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Abstract for learning to play repeated games based on the on-line
prediction methods of Littlestone and Warmuth [15]. The
analysis of this algorithmyields a new (as far as we know) and

We study the close connections between game the- | ;
simple proof of von Neumann'’s famous minmax theorem, as

ory, on-line prediction and boosting. After a brief

review of game theory, we describe an algorithm
for learning to play repeated games based on the
on-line prediction methods of Littlestone and War-
muth. The analysis of this algorithm yields a sim-
ple proof of von Neumann’s famous minmax theo-
rem, as well as a provable method of approximately
solving a game. We then show that the on-line pre-
diction model is obtained by applying this game-

well as a provable method of approximately solving a game.

In the last part of the paper we show that the on-line
prediction model is obtained by applying the game-playing
algorithm to an appropriate choice of game and that boosting
is obtained by applying the same algorithm to the “dual” of
this game.

2 GAME THEORY

playing algorithm to an appropriate choice of game
and that boosting is obtained by applying the same
algorithm to the “dual” of this game.

We begin with a review of basic game theory. Further back-
ground can be found in any introductory text on game theory;
see for instance Fudenberg and Tirole [11]. We study two-
person games in normal form. That is, each game is defined
by a matrixM. There are two players called the row player
and column player. To play the game, the row player chooses
a rowi, and, simultaneously, the column player chooses a
columny. The selected entry/(:, j) is theloss suffered by
the row player.

For instance, the loss matrix for the children’s game
Rock, Paper, Scissors” is given by:

1 INTRODUCTION

The purpose of this paper is to bring out the close connec-
tions between game theory, on-line prediction and boosting.
Briefly, game theory is the study of games and other interac-
tions of various sorts. On-line prediction is a learning model «
in which an agent predicts the classification of a sequence of

items and attempts to minimize the total number of prediction R P S
errors. Finally, boosting is a method of converting a “weak” R % 1 0
learning algorithm which performs only slightly better than P o ! 1
random guessing into one that performs extremely well. 2

All three of these topics will be explained in more detail s 1 0 3

below. All have been studied extensively in the past. Inthis  The row player’s goal is to minimize its loss. Often, the
paper, the close relationship between these three seeminglyoa of the column player is to maximize this loss, in which
unrelated topics will be broughtout. , . case the game is said to be “zero-sum.” Most of our results
Here is an outline of the paper. We will begin with a  5re given in the context of a zero-sum game. However, our
review of game theory. Then we will describe an algorithm agyits also apply when no assumptions are made about the
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21 RANDOMIZED PLAY

As described above, the players choose a single row or col-

umn. Usually, this choice of play is allowed to be random-
ized. Thatis, the row player chooses a distribulfoover the
rows of M, and (simultaneously) the column player chooses
a distributionQ over columns. The row player's expected
loss is easily computed as

> P()M(i./)QU) = PTMQ.

For ease of notation, we will often denote this quantity by
M(P, Q), and refer to it simply as the loss (rather than
expected loss). In addition, if the row player chooses a dis-
tributionP but the column player chooses a single colymn
then the (expected) loss}s,; P (i)M(¢, j) which we denote
by M(P, j). The notatiorM (¢, Q) is defined analogously.
Individual (deterministically chosen) rowsnd columns
j are calledpure strategies. Randomized plays defined by
distributionsP and Q over rows and columns are called
mixed strategies. The number of rows of the matrixI will
be denoted by.

2.2 SEQUENTIAL PLAY

Up until now, we have assumed that the players choose their

We might go on naively to conjecture that the advantage of
playing last is strict for some games so that, at least in some
cases, the inequality in Eq. (2) is strict.

Surprisingly, it turns out not to matter which player plays
first. Von Neumann’s well-known minmax theorem states
that the outcome is the same in either case so that

manumM(P, Q) = mpmmé';\xM(P, Q) (3
for every matrixM. The common value of the two sides
of the equality is called thealue of the gameM. A proof of
the minmax theorem will be given in Section 2.5.

In words, Eqg. (3) means that the row player has a (min-
max) strateg¥P* such thatregardless of the stratégyplayed
by the column player, the loss sufferBfi{P*, Q) will be at
most v. Symmetrically, it means that the column player has
a (maxmin) strateg@)* such that, regardless of the strategy
P played by the row player the loss will Iz least v. This
means that the strategi€s' andP* are optimal in a strong
sense.

Thus, classical game theory says that given a (zero-sum)
gameM, one should play using a minmax strategy. Such a
strategy can be computed using linear programming.
However, there are a number of problems with this ap-

(pure or mixed) strategies simultaneously. Suppose now thatProach. For instance,

instead play is sequential. That is, suppose that the column

player chooses its strate@y after the row player has chosen
and announced its strateBy Assume further thatthe column
player’s goal is to maximize the row player’s loss (i.e., that
the game is zero-sum). Then giv#, such a “worst-case”
or “adversarial” column player will choosg to maximize
M(P, Q); that is, if the row player plays mixed strateBy
then its payoff will be

max M(P, Q). (1)

(It is understood here and throughout the paper thatgnax
denotes maximum over all probability distributions over col-
umns; similarly, mig will always denote minimum over
all probability distributions over rows. These extrema exist

¢ M may be unknown;

¢ M may be so large that computing a minmax strategy
using linear programming is infeasible;

¢ the column player may not be truly adversarial and may
behave in a manner that admits loss significantly smaller
than the game value

Overcoming these difficulties in the one-shot game is
hopeless. But suppose instead that we are playing the game
repeatedly. Then itis natural to ask if one can learn to play
well against the particular opponent that is being faced.

because the set of distributions over a finite space is compact.)z-4 REPEATED PLAY

Knowing this, the row player should chooBeto mini-
mize Eq. (1), so the row player’s loss will be

min mé';\xM (P, Q).
A mixed strategyP* realizing this minimum is called @in-
max strategy.
Suppose now that the column player plays first and the
row player can choose its play with the benefit of knowing

the column player’s chosen strateQy Then by a symmetric
argument, the loss of the row player will be

inM(P
maxminM (P, Q).
and aQ* realizing the maximum is calledreaxmin strategy.
23 THE MINMAX THEOREM

Intuitively, we expect the player who chooses its strategy last
to have the advantage since it plays knowing its opponent’s 4.

strategy exactly. Thus, we expect
i < mi .
manumM(P, Q) < mpmmé';\xM(P, Q)

(2)

Such a model of repeated play can be formalized as described
below. To emphasize the roles of the two players, we refer
to the row player as thkearner and the column player as the
environment.

Let M be a matrix, possibly unknown to the learner. The
game is played repeatedly in a sequena®arfids. On round
t=1...,T:

1. the learner chooses mixed stratdtyy

. the environment chooses mixed strat€gywhich may
be chosen with knowledge &f;)

3. the learner is permitted to observe the IvE&, Q) for
each rowi; this is the loss it would have suffered had it

played using pure strategy
the learner suffers lodd(P;, Q).

The goal of the learner is to do almost as well as the best
strategy against the actual sequence of pl@ys. .., Qr



which were chosen by the environment. That is, the learner’sthe average per-trial loss suffered by the learner is
goal is to suffer cumulative loss

1& 1
ZM(Pt’Qt) T; ty Q¢ u T; t 7

=1 where

which is “not much worse” than the loss of thest strategy
in hindsight Ap = f20Nn Inn 0( '”_”)

T T T T
mPin;M(P, Q).

Proof: See Section 2.2 in Freund and Schapire IB].

SinceAr — 0 as7T — oo, we see that the amount by
which the average per-trial loss of the learner exceeds that
of the best mixed strategy can be made arbitrarily small for
largeT.

For simplicity, the results in the remainder of the pa-
per are based on Corollary 2 rather than Theorem 1. The
details of the algorithm about which this corollary applies
are largely unimportant and could, in principle, be applied
to any algorithm with similar properties. Indeed, algorithms
for this problem with similar properties were derived by Han-

] wy (1) nan [13]! Blackwell [1] and Foster and Vohra [6, 5, 4]. Also,
Py(i) = m Fudenberg and Levine [10] independently proposed an algo-
i rithm equivalent to LW and proved a slightly weaker version
Then, givenM(¢, Q) for eachi, the learner updates the of Corollary 2.
weights by the simple multiplicative rule: As a simple first corollary, we see that the loss of LW can
never exceed the value of the gaiveby more tharf\r.

An algorithm for solving this problem can be derived by a
direct generalization of Littlestone and Warmuth'’s “weighted
majority algorithm” [15], and is essentially equivalent to our
earlier “Hedge” algorithm [9]. The algorithm, called LW,
is quite simple. The learner maintains nonnegative weights
on the rows ofM; let w;(¢) denote the weight at timeon
row ¢. Initially, all the weights are set to unityw,(i) = 1.

On each round, the learner computes mixed stratd@yby
normalizing the weights:

wiga(i) = wy(i) - pMEQ0),
. . Corollary 3 Under the conditionsof Corollary 2,
Here,3 € [0, 1) is a parameter of the algorithm.
The main theorem concerning this algorithm is the fol- 1L
lowing: TZM(P“ Q) <v+4hp

t=1
Theorem 1 For any matrix M with n rows and entries in
[0, 1], and for any sequence of mixed strategies Q1, ..., Qr
played by the environment, the sequence of mixed sirategies Proof: Let P* be a minmax strategy fd¥I so that for all

'[:61’1')~ 'Sél;)gfy'?md“ced by algorithm LW with parameter 3 € column strategie®, M(P*, Q) < v. Then, by Corollary 2,

where v isthe value of the game M.

T T
T T 1 1 N
—» M(P < =% M(P Ar < v+ Ap.
S (P, Q) < asmin S M(P, Q) + ¢ Inn T; (Pr,Q) < T; (P% Qi)+ A Svhg
t=1 t=1
|
where In(1/3) 1 Note thatin the analysis we made no assumption about the
ag = 5= ——. strategy used by the environment. Theorem 1 guarantees that
1-p5 1-p5 its cumulative loss is not much larger than thaeny fixed

mixed strategy. As shown above, this implies, in particular,

that the loss cannot be much larger than the game value.

However, if the environment is non-adversarial, there might

' be a better fixed mixed strategy for the player, in which case
the algorithm is guaranteed to be almost as good as this better
strategy.

Proof: The prooffollows directly from Theorem 2 of Freund
and Schapire [9], which in turnis a simple and direct general-
ization of Littlestone and Warmuth [15]. For completeness
we provide a short proof in the appendll.

As ( approaches lys; also approaches 1. In addition,
for fixed g and as the number of roundsbecomes large,

the second term; In n becomes negligible (since itisfixed) 25 PROOF OF THE MINMAX THEOREM

relative to7". Thus, by choosing close to 1, the learner can More int tinalv. Corollary 2 b d to deri
ensure that its loss will not be much worse than the loss of the ' 0'€ INtErestingly, L-oroflary 2 can b€ used to derive a very
simple proof of von Neumann’s minmax theorem. To prove

. Thisis f li in the followi rollary: .
best strategy. This is formalized in the following corollary this theorem, we need to show that

Corollary 2 Under the conditions of Theorem 1 and with 3 minmaxM (P, Q) < maxminM(P, Q). (4)

set to 1 P Q ! - Q P ’
T o 'However, Hannan’s algorithm requires prior knowledge of the
1+4/55* entire game matrix.



(Proving that mis maxq M(P, Q) > maxy minp M (P, Q) is strategyQ has the additional favorable property of being
relatively straightforward and so is omitted.) gparseinthe sense that at mdstofits entries will be nonzero.

Suppose that we run algorithm LW against a maximally Viewing LW as a method of approximately solving a
adversarial environment which always chooses strategiesgame will be central to our derivation of a boosting algorithm
which maximize the learner’s loss. That is, on each raynd (Section 4).

the environment chooses Similar and closely related methods of approximately
solving linear programming problems have previously ap-
Q: =arg rgaM(P“ Q). () peared, for instance, in the work of Plotkin, Shmoys and

o o L Tardos [16].
LetP = A3°7_ P, andQ = AY°7_,Q,. Clearly,P andQ
are probability distributions. 3 ON-LINE PREDICTION

Th have: .
enwe have Since the game-playing algorithm LW presented in Sec-

mFin manPTMQ tion 2.4 is a direct generalization of the on-line prediction

=T algorithm of Littlestone and Warmuth [15], it is not surpris-
< manP MQ ing that an on-line prediction algorithm can be derived from
the more general game-playing algorithm by an appropriate
1 T _— = choice of gaméM. In this section, we make this connection
= manTZPt MQ by definition of P explicit.
t=1

In the on-line prediction model, first introduced by Lit-
1F tlestone [14], the learner observes a sequence of examples
—Z maxP;'MQ and predicts their labels one at a time. The learner’s goal is
e to minimize its prediction errors.

IN

17 Formally, letX be a finite set ofnstances, and leti be a
- NP ™M by definition of finite set ofthypotheses #. : X — {0, 1}. Let ¢ X — {0,1}
T; ¢ MQ: y Q be an unknowmarget concept, not necessarily ift.?
In the on-line prediction model, learning takes place in a

T
1 sequence of rounds. Onrouhe 1,...,7"
< min> E P'MQ; + Ay by Corollary 2 a
P 1. the learner observes an examples X;

= minP"MQ + Ar by definition of Q 2. the learner makes a randomized predictiog 70,1}
P of the label associated with;;

IN

maxminP™M .
Q P Q+hr 3. the learner observes the correct latie}).

Since/Ar can be made arbitrarily close to zero, this proves The goal of the learner is to minimize the expected number

Eq. (4) and the minmax theorem. of mistakes that it makes relative to the best hypothesis in
the space/{. (The expectation here is with respect to the

26 APPROXIMATELY SOLVING A GAME learner’'s own randomization.) Thus, we ask that the learner

Aside from yielding a proof for a famous theorem that by perform well whenever the targetis “close” to one of the

now has many proofs, the preceding derivation shows thathypotheses ift.

algorithm LW can be used to find an approximate minmax or It is straightforward now to reduce the on-line prediction

maxmin strategy. Finding these “optimal” strategies is called problem to a special case of the repeated game problem. The

solving the gameM. environment’s choice of a column corresponds to a choice
Skipping the first inequality of the sequence of equalities of an instancer € X that is presented to the learner on a
and inequalities above, we see that given iteration. The learner’s choice of a row corresponds
— . to choosing a specific hypothedisc H and predicting the
m(?XM(P’ Q) < manumM(P, Q) +4r =v+4r. label 2(z). A mixed strategy for the learner corresponds

_ to making a random choice of a hypothesis with which to

Thus, the vectoP is an approximate minmax strategy inthe predict. In this reduction the environment uses only pure
sense that for all column strategi€s M(P, Q) does not  strategies. The game matrix thus Hag rows, indexed by
exceed the game valueby more than:;y. SinceAr can h € H and|X| columns, indexed by € X. The matrix
be made arbitrarily small, this approximation can be made entry that is associated with hypothekiand instance: is
arbitrarily tight. 1 ifh(a) £ e(2)

Similarly, ignoring the last inequality of this derivation, M(h,z) = { 0 otherwise
we have that '

mpin M(P,Q) > v—Ar 2As was said above, much of this analysis can be generalized

— . . . . to infinite sets. The cardinality of the set of examples is actually
soQ also is an approximate maxmin strategy. Furthermore, it of ng real consequence. Littlestone and Warmuth [15] generalize

can be shown th&y, satisfying Eq. (5) can always be chosen  their results to countably infinite sets of hypotheses, and Freund and
to be a pure strategy (i.e., a mixed strategy concentrated orschapire [9] and Freund [8] give generalizations to uncountably
a single column oM). Therefore, the approximate maxmin infinite sets of hypotheses.



Thus,M(h, z) is 1 if and only if» disagrees with the target As in Section 3, lefX be a space of instance,a space

¢ oninstance:. We call this amistake matrix. of hypotheses, andthe target concept. Far > 0, we say
The application of the algorithm LW described in Sec- that algorithm WL is ay-weak learning algorithm fof#, ¢)

tion 2.4 to the on-line prediction problem is as followVe if, for any distributionQ over the sefX, the algorithm takes

apply the algorithm to mistake matiM. On round:, given as input a set of labeled examples distributed accordiy to

instancer,, LW provides us with a distributioR ; over rows and outputs a hypothesisc ‘H with error at most 12 — ~,

of M (i.e., over hypothesis spad¢). We randomly select i.e., Pp.q [h(7) # c(z)] < % — 7.

h; € 'H according toP;, and predicty; = h;(x). Next, Given a weak learning algorithm, the goal of boosting
givenc(x¢), we computeM(h, x;) for eachh € H and up- is to run the weak learning algorithm many times on many
date the weights maintained by LW. (Here, the strat@gy distributions, and to combine the selected hypotheses into a
is simply the pure strategy concentrated onitheolumn of final hypothesis with arbitrarily small error rate. For the pur-

M.) poses of this paper, we simplify the boosting model further
For the analysis, note that to require that the final hypothesis have error zero so that all
instances are correctly classified. The algorithm presented
M(P:,2e) = Z Pi(R)M(h, x:) can certainly be modified to fit the more standard (and prac-
heH tical) model in which the final error must be less than some
= Pr [h(zy) # c(x)] positive parameter (see Freund and Schapire [9] for more
P details)?
= Pr[j # c(x)]. Thus, boosting proceedsinrounds. Onrotrdl, ..., 7"

Therefore, the expected number of mistakes made by the 1. the booster constructs a distributitin on X which is
learner equals passed to the weak learner;

£l & 2. the weak learner produces a hypothdsiss ‘H with
> M(Py, ) < min > M(h,z:)+ 0 (\/ T'ln |H|) error at most 12 — v
= e Pr [hu(z) # e(x)] < L -
by a direct application of Corollary 2 (for an appropriate onDy =277
choice of3). Thus, the expected number of mistakes made
by the learner cannot exceed the number of mistakes madé\ter 7" rounds, the weak hypothesgs, . .., hy are com-

: bined into a final hypothesisg;, .
by the best hypothesis # by more tharO ( VT |H|) : The important issues for designing a boosting algorithm

A more careful analysis (using Theorem 1 rather than are: (1) how to choose distributiors;, and (2) how to
Corollary 2) gives a better bound identical to that obtained by combine the,’s into a final hypothesis.
Littlestone and Warmuth [15] (not surprisingly). Still better
bounds using more sophisticated methods were obtained by*1 BOOSTING AND THE MINMAX THEOREM
Cesa-Bianchi et al. [2] and Vovk [18]. Before describing our boosting algorithm, let us step back for
This result can be straightforwardly generalized to any a moment to consider the relationship between the mistake
bounded loss function (such as square loss rather than zeromatrix M used in Section 3 and the minmax theorem. This
one mistake loss), and also to a setting in which the learnerrelationship will turn out to be highly relevant to the design
competes against a set of experts rather than a fixed set ofnd understanding of the boosting algorithm.
hypotheses. (See, for instance, Cesa-Bianchi et al. [2] and  Recall that the mistake matri¥ has rows and columns

Freund and Schapire [9].) indexed by hypotheses and instances, respectively, and that
M(h,z) = 1if h(z) # c(z) and is zero otherwise. As-
4 BOOSTING suming(H, c) is y-weakly learnable (so that there exists a

y-weak learning algorithm), what does the minmax theorem

The third topic of this paper is boostingBoosting is the say abouM? Suppose that the value bf is v. Then

problem of converting a “weak” learning algorithm that per-
forms just slightly better than random guessing into one that mPin max M(P,z) = mPin max M(P, Q)
performs with arbitrarily good accuracy. The first provably ‘ Q
effective boosting algorithm was discovered by Schapire [17]. )
Freund [7] subsequently presented a much improved boosting = méax min M(P,Q)

algorithm which is optimal in particular circumstances. The _ méax rr}zin M(h, Q). ©)

= v

boosting algorithm derived in this section is closely related

to Freund and Schapire’s more recent “AdaBoost” boosting —— _

algorithm [9]. 4The standard boosting model usually also includes a “confi-

R dence” parametér > 0 which bounds the probability of the boost-
3The reduction is not specific to the use of LW. Other algorithms ing algorithm failing to find a final hypothesis with low error. This

for playing repeated games can be combined with this reduction to parameter is necessary if we assume that the weak learner only suc-

give on-line learning algorithms. However, these algorithms needto ceedswith high probability. However, because we here make the

be capable of working without complete knowledge of the matrix. simplifying assumption that the weak learraways succeeds in

It should be sufficient for the algorithm to receive as input only finding a weak hypothesis with error at mog®l- v, we have no

the identity and contents of columns that have been chosen by theneed of a confidence parameter and instead require that the boosting

environment in the past. algorithm succeed with absolute certainty.



(It is straightforward to show that, for ang, minp M(P, Q) being in the rang¢0, 1], we add the constant 1 to every out-

is realized at a pure strategy Similarly for P andz.) come, which has no effect on the game. Thus, the Niial
Note that, byM's definition, of M is simply
_ T
M(h,Q) = xEB [h(z) # c(x)]. M=1-M

wherelis an all 1's matrix of the appropriate dimensions.
Therefore, the right hand part of Eq. (6) says thatthere exists  In the case of the mistake matiM, the dual now has
a distributionQ* on X such that for every hypothesig rows and columns indexed by instances and hypotheses, re-
M(h,Q*) = Py~ [h(z) # c(x)] > v. However, because  spectively, and each entry is
we assume-weak learnability, there must exist a hypothesis

h such that / _ _ 1 ifh(z)=c(z)
1 Mt = 1-MOw) = { § e
Pr [h(x) # ()] <3~
o Note that any minmax strategy of the gaiviebecomes a

Combining these facts gives thatl 1/2 — ~. maxmin strategy of the gandd’. Therefore, whereas before

On the other hand, the left part of Eq. (6) implies that we were interested in finding an approximate minmax strat-
there exists a distributioR * over the hypothesis spadé egy of M, we are now interested in finding an approximate
such that for every € X: maxmin strategy oM’.

We can now apply algorithm LW to game matiM’
since, by the results of Section 2.6, this will lead to the con-
struction of an approximate maxmin strategy. The reduction
proceeds as follows: On rouriaf boosting

M(P*,z)= Pr [h(z)# c(a)] Sv<3-7<3

That is, every instance is misclassified by less thar/2 of
the hypotheses (as weighted By). Therefore, the target

concepte is functionally equivalent to a weighted majority 1 algorithm LW computes a distributid®, over rows of

of hypotheses ifi{. M’ (i.e., overX);

To summarize this discussion, we have argued that if
(H,c¢) arevy-weakly learnable, then can be computed ex- 2. the boosting algorithm sef3; = P, and passe®); to
actly as a weighted majority of hypothesegin Moreover, the weak learning algorithm;

the weights used in this function (defined by distribufidh
above) are not just any old weights, but rather are a minmax 3. the weak learner returns a hypothesisatisfying
strategy for the gampf. 1 _
A similar proof technique was previously used by Gold- xf){)t [he(x) = c(x)] > 3+
mann, Histad and Razborov [12] to prove a result about the
representation power of circuits of weighted threshold gates. 4. the weights maintained by algorithm LW are updated

42 IDEA FOR BOOSTING whereQ); is defined to be the pure strately

The idea of our boosting algorithm then is to approximate According to the method of approximately solving agame
by approximating the weights of this function. Since these given in Section 2.6, on each roundQ; may be a pure
weights are a minmax strategy of the gaiwk we might strategyh; and should be chosen to maximize
hope to apply the method described in Section 2.4 for ap-
proximately solving a game. M’(Ps, hy) = Z Pi(z)M'(z,he) = Pr [he(z) = c(2)].
The problem is that the resulting algorithm does not fit T P
the boosting model. Recall that on each round, algorithm LW
computes a distribution over the rows of the game matrix (hy-
potheses, in the case of math&). However, in the boosting
model, we want to compute on each round a distribution over the best A, finding one of accuracy /2 + v turmns out to be
instances (columns d¥f). fficient for our purposes.)
Since we have an algorithm which computes distributions su . . purp ’ — T )
over rows, but need one that computes distributions over  Finally, this method suggests th@t= (1/7)3_,_,Q: is
columns, the obvious solution is to reverse the roles of rows &N @PProximate maxmin strategy, and we know that the target
and columns. This is exactly the approach that we follow. €'S equivalentto am?Jorf[y of the hypotheses if weighted by a
That is, rather than using gardd directly, we constructthe ~ Maxmin strategy oM’. SinceQ, is inour case concentrated
dual of M which is the identical game except that the roles 0N Pure strategy (hypothesis, this leads us to choose afinal
of the row and column players have been reversed. hypothesig g, which is the (simple) majority ofy, . . ., Ar.
Constructing the duaM’ of a gameM is straightfor-
ward. First, we need to reverse row and column so we take4'3 ANALYSIS
the transpos®I'. This, however, is not enough since the Indeed, the resulting boosting procedure will compute a final
column player ofM wants to maximize the outcome, but hypothesisig, identical toc for sufficiently largeT. We
the row player oM’ wants to minimize the outcome (loss). show in this section how this follows from Corollary 2.
Therefore, we also need to reverse the meaning of minimum  As noted earlier, for alf,
and maximum which is easily done by negating the matrix M/ (Py, hy) = xf,g [ht(x) _ c(x)] >

In other words/,; should have maximum accuracy with re-
spect to distributiod® ;. This is exactly the goal of the weak
learner. (Although it is not guaranteed to succeed in finding

NI

yielding—MT. Finally, to adhere to our convention of losses T



Therefore, by Corollary 2,

Input: instance spac& and target:

v-weak learning algorithm

T T 4
1 1 Setl' = [— In XW so that/y .
Ly < 2 TMI(Prh) S min=S M (e, hi) + B 7z I (€ 7 <7)
=1 R Setg = 1/(1+/2In|X|/T).
Let Di(x) = 1/|X|forz € X.
Therefore, for all: Fort=1,...,T:

T
1
TZM/(Z‘,/H) >34+7—0r >3
t=1

(7)

where the last inequality holds for sufficiently largéspecif-
ically, whenAr < ). Note that, by definition ofV’,
S°T_,M’(z, h;) is exactly the number of hypothedaswhich
agree withe on instancer. Therefore, in words, Eq. (7) says
that more than half the hypothesgsare correct ow. There-
fore, by definition off s, we have thatg, (z) = ¢(x) for
all z.

For this to hold, we need only thAtr < ~, which will
be the case fof' = Q(In|X|/~?).

The resulting boosting algorithm, in which the game- output final hypothesis z, = MAJ(h1, .

playing subroutine LW has been “compiled out” is shown in
Fig. 1. The algorithm is actually quite intuitive in this form:
after each hypothesfs is observed, the weight associated

e Pass distributio®; to weak learner.
¢ Get back hypothesis; such that
Pr (@) # e(@)] < 3 -7

g

where Z; is a normalization constant (chosen so that
Dy41 will be a distribution).

o UpdateD;:

Dy()

_ B if hy(x) = e(w)
Zy

1 otherwise

Diya(=)

. hr).

Figure 1: The boosting algorithm.

with each instance is decreased ifi; is correct on that
instance and otherwise is increased. Thus, each distribution

focuses on the examples most likely to be misclassified by References

the preceding hypotheses.

In practice, of course, the booster would not have access
to the labels associated with tleatire domain.X. Rather,
the booster would be given a labeled training set and all dis-
tributions would be computed over the training set. The gen-
eralization error of the final hypothesis can then be bounded
using, for instance, standard “VC theory” (see Freund and
Schapire [9] for more details).

A more sophisticated version of this algorithm, called
AdaBoost, is given by Freund and Schapire [9]. The advan-
tage of this version is that the learner does not need to know
a priori the minimum accuracy rate of each weak hypothesis.

5 SUMMARY

In sum, we have shown how the two well-studied learning
problems of on-line prediction and boosting can be cast in a
single game-theoretic framework in which the two seemingly
very different problems can be viewed as “duals” of one
another.

We hope that the insight offered by this connection will
help in the development and understanding of such learn-
ing algorithms since an algorithm for one problem may, in
principle, be translated into an algorithm for the other. As
a concrete example, the boosting algorithm described in this
paper was derived from Littlestone and Warmuth’s weighted
majority algorithm by following this dual connection.
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PROOF OF THEOREM 1

Fort =1,...,7, we have that

Zwt+1(i)

The

Zwt(i) 'ﬁM(i’Qt)
i=1

IN

Zwt(i) (1= (1= M, Q)

(Zwt(l)) (1= (1= 8)M(Py, Q).

first line uses the definition af;;1(¢). The second line

follows from the fact that” < 1— (1— )« for 5 > 0 and

T e

[0, 1]. The last line uses the definition Bf;.

Unwrapping this simple recurrence gives

ZwT+l(i) <n- H(l —(1-3)M(P+, Qy)). (8)

(Recall thatw1(¢) = 1.)



