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Abstract

Good-Turing adjustments of word frequencies are an important tool in natural language
modeling. In particular, for any sample of words, there is a set of words not occuring in that
sample. Thetotal probability mass of thewords not in the sampleisthe so-called missing mass.
Good showed that the fraction of the sample consisting of words that occur only once in the
sample is a nearly unbiased estimate of the missing mass. Here, we give a high-probability
confidenceinterval for the actual missing mass. Moregenerally, for £ > 0, we giveaconfidence
interval for the true probability mass of the set of words occuring & timesin the sample.

1 INTRODUCTION

Since the publication of the Good-Turing estimators in 1953 [4], these estimators have been used
extensively in language modeling applications[2, 3, 6]. In spite of the extensiveuse of Good-Turing
estimators, little theoretical work has been done on these estimators since the original theorems
showing that they have negligible bias. In this paper, we briefly review the Good-Turing estimators
and then prove new convergence rates, i.e., we give high-probability confidence intervals for the
true values of the estimated quantities.

Perhaps the most significant Good-Turing estimator is the estimate of the missing mass. We
assume that there is some unknown underlying distribution on some unknown set of objects, e.g.,
an unknown frequency for each word in English. We assume that a sample is constructed by

drawing objects independently according to this unknown distribution. If the number of objects



with nonzero probability is infinite then for any finite sample there will be objects of nonzero
probability that do not occur in the sample. It is well known that in any sample of English text
there will be English words not occurring in the sample. The missing mass of a sample is the
total probability mass of the objects not occurring in the sample. The Good-Turing estimate of
the missing mass is the fraction of the sample consisting of objects that occur exactly oncein the
sample. The fundamental Good-Turing result isthat this estimate has negligible bias. However, to
our knowledge, the convergence rate of this estimator has never been formally analyzed.

According to Good [5], the Good-Turing estimators were developed by Alan Turing during
World War 11 while breaking Enigma codes. The Enigma was an encryption device used by the
German navy. The Enigma used, as part of its encryption key, a three letter sequence. These
three letter sequences were selected from a book containing al such sequencesin arandom order.
However, a person opening the book and selecting an entry was likely to select a previously used
entry, say the entry on the top of a page where the binding of the book was creased. Given asample
of previously used entries, Turing wanted to estimate the likelihood that the current unknown entry
was one that had been previously used, and further, to estimate the probability distribution over the
previously used entries. This lead to the development of the estimators of the missing mass and
estimates of the true probability mass of the set of items occuring £ times in the sample. Good
worked with Turing during the war and, with Turing’'s permission, published the analysis of the
bias of these estimatorsin 1953. As mentioned above, these estimators have now become standard
in avariety of natural language processing applications.

In this paper, we analyze the convergence rate of the Good-Turing estimators. Let G be the
fraction of the sample consisting of words that occur only once in the sample and let M be the
actual missing mass, i.e., the total probability mass of the items not occurring in the sample. We

prove that with probability at least 1 — § over the choice of the sample, we havethat Mg isno larger

Go+ O ( —'”(;/5))

where m isthe size of the sample. Thisis true independent of the underlying distribution. We also

than

give a somewhat weaker lower bound on My and bounds on the true total probability mass of the

set of words occurring & times in the sample.



2 THE GOOD-TURING ESTIMATORS

We assume an unknown probability distribution P on a countable vocabulary V' and we denote
the probability of word w by P,,. In practice, this is often taken to be the words of some natural
language, such as English, although of course our results are applicable when the vocabulary is
any countable universe of objects. We consider a sample S of m words drawn independently from
V according to distribution P. Throughout the paper, we will write ¥2.S ®[S] to mean that with
probability at least 1 — ¢ over the choice of the sample we have that ®[S] holds.

For asample S of m words and for any word w € V' we define ¢(w) to be the number of times
word w occursin the sample S. For any integer £ > 0, we define Sy, to be the set of wordsw € V'
such that ¢(w) = k. Note that Sy is the set of wordsin V' not occuring in S. We define M, to be
probability of drawing aword in the set Si:

M= Y P,
wWES

Note that M, dependson the sample, i.e., itisarandom variable.

The Good-Turing estimators estimate the quantities Mj,. These quantities are conceptually
useful in constructing language models. The quantity My is the so-called missing mass, i.e., the
total probability mass of words not occuring in the sample. Intuitively, a language model should
reserve some probability mass for words not in the sample sinceit isunlikely (or evenimpossibleif
the vocabulary islarger than the sample) that al the words in alarge vocabulary will be seenin the
sample. Similarly, for £ > 1 the quantitiy M, is useful in estimating the true probability of aword
that occurs k timesin the sample. Specificaly, for w € S, if we know Mj,, then agood estimate
of P, would be M, /|Sk|. For k small, we usualy have that M, is significantly smaller than its
“natural” estimate k|S|/m. For example, if al words in alarge sample occur only once, then S;
isthe entire sample but M isamost certainly near zero.

The Good-Turing estimate of M;,, which we denote G, can be defined as follows:?

k+1
Gk = m|8}c+l|.

Good [4] showed that for k£ small and m large this estimate has small bias, that is, the expectation

of Gy, isvery closeto the expectation of Mj. We prove avariant of Good's theorem here:

1The Good-turing estimate is often defined to be%l|5k+1|. For k& much smaller than m this is essentially the same

k+1
m—k

as the definition used here. However, the estimate
with.

|Sk+1| has dlighly smaller bias and istheoretically easier to work



Theorem 1 For & < m we have

k+1
E[My] = E[Gy] - —E [Mie14] -
Proof: Notethat E[M}] can be written asfollows:
E[M] = Y PuPrlwe S

weV
= ¥ <m> Pyt (1—Py)" "

weV k

wevV k+1

k 1

= Z + w S Sk-i—l] (1— Pw)

wEV

kE+1
= m— ]{} Z Pr w € Sk;+1]

weV
_k+1
o l{} Z Pr w € Sk+1]
wevV

E+1 k+1

= 7 ElSkl] = —— E[My44]
k+1

= ElGi]-——F [Myy1] -

Theorem 1 immediately implies that for £ much smaller than m we have that Gy is a nearly
unbiased estimate of M;,. More specifically, since Mj. .1 € [0, 1] we have the following corollary

of Theorem 1.

Corollary 2 For k < m we have

E[M] —E[Gy| < 2+
m—k

Note in particular that |E[Go] — E[Mp] | < 1/m.

It isinteresting to notethat it is possible to “unwind” the equation in Theorem 1. For example, we
can use Go — G1/m as an improved estimate of My. By observing that M, < 1 we get that the
bias of thisimproved estimate is at most 2/(m(m — 1)). More generally, the bias of an estimator
based on using the equation in Theorem 1 d times will be O(1/m%). However, it seems that the
variance of these estimatorsis large compared to 1/m, so reducing the bias below O(1/m) isnot a

significant improvement.



3 CONVERGENCE OF THE GOOD-TURING ESTIMATORS

The first main result of this paper bounds the rate at which the Good-Turing estimators converge.

More specifically, we have the following:

Theorem 3 Vé > 0, V%S,

kE+2 2In(3
v (5)

Gy — M| <
G k|_m—k m

kE+1 3m 3m
1_k/m+k+,/2kln<7> +2In<7>].

Note that for fixed £ and ¢, we have that the bound on |G} — M| converges to zero as m
increases at the rate O((Inm)/+/m) independent of the size or distribution of the underlying
vocabulary. Furthermore, the width of the confidenceinterval has only logarithmic dependence on

the confidence parameter §. For £ small compared to In(3m:/4), the bound is approximately

2 (22 2n (3)

1) m

For & large compared to In(3m/d), but still small compared to m, the bound is approximately

m
Thebound isvacuousfor k& > /m.

The basic idea behind the proof isto introduce a threshold ® such that, with high confidence,
all wordsw with P,, > © occur more than & times and hence do not influence M,. Given an upper
bound on P,, for words influencing M, we have that asingle (plausible) change in the sample can
change M, by at most 20. Given a bound on the influence of a single sample element on M, (and
also G,), we can apply McDiarmid's theorem which gives a convergence rate for any function of
the sample where single changesin the sample have limited influence.

To establish an appropriate value for © we use the following lemma:

Lemma4 If abiased coin has probability p of being heads, and p is the fraction of times the coin
comes up heads in a sample S of m independent tosses, then we can bound p in terms of p as
follows.

Vi>0 V'S p<p+

2In(1/3) , 2In(1/8)

Proof: Therelative Chernoff bound [1] statesthe following for v > O:
Prp<(1—9)p] <e ™/

5



Setting this probability equal to § and solving for v we can rephrase this bound as follows:

2pIn(3

We use “high confidence implication” which states that if 2.5 ®[S] and ®[S] implies W[S], then
V0S WIS]. In particular, consider any sample satisfying the body of Eq. (1). The body of Eq. (1)
implies that
m(p — p)? < 2pIn(1/d),
that is,
mp® — (2mp + 2In(1/5))p + mp® <0,

which implies

(2mp + 2In(1/6)) + \/ (2mgp + 2In(1/8))? — 4m?2j?
2m

o |n(T1n/5) +\/8mg§|n(l/<i)m424ln2(l/6)

m m m

5 In(1/6) \/Zﬁln(l/é) .\ |n2(12/5)

5, 2In(1/9) | [2pIn(1/s)

< p
m m

compl eting the proof. [

We now define ©(p, §) to be the bound in Lemma 4:

2In(1/9) , 2In(1/3)

O(p,d) =p+
We also define M asfollows:

M) = > P,.
wESy: Py <O(k/m,d/m)

Note that M consists of that fragment of M, due to “low frequency” words. The frequency
threshold ©(k/m, §/m) isselected sothat M} isessentially the sameas M;; with high confidence,
M} = M, and their expectations differ by at most 1/m.



Lemma5 For m > 1 we havethat
Vo >0 Y'S M) = M,.
Proof: First we use “union bound quantification” which statesthat if W isafinite set such that
VeeW Y6 >0 V'S ®z, S, i

then
V6 >0 Y°S Ve e W ®lz, S, §/|W|].

Thisissimply aformulation of the union bound. Applying union bound quantificationto Lemma4
with W being the set of words w such that P, > % we get that

Vo >0 V0S8 Y Py >~ ngca(M,i). 2
m m m

By high confidence implication, it now suffices to show that the body of (2) implies M,f =
M. Assume the body of (2). To show M) = M; we must show that for any word w with
P, > O(k/m, §/m) we have c(w) > k. Let w be any such word. One can check that for
m > 1 we have O(k/m, 6/m) > 1/m. Hence P, > 1/m and so by the body of (2) we have
P, < O(c(w)/m, §/m). But thisimplies ©(k/m, d/m) < P, < O(c(w)/m, d/m) which

implies c(w) > k. |

Lemmaé
vie (0.1, [E[M]-E[M]]| < %

Proof: First note the following:

E[M,] — E [M,f] = 3 P,Priw € Sy].
w: Py, >0(k/m, 6/m)
It now sufficesto show that for P, > O(k/m, d/m) we have Pr[w € S;] < 1/m. Lemma4 can

berephra%das
|||:@<C(w)7 ‘><-lw:|<
m

m
For P, > ©(k/m, d/m) thisimplies

rle(S ) <o w)=n

and therefore



SowehavePr{w € Si] < Prlc(w) < k] <d§/m < 1/m. n

Now that we have established that M, behaves much like My, we use the fact that a single
change in the sample can not have much influence on the value of M ,f The following theorem of
McDiarmid [7] states that any function of the sample for which a single change in the sample has

limited effect must converge to its expectation as the sample gets large.

Theorem 7 (McDiarmid) Let X;, ..., X, beindependent random variables taking valuesin a
set Vandlet f: V™ — R be such that

sup If(x1,. o mm) — f(T1, ey T 1, Ty T 1y e s Tin) | < 5

Then with probability at least 1 — ¢

f(Xla"'aXm) SE[f(XlaaXm)]+
and with probability at least 1 — §

Lysm .2
F(Xaeo ) Xo) > ELf (X, Xo)] — 1 @) 21

A natural special caseisz; € [0,1] and f(z1, ...,z,) = ivqz;. Inthiscase, ¢; = 1/m and

1
m

McDiarmid's theorem reduces to the Heoffding inequalities.

The “union bound conjunction principle” statesthat, for any positive numbers j and k, if
V6 >0 V'S & [s, ﬂ
and
V>0 V'S W [S, q
then
5 0 0
Vo >0 VS (P|S, —|AWY|S, ——| ).
k+3 k+j
This can be rephrased equivalently to say that if
V6 >0 VS @[S, 4]
and
Ve >0 VHS WS, 4]
then

Vs >0 YUK g (@[S, 8] AW[S, §))

8



which clearly follows from the union bound.
Applying union bound conjunction to the two conclusionsin McDiarmid’s theorem gives that,
with probability at least 1 — 4,

F(Xeoy Xa) —E[f(X1, oo, Xa)| </ 2551 (3)
Using Eq. (3) we can prove the following:

Lemma8 Vé > 0, forall’S,
(G — M) —E[Gy— M]] | < <H +0 (% %)) 2mIn (g)

Proof: We apply Eq. (3) with V' being the vocabulary of possible words and X; being the ith word
in the sample. Wetake f(Xj,..., X, ) to be G, — M,. Note that when aword is replaced in the
sample, one word increases its count while another word decreases its count. Thisimplies that a
single replacement can change | Sy | by at most 2. So a single replacement can change G, by at
most 2(k + 1)/(m — k). A single replacement can change M, by at most 20(k/m, v/m). Soa
single change in the sample can change G, — M,/ by at most

2<—k+1 +e(£, l))
m—k m’ m
Eqg. (3) then implies the lemma. ]

Proof of Theorem 3: We apply union bound conjunction to lemmas 5 and 8 with ¢ /3 inserted for
~ in Lemma 8. We then get that the following holds with probability at least 1 — §:

G = M| = |G~ M|

IA

tea =)

k+1 k0 3
+ <m +®<E’ %>> 2mln (5)

E[GH] - E[MA]| + |E[M] - E[M]]

k+1 k0 3
+ <m +@<E’ %>> 2mIn (5)

kE+1 1

IN

m —

kK m
+1 k0 3
+<m+@<g, %>> 2mIn (5)

2 (2ot £)) o)
m—k m—k m’ 3m m )

IA

IA




k+2

m —k
2In(3) E+1 3m 3m
Thisinequality istrivially true when m = 1 and Theorem 3 follows. ]

4 ATIGHTER UPPER BOUND ON THE MISSING MASS

In the case of the missing mass My, it is possible to give a significantly tighter upper bound than

that given in Theorem 3, namely, the following:

In(3
Theorem9 V6 >0 V°S My < Go+ (2vV2+ V/3) %

Note that this bound only appliesto one of thetails. It remains open whether asimilar bound holds
on the other tail aswell.

To provethistheorem, we divide Mg into a high frequency component M, and alow frequency
component M, asfollows:

My = > P,
w:Py>1/m, ¢(w)=0

> P,.

w:Py<1/m, ¢(w)=0

My

We prove the following two |lemmas seperately:

; 3In(d)
Lemmal0 V6 >0 V'S Mg <E[Mg]+ b

; 2n(})

Lemmall ¥o >0 V'S My <E[Mg]+ 8,
m

Lemma 11 follows from an application of McDiarmid's theorem and the observation that a single
change in the sample can change M, by at most 2/m. Lemma 10 is more involved and is proved
at the end of this section. Note that Mo = M, + Mg and hence, by union bound conjunction,
Lemmas 10 and 11 together imply that

In(%)'

m

V8 >0 V'S Mo < E[Mo] + (V2+V3) (4)

We also need the following two lemmas where the first follows from Theorem 1 and the second

follows from an application of McDiarmid’s theorem to Go:

10



Lemma 12 E[Mj] < E[Gq].

2In(%
Lemmal3 Vé >0 V°S E[Go] < Go+ (5).

Theorem 9 now follows by applying union bound conjunction to Eq. (4) and Lemma 13 so that the
bodies of Eq. (4), Lemma12 and Lemma 13 all hold simultaneously.
It now remains only to prove Lemma 10. The proof is based on Chernoff’s method. The first

step isto prove the following:
Lemma 14 For A > Oand e > O we have
Pr [MJ' >E [Md'] + e] < FA)—2e
where
F= > (InQue™ + (1— Qu)) — APuQu)
w: Py>1/m
and Q,, = (1 — P,)™ isthe probability that word «w does not occur in the sample.

Proof: In Chernoff’s method, we bound the tail probability using Markov's inequality:

PriMg >E[Mg]+e| = Prlep(AMg —E[M{]—6)>1]

IN

Elexwn (MM —E M| - o)]
cMNE[MF]+o E [BAM;] _ (5)

LetB={weV:P,>1/m}. Foreschwordw € B, weintroduce arandom variable X,, which

is 1if w does not occur in the sample and 0 otherwise. We can then write M, as

Mg = > XuPy.
weB

Clearly, E[X] = Qu SO
E [M(j_} = Z Qu Py - (6)

weB

MM~ exp (A > Pwa>

weB

_ H APuXuw

weB

= I (1+ (™ -1) X.) (@)

weB

11



where the last equality uses the fact that X, € {0,1}. Multiplying out the product, we can write
Eq. (7) asapolynomial:

II(1+ (e —1) Xy) = 3 ea I Xu (8)

weB ACB weA

for some coefficientsc 4. Furthermore, because AP,, > 0, al of the coefficientsc4 are nonnegative.
Notethat [],,c 4 X IS 1if none of thewordsw in A occur in the sample S and is O otherwise.
Thus,

] - (-5

weEA weA

< (H(l—Pw)>m

weEA

= H Qu- ©)

weA
Theinequality here can be proved by induction on|A| using thefactthat 1 —p—¢ < (1—p)(1—gq)
for p, g > 0. Thus, combining Egs. (7), (8) and (9) gives

E[M] = 3 cuE [(H Xw>]

ACB wEA

> ea]] Qu

ACB weA

= II (2+ (M =1) Qu).

weB

Combined with Egs. (5) and (6) this gives

IA

PrMy > E[Mg] + €]

< exp(—)\e—AZPwa> :

weB
I (e (-1 2.
weB

F()\)—/\e‘

Next we prove the following bound on the function F'(\):

Lemmal5 For A < m/2



Proof: First, note that F(0) = 0. Now let F'(\) denote the first derivative of F, i.e., dF/d\
evaluated at A\. Then

! Q’LUP’LU
= - wpw
= dane g ¢

Note that F’'(0) = 0. Now letting F"()\) denote the second derivative of F' we get that
201 _ —APy
F”(>\) _ Z Q’LUPU)(:L )\pr)e 5
: Pp>1/m (1= Qu)e™ + Q]
Z QuP5(1— Qu)e
wi Pasaym (L= Qu)e APu]?

_ QuP;
B Z ( - Qw)e_)\Pw

i Py>1/m 1

Qu Py et
= P,
P2>:l/m ( Q“’)

S

IN

g

g

PyeX—mPu

2 PmiTgn

P Py>1/m

IN

g

Pye (A—m) Py
<
< 2 P

w: Py>1/m
where the |ast two inequalities use the inequality Q,, = (1 — P,,)™ < e~™F» whichisat most 1/e
for P, > 1/m. For > Oand = > 0 one can show, by maximizing over x, that
ze ¥ < i
ae

For A\ < m, we can use thisinequality with « = (m — \) and get that

; 1
s 2 R hm oy
1
(e=1)(m—X)
Since A < m/2 we then have that ,
F"()\) < e Dm’
The lemmanow follows from F(0) = 0, F'(0) = 0and F"'(\) < 2/(e — 1)m. |

Proof of Lemma 10: Let A = me/2. Lemmas 14 and 15 together imply that

1

— e m€2 . mﬁz
- P\ 2

< efmez/S

PrMg > E[M{|+¢] < exp(ﬁ—k)

13



Lemma 10 now follows by setting this probability equal to § and solving for e. This completesthe

proof of Theorem 9. [
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