you can use theMakefile.kros

provided within thekhepera controller directory. From Linux, just type:

make -f Makefile.kros

From Windows, launch the Webots-kros application and follow the instructions. In both cases
you see the following messages telling you that the compilation is progressing successfully:

Compiling khepera.c into khepera.s
Assembling khepera.s into khepera.o
Linking khepera.o into khepera.s37

74 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

It may be necessary to remove any previouskhepera.o which may conflict with the one gener-
ated by the cross-compiler. In order to do so, you can type:

make -f Makefile.kros clean

Finally, to upload the resultingkhepera.s37 executable file onto the Khepera robot, click on
theupload button in the controller window. The green LED of your Khepera should switch on
while uploading the program. It lasts for a few seconds or minutes before completing the upload.
Once complete, the robot automatically executes the new program.

6.6 Working extension turrets

6.6.1 The K213 linear vision turret

The example worldkhepera k213.wbt contains a complete working case for the K213 linear
vision turret. The principles are the same as for the simple Khepera example, except that ad-
ditional functions are used for enabling and reading the pixels from the camera. The function
camera get image returns an array of unsigned characters representing the image. The macro
camera image get grey is used to retrieve the value of each pixel. As seen on figure 6.5, the
camera image is displayed in the controller window as grey levels and as an histogram.

Figure 6.5: Khepera K213 controls

6.6.2 The Gripper turret

figure 6.6 shows thegripper.wbt example. In this example a model of a Khepera is equipped
with a Gripper device. It can grab red cylinders, carry them away and put them down. From a
modelling point of view, the Gripper turret is made up of two Webots devices:

6.6. WORKING EXTENSION TURRETS 75

• A Servo node which represents the servo motor controlling the height of the gripper (ro-
tation).

• A Gripper node which represents the gripping device: the two fingers.

These devices can be configured to match more precisely the real one or to try new designs. For
example, it is possible to configure the maximum speed and acceleration of theServo node,
simply by changing the corresponding fields of that node in the scene tree window.

Figure 6.6: Khepera Gripper

However, the current version of Webots do not yet support the transfer of controllers using a
gripper to the real Khepera robot. But if this feature is very important for you, please contact
Cyberbotics Ltd. and we will see how we can help you implement this feature. Webots is an open
platform and Cyberbotics people are open minded, so there is always a solution to any problem.
Cyberbotics’s support can be reached by e-mail a the following address:

<support@cyberbotics.com >

76 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

6.7 Support for other K-Team robots

6.7.1 KoalaTM

The Webots distribution contains an example world with a model of a Koala robot. This robot is
much bigger than the Khepera and has 16 infra-red sensors, as seen on figure 6.7. The example
can be found inworlds/koala.wbt .

Figure 6.7: The Koala robot

6.7.2 AliceTM

An example of Alice robot is also provided. Alice is much smaller than Khepera and has two to
four infra-red sensors. In our example, we have only two infra-red sensors (see figure 6.8). The
example can be found inworlds/alice.wbt .

6.7. SUPPORT FOR OTHER K-TEAM ROBOTS 77

Figure 6.8: The Alice robot

78 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Chapter 7

ALife Contest

A programming contest based on Webots in organized permanently on the Internet. The web site
of the contest1 may provide more up to date information about it. ALife stands for ”Artificial
Life”.

7.1 Previous Editions

This is actually the third edition of the ALife contest. Two editions were organized in 1999 and
2000. Each competition gathered about 10 teams worldwide made up of one to three individu-
als. The winners were respectively Keith Wiley from the University of New Mexico, USA and
Richard Szabo from Budapest University, Hungary.

7.2 Rules

7.2.1 Subject

Two robots are roaming a maze-like environment (see figure 7.1), looking for energy. Energy is
provided by chargers (see figure 7.2). However, chargers are scattered all around the environment
and it is not so easy for robots to find them. Moreover, once used by a robot, a charger will be
unavailable for a while (see figure 7.3). Hence, the robot will have to go away and look for
another charger. A robot will die if it fails finding an available charger before it runs out of
energy. Then, the remaining robot will be declared the winner of the match.

1http://www.cyberbotics.com/contest/

79

http://www.cyberbotics.com/contest/
http://www.cyberbotics.com/contest/

80 CHAPTER 7. ALIFE CONTEST

Figure 7.1: The world used in the contest

7.2.2 Robot Capabilities

All robots have the same capabilities. They are based on a model of Khepera equipped with a
K6300 color matrix vision turret. Hence each robot has a differential wheels basis with incre-
mental encoders, eight infra-red sensors for light and distance measurement, and a color matrix
camera plugged on the top of the robot, looking in front. The resolution of this camera was
scaled down to 80x60 pixels with a color depth of 32 bits. As you may have already understood,
analysing the camera image is a crucial issue in developing an efficient robot controller.

Figure 7.2: A charger full of energy

7.2. RULES 81

Figure 7.3: An empty charger

7.2.3 Programming Language

For the contest, the robots can be programmed in Java only. This ensures that the binaries carry
no viruses or cheating systems. Hence, the executables files (.class files) can be easily shared
amongst competitors without disclosing source code. Beware, that very good Java decompilers
exists and that it may be possible (although difficult and tricky) for a cheating competitors to
restore your code from your.class . If we encounter such problems, we will disable the Java
binary code sharing.

They is no limit on the computation time a robot can use. However, since the simulator runs ap-
proximately in real time without any synchronization with the robots, robots performing exten-
sive computations may miss some sensor information or react too late in some critical situations.

7.2.4 Scoring Rule

Once submitted on the web site, a robot is assigned a score of 10 points. Then, it will perform
continuously a number of matches against other robots until its score reaches 0. At that point the
robot will be eliminated from the contest. Scores are floating point values. When a robot wins a
match it draws points from its opponent. The amount of points transfered from the loser to the
winner is computed as follow:

1 + abs(winnerscore - loserscore)/winnerscore

If the amount of points to be transfered is higher than the score of the loser, then the loser is
eliminated from the competition and the winner only receives the score of the looser, no more.

It is always possible to introduce a new version of an existing robot controller, by simply upload-
ing the versions of the.class files, erasing any previous ones. When a new version of a robot
controller is introduced in the contest, its score remains unchanged. The next matches are run
using the new version.

82 CHAPTER 7. ALIFE CONTEST

7.2.5 Schedule

The contest started on July 1st 2002. From this date, competitors could download all the contest
material and develop their robot controller. Matches between resulting controllers are held con-
tinuously from the middle of the summer until the end of the competition, on May 1st 2003. It is
possible to enter the contest at any time before May 1st, 2003.

7.2.6 Prize

The winner of the contest will be the robot ranked at first position on May 1st, 2003. The authors
of this robot will receive a Khepera II robot and a Webots PRO package (see figure 7.4). Prizes
for the second and third position are not yet determined.

Figure 7.4: First prize: a Khepera II robot and a Webots PRO package.

7.3 Web Site

The web site of the contest2 allows you to view matches runing in real time, to view the results,
especially the hall of fame that contains the ranking of the best robots with their score. It is also

2http://www.cyberbotics.com/contest/

http://www.cyberbotics.com/contest/

7.4. HOW TO ENTER THE CONTEST 83

possible to visit the home page of each robot engaged in the contest, including a small description
of the robot’s algorihtm, the flag of the robot and possibly the e-mail of the author. You can even
download the Java binary controller (.class file) of each robot. This can be useful to understand
why a robot performs so well.

7.4 How to Enter the Contest

If you are willing to challenge the other competitors of the contest, here is the detailed procedure
on how to enter the ALife contest. You will need either a Windows or a Linux machine to
program your robot controller.

7.4.1 Obtaining the software

All the software for running the contest may be obtained free of charge.

• The Webots software to be used for the contest is available from the Webots download
page3. This is an evaluation version of Webots which contains all the necessary material
to develop a robot controller for the contest, except the Java environment. Follow the
instructions on the Webots download page to install the Webots package.

• The Java 2 Standard Edition (J2SE) Software Development Kit (SDK) may be downloaded
from Sun web site4 for free. Please use the version 1.4 of the SDK. Follow the instructions
from Sun to install the SDK.

7.4.2 Running the software

Launch Webots and open the world namedalife.wbt . Click on therun to start the simulation.
You will see two robots moving around in the world. Each robot is controlled by a Java program
named respectivelyALife0 andALife1 located in the Webotscontrollers directory. You
may enter their directory and have a look a the source code of the programs.

On Windows, you may need to edit theALife0.bat andALife1.bat files to set correct paths
to the Webots directory and possibly to thejava executable.

7.4.3 Creating your own robot controller

The simpliest way to create your own robot controller is to start from the existingALife0 or
ALife1 controllers.

3http://www.cyberbotics.com/products/webots/download.html
4http://java.sun.com/j2se/1.4/download.html

http://www.cyberbotics.com/products/webots/download.html
http://www.cyberbotics.com/products/webots/download.html
http://java.sun.com/j2se/1.4/download.html

84 CHAPTER 7. ALIFE CONTEST

Installation

It is safer and cleaner to install a local copy of the material you will need to modify while
developing your intelligent controller. Here is how to proceed:

1. Create a working directory which you will store all your developments. Let’s call this
directory my alife . It may be in your Linux home directory or in your WindowsMy

Documents directory or somewhere else.

2. Enter this directory and create two subdirectories calledcontrollers andworlds .

3. Copy the filealife.wbt from the Webotsworlds directory to your ownworlds you just
created. Copy also the thealife directory and all its contents from the Webotsworlds

directory to your ownworlds directory. You may replace the imagesAlife0.png and
Alife1.png in thealife directory by your own custom images. These images are ac-
tually texture flags associated to the robots. Their size must be 64x64 pixels with 24 or 32
bits depth.

4. Copy the wholeALife0 directory from the Webotscontrollers directory to your own
controllers directory you just created. Repeat this with theALife1 directory. This
way you could modify the example controllers without loosing the original files.

5. In order to indicate Webots where the files are, launch Webots, go to theFile menu and
select thePreferences... menu item to open the Preferences window. Select theFiles
and paths tab. Setalife.wbt as the Default world and indicate the absolute path to
your my alife directory, which may be/home/myname/my alife on Linux orC: \My

Documents \my alife on Windows.

From there, you can modifiy the source code of the controllers in yourcontrollers directory,
recompile them and test them with Webots.

Modifiying and Compiling your controller

If you know a little bit of Java, it won’t be difficult to understand the source code of theALife0

andALife1 controllers, which are stored respectively in theALife0.java andALife1.java .
You may use any standard Java objects provided with the Java SDK. The documentation for
the Controller class is actually the same as for the C programming interface, since all the
methods of theController class are similar to the C functions of the Controller API described
in the Webots Reference Manual, except for one function,robot live which is useless in Java.
Before modifying a controller, it is recommanded to try to compile the copy of the original
controllers.

To compile theALife0 controller, just go to theALife0 directory and type the following on the
command line:

7.4. HOW TO ENTER THE CONTEST 85

javac -classpath "C: \Program Files \Webots \lib \Controller.jar;." ALife0.java

on Windows.

javac -classpath "/usr/local/webots/lib/Controller.jar:." ALife0.java on
Linux.

If everything goes well, it should produce a newALife0.class file that will be used by Webots
next time you launch it (or reload thealife.wbt world).

Now, you can start developing! Edit theALife0.java , add lines of code, methods, objects.
You may also create other files for other objects that will be used by the ALife0 class. Test your
controller in Webots to see if it performs well and improve it as long as you think it is necessary.

7.4.4 Submitting your controller to the ALife contest

Once you think you have a good, working controller for your robot, you can submit it to the on-
line contest. In order to proceed, you will have to find a name for your robot. Let’s say ”MyBot”
(but please, choose another name). Copy yourALife0.java to a file namedMyBot.java . Edit
this new file and replace the line:

public abstract class ALife0 extends Controller {

by:

public abstract class MyBot extends Controller {

Save the modified file and compile it using a similar command line as seen previously. You
should get aMyBot.class file that you could not test, but that will behave the same way as
ALife0.class .

Register to the contest from the main contest web page5, providing ”MyBot” as the name of the
robot. Then, upload all the necessary files in your MyBot directory. This includes the following:

• MyBot.class file and possibly some other.class files corresponding to other java ob-
jects you created (it is useless to upload theALife0.class file)

• A text file nameddescription.txt of about 10 lines that may include some HTML
tags, like hyperlinks.

• A PNG image namedflag.png that will be used as a texture to decorate your robot, so
that you can recognize it from the webcam. This image should be a 64x64 pixels with a
bit depth of 24 or 32.

That’s it. Once this material uploaded, your robot will automatically enter the competition with
an initial score of 10. A contest supervisor program will use you controller to run matches and
update your score and position in the hall of fame. You can check regularly the contest web site
to see how your robot performs.

5http.//www.cyberbotics.com/contest

86 CHAPTER 7. ALIFE CONTEST

7.5 Developers’ Tips and Tricks

This section contains some hints to develop efficiently an intelligent robot controller.

7.5.1 Practical issues

The ALife0 example program display a Java image for showing the viewpoint of the camera,
after some image processing. This is pretty computer expensive and you may speed up the
simulation by disabling this display, which should be used only for debug. By the way, during
contest matches, the Java security manager is set so that your Java controller cannot open a
window or display anything.

7.5.2 Java Security Manager

To avoid cheating or viruses, a Java security manager is used for contest matches ran by the auto-
matic contest supervisor. This security manager will prevent your Java controller from opening
any window, opening any file for writing or reading and doing any networking stuff.

7.5.3 Levels of Intelligence

It is possible to distinguish a number of level in the complexity of the control algorithms. These
level can be ranked as follow:

1. The robot is able to move and avoid obstacles. However, it does not use the camera in-
formation at all and will find chargers only by chance. This correspond to theALife0

controller.

2. In addition to level 1, the robot is able to recognize if a full charger is in front of it, even far
away. In this case, it will be able to adjust its movement to reach the charger if not obstacles
are on the way. Otherwise, the robot will look into another direction for chargers.

3. In addition to level 2, the robot is able to move around obstacles preventing a movement
towards a full charger.

4. In addition to level 3, the robot is able to perform an almost complete exploration of the
world, reaching places difficult to reach for simpler robots (you will rapidely notice that
some places are more difficult to reach than others, the problem is that these places may
contain chargers...).

5. In addition to level 4, the robot is able to build a map of its environment (mapping), so that
once a charger is found, it is placed on the map, thus faciliting the procedure for finding
it back. After completing the map, the robot can efficiently navigate between chargers
without loosing time to search for them.

7.5. DEVELOPERS’ TIPS AND TRICKS 87

6. In addition to level 5, the robot tries to chase its opponent, blocking it, preventing it to
reach chargers or emptying chargers just before it arrives.

During the previous editions of the contest, the best competitors reached level 4 (and even one
reached level 5 after the contest ended). We believe that reaching level 5 or 6 may lead to
significant performance improvements and probably to the first place of the hall of fame...

88 CHAPTER 7. ALIFE CONTEST

	Installing Webots
	Hardware requirements
	Registration Procedure
	Webots license
	Registering

	Installation procedure
	RedHat 7.2 Linux i386
	Windows 95, 98, ME, NT, 2000 and XP

	Upgrading from Webots 2
	World
	Header of the file
	Nodes

	Controller
	Location
	Khepera
	Alice
	GUI
	Supervisor

	Getting Started with Webots
	Launching Webots
	On Linux
	On Windows

	Main Window: menus and buttons
	File menu and shortcuts
	Edit menu
	Simulation menu and the simulation buttons
	Help menu
	Navigation in the scene
	Moving a solid object
	Selecting a solid object

	Scene Tree Window
	Buttons of the Scene Tree Window
	VRML nodes
	Webots specific nodes
	Writing a Webots file in a text editor

	Tutorial: Modelling and simulating your robot
	My first world: kiki.wbt
	Environment
	Robot
	A simple controller

	 My second world: a kiki robot with a camera
	My third world: pioneer2.wbt
	Environment
	Robot with 16 sonars
	Controller

	Robot and Supervisor Controllers
	Overview
	Setting Up a New Controller
	Webots Execution Scheme
	From the controller's point of view
	From the point of view of Webots
	Synchronous versus Asynchronous controllers

	Reading Sensor Information
	Controlling Actuators
	Going further with the Supervisor Controller

	Tutorial: Using the Khepera™ robot
	Hardware configuration
	Running the simulation
	Understanding the model
	The 3D scene
	The Khepera model

	Programming the Khepera robot
	The controller program
	Looking at the source code
	Compiling the controller

	Transfering to the real robot
	Remote control
	Cross-compilation and upload

	Working extension turrets
	The K213 linear vision turret
	The Gripper turret

	Support for other K-Team robots
	Koala™
	Alice™

	ALife Contest
	Previous Editions
	Rules
	Subject
	Robot Capabilities
	Programming Language
	Scoring Rule
	Schedule
	Prize

	Web Site
	How to Enter the Contest
	Obtaining the software
	Running the software
	Creating your own robot controller
	Submitting your controller to the ALife contest

	Developers' Tips and Tricks
	Practical issues
	Java Security Manager
	Levels of Intelligence

