
Welcome to NeuroSolutions

Welcome to NeuroSolutions, the premier neural network simulation environment.

This manual is designed to get you up and running in the least amount of time possible. It is a concise summary of
the most important topics covered in the extensive online help. We anticipate you will be able to cover all material
in this manual, including examples, in less than six hours total time.

By the time you finish this manual, you will have developed a basic familiarity with the NeuroSolutions
environment. To learn more about NeuroSolutions' extensive features, as well as additional tutorials, examples
and an introduction to neural computing, please turn to the online help.

Packing List

Before installing, verify that you received the following materials:

§ Compact disk (CD)

§ Installation instructions page

§ Technical support page

§ NeuroSolutions Getting Started Manual

If any components are missing, please contact NeuroDimension immediately.

To ensure that you are kept informed of the latest product updates and releases, please complete and mail the
registration card.

Technical Support

Included with Evaluation/Demo Software

§ Toll-free line for bug reports and installation problems

Included with Purchased Software

§ Toll-free line for bug reports and installation problems

§ 1 year unlimited email, fax and phone support (toll line)

Contact Information

Bug Reports, Installation Problems and Priority Support 1-800-634-3327 (Option 0)

All other Technical Support (352) 377-1542

Fax (352) 377-9009

Email support@neurosolutions.com

Calls Outside U.S. (352) 377-1542

Please have your invoice number ready when calling and include your invoice number in all fax, email, or written
correspondence.

Note that the technical support described above is for questions regarding the software package. Neural network
experts are on staff and available for consulting on an hourly basis. Consulting rates are dependent on the
specifics of the problem.

NeuroDimension, Inc.

NeuroDimension, Inc.

1800 N. Main Street, Suite D4

Gainesville, FL 32609

www.nd.com

Sales and Information

Sales 1-800-634-3327 (Option 3)

Product Literature and Evaluation Software 1-800-634-3327 (Option 2)

Fax 352-377-9009

Email info@nd.com

Calls Outside U.S. 352-377-5144

Technical Support

Bug Reports, Installation Problems, and Priority Support 1-800-634-3327 (Option 0)

All Other Technical Support 352-377-1542

Fax 352-377-9009

Email support@neurosolutions.com

Calls Outside U.S. 352-377-1542

Before contacting technical support, please attempt to answer any questions by first consulting the following
resources:

· The printed manual (if applicable)

· The on-line help

· The Frequently Asked Questions (FAQ)

The latest versions of the on-line help and FAQ can always be found at the NeuroDimension web site:
www.nd.com.

System Requirements

Before installing NeuroSolutions, you should verify that your system configuration meets the following minimum
specifications:

Operating System Windows 95/98/2000/NT/Me

Memory 16MB RAM (32MB recommended)

Hard Drive 40MB free disk space

Video 640x480 with 256 colors (800x600 with 16M
colors recommended)

Installation Instructions

1) Install the Software

Insert the CD-ROM into the drive. The installation program should start automatically. If this does not happen, then
Run the program "autorun.exe" from the root CD directory.

The installation program is highly automated and easy to use. Follow the on-screen instructions. It is
recommended that first-time users perform the typical installation.

2) Activate the Software

NeuroSolutions is initially in evaluation mode and must be activated in order to remove the evaluation restrictions.
Once you purchase a license for NeuroSolutions you will receive an email with instructions for obtaining an
activation code that you will use to activate the software. If you purchased and did not receive this email or have
misplaced it, please contact NeuroDimension to have another copy sent to you.

Summary of Installed Components

If you have chosen the default installation, NeuroSolutions will install the following items in the Windows Start

Menu , StartÞProgramsÞNeuroSolutions 4:

Item Description

Getting Started Manual This manual in online form

Interactive Book Preface and
TOC

Preface and Table of Contents on an interactive
book on neural networks (Chapter 1 is included)

NeuralBuilder A utility for constructing neural networks based on
the neural model desired

NeuralExpert A utility for constructing neural networks based on
the application type

NeuroSolutions for Excel
Demos

A demo of an Excel add-in product for
NeuroSolutions

NeuroSolutions for Excel Help Online documentation for NeuroSolutions for
Excel

NeuroSolutions for Excel Launches Microsoft Excel and loads the
NeuroSolutions for Excel add-in

NeuroSolutions The main NeuroSolutions program

NeuroSolutions Help Online documentation for NeuroSolutions

If you performed the default installation, the installation program created the directory "C:\Program
Files\NeuroSolutions 4". Within this directory tree are the sub-directories and files of the NeuroSolutions package.
You will not typically need to directly access most of the sub-directories; however, three are of interest to beginning
users:

Sub-
Directory

Description

DLLCust Contains some ready-to-use Dynamic Link Libraries
(DLL's)

Macros Contains common macros

Tutorials A set of saved breadboards and related data that
correspond to examples in the online help

Uninstalling NeuroSolutions

From the Windows Start Menu :

§ Go to StartÞSettingsÞControl Panel.

§ Double-click "Add/Remove Programs".

§ Select "NeuroSolutions 4" in the list and click the "Add/Remove" button.

Sometimes the uninstall program may leave behind a few files. You may delete these manually.

Level Summary

Features common to all levels:

§ Icon-based construction of neural networks

§ Component-level editing of parameters

§ Macro recording and playback

§ OLE-compatible server

§ Online, context-sensitive help

§ NeuralBuilder and NeuralExpert neural network construction utilities

Level-specific features:

Level Topologies Learning Paradigms Hidden
Layers

Neurons
per Hidden
Layer

Educator § Multilayer Perceptron (MLP)

§ Generalized feedforward

§ Backpropagation 2 50

Users § Educator +

§ Modular networks

§ Hebbian

§ Principal component
analysis (PCA)

§ Competitive

§ Kohonen feature maps

§ Neuro-Fuzzy

§ Support Vector Machines

§ Educator +

§ Unsupervised

§ Genetic

§ Adatron (SVM)

6 500

Consultants § Users +

§ Hopfield, time delay (TDNN)

§ Time lagged recurrent
(TLRN)

§ Users +

§ Backpropagation
through time (BPTT)

§ Fixed point recurrent
learning

unlimite
d

unlimited

Professional § Consultants +

§ ANSI C++ Source Code
Generation

§ Same as
Consultants

unlimite
d

unlimited

Developers
Lite

§ Consultants +

§ User-defined dynamic link
libraries (DLL's)

§ Same as
Consultants

unlimite
d

unlimited

Developers § Consultants +

§ ANSI C++ source code
generation

§ User-defined dynamic link
libraries (DLL's)

§ Same as
Consultants

unlimite
d

unlimited

Starting NeuroSolutions

The easiest way to start NeuroSolutions is from the Windows Start button :

§ Go to StartÞProgramsÞNeuroSolutions 4ÞNeuroSolutions.

The first time you run the program, the NeuroSolutions Demo panel will appear automatically.

Demo selection panel

Running the Demos

The best way to get an overview of the features provided by NeuroSolutions is to run the demos. These demos
present a series of examples in neural computing, which illustrate the broad range of capabilities NeuroSolutions
has to offer.

To launch the NeuroSolutions Demo panel:

§ Go to the Help menu and select "Demos," or type "Ctrl+D."

To run a demo,

§ Make a selection by clicking one of the demo buttons.

The selected button's text will turn red, and the selected demo will be described.

§ Click the Run button.

The two buttons at the bottom are the exception; they do not use the Run button.

The demos present a series of panels, each one introducing a particular feature of NeuroSolutions.

§ To advance to the next panel, click the Forward button .

§ To quit the present demo and return to the main demo menu, click the Cancel button .
All demos are live! Each one starts with random initial conditions and learns online. These demos are also
designed to be interactive. Many of the panels have edit cells that allow you to modify the network parameters and
buttons to run the simulation or single-step through an epoch.

These demos are not restrictive. At any time during the presentation, you are able to manipulate the breadboard
by adding a component, removing a component, or changing a component's parameters with the Inspector. This
can be advantageous in that you can learn a lot about the software by experimenting with the components.
However, changing the state of the breadboard may result in an error message later in the demo. If the demo does

fail, click the Cancel button to get you back to main demo menu. Or, simply restart the demo.

A running demo

Using the Online Help

In addition to running the demos, the next best way to learn about NeuroSolutions is to browse the online help.
The online help is extensive, with several hundred topics documenting all features of NeuroSolutions. It also has
additional examples and tutorials, as well as an introduction to neural networks.

Launching the Online Help

To launch the online help from the Windows Start Menu :

Go to StartÞNeuroSolutions 4ÞNeuroSolutions Help.
To launch the online help from within NeuroSolutions:

§ Go to the Help menu and select "NeuroSolutions Help", or press F1.

You may then get help by topic, index or keyword.

NeuroSolutions Help Topics

The Getting Started Manual is also available online. Simply launch it as you would the main online help. This
manual may be useful when you try the examples.

Context-Sensitive Help

NeuroSolutions also provides context-sensitive help. To access context-sensitive help:

§ Go to the Help menu and choose "Context Help", or press "Shift-F1".

Then click on any icon in the palettes, any component on the breadboard, or a property page of the Inspector, and

the help file will automatically open to the associated topic.

Printing the Online Help

From the main help topics page, you can print out the entire help file. To print out a single chapter, open that
chapter from the main help topics page and then print. Alternatively, you can print out an individual topic from a
topic page. The entire documentation is also available in Microsoft Word format from the Download section of the
NeuroDimension web site:

http://www.nd.com/download.htm

NeuroSolutions FAQ

Within the online help you will find a special section called the NeuroSolutions Frequently Asked Questions (FAQ),
a compendium of the most common questions received by technical support. Beginning users may want to consult
it before searching the general help.

Four Ways to Construct a Neural Network

There are four ways to build a neural network:

1) Run the NeuralExpert program.

2) Run the NeuralBuilder program.

3) Run a pre-recorded macro (such as one of the demos) and modify the resulting network.

4) Manually construct a network from a blank breadboard.

For the beginning user the easiest way to build a network is to use the NeuralExpert. More advanced users who
want more control of the topology and parameter settings may want to use the NeuralBuilder. It is important to
note that breadboards built with either the NeuralExpert or NeuralBuilder can be modified later.

The NeuralExpert

The NeuralExpert asks you questions and intelligently builds a neural network. It configures the parameters and
probes based on your description of the problem to be solved. Once you select a problem type you will see all the
questions you will need to answer in the panel on the left. You can click on these steps/numbers to navigate
through the question and answer session. Once the network is built, you can modify the settings either directly on
the breadboard or within the NeuralExpert.

NeuralExpert Opening Panel

The NeuralBuilder

The NeuralBuilder is targeted for more advanced users. It presents a series of panels that represent logical steps
in the neural network design process. At each panel you make choices and occasionally enter parameters. Instead
of asking you questions based on the problem type, as with the NeuralExpert, the NeuralBuilder allows you the
specify the neural network based on a particular neural model (topology).

Unlike the NeuralExpert, any modifications to the network must be made directly to the breadboard – the
NeuralBuilder does not have an edit capability. However, the NeuralBuilder can be minimized and kept in the
background, with all entered data still intact. At any time, you can backtrack, make design changes, and then build
another network.

NeuralBuilder Opening Panel

Starting the NeuralExpert

These following topics will take you through the various question panels of the NeuralExpert. At each panel, the
basic options will be explained, and suggestions offered. You are encouraged to try the examples that are
presented at the end of each panel's description. Each example continues throughout the chapter.

To launch the NeuralExpert from the Windows Start Menu :

§ Select StartÞNeuroSolutions 4ÞNeuralExpertÞNeuralExpert.

To launch the NeuralExpert from within NeuroSolutions:

§ Go to the Tools menu and choose "NeuralExpert" or click the "NExpert" toolbar button .

Getting Help in the NeuralExpert

Online help is available from all NeuralExpert panels. To access help for the current panel, click the Help button in
the lower left corner of the wizard.

NeuralExpert Help Topic for the Input File Specification Panel

NeuralExpert Problem Type Selection Panel

NeuralExpert Problem Type Selection Panel

The first step in building a neural network with the NeuralExpert is the specification of the problem type. The four
currently available problem types in the NeuralExpert are Classification, Prediction, Function Approximation, and
Clustering. Please see the NeuralExpert help file for detailed descriptions of these four problem types. If your
problem does not fit one of these descriptions (or you would like to completely specify the architecture and
parameters yourself), then you may want to use the NeuralBuilder instead.

Example

ü Use the default "Classification" in the NeuralExpert Problem Type Selection panel.

ü For this example, uncheck the "Beginner level" switch so that we can examine some of the advanced panels.

ü Click the Next button to advance to the next panel.

NeuralExpert Input File Selection Panel

NeuralExpert Input File Selection Panel

The next step in constructing your neural model is to select the input data. The Input File Selection panel is
where you specify where the input data file is located. There are three ways to do this:

1) Click the "Browse" button and search through the standard windows tree structure to find your file.

2) Type the path and filename in the text box.

3) Click the triangle at the right edge of the text box and you will be presented with a list of the most recently
used text files in the NeuralExpert.

Please see the section on File Format Requirements before making this selection.

Example

The sample data we will use contain various attributes of stone crab specimens. There are 50 male and 50 female
specimens for each of two species (blue form and orange form) for a total of 200 specimens.    The columns
labeled "Species", "Frontal Lip", "Rear Width", "Length", "Width", and "Depth" will serve as inputs to the neural
network. The goal is to train a neural network to determine the sex of a specimen (male or female) based on these
attributes.

Crab Classification Data used for the NeuralExpert Example

ü Click the Browse button . The Open panel will display.

ü Navigate to the file "…\NeuroSolutions 4\SampleData\CrabData.csv" and double-click it.

ü Click the View File button to view the file's contents (optional).

ü Click the Next button to advance to the next panel.

NeuralExpert Tag Input Columns Panel

NeuralExpert Tag Input Columns Panel

The next step in constructing your neural model is to tag the input columns. The Tag Input Columns panel is
where you specify which data you would like to feed into the neural network. ASCII column data typically has
column labels as the first row. If they do not, the wizard will ask you if you would like to add column labels.

Example

The first column of this data is the specimen number, which is not useful information in classifying the sex. The last
column is the desired output ("Male" or "Female"). The rest of the columns will be used as inputs to the network.

ü Uncheck the first item ("SpecimenNumber") and the last item ("Sex").

ü Click the Next button to advance to the next panel.

ü All of the input columns have numeric data, so click the Next button again to skip the Tag
Symbolic Inputs panel.

NeuralExpert Desired File Selection Panel

NeuralExpert Desired File Selection Panel

The next step in constructing your neural model is to select the desired output data. The Desired File Selection
panel is where you specify where the desired output data file is located. There are four ways to do this:

1. Click the "Browse" button and search through the standard windows tree structure to find your file.

2. Type the path and filename in the text box.

3. Click the triangle at the right edge of the text box and you will be presented with a list of the most recently
used text files in the NeuralExpert.

4. Click the "Use Input File as Desired File" button, which will place the input file name in the desired file text
box.

Please see the section on File Format Requirements before making this selection.

For classification problems you will be given the option to randomize the order of your data before presenting it to
the network. Neural networks train better if the presentation of the data is not ordered. For instance, if you are
classifying between two classes male and female, the network will train much better if the male and female data
are intermixed, rather than all the males followed by all the females. If your data is highly ordered, you should
randomize the order before training the neural network.

Example

The file we chose for our input columns also contains the desired output column – the sex of the specimen. The
rows of this file are already randomized, so there is no need to perform this operation again.

ü Click the Use Input File as Desired File button . The path of the input file
should appear in the text box.

ü Click the Next button to advance to the next panel.

NeuralExpert Tag Desired Columns Panel

NeuralExpert Tag Desired Columns Panel

The next step in constructing your neural model is to tag the desired output columns. The Tag Desired Columns
panel is where you specify which data you would like the neural network to produce.

Example

The first column of this data is the specimen number, which is not something that we want to try to classify. The
next six columns have already been specified as the input data. The last column is the desired output ("Sex").

ü Uncheck the first item ("SpecimenNumber"), but leave the last item ("Sex") checked.

ü Click the Next button to advance to the next panel.

NeuralExpert Tag Symbolic Desired Panel

NeuralExpert Tag Symbolic Desired Panel

The Tag Desired Columns panel is used to specify which (if any) of the desired output columns contain symbolic
data. Symbolic columns are those in which each data element is a string of characters (e.g. "yes"/"no"). Most often
symbolic strings are non-numeric, but columns containing discrete (non-continuous) numeric values should usually
be tagged as symbolic also.

NeuroSolutions translates a symbolic column by expanding it to N columns, where N is the number of unique
strings in the column. Each expanded column represents a particular string. A "1" in an expanded column indicates
the occurrence of the column's corresponding string and a "0" indicates a non-occurrence. The figure below
illustrates a symbolic column before and after the symbolic translation process.

 

Symbolic Column Before (left) and After (right) Symbolic Translation

Example

The desired output column contains non-numeric data – instances of "Male" or "Female" specimens. Therefore,
this column should be tagged as symbolic.

ü Leave the only item ("Sex") checked.

ü Click the Next button to advance to the next panel.

NeuralExpert Generalization Protection Panel

NeuralExpert Generalization Protection Panel

One of the primary goals in training neural networks is to ensure that the network performs well on data that it has
not been trained on (called "generalization"). The standard method of ensuring good generalization is to divide
your training data into multiple data sets. The most common data sets are the training, cross validation, and
testing data sets.

The cross validation data set is used by the network during training. Periodically, while training on the training data
set, the network is tested for performance on the cross validation set. During this testing, the weights are not
trained, but the performance of the network on the cross validation set is saved and compared to past values. If
the network is starting to overtrain on the training data, the cross validation performance will begin to degrade.
Thus, the cross validation data set is used to determine when the network has been trained as well as possible
without overtraining (i.e., maximum generalization).

The Generalization Protection panel is used to specify the amount of data to set aside for cross validation.
"None" indicates that all of the data in the input and desired files will be used for training. This option is generally
only used when you have very little data to work with (e.g., less than 100 rows). "Normal" generalization protection
specifies that 20% of your data will be set aside for cross validation. "High" generalization protection will set aside
40% of your data for cross validation. This option should only be used when you have a great deal of data (e.g.
10,000 rows or more).

Example

The data file for this example has 200 rows, so we will want to use "Normal" generalization protection.

ü Check the "Normal" radio button.

ü Click the Next button to advance to the next panel.

NeuralExpert Out Of Sample Testing Panel

NeuralExpert Out Of Sample Testing Panel

Although the network is not trained with the cross validation set, it uses the cross validation set to choose a "best"
set of weights. Therefore, it is not truly an out-of-sample test of the network. For a true test of the performance of
the network, an independent (i.e., out of sample) testing set is used. This provides a true indication of how the
network will perform on new data.

The Out Of Sample Testing panel is used to specify the amount of data to set aside for the testing set. The
percentage will vary depending on the amount of data you have and how rigorously you wish to test the network
on out of sample data. The default value is 20% when this option is enabled.

Example

We would like to set aside 40 of the 200 rows of data to test the performance of the network after training.

ü Check the "Set aside out of sample data" check box. Leave the "Percent" text box at the default of 20.

ü Click the Next button to advance to the next panel.

ü This problem is not complex enough to warrant the additional processing time needed to perform parameter

optimization, so click the Next button again to skip the Genetic Optimization panel.

NeuralExpert Network Complexity Panel

NeuralExpert Network Complexity Panel

The Network Complexity panel is used to specify the size of the neural network in terms of hidden layers and
processing elements (neurons). In general, smaller neural networks are preferable over large ones. If a small one
can solve your problem sufficiently (you would be surprised how powerful small networks are), then a large one
will not only require more training and testing time but also may perform worse on new data. This is the
generalization problem -- the larger the neural network, the more free parameters it has to solve the problem.
Excessive free parameters may over fit the data, causing the network to overspecialize or memorize the training
data. When this happens, the performance of the training data will be much better than the performance of the
cross validation or testing data sets.

It is strongly recommended that you start with a "low complexity" network. After using a low complexity network,
you can move to a "medium" or "high" complexity network and see if the performance is significantly better. Be
warned that "medium" or "high" complexity networks generally require a large amount of data (i.e., a thousand or
more training rows) to adequately train.

Example

We only have 120 rows of training data, so we should only need a low complexity network.

ü Leave the default setting of "Low" and click the Finish button to build the neural network in
NeuroSolutions.

NeuroSolutions Breadboard built with the NeuralExpert

After the network is built, a warning panel will be displayed indicating that there may not be enough training data to
adequately train the neural network. This is because this sample data set has a small number of training
exemplars (120) for the number of inputs we have (6). This is not a problem since we are just using this data set
for demonstration purposes. If you get this panel when using a real data set and your network does not perform
well on the testing set, then you may need to either reduce the number of inputs or increase the amount of training
data.

Breadboard Icons

Although you are no doubt anxious to try out your first simulation, a short digression on understanding the
NeuroSolutions breadboard is in order.

The Graphical User Interface and Simulations

NeuroSolutions adheres to the so-called local additive model.    Under this model, each component can activate
and learn using only its own weights and the activations of its neighbors. This lends itself very well to the object-
oriented modeling, since each component can be a separate object that sends and receives messages. This in
turn allows for a graphical user interface (GUI) with icon-based construction of networks.

When you see a group of components on the breadboard, it is important to understand that it is much more than a
picture; it is an actual representation of the underlying neural network behind the user interface. What this means
to the user is that there is a one-to-one correspondence between the icons on the breadboard and the simulation
that is going on behind the GUI. Any network that you can construct on the breadboard can be simulated. This is
the key to the power of NeuroSolutions. In addition to all the standard neural architectures, it is very easy to build
and simulate novel architectures that are state of the art in neurocomputing.

Here are some of the most common components:

Icon Name Description Primary Usage

Axon Layer of PE's (processing
elements) with identity
transfer function.

Can act as a placeholder for the
File component at the input layer,
or as a linear output layer.

TanhAxon Layer of PE's with
hyperbolic transfer
function (output range –1
to 1).

Used as hidden or output layer.

FullSynapse Full matrix multiplication. Connects two axon layers.

L2Criterion Square error criterion. Computes the error between the
output and desired signal, and
passes it to the backpropagation
network.

BackAxon Layer of PE's with identity
transfer function.

Attaches to "dual" forward Axon, for
use in backpropagation network.

BackTanhAxon Layer of PE's with transfer
function that is the
derivative of the
TanhAxon.

Attaches to "dual" forward
TanhAxon, for use in
backpropagation network.

BackFullSynapse Back full matrix
multiplication.

Attaches to "dual" forward
FullSynapse, for use in
backpropagation network.

BackCriteriaControl Input to backpropagation
network.

Attaches to Criterion, for use in
backpropagation network.
Receives error from Criterion.

Momentum Gradient search with
momentum.

Updates weights. Momentum
increases effective learning rate
when weight change is consistently
in the same direction.

StaticControl Static forward controller Controls the forward activation
phase of network.

BackStaticControl Static backpropagation
controller

Controls the backward activation
phase of network
(backpropagation).

File File input For network input and desired data
from a file.

ThresholdTransmitt
er

Thresholded transmitter For controlling one component
based on the values of another.

BarChart Bar chart probe Displays data bar graph style.

DataGraph Graphing probe Displays data versus time.

MatrixViewer Numerical probe Displays numerical values at the
current instant in time.

DataWriter Numerical probe Displays numerical values across
time. Also allows for the saving of
data to a file.

It is important to note that there may be probes stamped on the breadboard that are not opened by default. The
reason for this is that open probe display windows require additional processing during training, which may slow
down the simulation considerably. However, you may find some of these probes to be useful, in which case you
should open them by double-clicking on the corresponding icon on the breadboard.

Example

ü Double-click on the top-most DataGraph icon stacked on the right-most TanhAxon (see table above).
When the network is run, this probe has been set up to display the network output vs. the desired output for
the cross validation set.

The Inspector

Every NeuroSolutions component also has a corresponding parameter set that you can edit. You access a
component's parameter set though a dialog box called the Inspector.

Invoking the Inspector

§ You invoke the Inspector for any component on the breadboard by right-clicking its icon and choosing
"Properties":

Invoking the Inspector
§ You can also invoke the Inspector by left-click selecting an icon and then typing "Alt+Enter."

Sample Inspector

Property Pages

Once the Inspector is open, selecting any icon on the breadboard will change the Inspector to reflect that
component.

A component's parameter set is organized according to property pages. The property pages are labeled at the
tabs across the top of the Inspector. You access the various property pages by clicking on the tabs.

Simultaneously Editing Several Components

Thanks to NeuroSolutions' object-oriented design, you will discover strong similarities between the property pages
of components within the same family. You can take advantage of this by simultaneously editing the parameters of
multiple components:

§ Invoke the Inspector for the first component.

§ Go to the property page of your choice.

§ Hold down the "Shift" key while left-click selecting the remaining components.

§ Edit any parameter(s) within the Inspector. Any changes you make in the Inspector will be reflected in all
selected components, so long as they all have the same parameter.

For example, you can simultaneously change the number of PE's of a group of Axons, even if they have different
transfer functions (tanh, sigmoid, etc.).

Component Names

A name is one parameter that all components have in common. A component's name can be found on the Engine
property page of its Inspector. Every component on a breadboard must have a distinct name. The NeuralBuilder

automatically named components in a standard but intuitive fashion. For example, the Axon with a File component
is always named "inputAxon":

Example Component Name

You can name components any way you choose. However, most NeuroSolutions macros supplied with the
package expect that the components be named in a standard way. See the online help topic "Naming" for more
information.

Running a Simulation

Default Toolbar

Once you have constructed a network, the next step is to train it. The basic network controls are included in the
default toolbar (called the Necessities toolbar), which contains the following icons:

A segment of the NeuroSolutions Default Toolbar

If this toolbar is not visible, you can activate it by going to the Tools menu, choosing "Customize", and checking the
"Necessities" check box.

The following commands are most commonly used to control a simulation:

Name Action

Start Starts the simulation.

Pause Pauses the simulation.

Reset Resets the epoch and exemplar
counters, and randomizes the weights.

Zero Counters Resets the epoch and exemplar
counters without randomizing the
weights.

Monitoring a Simulation's Progress

The Simulation Progress window provides a real-time graphic view of the number of epochs that have been run. If

this window is not visible, double-click the forward controller or

.

NeuroSolutions Simulation Progress Window

Example

This example picks up where the one from the previous chapter on the NeuralExpert left off. Even if you did not
follow the example in the previous chapter, you can still open an existing breadboard that has been pre-saved for
you:

ü Go to the File menu and select "Open," or type "Ctrl+O," or click the toolbar button.

ü Navigate to the file "…\NeuroSolutions\SampleData\CrabMLP.nsb" and double-click it.

You are now ready to train the network.

ü Click the Start button to begin the simulation to train the network. Note: this button may be hidden behind
a probe window.

The network will train for 1000 epochs. If the training was successful, the learning curves should look something
like this:

Sample Learning Curves

The red line corresponds to the error of the training set and the blue line corresponds the error of the cross
validation set. In most cases you will find that the cross validation error will initially fall with the training error, but
eventually will rise after the network begins to overtrain or "memorize" the data. The network is configured to
automatically save the weights of the network when the cross validation error reaches a bottom.

If your learning curves do not approach zero, then see the following section on Recovering from an Unsuccessful
Training for a discussion of possible reasons and options.

It is always a good idea to save a breadboard after a successful training.

ü Go to the File menu and select "Save," or type "Ctrl+S," or click the icon.

ü If you have not previously saved the breadboard, you will be prompted to save the network with a name and
location of your choice.

Recovering from an Unsuccessful Training

Identifying an Unsuccessful Training

It may happen that the network does not learn the problem. This is best evidenced by a learning curve that does
not approach zero.

An Unsuccessful Training

Three Possible Reasons for an Unsuccessful Training

If a training is unsuccessful, it is most likely due to one of three factors:

1. The network is capable of learning the problem but has not been trained long enough.

2. The network is capable of learning the problem but is stuck in a local minima.

3. The network is not powerful enough to learn the problem.

Increasing the Network's Computing Power

If you have determined that the problem is not due to one of the first two possibilities, then you will need to
increase the number of processing elements in the network. If your network was created with the NeuralExpert,
you can increase the network's computing power by following these steps:

§ Click the "Modify" button on the breadboard.

§ Switch to the "Network Complexity" panel of the NeuralExpert.

§ If your network was "Low" change it to "Medium". If it was "Medium" change it to "High".

§ Click the "Finish" button to make the modifications to the network.

Increasing the Training Time

If the network has not been trained long enough, the simple remedy is to increase the number of epochs and
continue the training:

§ Invoke the Inspector for the forward controller .

§ On the Static property page, increase the "Epochs/Run."

§ Click the Start button to continue the training.

Getting Out of a Local Minima

NeuroSolutions has several controls useful for getting a network out of a local minima. These controls are
available within the Control toolbar. If this toolbar is not visible, you can activate it by going to the Tools menu,
choosing "Customize", and checking the "Control" check box.

Control Name Action

Reset Resets the epoch and exemplar
counters, and randomizes the weights.

Randomize Randomizes the weights using Mean
and Variance, specified on Soma
property page.

Jog Randomizes the weights about their
present values using the Variance,
specified on Soma property page.

If you are stuck in a local minima you may want to first try jogging the weights and continuing the training. If that
doesn't work you may want to reset or randomize the network and train again.

Verifying the Training

Although the mean square error is a good overall measure of whether a training run was successful, sometimes it
can be misleading. This is particularly true for classification problems. When "Classification" is selected as the
problem type, the NeuralExpert stamps a pair of confusion matrix probes – one for the training set and one for the
cross validation set (assuming that you selected either "Normal" or "High" Generalization Protection).

A Confusion Matrix Probe for the Training Set

The confusion matrix tallies the results of all exemplars of the last epoch and computes the classification
percentages for every output vs. desired combination. For example, in the figure above, 96% of the male
exemplars were correctly classified while 4% of the male exemplars were classified incorrectly as female.
Similarly, 97% of the female exemplars were correctly classified while 3% of the female exemplars were classified
as male.

Example

ü Observe the "CrossVal" and "Training" confusion matrix probes displayed on the breadboard to determine
how well the training performed.

Denormalizing the Probes

The NeuralBuilder and NeuralExpert automatically set up normalization of the input and desired files.
Normalization, the process of scaling and shifting the data to better match the network's range, is an important part
of neural network pre-processing, and can significantly speed up training.

Viewing the Data in its Native Range

When probing a network, however, it may be preferable to view the data in its original range. This process is called
denormalization. All probes that display the data numerically are capable of denormalization, including the

MatrixViewer , MatrixEditor

, and DataWriter

. Access to this feature is from the Probes property page of the Inspector:

Probe Denormalization in the Inspector

Automatic Matching of Probe with Normalization File

Every data set generates its own normalization file, which stores the scale and offset of the data. Probes can then
use this normalization file to perform the denormalization. If the probe is at the input File, NeuroSolutions will
automatically choose the input File's normalization file to perform the denormalization. If the Probe is at either the
output Axon or desired File, the desired File's normalization file will be used.

Note that denormalizing the probes does not in any way affect the training of the network.

Example

By default the NeuralBuilder and NeuralExpert configure the probes on the breadboard to display in the original
data's range. Let's verify that this setting is correct.

ü Invoke the Inspector for the bottom MatrixViewer on the desired File, and go to the Probes
property page.

ü Verify that the box "Denormalize from Normalization File" is checked

ü Repeat for the other desired MatrixViewer probe and the DataGraph probes attached to the
right-most TanhAxon.

Manually Optimizing the Network

As mentioned previously, it is important to find the network with the minimal number of free weights that can still
learn the problem. The minimal network is more likely to generalize well to new data. Therefore, once you have
achieved a successful training, you should then begin the process of decreasing the size of the network and
repeating the training until it no longer learns the problem to your satisfaction.

Note that NeuroSolutions does include a facility for optimizing various network parameters using a genetic
algorithm, but this topic is too advanced for this manual. Interested users should refer to the NeuroSolutions,
NeuralBuilder and/or NeuralExpert documentation for detailed information on genetic optimization within
NeuroSolutions.

Example

The NeuralExpert built the neural network with 3 PE's on the hidden layer TanhAxon, and the network learned the
problem easily. Now we will decrease that number:

ü Invoke the Inspector for the hidden layer TanhAxon.

ü Enter "2" in the edit box for the number of Rows.

TanhAxon Inspector After Changing the Number of PE's to 2

Now we will re-train the network:

ü Click the Reset button , followed by the Start button

.
ü Observe the learning curve and confusion matrices to see whether the network learned the problem.

If the network did not learn, re-train several more times to make sure the network was not stuck in a local minima.
You should find that this size network can learn the problem. Once the network learns the problem, save the
breadboard:

ü Go to the File menu and select "Save," or type "Ctrl+S," or click the icon.

Let's now decrease the number of Rows to 1:

ü Enter "1" in the edit box for the number of PE's.

ü Repeat the training process as previously described.

You may observe that the network does not solve the problem as well with 1 PE. If this is the case, you can
conclude that 2 PE's on the hidden layer is optimal. To load in the breadboard trained with 2 PE's:

ü Go to the File menu and choose "Close."

ü When prompted, select "No" to saving the breadboard.

ü Go to the File menu and choose the most recent file name you used from the list at the bottom of the menu.

Starting the TestingWizard

After training a network, you will want to test the network performance on data that the network was not trained
with. The TestingWizard automates this procedure by providing an easy way to produce the network output for the
testing dataset that you defined within the NeuralExpert or NeuralBuilder, or on a new dataset not yet defined.

To launch the TestingWizard from within NeuroSolutions:

§ Go to the Tools menu and choose "TestingWizard" or click the "Testing" toolbar button .

If your breadboard was built with the NeuralExpert, you may alternatively:

§ Click the "Test" button in the upper-left corner of the breadboard.

Getting Help in the TestingWizard

Online help is available from all TestingWizard panels. To access help, click the Help button in the lower left corner
of the wizard.

TestingWizard Help Window

TestingWizard Data Set Selection Panel

TestingWizard Data Set Selection Panel

This panel is used to specify the data to use for your test. The two most common data sets to use are Testing and
Production. Testing is used if there is desired data that corresponds to the input data. Production is used if you do
not know what the output is supposed to be – you want to neural network to tell you. You may also test the
network using the Training or Cross Validation sets.

If the selected data set has already been defined, either manually or using one of the wizards, then the file path(s)
will be filled in for you by default. If you have not yet defined the data set, or would like to override the existing file
settings, click the Browse button(s) to define the input and/or desired files.

Note that the input file for the Testing/Production set must have the same column labels as the input file used for
the training set. Likewise, the desired file of the Testing set must be of the same structure as the training desired
file.

Example

Recall that within the NeuralExpert we had allocated 20% of the data file for the testing set. The TestingWizard
detects this automatically, so there is no need to specify the files again.

ü Launch the TestingWizard.

ü Read the Introduction panel and click the Next button to advance to the file selection panel.

ü Note that the data set defaults to Testing and the input and desired file paths are already filled in.

ü Click the Next button to advance to the next panel.

TestingWizard Output Production Panel

TestingWizard Output Production Panel

This panel is used to specify how the network output of the testing set should be produced. The DataWriter probe
is the component used to extract the output data. You may either display the output data in a window or have the
data written to an ASCII file. To do this, click the "Export to a file" radio button, click the "Browse" button and
specify a file name and directory to write the output data to.

You may also include the desired data within the display/file in order to do a side-by-side comparison. If you only
want to produce the output data, uncheck the "Include the Desired Data" box.

Example

We will keep the default settings, which will produce the testing results within a display window and include the
desired response with the network output.

ü Make sure that the "Display in a Window" radio button is selected and the "Include the Desired Data"
checkbox is checked.

ü Click the Next button to advance to the next panel.

ü Click the Finish button to test the network.

ü Observe the results by scrolling through the window labeled "Desired and Output".

Starting the NeuralBuilder

An alternative to the NeuralExpert is the NeuralBuilder. This neural network construction utility provides more
flexibility in specifying the neural network topology and parameters.

In the following topics, we will take you through the various design panels of the NeuralBuilder. At each panel, the
basic design options will be explained, and suggestions offered. If you would like to understand the rationale
behind some of the suggestions, please see the section on Neural Network Training Hints.

We encourage you try the examples that are presented at the end of each panel's description.    Each example
continues throughout this chapter.    For this reason, we recommend you do not skip any panels.

To launch the NeuralBuilder from the Windows Start Menu :

§ Select StartÞNeuroSolutions 4ÞNeuralBuilder.

To launch the NeuralBuilder from within NeuroSolutions:

§ Go to the Tools menu and choose "NeuralBuilder" or click the "NBuilder" toolbar button .

The following panel will appear:

NeuralBuilder Neural Model Panel

Getting Help in the NeuralBuilder

Online help is available from all NeuralBuilder panels. To access help for the current panel, click the Help button in
the lower left corner of the wizard. Note that all other topics of the help file can be accessed through the table of
contents on the left side of the help window.

NeuralBuilder Help Window

NeuralBuilder Supported Models

The first step in building a neural network is choosing a neural model. The NeuralBuilder supports eleven neural
models, shown below. For a complete description of these models, and how to choose one for your application,
see Choosing a Neural Architecture.

NeuralBuilder Supported Models

The Multilayer Perceptron is by far the most common neural network model. We will use it as the basis of our
example as we take you through the various NeuralBuilder panels. Now, to get started …

Example

ü Use the default "Multilayer Perceptron" in the NeuralBuilder Neural Model panel.

ü Click the Forward button to advance to the next panel.

NeuralBuilder Training Data Panel

NeuralBuilder Training Data Panel

The next step in constructing your neural model is to select the training data. The Training Data panel is where
you:

§ Choose your file.

§ Tag the columns according to usage.

§ For time series only, specify that the goal of the training is prediction, where "Delta" is the number of time steps
in the future to predict.

Please see the section on File Format Requirements before making the file selection.

Tagging Columns

By default, all columns are tagged as "Input." You can change the default setting of any column to the "Desired"
response of the network, specify that the column contains "Symbols" that need to be converted to numeric data, or
"Skip" the column entirely.

The "GA" checkboxes are used to indicate that a genetic algorithm is to determine if the corresponding input is to
be included or skipped. Genetic Algorithms are general-purpose search algorithms based upon the principles of
evolution observed in nature. Genetic algorithms combine selection, crossover, and mutation operators with the
goal of finding the best solution to a problem. They search for this optimal solution until a specified termination
criterion is met. In NeuroSolutions the criteria used to evaluate the fitness of each potential solution is the lowest
cost achieved during the training run. Please see the documentation for NeuroSolutions and the NeuralBuilder for
more information on this topic.

Training and Desired Files

The input and desired data can be either in the same file, or split into separate files. If they are in separate files,
and you do not tag any columns as "Input" in this panel, then the Desired Response panel will immediately follow
this panel, where you can specify the separate desired file.

Example

 Our example contains both input and desired data in the same file:

ü Click the Browse button . The Open panel will display.

ü Navigate to the file "…\NeuroSolutions 4\SampleData\gettingStartedTrain.asc" and double-click it.

Back in the Training Data panel, you should see a list of all the columns in the file. Note that they are all initially
tagged as Input.

ü Click the View button to view the file's contents:

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

This data is the input-output response of an exclusive-or logic gate. The X and Y columns are the voltage inputs to
the gate, and the Z column is the expected output of the gate, given the inputs. There are a total of four
exemplars. To tag column Z as the desired data:

ü Select column "Z."

ü Click the Desired button . You should see the "Z" column tag change from "Input" to "Desired":

ü Click the Forward button to advance to the next panel.

Cross Validation and Test Data Panel

NeuralBuilder Cross Validation and Test Data Panel

This panel is used to specify the cross validation and/or testing data sets. These data sets can be specified as a
percentage of the exemplars from the training file, or they can be input from separate files.

Cross Validation Set

Neural networks can be overtrained to the point where performance on new data actually deteriorates. Roughly
speaking, overtraining results in a network that memorizes the individual exemplars, rather than trends in the data
set as a whole. Cross validation is a process whereby part of the data set is set aside for the purpose of
monitoring the training process, to guard against overtraining.

Testing Set

The testing set is used to test the performance of the network. Once the network has been trained, the weights are
then frozen, the testing set is fed into the network, and the network output is compared with the desired output.

Example

Because we are working with a small data set, we will not specify a cross validation or testing set.

ü Click the Forward button to advance to the next panel.

NeuralBuilder Topology Panel

NeuralBuilder Multilayer Perceptron Panel

The Topology panel is specific to the neural model chosen in the first panel.    This is where you set:

§ The number of hidden layers, and

§ Parameters specific to the architecture you chose in the first panel.

Number of Hidden Layers

Common to all models is an text box for the number of hidden layers. Unless you believe your problem is
particularly difficult, start with the default setting of one hidden layer; you can always return later and add
additional layers.

Example

For the Multilayer Perceptron, the number of hidden layers is the only parameter in this panel. One hidden layer
should be sufficient to solve the exclusive-or problem.

ü Use the default value of "1" as the number of Hidden Layers.

ü Click the Forward button to advance to the next panel.

NeuralBuilder Hidden Layer Panel

NeuralBuilder Hidden Layer #1 Panel

The Hidden Layer panel is where you choose:

§ The number of processing elements in the layer.

§ The layer's transfer function.

§ The layer's learning rule and parameters.

For each number of hidden layers requested in the Topology panel, separate Hidden Layer panels will appear in
sequence.

Number of Processing Elements

The most important parameter you need to set here is the number of processing elements (PE's). The number of
PE's directly affects the overall computing power of the network. Ideally, the number of PE's should be chosen
based on the complexity of the desired input-output mapping of the data, but really can only be determined
experimentally.

It is important to note that the minimal number of PE's needed to solve a problem need not be related to the size of
the data set. However, the NeuralBuilder does not know the complexity of the data, and thus chooses the number
of PE's proportional to the number of input channels. This is likely to overestimate the required number of PE's,
but at least the network is likely to learn on the first trial. However, good generalization to new data depends on
finding the minimal number of PE's that can solve the problem.

The "GA" checkbox next to the "Processing Elements" text box is used to indicate that a genetic algorithm will be
used to determine the number of processing elements that produced the lowest cross validation error during a
large number of training runs. Genetic optimization is beyond the scope of this manual. Please see the
documentation for NeuroSolutions and the NeuralBuilder for more information on this topic.

Transfer Function

It is the non-linearity of the hidden layer's axons that give a neural network the computational ability to learn
difficult problems. Of the eight axons offered by the NeuralBuilder,

Axon Output
Range

Features

TanhAxon -1 to 1 Nonlinear axon of choice.

SigmoidAxon 0 to 1 Same general shape as TanhAxon.

LinearTanhAxon -1 to 1 Piecewise linear approximation to TanhAxon.

LinearSigmoidAx
on

0 to 1 Piecewise linear approximation to SigmoidAxon.

SoftMaxAxon 0 to 1 Outputs sum to 1. Used for classification.

BiasAxon Infinite Linear axon with adjustable slope and adaptable
bias.

LinearAxon Infinite Linear axon with adaptable bias.

Axon Infinite Simplest axon, identity transfer function.

only the first five are non-linear. Of those five, only the TanhAxon and SigmoidAxon are commonly used on the
hidden layer(s).

For most problems, use the recommended TanhAxon transfer function.

Input File Normalization

The NeuralBuilder will automatically instruct NeuroSolutions to scale and shift the input data to match the range of
the first hidden layer's transfer function. For example, if the first hidden layer's axon is a TanhAxon, the input data
will be scaled and shifted to lie between –1 and 1. This important pre-processing step is called normalization,
which will be discussed later.

Learning Rules

The learning rule, also called gradient search, is used to calculate the weight update. NeuroSolutions and the
NeuralBuilder offer five learning rules:

NeuralBuilder Learning Rules
Beginning users should use Momentum learning for all layers. Though not potentially as fast as Quickprop,
DeltaBarDelta or ConjugateGradient, Momentum learning is generally more stable.

It is usually quite safe to go with the recommended values for the learning parameters. The "GA" checkboxes next
to the learning parameters are used to indicate that a genetic algorithm will be used to determine the parameters.
Genetic optimization is beyond the scope of this manual. Please see the documentation for NeuroSolutions and
the NeuralBuilder for more information on this topic.

Example

Although non-linear, the exclusive-or problem is not particularly difficult. Therefore, we will start out with 3
processing elements:

ü Enter "3" into the Processing Elements edit box.

Use the default "TanhAxon" as the layer's PE Transfer function.

ü Use the default "Momentum" as the Learning Rule, along with the default "0.1" Step Size and "0.7"
Momentum.

ü Click the Forward button to advance to the next panel.

NeuralBuilder Output Layer Panel

NeuralBuilder Output Layer Panel

This panel is identical to the panel for the hidden layer(s), except that the number of Processing Elements is
completely determined by the number of channels of desired response data.

Output File Normalization

Just as for the input data, the NeuralBuilder will automatically normalize the desired response data to match the
range of the output transfer function. For example, if the output layer is a TanhAxon, the desired response data will
be normalized to lie between –1 and 1.

Transfer Function

It is important to choose the output layer's transfer function to match the problem. Use the following table as a
guide to choosing the proper output Axon:

Problem Description Output
Range

Output
Axon

Multi-way
classification

1 of N
classification.

0 to 1 SoftMaxAxo
n

Two-way
classification

1 of 2
classification, with
only a single
desired channel.

-1 to 1

or

0 to 1

TanhAxon

or

Sigmoid

Regression Desired response
is a continuous
function of the
input.

Infinite Axon

BiasAxon

LinearAxon

Again, it is usually quite safe to stick with the recommended values for the learning parameters.

Example

The exclusive-or problem has only a single channel of desired response, and therefore the number of PE's chosen
by the NeuralBuilder is 1. We will choose the TanhAxon as the output layer transfer function.

ü Use the default "TanhAxon" for the output layer PE Transfer function.

ü Click the Forward button to advance to the next panel.

NeuralBuilder Supervised Learning Panel

NeuralBuilder Supervised Learning Panel

The Supervised Learning panel is where you:

§ Enter the Maximum Epochs to train.

§ Specify Termination criteria for stopping the training.

§ Choose the frequency of Weight Update.

Maximum Epochs

Many problems should be learnable within the default 1000 epochs; thus the default is a reasonable starting point.

Termination Criteria

The Termination criteria, when "MSE" (mean square error) and "Minimum" are chosen, sets up the necessary
breadboard components so that the training stops when the error reaches the "Threshold." Stopping the learning
in this fashion keeps the network from overtraining, and thus is particularly desirable if cross validation is not being
used. The default "Threshold" is usually adequate.

When cross validation is used, the default configuration is to have the training stop when the cross validation error
begins to increase. The best weights of the network are automatically saved at the point when the cross validation
error is at its lowest point. When testing the network, these best weights are loaded into the network before the
testing data is fed through the network (if the "Load Best on Test" switch is set).

Weight Update

The Weight Update option determines when the network weights are updated. "Online" learning updates the
weights after the presentation of each exemplar, while "Batch" learning waits until the entire training set has been
presented, and thus effectively averages the weight updates over the data set. For beginning users, we
recommend "Batch" weight update because the learning is stable over a wider range of step sizes. However, for
large data sets, the "Online" weight update can be significantly faster, although it requires a more careful tuning of
the learning parameters.

Example

The exclusive-or problem is not particularly difficult, therefore we will stop the training after 200 epochs maximum.
However, we do not want to overtrain, so we will use a Termination criterion.

ü Enter "200" as the Maximum Epochs.

ü Use the defaults "MSE" and "Minimum" as the Termination criteria, and "0.01" as the Threshold.

ü Use the default "Batch" as the Weight Update.

ü Click the Forward button to advance to the next panel.

NeuralBuilder Probe Configuration Panel

NeuralBuilder Probe Configuration Panel

NeuroSolutions can probe the data flowing through a network, or any of its parameters, using a variety of
visualization tools. The NeuralBuilder concentrates on the most important of these. In the Probe Configuration
panel, you can:

§ Choose the type of probe for any of the following points in the network, such as Input, Output, Desired
response, Error or Weights.

§ Monitor the performance of the network during training.

§ Specify whether the probes will monitor training, cross validation, or both.

§ Build the network.

Probe Types

NeuroSolutions offers many different probes. The NeuralBuilder handles the seven most important probes, shown
in the chart below:

Probe Matri
x
Style
?

Accumulate
s Data Over
Time?

Feature

BarChart No No Length of bar is proportional to value.

DataWriter Yes Yes Accumulates the data over time in a separate window,
which can be saved as a text file. Also dumps direct to a
file.

Hinton Yes No Size of box is proportional to value.

ImageView
er

Yes No Intensity of pixels proportional to value.

MatrixEdito
r

Yes No For editing network parameters, even as a simulation is
running.

MatrixView
er

Yes No Standard numerical display.

DataGraph No Yes Graphs the signal over time.

Matrix style probes display their data in a two-dimensional array if the underlying data is arranged that way.

Learning Curve

You should always monitor the error during training, and the best way to do this is with the DataGraph. The
resulting plot is called the learning curve. If you are using a cross validation data set, then you should also monitor
its learning curve.

Example

We would like to view the learning curve, the network output and the desired output. Since this is a classification
problem, we will also include a confusion matrix to see when all 4 exemplars are classified correctly.

ü Use the default settings of the "DataWriter" for the Output and Desired response and the "DataGraph" for the
Error.

ü Leave the "Training Set" switches at their defaults (switched on for the Output, Desired and Error).

ü Check the "Confusion Matrix" box under Performance Measures.

Note that because we are not performing cross validation, that option is not available for the probes in this
example.

Building the Network with the NeuralBuilder

Upon clicking the Build button from the Probe Configuration panel, the NeuralBuilder opens
NeuroSolutions and sends the commands necessary to build the network, exactly as you have designed it.

Keeping the NeuralBuilder in the Background for Future Use

After the network has been built, the NeuralBuilder minimizes itself to the background. We recommend that you
keep the NeuralBuilder in the background with all of your most recent settings. Should you decide to change your

design, simply return to the NeuralBuilder, backtrack using the Back button , make only the necessary
changes, and then re-build the network.

Example

Finally, we are ready to build the Multilayer Perceptron.

ü Click the Build button .

Within NeuroSolutions itself, you should see the following network being built:

Example MLP Breadboard

Once a breadboard has been built, your first step should be to save it:

ü Go to the File menu and select "Save as…".

Save the breadboard using a name and location of your choice.

Summary of Neural Network Theory

It is not necessary to know the details of neural networks in order to use them, but this basic introduction can be
helpful. A complete coverage of neural network theory can be found within the interactive book "Neural and
Adaptive Systems: Fundamentals Through Simulations" (ISBN: 0471351679) by Principe, Euliano, and Lefebvre.
More information on this book is available from the NeuroDimension web site at:

http://www.nd.com/products/nsbook.htm

Neural Network Definition

A neural network is an adaptable system that can learn relationships through repeated presentation of data and is
capable of generalizing to new, previously unseen data. Some networks are supervised, in that a human
determines what the network should learn from the data. In this case, you give the network a set of inputs and
corresponding desired outputs, and the network tries to learn the input-output relationship by adapting its free
parameters. Other networks are unsupervised, in that the way they organize information is hard-coded into their
architecture.

Neural Network Use

Neural networks are used for both regression and classification. In regression, the outputs represent some
desired, continuously valued transformation of the input patterns. In classification, the objective is to assign the
input patterns to one of several categories or classes, usually represented by outputs restricted to lie in the range
from 0 to 1, so that they represent the probability of class membership.

Important Neural Network Theories

§ For regression, it can be shown that a single hidden layer Multilayer Perceptron can learn any desired
continuous input-output mapping if there are sufficient numbers of axons in the hidden layer(s).

§ For classification, Multilayer Perceptrons can learn the Bayesian posterior probability of correct classification.
This means that the neural network takes into account the relative frequency of occurrence of the classes,
giving more weight to frequently occurring classes.

§ For temporal problems, it can be shown that recurrent networks can follow any desired trajectory over time.

The Neural Network Design and Use Life Cycle

The Neural Network design and use life cycle is a complex dynamic process with many steps. However, careful
consideration of the following steps can yield a vast improvement in neural network performance.

1) Understand the Data

Neural networks cannot be used as black boxes, even in the best of circumstances. There is no substitute for a
firm understanding of the data. Explore the data in as many ways as possible:

a) Try to understand the physical process that produced the data.

b) Plot the data: Plot the individual channels, as well as one channel against another.

c) Examine the statistics: Calculate the within channel mean and variance, as well as the between channel
correlations.

d) Use digital signal processing (DSP) analysis techniques, such as the Fast Fourier Transform (FFT), to
understand the data in the frequency domain.

2) Preprocess the Data

The goal here is to take the insight gained in (1) above, and to encode it into the data. Examples include:

a) Transform the data so that it better represents "features" of the known physical process.

b) Transform the data to a more compact representation using universal techniques such as Principal
Component Analysis (PCA) or Kohonen Self-Organizing Feature Maps (SOFM). Note that these
techniques can also be implemented online at the first layer of a neural network.

c) Eliminate superfluous input channels. It is also possible to identify superfluous input channels after a
network has been trained (see (7) below).

3) Choose a Desired Input-Output Mapping

Decide what the neural network is to accomplish. In particular, what is to be the desired input-output
relationship? Sometimes this can require hand coding of the desired data.

4) Choose a Neural Architecture (see Choosing a Neural Architecture)

For regression, always start out with a linear network. For classification, always start out with a linear
discriminant classifier. Even if these networks do not perform well, they provide a baseline comparison for other
networks as you graduate in complexity. Also, a consideration here is whether an unsupervised network can
perform the desired input-output mapping.

5) Train the Network (see Neural Network Training Hints)

If possible, monitor the training with a subset of the training exemplars set aside as a cross validation set. If the
data set is too small to use cross validation, then stop the training when the learning curve first starts to level off.

6) Repeat the Training

There is a high degree of variability in the performance of a network trained multiple times, but starting from
different initial conditions. Therefore, the training should be repeated several times, varying the size of the
network, and/or the learning parameters. Among those networks that perform the best (on the cross validation
set, if available), choose the one with the smallest number of free weights.

7) Perform Sensitivity Analysis

Sensitivity analysis measures the effect of small changes in the input channels on the output, and is computed
over the whole training set. It can be used to identify superfluous input channels. Eliminate those channels and
repeat the training process.

8) Test the Network on New Data

This is where you put the network to use. If you have carefully followed the previous steps, the network should
generalize well to new data.

9) Update the Training

Occasionally, when enough new data is accumulated, include old test data in with the existing training set, and
repeat the entire training process.

Choosing a Neural Architecture

Neural networks can be very powerful learning systems. However, it is very important to match the neural
architecture to the problem. As seen previously, the NeuralBuilder constructs the most popular neural
architectures. The chart below is a guide to choosing one of the NeuralBuilder's models for your problem.

Model Description Primary Use or Advantage

Multilayer Perceptron (MLP) The most widely used
neural network

General Classification or Regression.

Generalized Feedforward
MLP

MLP plus additional
layer-to-layer forward
connections

Additional computing power over
standard MLP.

Modular Feedforward Several parallel MLP's
that combine at the
output

Reduced number of weights between
layers compared to standard MLP.

Radial Basis Function (RBF) Linear combination of
Gaussian Axons

Fast training, simple interpretation of
Gaussian centers and widths.

Jordan and Elman MLP with non-adaptable
recurrent feedback

Adds fixed memory to the MLP for
simple temporal problems with fixed
temporal dependencies.

Principal Component
Analysis (PCA) Hybrids

Unsupervised PCA at
input followed by a
supervised MLP

Project high dimensional redundant
input data onto smaller dimension.
Resulting outputs are orthogonal.

Self-Organizing Feature Map
(SOFM) Hybrid

Unsupervised SOFM at
input followed by a
supervised MLP

Project high dimensional data onto
smaller dimension while preserving
neighborhoods.

Time Lagged Recurrent Locally recurrent layer(s)
with a single adaptable
weight

For temporal problems with short
temporal dependencies. Guaranteed
stability, simple interpretation of
recurrent weight in terms of memory
depth of data.

General Recurrent Fully and partially
recurrent networks

For more difficult temporal problems,
the most powerful neural network, but
also the most difficult to train. Often
become unstable.

CANFIS Adaptable Fuzzy
membership function at
the input

For poorly defined problems. The
fuzzy preprocessing makes the
neural network's job easier by
characterizing inputs that are not
easily discretized, often resulting in a
better overall model.

Support Vector Machine Trained using the kernel
adatron algorithm.

Strictly used for small to medium
sized classification problems. The
SVM is especially effective in
separating sets of data that share
complex boundaries.

Within NeuroSolutions itself, you can manually construct an even wider variety of neural architectures.

Neural Network Training Hints

Here are some key tips for getting better results. Keep in mind that the NeuralBuilder automatically implements
many of these suggestions for you.

Speeding Up Training

§ For large data sets, use the online weight update.

Updating the network weights after the presentation of each exemplar acts as a random source of perturbation
to the gradient descent, which can help keep the network from getting stuck in a local minima.

§ On the hidden layers, use the Tanh non-linearity, not the Sigmoid.

Sigmoids produce zeros, and learning does not occur when the input to a learning element is zero.

§ Scale your data by input channel to match the range of the first hidden layer's transfer function.

Scaling your data by channel to match the first hidden layer's range can speed up training because a solution is
not far from the initial weight values in the weight space (the relative magnitudes of the weights before and after
training are comparable). For the Tanh non-linearity, scale the data to lie between –1 and 1.

§ Use a small learning rate for layers near the output, and an increasingly larger learning rate as you move back
in the network towards the input.

The gradient gets attenuated by each layer as it is backpropagated from the output to the input, and this can
cause layers near the input to learn very slowly.

Improving Generalization

§ Don't train forever.

Overtraining can actually degrade performance on the test set. If you can, set aside part of your training data for
cross validation, and stop the training when the performance on the cross validation set deteriorates. If your
data set is too small to afford cross validation, then stop the training when the learning curve (error vs. epoch)
just begins to flatten out.

§ Repeat the training several times.

Neural networks are highly non-linear and can have many local minima in the weight space. Repeating the
training increases your chance of finding, or getting closer to, the global minimum.

§ For multi-way classification, where the desired response is either 0 or 1, use a SoftMax at the output layer (to
constrain the outputs to sum to one). Monitor the confusion matrix, in addition to mean square error, to monitor
the training progress.

If you use a SoftMax output, then you can interpret the outputs directly as probabilities, even for the test set.

§ For regression, where the desired response varies continuously over some range, use a linear output.

Even if your data is scaled, the larger dynamic range of a linear output will both speed up learning and improve
generalization.

§ Find the minimum number of total PE's in the network such that it is still able to learn the problem.

You can either start with a small number of PE's per layer and then increase until the network is first able to
learn the problem, or you can start with a large number of PE's and then decrease until the network no longer
learns. The network with the smallest number of free weights is also the one most likely to generalize well on
new data. As a general rule, start with a network that has approximately one free weight for every ten exemplars
in the training set.

§ For high-dimensional input data, use a Principal Component Analysis (PCA) layer at the input to project the
input onto a smaller dimension.

The smaller dimensional input reduces the number of free weights in the layers that follow, which can improve
generalization, and the orthogonalization of the input can speed up training.

File Format Requirements

Whereas NeuroSolutions can input data in many formats, including binary and bitmaps, the NeuralExpert and
NeuralBuilder require that your data be formatted as follows:

§ ASCII file format.

§ Data arranged as columns, which may include inputs, desired outputs, or data that is not used by the neural
network.

§ Each row contains one exemplar (pattern) of data (with the exception of the first row, which may contain column
headings).

§ The data elements within each row are separated by tabs, spaces, or commas.

Example

SpecimenNumber,Species,FrontalLip,RearWidth,Length,Width,Depth,Male,Female

142,0,20.6,14.4,42.8,46.5,19.6,1,0

19,1,13.3,11.1,27.8,32.3,11.3,1,0

169,0,16.7,14.3,32.3,37,14.7,0,1

56,1,9.8,8.9,20.4,23.9,8.8,0,1

164,0,15.6,14.1,31,34.5,13.8,0,1

53,1,9.1,8.1,18.5,21.6,7.7,0,1

 {ewl RoboEx32.dll, WinHelp2000, }

