
Neural and Adaptive Systems:
Fundamentals Through Simulations

by
Jose C. Principe
Neil R. Euliano

W. Curt Lefebvre
Copyright 2000 Ó John Wiley & Sons, Inc.

Introduction to Evaluation Version

This version of Neural and Adaptive Systems: Fundamentals Through Simulations contains the
Preface, Chapter 1, and Appendix B (the NeuroSolutions Tutorial) and is for evaluation purposes
only. No part of this text may be copied, reproduced, or otherwise duplicated without written
permission from John Wiley & Sons and NeuroDimension, Inc.

Preface

This book presents neurocomputing from a different perspective. Throughout the discussion we
blend the power of a software simulator with the theory of neurocomputing to constantly
reinforce the synergism between the conceptual equations and their behavior in practical neural
systems. In our presentation model, which we call an interactive electronic book (i-book)
[Principe et al., 2000], the text co-exists with a functional simulator. This is much different than
the two common methods of integrating a text and computer software. We do not simply add
computer-based examples to the end of the text, we use computer simulations early and often in
the presentation. In addition, the i-book is not simply a laboratory manual where exercises are
wrapped with text. We have reorganized the theory of neurocomputing into fine-grain conceptual
modules, each of which is illustrated with a simple simulation to enhance conceptual
understanding throughout the text. At the end of every chapter there is at least one full
simulation, which is incrementally built and explained throughout the chapter, that can be used
for a project. The simulation thus becomes an essential piece of information delivery, deeply
affecting the organization of the textbook, and allowing visualization and reader interaction with
the material.

Our intent is to present the concepts at a level that can be understood by senior-level
undergraduate students in science and engineering. The link between the hypertext and the

simulator creates an interactive learning environment especially appropriate for self-guided study
of neural networks and adaptive systems. Our more practical, simulation-driven approach will be
particularly beneficial to professionals in the fields of science, engineering, and economics.

We strive to fully cover the major topics in neurocomputing, from theory to applications.
Because adaptation is the key to neurocomputing, we give it special attention, covering both the
supervised and unsupervised paradigms. We treat neural networks as a nonlinear extension of
linear adaptive systems, thus discussing both linear and nonlinear adaptive topologies in detail.
In fact, we start with the well-known regression problem to introduce the idea of data fitting and
many of the concepts of adaptation. Time, so important for engineering applications, is covered
from the perspective of digital signal processing and is integrated with neural topologies. Our
hope is to show that adaptive filters and neural networks, normally taught in two different
disciplines, can be integrated under the common theme of neural and adaptive systems. Each
chapter contains extensive simulation examples (more than 200 simulations overall) to illustrate
the concepts, and to provide for further exploration with instructor or student supplied data. We
emphasize the design and use of neural and adaptive systems. Readers can use the electronic
book in other disciplines, or for senior projects, master theses, or even Ph.D. dissertations.

The textbook is presented in two formats: an electronic version on CD-ROM, consisting of a
hypertext document linked with a software simulator, and the paper version duplicating the text
material.

Electronic Version

The electronic version is a hypertext document in the Windows help format, so any PC with the
Windows NT or Windows 95 (or higher) operating system will be able to install and run the
interactive book. The hypertext is linked to NeuroSolutions, a neural network simulator
developed by NeuroDimension that is included on the CD-ROM. The simulator is called from
the hypertext by clicking on an icon. The simulation examples include fully functional neural
networks with explanations of the network topology, and directions for the reader to use and
study the relevant aspects of the simulation. A key point is that the simulator is open to
experimentation: students can change parameters and topologies, and open new probes to answer
“what if” questions, which normally leads toward a much deeper understanding of the concepts.
Once the simulations are complete, control passes to the point where the simulator was called.
Hence a seamless integration of the text with the simulator is achieved.

Because of this organization, it is very important that the reader (as well as the instructor) learns
how to interact with NeuroSolutions. We include a NeuroSolutions tutorial as Appendix B , and
we strongly encourage everyone to consult and run the different examples in the tutorial in order
to learn how to create, configure, probe, and adequately control the simulator.

The text is geared toward the presentation of the fundamental concepts of adaptive systems and
how they can be applied in practice. Derivation of equations is encapsulated in hot links (which
we call “know-more” boxes) that can be called from the main text but can be skipped in a first
reading pass. Important definitions, equations, and references are accessible in pop-up windows.

The text can be navigated in several different ways. The beginning of each chapter contains
hyperlinks to its section headings, and a hyperlink to the preface, as well as the next chapter. At

the end of each section there is a hyperlink to the next section, providing a sequential, paper-
book style of organization. Hot links to the appendix are called from the text (return to the text
with the Back button in the control bar). At the end of each chapter we present hyperlinks to all
the examples of the chapter, and a concept map with hot-links to all the chapter section headings
and to conceptually related chapters.

Using the Electronic Book

As mentioned above, the electronic text is in the Windows Help file format. For those not
familiar with the Windows Help system, this section will briefly introduce the navigation through
the book.

Navigation through help files is done by using the help file toolbar and through hyperlinks. The
following is an image of the help file toolbar:

By pressing the button you move to the next topic in the sequence. Pressing the

 moves to the previous topic in the sequence. If you click on a hyperlink (described
below), press the

 button to return to the original position in the text. Pressing the

 button brings up the table of contents and key word search panel shown below.

Selecting a chapter and clicking "Open" (or double-clicking the chapter) in the table of contents
opens all the subsections of that chapter. Clicking display on a subsection moves immediately to
that section of the text. Clicking on the "Index" tab of the window allows you to search through
the keywords of the text. Clicking on the "Find" tab allows you to search through the text of the
book.

There are three types of hyperlinks

· Pop-up windows that are used for definintions, references, and footnotes,

· Know More Boxes that contain more detailed information such as derivations, and

· Hyperlinks to related topics in other sections or chapters. Press the "back" button in the help
file toolbar to return to the original position in the text.

Simply click on any of these hyperlinks to see the related information.

Paper Version

The paper version is a carbon copy of the electronic hypertext and it is composed of three
fundamental elements: the text, the “know-more” boxes, and the NeuroSolutions examples. The
know-more boxes are marked in the left margin with gray diamonds, and they contain further
details about the topic (normally derivations). They correspond to the hot-links in the hypertext.

They can be skipped in a first reading, but no thorough understanding of the material is possible
without studying them. The NeuroSolutions examples are shaded boxes, and they contain the
details to run the simulator.

We suggest that even when using the paper version of the textbook, the reader should execute the
examples on the computer as soon as they appear in the text because they are intrinsically bound
to the material, and enhance the understanding. For convenience, at the end of each chapter in
the electronic version we provide a list of the examples with their corresponding hot-links as a
quick reference for readers of the paper version. After executing the example, the reader can go
back to the example listing by clicking on the Back button of the control bar.

Topics

The material is divided into 11 chapters, 3 appendices, and a glossary. Chapter 1 covers the
concept of data fitting with the linear model, and at the same time, gradient-descent learning. We
decided to start with the linear regression model because it is at least vaguely familiar to students
in science, economics, and engineering. Linear regression exemplifies the central theme of the
book, which is adapting parameters from data. The link between least squares and the search for
the minimum of the mean square error is established in this chapter. Gradient-descent learning
and the elegant LMS algorithm are also presented here. The style of computation and the
properties of the iterated solution are covered for single and multiple regression. Newton's
method is presented as well. At the end of the first chapter a project using data from the Internet
is set up to help students apply what they learned to real- world data.

Chapter 2 presents the concepts of statistical pattern recognition. This chapter formulates
classification as the placement of discriminant functions in pattern space to minimize the
probability of the classification error. We stress the difference between data fitting and
classification but show that the same basic methodology can be used to train both classifiers and
regressors. The design of the Bayes’ classifier is introduced. We also present the concept of using
high dimensional spaces to simplify the placement of the discriminant function. The concept of
linear and quadratic classifiers,and their links to likelihoods are also discussed.

Chapter 3 studies multilayer perceptrons (MLPs). We systematically treat the processing power
of the topology and the adaptation of the parameters as two different aspects of the problem. We
start very simply, with a single McCulloch-Pitts processing element in two- dimensional space to
build up intuition. We define the perceptron and show how to adapt its parameters with gradient-
descent learning by using the chain rule. We also present a large-margin learning rule (the
Adatron algorithm) linked to the perceptron learning rule. We then introduce the need for more
powerful topologies. The study of the one-hidden-layer MLP is first conducted with fixed
parameters (in terms of discriminant functions), and then backpropagation is derived and applied.
The two-hidden-layer MLP is also studied as a topology and adapted using backpropagation. The
method of ordered derivatives, important for practical implementations, is covered, and its
implications for constructing general-purpose simulators are explored. Since NeuroSolutions
uses a data-flow implementation, it very clearly illustrates the concepts of backpropagation and
ordered derivatives. Training embedded adaptive subsystems in larger fixed parameters systems,
so often forgotten but so relevant to solving practical problems, is also addressed with examples.
The chapter finishes with the interpretation of an MLP as an a posteriori probability estimator.

Chapter 4 delves into the details of how to use MLPs in real-world applications. The practical
aspects of initialization, alternative search methods, topology size, and stopping criterion are all
addressed. We start by pointing out the stochastic nature of training and its implications. We
cover only first-order search methods in detail (gradient descent, momentum, adaptive step sizes,
and noise), but we present the full framework. Cross-validation is presented as the preferred
method of stopping the training, but other methods are also covered. For good generalization, we
demonstrate the use of weight decay as a way to control the size of topologies. Norm selection is
also addressed as an extra control of performance. We explain committees as a practical way of
controlling the variance of the estimator. After covering all of these aspects, we present two
practical applications of MLPs, and we set up a simulation again using the Internet.

Chapter 5 presents the unifying view that regression and classification are special cases of the
more general problem of function approximation. Adaptive systems should ultimately be
interpreted as parametric function approximators. This chapter is a bit more demanding in terms
of mathematics, but the goal is to introduce the problem of function approximation and the use of
MLPs, and radial basis functions (RBFs) as universal function approximators. The statistical
view of nonlinear regression is provided, and RBFs are also used as classifiers. We finish the
chapter by providing a very brief introduction to support vector machines. Two projects, one
with financial data and the other with housing prices, are constructed in the simulator.

Chapter 6 covers the principles of Hebbian learning. The estimation of correlation with local
rules is stressed and shown to be a universal principle in learning systems. We present principal
component analysis (PCA) as a robust and efficient data reduction methodology. The extensions
of Hebbian learning to forced- and anti-Hebbian learning are also covered. The linear associative
memories and its applications both to hetero-association and autoassociation receive a special
place in the presentation.

Chapter 7 is devoted to competition, the other major learning principle. We apply competitive
networks to clustering, and develop the Kohonen self-organizing network from the point of view
of a topology-preserving map. Modular networks are briefly reviewed, and applications are
presented.

Chapter 8 covers the fundamentals of extracting (and quantifying) information in time. The
relationship between time signals and vectors is stressed. We motivate filtering as projections in
vector spaces. This chapter is a summary of the fundamental concepts of linear signal and
systems analysis. The concepts of impulse response, convolution, frequency response, and
transfer function as descriptors of system properties are emphasized. This chapter also covers
Fourier transforms, and a simple filter design method.

The remaining chapters exploit combinations of previous topics. Chapter 9 brings together the
concepts of regression and time processing in the form of adaptive filters. The idea of optimal
filters is presented, and the LMS algorithm is utilized for adaptation. We present system
identification from the point of view of function approximation.    Hebbian learning extended to
time produces eigenfilters and Karhunen-Loeve transforms. This chapter contains a showcase of
examples to illustrate the exceptional applicability of the simple linear adaptive network. Over
20 practical examples are offered, including

· System identification

· Prediction

· Model-based spectral analysis

· Noise cancellation

· Interference cancellation

· Echo cancellation

· Inverse modeling

· Inverse adaptive controls

· Eigenfiltering

· PCA in time

· Subspace spectral analysis

· Blind source separation

Readers may modify all of these models to solve their own problems.

Chapter 10 brings together time and nonlinear processing elements to yield systems that can be
interpreted either as extensions of the MLP to time processing, or as nonlinear extensions of
adaptive filters. The topologies covered are called time-lagged-feedforward networks (TLFNs),
and they are feedforward combinations of linear filters with nonlinear PEs.    The adaptation can
still be performed with static backpropagation. The design of short-term memories is covered in
detail.    Many problems can be solved using these intermediate topologies. We present examples
of temporal pattern recognition, nonlinear system identification, and nonlinear prediction.

Chapter 11 teaches the training of recurrent topologies in time, and presents the general case of
first-order distributed dynamic systems. We extend static backpropagation to the training of
recurrent systems, for both static patterns (fixed point learning) and for trajectory learning. Real-
time recurrent learning (RTRL) and backpropagation through time (BPTT) are presented and
compared. We discuss applications to nonlinear system identification and control. This chapter
covers the Hopfield model, and the concept of computational energy. The hierarchy of neural
models is introduced with the Grossberg additive model. The last topic is an extension of first-
order dynamics to systems that are locally stable, but globally chaotic, to illustrate some of the
challenges ahead in the field of neurocomputing.

Appendix A provides a topical view of matrix computations and probabilities, and is a quick
reference to the underlying concepts necessary to understand the text material. Appendix B is the
NeuroSolutions tutorial and it is a must for the student (and instructor) who is not familiar with
the software package. It contains the basic concepts to construct networks, configure and probe
components, and set up the simulations. A description of the data included on the CD-ROM is
found in Appendix C . For quick reference, we also include a glossary section with definitions of
the terms used in the text for quick reference.

The extensive coverage of topics makes the book impossible to cover in one semester, but
permits different organizations of topics depending on the special goals of the instructor. Many
possible topic sequences are possible. Chapters 1 through 5 form a short sequence that can be
used as an introduction to neural networks covering regression, multi-layer perceptrons, and
radial basis functions. A second course could cover chapters 6, 7, 9, 10, and 11, which include
unsupervised learning rules, SOMs, and temporal neural networks. Chapters 1, 8, and 9 cover
linear adaptive systems and filters and can be used separately or as introduction to the nonlinear
systems.

Classroom Experience and the Simulator

The i-book can be used in a normal classroom setting, improving the explanation of the material
through the simulations with real data, and providing the students with a way to practice at home
what has been demonstrated in class. However, the full potential of the i-book is achieved with
some improvements to the conventional classroom format. We would like to share our
experience of teaching an elective course for electrical engineering undergraduates at the
University of Florida using this electronic book. For further information, please consult the paper
[Principe et al., 2000]. The course is taught in a laboratory format where we use a computer
projector and an electronic white board, and each student has access to a computer during every
lecture. The white board allows the text to be interactive, and examples are executed by touching
the board.    We cover a concept for 15 minutes and then allow the students 15 minutes to run the
simulator and explore the example. Then we conclude and move to the next topic. The text
naturally provides conceptual boundaries, with each concept illustrated by an example. The
function of the instructor in this environment is as a conductor: explaining the concepts,
answering questions, and timing the experiments. Students are allowed two hours of self-study a
day in the classroom. Office hours are conducted in the classroom. Projects involve searches for
data on the Internet.

The simulator is one of the central tools of learning. We slowly cover the most important parts of
the simulator in Chapters 1 and 3, at the same time the material in those chapters is covered.
However, we recommend that the instructor be familiar with the simulator before the course
begins. The simulator’s user interface is iconic which makes learning easy. Icons are organized
into families: five neural component families (Synapse, Axon, search, and supervised and
unsupervised criteria) and simulation and visualization functions such as Probes, Controllers,
Inputs, Transmitters and Schedulers.    Each icon has a corresponding Inspector that changes the
component parameters. The mechanics are intuitive, with drag-and-drop functionality.
Configuration is a bit more detailed, but the user interface mimics the design steps. Therefore the
choices are logical if the material is understood. Students can use other data supplied on the CD-
ROM, and even modify the topologies given in the examples up to the limits imposed by the
software developer.

The simulator is such an important part of the course presentation that we include a tutorial with
the book. The instructor should master the simulator since it facilitates the answers to “what if”
questions that make learning more interesting and productive. Students should also learn the
simulator so that they can run the examples independently, make modifications for better
learning, work out the problems at the end of the chapters, and apply newly acquired knowledge
to projects.

References:

Principe J., N. Euliano, C. Lefebvre, “Innovating Adaptive and Neural Systems Instruction with
Interactive Electronic Books”, Proceedings of the IEEE, special issue on engineering education,
January 2000 (in press).

Go to next section

hot-links

are underlined in green throughout the text. Just click on the link to jump to the appropriate topic or to
read the pop-up panel.

Pop-up Windows

This is an example of a popup window.

Know More Boxes

This is a very short example of a "know more box". These links open a secondary window so the
information can be browsed without interfering with the flow of the main text.

These boxes always include a "return to text" link which returns to the original position in the
main text, although you can also simply click into the main text window.

Return to Text

Chapter 1 - Data Fitting with Linear
Models

1.1 Introduction

1.2    Linear Models

1.3    Least Squares

1.4    Adaptive Linear Systems

1.5    Estimation of the Gradient: The LMS Algorithm

1.6    A Methodology for Stable Adaptation

1.7    Regression for Multiple Variables

1.8    Newton's Method

1.9    Analytic versus Iterative Solutions

1.10    The Linear Regression Model

1.11    Conclusions

1.12    Exercises

1.13    NeuroSolutions Examples

1.14    Concept Map for Chapter 1

The goal of this chapter is to introduce the following concepts:

· Data fitting and the derivation of the best linear (regression) model
· Iterative solution of the regression model
· Steepest descent methods
· The least mean square (LMS) estimator for the gradient
· The trade-off between speed of adaptation and solution accuracy
· Examples using NeuroSolutions

Go to next section

1.1 Introduction

The study of neural and adaptive systems is a unique and growing interdisciplinary field that
considers adaptive, distributed, and mostly nonlinear systems - three of the ingredient found in
biology. We believe that neural and adaptive systems should be considered another tool in the
scientist's and engineer's toolbox. They will complement effectively present engineering design
principles and help build the preprocessors to interface with the real world and ensure the
optimality needed in complex systems. When applied correctly, a neural or adaptive system may
considerably outperform other methods.

Neural and adaptive systems are used in many important engineering applications, such as signal
enhancement, noise cancellation, classification of input patterns, system identification,
prediction, and control. They are used in many commercial products such as modems, image-
processing and recognition systems, speech recognition, front-end signal processors and
biomedical instrumentation. We expect that the list we will grow exponentially in the near future.

The leading characteristic of neural and adaptive systems is their adaptivity, which brings a
totally new system design style (Figure 1-1). Instead of being built a priori from specification,
neural and adaptive systems use external data to automatically set their parameters. This means
that neural systems are parametric. It also means that they are made "aware" of their output
through a performance feedback loop that includes a cost function. The performance feedback is
utilized directly to change the parameters through systematic procedures called learning or
training rules, so that the system output improves with respect to the desired goal (i.e., the error
decreases through training).

Figure 1-1    Adaptive system's design

The system designer has to specify just a few crucial steps in the overall process: he or she has to
decide the system topology, choose a performance criterion, and design the adaptive algorithms.
In neural systems the parameters are often modified in a selected set of data called the training
set and are fixed during operation. The designer thus has to know how to specify the input and
desired response data and when to stop the training phase. In adaptive systems the system
parameters are continuously adapted during operation with the current data. We are at a very
exciting stage in neural and adaptive system development because

· We now know some powerful topologies that are able to create universal input-output
mappings.

· We also know how to design general adaptive algorithms to extract information from data
and adapt the parameters of the mappers.

· We are also starting to understand the pre-requisites for generalization, that is, how to
guarantee that the performance in the training set extends to the data found during system
operation.

Therefore we are in a position to design effective adaptive solutions to moderately difficult real-
world problems. Because of the practicality derived from these advances, we believe that the
time is right to teach adaptive systems in undergraduate engineering and science curricula.

Throughout this textbook we explain the principles that are necessary to make judicious choices
about the design options for neural and adaptive systems. The discussion is slanted toward
engineering, both in terminology and in perspective. We are very much interested in the
engineering model-based approach and in explaining the mathematical principles at work. We
center the explanation on concepts from adaptive signal processing, which are rooted in
statistics, pattern recognition, and digital signal processing. Moreover, our study is restricted to
model building from data.

1.1.1 Engineering Design and Adaptive Systems

Engineering is a discipline that builds physical systems from human dreams, reinventing the
physical world around us. In this respect it transcends physics, which has the passive role of
explaining the world, and also mathematics, which stops at the edge of physical reality.
Engineering design is like a gigantic Lego construction, where each piece is a subsystem
grounded in its physical or mathematical principles. The role of the engineer is to first develop
the blueprint of the dream through specifications and then to look for the pieces that fit the
blueprint. Obviously, the pieces cannot be put together at random, since each has its own
principles, so it is mandatory that the scientist or the engineer first learn the principles attached to
each piece and then specify the interface. Normally, this study is done using the scientific
method. When the system is physical, we use the principles of physics, and when it is software,
we use the principles of mathematics. As an example, see the development of the phone system.

The scientific method has been highly successful in engineering, but let us evaluate it in broad
terms. First, engineering design requires the availability of a model for each subsystem. Second,
when the number of pieces increases the interactions among the subsystems increase
exponentially. Fundamental research will continue to provide a steady flux of new physical and
mathematical principles (provided the present trend of reduced federal funding for fundamental
science is reversed), but the exponential growth of interactions required for larger and more
sophisticated systems is harder to control. In fact, at this point in time, we simply do not have a
clear vision of how to handle complexity in the long term. But there are two more factors that
present major challenges: the autonomous interaction of systems with the environment and the
optimality of the design. We will discuss these now.

Humans have traditionally mediated the interaction of engineering systems with the external

world. After all, we use technology to reduce our physical constraints, so we have traditionally
maintained control of the machines we build. Since the invention of the digital computer, there
has been a trend to create machines that interact directly with the external world without a human
in the loop. This brings the complexity of the external world directly into engineering design. We
are not yet totally prepared for this, because our mathematical and physical theories about the
external world are mere approximations - very good approximations in some cases, but rather
poor in others. This disturbs the order of engineering design and creates performance problems
(the worst subsystem tends to limit the performance of the full system). As an example, see the
Mars' pathfinder mission.

System optimality is also a rising concern to save resources and augment the performance/price
ratio. We might think that optimally designing each subsystem would bring global optimality, but
this is not always true. Optimal design of complex systems is thus a difficult problem that must
also take into consideration the particular type of system function, meaning that the complexity
of the environment is once again present. We can conclude that the current challenges faced in
engineering are the complexity of the systems, the need for optimal performance, and the
autonomous interaction with the environment that will require some form of intelligence. These
are the challenges for engineering in the 21st century and beyond.

Whenever there is a new challenge, we should consider new solutions. Quite often the difficulty
of a task is also linked to the particular method we are using to find the solution. Is building
machines by specification the only way to proceed?

Let us look at living creatures from an engineering systems perspective. The cell is the optimal
factory, building directly from the environment at the fundamental molecular level what it needs
to carry out its function. The animals we observe today interact efficiently with the environment
(otherwise they would not have survived); they work very close to optimality in terms of
resources (otherwise they would have been replaced in their niche by more efficient animals);
and they certainly are complex. Biology has, in fact, already conquered some of the challenges
we face in building engineering systems, so it is worthwhile to investigate the principles at work.

Biology has found a set of inductive principles that are particularly well tuned to the interaction
with a complex and unpredictable environment. These principles are not known explicitly but are
being intensively studied in biology, computational neurosciences, statistics, computer science,
and engineering. They involve extraction of information from sensor data (feature extraction),
efficient learning from data, creation of invariants and representations, and decision making
under uncertainty. In a global sense, autonomous agents have to build and fit models to data
through their daily experience; they have to store these models, choose which shall be applied in
each circumstance, and assess the likelihood of success for a given task. An implicit optimization
principle is at play, since the goal is to do the best with the available information and resources.

From a scientific perspective, biology uses adaptation to build optimal system functionality. The
anatomical organization of the animal (the wetware) is specified in the long term by the
environment (through evolution), and in the short term it is used as a constraint to extract in real
time the information that the animal needs to survive. At the nervous-system level, it is well
accepted that the interaction with the environment molds the wetware using a learning-from-
examples metaphor.

1.1.2 Experimental Model Building

The problem of data fitting is one of the oldest in experimental science. The real world tends to
be very complex and unpredictable, and the exact mechanisms that generate the data are often
unknown. Moreover, when we collect physical variables, the sensors are not ideal (of finite
precision, noisy, with constrained bandwidth, etc.), so the measurements do not represent the real
phenomena exactly. One of the quests in science is to estimate the underlying data model.

The importance of inferring a model from the data is to apply mathematical reasoning to the
problem. The major advantage of a mathematical model is the ability to understand, explain,
predict, and control outcomes in the natural system [Casti]. Figure 1-2 illustrates the data-
modeling process. The most important advantage of the existence of a formal equivalent model is
the ability to predict the natural system's behavior at a future time and to control its outputs by
applying appropriate inputs.

Figure 1-2    Natural systems and formal models

In this chapter we address the issues of fitting data with linear models, which is called the linear
regression problem. (see Dunteman) Notice that we have not specified what the data is, because
it is really immaterial. We are seeking relationships between the values of the external
(observable) variables of the natural system in Figure 1-2. This methodology can therefore be
applied either to meteorological data, biological data, financial data, marketing data, engineering
data, and so on.

1.1.3 Data Collection

The data-collection phase must be carefully planned to ensure that

· Data will be sufficient

· Data will capture the fundamental principles at work

· Data is as free as possible from observation noise.

Table 1-1    Regression Data

Table 1-1 presents a data example with two variables (x, d) in tabular form. The measurement x
is assumed error free, and d is contaminated by noise. From Table 1-1 very little can be said
about the data, except that there is a positive trend between the variables (i.e. when x increases d
also increases). Our brain is somehow able to extract much more information from pictures than
from numbers, so data should first be plotted before performing data analysis. Plotting the data
allows verification, assures the researcher that the data was collected correctly, and provides a
"feel" for the relationships that exist in the data (e.g., natural trends).

Go to next section

1.2 Linear Models

From the simple observation of Figure 1-3, it is obvious that the relationship between the two
variables x and d is complex, if we assume that no noise is present. However, there is an
approximately linear trend in the data. The deviation from a straight line could be produced by
noise, and underlying the apparent complexity could be a very simple (possibly linear)
relationship between x and d, that is

(1.1)

Figure 1-3    Plot of x versus d

or more specifically,

(1.2)

where ei is the instantaneous error that is added to yi (the linearly fitted value), w is the line slope,
and b is the d axis intercept (or bias). Assuming a linear relationship between x and d has the
appeal of simplicity. The data-fitting problem can be solved by a linear system with only two free
parameters, the slope w and the bias b.

Figure 1-4    Linear regression PE

The system of Figure 1-4 is called the linear processing element (PE), or Adaline (for adaptive
linear element), and it is very simple. It is built from two multipliers and one adder. The
multiplier w scales the input, and the multiplier b is a bias, which can also be thought of as an
extra input connected to the value +1.The parameters (b, w) have different functions in the
solution. We will be particularly interested in studying the dependence of the solution on the
parameter(s) that multiply the input xi.

NEUROSOLUTIONS EXAMPLE 1.1

The Linear Processing Element in NeuroSolutions

The goal of this book is to demonstrate as many concepts as possible through demonstrations and simulations.
NeuroSolutions is a very powerful neural network/adaptive system design and simulation package that we
will use for the demonstrations. We highly recommend that you read through the NeuroSolutions tutorial in
Appendix B. NeuroSolutions constructs adaptive systems in a Lego style, that is component by component.
The components are chosen from palettes, selected with the mouse, and dropped into the large window called
the breadboard. This object-oriented methodology allows for the simple creation of adaptive systems by
simply dragging and dropping components, connecting them, and then adjusting their parameters.
Particularly in the early chapters we will automatically create the adaptive systems for you through a set of
macros. This will shield you from the details of NeuroSolutions until you have a better grasp of the
fundamentals of adaptive systems and the use of NeuroSolutions.

In this first example, we introduce a few simple components. The first component required in any simulation
is an input component, which belongs to the Axon family. Its function is to receive data from the computer file
system or from signal generators within the package. In this case, we will add a file input component to the
input Axon to read in the data from Table 1-1. The linear PE shown in Figure 1-4 can be constructed with a
Synapse and a Bias Axon. The Synapse implements a sum of products and the Bias Axon adds the bias. The
output of such system is exactly Eq. 1.1. The Controller manages the system and controls the firing of data
through the system. Since Table 1-1 has 12 data points, the Controller is configured to send 12 points through
the system.

 

 

 

 

 

The purpose of this example is to display the output of the linear PE, which is a line, and to modify its
location in the space by entering different slope and bias values. To display the input and regression line, we
use the Data Storage component (stores 12 samples) and the Scatter Plot component. The Scatter Plot
component allows us to plot the input (x axis) versus the system response (y axis). We also add two Matrix
Editor boxes to allow you to change the values of the two parameters: the weight (slope) and bias (y-
intercept). After changing these parameters, you use the Control Palette to run the network.

NeuroSolutions Control Palette

The Run button (the green triangle) tells the Controller to send the data through the network. The other
buttons are not important now, but will be used and explained later. Now run the NeuroSolutions example by
clicking on the yellow NeuroSolutions icon below. It will walk you through the creation of the breadboard and
allow you to see how the regression line changes as you change the weight (slope) and bias (y intercept).

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|

nsicon2.bmp<ExecFile(HelperApp.exeï¿½ ExamplesRegression lineRegression
line.nsb)<<1} NeuroSolutions Example

(Reminder, click on the yellow icon to start the example.)

Go to next section

1.3 Least Squares

We face a problem when trying to fit a straight line to the noisy observations of Table 1-1. A
single line will fit any two observations (two points define a line), but it is unlikely that all points
will fall on exactly the same line. Since no single line will fit every point, a global property of
the points is needed to find the best fit. The problem of fitting a line to noisy data can be
formulated as follows: What is the best choice of w, b such that the fitted line passes the closest
to all the points?

Least squares solves the problem of fitting a line to data by finding the line for which the sum of
the square deviations (or residuals) in the d direction (the noisy variable direction) are
minimized. The fitted points in the line will be denoted by i = b + wxi. The residuals are
defined as ei = di -

i. The fitted points
i can also be interpreted as approximated values of di estimated by a linear model when the

input xi is known:

                      (1.3)

Figure 1-5    Regression line showing the deviations

This linear model will be called the linear regressor. Estimated quantities will be denoted by the
tilde (~) throughout the book. The outputs of the linear system of Figure 1-4 are the fitted points,

i = yi in Figure 1-5. To pick the line that best fits the data, we need a criterion to determine
which linear estimator is the "best." The average sum of square errors J (also called the mean

square error (MSE)) is a widely utilized performance criterion given by

  (1.4)

where N is the number of observations. To simplify the notation, we sometimes drop the top
index in the sum.

NEUROSOLUTIONS EXAMPLE 1.2

Computing the MSE for the Linear PE

To create a simulation that displays the MSE, we have to add a new component to the Breadboard, the L2
Criterion. The L2 Criterion implements the mean square error Eq. 1.4. The L2 Criterion requires two inputs
to compute the MSE – the system output and the desired response. We will attach the L2 Criterion to the
output of the linear PE (system output) and attach a File Input component to the L2 Criterion to load in the
value of the desired response from Table 1. In order to visualize the MSE, we will place a Matrix Viewer
probe over the L2 Criterion (cost access point). This Matrix Viewer simply displays the data from the
component that it resides over – in this case, the mean square error.

 

Run the demonstration and try to set the slope and bias to minimize the mean square error. Compute the
error by hand according to Eq. 1.4 and see whether it matches the value displayed.

 {ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesMSEMSE.nsb)<<1} NeuroSolutions

Example

Our goal is to minimize J analytically, which according to Gauss can be done by taking its partial
derivative with respect to the unknowns and equating the resulting equations to zero:

                                      (1.5)

which yields, after some manipulation, least square derivation

 

(1.6)

where an overbar represents the variable's mean value; for example, .

This procedure to determine the coefficients of the line is called the least square method. If we
apply these equations to the data of Table 1-1, we get the regression equation (best line through
the data)

(1.7)

The least square computation for a large data set is time-consuming, even with a computer.

NEUROSOLUTIONS EXAMPLE 1.3

Finding the Minimum Error by Trial and Error

Enter these values for the slope and bias by typing them in the respective Edit boxes. Verify that with these
values the error is the smallest. Change the values slightly (in either direction) and see that the MSE
increases. Enter a negative slope and see how the error increases a lot. For the negative slope, what is the
value of the bias that gives the smallest error? Note that when one of the coefficients is wrong, the value of the
other for best performance is also wrong, that is, they are coupled.

It is important to explore the NeuroSolutions breadboards. The best way to accomplish this is to open the
Inspector associated with each icon. Select a component with the mouse. Then press the right mouse button,
and select properties. The Inspector will appear in the screen. The Inspector has fields that allow us to
configure the NeuroSolutions components and tell us what settings are being used. For instance, go to the
input Axon and open the Inspector. You will see that it has one input, one output and no weights (go to the
Soma level to look at the weights). If you do the same in the Synapse, you will see that it also has a single input
and output and one weight which happens to be our slope parameter. The Bias Axon has a single input, a
single output and a single weight, which is the system's bias.

The large barrel on the input Axon is a probe that collects data. Since the barrel is placed on the Activity
point, it is storing the 12 data samples that are injected into the network. This is exactly what gets displayed
in the x axis of the Scatter Plot. The y axis values are sent from the L2 Criterion by the small barrel (a Data
Transmitter). So the Scatter Plot is effectively displaying the pairs of points (xi,di). Likewise it is also
displaying the output of the system in blue, i.e. the pairs of points (xi,yi).

If you want to know what the component is and what it does, just go to the NeuroSolutions control bar, select
the arrow icon with the question mark, and click on the component that you want to know about (this is
called context-sensitive help).

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examplesoptimal valuesoptimal values.nsb)<<1}

NeuroSolutions Example

1.3.1 Correlation Coefficient

We have found a way to compute the regression equation, but we still do not have a measure of
how successfully the regression line represents the relationship between x and d. The size of the
mean square error (MSE) can be used to determine which line best fits the data, but it doesn't
necessarily reflect whether a line fits the data tightly because the MSE depends on the magnitude
of the data samples. For instance, by simply scaling the data, we can change the MSE without
changing how well the data is fit by the regression line. The correlation coefficient (r) solves this
problem. By definition, the correlation coefficient between two random variables x and d is

                            (1.8)

The numerator is the covariance of the two variables (see the Appendix A Section 4.11), and the
denominator is the product of the corresponding standard deviation (variance).

The correlation coefficient is confined to the range [-1,1]. When r =1 there is a perfect positive
linear correlation between x and d, that is, they covary, which means that they vary by the same
amount. When r=-1, there is a perfectly linear negative correlation between x and d, that is, they
vary in opposite ways (when x increases, y decreases by the same amount). When r =0 there is
no correlation between x and d, i.e. the variables are called uncorrelated. Intermediate values
describe partial correlations. In our example r =0.88, which means that the fit of the linear model
to the data is reasonably good. Notice that the correlation coefficient is a property of the data, as
we can see from Eq. 1.8 (it is independent of the model). However, the value r² also represents
the amount of variance in the data captured by the optimal linear regression (correlation
coefficient and least squares).

The method of least squares is very powerful. Estimation theory says that the least square
estimator is the best linear unbiased estimator (BLUE), since it has no bias and has minimal
variance among all possible linear estimators. Least squares can be generalized to higher-order
polynomial curves, such as quadratics, cubics, and so on (generalized least squares). In this case,
nonlinear regression models are obtained. More coefficients need to be computed, but the
methodology still applies. Regression can also be extended to multiple variables as we will do
later in the chapter (1.7 Regression for Multiple Variables). The dependent variable d in multiple
variable regression is a function of a vector x = [x1,…,xD] , where T means the transpose and D
is the number of inputs. In this book, vectors are denoted by bold letters. In the multivariate case,
the regression line becomes a hyperplane in the space x1,x2,...xD.

Go to next section

1.4 Adaptive Linear Systems

1.4.1 Least Squares as a Search for the Parameters of a Linear System

The purpose of least squares is to find parameters (b, w) that minimize the difference between the
system output yi and the desired response di. Regression is effectively computing the optimal
parameters of an interpolating system (linear in this case) which predicts the value of d from the
value of x.

Figure 1-6    Regression as a linear system design problem

Figure 1-6 shows graphically the operation of adapting the parameters of the linear system. The
system output y is always a linear combination of the input x with the bias, so it has to lie on a
straight line of equation y = wx+b. Changing b modifies the y intercept, while changing w
modifies the slope. Therefore we conclude that the goal of linear regression is to adjust the
position of the line to minimize the average square difference between the y values (on the line)
and the cloud of points di (i.e. the criterion J).

The key point is to recognize that the error contains information that can be used to optimally
place the line. Figure 1-6 shows this by including a subsystem that accepts the error as input and
modifies the parameters of the system. Thus, the error ei is fed back to the system and indirectly
affects the output through a change in the parameters (b, w). Effectively the system is made
"aware" of its performance through the error. With the incorporation of the mechanism that
automatically modifies the system parameters, a very powerful linear system can be built that
will constantly seek optimal parameters. Such systems are called neural and adaptive systems
and are the focus of this book.

1.4.2 Neural and Adaptive Systems

Before pursuing the study of adaptive systems, it is important to reflect briefly on the
implications of neural and adaptive systems in engineering design. System design usually begins
with specifications. First, the problem domain is studied and modeled, specifications are
established, and then a system is built to meet the specifications. The key point is that the system
is built to meet the current specifications and will always use the designed set of parameters,
even if the external conditions change.

Here we are proposing a very different system design approach based on adaptation, which has a
biological flavor to it. In the beginning the system parameters may be way off, creating a large
error. However, through the feedback from the error, the system can change its parameters to
decrease the error as much as possible. The system's "experience" with the data designs the best
set of parameters. An adaptive system is more complex because it has to not only accomplish the
desired task, but also be equipped with a subsystem that adapts its parameters. But notice that
even if the data changes in the future, this design methodology will modify the system
parameters so that the best possible performance is obtained. Additionally, the same system can
be used for multiple problems.

There are basically two ways to adapt the system parameters: supervised learning and
unsupervised learning. The method described until now belongs to supervised learning because
there is a desired response. Later on in the book we will find other methods that also adapt the
system parameters, but using only an internal rule. Since there is no desired response, these
methods are called unsupervised. We will concentrate here on supervised learning methods.

The ingredients of supervised adaptive system design are

• A system (linear in this case) with adaptive parameters
• The existence of a desired or target response d
• An optimality criterion (the MSE in this case) to be minimized
• A method (subsystem) to compute the optimal parameters.

The method of least squares finds the optimal parameters (b, w) analytically. Our goal is to find
alternate ways of computing the same parameters using a search procedure.

1.4.3 Analysis of the Error in the Space of the Parameters: The Performance
Surface

Let us analyze the mean square error (J) as we change the parameters of the system (w and b).
Without loss of generality, we are going to assume that b =0 (or equivalently, that the mean of x
and d have been removed), such that J becomes a function of the single variable w

                          (1.9)

If w is treated as the variable and all other parameters are held constant, we can immediately see
that J is quadratic on w with the coefficient of w² (i.e. xi²) being always positive. In the space of
the possible w values, J is a parabola facing upward (J is always positive since it is a sum of
squares). The function J(w) is called the performance surface for the regression problem (Figure
1-7). The performance surface is an important tool that helps us visualize how the adaptation of
the weights affects the mean square error.

Figure 1-7    The performance surface for the regression problem

NEUROSOLUTIONS EXAMPLE 1.4

Plotting the Performance Surface

The performance surface is just a plot of the error criterion (J) versus the value of the weights, so what we
will do during the simulation is to vary the Synapse weight (which corresponds to the slope parameter of the
linear regressor) between two appropriate values. We can imagine that the error will be minimum at an
intermediate value of the weight and that it will increase for both lower values and higher values.

To modify the Synapse weight incrementally we attach a Linear Scheduler to the Synapse and place the
Matrix Viewer on it so we can see how the weight is changing. To visualize the MSE we will bring another
Scatter Plot to the L2 Criterion. This will allow us to plot the cost versus weight (performance surface).

Run the example and see how the slope parameter of the linear PE affects the mean square error of the linear
regressor. As we are going to see the input and desired signals tremendously affect the shape of the
performance surface. But how can we change the shape of the performance curve without touching the data
files? Let us substitute the L2 Criterion by the Lp Criterion. Go to Palettes and open the Error Criteria
menu. Click on the Lp Criterion and bring the pointer to the Breadboard. Notice that the pointer changed to
a stamper. If you left-click on the L2 Criterion component, the L2 is substituted by the Lp component, which
computes a cost given by the p norm

By default the norm is p =5. Run the simulation again. What do you see? Does the location of the minimum
change appreciably? What about the shape of the performance surface? Do you now better understand the

function of the cost criterion?

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesSurfaceSurface.nsb)<<1}

NeuroSolutions Example

Using the performance surface, we can develop a geometric method for finding the value of w,
here denoted by w*, which minimizes the performance criterion. Previously (Eq. 1.5), we
computed w* by setting to zero the derivative of J with respect to w.

The gradient of the performance surface is a vector (with the dimension of w) that always points
toward the direction of maximum J change and with a magnitude equal to the slope of the
tangent of the performance surface (Figure 1-8). If you visualize the performance surface as a
hillside, each point on the hill will have a gradient arrow that points in the direction of steepest
ascent at that point, with larger magnitudes for steeper slopes. A ball rolling down the hill will
always attempt to roll in the direction opposite to the gradient arrow (the steepest descent). The
slope at the bottom is zero, so the gradient is also zero (that is the reason the ball stops there).

In our special case the gradient has just one component along the weight axis w, ÑJ = ÑwJ given
by

                            (1.10)

(see the gradient definition and construction). A graphical way to construct ÑwJ at a point w0 is to
first find the level curve (curve of constant J value) that passes through the point (also called the
contour plot). Then take the tangent to the level curve at w0. The gradient component ÑwJ    is
always perpendicular to the contour curve at w0, with a magnitude given by the partial derivative
of J with respect to the weight w (Eq. 1.10). For one weight (one-dimensional problem), as in
Figure 1-8 the construction is simplified and we have to only find the direction of the gradient on
the axis.

Figure 1-8    Performance surface and its gradient

At the bottom of the bowl, the gradient is zero, because the parabola has slope zero at the vertex.
Thus, for a parabolic performance surface, computing the gradient and equating it to zero finds
the value of the coefficients that minimize the cost, just as we did in Eq.1.6. The important
observation is that the analytical solution found by the least squares coincides with the minimum
of the performance surface. Substituting the value of w* into Eq.1.9, the minimum value of the
error (Jmin) can be computed (properties of the performance surface).

NEUROSOLUTIONS EXAMPLE 1.5

Comparison of Performance Curves for Different Data Sets

In this example we provide two sets of input files and two sets of output files. By changing the input data, we
find that the minimum error, its location in the weight space (a simple line for this 1D example), and the
shape of the performance surface change. On the other hand, if we change the desired signal, only the
minimum value of the performance and its location change, but the overall shape remains the same.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesPerformance SurfacePerformance

Surface.nsb)<<1} NeuroSolutions Example

1.4.4 Search of the Performance Surface with Steepest Descent

Since the performance surface is a paraboloid, which has a single minimum, an alternative
procedure to find the best value of the coefficient w is to search the performance surface instead
of computing the best coefficient analytically by Eq.1.6. The search for the minimum of a
function can be done efficiently using a broad class of methods based on gradient information.
The gradient has two main advantages for the search:

• The gradient can be computed locally.
• The gradient always points in the direction of maximum change.

If the goal is to reach the minimum, the search must be in the direction opposite to the gradient.
Thus, the overall method of searching can be stated in the following way.

Start the search with an arbitrary initial weight w(0), where the iteration number is denoted by
the index in parentheses. Then compute the gradient of the performance surface at w(0), and
modify the initial weight proportionally to the negative of the gradient at w(0). This changes the
operating point to w(1). Then compute the gradient at the new position w(1), and apply the same
procedure again, that is,

                                  (1.11)

where h is a small constant and ÑJ(k) denotes the gradient of the performance surface at the kth
iteration. The constant h is used to maintain stability in the search by ensuring that the operating
point does not move too far along the performance surface. This search procedure is called the
steepest descent method. Figure 1-9 illustrates the search procedure.

Figure 1-9    The search using the gradient information

If we trace the path of the weights from iteration to iteration, intuitively we see that if the
constant h is small, eventually the best value for the coefficient w* will be found. Whenever w
>w*, we decrease w, and whenever w <w*, we increase w.

Go to next section

1.5 Estimation of the Gradient The LMS Algorithm

An adaptive system can use the gradient to optimize its parameters. The gradient, however, is
usually not known explicitly and thus must be estimated. Traditionally, the difference operator is
used to estimate the derivative as outlined in Figure 1-8. A good estimate, however, requires
many small perturbations to the operating point to obtain a robust estimation through averaging.
The method is straightforward but not very practical.

In the late 1960s Widrow proposed an extremely elegant algorithm to estimate the gradient that
revolutionized the application of gradient descent procedures. His idea is very simple: Use the
instantaneous value as the estimator for the true quantity. For our problem this means to drop
the summation in Eq.1.9 and define the gradient estimate at step k as its instantaneous value.
Substituting Eq. 1.4 into Eq.1.10, removing the summation, and then taking the derivative with
respect to w yields

 (1.12)

What Eq. 1.12 tells us is that an instantaneous estimate of the gradient at iteration k is simply the
product of the current input to the weight times the current error. The amazing thing is that the
gradient can be estimated with one multiplication per weight. This is the gradient estimate that
led to the famous least means square (LMS) algorithm (or LMS rule). The estimate will be noisy,
however, since the algorithm uses the error from a single sample instead of summing the error
for each point in the data set (e.g., the MSE is estimated by the error for the current sample). But
remember that the adaptation process does not find the minimum in one step. Normally, many
iterations are required to find the minimum of the performance surface, and during this process
the noise in the gradient is being averaged (or filtered) out.

If the estimator of Eq.1.12 is substituted in Eq.1.11, the steepest descent equation becomes

                (1.13)

This equation is the LMS algorithm. With the LMS rule one does not need to worry about
perturbation and averaging to properly estimate the gradient at each iteration, it is the iterative
process that is improving the gradient estimator. The small constant h is called the step size, or
the learning rate.

NEUROSOLUTIONS EXAMPLE 1.6

Adapting the Linear PE with LMS

Several things have to be added to the previous breadboard of the linear PE to make it learn automatically
using the LMS algorithm. The methodology will be explained in more detail later. However, the technique
used in NeuroSolutions is called back-propagation. In short, the algorithm passes the input data forward
through the network and the error information (desired minus output) backward through another network.
The error is propagated through a second layer, which can be obtained from the original network with minor
and well- established modifications (more about this later). Thus, at every component there is a local activity
(x) and a local error (e) such that the weights of the network can be modified by Eq. 1.13. NeuroSolutions
implements this technique by adding two additional layers to the network: the back-propagation layer and
the gradient-search layer. These two layers can be automatically added to the breadboard. The

backpropagation layer looks like a small version of the network that sits on top of the original network (in red
instead of orange). The gradient- search layer sits on top of the back-propagation layer and uses one of the
gradient search methods to adjust the weights. In this case, the gradient search layer is a simple "step" layer,
which implements the gradient descent rule Eq 1.13. Notice that only the components that have adjustable
weights (the Synapse (w) and Bias Axon (b)) have gradient-search components.

In addition to the two layers, we need an additional controller to manage the back-propagation layer. The
Backprop Controller sits above the yellow Controller and sets parameters such as whether we use batch or
on-line learning. In this example we use batch learning, that is the learning rule will compute all the weight
updates for the training set, add them up, and at the end of the epoch (one presentation of all the training
data) update the weights according to Eq 1.13. The value of the step size will be set at 0.01, and the training
will use 200 iterations.

When you run the network, watch the regression line move toward the optimal value in the Scatter Plot.
When the simulation ends, notice that the weight is approximately 0.139, the bias is approximately 1.33, and
the error is approximately 0.033 – all in excellent agreement with the optimal values we computed
analytically.

You should explore this breadboard by entering several values of the step size and opening the Inspector to
see how each component is configured.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examplesto LMSto LMS.nsb)<<1}

NeuroSolutions Example

1.5.1 Batch and Sample-by-Sample Learning

The LMS algorithm was presented in a form in which the weight updates are computed for each
input sample, and the weights modified after each sample. This procedure is called sample-by-
sample learning, or on-line training. As we have mentioned, the estimate of the gradient is going
to be noisy, that is the direction towards the minimum is going to zigzag around the gradient
direction.

An alternative solution is to compute the weight update for each input sample and store these
values (without changing the weights) during one pass through the training set which is called an
epoch. At the end of the epoch, all the weight updates are added together, and only then will the
weights be updated with the composite value. This method adapts the weights with a cumulative
weight update, so it will follow the gradient more closely. It is called the batch training mode, or
batch learning. Batch learning is also an implementation of the steepest-descent procedure. In
fact, it provides an estimator for the gradient that is smoother than the LMS. We will see that the
agreement between the analytical quantities that describe adaptation and the ones obtained
experimentally is excellent with the batch update. See batch versus on-line learning for more
detail.

To visualize the differences between these two update methods, we will plot the value of the cost
during adaptation (called the learning curve).

NEUROSOLUTIONS EXAMPLE 1.7

Batch versus On-Line Adaptation

It is important to visualize the differences in adaptation for on-line and batch learning. Up to now we have
been using the batch mode. In this example we set the Backprop Controller to use on-line training. To display
the learning curve, we have to introduce one new component: the Megascope. The Megascope is a probe that
acts just like an oscilloscope: it plots a continuous stream of inputs, using the iteration number as the x axis.
The Megascope sits on top of the Data Storage component.

The important controls of the Megascope are the scales of the x and y axes. In the scope level of the Inspector,
we can select the vertical scale (y axis) and the offset of each channel. Alternatively we can use the auto scale
feature. The horizontal scale is selected in the sweep level of the Inspector (number of samples per division).
Remember that the number of samples displayed is defined by the Data Storage component.

To create the learning curve, we simply place a Data Storage component over the L2 Criterion at one of the
cost access points and then place a Megascope on top of it. In batch learning, the Average Cost is selected,
while in on-line learning, the Cost access point is utilized.

We will see that the learning curve is not smooth anymore because we are updating the weights after each
example. Since the individual errors vary from sample to sample, our updates will make the learning curve
noisy. The learning curve will have a periodic component superimposed on a decaying exponential. The
exponential tells us that we are approaching a better overall solution. The periodic features show the error
obtained for each input sample, while the envelope is related to the learning curve for the batch mode. Note
that the weights never stabilize: the performance curve should otherwise be smooth and converge to a single
final value. Since there is more noise in on-line learning, we must decrease the step size to get smoother
adaptation. We recommend using a step size 10 times smaller than the step size for batch learning. But the
price paid is a longer adaptation time; the system needs more iterations to get to a predefined final error.
Experiment with the learning rates to observe this behavior.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examplesline Learningline Learning.nsb)<<1}

NeuroSolutions Example

1.5.2 Robustness and System Testing

One of the interesting aspects of the LMS solution is its robustness. From the explanation given
(Figure 1-9), no matter what the initial condition for the weights, the solution always converges
to basically the same value. We can even add some noise to the desired response and find out that
the linear regressor parameters are basically unchanged. This robustness is rather important for
real- world problems, where noise is omnipresent.

The group of input samples and desired responses (shown in Table 1-1) used to train the system
are called collectively the training set for obvious reasons. It is with their information that the
system parameters were adapted. But once the optimal parameters are found, the parameters
should be fixed. When the system is utilized for new inputs never encountered before, it will
produce for each input a response based on the parameters obtained during training. If the new
data comes from the same experiment, the response should resemble the value of the desired
response for that particular input value.

Thus we see that the system has the ability to extrapolate responses for new data. This is an
important feature since in general we wish the performance obtained in the training set to also
apply (generalize) to the new data when the system is deployed. But due to the methodology
utilized to derive the parameter values we can never be exactly sure of how well the system will
respond to new data.

For this reason it is a good methodology to use a test set to verify the system performance before
deploying it in the real-world application. The test set consists of new data not used for training
but for which we still know the desired response. It is like the final rehearsal before a play's
inauguration. We should also compute the correlation coefficient in the test set. Normally, we
will find a slight decrease in performance from the training set. If the performance in the test set
is not acceptable, we have to go back to the drawing board. When this happens in regression, the
most common problem is that the training data is inadequate – either in quantity or in exhaustive
coverage of the experimental conditions. This point will be addressed in more depth in the
following chapters.

NEUROSOLUTIONS EXAMPLE 1.8

Robustness of LMS to Noise

The LMS algorithm is very robust. It works from any arbitrary location and even works well with noise
added to the desired data. To demonstrate that the system works well even with noisy data, we add one
additional component to the Breadboard from the previous example: the Noise component. The Noise
component allows uniform, Gaussian, or "user-defined" noise to be added to the input or desired signals. We
will add the Noise component to the desired signal and watch as the system moves close to the optimal
location even with the noisy data.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesLMSLMS.nsb)<<1} NeuroSolutions

Example

1.5.3 Computing the Correlation Coefficient in Adaptive Systems

The correlation coefficient, r, tells how much of the variance of d is captured by a linear
regression on the independent variable x. As such, r is a very powerful quantifier of the modeling
result. It has a great advantage with respect to the MSE because it is automatically normalized,
while the MSE is not. However, the correlation coefficient is blind to differences in means
because it is a ratio of variances (see Eq.1.8), that is, as long as the desired data and input covary
r will be small, in spite of the fact that they may be far apart in actual value. Thus we need both
quantities (r and MSE) when testing the results of regression.

Although the correlation coefficient can be computed directly from x and d (Eq. 1.8), we would
like to estimate r at the output of the linear system to follow the adaptive systems' methodology.
From Eq. 1B.4, we can write

                (1.14)

Note, however, that y changes during adaptation so we should wait until the system adapts to
read the final correlation coefficient (i.e.,). During adaptation the numerator of
Eq. 1.14 can be larger than the denominator, giving a value for r larger than 1, which is
meaningless. We therefore propose to compute a new parameter

 that is a reasonable proxy for the correlation coefficient, even during adaptation. We subtract a
term from the numerator of Eq. 1.14 that becomes zero at the optimal setting but limits

 such that its value is always between -1 and 1 even during adaptation. We can write
computation of correlation coefficient

                  (1.15)

Note that all these quantities can be computed on-line with the information of the error, the
output, and the desired response. Remember, however, that Eq. 1.14 measures the correlation
coefficient only when the Adaline has been totally adapted to the data.

NEUROSOLUTIONS EXAMPLE 1.9

Estimating the Correlation Coefficient During Learning

NeuroSolutions does not include a component to compute the correlation coefficient. It does, however, allow
you to write your own components. These custom components are called DLLs. A custom component looks
just like the component it takes the place of, except that its icon has "DLL" printed on it. In this example, we
include a custom component to compute the correlation coefficient. This component looks exactly like an L2
Criterion component, except it has "DLL" printed on it.

Plug in the values of the optimal weights and verify that the formula Eq. 1.14 gives the correct correlation
coefficient. Slightly modify w to 0.120 and verify that the correlation coefficient decreases. If you plug in
values for w and b that are very far away from the fitted regression, this estimation of r using Eq 1.14 becomes
less accurate, but is still bound by -1 and 1. The example also uses LMS to adapt the coefficients. Observe that
the correlation coefficient is always between -1 and 1 during adaptation and that the final value corresponds
to the computed one.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examplesvaluevalue.nsb)<<1} NeuroSolutions

Example

Go to next section

1.6 A Methodology for Stable Adaptation

During adaptation the learning algorithm automatically changes the system parameters using Eq
1.13. This adaptation algorithm has one free parameter (the step size) that must be user selected.
To appropriately set the step size, the user should have a good understanding of what is
happening inside the system. In this section we quantify the adaptation process and develop
visualization tools that will help you understand how well the system is learning.

1.6.1 Learning Curve

As is readily apparent from Figure 1-9, when the weights approach the optimum value, the
values of J(k) (the MSE at iteration k) will also decrease, approaching its minimum value Jmin.
One of the best ways to monitor the convergence of the adaptation process is to plot the error at
each iteration. The plot of the MSE across iterations is called the learning curve (Figure 1-10).
The learning curve is as important for adaptive systems as the thermometer is to check your
health. It is an external, scalar, easy-to-compute indication of how well the system is learning.
But similar to body temperature, it is unspecific; that is when the system is not learning, it does
not tell us why.

Figure 1-10    The learning curve

Notice that the error approaches the minimum in a one-sided manner (i.e., always larger than
Jmin). As we can expect, the rate of decrease of the error depends on the value of the step size h.
Larger step sizes will take fewer iterations to reach the neighborhood of the minimum, provided
that the adaptation converges. However, too large a step size creates a divergent iterative process,
and the optimal solution is not obtained. It is interesting to note that we would like as large a step
size as possible, because this decreases the convergence time. However, if the step size is
increased too much, divergence will result. We therefore must seek a way to find the largest
possible step size that guarantees convergence.

NEUROSOLUTIONS EXAMPLE 1.10

The Learning Curve

The goal of this example is to display the learning curve and to show how the learning rate affects its shape.
This example plots the mean squared error during adaptation, which we called the learning curve, the
thermometer of learning.

When you run the simulation, watch how the error moves towards zero as the regression line moves towards
the optimal location. You can also change the learning rates and watch the regression line moving more
quickly or slowly toward the optimal location, thus causing the learning curve to be steeper or shallower. The
visualization of the regression line contains more information about what the system is doing but is very
difficult to compute and display in higher dimensions. The learning curve, however, is an external, scalar
quantity that can be easily measured with minimal overhead.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesCurveCurve.nsb)<<1} NeuroSolutions

Example

1.6.2 Weight Tracks

An adaptive system modifies its weights in an effort to find the best solution. The plot of the
value of a weight over time is called the weight track. Weight tracks are an important and direct
measure of the adaptation process. The problem is that normally our system has many weights,
and we don't know what their optimal values are. Nevertheless, the dynamics of learning can be
inferred and monitored from the weight tracks.

In the gradient-descent adaptation, adjustments to the weights are governed by two quantities Eq.
1.11: the step size h and the value of the gradient at the point. Even for a constant step size, the
weight adjustments become smaller and smaller as the adaptation approaches w*, since the slope
of the quadratic performance surface is decreasing near the bottom of the performance surface.
Thus the weights approach their final values asymptotically (Figure 1-11).

Three cases are depicted in Figure 1-11. If the step size is small, the weight converges
monotonically to w*, and the number of iterations to reach the bottom of the bowl may be large.
If the step size h is increased, the convergence will be faster but still monotonic. After h reaches
a value called critically damped, the weight will approach w* in an oscillatory fashion (h2>h1),
that is, it will overshoot and undershoot the final solution. The number of iterations necessary to
reach the neighborhood of w* will start increasing again. If the step size is too large (h3>h2), the
iterative process will diverge, that is instead of getting closer to the minimum, the search will
visit points of larger and larger MSE until there is a numeric overflow. We say that the learning
diverged.

Figure 1-11    Weight tracks and plots of the weight values across iterations for three values of h.

NEUROSOLUTIONS EXAMPLE 1.11

Weight Tracks

It is very instructive to observe the linear PE parameters during learning and how they change as a function
of the step size. Let us install a Mega Scope over the Synapse to visualize the slope parameter of the regressor
and over the Bias Axon to visualize the regressor bias. These are called weight tracks. Run the simulation and
watch how changing the step sizes affects the way the system approaches its final weights.

The weight tracks are a finer display of how adaptation is progressing, but the problem is that in systems with
many weights it becomes impractical to observe all the weight tracks. Why do we say that weight tracks give
us a better handle on the adaptation parameters? Enter 0.02 for the step size and see the weight tracks
converge monotonically to their minimum value. Now enter 0.035. The weight tracks are oscillating toward
the final value which means that the system is already in the underdamped regime (but the learning curve is
still monotonically decreasing toward the minimum at a faster rate). We can expect divergence if we increase
the weights further. Try 0.038 and see it happen. Relate this behavior to Figure 1-11.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesTracksTracks.nsb)<<1} NeuroSolutions

Example

1.6.3 Largest Step Size for Convergence

As we have just discussed, we would like to choose the largest step size possible for fastest
convergence without creating an unstable system. Since adjustment to the weights is a product of
the step size and the local gradient of the performance surface, it is clear that the largest step size
depends on the shape of the performance surface. We already saw (Eq. 1B.10) that the shape of
the performance surface is controlled by the input data. Therefore we can conclude that the
maximum step size will be dictated by the input data. But how?

If we rewrite and manipulate the equations that produce the weight values in terms of the first
weight w(0), Derivation of the Largest Step Size we get

              (1.16)

where

The term (1-hl) must be less than or equal to 1 to guarantee weight convergence (and less than
1 to guarantee convergence to zero, giving the solution w(k+1)=w*). This implies that

                (1.17)

where r is the geometric ratio of the iterative process. Hence, the value of the step size h must
always be smaller than 2/l. The fastest convergence is obtained with the critically damped step
size of 1/l. The closer h is to 1/l, the faster is the convergence, but faster convergence also
means that the iterative process is closer to instability. We can visualize this in Figure 1-11.
When h is increased, a monotonic (overdamped) convergence to w* is substituted by an
alternating (underdamped) convergence that finally degenerates into divergence.

There is a slight practical problem that must be solved. During batch learning the weight updates
are added together during an epoch to obtain the new weight. This effectively includes a factor of
N in the LMS weight update formula Eq. 1.13. To apply the analysis of the largest step size Eq.
1.17 one has to use a normalized step size

                                    (1.18)

With this modification, even if the number of samples in our experiment changes, the step sizes
do not need to be modified. Note that for on-line learning (N =1) we get the LMS rule again. We
will always use normalized step sizes but to make the notation simpler, we will drop the
subscript n in the normalized step size. An added advantage of using normalized step sizes is that
we can switch between on-line updates and batch updates without having to change the step size
in the simulations.

The analysis of the largest step size Eq. 1.17 also applies in the mean to the LMS algorithm.
However, since LMS uses an instantaneous (noisy) estimate of the gradient, even when h obeys
Eq 1.17, instability may occur. When the iterative process diverges, the algorithm "forgets" its
location in the performance surface; that is the values of the weights change drastically. This
means that all the iterations up to that point were wasted. Hence with LMS it is common to
include a safety factor of 10 in the step size h (h<0.1hmax) or to use batch training, which
reduces the noise in the estimate of the gradient.

1.6.4 Time Constant of Adaptation

An alternative view of the adaptive process is to quantify the convergence of w(k) to w* in terms
of an exponential decrease. We know that w(k) converges to w* as a geometric Eq.1.16. The
envelope of the geometric progression of weight values can be approximated by an exponential
decay exp(-t/t), where t is the time constant of weight adaptation. A single iteration or epoch can
be considered a unit of time. One may want to know approximately how many iterations are
needed until the weights converge. The time constant of weight adaptation can be written as

                              (1.19)

which clearly shows that fast adaptation (small time constant t) requires large step sizes. (see
derivation of the time constant of adaptation). For all practical purposes the iterative process
converges after four time constants.

The steps used to deriv1 the time constant of weight adaptation can be applied also to come up
with a closed-form solution to the decrease of the cost across iterations, which is called the time
constant of adaptation. Eq. 1.16 tells us how the weights converge to w*. If the equation for the
weight recursion is substituted in the equation for the cost (Eq.1B.11) we get

which means that J also approximates Jmin in a geometric progression, with a ratio equal to r².
Therefore the time constant of adaptation is

Since the geometric ratio is always positive, J approximates Jmin monotonically (i.e., an
exponential decrease). The time constant of adaptation describes the learning time (in number of
iterations) needed to adapt the system. Notice that these expressions assume that the adaptation
follows the gradient. With the instantaneous estimate used in the LMS, J may oscillate during
adaptation since the estimate is noisy. But even in the LMS, J will approach Jmin in a one-sided
way (i.e. always greater than or equal to Jmin).

NEUROSOLUTIONS EXAMPLE 1.12

Linear Regression Without Bias

The previous example solved the linear regression problem with one weight and one bias. To compare the
equations previously given (which are a function of a single parameter) with the simulations, we have to make
a modification in the data set or in the simulation. Shortly we will see how to extend the analysis for multiple
weights, but for the time being let us work with the simpler case.

We substitute the Bias Axon by an Axon, a component that simply adds its inputs, so the regression solution
becomes y =wx which has to pass through the origin. With this new Breadboard we can compare the
numerical results of the simulations directly with all the equations derived in this section, since there is only
one free parameter. Batch updates are used throughout.

The optimal value of the slope parameter is computed by Eq. 1.6, which gives w =0.30009, with an average
error of 0.23. This solution is different from the value obtained previously (w = 0.139511) for the bias
regressor because the regression line is now constrained to pass through the origin. It turns out that this
constrained solution is worse than before, as we can see by the error (0.23 versus 0.033). Observing in the
scatter plot the output (red points) and the input samples (blue) shows clearly what we are describing.

Computing l by Eq. 1.16 yields 54, so according to Eq. 1.17 the maximum step size is h =3.6e-2. The critically
damped solution is obtained with a step size of 1.8e-2, and adaptation with a step size below this value is
overdamped. When we run the simulator in the overdamped case the weights approach the final value
monotonically; for the critically damped case, they stabilize quite rapidly; while for the underdamped case
they oscillate around the final value, and the convergence takes more iterations. Notice also that the linear
regressor "vibrates" around the final position, since the slope parameter is overshooting and undershooting
the optimal value.

According to Eq. 1.19 for the critically damped step size t =1, so the solution should stabilize in four updates

(epochs). This step size yields the fastest convergence. Go to the Controller Inspector and use the epoch
button to verify the number of samples until convergence.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examplesstep sizestep size.nsb)<<1}

NeuroSolutions Example

1.6.5 Rattling

Up to now our main focus was the speed of adaptation, that is, how fast the weights approximate
w*, or equivalently, how fast J approximates Jmin. Unfortunately, this is only part of the story. For
fast convergence we need large step sizes (h). But when the search is close to the minimum w*,
where the gradient is small but not zero, the iterative process continues to wander around a
neighborhood of the minimum solution without ever stabilizing. This phenomenon is called
rattling (Figure 1-12), and the rattling basin increases proportionally to the step size h. This
means that when the adaptive process is stopped by an external command (such as the number of
iterations through the data), the weights may not be exactly at w*. We know they are in the
neighborhood of the minimum but not exactly at the optimum.

Figure 1-12    Rattling of the iteration procedure

If we picture the performance surface (Figure 1-12), when the final weights are not at w*, there
will be a penalty in performance, that is the final MSE will be higher than Jmin. In the theory of
adaptation the difference between the final MSE and the Jmin (normalized by Jmin) is called the
misadjustment M.

                            (1.20)

This means that in search procedures that use gradient descent there is an intrinsic compromise
between accuracy of the final solution (a small misadjustment) and speed of convergence. The
parameter that controls this compromise is the step size h. High h means fast convergence but
also large misadjustment, while small h means slow convergence but little misadjustment.

NEUROSOLUTIONS EXAMPLE 1.13

Rattling

We observed in Example 1.7 how noisy the learning curve became with the on-line update. This is an external
indication that the weights were changing from sample to sample even after the system reached the
neighborhood of the optimum. The implication of this random movement in the weights is a penalty in the
final MSE. In this example we show and exactly quantify the rattling.

The rattling has important consequences for adaptation, since if we set the step size large for fast
convergence, we pay a price of inaccurate coefficients, which is translated into an excess MSE. The rule of
thumb for LMS is to use a step size that is 1/10 of the largest possible step size. For a step size close to the
largest possible, the MSE for the epoch is effectively smaller than the theoretical minimum, which is
impossible. This happens because the parameters are changing so much with each update that the slope is
continuously varying. The problem is that when we stop the training we do not know if the final value of the
weight is a good approximation to the theoretical regression line.

This shows that for adaptive systems the final MSE is only part of the story. We have to make sure that the
system coefficients have stabilized. It is interesting to note that with batch updates there is no rattling, so in
the linear case the batch solution is more appropriate. Observe this in the simulations by displaying the MSE
for large and small step sizes. We are just paying the small price of storing the individual weight updates. For
nonlinear systems the batch is unfortunately no longer always superior to the on-line update as we will see.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examples.nsb)<<1} NeuroSolutions Example

This example shows that obtaining a small MSE is a necessary but not sufficient condition for
stable adaptation. Adaptation also requires that the weights of the model settle to stable values.
This second condition is required because the system can be endlessly changed its parameters to
fit the present sample. This will always give a small MSE, but from a modeling point of view it
is a useless solution because no single model is found to fit the data set.

1.6.6 Scheduling the Step Sizes

As we saw in the latest examples, for fast convergence to the neighborhood of the minimum a
large step size is desired. However, the solution with a large step size suffers from rattling. One
attractive solution is to use a large learning rate in the beginning of training to move quickly
toward the location of the optimal weights, but then the learning rate should be decreased to
obtain good accuracy on the final weight values. This is called learning rate scheduling. This
simple idea can be implemented with a variable step size controlled by

                  (1.21)

where h(0) =h0 is the initial step size, and b is a small constant. Note that the step size is being
linearly decreased at each iteration. If we have control of the number of iterations we can start
with a large step size and decrease it to practically zero toward the end of training. The value of b
needs to be experimentally determined. Alternatively, we can decrease the step size slowly (in
optimization this slow decrease is called annealing) using either a linear, geometric, or
logarithmic rule (see more on scheduling step sizes).

NEUROSOLUTIONS EXAMPLE 1.14

Scheduling of Step Sizes

In this demonstration we vary the step size using the scheduling component already introduced in Example
1.4. The scheduler is a component that takes an initial value from the component it is attached to, and
changes the value according to a predetermined rule. Here we use the linear rule, and since we want to
decrease the step size, the factor b is negative. We should set a maximum and a minimum value just to make
sure that the parameters are always within the range we want. b should be set according to the number of
iterations and the initial and final values (hinit -bN=hresidual).

Here the important parameter is the minimum (the residual step size is set at 0.001), because after scheduling
we want to let the system fine-tune its parameters to find the best approximation of the minimum. However,
notice that this implies that the parameter is already in its optimal neighborhood, and this depends on a lot of
unknown factors. Thus, if the scheduling is not right, the adaptation may stall in positions far from the
minimum.

You should explore the breadboard by entering other values for b and the final value and see their impact on
the final weight value. You can also use the exponential or the logarithmic schedulers and see how they
behave. Which one do you prefer for this case?

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examples.nsb)<<1} NeuroSolutions Example

Go to next section

1.7 Regression for Multiple Variables

Assume that d is now a function of several inputs x1, x2,...xD (independent variables), and the goal
is to find the best linear regressor of d on all the inputs (Figure 1-13). For D =2 this corresponds
to fitting a plane through the N input samples or a hyperplane in the general case of D
dimensions.

Figure 1-13    Fitting a regression plane to a set of samples in 2D space.

As an example, let us assume that we have two variables x1 (speed) and x2 (feed rate) that affect
the surface roughness (d) of a machined workpiece. In abstract units the values of x1, x2, d for 15
workpieces are presented in Table1-2.

Table 1-2    Multiple Regression Data

The goal is to find how well one can explain the quality of machining by the two variables x1 and
x2, and which is the most important parameter.

As before, we assume that the measurements x are noise free and that d is contaminated by a
noise vector e with these properties: Gaussian distributed with components that are zero mean,
of equal variance s², and uncorrelated with the inputs. The regression equation when D =2 is
now

                          (1.22)

where xi1 is the ith value of x1 (the ith workpiece in the training set). In the general case we write
Eq. 1.22 as

                  (1.23)

where we made w0 =b and xi0 =1 (compare with Eq. 1.3). The goal of the regression problem is to
find the coefficients w0, ….wD. To simplify the notation we will put all these values into a vector
w = [w0, ….wD] that minimizes the MSE of ei over the N samples. Figure 1-14 shows that the
linear PE now has D inputs and one bias.

Figure 1-14    Regression system for multiple inputs

The mean square error (MSE) becomes for this case

                          (1.24)

The solution to the extreme (minimum) of this equation can be found in exactly the same way as
before, that is, by taking the derivatives of J with respect to the unknowns (wk), and equating the
result to zero (derivation of normal equations).

This yields a set of D+1 equations in D+1 unknowns called the famous normal equations

                        (1.25)

The normal equations can be written much more compactly with matrix notation (see the

Appendix A section 3) Let us define

              (1.26)

as the autocorrelation of the input samples for indices k and j. As you can see, the autocorrelation
measures similarity across the samples of the training set. When k =j, R is just the sum of the
squares of the input samples (the variance if the data is zero mean). When k differs from j, R
measures the sum of the cross products for every possible combination of the indices. As we did
for w, we will also put all these Rkj values into a matrix R, that is,

.

Thus we obtain pairwise information about the structure of the data set.

Let us call

                    (1.27)

the cross-correlation of the input x for index j and desired response d, which can also be put into
a vector p of dimension D+1. Pj measures the similarity between the input x and the desired
response d at shift j. Substituting these definitions in Eq. 1.25, the set of normal equations can be
written simply

                        (1.28)

where w is a vector with the D+1 weights wi. w* represents the value of the D+1 weights for the
optimal (minimum) solution. denotes the inverse of the autocorrelation matrix (see Appendix
A Section 3.11). Eq. 1.28 states that the solution of the multiple regression problem can be
computed analytically as the product of the inverse of the autocorrelation matrix of the input
samples and the cross-correlation vector between the input and the desired response. The least
square solution for this problem yields

It is remarkable that we are able to write an equation that describes the relationship between the
two variables when only measured data samples were given. This attests the power of linear
regression. But as for the single variable case, we still do not know how accurately the equation
fits the data, that is, how much of the variance of the input is actually captured by the regression
model. The multiple correlation coefficient rm can also be defined in the multiple dimensional
case for a single output, as multiple variable correlation coefficient

                        (1.29)

and measures the amount of variation explained by the linear regression, normalized by the
variance of d. In this expression d is the vector built from the desired responses di, and U is a
matrix whose columns are the input data vectors. For this case rm=0.68, so there is a large portion
of the variability that is not explained by the linear regression. (Either the process is nonlinear, or
there are more variables involved.) We can still approximate the correlation coefficient for the

multiple regression case by Eq. 1.14 after the system has adapted.

NEUROSOLUTIONS EXAMPLE 1.15

Multivariable Regression

Moving to multi-dimensional inputs is very simple in NeuroSolutions. You simply change the input and
desired files (for the new input data) and change the input Axon to accept two inputs. The rest is automatic.
In this example we do all this for you using macros. Note that in the two-dimensional case the regression line
is now a regression plane. In NeuroSolutions, there is not currently a good way of showing a plane in three
dimensions, so we will not plot our regression plane plot. When we run the network, we will see that the
learning curve (one of our only indications of whether the network is training correctly) decreases steadily
and that the weights eventually approach the theoretical optimal weights.

The amazing thing about the adaptive system's methodology is that we changed the problem, but the
technique to solve it did not change significantly. It is true that we have to dimension the system properly and
choose new values for the step size, but the fundamental aspects of the methodology did not change at all.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesRegressionRegression.nsb)<<1}

NeuroSolutions Example

1.7.1 Setting the Problem as a Search Procedure

All the concepts previously mentioned for linear regression can be extended to the multiple
regression case. The performance surface concept can be extended to multidimensions, making J
a paraboloid in D+1 dimensions, facing upwards (Figure 1-15 depicts the two weight case). J
now involves matrix computations, but it remains a scalar quantity that is a quadratic function of
the weights

  (1.30)

where the superscript T means the transpose.

Figure 1-15    The performance surface for two dimensions and its contour plot

The coefficients that minimize the solution are

                  (1.31)

which gives exactly the same solution as Eq.1.28 (see derivation of the optimal solution). In the
space (w1,w2), J is a paraboloid facing upwards. See more performance surface properties.

As in the one dimensional case, the autocorrelation of the input (R) completely specifies the
shape of the performance surface Eq.1B.19. However, the location of the performance surface in
the space of the weights Eq.1.31 and its minimum value Eq.1B.18 depend also on the desired
response.

NEUROSOLUTIONS EXAMPLE 1.16

Checking the LMS Solution with the Optimal Weights

Let us first consider a least square solution with only two weights w1, and w2, since we can still compute it
easily by hand. For the data set of Table 1-2, the autocorrelation matrix is Eq. 1.26

To determine the eigenvalues, we solve the equation

which yields l1 =59 and l2 =1.5. From these results we can immediately see that the eigenvalue spread is
roughly 40, so the performance surface paraboloid is very skewed (i.e., much narrower in one direction). The
performance surface is shown in the following figure. Notice how it is very steep in one direction and very
shallow in the other. Thus, if we train the network with gradient descent, we would expect it to move very
quickly down the steep slope at first and then to move slowly down the valley toward the optimum.

To compute the optimal solution, we first need to compute the cross-correlation vector Eq. 1.27 as

For the two-dimensional case it is still easy to solve for w1 and w2, by writing from Eq. 1.28

which gives for optimal weights w1 =0.2848 and w2 =0.2180. The minimum J is 0.390 from Eq.1B.18. When we
run the simulator with the Axon substituting the Bias Axon (no bias), the network weights approach these
values.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesOptimum ValuesOptimum

Values.nsb)<<1} NeuroSolutions Example

1.7.2 Steepest Descent for Multiple Weights

Gradient techniques can also be used to find the minimum of the performance surface, but now
the gradient is a vector with D+1 components

                                (1.32)

The extension of Eq. 1.11 is

                      (1.33)

where all quantities are vectors, i.e. w(k) = [w0(k), …wD(k)] . In order to calculate the largest
step size h, we again rewrite the update equation in the form of

                        (1.34)

where I is the identity matrix, R is the input autocorrelation matrix and .
The solution of this equation is cross coupled, that is, the way w converges to w* depends on the
behavior of the geometric progression in all the D+1 directions. Therefore, the simple picture of

having w(k+1) converge to w* with a single geometric ratio, as in the unidimensional case, has
to be modified. One can show that the weights converge with different time constants, each
related to an eigenvalue of R (convergence for multiple weights case).

1.7.3 Step Size Control

As we have seen, the set of values taken by the weight during adaptation is called the weight
track. The weight moves in the opposite direction of the gradient at each point, so the weight
track depicts the gradient direction at each point of the performance surface visited during
adaptation. Therefore the gradient direction tells us about the performance surface shape. In
particular, it is useful to construct the contour plot of J since the gradient has to be perpendicular
to the lines that link points with the same J value. The contour plot provides a graphical
construction for the gradient at each point of the performance surface.

Given a point in a contour, we take the tangent of the contour at the point. The gradient is
perpendicular to the tangent, so the weights will move along the gradient line and point in the
opposite direction. Likewise, if we run the adaptation algorithm with several initial conditions
and we record the value of J at each point, we can determine the contour plots by taking ellipses
that pass through the points of equal cost and are perpendicular to the weight tracks.

When the eigenvalues of R are the same (see Appendix A section 3.17), the contour plots are
circular and the gradient always points to the center, that is to the minimum. In this case the
gradient descent has only a single time constant as in the one-dimensional case. But this is an
exceptional condition. In general, the eigenvalues of R will be different. When the eigenvalues
are different, the weight track bends because it follows the direction of the gradient at each point,
which is perpendicular to the contours (Figure 1-17). The gradient direction no longer points to
the minimum, which means that the weight tracks will not be straight lines to the minimum. The
adaptation will take longer for two reasons. First, a longer path to the minimum will be taken.
Second, the step size must be decreased compared with the circular case. Let us address the step
size aspect further.

Figure 1-17    Weight track toward the minimum: (a) equal eigenvalues; (b) unequal eigenvalues

For guaranteed convergence the learning rate in each ith principal direction of the performance
surface must be

                  (1.35)

where li is the corresponding eigenvalue. The worst case condition to guarantee convergence to
the optimal w* in all directions is therefore

                (1.36)

That is, the step size h must be smaller than the inverse of the largest eigenvalue of the
autocorrelation matrix. Otherwise the iteration will diverge in one (or more) directions. Since the
adaptation is coupled, divergence in one direction will cause the entire system to diverge.

In the early stages of adaptation the convergence is primarily along the direction of the largest
eigenvalue, since the weight update along this direction will be bigger. On the other hand, toward
the end of adaptation the algorithm will mainly adapt only the weight associated with the
smallest eigenvalue (which corresponds to the smallest time constant). The time constant of
adaptation is therefore

                (1.37)

An implication of this analysis is that when the eigenvalue spread of R is large, there will be very
different time constants of adaptation in each direction. This reasoning gives a clear picture of
the fundamental constraint of adapting the weights using gradient descent with a single step size
h: The speed of adaptation is controlled by the smallest eigenvalue, while the largest step size is
constrained by the inverse of the largest eigenvalue. This means that if the ratio between the
largest and the smallest eigenvalues (the eigenvalue spread) is large, the convergence will be
intrinsically slow. This problem cannot be avoided when only a single step size is used in the
steepest descent.

The learning curve will approach Jmin in a geometric progression as before. However, there will
be many different time constants of adaptation, one for each direction. Initially the learning
curve will decrease at the rate of the largest eigenvalue, but toward the end of adaptation the rate
of decrease of J is controlled by the time constant of the smallest eigenvalue (estimation of
eigenvalue spread).

NEUROSOLUTIONS EXAMPLE 1.17

Visualizing the Weight Tracks and Speed of Adaptation

According to our previous calculations, the largest step size for convergence is Eq. 1.36 3.3e-2. The critically
damped mode along the largest eigenvector should be 1.6e-2. The time constant of adaptation for the largest
step size is around 20 iterations (epochs for batch), that is, the convergence should take 80 epochs with this
step size.

When we run the simulations, the algorithm converges first along the direction of the largest eigenvalue
(largest eigenvector direction), and then along the direction of the smallest eigenvector. Since the eigenvalue
spread is 40, the steps are much bigger along the largest eigenvector direction. If we look at the figure of
Example 1.16, we can see that the weights converge perpendicular to the contour plots since this is the
steepest descent path. As we will see, there are two distinct regions in the learning curve: In the beginning it is
controlled by the geometric ratio along the largest eigenvector, while toward the end it is controlled by the
geometric ratio of the smallest eigenvector.

After running this example and observing the weight tracks let us change the input data file to a data set with
a smaller eigenvalue spread. Click the input file icon and bring up its Inspector by clicking the right mouse
button. Remove the present input file, and add the file regression2a.asc from the \data\chapters\ch1 folder on
the CD-ROM.

The modification was made only in the variable x2, all the rest is the same. Respond to the panel associate by
clicking on the close button. In the customize panel, skip the desired signal, and click on close. You have just
modified the input data to this example. This new file has a much smaller eigenvalue spread, so we can expect
that the weight tracks are basically straight lines to the minimum. Compute the new eigenvalue spread, and
adjust the learning rates so that the convergence is as fast as possible.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesWeight TracksWeight Tracks.nsb)<<1}

NeuroSolutions Example

1.7.4 The LMS Algorithm for Multiple Weights

It is straightforward to extend the gradient estimation given by the LMS algorithm from one
dimension to many dimensions. We just apply the instantaneous gradient estimate Eq.1.12 to
each element of Eq.1.33. The LMS for multiple dimensions reads

                      (1.38)

An interesting feature is that the LMS adaptation rule still uses local computations, i.e. for the
i'th weight we can write

                (1.39)

Note that although the analysis of the gradient descent techniques became complex, the LMS
algorithm itself is still very simple. This is one reason why LMS is so widely used. But since
LMS is a steepest-descent algorithm, the analysis and discussions concerning the largest step size
for convergence and coupling of modes also apply to the LMS algorithm.

NEUROSOLUTIONS EXAMPLE 1.18

Visualizing Weight Tracks with On-Line Learning

In this example we configure the Backprop Controller to on-line learning to implement the LMS algorithm.
Notice that the weight tracks follow basically the same path as before, but now the path is much more
irregular due to the sample-by-sample update of the weights. When the eigenvalue spread is very large (the
performance surface is very steep in one direction and shallow in others), the problem is difficult for LMS to
solve. Any small perturbation in the smallest eigenvector direction gets amplified by the large eigenvalue
spread.

 {ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesLMSLMS.nsb)<<1} NeuroSolutions

Example

1.7.5 Multiple Regression with Bias

Up to now we have implemented and solved analytically the multiple regression problem

without bias. The reason for this is only for simplicity. With two weights we can still easily solve
the multiple regression case by hand; however, if the bias is added, we must do the computations
with three parameters. The simulations are transparent to these difficulties, since we just
substitute the Axon by a Bias Axon. Note that the largest step size between the two cases will
differ since the input data was effectively changed if one interprets the bias as a weight
connected to an extra constant input of one. Hence the autocorrelation function and its
eigenvalue spread changed.

We should state that the use of a bias is called the full least square solution, and it is the
recommended way to apply least squares. The reason can be understood easily: When a bias is
utilized in the PE, the regression line is not restricted to pass through the origin of the space, and
smaller errors are normally achieved. There are two equivalent ways to solve the full least
squares problem for D input variables:

· The input and desired responses need to be modified such that they become zero
mean variables (this is called the deviation or z scores). In this case a D weight
regression will effectively solve the original problem. The bias b is computed
indirectly by

            where wi are the optimal weights and the bars represent mean values.

· Alternatively, the input matrix has to be extended with an extra column of 1s (the first
column). This transforms R into a (D+1)x(D+1) matrix, which introduces a D+1
weight in the solution (the bias).

NEUROSOLUTIONS EXAMPLE 1.19

Linear Regression without Bias

We will now substitute a Bias Axon for the Axon in the previous breadboard. This will effectively provide the
regression solution without constraining the regression plane to pass through the origin. We see that the
weight tracks are very similar in the beginning but that the error continues to drop, and the weights advance
towards the w1=0 line. This means that the optimal solution changed. We now have a better solution than
before but with increased complexity of the performance surface (four dimensional instead of three) and an
increased number of adjustable parameters in our system (two weights and a bias).

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ExamplesBiasBias.nsb)<<1} NeuroSolutions

Example

1.7.6 The LMS Algorithm in Practice

We can use some rules of thumb to choose the step size in the LMS algorithm. The step size
should be normalized by the variance of the input data estimated by the trace of R.

                (1.40)

where h0 = 0.1 to 0.01. This normalization by the input variance was the original rule proposed
by Widrow to adapt the Adaline. We can expect the algorithm to converge (settling time) in a
number of iterations k given by four times the time constant of adaptation:

            (1.41)

The LMS algorithm has a misadjustment that is basically one half the trace of R times h:

              (1.42)

When the eigenvalues are equal, the misadjustment can be approximated by

which allows us to give the following rule of thumb: The misadjustment equals the number of
weights divided by the settling time, or equivalently, selecting h so that it produces 10%
misadjustment means a training duration in iterations of 10 times the number of inputs.

Go to next section

1.8 Newton's Method

If you are familiar with numerical analysis, you may be asking why we aren't using Newton's
method for the search. Newton's method is known to find the roots of quadratic equations in one
iteration. The minimum of the performance surface can be equated to the root of the gradient
equation Eq.1.32, as is outlined by Eq.1.31. Hence, Newton's method can also be used in search.
The adaptive weight equation using the Newton's method is Newton's Derivation

                      (1.43)

Compare this with Eq.1.33 and note that the gradient information is weighted by the inverse of
the correlation matrix of the input and that h is equal to 1. This means that Newton's method
corrects the direction of the search such that it always points to the minimum, while the gradient
descent points to the maximum direction of change. These two directions may or may not
coincide (Figure 1-18).

Figure 1-18    Directions of the steepest descent and Newton's method

They coincide when the contour plots are circles, that is, when the largest and the smallest
eigenvalue of the correlation matrix are the same. When the ratio of the largest to the smallest
eigenvalue (the eigenvalue spread) increases, the slope of the performance surface in the two
directions differs more and more. Thus, for large eigenvalue spreads the optimization path taken
by gradient descent is normally much longer than the path taken by Newton's method. This
implies that Newton's method will be faster than LMS when the input data correlation matrix has
a large eigenvalue spread.

Another advantage of Newton's method versus the steepest descent method is in the time
constant of adaptation. When the gradient is multiplied by R not only the direction of the
gradient is being changed but also the different eigenvalues in each direction are being
equalized. What this means is that Newton's method is automatically correcting the time constant
of adaptation for each direction such that all the weights converge at the same rate. Hence
Newton's method has a single time constant of adaptation, unlike the steepest descent method.

These advantages of the Newton's method should not come as a surprise, because Newton's
method uses much more information about the performance surface (the curvature). In fact, to
implement Newton's method we need to compute the inverse of the correlation matrix, which
takes significantly longer than the single multiplication required by the LMS method and also
requires global information. Newton's method is also brittle, that is, if the surface is not exactly
quadratic, the method may diverge. This is the reason Newton's method is normally modified to
also include a small step size h instead of using h=1 as in Eq.1.43.

          (1.44)

Note that x(k) is a vector and R is a matrix, so the update for one weight influences all the other
inputs in the system. This is the reason that the computations are no longer local to each weight.
However, they are not difficult if one assumes that the inverse of R is known a priori. The
algorithm or Eq. 1.44 is called the LMS/Newton algorithm. The case where R

 has to be estimated on-line is much more involved and leads to the recursive least squares
(RLS) algorithm.

Alternatively, to improve convergence speed with the LMS, we can implement an
orthogonalizing transformation of the input correlation function followed by an equalization of
the eigenvalues which is called a whitening transformation. (see Appendix A section 3.18). Since
Newton's method coincides with the steepest descent for performance surfaces that are
symmetric, this preprocessing will make the LMS perform as Newton's method.

NEUROSOLUTIONS EXAMPLE 1.20

Newton's Method

In this example, we implement Newton's method with a custom DLL. For this example, we must compute R
and apply Eq. 1.44 to the simulator. The autocorrelation function for this example is

so R becomes (see the Appendix, section 3.11)

By applying Newton's method to the learning algorithm, we have essentially compensated for the eigenvalue
spread. This means that Newton's method behaves as the steepest descent for a circular performance surface
where the steepest descent direction always points directly to the optimal value. Thus, although the

calculations are more complicated and more demanding (we need to know compute R), the convergence is
much faster (in fact, the algorithm can converge in one epoch). When we run the simulator, notice that no
matter where the algorithm starts, it always heads directly toward the optimum.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examplesmethodmethod.nsb)<<1}

NeuroSolutions Example

Go to next section

1.9 Analytic versus Iterative Solutions

Selecting a search procedure to find the optimal weights is a drastic conceptual change from the
analytic least square solution, albeit an equivalent procedure. In learning systems the iterative
solution is the most common for several reasons.

When working with learning systems, the interest is very often in on-line solutions, that is,
solutions that can be implemented sample-by-sample. The analytic solution requires data to be
available beforehand to compute the autocorrelation matrix R and cross-correlation vector p.
Fast computers are required to crank out the solution (the inverse of R and product with p). The
method produces a value that immediately gives the best possible performance. But several
problems may surface when applying the analytic approach. If the matrix R is ill-conditioned,
the computation of may not be very accurate. Moreover, the analytic solution also requires a
great deal of computation time (Computation of a matrix inverse is proportional to the square of
the number of columns D of the matrix. In the big O notation this means O(D²)).

The iterative solution is not free from shortcomings. We already saw that there is no guarantee
that the solution is close to the optimal weight w* when all the input samples are used by the
algorithm. This depends on the data and on a judicious selection of the step size h. The accuracy
of the iterative solution is not directly dependent on the condition number of R, but matrices with
large eigenvalue spread produce slow convergence because the gradient descent adaptation is
coupled. As we said previously, the slowest mode controls the speed of adaptation, while the
largest step size is constrained by the largest eigenvalue.

The great appeal of the iterative approach to optimization is that very efficient algorithms exist to
estimate the gradient (e.g., the LMS algorithm). Only two multiplications per weight are
necessary, so the computation scales proportional to the number of weights D (i.e., O(D) time).
Moreover, the method can be readily extended to nonlinear systems, while the analytic approach
for most cases of practical relevance cannot be computed.

Go to next section

1.10 The Linear Regression Model

We started this chapter by pointing out the advantages of building models from experimental
data. In the previous sections we developed a set of techniques that adapt the parameters of a
linear system (the Adaline) to fit the relationship between the input (x) and the desired data (d) as
well as possible. This is our first model and it explains the relationship f(x, d) as a hyperplane
that minimizes the square distance of the residuals. We will have the opportunity to study other
(nonlinear) models in later chapters.

It is instructive to stop and ask the question: How can we use the newly developed regression
model? One interesting aspect of model building that we mentioned previously is the ability to
predict the behavior of the experimental system. Basically, what this means is that once the
Adaline is trained, we can forecast the value of d when x is available. We do this by computing
the system output y and assume that the error e is small (Eq.1.3). You can now understand why
we want to minimize the square of the error, since if the square of the error is small, d is going to
be close to y in the training data. Figure 1-19 shows a productive way of looking at the input-
output pairs that we used to train the Adaline.

Figure 1-19 A view of the desired response as the output of an unknown model

We assume that the experimental system produces the desired response d for each input x
according to a rule that we do not know. The purpose of building the model is to approximate as
well as possible this hidden relationship.

We expect also that even for x values that the system did not use for training, y is going to be
close to the corresponding unknown value d. Our intuition tells us that if:

· the data used for training covered all the possible cases well,

· we had enough training data, and

· the correlation coefficient is close to 1,

then in fact y should be close to the unknown value d. However, this is an inductive principle,
which has no guarantee of being true. The ability to extrapolate the good performance from the
training set to the test set is called generalization. Generalization is a central issue in the adaptive
systems approach since it is the only guarantee that the model will perform well with the future
data that will be presented to the system while in operation.

Remember that in the test mode the system parameters must be kept constant, that is, the learning
algorithm MUST be disabled. In the next section we familiarize ourselves with training and
using the linear model.

1.10.1 Regression Project

Getting Real-World Data

We will end Chapter 1 by giving you a flavor of the power of linear regression to solve real-life
problems. We will go to the World Wide Web and seek real data sets, import them into
NeuroSolutions, and solve regression problems. We will use the breadboard from Example 1.7.

The first thing is to decide on the data with which we will work. There are many interesting Web
sites to visit in the search for data. We suggest the following sites:

http://ferret.wrc.noaa.gov/fbin/climate_server

http://seamonkey.ed.asu.edu/~behrens/teach/WWW_data.html

These sites have plenty of data (some duplicated). We assume that you know how to connect to
the Web and how to download data. You should get the data in ASCII and store it in column
format with one of the variables (the independent variable) in the input file and the dependent
variable in the output file. Alternatively, we have provided sample data on the CD-ROM under
the Data directory. Read the readme file to choose the data sets that interest you.

NeuroSolutions Project

The fundamental question is to find out how well a linear relation explains the dependence
between the input data and the desired data. We will exemplify the project with a one-
dimensional set of input data, but the multidimensional case is similar.

The first thing to do is to modify the NeuroSolutions breadboard so that it will be able to work
with the data you downloaded. The data should be stored in an ASCII file and formatted in
columns. Right-click on the input file icon and select properties. The Inspector will appear on the
screen. Remove the present file (click the remove button) and click on the add button. The
Windows file Inspector will appear; open the file that contains the input data, that is, the input to
your linear model.

In NeuroSolutions, the associate panel appears, which you can close (we assume that the input
file has ASCII data in column format). The next panel that pops open is the customize panel.
Here you select the columns that you want to use (for those columns that you do not want, select

the column label and click the skip button), and then click the close button. The input file is now
open and ready to be used by NeuroSolutions. You should repeat the procedure for the desired
data file. Make sure that the number of samples in the input and desired data files are the same.

Another thing that we should do is to normalize the data. Sometimes the input and desired
variables have very different ranges so one should always normalize both the desired and input
data files between 0 (or -1) and 1. To do this, go to the stream page (click on the stream tab) of
the Inspector to access the normalization panel. Click the normalize check box and set the
normalization.

We always recommend that you visually check the data - either with a plotting program or the
Scatter plot in NeuroSolutions to ensure that there aren't any outliers present in the data. When
outliers exist, they may distort any possible linear relationship that may exist.

Once the data sets are open, we can effectively start the adaptation of the linear regressor. The
first important consideration is the largest step size that can be used for convergence. When the
data is normalized we can always guess an initial value of 0.1. By plotting the learning curve or
the weight tracks (if the problem has few input channels), we can judge how appropriate this
value might be. Alternatively, we can compute the eigenvalues and find the exact largest possible
step size, but this is rarely done. The trial-and-error method is OK for small problems.

If the problem takes a long time to converge and increasing the step size creates instability, then
the eigenvalue spread is large, and there is little we can do short of using Newton's method.

After the algorithm converges (the error stabilizes), we should use the correlation coefficient
DLL to estimate the correlation coefficient. Note that it is always possible to pass an hyperplane
through some data points, but the real issue is whether the hyperplane provides a good model. To
answer this question one needs to estimate the correlation coefficient.

For the multiple-variable regression case the relative weight magnitude tells us about the relative
importance of the each variable in the regression equation (for normalized inputs). It is therefore
interesting to look at the values of the regression weights, including the bias. Remember that if
the data is normalized, the displayed weight values must be "unnormalized" in order to compare
them with the original data. You can find the values that NeuroSolutions used to normalize the
data by going to the dataset page of the Inspector and opening the normalization file.
NeuroSolutions multiplies the data set by the first value in the normalization file (range) and
adds the second value in the normalization file (offset). To reverse this process, you must
subtract the second value and then divide by the first value.

Remember that the parameters of the regression equation can be used to predict the system
output when only the input is known. We can do this by testing the system with another data file
for which we do not have a desired response. To do this in NeuroSolutions, you should go to the
Controller Inspector (the yellow dial) and turn off the learning check box; this fixes the weights.

No problem is finalized without a critical assessment of the results obtained. You should start
with a hypothesis about the data relationship and confirm your hypothesis with NeuroSolutions
results. If there is a discrepancy between what you expect and the results, you must explain it.
This is where the NeuroSolutions probes are very effective. You should verify that the data is

being properly read, whether the input and output files are synchronized, whether the system is
converging (weight tracks, learning curve), and so on. Computers are great tools, but they are
very susceptible to the garbage in, garbage out syndrome, so it is the user's responsibility to
check the input and the methodology of data analysis.

NEUROSOLUTIONS EXAMPLE 1.21

Linear Regression Project

We will illustrate the project with a regression between two time series; the sea temperature and atmospheric
pressure downloaded from the NOAA site (climate data base). We will start with the breadboard from
Example 1.7. We replace the input with the file containing the sea temperature and replace the desired
response data with the file containing the pressure data. NeuroSolutions automatically sets the number of
inputs from the file (verify this in the File Inspector), and the number of exemplars in an epoch (verify this in
the Controller Inspector). We also have to decide how many iterations we need. In the Controller Inspector,
enter 1,000 in the Epochs/Run field. This number may be too large, but when the weights or the MSE
stabilize, we can always interrupt the simulation. Experiment with everything we have learned in this chapter.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½Examples.nsb)<<1} NeuroSolutions Example

Go to next section

1.11 Conclusions

In this first chapter we introduced ideas that are very important for the rest of the book. Probably
the most important was the concept of adaptive systems. Instead of designing the system through
specifications, we let the system learn from the input data. To achieve this, the system has to be
augmented with an external cost criterion that measures how well the model fits the data and
with an algorithm that will adapt the system parameters so that the minimum of the cost can be
reached. We will use this concept throughout this book.

We covered much more in this chapter. We described an extremely simple and elegant algorithm
that is able to minimize the external cost function by using local information available to the
system parameters. The principle is to search the performance surface in the opposite direction of
the gradient. The name of the algorithm is least means squares (LMS) and in just two
multiplications per weight and data sample it is able to move the system parameters towards the
neighborhood of the optimal values. Gradient descent is a powerful concept that we will also use
throughout this book.

When we apply the LMS to the linear network, we end up with a system called the linear
regressor or Adaline that can fit hyperplanes to data. The solution is identical to least squares.

We quantified the properties of the LMS algorithm, and we showed the fundamental trade-off of
adaptation: the compromise between speed of adaptation and precision in the final solution. We
defined the learning curve, which we called the thermometer of learning, that we will also use
over and over. Therefore this chapter covers the basic concepts for the intriguing adventure of
designing systems that learn directly from data.

We have also provided a project to help you understand the power of adaptive systems. The
applications of the Adaline are bounded by our imagination and the data we can find to train it.
Thus, knowing how to get data from the Web and how to use it in NeuroSolutions is of great
value.

Go to next section

1.12 Exercises

1.1 (a) Compute by hand the linear regressor for the following data:

X= {-0.5, -0.2, -0.1, 0.3,0.4, 0.5, 0.7}

D= {-1, 1, 2, 3.2, 3.5, 5, 6}

 (b) Compute the correlation coefficient.

(c) Estimate D for the values x=0 and x=1 . Which d can you trust the most? Justify
your answer.

(d) Use NeuroSolutions to confirm your results.

1.2 For the data of Problem 1.1, compute the performance surface and plot it. Estimate the
gradient at the point w =2.

1.3 (a) Compute the linear regression for the following data:

X1= {-0.5, -0.2, -0.1, 0.3,0.4, 0.5, 0.7}

X2= {3, 3, 2.5, 2, -1, -1, -4}

D= {-3, -1, 0, 1.2, 1.5, 3, 4}

(b) Use NeuroSolutions to confirm your results.

1.4 Find the eigenvalues and eigenvectors of the following matrix

1.5 Show that when you apply Eq. 1.5 to data that is Gaussian distributed, effectively you
obtain a set of linear equations.

1.6 Rerun Example 1.8 with white noise that has a mean value of m =0.5 and explain the
results.

1.7 Show mathematically that Eq. 1.14 will always give a value of |g|<1.

1.8 For the data set in Problem 1.3, estimate the largest step size, the critically damped step
size, and the time constant of adaptation for each step size. Run NeuroSolutions and
verify your results by plotting the weight tracks. Also verify the time constant of
adaptation. For which value does the system adapt the fastest?

1.9 If you know the eigenvalues of the input autocorrelation function, would you schedule
the step size for fast adaptation? Justify your answer. Run NeuroSolutions to confirm
your conclusion.

1.10 Verify in the data of Problem 1.3 the statement of Section 1.6.5 that when the step size is
very large in on-line learning the MSE in NeuroSolutions can decrease below the
theoretical limit. Plot the weight tracks and comment on the validity of the model.

1.11 Compute the largest eigenvalue for the data of Problem 1.3, but now use a regressor with
bias. Show all the work. What can you conclude about the largest step size for the bias?

1.12 Apply Newton's search to the data of Problem 1.3, and compare the speed of adaptation
with LMS. You should also use NeuroSolutions.

1.13 Go to the Data directory and open the folder Auto MPG. Read the instructions and
determine the regression equation to estimate the MPG of a car. Use NeuroSolutions.
Make sure the system is converging. What is the estimated misadjustment for the
solution? How would you obtain a better linear fit? Compute also the correlation
coefficient and conclude about the applicability of your model.

1.14 Repeat Problem 1.13 with the data found in the folder Abalone.

1.15 Construct the Breadboard for Problem 1.13 from scratch, i.e. one component at a time.

Go to next section

1.13 NeuroSolutions Examples

1.1    The Linear Processing Element in NeuroSolutions

1.2    Computing the MSE for the Linear PE

1.3    Finding the Minimum Error by Trial and Error

1.4    Plotting the Performance Surface

1.5    Comparison of Performance Curves for Different Data Sets

1.6    Adapting the Linear PE with LMS

1.7    Batch versus On-line Adaptation

1.8    Robustness of LMS to Noise

1.9    Estimating the Correlation Coefficient During Learning

1.10    The Learning Curve

1.11    Weight Tracks

1.12    Linear Regression without Bias

1.13    Rattling

1.14    Scheduling of Step Sizes

1.15    Multivariable Regression

1.16    Checking the LMS Solution with the Optimal Weights

1.17    Visualizing the Weight Tracks and Speed of Adaptation

1.18    Visualizing Weight Tracks with On-Line Learning

1.19    Linear Regression Without Bias

1.20    Newton's Method

1.21    Linear Regression Project

Go to next section

1.14 Concept Map for Chapter 1

Go to Next Chapter

Least Squares Derivation

In Eq.1.4 we substitute the value of the error given by Eq. 1.3 and take the derivative expressed
by Eq.1.5 to obtain

(1B.1)
Note that to simplify the notation we omit the limits of the variable in the sum. We do this
throughout the text when no confusion arises. Operating we get further

(1B.2)

The set of Eq. 1B.2 is called the normal equations. The solution of this set of equations is

                    (1B.3)

which provides the coefficients for the regression line of d on x. The summations run over the
input-output data pairs. Eq. 1B.2 is solved by computing the value of b from the first equation
and substituting it in the second equation to obtain w as a function of x and d. Then the value of
w is substituted in the first equation to finally obtain b as a function of x and d (variable
elimination). It is easy to prove that the regression line passes through the point

 which is called the centroid of the observations. The denominator of the slope parameter of w
and b is the corrected (for the mean) sum of squares of the input.

Return to text

Variance

Data collected from experiments is normally very complex and difficult to describe by few
parameters. The mean and the variance are statistical descriptors of data clusters that are
normally utilized in such cases.

The mean of N samples is defined as

A physical interpretation for the mean is the center of mass of a body made up of samples of the
same mass. It is the first moment of the probability density function (pdf).

We can have very different data distributions with the same mean, so the mean is not a powerful
descriptor. Another descriptor very often used is the variance, which is defined as

The variance is the second moment around the mean, and it measures the dispersion of samples
around the mean. The square root of the variance is called the standard deviation. Mean and
variance are much better descriptors of data clusters. In fact, they define univocally Gaussian
distributions, which are very good models for many real-world phenomena.

Return to text

Correlation Coefficient and Linear Regression

Consider estimating a random variable d by a constant b according to the mean square
estimation,

where E[.] is the expected value operator (see Appendix A). The best b is obtained by taking the
derivative with respect to b and setting the result to zero, yielding b* = E[d]. If we substitute this
value in the equation, we obtain the variance of d as the smallest error.

Now if we try to approximate d by wx + b we obtain

and the best b* = E[d]-wE[x]. Therefore the best w can be found solving the problem

It is easy to show by differentiation that the best w*

(1B.4)

Therefore the minimum mean square error linear estimator for d is

(1B.5)

The term in parentheses is a zero-mean unit variance version of the input x, so the product with s
scales it by the variance of d. The term E[d] just guarantees the correct mean.

It is interesting to note that if d and x are uncorrelated, the best estimate of d is its mean.
However, if x and d are exactly correlated, the best estimate is highly improved (in Eq.
1B.5). The minimum mean square error is

This equation shows that in fact can be interpreted as the amount of variance in the data that
is captured by the linear model.

There is a very interesting interpretation of the mean square estimation solution. Note that

 (1B.6)
which means that the error (the quantity inside the curly braes) is orthogonal to the input.

Return to text

Computation of the Correlation Coefficient

It is important to remember (Eq. 1B.6) that with the optimal coefficients, the regression error, emin

interpreted as a vector, is perpendicular to the Adaline output y. This condition is called the
orthogonality condition. In fact, from the figure below it is easy to see that the smallest error is
obtained when the projection of d on y is the orthogonal projection.

During adaptation the error will always be larger than emin, meaning that y can be larger than d, so
Eq.1.14 may be larger than 1, which is misleading since |r| < 1. Using the fact that the minimum
error is perpendicular to y, we can compute the dot product of e with y and subtract it from the
numerator of Eq.1. 7. We can prove that this new numerator is always smaller than d and that the
dot product is zero at the optimal solution and so will not affect the final value of the correlation
coefficient. This is exactly what is done in Eq.1.14 .

Return to text

Batch Versus On-line Learning

The on-line and batch modes are slightly different, although both will perform well for parabolic
performance surfaces. One major difference is that the batch algorithm keeps the system weights
constant while computing the error associated with each sample in the input. Since the on-line
version is constantly updating its weights, its error calculation (and thus gradient estimation) uses
different weights for each input sample. This means that the two algorithms visit different sets of
points during adaptation. However, they both converge to the same minimum.

Note that the number of weight updates of the two methods for the same number of data
presentations is very different. The on-line method (LMS) does an update each sample, while
batch does an update each epoch, that is,

LMS updates = (batch updates) x (# of samples in training set).

The batch algorithm is also slightly more efficient in terms of number of computations.

Return to text

More Properties of the Performance Surface

For a quadratic performance surface Eq.1.9, computing the gradient and equating it to zero finds
the value of the coefficients that minimize the cost, that is,

 (1B.7)

or

 (1B.8)

This solution is fundamentally the same as found in Eq.1.6 (b = 0 is equivalent to assuming that
the average values of x and d are zero). Substituting this value of w* into Eq.1.9 , the minimum
value of the error becomes

 (1B.9)

Eq.1.9 can be rewritten in the form

 (1B.10)

To verify this just sovle Eq. 1B.10 substituting Eq. 1B.8 for w* and Eq. 1B.9 for Jmin. Notice the
following observations:

• The minimum value of the error Jmin Eq. 1B.9 depends on both the input signal (xi) and
the desired signal (di)

• The location in coefficient space where the minimum w* occurs Eq. 1B.8 also depends
on both xi, and di.

• The performance surface shape Eq. 1B.10 depends only on the input signal (xi)

Return to text

Derivation of the Largest Step Size

The best way to find the upper bound for h is to write the equation that produces the weight
values. Let us rewrite the ideal performance surface (Eq.1B.10)as

 (1B.11)

where

 (1B.12)

By computing the gradient of J Eq.1 B.11 , we get

 (1B.13)

so the iteration that produces the weight updates Eq.1.11 can be written as

                    (1B.14)

 This is a first-order linear constant-coefficient difference equation, which can be solved by
induction. First, let us subtract w* from both sides to yield

Start with a solution w(0).

which provides by induction the equation

Return to text

Derivation of the Time Constant of Adaptation

Writing exp(-1/t)= r and expanding the exponential in Taylor series,

we get approximately r~1-1/t. We saw that geometric ratio of the gradient descent is Eq.1.17 so
we get

Return to text

More on Scheduling Step Sizes

If the initial value of h0 is set too high, the learning can diverge. The selection of b can be even
trickier than the selection of h because it is highly dependent on the performance surface. If b is
too large, the weights may not move quickly enough to the minimum and the adaptation may
stall. If b is too small, the search may reach the global minimum quickly and must wait a long
time before the learning rate decreases enough to minimize the rattling. There are other (more
automatic) methods for adapting the learning rate that we discuss later in the book.

Return to text

Derivation of Normal Equations

When the derivative of J with respect to the unknown quantities (the weights) is taken, we end up
with a set of D+1 equations in D+1 unknowns:

 (1B.15)

The solution is the famous normal matrix equation

 (1B.16)

or expanding

 (1B.17)

Notice that these equations are linear in the unknowns (the wj), so they can be easily solved.

Return to text

Performance Surface Properties

The minimum value of the error can be obtained by substituting the optimal weight Eq.1.31 into
the cost equation Eq.1.30, yielding

 (1B.18)

We can rewrite the performance surface in terms of its minimum value and w* as

 (1B.19)

For the one dimensional case, this equation is the same as Eq.1B.10 (R becomes a scalar equal to
the variance of the input). In the space (w1,w2) J is now a paraboloid facing upward. The shape of
J is again solely dependent on the input data (through its autocorrelation function). One can show
that:

· the principal axes of the performance surface contours (surfaces of equal error) correspond
to the eigenvectors of the input correlation matrix R, (see Appendix A)

· while the eigenvalues of R give the rate of change of the gradient along the principal axis of
the surface contours of J (Figure 1-16).

Figure 1-16    Contour plots of the performance surface with two weights

The eigenvectors and eigenvalues of the input autocorrelation matrix are all that matters to
understand convergence of the gradient descent in multiple dimensions. The eigenvectors
represent the natural (orthogonal) coordinate system to study the properties of R. In fact, along
these coordinates the convergence of the algorithm can be studied as a joint adaptation of several
(one for each dimension of the space) unidimensional algorithms. Along each eigenvector
direction (the axes of the ellipsoids) the algorithm behaves just like the one-variable case that we
studied in the beginning of this chapter. The eigenvalue becomes the projection of the data onto
that direction, just as l in Eq.1B.11 is the projection of the data on the weight direction. But in
any other direction the adaptation is coupled.

The location of the performance surface in weight space depends on both the input and desired
response Eq.1.31. The minimum error also depends on both Eq.1B.18. Multiple regression finds
the location of the minimum of a paraboloid placed in an unknown position in weight space. The
input distribution defines the shape of the performance surface. The input distribution and its
relation with the desired response distribution define both the value of the minimum of the error
and the location in coefficient space where that minimum occurs.

Return to text

Multiple Variable Correlation Coefficient

The idea of the correlation coefficient is the same for oone or multiple dimensions. The
equations get a little more complicated since we are now working with an ensemble of input
vectors. So the nice form of Eq.1.7 has to be modified. An ensemble of vectors is better
described as a matrix, so we are going to define a new matrix U as

where each column is one of the input samples. We are likewise going to define a column vector
d with all the desired responses (this is a vector for the single-output regression, otherwise it also
becomes a matrix)

The total error variance can be written as

where w* is the set of optimal coefficients. This expression can be easily derived if the output of
the regressor is substituted in the definition of the error (Linear Models). The part of the error
that is explained by the linear model is the second term. The variance of the output is expressed
in the same way (just subtract the mean of the desired signal). Thus if we normalize this equation
by the variance of the desired response we get

which leads to the correlation coefficient for the multivariate case.

Return to text

Convergence for Multiple Weights Case

One can show that the condition to guarantee converge (see Widrow and Stearns) is

 (1B.20)

where L is the eigenvalue matrix,

 (1B.21)

which means that in every principal direction of the performance surface (given by the
eigenvectors of the input correlation matrix R), we must have

 (1B.22)

where li is the corresponding eigenvalue. This equation also means that with a single h each
weight wi(k) is approaching its optimal value wi* with a different time constant ("speed"), so the
weight tracks bend, and the path is no longer a straight line toward the minimum.

This is the mathematical description of our earlier statement that the gradient descent algorithm
behaves like many one dimensional univariable algorithms along the eigenvector directions.
Notice that Eq. 1B.21 is diagonal, so there is no crosscoupling between time constants along the
eigenvector directions.

 In any other direction of the space there will be coupling. However, we can still decompose the
overall weight tract as a combination of weight tracts along each eigendirection as we did in
Figure 1-16. Eq. 1B.22 shows that the step size along each direction obeys the same rule as the
unidimensional case (Eq.1.17).

Return to text

Estimation of Eigenvalue Spread

The eigenvalue spread can be computed by an eigendecomposition of R, but this is a time-
consuming operation and is hardly ever performed. An estimate of the eigenvalue spread for the
multidimensional-data case is the ratio between the maximum and the minimum of the
magnitude of the Fourier transform of the input data.

Alternatively, simple inspection of the correlation matrix of the input can provide an estimation
of the time to find a solution. The best possible case is when R is diagonal, with equal values in
the diagonal, because in this case the eigenvalue spread is 1 and the gradient descent travels in a
straight line to the minimum. We cannot have a faster convergence than this, even when second-
order methods (such as Newton's method, studied later) are used. When R is diagonal but with
different values, the ratio of the largest number over the smallest is a good approximation to the
eigenvalue spread. When R is fully populated, the analysis becomes much more difficult.

Return to text

Casti

Casti, J., Alternate Realities: Mathematical Models of Nature and Man, Wiley, New York, 1989.

Processing Element

The fundamental computational block in the system. In neural networks PEs are also called neurons or
units

Epoch

One complete presentation of the input data to the network being trained.

Linear Regression

The process of fitting (minimizing the sum of the square of the deviations) a cloud of samples by a linear
model.

Mean Square Error (MSE)

The average of the square of the difference between the desired response and the actual system output
(the error).

Least Squares

An analytic procedure that minimizes the MSE in linear optimization problems (i.e., problems that are
linear in the unknowns).

Correlation Coefficient

The ratio of the covariance between the input and desired data over the product of their standard
deviations.

Adaptive Systems

Systems that change their parameters (through algorithms) in order to meet a prespecified goal, which
is either an input-output map or an internal constraint.

Performance Surface

The total error surface plotted in the space of the system coefficients (weights).

Supervised Learning

Learning or adaptation in which a desired response can be used by the system to guide the learning.

Unsupervised Learning

Learning in which the system parameters are adapted using only the information of the input and are
constrained by prespecified internal rules.

Gradient

A vector that always points in the direction of maximum change, with a magnitude equal to the slope of
the tangent to the curve at the point.

Steepest Descent

A search procedure that seeks the next operating point in the direction opposite the gradient.

Least Mean Square (LMS)

A steepest descent search algorithm that uses a very efficient estimate of the gradient (the product of
the error and the input):

w(n + 1 = w(n) + hx(n)e(n)

Step Size (or Learning Rate)

The constant that scales the gradient to correct the old weights.

Batch Training

The adaptation of the weight based on an epoch update.

Training Set

The ensemble of input-desired response pairs used to train the system.

Test Set

The ensemble of input-desired response data used to verify the performance of the trained system. This
data is NOT used for training.

Learning Curve

A plot of the MSE across iterations.

Weight Track

A weight space plot of the weight locations during adaptation.

Geometric Ratio

The ratio of two consecutive terms in a geometric progression.

Time Constant of Adaptation

The exponent of the exponentially fitted envelope of the weight's geometric progression.

Rattling

The perturbation around the optimal weight value produced by a nonzero learning rate.

Misadjustment

The normalized excess MSE produced by the rattling.

Learning Rate Scheduling

The choice of a variable step size, which starts large in the beginning of training and decreases
progressively toward the end of adaptation

Eigenvalue Spread

The ratio of the largest over the smallest eigenvalue

Normalized LMS

The LMS algorithm with a step size normalized by an estimate of the input data variance

Big O Notation

An approximate way to express the complexity of a computer algorithm, where only the most rapidly
increasing factor is shown. Normally we are interested in multiplications, since they are the most time-
consuming to execute in general purpose computers.

Eq.1.4

 Eq.1.14

Eq.1.6

  

Eq.1.9

Eq.1.3

Eq.1.10

Eq.1.12

Eq.1.11

Eq.1.13

Eq.1B.10

Eq.1.17

Eq.1.19

Eq.1.25

Eq.1.28

Eq.1.31

Eq.1B.18

Eq.1B.19

Eq.1.27

Eq.1.36

Eq.1.21

Eq.1.33

Eq.1.32

Eq.1.44

Eq.1.5

Eq.1B.2

Eq.1B.9

Eq.1B.8

Eq.1B.11

Eq.1.30

Eq.1.26

Eq.1.43

Widrow

Bernard Widrow was one of the first researchers who explored engineering applications of adaptive
systems. We are going to hear a lot about him in this book.

Eq.1.8

Eq.1.16

Widrow B. and S. Stearns

Adaptive Signal Processing, (Chapter 4), Prentice Hall, Englewood Cliffs, NJ, 1985.

Linear Models

Dunteman G., Introduction to Linear Models, Sage Publications, 1984.

Outlier

A point that, because of observation noise, does not follow the characteristics of the input (or desired
response) data.

RLS

An on-line algorithm to compute the optimal weights (as opposed to the batch process to solve the least
squares). Unfortunately it is also much more computationally intensive than the LMS. To know more
please consult, Haykin, S., Adaptive Filter Theory, Prentice Hall, 1996.

Gauss

Karl Friedrich Gauss (1777-1855) was a mathematical genius who proposed the use of least squares to
solve sets of linear equations. He realized that a quadratic equation was obtained in optimization
problems involving Gaussian distribution models (after taking the logarithm), which leads to an easy
solution for the optimum.

Covariance

The sum of the cross products of the two variables with the means removed.

Standard Deviation

The square root of the variance. The variance is the second moment of the data with respect to the
mean.

Estimation Theory

Melsa J., and D. Cohn, “Decision and Estimation Theory”, McGraw-Hill, 1978.

Autocorrelation

A measure of similarity of the samples' distribution, which is computed by the sum of the cross products
between the data set and its shifted versions. The autocorrelation is a function of the shift.

Cross-correlation

A measure of the similarity between two different data sets, computed by the sum of the cross products
between the two data sets at different lags (it is a function of the lag).

Derivation of the Optimal Solution

Let us just take the derivative of J (Eq. 1.30) with respect to the weights, using matrix
operations.

since the transpose of R is equal to itself because of its Toeplitz strucutre). If we equate this to
zero, we obtain the optimal weights,

which is the equation in the text.

Return to text

Contour

A curve linking all the points with the same value of J (J = constant). The contour plot for J is formed by
concentric ellipsoids (ellipses for the 2-D case).

Eigenvalues

The scaling constants in the eigenvalue equation of a matrix. Eigenvalues can be considered as the
projections of the data along the eigenvectors.

Z Scores

Variables that have been normalized to zero mean and unit standard deviation.

Newton's Derivation

The equation can be easily proved if we recall the gradient of the performance surface

 left multiply by R to obtain

and then substitute in the optimal solution Eq. 1.28 to obtain

From this equation we can derive the incremental equation presented previously.

Return to text

Ill-Conditioned

A matrix whose determinant is almost zero. When the eigenvalue spread becomes very large, the matrix
becomes more and more ill conditioned. See Appendix A.

Gradient Definition and Construction

The gradient is formally defined in terms of partial derivatives of a function f(x, y). Let us
consider a function f(x,y) that has partial derivatives at x0,y0. The gradient of f at x0,y0 is defined
by

where ux, uy are the unit vectors along x and y, and fx, fy are the partial derivatives of f along the x
and y directions, respectively, which are given by

The gradient is associated with the concept of a directional derivative of a function. Let us
assume we have a direction u = aux + buy. The directional derivative of f at x0,y0 along u is

The gradient can be thus defined as a function of the ordered derivatives:

where the operation is the dot product of two vectors (for v = cux + duy,    v × u = ac + bd).

This expression means that the maximum value of the directional derivative as a function of the
direction u is given by the size of the gradient, and it occurs exactly when the direction u
coincides with the gradient direction.

Moreover, we can also find this direction pretty easily. Let us consider the curve C(x,y), defined
as the line in the x, y plane where the function f has a constant value (this line is called the level
curve or the contour of f). At a point x0, y0 in C the rate of change of f in the direction of the unit
vector u tangent to C must be zero (see the preceding definition), that is,

 But this implies that the gradient vector is perpendicular to the tangent vector u of the level
curve at x0,y0. This explains the graphical construction outlined in the text.

Return to text

Development of the Phone System

A good example of engineering design is the telephone system. Long and meticulous research
was conducted at Bell Laboratories on human perception of speech. This created the
specification for the required bandwidth and noise level for speech intelligibility. Engineers
perfected the microphone that would translate the pressure waves into electrical waves to meet
the specification. Then these electrical waves were transmitted through copper wires over long
distances to a similar device, still preserving the required specification. For increased
functionality the freedom of reaching any other telephone was added to the system, so switching
of calls had to be implemented. This created the phone system. Initially, the switching among
lines was done by operators. Then a machine was invented that would automatically switch the
calls. Operators were still used for special services such as directory assistance, but now that the
fundamental engineering aspects are stable, we are asking machines to automatically recognize
speech and directly assist callers.

The development of the phone system is an excellent example of engineering design. Once we
have a vision, we try to understand the principles at work and create specifications and a system
architecture. The fundamental principles at work are found by applying the scientific method.
The phenomenon under analysis is first studied with physics or mathematics. The importance of
models is that they translate general principles, and through deduction we can apply them to
particular cases like the ones we are interested in. These disciplines create approximate models
of the external world using the principle of divide and conquer. First the problem is divided in
manageable pieces, each is studied independently of the others, and protocols among the pieces
are drawn such that the system can work as a whole, meeting the specifications drawn a priori.
This is what engineering design is today.

Return to text

Mars' Pathfinder Mission

When machines have to autonomously interact with the environment or operate near the optimal
set point, we cannot specify all the functions a priori and in a deterministic way. Take, for
instance, the Mars Pathfinder mission. It was totally impossible to specify all the possible
conditions that the rover Sojourner would face, even if remotely controlled from Earth, so the
problem could not be solved by a sequence of instructions determined a priori in JPL's
laboratory. The vehicle was given high-level instructions (way points) and was equipped with
cameras and laser sensors that would see the terrain. The information from the sensors was
analyzed and catalogued in general classes. For each class a procedure was designed to
accomplish the goal of moving from point A to point B. This is the type of engineering system of
which we will build more and more in the future.

The big difference between the initial machines and Sojourner is that the environment is
intrinsically in the loop of the machine function. This brings a very different set of problems,
because, as we said earlier, the environment is complex and unpredictable. If our physical model
does not capture the essentials of the environment, then errors accumulate over time, and the
solution becomes impractical. We thus no longer have the luxury of dictating the rules of the
game, as we did in the early machine-building era. It turns out that animals and humans do
Sojourner-type tasks effortlessly.

Return to text

Uncorrelated Variables

Variables whose correlation is zero. Practically, this means that changing one variable has no effect on
the value of the other.

Hyperplane

A planar surface in four or more dimensions. A hyperplane is still defined by any three points in four or
more dimensions. To visualize a hyperplane in 4-D use the "flat land" approach; that is, try to visualize a
plane when in a 2-D world.

Eq.1B.6

Eq.1.7

On-line Training

A learning procedure that modifies the weights after the presentation of every sample.

Eigenvectors

Vectors e for a matrix R that yield Re = le, where l are the eigenvalues.

Chapter 2 - Pattern Recognition

The table of contents for Chapter 2 is as follows:

2.1 The Pattern Recognition Problem
2.2 Parametric Classifiers
2.3 Linear and Nonlinear Classifier Machines
2.4 Methods of Training Parametric Classifiers
2.5 Conclusions
2.6 Exercises
2.7 NeuroSolutions Examples
2.8 Concept Map For Chapter 2

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 3 - Multilayer Perceptrons

The table of contents for Chapter 3 is as follows:

3.1 Artificial Neural Networks
3.2 Pattern Recognition Ability of the McCulloch-Pitts PE
3.3 The Perceptron
3.4 One Hidden Layer Multilayer Perceptrons
3.5 MLPs with Two Hidden Layers
3.6 Training Static Networks with the Backpropagation Procedure
3.7 Training Embedded Adaptive Systems
3.8 MLPs as Optimal Classifiers
3.9 Conclusions
3.10 NeuroSolutions Examples
3.11 Exercises
3.12 Concept Map for Chapter 3

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 4 - Designing and Training MLPs

The table of contents for Chapter 4 is as follows:

4.1 Introduction
4.2 Controlling Learning in Practice
4.3 Other Search Procedures
4.4 Stop Criteria
4.5 How Good are MLPs as Learning Machines?
4.6 Error Criterion
4.7 Network Size and Generalization
4.8 Project: Application of the MLP to Real-World Data
4.9 Conclusion
4.10 NeuroSolutions Examples
4.11 Exercises
4.12 Concept Map for Chapter 4

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 5 - Function Approximation with
MLPs, RBFs, and Support Vector Machines

The table of contents for Chapter 5 is as follows:

5.1 Introduction
5.2 Function Approximation
5.3 Choices for the Elementary Functions
5.4 Probabilistic Interpretation of the Mappings: Nonlinear Regression
5.5 Training Neural Networks for Function Approximation
5.6 How to Select the Number of Bases
5.7 Applications of Radial Basis Functions
5.8 Support Vector Machines
5.9 Project: Applications of Neural Networks as Function Approximators
5.10 Conclusion
5.11 Exercises
5.12 NeuroSolutions Examples
5.13 Concept Map for Chapter 5

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 6 - Hebbian Learning and Principal
Component Analysis

The table of contents for Chapter 6 is as follows:

6.1 Introduction
6.2 Effect of the Hebbian Update
6.3 Oja's Rule
6.4 Principal Component Analysis
6.5 Anti-Hebbian Learning
6.6 Estimating Cross-correlation with Hebbian Networks
6.7 Novelty Filters and Lateral Inhibition
6.8 Linear Associative Memories (LAMs)
6.9 LMS Learning as a Combination of Hebbian Rules
6.10 Autoassociation
6.11 Nonlinear Associative Memories
6.12 Project: Use of Hebbian Networks for Data Compression and Associative
Memories
6.13 Conclusions
6.14 Exercises
6.15 NeuroSolutions Examples
6.16 Concept Map for Chapter 6

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 7 - Competitive and Kohonen
Networks

The table of contents for Chapter 7 is as follows:

7.1 Introduction
7.2 Competition and Winner-Take-All Networks
7.3 Competitive Learning
7.4 Clustering
7.5 Improving Competitive Learning
7.6 Soft Competition
7.7 Kohonen Self-Organizing Map
7.8 Creating Classifiers from Competitive Networks
7.9 Adaptive Resonance Theory (ART)
7.10 Modular Networks
7.11 Conclusions
7.12 Exercises
7.13 NeuroSolutions Examples
7.14 Concept Map for Chapter 7

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 8 - Principles of Digital Signal
Processing

The table of contents for Chapter 8 is as follows:

8.1 Time Series and Computers
8.2 Vectors and Discrete Signals
8.3 The Concept of Filtering
8.4 Time Domain Analysis of Linear Systems
8.5 Recurrent Systems and Stability
8.6 Frequency Domain Analysis
8.7 The Z-Transform and the System Transfer Function
8.8 The Frequency Response
8.9 Frequency Response and Poles and Zeros
8.10 Types of Linear Filters
8.11 Project: Design of Digital Filters
8.12 Conclusions
8.13 Exercises
8.14 NeuroSolutions Examples
8.15 Concept Map for Chapter 8

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 9 - Adaptive Filters

The table of contents for Chapter 9 is as follows:

9.1 Introduction
9.2 The Adaptive Linear Combiner and Linear Regression
9.3 Optimum Filter Weights
9.4 Properties of the Adaptive Solution
9.5 Hebbian Networks for Time Processing
9.6 Applications of the Adaptive Linear Combiner
9.7 Applications of Temporal PCA Networks
9.8 Conclusions
9.9 Exercises
9.10 NeuroSolutions Examples
9.11 Concept Map for Chapter 9

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 10 - Temporal Processing with
Neural Networks

The table of contents for Chapter 10 is as follows:

10.1 Static versus Dynamic Systems
10.2 Extracting Information in Time
10.3 The Focused Time Delay Neural Network (TDNN)
10.4 The Memory PE
10.5 The Memory Filter
10.6 Design of the Memory Space
10.7 The Gamma Memory PE
10.8 Time Lagged Feedforward Networks
10.9 Focused TLFNs Built from RBFs
10.10 Project: Iterative Prediction of Chaotic Time Series
10.11 Conclusions
10.12 Exercises
10.13 NeuroSolutions Examples
10.14 Concept Map for Chapter 10

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Chapter 11 - Training and Using Recurrent
Networks

The table of contents for Chapter 11 is as follows:

11.1 Introduction
11.2 Simple Recurrent Topologies
11.3 Adapting the Feedback Parameter
11.4 Unfolding Recurrent Networks in Time
11.5 The Distributed TLFN Topology
11.6 Dynamic Systems
11.7 Recurrent Neural Networks
11.8 Learning Paradigms for Recurrent Systems
11.9 Applications of Dynamic Networks to System Identification and Control
11.10 Hopfield Networks
11.11 Grossberg's Additive Model
11.12 Beyond First Order Dynamics: Freeman's Model
11.13 Conclusions
11.14 Exercises
11.15 NeuroSolutions Examples
11.16 Concept Map for Chapter 11

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Appendix A - Elements of Linear Algebra
Pattern Recognition

The table of contents for Appendix A is as follows:

A.1 Introduction
A.2 Vectors: Concepts and Definitions
A.3 Matrices: Concepts and Definitions
A.4 Random Vectors
A.5 Conclusions

To find out more about this book or to purchase it, please visit
http://www.nd.com/products/nsbook.htm

Appendix B - NeuroSolutions Tutorial

This appendix is designed to describe the operation of NeuroSolutions without assuming any
previous knowledge of neural networks. We do, however, assume a familiarity with PC
software and windows.

Although we don't assume previous knowledge of neural networks, the operation of
NeuroSolutions will make more sense as you learn more about them. We recommend that you
read through the tutorial quickly the first time through without focusing on the details. It is very
important that you run the simulations while you read the material. You should then
periodically revisit the tutorial as you progress through the text.

The outline of this tutorial is as follows:

· Introduction to NeuroSolutions

· Introduction to the Interactive Examples

· The fundamentals of NeuroSolutions

· Using Probes in NeuroSolutions

· Providing Input to Your Networks

· Training a Network

· Summary

Go to next section

B.1 Introduction to NeuroSolutions

NeuroSolutions is based on an object-oriented approach to adaptive system design. The
networks are broken down into a fundamental set of components that are individually simple
but can be combined to create powerful systems capable of solving very complex problems.

The NeuroSolutions user interface was inspired by the process of designing an electronic
circuit. Different components are placed onto a "breadboard" and are then wired together to
form a circuit. The circuit is then tested by injecting signals and "probing" responses. This user
interface provides much more flexibility than a typical "black box" simulator. NeuroSolutions
includes a comprehensive collection of probes that allows the user/designer to monitor every
aspect of the neural network during training and testing.

The unique attributes of NeuroSolutions make it ideal for interactive training. This textbook
ships with a restricted version of NeuroSolutions. Because of its simplicity and power,
NeuroSolutions is also ideal for neural network development.

B.1.1 Overview of This Tutorial

Section B.2 of this tutorial provides an overview of how to use the demonstrations/examples in
the textbook. It presents only the mechanics necessary to run the examples. The rest of the
tutorial presents the methods to modify the breadboards used in the examples.

To reap the full benefits of this interactive teaching methodology, it is critical that you feel
comfortable modifying and probing the examples – this is where the real learning begins. When
you start modifying the parameters yourself and seeing how the modification affects the
operation of the system, you will be learning important aspects of neural networks that are not
easily taught in a textbook. We are firm believers in the "learning through experimentation"
technique, and we feel that you will not only achieve a better understanding of the topics, but
your retention will also be improved.

Go to next section

B.2 Introduction to the Interactive Examples

Throughout the hypertext on CD-ROM you will come across interactive examples that consist
of text describing the example and then a button that will execute the example. After reading

the text, just click on the icon, and the NeuroSolutions example will start. Below is a figure
with an example.

The examples have a common feel. A breadboard is a NeuroSolutions "document window" that
may have components, text, and buttons placed on it. The example breadboards consist of three
subsections as follows. The top section contains the text describing the example, the middle
section contains the components that make up the example neural network, and the bottom
section contains the various displays or graphs that "probe" the network.

The examples typically occupy multiple pages. To move to the next page you simply press the

 button in the top-right hand corner. To exit the example immediately, press the

 button. The examples in this tutorial and in the textbook are created on-the-fly using
interactive macros in NeuroSolutions. Because of this, there is no way to return to the previous
page of an example. Most examples are short, however, so you can exit the example and use the
textbook to restart the example.

All the examples in the book are "live." The displays are created while you watch, and you can
modify the parameters of the network at any time. All the network controls are grouped on one
toolbar called the "control toolbar." Like other toolbars, the control toolbar can be moved
virtually anywhere, but it is typically found just under the menu bar.

NeuroSolutions Control Toolbar

A completed network can be "run" by pressing the green "start" button. Running the network
consists of presenting the input data to the network, allowing the data to move through and be
operated on by the network, and creating the displays that show the parameters and outputs of
the network. At the end of each run, the start button is deactivated to indicate that the network
has completed its operation. To rerun the network, press the reset button and then press the start
button.

The following commands are most commonly used to control a simulation:

Control Name Action

Start Starts the simulation

Pause Pauses the simulation

Reset Resets the system counters and
randomizes the network's initial
conditions

Zero Counters Resets the system counters
without randomizing the
network's initial conditions

Step Epoch Runs the simulation until the
end of the next epoch of data

Step Exemplar Runs the simulation for one
sample of data

You have just learned the fundamentals necessary to run the interactive examples. Let's try out a
very simple example to reinforce these concepts.

TUTORIAL EXAMPLE 1

The goal of this example is to allow you to get used to the "look" and "feel" of NeuroSolutions examples. Just
click on the icon and NeuroSolutions will launch the example. Once inside the example, follow the
directions in the text. After the example has completed, you will return to this point.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

Go to next section

B.3 Basic Operation of NeuroSolutions

NeuroSolutions' object-oriented user interface organizes its components into palettes. Each
palette of components contains a family of components with similar function. For example, all
the output displays or probes are contained in a single palette. All the palettes can be found
under the palette menu item.

If a palette is open, it will have a checkmark next to it. An opened palette looks and acts like a
toolbar with a set of icons. The palettes can be moved and docked just like a standard windows
toolbar. Below is an example of the Axon palette.

The Axon family palette

Components can be selected from a palette and stamped onto the breadboard.

B.3.1 Stamping Components

If you put the cursor over the palette and wait a few seconds, you should see a small window
pop up with the name of the component in it. This is called a "tool tip", and you can use it to
determine which component you are selecting from the palette. When you click on a

component, the cursor becomes a stamp when you place it over the breadboard. If you
click again anywhere in the breadboard, the component will be copied to that location on the
breadboard. This operation is called component stamping.

If you select a component from a palette and place the cursor over an existing component from

the same family on the breadboard, the cursor will switch to a which indicates the current
selection will replace the component on the breadboard.

TUTORIAL EXAMPLE 2

This simple example opens up a new breadboard and allows you to stamp components on it. You should
practice opening, closing, and moving palettes. Use tool tips to determine the name of the different
components and then stamp a few on the breadboard. Since some families cannot be stamped directly on the
breadboard, we suggest you start with the axon palette.

The Axon family palette

If you select a component that cannot be stamped down, you may need to click the "selection cursor" button

 to return to "selection mode."

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.3.2 On-Line Help

A complete description of every component is contained within the on-line help. The easiest
way to access the help for a given component is to click on that component with the Help

cursor . The Help cursor is located on the toolbar. Just click on it and then move the mouse
over the component you want help for, clicking on the component's icon.

TUTORIAL EXAMPLE 3

This simple example allows you to experiment with using the help cursor to describe each component. This
handy feature allows you to quickly and easily determine the function of each component. For now, don't
worry too much about the contents of the help files, just practice using the Help cursor.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.3.3 Connecting Components

Notice that on the axon family components (as well as those of some other families), there is a
double-diamond contact point on the left (the FemaleConnector) and a single-diamond
contact on the right

 (the MaleConnector). The data flow in NeuroSolutions is designed to move from left to right
on the breadboard. To connect two components, simply drag the MaleConnector on the right of a
component to the FemaleConnector on the left of the other component. The connection is
visually indicated by three lines drawn between the components.

You will notice that while you are dragging the connector, the mouse arrow changes to a move
cursor , meaning that you can drop the MaleConnector

 onto any unoccupied portion of the breadboard. If you place the cursor over a location that is
an invalid connection, the cursor becomes a crossed circle

, meaning that you cannot drop the MaleConnector in that place.

An alternative way to connect components is to select the first component (by clicking the left
mouse button), then click the right mouse button on the second component, and select "Connect
To" from the menu. The three connection lines will be automatically established.

TUTORIAL EXAMPLE 4

This example allows you practice connecting components.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.3.4 Axons and Synapses

The building-block approach can easily be applied to build adaptive or neural systems. These
networks primarily consist of processing elements (PEs) tied together with "weighted"
connections. The Axon family (much of the terminology in NeuroSolutions is based on
neurobiology) implements the PEs in the network, and the Synapse family implements the
weighted connections.

Axon family palette

Axon Bias Axon Sigmoid
Axon

The Axon family has two functions. The components sum all of their inputs and then apply a
function to that sum. The different components in the Axon family apply different functions to
the summation of their inputs. Each of the different images on the Axon family icons represents
the function that is applied. The Linear Axon (called simply an Axon) just passes the sum of the
inputs directly to the output. The Bias Axon sums the input and adds an offset. The Sigmoid
Axon applies a thresholding function to the data. A single component of the Axon family can
represent any number of PEs.

Synapse family palette

Full
Synapse

Arbitrary
Synapse

The Synapse family is used to connect Axons together. In general, each connection in a Synapse
is assigned a weight that scales the data passing through it. Adjusting these weights is how a
neural network or adaptive system is trained to perform the desired task. The member of the
Synapse family most commonly used is the Full Synapse and connects every PE in one Axon
component to every PE in the other axon component. Thus, the Full Synapse component
contains nm connections (and weights) if there are n input PEs and m output PEs. The Arbitrary
Synapse allows you to select which of the nm possible connections to make between the axons.

B.3.5 Component Properties

Every NeuroSolutions component has a set of parameters that you can adjust. For instance, the
Axon family components contain a parameter that sets the number of PEs represented by that
component. You access a component's parameter set through a dialog box called the Inspector.

· You invoke the Inspector for any component on the breadboard by right-clicking its icon
and choosing "Properties":

Invoking the Inspector

· You can also invoke the Inspector by left-click selecting an icon and then pressing
"Alt+Enter." The Inspector below shows some of the properties of the Linear Axon.
Notice that number of PEs in an Axon component can be defined via rows and/or
columns, allowing you to create a matrix of PEs.

Sample Inspector

Once the Inspector is open, you can view or modify the parameters of other components by
simply clicking on other icons on the breadboard.

A component's parameter set is organized according to property pages. The property pages are
labeled on the tabs across the top of the Inspector. You access the various property pages by
clicking on these tabs. The leftmost tab typically contains the most commonly used parameters
for each component. Many of the other tabs are useful only to advanced users.

If multiple components have the same parameters, you can simultaneously edit the parameters
of all the components using the following procedure:

· Invoke the Inspector for the first component.

· Click on the tab of the desired property page

· Hold down the Shift key while left-clicking to select the remaining components.

· Edit any parameter(s) within the Inspector. Any changes you make in the Inspector will
be reflected in all selected components, so long as they all have the same parameter.

For example, you can simultaneously change the number of PEs for a group of Axons, even if
they have different transfer functions (linear, sigmoid, etc.).

TUTORIAL EXAMPLE 5

This example starts with a small network of connected components and allows you to manipulate the
properties of those components with the Inspector.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.3.6 The Data-Flow Controller and Running the Network

The last family we will discuss in this section is the Control family. The Control family is
different from the Control toolbar, but they are related in operation. The Control family
contains components that control how the data flows through the network. The simplest

member of the Control family is the Static Controller . Its properties include parameters
such as the amount of data in the input file, how many times to run the data through the
network, whether and how the network should learn, and so forth. Thus, pressing the Start
button on the Control toolbar tells the Static Controller to begin sending data through the
network. The Control toolbar and Controller component work together to control the network.

The Control toolbar

The Control palette

To explain the properties of the Static Controller, we must define a few terms. An exemplar of
data is one complete sample of the input for one time-step. If the network has multiple inputs,
then an exemplar corresponds to one piece of data from each input. An epoch is a complete set
of data presented to the network. Normally an epoch is the number of data samples in the
training set file. If there are 30 samples in a data file, then there are 30 exemplars in an epoch.
Many times you may want to present the same data to the network multiple times – this is
represented as the number of epochs per run.

If you double-click on the Static Controller, you will see a real-time view of the simulation's
progress:

Simulation progress display

TUTORIAL EXAMPLE 6

This example starts with a small network of connected components and a Static Controller and allows you to
run the network using the control toolbar.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

We have now covered the fundamental techniques used in NeuroSolutions. The next two
sections discuss the two most important families of components for use in the interactive book.
These two families are the Probe family, which allows you to view the parameters or data in the
network, and the Input family, which allows you to modify the inputs to the examples.

Go to next section

B.4 Probing the System

The Probe family is the most powerful feature in NeuroSolutions. Obtaining a good grasp of
the use of the Probe family will greatly increase your ability to interact with the examples.

Probe family palette

Each Probe provides a unique way of visualizing the data available throughout the network.
Since the probes need data to display, they cannot be placed directly on the breadboard; they
must be placed on a network component with a data access point. For instance, the Axon and
Synapse families all have multiple access points. The activity access point contains the output
data from the component (after operation by the component), the weight access point contains
the weights of the component, and so on.

Let's assume we want to place a Matrix Viewer probe on an Axon to demonstrate some of the
key probing concepts. The Matrix Viewer probe simply shows the data in numeric format.

Matrix viewer

When you place a Matrix Viewer on an Axon, one of its page tabs will be the Access property
page. This will list all the possible access points of the Axon.

Access property page

Selecting the access point in the Inspector determines what data the Matrix Viewer will show.
The Matrix Viewer will move its position on the Axon slightly depending on which access point
you select. The last thing we need to do is double-click on the Matrix Viewer icon to open its
display window.

TUTORIAL EXAMPLE 7

This example loads a small network of connected components and a Static Controller, and allows you to place
Matrix Viewers on the network and view the results.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.4.1 Static Probes

There are two major types of probes in NeuroSolutions: static probes and temporal probes.
Static probes like the Matrix Viewer simply display the data at a specific instance in time.
Temporal probes display data over time, like an oscilloscope or a graph of an output over time.
Some of the more common static probes are shown below:

Icon Name Description

Matrix Viewer Displays instantaneous data as a numerical
matrix

Matrix Editor Similar to the Matrix Viewer except that it also
allows you to edit the data you are probing

Bar Chart Displays the data in a bar chart form

Image Viewer Displays the data as a gray-scale image

There are times where you might want to display a specific piece of data in two different ways
– for instance, you may want both the numerical value (Matrix Editor) and a Bar Chart. To do
this, you simply stamp the second probe on top of the first probe: this is called stacking, and the
access point in the Inspector of the second component will simply say Stacked Access.

TUTORIAL EXAMPLE 8

This example loads a small network of connected components and allows you to place static probes at various
locations on the network.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.4.2 Temporal Probes

Temporal probes display data from multiple iterations of the network. For instance, some of the
previous examples used a MegaScope to display the sine wave. The sine wave was presented to
the network one sample at a time, but the MegaScope and its cohort, the Data Storage
component, displayed the time history of the sinewave.

Icon Name Description

MegaScope Displays a line graph of the data similar to an
oscilloscope

Data Storage Stores data from multiple iterations of the
network for display by the temporal probes

Scatter Plot Displays the data as a set of points on an X,Y
set of coordinates

The Data Storage component stores data over time as the network runs so that the temporal
probe can display the data. Some of the properties of the Data Storage component are shown
below.

Data Storage Inspector

Notice that the Data Storage component allows you to select the amount of data to store (buffer
size) and how often it should send the data to the temporal probe (message every). The message
every property determines how often the display is updated.

To create a new temporal probe, first stamp a Data Storage component and make sure it is at the
correct access point. Then stack a temporal probe on top of it and adjust its parameters if
necessary. For instance, the MegaScope allows you to display multiple signals, change the color
of each signal's trace, and change the scale of both axes as well.

TUTORIAL EXAMPLE 9

This example allows you to create and experiment with temporal probes and the Data Storage component.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.4.3 Data Transmitters

The probes display the data that they receive from the component they are stamped on. What if
you want to display data from two different components on the same probe? The Data Storage
Transmitter is the answer. You place a temporal probe on one component then place a Data
Transmitter on the second component and tell it to transmit its data to the probe. The Data

Storage Transmitter is on the Transmitters palette, and it looks like a miniature barrel when
placed on the Breadboard. It is the rightmost component on the palette.

Transmitters palette

To setup the Data Storage Transmitter, you must do two things. First, make sure that it is
located at the correct access point (e.g. , will be sending the correct data). Second, you must tell
it which Data Storage component to send the data to.

Data Storage Transmitter Inspector

On the Transmitter page of the Inspector you will see a list of possible receivers (Data Storage
components). The receivers list shows the name of each Data Storage component on the
Breadboard – the name is taken from the Component Name property on the Engine page of
each component. When you click on one of the receivers, a list of possible actions shows up in
the action list. Double click on the action of choice to make the connection (indicated by a "C").
In this case, we want the AttachToBuffer action, which sends the data from the Transmitter to
the Data Storage component.

TUTORIAL EXAMPLE 10

This example uses a Data Storage Transmitter to create a single plot showing the input and the output of the
network.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

Were you were wondering what the other transmitters on the Transmitters pallette do? They can
be used to signal events to other components. For instance, the Threshold Transmitter can be
used to tell the Static Controller to stop training when the error has reached a certain point.

This section has covered all you need to know to create probes in NeuroSolutions. Remember
that probing a neural network may be the only way to fully understand how it is working. The
next section covers the Input family, which allow you to use your own data in the neural
networks.

Go to next section

B.5 The Input Family

The Input family of components provide data to the neural network. In a few of the previous
examples, we have used a signal generator to input a sine wave into the network.

Input Family palette

The three most common Input components are:

Icon Name Description

Function Generator Generates sinusoids, square waves, ramps, or user-
defined functions for input to the network

File component Reads a variety of file types and provides the data as
input to the network

Noise Generates uniform or Gaussian noise; often stacked on
top of other components to add dither

Like the Probe family, the Input family components are stamped onto access points of
components in the network. You must select the correct access point to ensure that the data is
entering the network at the correct place. The most common location for an Input family
component is at the preactivity access point of the first (input) Axon in the network.

The Function Generator is very simple to use. Simply stamp the Function Generator on the
appropriate component, check to ensure it is on the proper access point (the access page of the
Signal Generator Inspector), and select the desired waveform. You can select both the shape of
the waveform (sinusoid, square wave, etc.) and the number of samples per cycle.

Function Generator Inspector

TUTORIAL EXAMPLE 11

This example uses the previous networks but allows you to experiment with the Function Generator.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples_example_example.nsb)<<1}

NeuroSolutions Example

B.5.1 The File Component

The File component is probably the most commonly used Input component. It reads data from
the file system (e.g., your computer disk) and provides that data as input to the network.

The File component

Using the File component is rather easy, but there are quite a few options. First add a File
component to the Axon and ensure that it is at the proper access point. Next, open the File List
page in the Inspector on the File component.

File List page of the File component Inspector

If there are files present that you would like to remove, click on the file and hit the Remove
button. If you would like to add a new file to be read into the network, follow these steps:

· Click the Add button, find the data file you want to add by navigating through the file
system, and then double-click the filename. The Associate File panel will appear, where
you specify the file type and how it is to be used:

Associate File panel: set for testing with an ASCII-column file

· Choose a translator from the list. NeuroSolutions offers translators to cover the vast
majority of file types:

Translator Format Description

ASCII ASCII file format with no column
headings

ASCII-Column ASCII file format with descriptive
column headings

Binary 32-bit floating-point

Bitmap Series of B&W bitmap pictures

Color Bitmap Series of color bitmap pictures

DLL For loading custom formatted files

Interactive Book Special format designed for use with
this book

NeuroSolutions provides three predefined data sets. The Training data set is the default data set
and is used to train the network. Even though we haven't started training networks yet, you
should always use the training set unless otherwise instructed. The Testing and Cross Validation
data sets are used to test or verify that the network is learning appropriately. Since the Testing
and Cross Validation sets are not used to train the network, they can be used to determine how
the network will perform on data it has not seen yet. For now, always use the Training data set.

· Next, Click the Close button.

· If you have a data file with multiple columns, the Customize Column panel will be
displayed next and allow you to select which columns you want to use as input. The
default is to use every column of data in the file. If there are columns you would like to
skip, select each column and hit the Skip button.

The Customize Column panel

· Click the Close button on this panel when you are done.

· If the data file has more columns than there are PEs in the Input Axon, NeuroSolutions
will ask you if you'd like to modify the number of PEs in the Input Axon – usually you
can just click "Yes"

That's all. There are quite a few steps, but it is relatively straightforward. If you add multiple
files to the same File component and data set, then the data will be added together before entry

into the network.

One other thing that will come in handy is the ability to normalize your files. If you open the
Inspector on the File component and go to the stream page, there is a checkbox labeled
Normalize. When this is checked, the data file will be normalized between the two values
shown in the edit boxes left of the Normalize chechbox. This feature is used quite frequently in
neural networks.

The Stream Inspector page

TUTORIAL EXAMPLE 12

This example allows the user to manipulate the file component and load data files into the network.

{ewc rhgbtn32.dll, BlueSkyHelpButton, g<nsicon.bmp|
nsicon2.bmp<ExecFile(HelperApp.exeï¿½ examples

