
What is the NeuralBuilder?

The NeuralBuilder is a sophisticated neural network builder that sends commands to NeuroSolutions to 
automatically construct a fully-functional neural network. The object-oriented simulation environment of 
NeuroSolutions gives the user an unprecedented flexibility to construct neural network simulations. However, 
flexibility and power require a substantial amount of knowledge about neural networks. The NeuralBuilder aids the 
user by encapsulating the network building rules and reducing the user decisions down to an easy, step-by-step 
procedure. 

Much of the construction effort necessary to build neural networks with NeuroSolutions becomes transparent to 
the user. There is a wide range of conventional neural models to choose from. When a model is selected, the user 
is lead through a series of panels containing the configuration parameters for the model. Each parameter has a 
default value that can be overwritten. After completing all the panels, the utility makes calls to NeuroSolutions to 
automatically construct the network according to the specifications. 



Supported Models

For each model there are configuration instructions, a summary of advantages and disadvantages, examples of 
typical applications, and a short summary of the theory. The following models are presently supported by the 
NeuralBuilder:

1 Multilayer Perceptrons (MLPs)

2 Generalized Feedforward MLPs

3 Modular Feedforward Networks

4 Radial Basis Functions (RBFs) Networks

5 Jordan/Elman Networks

6 Principal Component Analysis (PCA) Networks

7 Self-Organizing Feature Map (SOFM) Networks

8 Time Lagged Recurrent Networks (TLRNs)

9 General Recurrent Networks

10 CANFIS Networks (Fuzzy Logic)

11Support Vector Machines (SVM) 



Design Steps of the NeuralBuilder

By default, the NeuralBuilder is accessible from the main menu of NeuroSolutions. Select the NeuralBuilder item 
from the Tools menu of NeuroSolutions. The NeuralBuilder panel will appear in the center of the display with a list 
of the supported neural models (see Supported Models), a brief description of the selected model, and brief 
instructions on making a selection (see figure below). Select the desired neural model by single-clicking on the 
item within the list.

Opening panel of the NeuralBuilder

If you are uncertain which neural model to apply to your problem, it is recommended that you start with a simple 
model by selecting the multilayer perceptron (MLP). The "Multilayer Perceptrons" section of this chapter contains 
an explanation of the power of this model and some alternatives that may provide a solid start for enhancements. 
If you want to know more about neural networks, it is recommended that you read the "Introduction to Neural 
Computation" chapter of the NeuroSolutions on-line manual. The "Concepts" chapter of this manual covers the 
details and overall structure of NeuroSolutions.

The 7 basic steps of neural network construction are:

Step 1: Input/desired data file selection

Step 2: Network Analysis

Step 3: Neural Topology

Step 4: Layer configuration

Step 5: Simulation control

Step 6: Data Display

Step 7: Simulation

The NeuralBuilder will sequentially follow these steps. You will simply need to click on the  button of 
the active panel to go through the building process. If you change your mind, you can go back by clicking on the 

 button. To leave the NeuralBuilder at any time just click on the Close button (see figure above).
Each neural model can have unique parameters to set, so steps 3, 4 and 5 are dependent on the chosen model. 
Design steps 1, 2, 6 and 7 are common to all of the models.



Step 1: Input/Desired Data File Selection

This step links NeuroSolutions to your data stored on the computer file system (see figure below). All the models 
currently supported by the NeuralBuilder use some form of supervised learning. Hence, the user is required to 
supply an input file and a desired response file. From the Training Data panel, pressing the Browse button will 
open the Windows file browser, which allows you to specify the input/desired data from the file system. You have 
basically two options: either the input and desired data are in the same file, or they exist in two independent files. 

Training Data panel of the NeuralBuilder

The NeuralBuilder requires the data files to be ASCII text, arranged into columns. The data elements can be 
integers, floating point numbers (decimal point or exponential notation), or symbols (non-numeric). The first row in 
the file is assumed to be the column titles (which are used to tag the training data), and the data starts at the 
second line. Either spaces or tabs can be used as data delimiters. The figure below shows an example data file.



Column-formatted ASCII file used by the NeuralBuilder

This organization was chosen to be compatible with text files produced by spreadsheet programs, and also to 
enable the NeuralBuilder to automatically configure the input/output network layers for you. The NeuralBuilder 
assumes that each numeric input file column is a network input, so it assigns an input processing element (PE) to 
it. Likewise, an output PE will be assigned to each column specified as a desired output. 

Specify the input data file in the Windows file browser by selecting (single-clicking) the file you want open and 
clicking on the OK button. After making your selection, the NeuralBuilder displays the name of the selected file. 
The box labeled with the headers Tag and Column will display the column titles read from the opened data file 
(see Training Data Panel and Column-formatted ASCII figures above). 

Note that all columns are configured as inputs. You can change this assignment by simply double-clicking on the 
corresponding entry. The input label will toggle to "Desired". Alternatively, you can select the column title and press 
the Desired button. By doing this, you are specifying that the desired response is to be read from the same file as 
the input.

You can have the system ignore the data from a column by double-clicking on a column tagged as Desired, or by 
selecting this item and clicking the Skip button. Double-clicking on a skipped column toggles that column back to 
being an input.

If you are unsure whether an input should be skipped or not, check the GA check box next to that input. Each input 
tagged as GA (optimize using a genetic algorithm) will be selected (tagged as Input) or de-selected (tagged as 
Skip) based on the performance of multiple training runs. The combination of inputs that produces the lowest error 
across these training runs will be used for the final model.

Another option within this panel is contained within the Prediction box. When the Prediction switch is set, the 
simulation mode is switched from classification to prediction. In prediction, the desired response is the input 
advanced by a given (user specified) number of data samples. The number of samples to advance is specified in 
the Delta field. The default value is one sample prediction. The Desired button is changed to a Prediction button, 
and the columns are now tagged as either Input, Prediction or Skip.

A given column selected for prediction will be used by the network as both an input and a desired response. The 
difference is that the desired response is advanced by Delta samples. Note that by setting this panel to prediction 
mode, you have specified that the desired response is to be read from the same file as the input. Therefore, the 
NeuralBuilder will not give the option to select a separate file for the desired response.

Recall that each column represents one channel (PE) of input data. The exception to this rule is when a column 
contains symbolic instead of numeric data. A column is specified as symbolic by selecting an item marked as 
Input, Desired or Predict, and then pressing the Symbol button. Note that the item is now tagged with a "(S)". A 
new column will be created for each unique symbol contained within a symbolic column. The figure below shows 
an example of a file with a symbolic column and how the symbols are expanded into multiple columns.



Illustration of the expansion of one symbolic column into six numeric columns

If you are not in prediction mode and there are no columns tagged as Desired (given that there is at least one 

column tagged as Input), then the next panel (after pressing the  button) will be the Desired 
Response panel (see figure below).



Desired Response panel of the NeuralBuilder

In this panel, the mechanics are basically the same as the previous panel. The NeuralBuilder expects the same 
file columns and organization as discussed for the input file. The file is opened using the Browse button, but now 
the default tag for the columns is Desired. Note that you cannot specify any column of this file as input data and 
the ability to optimize the column selection using a genetic algorithm (GA) is not available.

You should know that the NeuralBuilder automatically normalizes the input data for you. This is either in the range 
between 0 and 1 or between -1 and 1 depending on the type of non-linearity selected in the Layer panels. This is 
covered in more detail under Step4: Layer Configuration.    This normalization can be overridden after the network 
is constructed.

 Step 2 



Step 2: Cross Validation and Test Data

The cross validation set is used to determine the level of generalization produced by the training set. Cross 
validation is executed in concurrence with the training of the network. Every so often, the network weights are 
frozen, the cross validation data is fed through the network, and the results are reported. The stop criteria of the 
controller can be based on the error of the cross validation set instead of the training set to insure this 
generalization (see Step 5: Simulation Control).

Cross Validation Data panel of the NeuralBuilder

The cross validation set may be extracted from the existing file(s) specified in the previous panels, or it may be 
contained within separate files. In the case that the cross validation set is to be extracted from the training file(s), 
you simply specify the percentage of exemplars to extract. The NeuralBuilder calculates the number of exemplars 
used for cross validation and displays this value at the bottom of the panel. 

If the cross validation set data comes from separate files, click on the Read from Separate Files radio button. If 
your training data is divided into two files (an input file and a desired response file), then you must specify two 
additional files to be used for cross validation. For the case where the input and the desired response of the 
training set are contained within the same file, you only need to specify one file for cross validation. The files are 
selected using the Input and Desired buttons in the same way as the Browse button was used in the previous 
panel.

The testing set is used to test the performance of the network. Once the network has been trained, the weights are 
then frozen, the testing set is fed into the network, and the network output is compared with the desired output. 
The testing set is specified in the same manner as the cross validation set.

You may configure your network with both, one or neither of these data sets. Setting the percentage field to zero 
specifies that the data set is to be excluded.

The NeuralBuilder assumes that the structure of your training, testing and cross validation data files are the same. 
First of all, the column headings selected within the training file(s) must also exist within the cross validation file(s) 
and testing files. If you are using separate files for the input and desired response, you should verify that there is 
the same number of exemplars contained within each one.

 Step 3 



Step 3: Neural Topology

The next panel is used to define the topology specifics based on the neural model selected earlier. Since this 
panel is dependent on the neural model, just a brief overview of the panel will be given here (see figure below). 
See Supported Models for specifics on each of the supported models.

This panel displays the name of the selected neural model, a block diagram showing the relevant aspects, and a 
synopsis of the selections made thus far. The number of input PEs and output PEs was obtained according to your 
selection of input columns and desired columns. If these numbers are not correct, then you may click the 

 button to make changes to one of the previous panels. 

Multilayer Perceptron panel of the NeuralBuilder

For all neural models, this panel is also used to specify the number of hidden layers comprising the topology. The 
NeuralBuilder will create this many additional Hidden Layer panels, which are described in the next section. Note 
that hidden layers are optional and that a zero may be entered in the Hidden Layers field.

 Step 4 



Step 4: Layer Configuration

The Layer panels are used to specify the parameters for each of the hidden layers, as well as the output layer. 
NeuroSolutions simulations are vector based for efficiency. This implies that each layer contains a vector of PEs 
and that the parameters selected apply to the entire vector. The parameters are dependent on the neural model, 
but all require a nonlinearity function to specify the behavior of the PEs. In addition, each layer has an associated 
learning rule and learning parameters. The number of PEs and learning parameters are entered in the 
corresponding fields. The learning rule and nonlinearity are selected from a list of options contained within pull-
down menus (see figure below).

Layer panel of the NeuralBuilder

The table below  summarizes the types of transfer functions that are available in NeuroSolutions. See the on-line 
documentation of NeuroSolutions for more detailed information on the PE types contained within the various axon 
components. If you find that the menu does not contain all of these selections, it means that it found the missing 
component(s) to be inappropriate (or incompatible) for that neural model.

Axon Selections

PE Transfer Function Description

Axon stores input

BiasAxon adds a bias

LinearAxon adds a bias and scales

LinearTanhAxon piecewise linear (-1/+1)

LinearSigmoidAxon piecewise linear (0/1)

TanhAxon hyperbolic tangent (-1/+1)

SigmoidAxon sigmoid (0/1)

SoftMaxAxon sum to one

Each one of these axon components applies a static map to the data it receives. The map can be linear or 
nonlinear, or it can normalize the input to the PE.

Learning from the data is the essence of neurocomputing. Every PE that has an adaptive parameter must change 



it according to some pre-specified procedure. Backpropagation is by far the most common form of learning (see 
Multilayer Perceptrons and the on-line documentation of NeuroSolutions for a more in depth discussion). Here it is 
sufficient to say that the weights are changed based on their previous value and a correction term. The learning 
rule is the means by which the correction term is specified. Once the particular rule is selected, the user must still 
specify how much correction should be applied to the weights, referred to as the learning rate. If the learning rate 
is too small, then learning takes a long time. On the other hand, if it is set too high, then the adaptation diverges 
and the weights are unusable.

The table below shows the options contained within the Learning Rule pull-down menu. The NeuralBuilder selects 
the momentum component as default. In searching with the momentum component there are two parameters to 
be selected: the step size and the momentum. The NeuralBuilder provides a default value for the learning rates. 
Be ready to modify this selection if you see that learning is unstable or very slow.

Learning Rule

Name Description

Step Gradient Information

Momentum Gradient and Weight Change 
(Momentum)

Quickprop Gradient and Rate of Change 
of Gradient

DeltaBarDelta Adaptive Step Sizes for 
Gradient plus Momentum

Conjugate 
Gradient

Second Order method for 
Gradient

The default setting for the Processing Elements, Step Size and Momentum are generally a good starting point. 
However, if you would like to try to find the optimum setting for one or more of these parameters, check the 
corresponding GA check box. Each parameter tagged as GA (optimize using a genetic algorithm) will be set based 
on the performance of multiple training runs. The combination of parameter settings that produces the lowest error 
across these training runs will be used for the final model.

After specifying the parameters for the hidden layers, the next panel is the Output Layer panel. This panel is 
similar to the Hidden Layer panels, except that the number of PEs is fixed. Recall that this number is determined 
by the number of columns selected as your desired response.

 Step 5 



Step 5: Simulation Control 

The next step in the configuration of your network is the simulation control. Here you will select how to train the 
network and when to stop the simulations. There are separate panels for supervised and unsupervised learning. 
Some neural models require both panels but most (such as the MLP) require only the Supervised Learning Control 
panel.

Unsupervised Learning

If the selected neural model contains an unsupervised layer, then the Unsupervised Learning panel is displayed 
next. Note that for the hybrid networks of the NeuralBuilder (those that contain both a supervised and an 
unsupervised segment), the unsupervised segment is trained independently of the supervised one. This implies 
that the learning rates and stop criteria defined within this panel have no direct effect on those parameters defined 
within the Supervised Learning Control panel.

First you must decide when to terminate the training of the unsupervised segment of the network. To stop based 
on the number of epochs, enter that number in the Maximum Epochs field. The other option is to stop the 
unsupervised training based on the change in the weights. First set the Maximum Epochs to a high value so that 
the training will not stop prematurely. Then Activate the termination based on the Weight Change. This specifies 
that the training will terminate when all of the weights change by less than the specified value from one epoch to 
the next. This parameter can be changed from its default value of 0.0001 (see figure below).

Unsupervised Learning Control panel of the NeuralBuilder

The other unsupervised parameters specify the learning rate (the amount to change the weights between epochs). 
Unsupervised learning usually performs best when the learning rate starts out high and then gradually decays 
during training. This allows the network to find an approximate solution quickly, and then focus on the details of the 
problem. The two parameters define the starting point of the learning rate and the value that the learning rate is to 
decay to (provided that it runs for the maximum number of epochs). 

Supervised Learning

Similar to the Unsupervised Learning panel, the stop criteria for the supervised training of the network must be 
specified. The Maximum Epochs field specifies how many iterations (over the training set) will be done if no other 
criterion kicks in. The Error Change box contains the parameters used to terminate the training based on mean 
squared error (see figure below).



Supervised Learning Control panel of the NeuralBuilder

The NeuralBuilder has MSE termination activated by default. To terminate the training strictly based on the number 
of epochs, click the MSE switch such that it is no longer checked. Otherwise, you can specify how the training 
terminates as a function of the desired error level. There are three functions to choose from, but the first two are 
the most applicable to the MSE of the training set. The Minimum function terminates when the MSE drops below 
the specified Threshold. The Incremental function terminates when the change in MSE from one iteration to the 
next is less than the threshold. Note that the default threshold changes when you select between the two 
functions. As expected, the default Incremental error is much smaller than the Minimum error.

The other option of MSE termination is to base the stop criteria on the cross validation set (using Cross Validation 
from the Network Analysis panel) instead of the training set. As mentioned earlier, this tends to be a good indicator 
of the level of generalization that the network has achieved. Increase is the default function when using the cross 
validation set for MSE termination. This stops the network when the MSE of the cross validation set begins to 
increase. This is an indication that the network has begun to overtrain. Overtraining is when the network simply 
memorizes the training set and is unable to generalize the problem. The other two stopping functions described 
above can be applied to the cross validation set as well as the training set.

The weights of the best network (the one with the lowest MSE) are automatically saved by default. By setting the 
"Load Best on Test" switch, these weights will automatically be loaded into the network before the "Testing" set is 
fed through the network. 

The Supervised Learning Control panel also specifies when the weights are updated. On-Line learning updates 
the weights after the presentation of each exemplar. In contrast, Batch learning updates the weights after the 
presentation of the entire training set.

Iterative Prediction

There is a small subset of problems that are best modeled using a method called iterative prediction. This 
procedure feeds the first sample of each exemplar from the input file and then obtains the remaining input 
exemplars from the network output. The most common way to train an iterative prediction network is with teacher 
forcing. This algorithm feeds x samples from the input file and the remaining y samples from the network output, 
where x+y is the number of samples per exemplar (z). 

The Iterative Predition panel will be displayed after the Supervised panel if the following conditions are met:

1. The neural model is either "Time-Lag Recurrent" or "General Recurrent".

2. The "Predict" switch is set (from the Training Data panel).

3. All columns are selected as either "Skip" or "Predict" (none as "Input").

4. The "Delta" is greater than 1.



Supervised Learning Control panel of the NeuralBuilder

Check the "Enable Iterative Prediction" switch to use iterative prediction, otherwise you may skip to the next panel. 
The "Display Predictions Only" configures the probes to only display the last sample of each exemplar (the 
predicted value). Leaving this box unchecked will display all of the intermediate predictions in the exemplar.

To train using teacher forcing, check the "Enable Teacher Forcing" box. By default, the training starts out by forcing 
all (100%) of the input samples (i.e., x = z and y = 0). Each epoch the number of forced samples is reduced by 1% 
of the total number of samples per exemplar (i.e., x = 0.99 * z and y = 0.01 * z). Eventually, there will be no forced 
inputs (0%) such that it will only read the first sample from the input file and the remaining inputs from the network 
output (as with straight iterative prediction).

For more detailed information on iterative prediction and teacher forcing, review the NeuroSolutions 
documentation for the DynamicControl and BackDynamicControl components.

 Step 6 



Step 6: Probe Configuration

One of the advantages of NeuroSolutions is its extensive probing ability. Within this panel you can select five 
common network points that you may want to probe. At each of the selected points, you can choose the probe that 
is most appropriate for the data at that point (see figure below). Note that you are not restricted to these five 
probing points. Once you have constructed the network, you can attach additional probe components.

By default, the NeuralBuilder is configured to probe the error curve (using the DataGraph), the network output 
(using the DataWriter) and the desired output (using the DataWriter). The DataWriter and DataGraph have an 
additional feature in that it is configured to display both the network output and the desired output in the same 
window so that you can easily compare the values.

The bottom section of the panel contains check boxes for three MatrixViewer probes, which provide various 
performance measures. The General performance probe displays the Mean Squared Error (MSE), the Normalized 
Mean Squared Error (NMSE), the Correlation Coefficient (r), the Percent Error, the Akaike Information Criterion 
(AIC), and the Minimum Description Length (MDL). The Confusion Matrix probe shows the percentage of 
exemplars classified correctly for each output class. The Receiver Operating Characteristics (ROC) probe shows 
the ratio of detections and false alarms for a range of output thresholds. For more information on these probes, 
see the NeuroSolutions documentation under the "Confusion Matrix", "ROC", and "Performance Measures" 
access points of the Criterion family of components. 

Probe Configuration panel of the NeuralBuilder

The table below summarizes the probes listed within each of the pull-down menus:

Probes

Name Description

BarChart qualitative (size of bars)

Hinton qualitative (size of squares)

ImageViewer qualitative (intensity level)

MatrixViewer quantitative (numeric - view only)

MatrixEditor quantitative (numeric - editable)

MegaScope qualitative (graph over time)

DataGraph qualitative & quantitative (graph over 



time w/ labeled axis)

DataWriter quantitative (writes data to a file)

Static probes display instantaneous data, meaning that only a single time step is represented. Temporal probes 
display the data across a "window" of time. All probes listed above are static with the exception of the MegaScope, 
which is temporal. Below is a brief summary of the probes. For a complete description of the probe components, 
see on-line documentation for NeuroSolutions.

The BarChart  provides qualitative information in the form of a column-oriented display of information (see 
figure below). It is very useful for static classification problems when making a comparison between the output and 
the desired response. 

Display window of BarChart probe

The Hinton  diagram is also a qualitative display that provides a global view of a matrix (normally the weight 
matrix). The values are represented by squares whose size is associated with the magnitude and whose color 
represents the sign (black is negative, white is positive).

Display window of Hinton probe

The ImageViewer  displays a matrix of values as intensity levels (white corresponds to one and black 
corresponds to zero). The primary purpose of this probe is to display images such as bmp files (see figure below), 
but it can also be used as an alternative to other qualitative probes.



Display window of ImageViewer probe

The MatrixViewer  provides quantitative (numeric) information of the data being probed (see figure below). 
You can use it to obtain the value of any internal network variable.

Display window of the MatrixViewer probe

The MatrixEditor  is similar in appearance to the MatrixViewer, but it has a very important additional function. 
It allows the user to modify the values of the internal network variables. For example, you may want to modify the 
weights or inject a specific pattern to find out the response. You simply change the values within the probe window 
and re-start the simulation. Note that this probe slows down the simulations significantly more than the 
MatrixViewer.

Display window of the MatrixEditor probe

The MegaScope  is like a multichannel oscilloscope in that it displays amplitude versus time (see figure 
below). It is useful for displaying the learning curve (the evolution of the mean square error during learning). It is a 
necessity when working with temporal problems such as adaptive signal processing.



MegaScope window used to display the learning curve

The DataGraph  is a graphing tool that displays amplitude versus time (see figure below). It is useful for 
displaying the learning curve (the evolution of the mean square error during learning) as well as the network output 
vs. desired output.

DataGraph window used to display the output vs. desired data.

The DataWriter  provides quantitative (numeric) information of the data being probed. It differs from the 
MatrixViewer, in that it displays each new set of data in a new row, instead of replacing the previous data with the 
new data. This probe can also be used to write the probed data to a file.



DataWriter window used to display the network output over time.

 Step 7 



Step 7: Simulation

The final step is started by clicking on the Build button once you have specified the probes. The NeuralBuilder 
constructs the network as per your specifications. Watch as the components are brought to the breadboard one at 
a time, interconnected and configured. Eventually, you will learn to construct networks component by component, 
allowing you to build many more neural models than those supported by the NeuralBuilder. To understand the 
iconic representation of the neural components, refer to the on-line documentation of NeuroSolutions. Here just a 
brief description is presented.

Note that only the display window for the error probe(s) is displayed. You can double-click on the probe icons to 
open the display windows for the other probes you have selected. The probes are labeled according to the column 
headings extracted from the data files. 

Observation of the probes, in particular the probe monitoring the mean square error, is crucial for fine tuning the 
learning process. You should be aware that computing cycles are consumed by the graphical animations of the 
probes. Only the probes that are opened will slow down the simulation. A compromise should be reached between 
speed of simulation and the speed of the animations. Each of the probes has a parameter for setting the refresh 
rate of the display. If simulation speed is important, then this rate should be set low so that the probe does not 
consume a high percentage of the processing cycles. See the NeuroSolutions on-line documentation for a 
complete description of the probe parameters.

To start the simulation, press the Start button from the Control Toolbar. Once you have trained the network and are 
satisfied with the performance, you should save the breadboard to a file. This will save all of the components, 
connections, parameters and (optionally) trained weights of the network. This trained neural network can then be 
loaded back into NeuroSolutions at a later time.

If the simulation was not successful, then the parameters and/or the topology itself may need adjusting. One 
approach is to return to the NeuralBuilder and change the settings within one or more of the panels. This may be 
the best approach if you are new to NeuroSolutions and the topology (e.g., the number of layers) needs to be 
modified. If it is simply a matter of parameter adjustment, then these changes should be made directly from the 
breadboard using the Inspector window. The following section contains a brief summary of the procedure for 
manipulating a component’s parameters. Other basic concepts of the package are briefly summarized as well. 
See the NeuroSolutions on-line documentation for a complete discussion of these topics.



Planes of a Network

NeuroSolutions simulations can be broken down to three basic planes: the activation plane, the backpropagation 
plane and the gradient search plane. The activation plane is responsible for the forward activation of the network 
(i.e., producing an output for a given input). The backprop plane is responsible for backpropagating the error used 
for backpropagation learning. The gradient search plane is responsible for updating the weights based on the 
activation and the error at each weight.



Access Points

Each component understands a common communication protocol for accessing the data of other components. 
Components can share their data with other components by providing one or more access points.

The most common use of access points is for probing the internal network data. By attaching a probe component 
to an access point of another component on the breadboard, that component’s data can then be displayed.



Inspector

The Inspector window is the interface for viewing and modifying the parameters of the components. To display the 
Inspector window, select the Inspector item from the View menu (at the top of the main window of 
NeuroSolutions).

DataGraph inspector

When you select (single-click on) a component on the breadboard, the corresponding inspector is displayed within 
the Inspector window. The parameters are presented and can be modified by typing in new values or clicking on 
the controls. Not all of the parameters are visible at one time. At the top of a component’s inspector are labeled 
tab keys. Selecting one of these keys will switch to a different "page" of parameters. Some of these pages will be 
common to several components. The components and their parameters are explained in detail in the on-line 
documentation for NeuroSolutions. This chapter will only address the parameters of the most important 
components. 



Activation Plane

The basic building blocks for the activation plane are the Axon and Synapse families. The Axon  
implements the nonlinearity, while the Synapse 

 implements the sum of products of the McCulloch-and-Pitts neuron. The Axon contains the biases, 
while the Synapse contains all of the weights. Each axon represents a vector (layer) of PEs and each synapse 
represents a matrix of weights.

Axon and Synapse palettes

The nonlinearity that an axon implements is determined by the particular type of axon selected from the palette. To 
change this nonlinearity you would need to replace this component with a new one. One way to do this is to return 
to the NeuralBuilder and change the Transfer Function setting(s) within the Layer panel(s).

The number of PEs within an axon can be viewed by selecting the Axon tab key within its inspector. Edit the 
number in the Rows field to modify the axon’s size. Note that there is also a Columns field within this inspector. 
There are cases when the vector of PEs is best interpreted as a matrix (e.g. an image), in which case this field 
would be used.

Axon inspector

The size of a synapse is determined by the size of the axons that it is connecting. For the standard FullSynapse 
component, the number of weights is the product of the number of PEs in the axon at its input with the number of 
PEs in the axon at its output. The number of weights can be viewed from the Soma page of the synapse’s 
inspector.



FullSynapse Inspector



Saving the Weights

The Save and Fix switches within the Soma page of the Axon and Synapse inspectors control how the weights are 
treated (see figure). When you save a breadboard to a file, the weights of a given component will be saved only if 
this switch is checked (the default).

The Fix switch protects the component weights from being modified by the global commands of the controller (i.e., 
Reset, Randomize and Jog). This switch is useful when you want to set the values of a component’s weight matrix 
(using the MatrixEditor) and have those values stay fixed while the rest of the network is trained. Note that a 
GradientSearch component can still alter these weights.

The ErrorCriteria family consists of components that compute error used by the backpropagation plane and the 

gradient search plane. The L2Criterion  (accessed using the second button from the left in the figure 
below) is most commonly used to generate the mean squared error (MSE) of the activation plane. 

ErrorCriteria palette
The ErrorCriteria component can be configured to automatically save the weights that produced the lowest MSE 
during the training. These weights are not stored with the breadboard, but as a separate ASCII weight file (*.nsw). 
The network’s controller (StaticControl or DynamicControl) is the component used to manually save the 
breadboard weights to a file or to load a set of stored weights into the breadboard.



Backpropagation Plane

The backpropagation plane is represented by smaller, but similar, component icons that lay on top of the activation 
components. Normally, you will not need to select these components from the Backprop palette because they are 
created automatically using either the NeuralBuilder or the BackStaticControl inspector (see Changing the 
Learning Rule).

Activation and Backprop planes



Changing the Learning Rates

On top of the backpropagation plane you will find the gradient search components. Note that only those 
components with adaptive coefficients (weights or biases) can have a corresponding gradient search component 
attached.

Activation, Backprop, and Gradient Search planes

Selecting one of the gradient search components will display that component’s learning rate within the Inspector 
window (see figure below). These are the parameters that need changing if the learning is too slow or if the 
training diverges. Note that changing these parameters only affects the learning rate for the selected component. 
To set the same learning rate for all of the gradient search components, you must first select the group by clicking 
on all of the gradient search icons while holding down the Shift key. Any parameter changes made within the 
Inspector window are now applied to all components of the group.

Momentum inspector



Control Menu & Toolbar Commands

Description:

This toolbar allows you to perform global data flow operations on the network. Open this toolbar by selecting 
"Control" from the "Toolbars" menu. These control commands can also be found within the "Tools" menu.

Toolbar Commands:

 Start
Begins an experiment defined by the Control component on the breadboard. If this button is disabled, then the 
experiment has run to completion and the network must either be reset (see below) or the epochs must be 
increased (see the documentation for the StaticControl inspector within the help for NeuroSolutions).

 Pause
Pauses the simulation after finishing the current epoch.

 Reset
Resets the experiment by resetting the epoch and exemplar counters, and randomizing the network weights. 
Note that when the Learning switch from the Static property page of the controller is off, the weights are not 
randomized when the network is reset

 Zero Counters
Sets the Epoch and Exemplar counters to zero without resetting the network.

 Step Epoch
Runs the network for the duration of one epoch.

 Step Exemplar
Runs the network for the duration of one exemplar.

 Step Sample
Runs the network for the duration of one sample.

 Randomize
Randomizes the network weights. The mean and variance of the randomization is defined within the Soma 
property page of each component that has adaptable weights.

 Jog
Alters all network weights by a random value. The variance of the randomization is defined within the Soma 
property page of each component that has adaptable weights. 

 Hide Windows
When this button is selected (pressed down), all display windows are hidden from view. When the button is 
de-selected (popped up), the display windows are restored to their original state.



Static Simulation Control

The icons shown in the upper-left corner of the Activation, Backprop, and Gradient Search planes Figure are the 

controllers. Their job is to orchestrate the firing of data throughout the breadboard. The orange icon  
represents the controller for the forward activation plane, the StaticControl. It is used to select the number of 
Epochs/Run, which is the number of training set iterations (epochs) that will be performed before stopping the 
training. The number of Exemplars/Epoch is automatically set by the File components. This is the number of 
patterns (exemplars) that constitute the data set (an epoch). The number of Epochs between Cross Validation 
checks can also be specified using the controller. 

StaticControl inspector

The BackStaticControl  is the base controller for the backpropagation plane. It is used to specify the type of 
learning, batch or on-line. On-line learning updates the weights after every exemplar (i.e., the Exemplar/Update 
field is set to 1). Batch learning updates the weights after the entire training set has been presented (i.e. the 
Exemplars/Update field is set to the number of Exemplars/Epoch specified within the StaticControl inspector).

BackStaticControl inspector



Dynamic Simulation Control

Networks used to solve temporal problems require a dynamic learning algorithm; NeuroSolutions uses the 
backpropagation through time (BPTT) algorithm. The controllers required for this type of learning are the 

DynamicControl  and the BackDynamicControl 

. Note that these controllers are represented differently than their static counterparts (there are three dials 
instead of two).
The DynamicControl inspector (see figure below) has two additional parameters from its static counterpart. The three 
radio buttons at the top specify the type of learning: Static (standard backpropagation), Fixed-Point (recurrent 
backpropagation) and Trajectory (backpropagation through time). Setting the Static switch is equivalent to using the 
StaticControl component used by the other neural models. Recurrent backpropagation is demonstrated in the on-line 
documentation for NeuroSolutions and is not covered here. The default setting for the dynamic control is Trajectory 
learning.

DynamicControl inspector

The Samples/Exemplar parameter specifies how many samples of data represent one exemplar. One exemplar is 
now a time sequence. For example, suppose that your are trying to train a network to recognize spoken words 
from an audio signal. Each word might consist of 100 samples from that signal, so this parameter would be set to 
100. The Exemplars/Epoch field would specify the number of words in your training set. Note, however, that the 
Samples/Exemplar must evenly divided into the number of Exemplars, or the simulation will not run.

Given the Samples/Exemplar defined in the DynamicControl, the BackDynamicControl inspector (see figure 
below) is used to specify how many of these samples are used to backpropagate the error through time. This 
parameter is also labeled Samples/Exemplar and must be no greater than that specified within the 
DynamicControl inspector. Note that if this parameter is set to 1, the learning is equivalent to static 
backpropagation. Normally, it should be set to the same value as for the forward DynamicControl.

BackDynamicControl inspector



Changing the Learning Rule

The Momentum is the default learning rule of the NeuralBuilder. The learning rules of the layers can be changed 
by returning to the Layer panels and changing the appropriate pull-down menu. The learning rules can also be 
changed directly from the breadboard.

The figure below  shows the GradientSearch palette. To change an individual learning rule, remove the old 
gradient search component from the breadboard and stamp a new component in its place.

Gradient Search palette

The other option is to make the change directly from the backpropagation controller. Within the Inspector for the 
BackStaticControl component there is a box labeled Plane. This is used to add and remove the backprop and 
gradient search components (the learning). Suppose that you want to change the gradient search components 
because the learning is too slow. Click the Remove button to clear all the components of the backprop and 
gradient search families from the breadboard. Choose a new gradient search procedure from the pull-down menu. 
Click on the Add button to re-create the backprop and gradient search planes. Note that the learning parameters 
will be set to the defaults and will likely need to be adjusted.



Testing the Network

Once you have trained the network so that the error is down to an acceptable level, the next step is to freeze the 
weights and test the network by feeding it a new data set (the test set). Assuming that you have specified a test 
set within the Cross Validation and Testing Data panel, you need to follow a few simple steps:

1. From the inspector of the StaticControl (or DynamicControl), switch the Active Data 
Set to Testing.

2. Double-click on the DataWriter probe attached to the desired File component (the 
default setting) to open its display window.

3. Run the network and observe the output within the DataWriter window. By default, both 
the network output and desired output will be displayed side-by-side.

There is also a utility called the TestingWizard, which will allow you to easily test the network, even if you did not 
specify a test set within the NeuralBuilder. This utility can be launched by clicking the "Testing" toolbar button of 
NeuroSolutions, or by selecting "TestingWizard" under the Tools menu.



Creating New Probes

Additional probes can be attached to the network using the Probes palette. Make a selection from this palette and 
move the cursor to the component on the breadboard that you would like to probe. Note that if the component 

does not accept the probe or the cursor is over the breadboard, the cursor will change to a forbidden sign . The 
cursor should now be represented by a stamp icon 

, indicating that this component will accept the attachment of the selected probe. Single-click to stamp a new 
probe and attach it to the component. See the on-line documentation of NeuroSolutions for complete instructions on 
stamping components onto the breadboard.

The cursor remains in stamping mode if you use the right mouse button to stamp the components. Stamping with 
the left mouse will return the program back to selection mode. The Selection Cursor button (the one with an arrow 
for an icon) from the main toolbar can also be used to set the program back to selection mode.

Now you may select the new probe on the breadboard to bring up its corresponding inspector. Double-clicking on 
the probe icon will display the probe’s window. 



Selecting the Data to Probe

In order to avoid the mistake of probing different data than what was intended, it is important to understand the 
difference between the various access points. Select the Access tab of the probe’s inspector. Select the data set 
that you would like to monitor from the Access Data Set list.

The list on the left side of the page contains the access points available based on the component that the probe is 
attached to (see figure below). Select from this list to change the access point to attach the probe to (i.e., select 
what data to probe).

Access property page of a component’s inspector

Below is a brief summary of the primary access points of the most common components: 

Activity

n Data at the output of the component

n Commonly used with: Axon or Synapse

Pre-Activity

n Data at the input of the component

n Commonly used with: Axon

Weights

n Values of the connection matrix (synapse) or bias vector (axon).

n Commonly used with: Axon or Synapse

Cost

n Instantaneous error of the network

n Commonly used with: ErrorCriteria

Average Cost

n Error of the network, averaged since the last weight update

n Commonly used with: ErrorCriteria

Stacked Access

n Same data that the component below is attached to

n Commonly used with: File or another Probe

The Data Display panel of the NeuralBuilder provides six options for probe placement. Below is a summary of 
these most common access points.



Input

n Component: Input Axon (left-most) 

n Access Point: Pre-Activity

Output

n Component: Output Axon (left of error criteria)

n Access Point: Activity

Desired

n Component: Desired File (right-most)

n Access Point: Stacked Access

Error

n Component: ErrorCriteria

n Access Point: Average Cost

Bias

n Component: Axon (specified by Layer field)

n Access Point: Weights

Weights

n Component: Synapse (specified by Layer field) 

n Access Point: Weights



Static Probes

Static probes display instantaneous data, meaning that only a single time step is represented. Each probe has a 
set of unique parameters, which are specific to the way in which it displays the data (e.g., colors, sizes and data 
normalization).

The static probes contain a Display Every field within their inspector. This parameter is very important because it 
specifies the refresh rate of the probe’s display. This value is set to 1 by default, meaning that the display is 
updated after every sample. The problem is that this consumes a lot of processing cycles that could otherwise be 
used for the network training. The NeuralBuilder closes all of the probes except those attached to the Average 
Cost in order to minimize this overhead.

One way to reduce overhead of the probe display is to set the Display Every field to the number of 
Exemplars/Epoch plus one. This way, the display is refreshed after every epoch instead of every exemplar. The 
"plus one" term is added so that the same exemplar is not displayed over and over again. For example, a training 
set with 4 exemplars is presented to the network four times (4 epochs for a total of 16 presentations). A probe is 
attached and set to display after every 5 exemplars. The probe displays the 1st, 6th, 11th and 16th presentations. 
This corresponds to the 1st, 2nd, 3rd and 4th exemplars of the training set.



Temporal Probes

The temporal probes such as the MegaScope and XYScatterPlot are a little more complex because they handle 
data over time. Temporal probes do not attach to the access points of the breadboard directly as the static probes 
do. Temporal probes can only attach to a DataStorage component (or another component stacked on top of a 

DataStorage). The DataStorage component (the barrel icon)  can attach to any component that a static 
probe can attach to. 

The DataStorage provides a circular buffer used to store data across a window in time. Its inspector (see figure 
below) contains the parameters for both the size of the buffer (the length of the window) and how often the attached 
component (i.e., the temporal probe) updates its data (i.e., re-displays). This second parameter has the same 
functionality as the Display Every field of the static probe.

DataStorage inspector

The MegaScope has many more parameters than any of the static probes. Double-click the MegaScope icon to 
open its display window and show its inspector. The MegaScope Sweep is used to specify the scale of the 
horizontal axis. The higher the Samples/Division, the higher the resolution and the more samples displayed at 
once. The MegaScope inspector page provides controls for the vertical scale and horizontal and vertical offsets. 
These can be set to control individual channels or all channels. The Autoset Channels button attempts to adjust 
these selections based on the current data. The MegaScope window can be scrolled and/or resized to display all 
of the data stored in the circular buffer.

Note that the DataGraph component can do most of what the MegaScope can do, and it is much easier to 
configure. In addition, it does not require the DataStorage component.



Saving Data to Files

The DataWriter probe  can be used to create ASCII or binary files that contain the data that passes through 
the access point of the attached component. For example, you may want to store the history of the error over the 
course of a simulation. Place a DataWriter on the Average Cost access point of the ErrorCriteria component and 
set the Dump Raw Data to File switch from its inspector. This will open a file selection window to specify the file 
name to save to. Once the simulation is run, the error data will be dumped to this file.



Neural Models

To exemplify the neural models supported by the NeuralBuilder, each section contains configuration instructions 
for the same real world problem—sleep staging. See A Prototype Problem for an introduction to this problem and 
its corresponding data. These examples are indented within each section to distinguish them from the reference 
text.

A lot can be learned about the problem solving capabilities of a given model when its performance is compared 
with other similar models. Each will need to be configured differently and some will solve the problem more 
efficiently than others. The overall goal is to allow you, the user, to pick the best model for a given problem. There 
are no hard and fast rules for making this selection; it usually requires experience and some trial and error.



A Prototype Problem

Sleep staging is a quantitative measure to evaluate sleep. Sleep disorders are becoming quite common, probably 
due to the stress of modern living. Sleep is not a uniform process. The brain goes through well-defined patterns of 
activity that have been catalogued by researchers. Insomnia is a disruption of this normal pattern, and can be 
diagnosed by analyzing sleep patterns. Normally these patterns are divided into five stages plus awake (sleep 
stage 0). Sleep staging is a time consuming and extremely expensive task, because the expert must score every 
minute of a multichannel tracing (1,200 feet of paper) recorded during the whole night. For these reasons, there is 
great interest in automating this procedure.

In order to score sleep automatically, it is necessary to measure specific waveforms in the brain (alpha, beta, 
sigma spindles, delta, theta waves) along with additional indicators (two rapid eye movements -- REM 1 and 2, 
and muscle artifact).

This example illustrates the type of problem that is best solved by a neural network. After much training the human 
expert is able to classify the sleep stages based on the input signals, but it would be impossible for that person to 
come up with an algorithm to automate the process. A neural network is able to perform such a classification by 
extracting information from the data, without any prior knowledge.

The table below shows a segment of the brain wave sensor data. The first column contains the time, in minutes, of 
each reading, and the next eight columns contain the eight sensor readings. The last column is the sleep stage, 
scored by the sleep researcher, for each minute of the experiment.

Sleep Staging Data

Min a b D d q MA REM 
1

REM 2 Stage

37 0 0 25 1 16 0 6 0 1

38 0 0 25 2 14 0 1 0 1

39 0 0 29 3 13 0 4 0 2

40 0 0 29 1 8 0 5 0 1

41 0 0 32 2 8 0 2 0 0

42 0 0 29 1 8 0 1 1 1

The problem is to find the best mapping from the input patterns (the eight sensors) to the desired response (one of 
six sleep stages). The neural network will produce from each set of inputs a set of outputs. Given a random set of 
initial weights, the outputs of the network will be very different from the desired classifications. As the network is 
trained, the weights of the system are continually adjusted to incrementally reduce the difference between the 
output of the system and the desired response. This difference is referred to as the error and can be measured in 
different ways. The most common measurement is the mean squared error (MSE). The MSE is the sum of the 
squares of the difference between each output PE and the true sleep stage (desired output).

This simple example illustrates the basic ingredients required in neural computation. The network requires input 
data and a desire response to each input. The more data presented to the network, the better its performance will 
be. Neural networks take this input-output data, apply a learning rule and extract information from the data. Unlike 
other technologies that try to model the problem, ANNs learn from the input data and the error (See figure below). 
The network tries to adjust the weights to minimize the error. Therefore, the weights embody all of the information 
extracted during learning. 

Essential to this learning process is the repeated presentation of the input-output patterns. If the weights change 
too fast, the conditions previously learned will be rapidly forgotten. If the weights change too slowly, it will take a 
long time to learn complicated input-output relations. The rate of learning is problem dependent and must be 
judiciously chosen. 

Each PE in the ANN will simply produce a nonlinear weighted sum of inputs. A good network output (i.e. a 
response with small error) is the right combinations of each individual PE response. Learning seeks to find this 
combination. In so doing, the network is discovering patterns in the input data that can solve the problem.



Inputs, outputs and desired response of an MLP

It is interesting that these basic principles are very similar to the ones used by biological intelligence. Information is 
gained and structured from experience, without explicit formulation. This is one of the exciting aspects of neural 
computation. These are probably the same principles utilized by evolution to construct intelligent beings. Like 
biological systems, ANNs can solve difficult problems that are not mathematically formulated. The systematic 
application of the learning rule guides the system to find the best possible solution.



Multilayer Perceptrons

Multilayer perceptrons (MLPs) are feedforward neural networks trained with the standard backpropagation 
algorithm. They are supervised networks so they require a desired response to be trained. They learn how to 
transform input data into a desired response, so they are widely used for pattern classification. Most neural 
network applications involve MLPs.

Advantages

MLPs are very powerful pattern classifiers. With one or two hidden layers they can approximate virtually any input-
output map. They have been shown to approximate the performance of optimal statistical classifiers in difficult 
problems. They efficiently use the information contained in the input data. 

Disadvantages

MLPs are static classifiers; i.e., the input-output map depends only on the present input. If we want to process 
temporal data, each time sample has to be fed to a different input, requiring very large networks.

They need lots of input data. As a general rule of thumb, there should be at least 3 times more exemplars than 
network weights (free parameters). Training can be slow, and setting the parameters can be tricky for difficult 
problems. 

Configuration

The configuration of any neural topology within the NeuralBuilder requires a seven step procedure. All of the steps 
have already been explained above and the MLP does not have any unique parameters.

MLP Example

MLP Hints

MLP Theoretical Summary



MLP Example

From the Utilities menu select NeuralBuilder. From the NeuralBuilder window select Multilayer Perceptron. Note 
that the text below the selection box provides a description of the selected neural model. The text to the right 
provides a description of this first panel. Each panel of the NeuralBuilder has a similar text box.

Click the forward button  to switch to the Training Data panel. This panel is used to select the file containing the 
input data. This same file may also contain the desired output data. Click the Browse button to display the file 
Open panel. Find the NeuroSolutions directory and select the file sleep2.asc.

The Training Data Panel figure shows the NeuralBuilder after making this file selection. Note that there are eleven 
columns in the file, all of them tagged as Input. See A Prototype Problem for a description of the file’s contents. 
The first column and last two columns will not be used. Select the corresponding items (min, K-Comp, and Score) 
and press the skip button. The remaining eight columns are the eight brain wave sensors described earlier.

For this example, the desired signal is contained within a separate file. Click on the forward button of the 
NeuralBuilder to display the Desired Response panel. Click the Browse button and select the file sleep2t.asc. 
Notice that all of the columns are tagged as Desired. These outputs correspond to the six stages of sleep scored 
by the human expert. The MLP now has the input-output pairs needed to score sleep.

Click on the forward button again. The Network Analysis panel is used for cross validation and sensitivity analysis 
of the training. This panel will be used later on in this experiment. Click on the forward button again to bypass this 
panel.

The Multilayer Perceptron panel is used to set the parameters that are specific to this neural model. The number 
of inputs, outputs and exemplars are computed from the input data files. The only parameter to set for the MLP is 
the number of hidden layers. This can be left at the default of 1. More hidden layers will also solve the problem, 
but at the expense of longer training times and less generalization. 

Click on the forward button to display the Hidden Layer #1 panel. This panel is used to specify the number of 
processing elements (PEs), the type of nonlinearity, the type of learning rule, and the learning parameters of the 
first hidden layer. By leaving the selections at their defaults, the network will have 16 hidden PEs with a hyperbolic 
tangent nonlinearity. The training will use momentum learning with a Step Size of 1.0 and Momentum of 0.7. Note 
that the step size is normalized (i.e., divided by the number of exemplars/update). Change the number of 
Processing Elements to 8 and switch to the next panel.

The Output Layer panel is the same as the previous panel except that the number of PEs is fixed to the number of 
outputs (6). Note that the default Step Size is one magnitude smaller (set to 0.1) than the previous layer. This is 
because the error attenuates as it is backpropagated through the network. Since the error is largest towards the 
output of the network, the output layer requires a smaller step size than that of the hidden layer in order to balance 
the weight updates. Click on the forward button. 

Next is the Supervised Learning panel. Leave the Maximum Epochs (number of training iterations) set to 1,000. 
However, the network may learn the problem (i.e., have a small error) in fewer iterations that this. The default 
configuration will terminate the training when the error falls below 0.01. The default method for updating the 
weights is Batch learning. Leave the settings at the defaults and switch to the next panel.

The Probe Configuration panel is used to select the probes to attach to the network. By default, there are three 
BarChart probes attached to the input, output and desired response and a MatrixViewer used to display the error. 
Once again, these settings can be left at the defaults. Notice that instead of the forward button there is a Build 
button. Click on this button to construct the network (see figure).

It is instructive to compare the specifications that you entered in the panels with the final network constructed by 
the NeuralBuilder. Note that there is only one hidden layer (the second axon from the left). Clicking on this 

TanhAxon , the inspector window displays the number of PEs and nonlinearity type specified from 
the NeuralBuilder (see figure below).



TanhAxon Inspector

Click on the Momentum components  to verify the learning rate settings. Note the difference in step sizes 
between the components attached to the hidden layer and those attached to the output layer. Click on the Axon 
component 

 at the input to verify that it has 8 PEs, corresponding to the 8 brain wave signals. Click on the File component 

 at the input and observe its inspector. It displays the file name, the type of file (column-formatted ASCII) and 
the data set. Click on the Stream tab button to display the details about the data read from the file and placed onto 
the data stream. Click on the Access tab button to observe that the data from the input file is being injected into the 
Pre-Activity access point of the Axon (see figure below).

Access property page of the File inspector

To the right of the TanhAxon at the output is a L2criterion , which is used to compute the mean square error 
(MSE). Attached to this component are a File, a MatrixViewer 

 and a ThresholdTransmitter 

. The File component is attached at the Desired Response access point and contains the desired output data 
(sleep2t.asc). The difference between the output and the desired output is used to compute the error of the system. 
Note that the number of samples in this file are the same as the input file, such that each minute of sensor data has a 
corresponding sleep stage score.



The ThresholdTransmitter is used to terminate training once the MSE has dropped below the specified threshold 
(0.01). This component is very general and can be used to send a number of messages to one or more 
components when the variable being monitored crosses the specified threshold. In this case, the variable is the 
mean squared error located at the Average Cost access point of the L2Criterion. The recipient of this message is 
specified under the Transmitter property page. Select the StaticControl from the Receivers List. Note that the 
Actions List indicates that there is a connection made to the Stop Network action (message). In summary, when 
the MSE drops below 0.01, the ThresholdTransmitter sends a message to the StaticControl component to Stop the 
network.

The MatrixViewer component is a probe used to display the numerical value of the error. It is stacked on top of the 
ThresholdTransmitter (using the Stacked access point), so it is monitoring the same value (the Average Cost). 

The Control Toolbar is used to initiate and terminate the training. Click on the Start button to begin the simulation. 
Observe the data displayed in the bar charts. Note that every time the display changes, an entire epoch (397 
samples) has been presented to the network. This is because the probes are configured to update their displays 
after every 398 samples. This is done so that a different input—output pair is displayed after every epoch (instead 
of showing the first one over and over).

Notice that the lengths of the bars displayed for the desired and the output are very different in the beginning. The 
error starts out large, but decreases rather quickly. After 100 iterations the error should be down to about 0.07. You 
can run the simulations for another 50 epochs, but the error will only drop by about 0.01. To verify that the network 
has learned the task, single-step through the data by clicking the Exemplar button from the StaticControl inspector. 
This will fire one exemplar at a time through the network. Notice that the BarChart at the output and the desired 
response BarChart coincide most of the time.

Should you continue training? With the normalization of -/+1, one error in 397 corresponds roughly to a MSE of 
0.005. So this means you have about 10 misclassified minutes out of the entire night’s worth of sleep data. You 
may want to try to improve this figure by training longer (another 500 epochs), but this is probably a reasonable 
place to stop the training. The real concern is to determine how well the network performs with data that it has not 
yet seen. For this you will need to specify a cross validation set.

Return to the Cross Validation panel of the NeuralBuilder and turn on the MSE switch. Select the file sleep1.asc as 
the cross validation file at the Input and sleep1t.asc as the Desired cross validation file. This data set contains 
sleep data from a different subject and will be used to determine how generalized the training from the first subject 
is. Build the network again.

Notice that the NeuralBuilder built the same network, but now there are twice as many probes as before. Open the 
inspector for each of the File components and observe that there are now two data sets defined instead of one. 
Press the Start button (from the Control toolbar) to restart the simulation. The network is being trained on the files 
sleep2.asc and sleep2t.asc, as before. After every epoch of training, the cross validation data is fired through the 
network (without updating the weights) and the results are displayed within the cross validation probes. You should 
observe that the error of the training set drops much more quickly than that of the cross validation set. 

It is important to note that the error in the cross validation set may start to increase, even though the training set 
error is still going down. The explanation for this is that the network has begun to overtrain. The best value for the 
MSE of the cross validation set should be around 0.27 after about 150 epochs. Note that the training set error is 
much lower (around 0.07). After this point the training set error continues to decrease, but the cross validation set 
error will monotonically increase. This means that the gains in the training set learning are due to fine running of 
the training set data, resulting in a poorer generalization of the problem.

It is not a surprise that the cross validation set error is much higher than the training set error. This is simply an 
indication that sleep tokens (input signals and corresponding sleep stages) from one individual are not enough to 
generalize the population. The answer is to prepare a larger training set with the sleep tokens of several 
individuals.



MLP Hints

Start with a small network with one or even no hidden layers. Training time increases exponentially with the size of 
the network, so always keep things simple. More hidden layers slow the training due to an attenuation of the 
backpropagation error as it goes through each layer. 

Momentum learning is the recommended method for training. Faster methods such as the Delta-Bar-Delta or 
Quickprop have extra parameters to be controlled and require extra knowledge and practice.

The learning curve (the mean squared error across time) provides a good gauge of the training progression and 
can be used as a basis for parameter adjustments. Observe the learning curve during learning by attaching a 
MegaScope at the error criteria component. If the curve is almost flat, try increasing the momentum and/or step 
size. If you observe that the error oscillates (repeatedly rises and falls) then it is likely that the momentum is set 
too high. If the network blows up (i.e., the error continually increases to a large value) then it is likely that the step 
size is set too high. Note that if this happens, you will need to Reset the network (from the StaticControl panel) to 
restore the weights to small values.

The other basic parameters of a MLP are the number of PEs and the number of layers. If adjusting these 
parameters do not produce an acceptable error level, then you may need to base your topology on a different 
neural model. Below are some suggestions of things to try first.

n Normalize your training data.

n Use the tanh nonlinearity (TanhAxon) instead of the logistic function (SigmoidAxon).

n Normalize the desired signal to be just below the output nonlinearity rail voltages (e.g., For the TanhAxon, 
use desired signals of +/- 0.9 instead of +/- 1).

n Set the step size higher towards the input. For example, for a one hidden layer MLP set the step size to 0.05 
in the synapse between the input and hidden layer, and 0.01 in the synapse between the hidden and output 
layer.

n Use a more sophisticated learning method (e.g., quickprop or delta bar delta).

n Increase the ratio of training patterns over weights. You can expect the performance of your MLP in the cross 
validation set to be limited by the relation N>W/e, where N is the number of training epochs, W the number of 
weights and e the performance error. You should train until the mean square error is less than e/2.



MLP Theoretical Summary

Multilayer perceptrons are an extension of Rosenblatt’s perceptron, a device that was invented in the ’50s for 
optical character recognition. The perceptron only had an input and an output layer (each with multiple processing 
elements). It was shown that the perceptron would only solve pattern recognition problems where the classes 
could be separated by hyperplanes (an extension of a plane for more than two dimensions). A lot of problems in 
practice do not fit this description. Multilayer perceptrons (MLPs) extend the perceptron with hidden layers, i.e., 
layers of processing elements that are not connected to the external world. 

There are two important characteristics of the multilayer perceptron. First, its processing elements (PEs) are 
nonlinear. The nonlinearity function must be smooth (the logistic function and the hyperbolic tangent are the most 
widely utilized). Second, they are massively (fully) interconnected such that any element of a given layer feeds all 
the elements of the next layer.

The perceptron and the multilayer perceptron are trained with error correction learning, which means that the 
desired response for the system must be known. This is normally the case with pattern recognition. Error 
correction learning works in the following way: From the system response at PE i at iteration n, , and the desired 
response    for a given input pattern an instantaneous error    is defined by:

Using the theory of gradient descent learning, each weight in the network can be adapted by correcting the 
present value of the weight with a term that is proportional to the present input at the weight and the present error 
at the weight:

The local error    can be directly computed from ei(n) at the output PE or can be computed as a weighted sum of 
errors at the internal PEs. The constant h is called the step size. This procedure is called the backpropagation 
algorithm. 

Backpropagation computes the sensitivity of the output with respect to each weight in the network, and modifies 
each weight by a value that is proportional to the sensitivity. The beauty of the procedure is that it can be 
implemented with local information and is efficient because it requires just a few multiplications per weight. 
However, since it is a gradient descent procedure and only uses the local information, it can get caught in a local 
minimum. Moreover, the procedure is a little noisy since we are using a poor estimate of the gradient, so the 
convergence can be slow.

Momentum learning is an improvement to the straight gradient descent in the sense that a memory term (the past 
increment to the weight) is utilized to speed up and stabilize convergence. In momentum learning the equation to 
update the weights becomes:

where a is the momentum. Normally a should be set between 0.1 and 0.9. 

The training can be implemented in two ways: Either we present a pattern and update the weights (on-line 
learning); or we present all the patterns in the input file (an epoch), store the weight update for each pattern, and 
then update the weights with the average weight update (batch learning). They are equivalent theoretically, but the 
former sometimes has advantages in tough problems (ones with many similar input-output pairs). 

To start backpropagation, an initial value needs to be loaded for each weight (normally a small random value), and 
proceed until some stopping criteria is met. The three most common criteria are: The number of iterations, the 
mean square error of the training set, and the mean squared error of the cross validation set. Cross validation is 
the more powerful of the three since it stops the training at the point of optimal generalization (i.e., the error of the 
cross validation set is minimized). To implement cross validation, one must put aside a small part of the training 
data (10% is recommended) and use it to determine how well the trained network is learning. When the 
performance starts to degrade in the cross validation set, the training should be stopped.



Generalized Feedforward Networks

Generalized feedforward nets are a special case of multilayer perceptrons such that connections can jump over 
one or more layers. 

Advantages 

In theory, a MLP can solve any problem that a generalized feedforward network can solve. In practice, however, 
the generalized feedforward networks often solve the problem much more efficiently. A classic example of this is 
the two spiral problem. Without describing the problem, it suffices to say that a standard MLP requires hundreds of 
times more epochs of training than the generalized feedforward (for the same size network). The advantage of the 
generalized FF network is in the ability to project activities forward by bypassing layers. The result is that the 
training of the layers closer to the input become much more efficient.

Disadvantages

The same disadvantages of the MLP  apply to the Generalized Feedforward networks.

Alternative Topologies

Multilayer Perceptrons and Modular Feedforward Networks.

Configuration

Generalized FF MLP panel of the NeuralBuilder

The Generalized Feedforward nets are an extension of the MLP in the sense that signal paths from the input can 
cross over hidden layers. Hence, the only choice to make is the number of hidden layers.

Generalized Feedforward Example



Generalized Feedforward Hints

Generalized Feedforward Theoretical Summary



Generalized Feedforward Example

From the first panel of the NeuralBuilder select the Generalized Feed Forward model and click on the forward 

button . From the Training Data panel, select the file sleep2.asc and skip channels Min, K-Comp, and Score. 
Switch to the Desired Response panel and select the file sleep2t.asc. From the Testing Data panel, select the files 
sleep1.asc and sleep1t.asc as your Input and Desired cross validation set. Switching to the Generalized FF MLP 
panel, observe that the number of hidden layers defaults to 1. Switch to the Hidden Layer #1 panel and set the 
number of Processing Elements to 8, leave the PE Transfer function set to the hyperbolic tangent (TanhAxon), 
leave the Step Size at the default (0.8) and set the Momentum to 0.7. Configure the Output Layer to have the 
same Momentum. Switch to the Supervised Learning Control panel. Keep the Maximum Epochs at 1,000 and set 
the MSE termination so that the network stops when the Test Set error Increases by more than 0. Note that this 
threshold uses a smoothing filter to prevent the network from stopping prematurely due to temporary oscillations in 
the error. This is highly dependent on the learning rates, however, and it is still possible for a network to stop too 
early. If this happens, try running the network again and/or lowering the learning rates.

Switch to the next panel, keep the default probes and Build the network. Observing the constructed network, note 
that there is an extra connection between the input layer and the output layer. This increases the number of 

weights in the network. Select the FullSynapse  at the top and verify that it has 48 weights (from the Soma 
property page of the inspector window). Note that the learning rate for the Momentum component attached to 
these weights is the same as that attached to the FullSynapse at the output layer.

Run the network by clicking on the Start button of the Control toolbar. The learning is not as stable as for the MLP 
(the MSE oscillates), but notice that the error goes down about as fast. After 100 epochs the error is about 0.1 and 
the cross validation error is about 0.3. The simulation should terminate after about 150-200 epochs. Just before 
termination, the training error was still decreasing but the cross validation error began to rise. This is the point 
when the best generalization has been obtained. To observe the phenomenon of overtraining, select the 
ThresholdTransmitter and change the value of the Threshold from 0 to 100 (from the inspector window), or simply 
remove this component from the breadboard. Run the network for a few epochs and observe the falling training 
error and the rising cross validation error.

In comparison to the MLP, this topology does not offer any advantage for this particular problem.



Generalized Feedforward Hints

As with the MLP, the learning rates should be lower towards the output. This needs to be taken into account when 
setting the learning rates for the synapses that bypass the hidden layers. For example, the learning rate of the 
synapse which connects the input directly to the output should be roughly the same as the synapse which 
connects the last hidden layer to the output. The reason is that they are both extracting linear features from the 
data. Since the learning for the linear portion of the data happens much faster than for the non-linear portion, this 
can skew the performance.



Generalized Feedforward Theoretical Summary

These networks are simply an extension to the Multilayer Perceptrons, so the theory and the learning rules are the 
same.



Modular Feedforward Networks

As the name indicates, the modular feedforward networks are special cases of MLPs, such that layers are 
segmented into modules. This tends to create some structure within the topology, which will foster specialization of 
function in each sub-module. In biology, modular networks are very common.

Advantages 

In contrast to the MLP, modular feedforward networks do not have full interconnectivity between the layers. 
Therefore, a smaller number of weights are required for the same size network (the same number of PEs). This 
tends to speed the training and reduce the number of examples needed to train the network to the same degree of 
accuracy.

Disadvantages

There are many ways to segment a MLP into modules. It is unclear how to best design the modular topology 
based on the data. There is no guarantee that each module is specializing its training on a unique portion of the 
data.

Alternative topologies

Multilayer Perceptrons and Generalized Feedforward Networks.

Configuration

From the Modular panel (see figure below), you can configure the number of layers and the specific topology (i.e., 
how the connections are made). There are four possible topologies to choose from.

Modular panel of the NeuralBuilder

The Hidden Layer panels are the same as for the MLP, except that you can configure the nonlinearity and the 
number of PEs for both the top and bottom halves of the layer.



Modular Feedforward Hints

Modular Feedforward Theoretical Summary



Modular Feedforward Hints

See the hints for the Multilayer Perceptrons  and Generalized Feedforward Networks.



Modular Feedforward Theoretical Summary

These networks are simply an extension to the Multilayer Perceptron, so the theory and the learning rules are the 
same. The only aspect to note is that a modular network requires fewer weights versus a MLP with the same 
number of PEs. This will decrease the number of required training patterns, according to the rule of thumb 
explained under MLP Hints. A modular network will generally train faster than a MLP, due to the fact that it has 
"short-cut" connections to the output, aiding in the weight adaptation for the hidden and input layers. 



Radial Basis Function Networks

Radial basis function (RBF) networks have a static Gaussian function as the nonlinearity for the hidden layer PEs. 
The output PEs are normally linear. The Gaussian function responds only to a small region of the input space 
where the Gaussian is centered.

The key to a successful implementation of these networks is to find suitable centers for the Gaussian functions. 
This can be done with supervised learning, but an unsupervised approach usually produces better results. For this 
reason, NeuroSolutions implements RBF networks as a hybrid supervised-unsupervised topology.

The simulation starts with the training of an unsupervised layer. Its function is to derive the Gaussian centers and 
the widths from the input data. These centers are encoded within the weights of the unsupervised layer using 
competitive learning. During the unsupervised learning, the widths of the Gaussians are computed based on the 
centers of their neighbors. The output of this layer is derived from the input data weighted by a Gaussian mixture.

Once the unsupervised layer has completed its training, the supervised segment then sets the centers of 
Gaussian functions (based on the weights of the unsupervised layer) and determines the width (standard 
deviation) of each Gaussian based on the centers of its neighbors. The NeuralBuilder configures the supervised 
segment as a linear combiner, although any supervised topology (such as a MLP) may be used. The supervised 
segment uses the weighted input instead of the input data read from the data file.

There is a special case of the RBF where the number of cluster centers is equal to the number of exemplars. In 
this case the network does not require any training and all the weights can be set analytically. These networks are 
called Generalized Regression or Probabilisic Nets, depending on whether the desired outputs are continuous or 
discrete, respectively. They should only be used when the number of exemplars is small (<100) and the data is so 
scattered that clustering is ill-defined.

Advantages 

The advantage of the radial basis function network is that it finds the input to output map using local 
approximators. Each one of these local pieces is weighted linearly at the output of the network. Since they have 
fewer weights, these networks train extremely fast and require fewer training samples. 

Disadvantages

A problem may require a lot of radial basis functions to cover a very large dimensionality space.

Alternative Topologies

In principle MLPs can be used to solve the same problems as the radial basis function networks. But the MLP has 
many more weights requiring more training exemplars and yielding a slower convergence. The "Principal 
Component Analysis Networks" network may be a good alternative.

Generalized Regression / Probabilistic Net Configuration

If a Generalized Regression / Probabilistic Net is chosen, the number of hidden layers will automatically be set to 
0, the number of cluster centers will be set to the number of exemplars, and the metric will be set to "Euclidean". 
Once built, this network does not require training, since all of the network weights are determined analytically from 
the data by the Wizard.    However, for convenience, the backprop plane is left in place but with learning turned off. 
The Neural Wizard calculates and sets all the Gaussian widths (variances) to the same value based on a standard 
formula involving the number of exemplars and the dimension of the input. This value determines the smoothness 
of the interpolation between Gaussian centers. You can change this value by placing a MatrixEditor on top of the 
GaussianAxon, setting it’s access point to "width", and editing the values.



RBF panel of the NeuralBuilder for Generalized Regression/Probabilistic Nets

Supervised/Unsupervised Configuration

Based on the theory, the supervised segment of the network only needs to produce a linear combination of the 
output at the unsupervised layer. This is the default (0 Hidden Layers at the RBF Network panel (see figure below) 
and a linear PE Transfer Function at the Output Layer panel). Hidden Layers can be added to make the 
supervised segment a MLP instead of a simple linear perceptron.

RBF panel of the NeuralBuilder

The number of Gaussians is entered using the Prototype Neurons field. It is impossible to suggest an appropriate 



number of Gaussians, because it is problem dependent. We know that the number of patterns in the training set 
affects the number of centers (more patterns imply more Gaussians), but this is mediated by the dispersion of the 
clusters. If the data is very well clustered, then few Gaussians are needed. On the other hand, if the data is 
scattered, many more Gaussians are required for good performance. Once again, the idea is to start small, test 
the performance (MSE), and increase the Gaussians if needed. 

The selections for the learning address two peculiarities of competitive learning. Competitive learning has an 
intrinsic metric. You can choose from the dot product metric, box car and Euclidean metrics. Provided that the 
inputs and weight vectors are normalized, the two are equivalent. The dot product measures the angle between 
the present input and the weight vector. The Euclidean metric measures the difference between the two vectors 
such that it preserves distances in the input space.

Competitive learning also keeps an intrinsic probability distribution of the input data. It has the drawback that some 
PEs may never fire, while others may always win the competition. To avoid these extremes, we can include a 
"conscience" mechanism that keeps a count on how often a PE wins the competition, and enforces a constant 
winning rate across the PEs. If you want to place the centers of the Gaussians with a conscience mechanism (the 
default) use the ConscienceFull component, otherwise select StandardFull from the Competitive Rule pull-down 
menu. Use of StandardFull component will place more Gaussians in areas of higher sample density, paying less 
attention to areas with fewer data samples. 

Recall that the RBF is a hybrid supervised-unsupervised network. Each of these two segments of the network are 
controlled separately. The Unsupervised Learning Control panel is inserted between the Output Layer panel and 
the Supervised Control Panel. This panel is used to specify how long to train the unsupervised layer. Once the 
epoch count reaches the Maximum Epochs the unsupervised learning terminates and control is passed to the 
supervised segment. This unsupervised learning may terminate before it reaches this maximum if all of the 
weights change by less than the amount listed within the Termination box (provided that the Weight Change switch 
is set).

The learning rate should Start At a high value (but below the value that makes the network diverge) to find a 
reasonable solution quickly. As the unsupervised learning progresses, this rate should slowly Decay To a lower 
limit. Note that the value of the termination criterion for the weight change should be set below (10 to 50%) of the 
value entered in the "Decay to" field. 

RBF Example

RBF Hints

RBF Theoretical Summary



RBF Example

Note that this network is only available in the Users version or above. If you are running a lower-level version, then 
you can still run this example in Evaluation mode.

Select Radial Basis Function Network from the first NeuralBuilder panel. Select sleep2.asc as the training input 
file, skipping the Min, K-Comp and Score columns. Select sleep2t.asc as the training desired file. Skip the Testing 
Data panel for now (by turning off the Perform Validation switch).

From the RBF Network panel (see figure), enter 0 as the number of Hidden Layers. This implies that the 
supervised layer is a simple perceptron, which will linearly discriminate the outputs of the Gaussians. The 
Prototype Neurons field specifies the number of Gaussians (i.e., the number of PEs in the GaussianAxon 
component). Set this field to 12. Use the competitive with conscience (ConscienceFull) rule to find the centers and 
widths of the Gaussians. The centers should be based on the Euclidean metric. Keep the parameter settings of 
the Output Layer panel at the defaults.

The RBF network needs to adapt the centers and variances (widths) of the clusters before performing the 
classification. This is done during the unsupervised phase of the training. From the Unsupervised Learning panel, 
enter 150 as the Maximum Epochs. This will be the actual number of training epochs for the unsupervised phase 
since you have not Activated the termination based on the Weight Change. The default step size for the 
competitive learning Starts at 0.01 and linearly Decays to 0.001. Keep these default values and switch to the 
Supervised Learning panel. The supervised learning begins after the 150 epochs of unsupervised learning has 
completed. Keep the default settings, switch to the next panel, and Build the network.

For this RBF network, the component connected to the input Axon is the ConscienceFull . This 
component implements competitive learning with a conscience to find the centers and widths of the Gaussians 
contained within the next component, the GaussianAxon. The GaussianAxon component is initially represented by 
a cracked icon 

 to signify that the supervised segment of the network is inactive. Once the unsupervised segment has 
completed its training, this icon will change to that of the GaussianAxon 

.
Run the network. The simulation quickly goes through the unsupervised training phase (the first 150 epochs) and 
then the training of the perceptron begins. The error decays very steadily since there are no hidden layers. The 
error after 350 iterations (200 of them supervised) should be about 0.10. This performance is not quite as good as 
that achieved with the previous examples. Try choosing different sizes for the RBF layer (number of Prototype 
Neurons) in an attempt to improve the performance. Many centers may not necessarily help the classification. 
Since the algorithm is adapting the centers and the widths of the Gaussians, too many centers will make the 
widths of the Gaussians smaller than required and will produce poor performance.

To test the generalization of this network, go to the Cross Validation Data panel and select the file sleep1.asc as 
the Input and sleep1t.asc as the Desired. From the Supervised Learning panel, set the MSE Termination to trigger 
when there is an Increase of more than 0 of the Cross Validation Set error. Build and run the network again.

After a total of 350 iterations, the error decreases to 0.1 for the training set and 0.3 for the cross validation set. The 
cross validation set error will not begin to increase for several hundred more epochs, after which the network 
would terminate automatically. The error in the cross validation set is rather disappointing.

One thing to try is to expand the perceptron to a single hidden layer MLP. Change the Hidden Layers field of the 
RBF Network panel from 0 to 1. Specify 8 Processing Elements for the hidden layer. Build and run the network. 
Each epoch takes longer because of the extra weights, but the cross validation set performance improved to an 
error of 0.28 after 350 iterations. Try decreasing the number of PEs in the RBF layer (i.e., from 12 to 8) to possibly 
further improve the generalization.



RBF Hints

Use the generalized regression/probabilistic nets only for small data sets (<100 exemplars) where the cluster 
centers are ill-defined.

In order for an RBF network to train efficiently, the Gaussian functions should all have widths that are of the same 
order of magnitude (e.g., they should all be between 3 and 30 and not between 3 and 3000). To verify this, place a 
MatrixViewer on the Width access point of the GaussianAxon. If these widths vary a large amount (i.e., by more 
than one order of magnitude), then the number of Gaussians may need adjusting (see below). Two other sources 
of problems are the parameters used for the competitive learning and the computation of the Gaussian widths.

The default unsupervised learning rule used by the NeuralBuilder is "competitive learning with a conscience". 
From the ConscienceFull inspector, the Gamma parameter is used to adjust the level of "conscience". If two or 
more centers converge closely together, then the Gamma parameter may be set too high. If one or more of the 
centers diverge away from the input data, this parameter may be set too low. Note that a Gamma setting of 0 is 
equivalent to the standard competitive learning rule. Note that this component often works best when the gamma 
starts out at a high value and is linearly decremented to a low value.

The widths of the Gaussians are determined by the centers of the nearest neighbors and the parameter P from the 
GaussianAxon inspector. This parameter sets the number of nearest neighbors that are averaged together when 
computing the widths. If this is set low and there are clusters of centers that are relatively close together, then the 
resulting widths will often be too small (filtering out important data). If P is set high, then many of the neighbors will 
be averaged together and the resulting widths may be too high (blending the Gaussians together).



RBF Theoretical Summary

Radial basis functions (RBF) networks solve the mapping problem by local pieces, unlike the MLPs. A layer of 
special hidden units made up of Gaussian functions are placed judiciously on the input data space. Then the 
output of these Gaussians is linearly weighted to produce the desired response. 

This solution should work if the centers of the Gaussians are appropriately positioned within the data space and 
their widths are properly chosen. In order to estimate the positions of each radial basis function and its variance 
(width), an unsupervised technique such as competitive learning is used. The input space is discretized into 
clusters and the size of each is obtained from the structure of the input data. 

The output weights are obtained using supervised learning. The convergence is usually fast since the output units 
are linear. Note that the GaussianAxon is initially displayed as a cracked component. This is a visual indication 
that the learning is first restricted to the left part (the unsupervised segment) of the network. After the unsupervised 
layer has finished training, the unsupervised weights are fixed and the supervised segment begins training. This is 
indicated by the removal of the crack from the GaussianAxon. This approach tends to improve the training times.

Radial basis function network
In the special case where the number of cluster centers is exactly equal to the number of exemplars, and the 
output is linear, the network becomes known as a generalized regression or probabilistic net, depending on 
whether the network targets are continuous or represent probabilities, respectively. In this special case, all the 
network weights can be calculated analytically from the data. If x(n) is the input training set, and d(n) is the desired 
output, then for some new input x0, the output y is given by:

Generalized regression equation

The variance for all Gaussian centers is the same and is set according to the equation,

Generalized regression variance equation

where "c" and "E" are constants and "a" is the dimensionality of the input.



Jordan and Elman Networks

Jordan and Elman networks extend the multilayer perceptron with context units, which are PEs that remember 
past activity. Context units are required when learning patterns over time (i.e., when the past value of the network 
influences the present processing). In the Elman network, the output of the hidden PEs from the previous time 
step are copied to the context units (see figure below). In the Jordan network, the output of the network is copied 
to the context units. In addition, the context units are locally recurrent (i.e., they feedback onto themselves). The 
local recurrence decreases the values by a multiplicative constant t (time constant) as they are fed back. This 
constant determines the memory depth (i.e., how long a given value fed to the context unit will be "remembered").

One can treat the context units as input units, just as if they were obtained from an external source such as a file. 
Since the recurrent connections within the context units are fixed, static backpropagation is used to train these 
networks. Note that if the recurrent connections were adaptive, then backpropagation through time would be 
required.

Block diagrams of Jordan and Elman neural models

Advantages 

The previous neural models can only solve static problems. Temporal problems are ones where the previous value 
of the input affects the current output. The Jordan and Elman networks can solve temporal problems by 
processing information over time using recurrent connections. Other neural models can solve temporal problems 
using memory units (see Time Lagged Recurrent Networks).

The Jordan network is slightly more versatile than the Elman network because it can retain older past information 
due to the locally recurrent connections of the context units. Context units (neurons that self excite) are very 
common in the brain.

Disadvantages

Both of these nets are constrained in their ability to handle time. The time constant of the Jordan network is fixed 
and often difficult to set optimally for a given problem. Moreover, the past is always exponentially attenuated, 
which may not be very representative of the problem.

Alternative topologies

An alternate topology would be a MLP such that each input channel is extended to D PEs. The D past samples of 
each input channel would be used to compose the MLP output. Notice that this requires huge neural topologies 
that are very difficult to train (lots of input data and long training times). See Time Lagged Recurrent Networks for 
more versatile temporal topologies.

Configuration

The unique parameters of the Jordan/Elman networks involve the configuration of the context units. The 
Jordan/Elman Network panel provides four basic topologies, differing by the layers that feed the context units (see 
figure below).



Jordan/Elman panel of the NeuralBuilder

The default configuration feeds the context units with the input samples, providing an integrated past of the input 
(memory traces). A second configuration creates memory traces from the first hidden layer (as proposed by 
Elman). A third possibility is to use the past of the last hidden layer activations as input to the context units. The 
final choice is to use the past of the output layer to create the memory traces, as proposed by Jordan.

The context unit remembers the past of its inputs using what has been called a recency gradient, i.e., the unit 
forgets the past with an exponential decay. This means that events that just happened are stronger than the ones 
that have occurred further in the past. The context unit controls the forgetting factor through the time constant. 
Useful values are between 0 and 1. A value of 1 is useless in the sense that only the past is factored in. On the 
other extreme, a value of zero means that only the present time is factored in (i.e., there is no self-recurrent 
connection). The closer the value is to 1, the longer the memory depth and the slower the "forgetting" factor. 

The pull-down menu within the Context Units box is used to select the transfer function of the context units. There 
are linear and nonlinear context units, as well as linear and nonlinear integrators (see table below). The integrators 
are the same as context units except that they normalize the input based on the time constant t.

Context unit types

Type Description

IntegratorAxon linear integrator

SigmoidIntegratorAxon saturating integrator (0/1)

TanhIntegratorAxon saturating integrator (-1/+1)

ContextAxon linear decay

SigmoidContextAxon saturating context decay (0/1)

TanhContextAxon saturating context decay (-1/1)

The number of PEs in the context layer is defined by the number of PEs in the layer that feeds the context layer 
(i.e., the network will assign one context unit per input connection). As with the other neural models, the number of 
Hidden Layers must be defined. Note that if the are 0 hidden layers then the 1st and 2nd topologies are 



equivalent, as are the 3rd and the 4th. If there is 1 hidden layer, then the 2nd and the 3rd topologies are 
equivalent. With 2 or more hidden layers, all 4 topologies are unique.

Jordan/Elman Example

Jordan/Elman Hints

Jordan/Elman Theoretical Summary



Jordan/Elman Example

Note that this network is only available in the Users version or above. If you are running lower-level version, then 
you can still run this example in Evaluation mode.

Select Jordan/Elman Network from the first NeuralBuilder panel. Select sleep2.asc as the input training file, 
skipping the Min, K-Comp and Score columns. Select sleep2t.asc as the desired training file. From the Testing 
Data panel, select sleep1.asc and sleep1t.asc as the Input and Desired files respectively.

From the Jordan/Elman Network panel (see figure), keep the default setting of 1 Hidden Layer. Note that there are 
four different topologies to choose from. Select the upper-left button to specify that the memory units are fed by 
the input layer. The Time Constant parameter specifies the memory depth of the context units. Set this to 0.4. The 
memory should be implemented using the IntegratorAxon. Set the number of PEs in the hidden layer to 8. Set the 
Momentum to 0.7 for both the hidden and the output layer. Verify that the MSE termination is activated for the 
cross validation set (set the Increase radio button and the Threshold to 0). Build and run the network.

After 100 epochs, the training set error should drop to around 0.09 and the cross validation set error should be 
near 0.21. Sometime before the next 100 epochs, the simulation should stop when the cross validation set error 
begins to rise. At this point, the training error should be around 0.07 and the cross validation error down around 
0.19. This is the best performance when compared with the previous examples.

The changes between the sleep stages occur with a predictable rhythm. This rhythm is contained within the 
temporal (time) information of the signals. The reason that the Jordan network was able to outperform the others is 
that it was able to extract this temporal information. The previous examples used static neural models and were 
unable to capture this information.



Jordan/Elman Hints

It is difficult to give an idea of the number of context units and their time constants, since their number is problem 
dependent. The time constant t should be set to 1 - 1/D (D>0), where D is the number of time samples to 
"remember" the patterns (memory depth).



Jordan/Elman Theoretical Summary

The theory of neural networks with context units can only be analyzed mathematically for the case of linear PEs. In 
this case, the context unit is nothing but a very simple lowpass filter. A lowpass filter creates an output that is a 
weighted (average) value of some of its more recent past inputs. In the case of the Jordan context unit, the output 

is obtained by summing the past values multiplied by the scalar  as shown in the figure below.

Theory of the context unit

An impulse function x(n) outputs a 1 at n=0 and a 0 for n>0. Given this impulse function, the output of the context 

unit is  at n=1, 

 at n=2, etc. This is the reason these context units are called memory units, because they "remember" past events. 
The time constant t should be less than 1, otherwise the context unit response gets progressively larger (unstable).
The Jordan network combines past values of the context units with the present inputs to obtain the present network 
output. One disadvantage of these nets is that the weighting over time is kind of inflexible since one can only control 
the time constant t (i.e., the exponential decay). Moreover, a small change in t is reflected in a large change in the 
weighting (due to the exponential relationship between time constant and amplitude). Since the optimal memory 
depth is usually unknown, the choice of t can be problematic without a mechanism to adapt it.



Principal Component Analysis Networks

As with the Radial Basis Function Networks, Principal Component Analysis (PCA) networks are a mixture of 
unsupervised and supervised networks. Principal component analysis is a linear procedure to find the direction in 
input space where most of the energy of the input lies. In other words, PCA performs feature extraction. The 
projections of these components correspond to the eigenvalues of the input covariance matrix. The unsupervised 
segment of the network performs the feature extraction and the supervised segment of the network performs the 
(linear or nonlinear) classification of these features using a MLP.

The principal component analysis is performed first, and then the MLP is trained. The reason for this is that the 
PCA network trains faster when it does not have to share computing resources with the MLP. There is no point in 
training the MLP until the eigenvalues are stable.

Advantages 

Principal component analysis is a well known method of orthogonalizing data. It converges very fast and the 
theoretical method is well understood. Since the features are orthogonal, the MLP is able to train easily. There are 
usually fewer features extracted than there are inputs, so the unsupervised segment provides a means of data 
reduction.

Disadvantages

The most discriminant features are not always the features that have the largest eigenvalues. For these cases, the 
PCA is suboptimal and the choice of the number of features to extract is rather arbitrary.

Alternative topologies

Radial Basis Function Networks and Self-Organizing Feature Map Networks.

Configuration

The PCA Network panel is used to set the number of Principle Components to extract and the unsupervised 
Learning Rule to use for the feature extraction. (see figure below). The number of Hidden Layers of the MLP is 
selected from this panel as well.



PCA panel of the NeuralBuilder

Recall that PCA is a data reduction method, which condenses the input data down to a few principal components. 
As with any data reduction method, there is the possibility of losing important input information. The number of 
principal components selected will be a compromise between training efficiency (few PCA components) and 
accurate results (a large number of PCA components). It is not possible to provide a general formula for selecting 
an appropriate number of principal components for a given application. See the hints below on how to adjust this 
parameter based on the results of the unsupervised training.

The learning rule choices for PCA are Sangers and Ojas. They are both normalized implementations of the 
Hebbian learning rule. Straight Hebbian learning must be utilized with care, since it may become unstable. For this 
reason, it is not given as an option within this panel. The two more robust choices are Oja’s and Sanger’s 
implementations of the Hebbian principle. Between the two, Sanger’s is preferred for PCA because it naturally 
orders the PCA components by magnitude. This also provides an easy way to decide if the number of PCA 
components is reasonable—simply check the ratio of the first component magnitude versus the last component 
magnitude. 

Since this network is a hybrid supervised-unsupervised network, the control parameters must be set for both the 
supervised and the unsupervised segments of the network. See Radial Basis Function Networks for instructions 
on setting the Unsupervised Learning Control parameters.

PCA Example

PCA_Hints

PCA Theoretical Summary



PCA Example

Note that this network is only available in the Users version or above. If you are running a lower-level version, then 
you can still run this example in Evaluation mode.

Select Principal Component Analysis Network from the first NeuralBuilder panel. Select sleep2.asc as the input 
training file, skipping the Min, K-Comp and Score columns. Select sleep2t.asc as the desired training file. Skip the 
Testing Data panel for now (by turning the Perform Validation switch off).

From the PCA Network panel (see figure) enter 0 as the number of Hidden Layers. The number of PEs at the 
output of the unsupervised component is specified using the Principal Components field. Enter 5 in this field and 
use the default learning rule (SangersFull).

The output layer is used to combine the features extracted by the unsupervised segment. Note that this topology is 
only able to find linear separable patterns from the 5 components (features). Keep the parameters of the Output 
Layer panel at the defaults.

From the Unsupervised Learning Control panel, enter 150 as the Maximum Epochs. The unsupervised learning 
rate should Start at 0.01 and Decay to 0.0001. Keep the defaults for the rest of the panels, then build and run the 
network.

Notice that the first part of the learning is unsupervised. During the first 150 epochs, the unsupervised segment 
trains while the supervised segment is disabled (indicated by the cracked axon). When the epochs counter 
reaches 150, the MatrixViewer starts displaying error of the supervised training. Note the difference in speed 
between the two modes. 

After about 500 epochs (350 of them supervised), the error drops to about 0.11. Try increasing the number of 
principal components from 5 to 7 (change the number of PEs in the middle Axon). This change will require a 
higher learning rate. Select the two Momentum components (click on the first, hold down the Shift key and then 
click on the second) and change the Momentum from 0.5 to 0.7. Run the network. The performance should have 
improved (to an error of 0.1 after 500 epochs).

Note that it is useless to have more than eight components, since the input data is eight dimensional. Eight 
principal components would simply provide a rotation of the data set over the eigenvectors of the input correlation 
function.

Return to the Cross Validation Data panel and select sleep1.asc and sleep1t.asc as the Input and Desired files 
respectively. Switch to the PCA Network panel and change the supervised segment from a linear combiner to a 
MLP (by setting the Hidden Layers to 1). Keep the Principle Components set to 5. Note that this topology is the 
same demonstrated in the MLP example, but the input has been projected by the PCA layer. In theory, this 
network should learn a little faster than the original MLP, since the input data becomes orthogonalized.

Set the number of Processing Elements in the hidden layer to 8. Specify that the termination of the supervised 
training be based on an Increase of the cross validation set error. Build and run the network.

Let the network run until it terminates automatically (when the cross validation set error begins to increase). This 
should occur after about 500 epochs. Expect a training set error of about 0.07 and a cross validation set error of 
0.22. This means that the PCA decomposition is creating a representation that seems to generalize better than the 
unprocessed data. The training is also faster because there are only 5 inputs into the MLP instead of 8.



PCA Hints

Deciding on the number of features to extract is important to achieve the desired data reduction without losing 
important information. The Sanger’s rule produces an ordered set of eigenvectors. For many problems, there is a 
large decrease of the eigenvalue amplitude for the high-order components. After training the unsupervised 
segment, place a MatrixViewer on the axon to the right of the SangersFull component. The PE that displays this 
large decrease of amplitude should give the natural boundary for the features; there is no need for any more PEs 
after this one.



PCA Theoretical Summary

The fundamental problem in pattern recognition is defining the data features that are important for the 
classification (feature extraction). The goal is to transform the input samples into a new space (the feature space) 
such that the information about the samples is kept, but the dimensionality is reduced. This makes the 
classification job much easier.

Principal component analysis (PCA) is such a technique. From the input space, it finds an orthogonal set of P 
directions where the input data has the largest energy, and extracts P projections from these directions in an 
ordered fashion. The first principal component is the projection, which has the largest value (think of the 
projections as the shadow of the data clusters in each direction), while the Pth principal component has the 
smallest value. If the largest projections are extracted, then the most significant information about the input data is 
kept.

Principal component analysis is normally done by analytically solving an eigenvalue problem of the input 
correlation matrix. Sanger and Oja demonstrated that PCA can be accomplished by a linear, single layer neural 
network trained with a modified Hebbian learning rule. Sanger’s rule is recommended, since it orders the 
projections.

Ordering of the principal components

It is interesting to note that this segment of the network computes the eigenvectors of the input’s correlation 
function without ever computing the correlation function itself. The outputs of the PCA layer are therefore related to 
the eigenvalues and can be used as input features to the supervised segment for classification. Since many of 
these eigenvalues are usually small, only the M (M<P) largest values need to be kept. This speeds up training 
even more.

Principal component analysis can be used for data compression, producing the M most significant linear features. 
When used in conjunction with a multilayer perceptron (MLP) to perform classification, the separability of the 
classes is not always guaranteed. If the classes are not sufficiently separated, the PCA will extract the largest 
projections while the separability could be contained within some of the smaller projections.

Another problem with linear PCA networks is evident when the input data contains outliers. Outliers are individual 
pieces of data that are far removed from the data clusters (i.e., noise). They tend to distort the estimation of the 
eigenvectors and create skewed data projections.

The importance of PCA analysis is that the number of inputs for the MLP classifier can be significantly reduced. 
This results in a reduction of the number of required training patterns and a reduction in the training times of the 
classifier. 



Self-Organizing Feature Map Networks

Self-organizing feature maps (SOFM) transform the input of arbitrary dimension into a one or two dimensional 
discrete map subject to a topological (neighborhood preserving) constraint. The feature maps are computed using 
Kohonen unsupervised learning. The output of the SOFM can be used as input to a supervised classification 
neural network such as the MLP.

Advantages

This network’s key advantage is the clustering produced by the SOFM which reduces the input space into 
representative features using a self-organizing process. Hence the underlying structure of the input space is kept, 
while the dimensionality of the space is reduced.

Disadvantages

It is difficult to measure the performance of the SOFM, resulting in an absence of a stop criterion. This may impact 
the stability of the map.

Alternative topologies

Radial Basis Function Networks and Principal Component Analysis Networks.

Configuration

The SOFM Network panel is used to specify the shape and size of the feature map generated by the unsupervised 
(Kohonen) layer (see figure below). The number of Hidden Layers of the MLP connected to its output is also 
configured from this panel.

SOFM panel of the NeuralBuilder

To specify the size and the dimension of the unsupervised output space (also called the neural field), enter the 
number of Rows and Columns of the 2D neural field. For a 1D neural field (i.e., LineKohonen) the length of the line 
(number of PEs) is the product of the values entered. Increasing the number of PEs will improve the resolution, but 



also increase the training times. Since the SOFM normally trains slowly, the size of the Kohonen layer should be 
kept as small as possible. The shape of the neighborhood is also important because it defines organizational rules 
within the neural field. The Neighborhood Shapes available are summarized in the table below. Experiment with 
each of these neighborhoods to find out which provides the best results for your data.

Kohonen Neighborhoods

Type Description

Square 2D space, 8 neighbors

Diamond 2D space, 4 neighbors

Line 1D neighborhood

The final shape of the feature map is heavily dependent on the size of the initial and final neighborhoods. These 
quantities are labeled as Starting and Final Radius. The complete neighborhood is the default value for the initial 
radius. This has been shown to preserve the probability distribution of the input data, but makes learning very 
slow. You may want use an initial neighborhood that is 70% of the linear size of the 2D field. The final radius 
should be a small value, normally one or two PEs wide. A radius of 1 corresponds to a single PE neighborhood. A 
radius of 2 corresponds to the nearest neighbors of the winning PE. Its shape depends upon the specified 
neighborhood: in the diamond, only the four nearest neighbors (up, down, left, right) are considered. In the square 
neighborhood, all of the adjacent PEs (8) are included.

The SOFM network is a hybrid network, in the sense that unsupervised and supervised learning are utilized. See 
Radial Basis Function Networks for configuration instructions for the Unsupervised Learning Control panel.

SOFM Example

SOFM Hints

SOFM Theoretical Summary



SOFM Example

Note that this network is only available in the Users version or above. If you are running a lower-level version, then 
you can still run this example in Evaluation mode.

Select Self Organizing Feature Map Network from the first NeuralBuilder panel. Select sleep2.asc as the input 
training file, skipping the Min, K-Comp and Score columns. Select sleep2t.asc as the desired training file. From the 
Testing Data panel, select the files sleep1.asc and sleep1t.asc as your Input and Desired cross validation set.

From the SOFM Network panel (see figure) enter 0 as the number of Hidden Layers. Specify a 5x5 (5 Rows and 5 
Columns) Kohonen layer that has a square neighborhood (SquareKohonen). The neighborhood should have a 
Starting Radius of 5 and linearly decay to a Final Radius of 1.

Use all of the defaults for the Output Layer panel. From the Unsupervised Learning Control panel, enter 150 as the 
Maximum Epochs and use the default learning rates.

As you will see from the learning curves, the network should not be terminated based on a rise of the cross 
validation set MSE. For this reason, deactivate the MSE Termination. Keep the remaining parameters of the 
Supervised Learning Control panel at the defaults. From the Data Display panel, select to view Error of the cross 
validation set and training set with a MegaScope. Build the network.

In order to view the numerical values of the cross validation and training errors, stack two MatrixViewers on top of 
the DataStorage components, as shown in the figure below. By default, these MatrixViewers are both configured 
to display the training error. Select one of them and switch to the Access property page of the inspector window. 
Change the Access Data Set to Cross Validation.

Observe that the input layer is followed by the SquareKohonen component. The output of this component is fed to 
a GaussianAxon. This component is the input to the supervised segment, which in this case is a simple 
perceptron. The widths of the Gaussians are fixed and the centers are determined from outputs of the 
SquareKohonen. Start the simulation.



Zero-layer SOFM network with training and cross validation learning curves

As with the other examples using a hybrid network, the unsupervised segment trains for 150 iterations, then those 
weights are frozen and the supervised segment begins its training (indicated by the cracked axon icon changing to 
the icon for the GaussianAxon). After 250 epochs, the training set error should be just below 0.1 and the cross 
validation set error should be close to 0.25.

Try substituting the perceptron with a one hidden layer MLP (by changing the number of Hidden Layers to 1). Set 
the number of PEs in the hidden layer to 8 and leave the remaining settings unchanged. After running the network 
for 250 epochs, you should find a slight improvement in the cross validation set performance (0.24) and the 
training set performance (0.07).



SOFM Hints

The initial values for the SOFM should all be different small values to brake any symmetry. Both the neighborhood 
radius and the learning rate should decay over the course of training. The Learning Rate should Start At a large 
value (at least 0.1) and Decay by at least a factor of 10. Typically the unsupervised training will require about 
1,000 epochs. The Starting neighborhood parameter should be large (the whole map) and decay (linearly) until a 
Final Radius of 1 (a single PE). The MLP should be trained after the SOFM has converged.



SOFM Theoretical Summary

As stated previously, one of the most important issues in pattern recognition is feature extraction. An alternative to 
the principal components analysis approach is the self-organizing feature map. 

The ideas of SOFM are rooted in competitive networks. Competitive networks use linear PEs and a competitive 
learning rule. There is only one winning PE for each input pattern (i.e., the PE whose weights are closest to the 
input pattern). With competitive learning, only the weights of the winning node get updated (winner-take-all). 
Kohonen proposed a slight modification of this principle, referred to as the self-organizing feature map. Instead of 
updating only the winning PE, the neighboring PE weights are also updated with a smaller learning rate. 

During the Kohonen learning process, neighborhood (topological) relationships are created in which the spatial 
locations correspond to features of the input data. It can be shown that the data points that are similar in input 
space are mapped to small neighborhoods in Kohonen’s SOFM layer. This SOFM layer contains information 
about the probability density function of the input data. Our brain has several known topographic maps, namely the 
visual and auditory cortex.

The SOFM layer can be a one or two dimensional lattice, and the size of the network provides the resolution for 
the lattice. The SOFM layer receives as input the data points, and organizes its outputs in discrete clusters that 
are related by a distance metric (the user can choose either a Euclidean, box car or dot product metric). In order to 
guarantee that all PEs have a chance to compete independently of the relative frequency of occurrence of input 
data samples, a conscience mechanism is necessary.

Adaptive learning rates and neighborhood sizes are implemented to form local neighborhoods in the beginning, 
then stabilize and fine tune the map in the later stages of learning. These issues are very difficult to study 
theoretically, so heuristics have to be used in the specification of these adaptive parameters.

Once the SOFM stabilizes, its output can be used for classification (using a supervised segment) or as a vector 
quantizer. The vector quantization application allows the clustering of the input data in similar groups. This is in 
itself a very important application as a "smart switch", but also has obvious applications for data compression.



Time Lagged Recurrent Networks

TLRNs are MLPs extended with short term memory structures that have local recurrent connections. The TLRN is 
a very appropriate model for processing temporal (time-varying) information. Examples of temporal problems 
include time series prediction, system identification and temporal pattern recognition. The training algorithm used 
with TLRNs is more advanced than standard backpropagation.

Advantages 

The main advantage of TLRNs is the smaller network size required to learn temporal problems when compared to 
MLPs that use extra inputs to represent the past samples (equivalent to time delay neural networks). An added 
advantage of TLRNs is their low sensitivity to noise. The recurrence of the TLRN provides the advantage of an 
adaptive memory depth (i.e., it finds the best duration to represent the input signal’s past).

From a system identification point of view, TLRNs implement nonlinear moving average (NMA) models. With 
global feedback from the output to the hidden layer, they can be extended to nonlinear ARMA (autoregressive 
moving average) models. These nonlinear models can be used for optimal control applications, surpassing the 
performance of their linear counterparts.

Disadvantages

The recurrent adaptation of the weights is nonlinear, so the training can get caught in local minima. Another 
disadvantage is that straight backpropagation cannot be used for training. The backpropagation through time 
(BPTT) algorithm is quite complex and requires a lot of memory. NeuroSolutions hides most of the complexity from 
the user and provides an efficient implementation of this algorithm.

Alternative topologies

Jordan and Elman Networks. A Multilayer Perceptron extended with a tapped delay line can also be utilized, but 
will require a much larger network.

Configuration

The Time-Lag Recurrent panel is used to specify the size and type of memory structure to implement (see figure 
below). The number of Hidden Layers of the MLP connected to the output is also configured from this panel.



TLRN panel of the NeuralBuilder

The table below summarizes the types of Memory structures available. The TDNN memory structure is simply a 
cascade of ideal delays (a delay of one sample). The gamma memory is a cascade of leaky integrators shown in 
the Jordan and Elman Networks. The Laguarre memory is slightly more sophisticated than the gamma memory in 
that it orthogonalizes the memory space. This is useful when working with large memory kernels.

Memory types

Type Description

TDNNAxon tap delay line

GammaAxon gamma memory

LaguarreAxon orthogonal gamma

The Focused topology only includes the memory kernels in the input layer. This way, only the past of the input is 
remembered. If the Focused switch is not set, the hidden layers’ PEs will also be equipped with memory kernels.

The Depth in Samples parameter (D) is used to compute the number of taps (T) contained within the memory 
structure(s) of the network. The number of taps within the input memory layer is dependent on the type of memory 
structure used. For the TDNNAxon, the number of input taps T0 is equal to the depth D. The formula for the other 
two memory types is T0 = 2D/3. The number of taps for the memory structures at hidden layer n is computed (for 
all memory types) by the formula Tn = T0/2*n. This is only used as a starting point for the memory depth, since the 
depth will be adapted by the network.

Recurrent networks must be trained using a dynamic learning algorithm. NeuroSolutions uses the so-called 
backpropagation through time (BPTT) algorithm. The dynamic controllers are required for this type of learning.

TLRN Hints

TLRN Theoretical Summary



TLRN Hints

The memory layer connected to the input provides a natural way of storing the past values of the input data. You 
should begin with a small memory and increase the size as needed. As the network trains, the network adapts the 
memory depth based on the input data and the number of taps. The memory parameter should be adapted with a 
step size that is an order of magnitude smaller than the step sizes used for the reset of the network.

If learning seems slow, go to the dynamic controllers, switch to on-line learning, and set the number of 
Samples/Exemplar (both forward and backward) to a smaller number. Note, however, that this number must 
evenly divide into the total number of Exemplars.



TLRN Theoretical Summary

TLRNs with the memory layer confined to the input can be thought of as an input preprocessor. The information is 
represented across time instead of simply across the static input patterns. Given a signal in time (such as a time 
series of financial data, or a signal coming from a sensor monitoring an industrial process), the network must 
process that signal to determine where in time the relevant information lies. The term signal processing is used 
here in a general sense; it can be substituted for prediction, identification of dynamics, or classification.

A brute force approach is to use a long time window. This method does not work in practice because it creates 
very large networks that are difficult to train (particularly if the data is noisy). TLRNs are a very good alternative to 
this brute force approach (see figure below). Another class of models that have adaptive memory are the General 
Recurrent Networks. These networks are more difficult to train and require a more advanced knowledge of neural 
network theory.

Block diagram of a Time Lagged Recurrent Network

The most studied TLRN network is the gamma model (see figure below). The gamma model is characterized by a 
memory structure that is a cascade of leaky integrators, i.e. an extension of the context unit of the Jordan network.

Block diagram of the Gamma memory structure

Note that the signal at tap k is a smoothed version of the input that holds the voltage of a past event, creating a 
memory. The impulse responses of the different taps are shown in the figure below.



Impulse responses of each tap of a 5-tap Gamma memory

Note that the point in time where the response has a peak is approximately given by k/m, where m is the feedback 
parameter. This means that the neural network can control the depth of the memory by changing the value of the 
feedback parameter, instead of requiring a topological change in the number of taps. The parameter m can be 
adapted using gradient descent procedures, just like the other parameters in the network. Since this parameter is 
recursive, a more powerful learning rule needs to be applied. NeuroSolutions implements backpropagation 
through time (BPTT) for the adaptation process.

The NeuralBuilder offers a choice of memory structures. The Laguarre memory is an improvement over the 
gamma memory since it trains faster. It also provides signals at the taps that are not attenuated in amplitude, but 
appropriately shifted in time.



General Recurrent Networks

General recurrent networks (GRN’s) are to temporal data as multi-layer perceptrons (MLP’s) are to static data. 
They are categorized by a layer that feeds back upon itself using adaptable weights. If all of the layer’s axon’s 
feed back their output, then the network is fully recurrent, otherwise it is called partially recurrent.

Advantages 

The main advantage of GRN’s is that they have a potentially unlimited memory depth and thus, as previously 
stated, can actually capture the dynamics of the system that produced a temporal signal. This distinguishes them 
from Time Lagged Recurrent Networks, where the memory depth is also adaptable, but has an effective upper 
limit due to loss of resolution.

Disadvantages

The primary disadvantage of GRN’s is that they can become unstable during training. This is because their 
feedback is adaptable, and they can evolve to an unstable non-linear pole. This distinguishes them from Jordan 
and Elman Networks, where the feedback is fixed. Also, Bengio showed that GRN’s have trouble learning long 
term relationships because the gradient over time in the back propagation through time (BPTT) algorithm decays 
exponentially. The BPTT algorithm is also quite complex and requires a lot of memory. NeuroSolutions hides most 
of the complexity from the user and provides an efficient implementation of this algorithm.

Alternative topologies

Jordan and Elman Networks and Time Lagged Recurrent Networks

Configuration

The General Recurrent panel is used to specify the size and type of the recurrent structure to implement (see 
figure below). The number of Hidden Layers is also configured from this panel.

General recurrent panel of the NeuralBuilder

The table below summarizes the two structures available. The fully recurrent network utilizes full feedback to itself 
of the axon layer immediately following the input layer. The partially recurrent network includes the fully recurrent 
structure, but adds a synapse connection from the input layer to the layer immediately following the recurrent 
layer.



Recurrent network types

Type Description

Fully Recurrent full state feedback

Partially Recurrent partial state feedback

Recurrent networks must be trained using a dynamic learning algorithm. NeuroSolutions uses the so-called 
backpropagation through time (BPTT) algorithm, which is implemented by the dynamic controllers.

General Recurrent Hints

General Recurrent Theoretical Summary



General Recurrent Hints

Start with a partially recurrent network, and use a linear axon for the layer immediately following the recurrent 
layer. Our own experiments have indicated that this architecture is much less likely to go unstable during training. 
Recurrent networks also often go unstable when they are overtrained. Once the mean square error has dropped to 
an acceptable level, stop the training.

If learning seems slow, go to the dynamic controllers, switch to on-line learning, and set the number of 
Samples/Exemplar (both forward and backward) to a smaller number. Note, however, that this number must 
evenly divide into the total number of Exemplars.



General Recurrent Theoretical Summary

Recurrent networks are fundamentally different from feed-forward networks. Even with a constant input, they do 
not necessarily settle to a constant output. They can exhibit limit cycles and even chaotic behavior. Nevertheless, 
Li [1992] showed that GRN’s are a universal approximator of a differentiable trajectory. This means that given a 
sufficient number of neurons, GRN’s can capture the dynamics imbedded within any signal.



CANFIS Networks (Fuzzy Logic)

CANFIS stands for coactive neuro-fuzzy inference systems. This model was proposed by J.-S. R. Jang, C.-T. Sun, 
and E. Mizutani in Neuro-Fuzzy and Soft Computing, published by Prentice Hall in 1997. The CANFIS model 
integrates fuzzy inputs with a neural network to quickly solve poorly defined problems. Fuzzy inference systems 
are also valuable as they combine the explanatory nature of rules (membership functions) with the power of "black 
box" neural networks.

Advantages 

Using fuzzy rules as a preprocessor to a neural network allows one to incorporate human knowledge to perform 
inferencing and decision making. The CANFIS model optimizes the fuzzy rules (membership function parameters) 
with backpropagation, so the human knowledge is not required. This "fuzzification" makes the neural network’s job 
easier by characterizing inputs that are not easily discretized, often resulting in a better overall model. 

Disadvantages

The CANFIS model is more computationally intensive than most other models. 

Alternative topologies

Radial Basis Function Networks

Configuration

The CANFIS panel is used to specify the type of fuzzy membership function, the number of functions and the 
variant of the CANFIS model. The number of Hidden Layers is also configured from this panel.

CANFIS panel of the NeuralBuilder

The two fuzzy membership functions available are the bell-shaped curve and the gaussian-shaped curve.    The 
bell curve is a little more flexible, since it has 3 free parameters to adjust, versus two parameters for the gaussian.

The "MFs per Input" field specifies the number of membership functions assigned to each network input. These 
membership functions are then combined together to perform the inferencing operation. For small to medium-
sized data sets, this number will generally be between 2 and 4.

There are two variants of CANFIS networks to choose from. The Tsukamoto fuzzy model is simpler and runs 
faster, but the TSK fuzzy model (also known as the Sugeno fuzzy model) is generally more popular.



CANFIS Hints 

CANFIS Theoretical Summary 



CANFIS Hints

Start with a small number of membership functions per input, and then rebuild the network with a larger number to 
see if the results improve. It is generally best to configure this parameter within the NeuralBuilder rather than try to 
change the value after the network is built, since there are dependent parameters in other components that should 
also be changed.



CANFIS Theoretical Summary

The theory behind fuzzy inference systems and the CANFIS model is too in depth to cover in this documentation. 
Those interested should read Neuro-Fuzzy and Soft Computing by J.-S. R. Jang, C.-T. Sun, and E. Mizutani.



Support Vector Machine (SVM)

In NeuroSolutions, Support Vector Machines (SVMs) are implemented using the kernel Adatron algorithm. The 
kernel Adatron maps inputs to a high-dimensional feature space, and then optimally separates data into their 
respective classes by isolating those inputs that fall close to the data boundaries. Therefore, the kernel Adatron is 
especially effective in separating sets of data that share complex boundaries. SVMs are generally only useful for 
classification problems.

Advantages 

SVMs have produced excellent results in many practical classification problems.

Disadvantages

SVMs assign one Gaussian function for each input exemplar in the training set. This makes SVMs impractical for 
large training sets (greater than 1000 exemplars).

Alternative topologies

Radial Basis Function Networks

Configuration

There are no parameters specific to the SVM that need to be configured.

SVM panel of the NeuralBuilder

Support Vector Machine Hints 

Support Vector Machine Summary 



Support Vector Machine Hints

Since SVMs are used primarily for classification, you will likely want to include a confusion matrix probe to display 
the classification performance during training. If the network is training too slowly, you can change the step size of 
the SVMStep gradient search component. You may also want to experiment with various training set sizes, since 
this will adjust the size of the network (by adjusting the number of PEs in the GaussianAxon).



Support Vector Machine Theoretical Summary

The SVMInputSynapse and GaussianAxon components apply a gaussian of appropriate width at each input, 
which essentially projects the inputs into a high-dimensional feature space. The kernel Adatron is then able to 
identify the boundary inputs (referred to as support vectors), which are the important features for classification. 
The SVMOutputSynapse, SVMStep, and SVML2Criterion components train the alpha and bias values 
corresponding to each gaussian in order to determine the support vectors. These support vectors allow the 
network to rapidly converge on the data boundaries and consequently classify the inputs.

More extensive theoretical coverage of Support Vector Machines can be found in section 5.8 (pp. 261-269) of 
Neural and Adaptive Systems: Fundamentals Through Simulations, by Principe, Euliano, and Lefebvre (John 
Wiley & Sons, 2000).



Summary of NeuralBuilder Examples

These experiments used different neural models to solve the same problem using the same data. This provides a 
way to compare the differences in network behavior. The table below contains the summary of results from the 
experiments. Keep in mind that this is not a scientific comparison. Only one or two simulations were run for each 
experiment and the experiments themselves were not necessarily balanced (i.e., different number of PEs and 
different stop criteria). Your results will likely differ due to the unique values of the initial weights.

Summary of experimental results from examples

Neural 
Model

Training 
MSE

Testing MSE Supervised 
Epochs

MLP 0.07 0.27 150

General. FF 0.10 0.30 175

Jordan 0.07 0.19 175

PCA 0.07 0.22 350

RBF 0.10 0.28 200

SOFM 0.07 0.24 100

It is interesting to note that the MLP, Jordan, PCA, and SOFM achieved the best training set performance, but that 
the Jordan outperformed the other three for the cross validation set. This is illustrative of the fact that what is 
learned in the training set is only part of the story in neural network applications.

The Jordan network is the only model of the six that uses time information. In sleep staging there is information 
contained in the sleep stage transitions that none of the other models can capture. Topologies with memory can be 
very useful when dealing with this type of real world data.

The second best cross validation set performer was the PCA network. The reason that the PCA generalizes well is 
that it uses all the information from the input to derive new projections of the data. These projections capture 
general information about the data clusters. There are other cases when PCA does not perform as well, such as 
when classes are intermixed.

There are also other comparisons that could have been made. For instance, the size of the network will often 
affect the results. A larger number of PEs may improve the training set performance but degrade the cross 
validation set performance due to the lack of generalization. Many other comparisons could be drawn, but the goal 
of these examples is to illustrate the use of the NeuralBuilder and the care that one should take when making 
parameter choices.

Remember that this comparison is only for one isolated data set. A neural model that performs poorly on this data 
set may outperform the others given a different problem. This comparison has shown that neural models that 
contain memory are best suited for problems that contain temporal information.

These examples have only provided a brief overview of the power available within NeuroSolutions. It is suggested 
that the interested user work through the Tutorials chapter of the NeuroSolutions on-line documentation, where a 
much more in depth coverage of the components is given. Knowledge of the package at the component level is 
fundamental to making appropriate component and parameter selections.
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