
Webots Reference Manual
release 3.2.9

copyright c© 2002 Cyberbotics Ltd. All rights reserved.
www.cyberbotics.com

July 10, 2002

2

copyright c© 2002 Cyberbotics Ltd. All rights reserved.
All rights reserved

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on anas-isbasis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

This software was initially developped at the Laboratoire de Micro-Informatique (LAMI) of
the Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no
warranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

JavaTM is a registered trademark of Sun MicroSystems, Inc.

KheperaTM and KoalaTM are registered trademarks of K-Team S.A.

LinuxTM is a registered trademark of Linus Torwalds.

PentiumTM is a registered trademark of Intel Corp.

Red HatTM is a registered trademark of Red Hat Software, Inc.

Visual C++TM, WindowsTM, Windows 95TM, Windows 98TM, Windows METM, Windows NTTM,
Windows 2000TM and Windows XPTMare registered trademarks of Microsoft Corp.

UNIXTM is a registered trademark licensed exclusively by X/Open Company, Ltd.

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots web
site, including Jordi Porta, Emanuele Ornella, Yuri Lopez de Meneses, Auke-Jan Ijspeert, Gerald
Foliot, Allen Johnson, Michael Kertesz, Aude Billiard, and many others.

Moreover, many thanks are due to Prof. J.-D. Nicoud (LAMI-EPFL) and Dr. F. Mondada for
their valuable support.

Finally, thanks to Skye Legon, who proof-read this manual.

3

4

Contents

1 Introduction 7

2 Controller API 9

2.1 Robot . 9

2.2 CustomRobot . 12

2.3 DifferentialWheels . 13

2.4 DistanceSensor . 15

2.5 Camera . 16

2.6 Emitter . 19

2.7 LightSensor . 21

2.8 Gripper . 22

2.9 Receiver . 23

2.10 Servo . 25

2.11 Supervisor . 26

2.12 TouchSensor . 31

3 Webots File Format 33

3.1 File Structure . 33

3.1.1 Example . 33

3.2 VRML97 nodes partially supported in Webots 34

3.3 Webots nodes . 35

3.3.1 Camera . 35

3.3.2 Charger . 36

3.3.3 CustomRobot . 36

5

6 CONTENTS

3.3.4 DifferentialWheels . 37

3.3.5 DistanceSensor . 37

3.3.6 Emitter . 38

3.3.7 Gripper . 38

3.3.8 HyperGate . 39

3.3.9 LightSensor . 39

3.3.10 Physics . 40

3.3.11 Receiver . 40

3.3.12 Servo . 41

3.3.13 Solid . 41

3.3.14 Supervisor . 41

3.3.15 TouchSensor . 42

Chapter 1

Introduction

This reference manual contains all the information needed to program robot controllers in We-
bots. Moreover, it contains reference information on the world description language used in
Webots, which is an extension of a subset of VRML 2.0.

The programming of graphical user interfaces (GUI) is not covered in this manual since Webots
3 uses GTK+ for creating user interfaces for controllers. GTK+ Tutorial and Reference Manual
are included on the Webots CD-ROM.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

Controller API

2.1 Robot

robot die

NAME

robot die – declare an exit function

SYNOPSIS

#include <device/robot.h>

void robot die(void (*exit function)(void));

DESCRIPTION

This function declares an exit function to be used whenever a controller quits. A controller can
quit for the following reasons: the simulator quits, or the robot quits the simulator by entering
an HyperGate to be transfered to another simulation server. In the latter case, it might be useful
for the robot to save important data (like an acquired behaviour) before it quits, so that this data
can be transfered to the target simulator corresponding to the HyperGate. Hence, when the robot
restarts on the other side of the HyperGate, it can retrieve its data in its reset function before it
starts running again.

SEE ALSO

robot live

9

10 CHAPTER 2. CONTROLLER API

robot get device

NAME

robot get device – get a pointer to a device

SYNOPSIS

#include <device/robot.h>

DeviceTag robot get device(const gchar *name);

DESCRIPTION

This function returns a pointer to a device corresponding to a specified DEF name. For example,
if the robot contains aDistanceSensor node whichDEF name is ”ds1”, the function will
return a pointer to that device. ThisDeviceTag pointer will be used subsequently for enabling,
sending command to, or reading data from this device.

SEE ALSO

robot live

robot live

NAME

robot live – initialize a robot controller

SYNOPSIS

#include <device/robot.h>

void robot live(void (*reset function)(void));

DESCRIPTION

This function must be called before any other controller API function. It is necessary to initialize
the robot controller and optionally to provide a reset function to the controller. This reset function
is useful to perform some initializations, so that the controller knows which sensors and actuators

2.1. ROBOT 11

are available. The reset function should be a void function without any argument. It is called
once at the beginning of the simualtion and may be called again if the simulator needs to reset
the robot. However, this rarely happens in practise.

EXAMPLE

#include <device/robot.h>

static DeviceTag my_sensor, my_actuator;

void my_reset_function() { /* called at init. */
printf("hello!\n");
my_sensor = robot_get_device("my_sensor");
my_actuator = robot_get_device("my_actuator");

}

void my_exit_function() { /* called before quitting */
printf("bye bye!\n");

}

int main() {
robot_live(my_reset_function); /* called when robot starts */
robot_die(my_exit_function); /* called when robot quits */
for(;;) { /* infinit loop */

/* read the sensors and write to the actuators */
...
robot_step(64);

}
return 0; /* this statement will never be reached */

}

SEE ALSO

robot get device

robot die

robot step

robot step

NAME

12 CHAPTER 2. CONTROLLER API

robot step – execute a simulation step

SYNOPSIS

#include <device/robot.h>

guint32 robot step(guint32 ms);

DESCRIPTION

This function requests the simulator to perform a simulation step ofms milliseconds, that is to
advance in the simulated time of this amount of time. In synchronous simulation mode, the
request is always fulfilled and the function always return 0. In asynchronous mode, the request
may not be fulfilled. In this case, the return valuedt , representing the delay, may not be 0.
Let controller date be the current time of the controller, the return value be interpreted as
follow:

• if dt = 0, then, the behavior is equivalent to the one of synchronous mode.

• if 0 ¡= dt ¿ms, then the actuator values were set atcontroller date + dt and the sensor
values where measured atcontroller date + ms, as requested. It means that the step
actually lasted the requested number of milliseconds, but the actuators command could not
be executed on time.

• if dt ¿ms, then the actuators values were set atcontroller date + dt and the sensors
values where measured also atcontroller date + dt . It means that the requested step
duration could not be respected.

SEE ALSO

robot live

2.2 CustomRobot

custom robot move

NAME

custom robot move – control the position of the robot

2.3. DIFFERENTIALWHEELS 13

SYNOPSIS

#include <device/custom robot.h>

void custom robot move(gfloat tx, gfloat ty, gfloat tz, gfloat rx, gfloat

ry, gfloat tz, gfloat alpha);

DESCRIPTION

This function allows the user to modify the position and orientation of a custom robot. The move
will be performed at the beginning of the next simulation step. If the collision detection system
detects a collision between theCustomRobot node and any anotherSolid object, the move
will not be performed and the custom robot position and orientation will remain unchanged. The
tx , ty andtz values represent the requested translation relative to the current translation value
of the robot. Therx , ry , rz andalpha values represent the offsets to be added to the current
rotation vector and angle of the robot.

2.3 DifferentialWheels

differential wheels set speed

NAME

differential wheels set speed – control the speed of the robot

SYNOPSIS

#include <device/differential wheels.h>

void differential wheels set speed(gint16 left, gint16 right);

DESCRIPTION

This function allows the user to specify a speed for the differentially wheeled robot. This speed
will be send to the motors of the robot at the beginning of the next simulation step. The speed
unit is defined by thespeedUnit field of theDifferentialWheels node. The default value
is 0.1 radian per seconds. Hence a speed value of 20 will make the wheel rotate at a speed of 2
radian per seconds. The linear speed of the robot can then be computed from the angular speed
of each wheel, the wheel radius and the noise on the command. Both the wheel radius and the
noise on the command are documented in theDifferentialWheels node.

14 CHAPTER 2. CONTROLLER API

differential wheels enable encoders

NAME

differential wheels enable encoders , differential wheels disable encoders
– enable or disable the incremental encoders of the robot wheels

SYNOPSIS

#include <device/differential wheels.h>

void differential wheels enable encoders(guint16 ms);

void differential wheels disable encoders (void);

DESCRIPTION

These functions allow the user to enable or disable the incremental wheel encoders for both
wheels of theDifferentialWheels robot. Incremental encoder are counters that incremented
each time a wheel turns with the value of the speed for the corresponding wheel. For example,
if you set a speed of 400 for the left wheel and perform a robot step of 64 ms, the left encoder
will increase its value of 400 * 0.064 = 25.6 after this step. However, if the initial value of the
encoder was 0, the value you will read will be 25 and not 25.6. But if you repeat the same step,
the computed value will be 51.2 and you will be able to read 51. Please note that when the
DifferentialWheels robot faces an obstacle while trying to move forward, the wheels of the
robot do not slip, hence the encoder values are not increased. This is very useful to detect that
the robot has hit an obstacle.

differential wheels get left encoder

NAME

differential wheels get left encoder , differential wheels get right encoder ,
differential wheels set encoders – read or set the encoders of the robot wheels

SYNOPSIS

#include <device/differential wheels.h>

gint32 differential wheels get left encoder (void);

gint32 differential wheels get right encoder (void);

2.4. DISTANCESENSOR 15

void differential wheels set encoders (gint32 left, gint32 right);

DESCRIPTION

These functions are used to read or set the values of the left and right encoders. The encoders have
to be enabled withdifferential wheels enable encoders , so that the functions can read
correct values. Moreover, theencoderNoise of the correspondingDifferentialWheels

node should be positive. Setting encoders value will not make the wheels rotate to reach the
specified value, instead, it will simply reset the encoders with the specified value.

2.4 DistanceSensor

distance sensor enable

NAME

distance sensor enable , distance sensor disable – enable and disable the
distance sensor measurements

SYNOPSIS

#include <device/distance sensor.h>

void distance sensor enable (DeviceTag sensor, guint16 ms);

void distance sensor disable (DeviceTag sensor);

DESCRIPTION

distance sensor enable allows the user to enable a distance sensor measurement eachms

milliseconds.

distance sensor disable turns the distance sensor off, saving computation time.

distance sensor get value

NAME

distance sensor get value – get the distance sensor measure

16 CHAPTER 2. CONTROLLER API

SYNOPSIS

#include <device/distance sensor.h>

guint16 distance sensor get value (DeviceTag sensor);

DESCRIPTION

distance sensor get value returns the last value measured by the specified distance sensor.
This value is computed by the simulator according to the lookup table of theDistanceSensor

node. Hence, the value range for the return value is defined by this lookup table.

2.5 Camera

camera enable

NAME

camera enable , camera disable – enable and disable the camera measurements

SYNOPSIS

#include <device/camera.h>

void camera enable (DeviceTag camera, guint16 ms);

void camera disable (DeviceTag camera);

DESCRIPTION

camera enable allows the user to enable a camera measurement eachmsmilliseconds.

camera disable turns the camera off, saving computation time.

camera new widget

NAME

camera new widget – create a GTK+ widget for displaying the camera view

2.5. CAMERA 17

SYNOPSIS

#include <device/camera.h>

GtkWidget *camera new widget (DeviceTag camera);

DESCRIPTION

camera new widget creates a new GTK+ widget for a camera. Creating such a widget is useful
only if you want to embed it into your own graphical user interface, otherwise, if you don’t
create any camera widget, the controller library will do it automatically in a separate window.
It is mandatory to have such a widget displayed to allow OpenGL rendering. This constraint is
mainly due to 3D hardware which often cannot render an off screen image.

camera get fov

NAME

camera get fov , camera set fov – get and set field of view for a camera

SYNOPSIS

#include <device/camera.h>

gfloat camera get fov (DeviceTag camera);

void camera set fov (DeviceTag camera, gfloat fov);

DESCRIPTION

These functions allow the controller to get and set the value for the field of view (fov) of a camera.
The original value for this field of view is defined in theCamera node, asfieldOfView . Note
however, that changing the field of view usingcamera set fov will not change the value of
thefieldOfView field on the simulator side. It will only affect the controller side, making new
rendered images use the specified field of view for the specified camera.

camera get width

NAME

camera get width , camera get height – get the size of the camera image

18 CHAPTER 2. CONTROLLER API

SYNOPSIS

#include <device/camera.h>

guint16 camera get width (DeviceTag camera);

guint16 camera get height (DeviceTag camera);

DESCRIPTION

These functions return the width and height of a camera image as defined in the corresponding
Camera node.

camera get type

NAME

camera get type – get the type of the camera

SYNOPSIS

#include <device/camera.h>

gchar camera get type (DeviceTag camera);

DESCRIPTION

This function returns the type of a camera as defined in the correspondingCamera node. If the
type is ”black and white” or ”grey”, then the return value is ’g’, otherwise, the return value is ’c’,
standing for color.

camera get image

NAME

camera get image , camera image get red , camera image get green , cam-
era image get blue – get the image data from a camera

SYNOPSIS

#include <device/camera.h>

guint8 *camera get image (DeviceTag camera);

2.6. EMITTER 19

guint8 camera image get red (image, width, x, y);

guint8 camera image get green (image, width, x, y);

guint8 camera image get blue (image, width, x, y);

DESCRIPTION

Thecamera get image function allows you to read the contents of the last image grabbed by
the camera. The image is coded as a series of three bytes coding for the red, green and blue levels
of a pixel. Pixels are stored in lines ranging from the bottom left hand side of the image up to
top right hand side. The memory chunck returned by this function doesn’t need to be released,
as it is handled by the camera itself. The size in bytes of this memory chunk can be computed as
follow:

size = camera width * camera height * 3

Attempting to read outside the bounds of this chunk will cause an error.

Thecamera image get macros are useful helpers for accessing directly the pixel colors from
the pixel coordinates. They are defined as follow:

#define camera_image_get_red(image,width,x,y) (image[3*((y)*(width)+(x))])
#define camera_image_get_green(image,width,x,y) (image[3*((y)*(width)+(x))+1])
#define camera_image_get_blue(image,width,x,y) (image[3*((y)*(width)+(x))+2])

2.6 Emitter

emitter get buffer

NAME

emitter get buffer , emitter get buffer size – get information on the emitter
buffer

SYNOPSIS

#include <device/emitter.h>

gpointer emitter get buffer (DeviceTag emitter);

gint32 emitter get buffer size (DeviceTag emitter);

20 CHAPTER 2. CONTROLLER API

DESCRIPTION

Theemitter get buffer function returns a pointer to the buffer used by the emitter to send
data. Theemitter get buffer size function returns the size of this buffer, expressed in
bytes.

emitter send

NAME

emitter send – send a message through the emitter

SYNOPSIS

#include <device/emitter.h>

void emitter send (DeviceTag emitter, guint32 size);

DESCRIPTION

Theemitter send function sendssize bytes of data contained in the beginning of the emitter
buffer.

emitter get channel

NAME

emitter get channel , emitter set channel – get or set channel information for
an emitter.

SYNOPSIS

#include <device/emitter.h>

gint32 emitter get channel (DeviceTag emitter);

void emitter set channel (DeviceTag emitter, gint32 channel);

DESCRIPTION

The emitter get channel function returns the channel value of theEmitter node. Only
receivers set to the same channel of the emitter can receive message from this emitter.

Theemitter set channel function allows the controller to change the emission channel, so
that different receivers may receive the messages of the emitter. Calling this function will change
the channel field of theEmitter node.

2.7. LIGHTSENSOR 21

2.7 LightSensor

light sensor enable

NAME

light sensor enable , light sensor disable – enable and disable the light sen-
sor measurements

SYNOPSIS

#include <device/light sensor.h>

void light sensor enable (DeviceTag sensor, guint16 ms);

void light sensor disable (DeviceTag sensor);

DESCRIPTION

light sensor enable allows the user to enable a light sensor measurement eachmsmillisec-
onds.

light sensor disable turns the light sensor off, saving computation time.

light sensor get value

NAME

light sensor get value – get the light sensor measure

SYNOPSIS

#include <device/light sensor.h>

guint16 light sensor get value (DeviceTag sensor);

DESCRIPTION

light sensor get value returns the last value measured by the specified light sensor. This
value is computed by the simulator according to the lookup table of theLightSensor node.
Hence, the value range for the return value is defined by this lookup table.

22 CHAPTER 2. CONTROLLER API

2.8 Gripper

gripper set position

NAME

gripper set position – open or close the gripper

SYNOPSIS

#include <device/gripper.h>

void gripper set position (DeviceTag gripper, gfloat position);

DESCRIPTION

The gripper set position function allows the user to close or open the gripper depending
on the specifiedposition value which represents the aperture of the gripper device, expressed
in meters. Hence a value of 0 will close the gripper and a value of 0.04 will open the gripper 4
cm wide.

gripper enable position

NAME

gripper enable position , gripper enable resistivity , gripper disable position ,
gripper disable resistivity – enable or disable the position and resistivity sensors
on a gripper

SYNOPSIS

#include <device/gripper.h>

void gripper enable position (DeviceTag gripper, guint16 ms);

void gripper enable resistivity (DeviceTag gripper, guint16 ms);

void gripper disable position (DeviceTag gripper);

void gripper disable resistivity (DeviceTag gripper);

DESCRIPTION

2.9. RECEIVER 23

These functions enable eachms milliseconds or disable the gripper position and resistivity mea-
surement.

gripper get position

NAME

gripper get position , gripper get resistivity – return the position and re-
sistivity values measured on the gripper

SYNOPSIS

#include <device/gripper.h>

gfloat gripper get position (DeviceTag gripper);

gfloat gripper get resistivity (DeviceTag gripper);

DESCRIPTION

Thegripper get position function returns the position measurement performed on the spe-
ficied gripper device. The position is expressed in meters and corresponds to the aperture of the
gripper as with thegripper set position function. However, it returns the current position
of the gripper and not the target position specified withgripper set position (which may
be the same value when the target position is reached). This function may be useful to measure
the size of a gripped object.

The gripper get resistivity function returns the resistivity measurement performed on
the specified gripper device. This value is expressed in ohm. In this first version, we assume that
any object has a resistivity of one ohm. It will returnInf when no object is gripped and 1.0 when
an object is gripped.

2.9 Receiver

receiver enable

NAME

receiver enable , receiver disable – enable and disable the receiver measure-
ments

24 CHAPTER 2. CONTROLLER API

SYNOPSIS

#include <device/receiver.h>

void receiver enable (DeviceTag receiver, guint16 ms);

void receiver disable (DeviceTag receiver);

DESCRIPTION

receiver enable allows the user to enable a receiver measurement eachmsmilliseconds.

receiver disable turns the receiver off, saving computation time.

receiver get buffer

NAME

receiver get buffer , receiver get buffer size – get information on the re-
ceiver buffer

SYNOPSIS

#include <device/receiver.h>

gpointer receiver get buffer (DeviceTag receiver);

gint32 receiver get buffer size (DeviceTag receiver);

DESCRIPTION

Thereceiver get buffer function returns a pointer to the buffer used by the receiver to store
received data. This function needs to be called each time new data arrives in the receiver be-
cause the address of the buffer changes when new data arrives. The returned memory chunk
doesn’t need to be released. Memory management is done by the receiver. Moreover call-
ing receiver get buffer will cause the data to be flushed out of the receiver, hence calling
receiver get buffer size immediatly after will return 0;

The receiver get buffer size function returns the size of this buffer, expressed in bytes,
that is the number of bytes received and stored in the buffer. It must be called beforereceiver get buffer ,
otherwise, it returns always 0.

2.10. SERVO 25

2.10 Servo

servo set position

NAME

servo set position , servo set speed , servo set acceleration – set servo
parameters

SYNOPSIS

#include <device/servo.h>

void servo set position (DeviceTag servo, gfloat position);

void servo set speed (DeviceTag servo, gfloat speed);

void servo set acceleration (DeviceTag servo, gfloat acc);

DESCRIPTION

The servo set position function gives a new target position the servo will try to reach. If
the servo is a rotation servo, the unit of theposition parameter is radian, otherwise, it is meter.

The servo set speed function gives the maximum speed the servo can reach in order to
achieve the given position. If the servo is a rotation servo, the unit of thespeed parameter
is radian per second, otherwise, it is meter per second.

Theservo set position function gives the acceleration the servo will use to reach the given
position. If the servo is a rotation servo, the unit of theacc parameter is radian per second2̂,
otherwise, it is meter per second2̂.

servo set position

NAME

servo run animation , servo get animation number , servo get animation range
– servo animation functions

SYNOPSIS

#include <device/servo.h>

26 CHAPTER 2. CONTROLLER API

void servo run animation (DeviceTag servo, gint32 anim);

gint32 servo get animation number (DeviceTag servo);

gfloat servo get animation range (DeviceTag servo, gint32 anim);

DESCRIPTION

These functions are useful to perform non-robot-realistic animations. They do not refer to a real
servo device, and permit to change dynamically the translation and rotation field of the Servo
node. This results in more life-like animations, but should not be used in realistic simulations of
real servo devices.

Theservo run animation function starts the animation specified byanim which corresponds
to the index of theAnimation node in theServo animation field. 0 is the firstAnimation

node of theMFNode list. The animation is also started recursively in all the childrenServo of
theServo specified by theservo parameter. Passing-1 asanim will stop the animation in the
specifiedservo and recursively in its subsequentServo children.

Theservo get animation number function returns the number ofAnimation nodes present
in theanimation field of the specifiedservo .

Theservo get animation range function returns the range of the animation, that is the last
value of thekey field of theAnimation node. TheAnimation node is specified by itsanim

index like with theservo run animation . The range value corresponds to the length of the
animation cycle expressed in seconds.

2.11 Supervisor

The supervisor controller is a particular case of a robot controller, hence therobot live ,
robot step , robot get device , etc. functions also apply to supervisor controllers. More-
over, as long as the supervisor contains sensors and actuators in its list of children, the corre-
sponding sensor and actuator functions can be used (except for thedifferential wheels *

functions that are specific to differential wheels robots).

This section covers the supervisor specific functions, allowing the supervisor controller to track
the position and orientation ofSolid nodes in the scene, to move them, to take a snapshot of the
scene, etc.

supervisor export image

NAME

2.11. SUPERVISOR 27

supervisor export image – save the current 3D image of the simulator into a JPEG
file, suitable for building a webcam system

SYNOPSIS

#include <device/supervisor.h>

void supervisor export image (gchar *filename, guint8 quality);

DESCRIPTION

Thesupervisor export image function saves the current 3D image of the simulator window
into a jpeg file as specified in thefilename parameter. Thequality parameter defines the
jpeg quality (in the range 0 - 100). Thefilename parameter should specify ajpeg file (as an
absolute or relative path), i.e.,"my image.jpeg" or "/var/www/html/images/shot.jpg" .
Indeed, a temporary file is first saved, and then renamed to the requestedfilename . This avoids
having a temporary unfinished (and hence corrupted) file for webcam applications.

EXAMPLE

A simple example of using thesupervisor export image is provided in thephotographer

directory of thecontrollers directory. An example of a webcam system usingsupervisor export image

is provided in thewebcam directory of thecontrollers directory.

supervisor import node

NAME

supervisor import node – import a node into the scene

SYNOPSIS

#include <device/supervisor.h>

void supervisor import node (gchar *filename, gint position);

DESCRIPTION

The supervisor import node function imports a Webots node into the scene. This node
should be defined in a Webots file referenced to by thefilename parameter. Such a file can be
produced easily from Webots by selecting a node in the scene tree window and using theExport
Object button.

Theposition parameter defines the position in the scene tree where the new node is going to
be inserted. It can be positive or negative. Here are a few examples for theposition parameter:

28 CHAPTER 2. CONTROLLER API

• 0: insert at the beginning of the scene tree.

• 1: insert at the second position.

• 2: insert at the third position.

• etc.

• -1: insert at the last position.

• -2: insert at the second position from the end of the scene tree.

• -3: insert at the third position from the end.

• etc.

As in supervisor export image , thefilename parameter can be speficied with an absolute
or a relative path.

supervisor node get from def

NAME

supervisor node get from def , supervisor node was found – get a pointer
to a node of the scene from its DEF name and check if that node exists.

SYNOPSIS

#include <device/supervisor.h>

NodeRef supervisor node get from def (gchar *defname);

gboolean supervisor node was found (NodeRef node);

DESCRIPTION

Thesupervisor node get from def function retrieves a pointer to a node of the scene from
its DEF name. The return value can be used for subsequent calls to functions refering to a node
of the scene. Note that this function always return a non NULL value, even if the node does not
exist in the scene.

The supervisor node was found checks whether the node refered to bynode really exists
in the scene. It returnsTRUEif the node exists andFALSE otherwise. Please, note that these
functions have to be called after calling therobot step function, so that they are able to return
correct values.

2.11. SUPERVISOR 29

supervisor set label

NAME

supervisor set label – display a text label over the 3D scene

SYNOPSIS

#include <device/supervisor.h>

NodeRef supervisor set label (guint16 id, gchar *text, gfloat x, gfloat

y, gfloat size, guint32 color);

DESCRIPTION

Thesupervisor set label function displays a text label over the 3D scene in Webots’ main
window. Theid parameter is a an identifier for the label, you can choose any value in the range
0-65535. It will be used later on when you want to change that label, like updating the text. The
text parameter is a text string which should contain only displayable characters in the range
32-127. Thex andy parameters are the coordinates of the upper left corner of the text, relative
to the upper left corner of the 3D window. These floating point values are expressed in percent
of the 3D window width and height, hence, they should lie in the range 0-1. Thesize parameter
defines the size of the font to be used. It is expressed with the same unit as they parameter.
Finally, thecolor parameter defines the color for the label. It is expressed as 32 bits RGB
integer value, when the first byte is ignored, the second byte represents the red component, the
third byte represents the green component and the last byte represents the blue component.

EXAMPLE

• supervisor_set_label(0,"hello world",0,0,0.1,0xff0000);

will display the label ”hello world” in red at the upper left corner of the 3D window.

• supervisor_set_label(1,"hello dad",0,0.1,0.1,0x00ff00);

will display the label ”hello dad” in green, just below.

• supervisor_set_label(0,"hello universe",0,0,0.1,0xffff00);

will change the label ”hello world” defined earlier into ”hello universe”, setting a yellow
color to the new text.

30 CHAPTER 2. CONTROLLER API

supervisor simulation quit

NAME

supervisor simulation quit – terminate the simulator and controller processes

SYNOPSIS

#include <device/supervisor.h>

void supervisor simulation quit ();

DESCRIPTION

Thesupervisor simulator quit function sends a request to the simulator process, asking to
terminate and quit immediately. As a result of terminating the simulator process, all the controller
processes, including the calling supervisor controller process will terminate.

supervisor set label

NAME

supervisor field get , supervisor field set – get and set the contents of the
field of a node in the scene

SYNOPSIS

#include <device/supervisor.h>

void supervisor field get (NodeRef node, field type type, gpointer data,

guint16 ms);

void supervisor field set (NodeRef node, field type type, gpointer data);

DESCRIPTION

Thesupervisor field get function allows the supervisor controller to track the evolution of
some fields of a node. Currently only a few fields are trackable, as described in the following list
of field types. Eachms milliseconds, the new value of the field (if any) is stored atdata with a
specific data type (usually an array ofgfloat). The type parameter should be a combination of
the following primitive constants, as defined in thesupervisor.h header file:

2.12. TOUCHSENSOR 31

SUPERVISOR_FIELD_TRANSLATION_X
SUPERVISOR_FIELD_TRANSLATION_Y
SUPERVISOR_FIELD_TRANSLATION_Z
SUPERVISOR_FIELD_ROTATION_X
SUPERVISOR_FIELD_ROTATION_Y
SUPERVISOR_FIELD_ROTATION_Z
SUPERVISOR_FIELD_ROTATION_ANGLE
SUPERVISOR_FIELD_BATTERY_CURRENT

Some predefined combinations include:

SUPERVISOR_FIELD_TRANSLATION = SUPERVISOR_FIELD_TRANSLATION_X+
SUPERVISOR_FIELD_TRANSLATION_Y+SUPERVISOR_FIELD_TRANSLATION_Z

SUPERVISOR_FIELD_ROTATION = SUPERVISOR_FIELD_ROTATION_X+
SUPERVISOR_FIELD_ROTATION_Y+SUPERVISOR_FIELD_ROTATION_Z+
SUPERVISOR_FIELD_ROTATION_ANGLE

SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION =
SUPERVISOR_FIELD_TRANSLATION+SUPERVISOR_FIELD_ROTATION

It is necessary that thedata parameter be a pointer towards a large enough array ofgfloat , able
to contain all the requested values. Onegfloat is necessary for each primitive value. Please
note that thisdata pointer should point to a valid memory chunk at the time of therobot step

function. Hence, it should not be stored on the heap of a local function that won’t exist any more
when callingrobot step . Instead, it has to be dynamically allocated, or declared as a local or
global static variable, or declared in the same function that (or a parent function of) the function
calling robot step .

In order to disable the tracking of a field, call thesupervisor field get function with ams

parameter set to 0.

The supervisor field set function works the same way assupervisor field get , ex-
cept that it changes the value of the requestedfield instead of reading it.

EXAMPLE

An simple example of using field tracking is given in thesupervisor controller.

2.12 TouchSensor

32 CHAPTER 2. CONTROLLER API

touch sensor enable

NAME

touch sensor enable , touch sensor disable – enable and disable the touch sen-
sor measurements

SYNOPSIS

#include <device/touch sensor.h>

void touch sensor enable (DeviceTag sensor, guint16 ms);

void touch sensor disable (DeviceTag sensor);

DESCRIPTION

touch sensor enable allows the user to enable a touch sensor measurement eachmsmillisec-
onds.

touch sensor disable turns the touch sensor off, saving computation time.

touch sensor get value

NAME

touch sensor get value – get the touch sensor measure

SYNOPSIS

#include <device/touch sensor.h>

guint16 touch sensor get value (DeviceTag sensor);

DESCRIPTION

touch sensor get value returns the last value measured by the specified touch sensor. This
value is computed by the simulator according to the lookup table of theTouchSensor node.
Hence, the value range for the return value is defined by this lookup table.

Chapter 3

Webots File Format

3.1 File Structure

Webots files must begin with the characters:

#VRML_SIM V3.0 utf8

and the following nodes have to appear:

WorldInfo
Viewpoint
Background

3.1.1 Example

#VRML_SIM V3.0 utf8
WorldInfo {

info [
"Description"
"Author: first name last name <e-mail>"
"Date: DD MMM YYYY"

]
}
Viewpoint {

orientation 1 0 0 -0.8
position 0.25 0.708035 0.894691

}
Background {

skyColor [

33

34 CHAPTER 3. WEBOTS FILE FORMAT

0.4 0.7 1
]

}
PointLight {

ambientIntensity 0.54
intensity 0.5
location 0 1 0

}

The file extension is.wbt (standing for WeBoTs).

3.2 VRML97 nodes partially supported in Webots

The name of the node appears first and the names of the supported fields appear within the braces.

Appearance { material texture textureTransform }Background { skyColor }
Box { size }
Color { color }
Cone { bottomRadius height side bottom }
Coordinate { point }
Cylinder { bottom height radius side top }
DirectionalLight { ambientIntensity color direction intensity on }
ElevationGrid { color colorPerVertex height xDimension zDimension xSpacing

zSpacing }
Fog { color fogType visibilityRange }
Group { children }
ImageTexture { url repeatS repeatT}
IndexedFaceSet { ccw coord coordIndex convex creaseAngle texCoord

texCoordIndex}

Note:

Face rendering is performed on a single side. The order of the coordinates indicate the orientation
of the visible face. If you need double-sided faces, you will have to create two faces with the
same coordinate lists but in reverse order.

IndexedLineSet { coord coordIndex }
Material { ambientIntensity diffuseColor emissiveColor shininess

specularColor transparency}
PointLight { ambientIntensity attenuation color intensity location on radius}

Note:

The value ofradius is ignored. It is considered as infinite.

3.3. WEBOTS NODES 35

Shape { appearance geometry }
Sphere { radius subdivision }

Note:

Spheres are rendered as icosaedrons with 20 faces when the subdivision field is set to 0. If the
subdivision field is 1 (default value), then each face is subdivided into 4 faces, which makes 80
faces. With a subdivision parameter set to 2, 320 faces will be rendered, making the sphere very
smooth.

TextureCoordinate { point }
TextureTransform { scale center translation rotation }
Transform { translation rotation scale children }
Viewpoint { fieldOfView orientation position }
WorldInfo { title info }

Note:

A texture can be mapped only on an IndexedFaceSet shape. ThetexCoord andtexCoordIndex

must be filled. The image used as a texture must be a.png or a .jpg file, its size must be 2̂n
* 2n̂ pixels (for example 8x8, 16x16, 32x32, 64x64, 128x128 pixels). Transparent PNG images
are not authorized for textures in Webots.

3.3 Webots nodes

The nodes listed here are described using the standard VRML description syntax.

3.3.1 Camera

Camera {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool

36 CHAPTER 3. WEBOTS FILE FORMAT

fieldOfView 0.7854 SFFloat
width 64 SFInt32
height 64 SFInt32
type "color" SFString

}

3.3.2 Charger

Charger {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
battery [] MFFloat
radius 0.2 SFFloat

}

3.3.3 CustomRobot

CustomRobot {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
controller "void" SFString

3.3. WEBOTS NODES 37

synchronisation TRUE SFBool
battery [] MFFloat
cpuConsumption 0 SFFloat

}

3.3.4 DifferentialWheels

DifferentialWheels {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
controller "void" SFString
synchronisation TRUE SFBool
battery [] MFFloat
cpuConsumption 0 SFFloat
motorConsumption 0 SFFloat
axleLength 0.1 SFFloat
wheelRadius 0.01 SFFloat
maxSpeed 10 SFFloat
maxAcceleration 10 SFFloat
speedUnit 0.1 SFFloat
slipNoise 0.1 SFFloat
encoderNoise -1 SFFloat

}

3.3.5 DistanceSensor

DistanceSensor {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString

38 CHAPTER 3. WEBOTS FILE FORMAT

model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
lookupTable 0 0 0,0.1 1000 0 MFVec3f
type "infra-red" SFString

}

3.3.6 Emitter

Emitter {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "infra-red" SFString
range 0.5 SFFloat
channel 0 SFInt32
baudRate 9600 SFInt32
byteSize 8 SFInt32
bufferSize 1024 SFInt32

}

3.3.7 Gripper

Gripper {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode

3.3. WEBOTS NODES 39

name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
position 0 SFFloat

}

3.3.8 HyperGate

HyperGate {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
url "" SFString
radius 0.1 SFFloat
height 0.1 SFFloat
maxFileSize 65536 SFInt32

}

3.3.9 LightSensor

LightSensor {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString

40 CHAPTER 3. WEBOTS FILE FORMAT

author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
lookupTable 0 0 0,0.1 1000 0 MFVec3f

}

3.3.10 Physics

Physics {
field SFFloat mass 0 # expressed in kg
field SFVec3f velocity 0 0 0 # expressed in m/s
field SFFloat angularVelocity 0 # expressed in rad/s
field SFFloat staticFriction 0 # coefficient
field SFFloat kineticFriction 0 # coefficient
field SFFloat impactEnergyAbsorbtion 0 # coefficient
field SFFloat surfaceNoise 0 # noise due to surface defaults

}

3.3.11 Receiver

Receiver {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "infra-red" SFString
channel 0 SFInt32
baudRate 9600 SFInt32
byteSize 8 SFInt32
bufferSize 1024 SFInt32

}

3.3. WEBOTS NODES 41

3.3.12 Servo

Servo {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "rotation" SFString
maxSpeed 10 SFFloat
maxAcceleration 10 SFFloat
animation [] MFNode

}

3.3.13 Solid

Solid {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool

}

3.3.14 Supervisor

Supervisor {

42 CHAPTER 3. WEBOTS FILE FORMAT

scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
controller "void" SFString
synchronisation TRUE SFBool
battery [] MFFloat
cpuConsumption 0 SFFloat

}

3.3.15 TouchSensor

TouchSensor {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "bumper" SFString
lookupTable 0 0 0,0.1 1 0 MFVec3f

}

3.3. WEBOTS NODES 43

44 CHAPTER 3. WEBOTS FILE FORMAT

	Introduction
	Controller API
	Robot
	CustomRobot
	DifferentialWheels
	DistanceSensor
	Camera
	Emitter
	LightSensor
	Gripper
	Receiver
	Servo
	Supervisor
	TouchSensor

	Webots File Format
	File Structure
	Example

	VRML97 nodes partially supported in Webots
	Webots nodes
	Camera
	Charger
	CustomRobot
	DifferentialWheels
	DistanceSensor
	Emitter
	Gripper
	HyperGate
	LightSensor
	Physics
	Receiver
	Servo
	Solid
	Supervisor
	TouchSensor

