
BOOSTEXTER FOR TEXT CATEGORIZATION IN SPOKEN LANGUAGE DIALOGUE

Marie Rochery, Robert Schapire, Mazin Rahim, Narendra Gupta

AT&T Labs - Research, 180 Park Avenue, Florham Park, NJ 07932

ABSTRACT

Data collection plays a critical role in the development of
accurate syntactic and semantic models for natural-language
dialogue systems. This task, which is known to be both
labor intensive and financially expensive, is the bottleneck
when rapidly prototypingvoice-enabled services. In this pa-
per, we propose a mathematical framework for minimizing
the reliance of data by refining human expertise with the
statistics of any available training data. In particular, we ex-
tend BoosTexter, a member of the boosting family of algo-
rithms, to combine and balance hand-crafted rules with the
statistics of the data in spoken language understanding. Ex-
periments on two voice-enabled applications for customer
care and help desk are presented.

1. INTRODUCTION

Building spoken natural-language dialogue systems for au-
tomated customer care and help desk applications presents
several technical challenges: (1) the need for large vocab-
ulary recognition to accommodate for the variety of input
requests, (2) parsing and understanding users’ requests, and
(3) supporting mixed-initiative and conversational dialogue.
The open-format natural language input for these sets of ap-
plications is significantly more complex than travel reserva-
tion systems [4] for example, and presents a major challenge
to both speech recognition and language understanding.

In this paper, we describe one component of our dia-
logue system, namely the module for identifying a user’s
request. We consider this as a multi-class multi-label text
categorization problem. We apply a machine-learning sys-
tem called BoosTexter [7] which was based on the boosting
family of algorithms first proposed by Freund and Schapire
[2, 5]. BoosTexter is strictly data driven. It combines many
simple and moderately accurate categorization rules that are
trained sequentially into a single, highly accurate rule that
can accurately predict a class. It has been shown to outper-
form traditional methods for text categorization [6].

This paper presents an extension to BoosTexter that com-
bines and balances human expertise with the statistics of
the training data. Human expertise ranges from pragmatic
knowledge to application specific rules. Our proposed al-
gorithm provides several advantages: (1) it enables rapid
prototyping of spoken natural-language services when the
amount of data available is severely limited, (2) it provides

a framework for supporting new service requests for which
no data is available.

We present two sets of experiments, one for a customer
care application and the other for a Help Desk application.
Our results show that including expert knowledge when data
is limited can help to reduce the amount of data necessary
for building these applications by factors of 2 to 4.

2. BOOSTEXTER

We begin by describing the machine-learning system Boos-
Texter.

We assume that we are given a set of training examples
�x�� y��� � � � � �xm� ym�. Each xi is called an instance. In
this paper, each xi will generally be the text of a transcribed
or recognized utterance; however, in general, xi may incor-
porate other information about what was spoken. Each yi is
the label or class assigned to the instance xi; for instance, yi
may indicate call type. For simplicity, we assume for now
that there are only two classes, �� and ��.

The goal of a learning algorithm is to use the training
data to derive a rule that accurately predicts the class of any
new instance x; such a prediction rule is called a classifier.
The approach that we take is based on a machine-learning
method called boosting [2, 5]. In particular, we use a variant
of Schapire and Singer’s BoosTexter system [7].

The basic idea of boosting is to build a highly accurate
classifier by combining many “weak” or “simple” base clas-
sifiers, each one of which may only be moderately accurate.
To obtain these base classifiers, we assume we have access
to a base learning algorithm that we use as a black-box sub-
routine.

The collection of base classifiers is constructed in rounds.
On each round t, the base learner is used to generate a base
classifier ht. Besides supplying the base learner with train-
ing data, the boosting algorithm also provides a set of non-
negative weights wt over the training examples. Intuitively,
the weights encode how important it is that h t correctly clas-
sify each training example. Generally, the examples that
were most often misclassified by the preceding base classi-
fiers will be given the most weight so as to force the base
learner to focus on the “hardest” examples.

Following Schapire and Singer [6], we use confidence-
rated classifiers h that, rather than outputting simply �� or
��, output a real number h�x� whose sign (�� or ��) is

Input: �x�� y��� � � � � �xm� ym�, where xi � X, yi �
f�����g
For t � �� � � �T :

� let wt�i� �
�

� � exp
�
yi
Pt��

t��� ht��xi�
�

� use wt to obtain base classifier ht � X � R from
base learner; the base learner should minimize the
objective function:

X
i

wt�i�e
�yiht�xi� (1)

Output final classifier: f�x� �
TX
t��

ht�x�

Figure 1: A binary boosting algorithm.

interpreted as a prediction, and whose magnitude jh�x�j is
a measure of “confidence.”

The pseudo-code of the boosting algorithm is given in
Figure 1. This is a variant of Freund and Schapire’s original
AdaBoost algorithm [2] as modified by Collins, Schapire
and Singer [1] to minimize logistic loss rather than expo-
nential loss.

The real-valued predictions of the final classifier f can
be converted into probabilities by passing them through a
logistic function; that is, we can regard the quantity

�

� � e�f�x�

as an estimate of the probability that x belongs to class ��.
In fact, the boosting procedure here described is designed to
minimize the negative conditional log likelihood of the data
under this model, namely,

X
i

ln�� � e�yif�xi��� (2)

The base learning algorithm that we use is the same as
in Schapire and Singer’s BoosTexter system [7]. In particu-
lar, each base classifier tests for the presence or absence of a
particular word, short phrase or other simple pattern, hence-
forth referred to simply as a term. If the term is present,
then one prediction is made; otherwise, some other predic-
tion is made. For instance, the base classifier might be: “If
the word ‘yes’ occurs in the utterance, then predict ������,
else predict �	����.” Schapire and Singer [7] describe a
base learning algorithm that efficiently finds the best base
classifier of this form, i.e., the one minimizing criterion (1).

Schapire and Singer [6, 7] also describe in detail how to
extend this approach to multiclass problems in which more
than two classes are allowed and furthermore in which each

example may belong to multiple classes. The intuitive idea
is to reduce to binary questions which ask if each example
is or is not in each of the classes.

2.1. Incorporating human knowledge

Boosting, like many machine-learning methods, is entirely
data-driven in the sense that the classifier it generates is de-
rived exclusively from the evidence present in the training
data itself. When data is abundant, this approach makes
sense. However, in some applications, data may be severely
limited, but there may be human knowledge that, in princi-
ple, might compensate for the lack of data.

In its standard form, boosting does not allow for the di-
rect incorporation of such prior knowledge. In this section,
we describe a modification of boosting that combines and
balances human expertise with available training data. We
aim for an approach that allows the rough human judgments
to be refined, reinforced and adjusted by the statistics of the
training data in a well controlled manner.

As before, we limit our attention to binary classifica-
tion; extension to multiclass problems can be made along
the lines of Schapire and Singer [6, 7]. In our approach, a
human expert must begin by constructing a rule p mapping
each instance x to an estimated probability p�x� �
�� ��
which is interpreted as the guessed probability that instance
x belongs to class ��. We discuss below some methods for
constructing such a function p.

To apply boosting using p and a training set, we create
a new weighted training set. This new set includes all of the
original training examples �xi� yi�, each with unit weight.
In addition, for each training example �xi� yi�, we create
two new training examples �xi���� and �xi���� with weights
�p�xi� and ��� � p�xi��, respectively, where � is a param-
eter of the algorithm controlling the confidence in encoding
knowledge. During training, these weights w� are used in
computing wt so that

wt�i� �
w��i�

� � exp
�
yi
Pt��

t��� ht��xi�
�

(here, i ranges over all of the examples in the new training
set).

One final modification that we make is to add a �-th base
classifier h� that is based on p so as to incorporate p right
from the start. In particular, we take

h��x� � ln

�
p�x�

�� p�x�

�

and include h� in computing the final classifier f .
Essentially, these modifications have the effect of chang-

ing the objective function in (2) to one that incorporates
prior knowledge, namely,

X
i

ln
�
� � e�yif�xi�

�
��
X
i

RE

�
p�xi� k

�

� � e�f�xi�

�

where RE �p k q� � p ln�p�q� � ��� p� ln��� � p�����
q�� is binary relative entropy. Thus, we balance the con-
ditional likelihood of the data against the distance of the
data-generated model from the model provided by the hu-
man. The relative importance of the two terms is controlled
by the parameter �.

3. PRIOR KNOWLEDGE

Prior knowledge may be acquired from several sources, e.g.
human judgment, application guidelines and manuals, world
knowledge, and in-domain website. In fact while devel-
oping a spoken dialogue system designers do have access
to one or more such sources of knowledge. Designers use
these sources of knowledge to deduce information crucial
for the development of the dialogue system, i.e. the func-
tionalities to support, and a basic understanding of how users
may interact with the application. It would be only prudent,
therefore, to also use these sources of knowledge for boot-
strapping the text categorization module needed for the nat-
ural language understanding, especially when data is lim-
ited.

As an example, prior knowledge allows us to encode
rules that can classify user responses to confirmation ques-
tions like: “So you want to fly from Boston to New York
on Sunday evening?” A user response containing “yes”,
“okay”, “correct”, “all right”, or “fine”, etc. is highly in-
dicative of a positive confirmation. We can formally express
this by a rule with an estimated probability, of say 0.9:

� yesjokayjcorrectjall rightjfine� class(Yes, .9).

Another example of applying prior knowledge is for classi-
fying users requests to be connected to an operator/service
agent. This can be expressed by the following rule:

� speak & (humanjoperatorj(service & agent))
� class(Agent, .95).

In general to incorporate prior knowledge the three logical
operators, OR, AND and NOT must be supported. More
specifically given such rules (with logical connectives), we
require a method to map them onto the BoosTexter 0-th base
classifier h�. To do this, disjunctive terms in the rules (prior
knowledge) are represented as separate classifiers. Each of
these classifiers are assigned a p�x� value equal to the sub-
jective probability assigned to rules in prior knowledge. The
values of p�x� are then used to compute h��x� as explained
in section 2.1.

4. EXPERIMENTS

In this section, we describe and analyze the experiments we
performed using BoosTexter for text categorization with in-
domain knowledge provided by the application guidelines.

4.1. Test databases

We ran experiments with data from two different applica-
tions. The first database used is the How May I Help You?
database [3]. In this task, there are 15 different classes. We
did experiments with 50 to 1600 sentences in the training set
and 2991 sentences in the test set. The second database is
for an application called “TTS Help Desk”. This application
provides information about AT&T Text-to-Speech engine.
There are 22 different classes. We trained models on 100 to
2675 sentences and tested on 2000 sentences.

4.2. Results

In the first experiment that was performed on the How May
I Help You? database, we measured the classification accu-
racy as a function of the number of examples used during
training. The classification accuracy is the percentage of
sentences with a correctly predicted label. There is no re-
jection and the label with the highest score is kept as the
predicted label. We compared models built only with some
training examples and models built with both hand-crafted
rules (prior knowledge) and training examples. We used
approximately one rule per class where a rule is a combi-
nation of many words or phrases. We trained the models
on 50, 100, 200, 300 rounds when the number of available
training examples was respectively 50, 100, 200, 400 and
up. The parameter � was selected empirically based on the
number of available training examples. We set � to 1 when
the number of training examples was less than or equal to
200, 0.1 when it was between 400 and 800, and 0.01 when
it was greater.

The dashed line in Figure 2 shows the classification ac-
curacy for models built on hand-crafted rules and training
examples whereas the solid lines show the classification ac-
curacy for models built either on training examples only or
on hand-crafted rules only. An improvement in accuracy is
observed when using hand-crafted rules and training exam-
ples together. This comes from the fact that some patterns of
the hand-crafted rules are not in the data at all or are not in
a sufficient number of sentences to have a statistical impact
when training only on the data.

In this experiment, when fewer training examples were
available (�100 examples) exploiting human expertise pro-
vided classification accuracy levels that are equivalent to
models trained on four times the amount of training data.
When the number of training examples is larger (� ���),
accuracy levels becomes equivalent to two times the amount
of training data. When larger than 6000 sentences were
available, both models were found to converge to similar
classification accuracy.

The second experiment was performed on the Help Desk
task. Figure 3 shows the comparison between models built
with hand-crafted rules and training examples and models
built only with training examples. In this experiment there
is also about 1 rule per class where a rule is again a combina-
tion of many words and phrases. We trained the models on

0 200 400 600 800 1000 1200 1400 1600
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Training Sentences

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

data

knowledge

knowledge + data

Figure 2: Comparison of performance using data and
knowledge separately or together on the How May I Help
You task.

100, 200, 400, 600, 800, 1000 when the number of training
examples was respectively 100, 200, 400, 800, 1600, and
up. We set � to 0.1 when the number of training examples
was less than or equal to 1600 and to 0.01 otherwise.

Figure 3 shows an improvement in classification accu-
racy when hand-crafted rules are being used. This improve-
ment is up to 9% absolute with 100 training examples and
drops to 0.5% when more data becomes available.

We can notice from the experiments that the number of
rounds and the choice of the parameter � are dependent on
the number of training examples available. We can also no-
tice that the knowledge-only curves are not perfectly flat.
This comes from the fact that the models from the knowl-
edge take into account the class distribution of the available
training examples as explained in the section 3.

5. SUMMARY

The use of BoosTexter for text categorization in natural-
language understanding was described in this paper. We
presented an extension to BoosTexter that incorporates hu-
man knowledge of the application in the form of hand-crafted
rules. Each set of rules, associated with estimated proba-
bilities of the distribution of the class, is refined and en-
hanced by the statistics of the training data. A new objec-
tive function was proposed which has an additional relative
entropy term that balances the conditional likelihood of the
data against the distance of the data-generated model from
that obtained using human knowledge.

Two experiments were conducted on speech data col-
lected from natural-language dialogue applications. Both
experiments demonstrate that introducing prior knowledge
of the domain can significantly cut the amount of data needed
for building the application. For both applications, exploit-

0 500 1000 1500 2000 2500 3000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Training Examples

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y data

knowledge

data + knowledge

Figure 3: Comparison of performance using data and
knowledge separately or together on the Help Desk task.

ing human expertise helped to reduce reliance on the data
by factors of two to four.

Acknowledgment

The authors would like to acknowledge the technical contri-
bution of H. Alshawi, S. Bangalore, S. Douglas, Giuseppe
Di Fabbrizio, G. Riccardi and Y. Singer.

References
[1] Michael Collins, Robert E. Schapire, and Yoram Singer. Lo-

gistic regression, AdaBoost and Bregman distances. In Pro-
ceedings of the Thirteenth Annual Conference on Computa-
tional Learning Theory, 2000.

[2] Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences, 55(1):119–
139, August 1997.

[3] A.L. Gorin, G. Riccardi, and J.H. Wright. How May I Help
You? Speech Communication, 23:113–127, 1997.

[4] E. Levin, , S. Narayanan, R. Pieraccini, K. Biatov, E. Boc-
chieri, G. Fabbrizio, W. Eckert, S. Lee, A. Pokrovsky,
M. Rahim, P. Ruscitti, and M. Walker. The AT&T darpa com-
municator mixed-initiative spoken dialogue system. In ICSLP,
2000.

[5] Robert E. Schapire. A brief introduction to boosting. In Pro-
ceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, 1999.

[6] Robert E. Schapire and Yoram Singer. Improved boosting al-
gorithms using confidence-rated predictions. Machine Learn-
ing, 37(3):297–336, December 1999.

[7] Robert E. Schapire and Yoram Singer. BoosTexter: A
boosting-based system for text categorization. Machine
Learning, to appear.

