
Gambling in a rigged casino:
The adversarial multi-armed bandit problem�

Peter Auer
Institute for Theoretical Computer Science

University of Technology Graz
A-8010 Graz (Austria)
pauer@igi.tu-graz.ac.at

Nicolò Cesa-Bianchi
Department of Computer Science

Università di Milano
I-20135 Milano (Italy)
cesabian@dsi.unimi.it

Yoav Freund Robert E. Schapire
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932-0971

fyoav, schapireg@research.att.com

June 8, 1998

Abstract

In the multi-armed bandit problem, a gambler must decide which arm ofKnon-identical slot machines
to play in a sequence of trials so as to maximize his reward. This classical problem has received much
attention because of the simple model it provides of the trade-off between exploration (trying out each
arm to find the best one) and exploitation (playing the arm believed to give the best payoff). Past solutions
for the bandit problem have almost always relied on assumptions about the statistics of the slot machines.

In this work, we make no statistical assumptions whatsoever about the nature of the process generating
the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather
than a well-behaved stochastic process, has complete control over the payoffs. In a sequence of T plays,
we prove that the expected per-round payoff of our algorithm approaches that of the best arm at the rate
O�T�1�2�, and we give an improved rate of convergence when the best arm has fairly low payoff. We
also prove a general matching lower bound on the best possible performance of any algorithm in our
setting. In addition, we consider a setting in which the player has a team of “experts” advising him on
which arm to play; here, we give a strategy that will guarantee expected payoff close to that of the best
expert. Finally, we apply our result to the problem of learning to play an unknown repeated matrix game
against an all-powerful adversary.

1 Introduction

In the well studied multi-armed bandit problem, originally proposed by Robbins [16], a gambler must choose
which of K slot machines to play. At each time step, he pulls the arm of one of the machines and receives a
reward or payoff (possibly zero or negative). The gambler’s purpose is to maximize his total reward over a
sequence of trials. Since each arm is assumed to have a different distribution of rewards, the goal is to find
the arm with the best expected return as early as possible, and then to keep gambling using that arm.

�An early extended abstract of this paper appearedin the proceedingsof the 36th Annual Symposium on Foundations of Computer
Science, pages 322–331, 1995. The present draft is a very substantially revised and expanded version which has been submitted for
journal publication.



The problem is a classical example of the trade-off between exploration and exploitation. On the one
hand, if the gambler plays exclusively on the machine that he thinks is best (“exploitation”), he may fail to
discover that one of the other arms actually has a higher average return. On the other hand, if he spends too
much time trying out all the machines and gathering statistics (“exploration”), he may fail to play the best
arm often enough to get a high total return.

As a more practically motivated example, consider the task of repeatedly choosing a route for transmitting
packets between two points in a communication network. Suppose there are K possible routes and the
transmission cost is reported back to the sender. Then the problem can be seen as that of selecting a route
for each packet so that the total cost of transmitting a large set of packets would not be much larger than the
cost incurred by sending all of them on the single best route.

In the past, the bandit problem has almost always been studied with the aid of statistical assumptions
on the process generating the rewards for each arm. In the gambling example, for instance, it might be
natural to assume that the distribution of rewards for each arm is Gaussian and time-invariant. However, it
is likely that the costs associated with each route in the routing example cannot be modeled by a stationary
distribution, so a more sophisticated set of statistical assumptions would be required. In general, it may be
difficult or impossible to determine the right statistical assumptions for a given domain, and some domains
may be inherently adversarial in nature so that no such assumptions are appropriate.

In this paper, we present a variant of the bandit problem in which no statistical assumptions are made
about the generation of rewards. In our model, the reward associated with each arm is determined at each
time step by an adversary with unbounded computational power rather than by some benign stochastic
process. We only assume that the rewards are chosen from a bounded range. The performance of any player
is measured in terms of regret, i.e., the expected difference between the total reward scored by the player
and the total reward scored by the best arm.

At first it may seem impossible that the player should stand a chance against such a powerful opponent.
Indeed, a deterministic player will fare very badly against an adversary who assigns low payoff to the chosen
arm and high payoff to all the other arms. However, in this paper we present a very efficient, randomized
player algorithm that performs well against any adversary. We prove that the difference between the expected
gain of our algorithm and the expected gain of the best out of K arms is at mostO�

p
TK logK�, where T is

the number of time steps. Note that the average per-time-step regret approaches zero at the rate O�1�
p
T �.

We also present more refined bounds in which the dependence on T is replaced by the total reward of the
best arm (or an assumed upper bound thereof).

Our worst-case bounds may appear weaker than the bounds proved using statistical assumptions, such
as those shown by Lai and Robbins [12] of the form O�logT �. However, when comparing our results
to those in the statistics literature, it is important to point out an important difference in the asymptotic
quantification. In the work of Lai and Robbins the assumption is that the distribution of rewards that is
associated with each arm is fixed as the total number of iterations T increases to infinity. In contrast, our
bounds hold for any finite T , and, by the generality of our model, these bounds are applicable when the
payoffs are randomly (or adversarially) chosen in a manner that does depend on T . It is this quantification
order, and not the adversarial nature of our framework, which is the cause for the apparent gap. We prove
this point by showing that, for any algorithm for the K-arm bandit problem and for any T there exists a set
of K reward distributions such that the expected regret of the algorithm when playing against such arms for
T iterations is lower bounded by Ω�

p
KT �.

We can also show that the per-sequence regret is well behaved. More precisely, we show that our
algorithm can guarantee that the actual (rather than expected) difference between its gain and the gain of the
best arm on any run is upper bounded by O�T 2�3�K lnK�1�3� with high probability. This bound is weaker
than the bound on the expected regret. It is not clear whether or not this bound can be improved to have a
dependence of O�

p
T � on the number of trials.

2



A non-stochastic bandit problem was also considered by Gittins [9] and Ishikida and Varaiya [11].
However, their version of the bandit problem is very different from ours: they assume that the player can
compute ahead of time exactly what payoffs will be received from each arm, and their problem is thus one
of optimization, rather than exploration and exploitation.

Our algorithm is based in part on an algorithm presented by Freund and Schapire [6, 7], which in turn
is a variant of Littlestone and Warmuth’s [13] weighted majority algorithm, and Vovk’s [17] aggregating
strategies. In the setting analyzed by Freund and Schapire (which we call here the full information game),
the player on each trial scores the reward of the chosen arm, but gains access to the rewards associated with
all of the arms (not just the one that was chosen).

In some situations, picking the same action at all trials might not be the best strategy. For example, in
the packet routing problem it might be that no single route is good for the whole duration of the message,
but switching between routes from time to time can yield better performance. We give a variant of our
algorithm which combines the choices of N strategies (or “experts”), each of which recommends one of
the K actions at each iteration. We show that the regret with respect to the best strategy is O�

p
TK lnN�.

Note that the dependence on the number of strategies is only logarithmic, and therefore the bound is quite
reasonable even when the player is combining a very large number of strategies.

The adversarial bandit problem is closely related to the problem of learning to play an unknown
repeated matrix game. In this setting, a player without prior knowledge of the game matrix is playing the
game repeatedly against an adversary with complete knowledge of the game and unbounded computational
power. It is well known that matrix games have an associated value which is the best possible expected
payoff when playing the game against an adversary. If the matrix is known, then a randomized strategy that
achieves the value of the game can be computed (say, using a linear-programming algorithm) and employed
by the player. The case where the matrix is entirely unknown was previously considered by Baños [1]
and Megiddo [14], who proposed two different strategies whose per-round payoff converges to the game
value. Both of these algorithms are extremely inefficient. For the same problem, we show that by using our
algorithm the player achieves an expected per-round payoff in T rounds which efficiently approaches the
value of the game at the rate O�T�1�2�. This convergence is much faster than that achieved by Baños and
Megiddo.

Our paper is organized as follows. In Section 2, we give the formal definition of the problem. In Section 3,
we describe Freund and Schapire’s algorithm for the full information game and state its performance. In
Section 4, we describe our basic algorithm for the partial information game and prove the bound on the
expected regret. In Section 5, we prove a bound on the regret of our algorithm on “typical” sequences. In
Section 6, we show how to adaptively tune the parameters of the algorithm when no prior knowledge (such
as the length of the game) is available. In Section 7, we give a lower bound on the regret suffered by any
algorithm for the partial information game. In Section 8, we show how to modify the algorithm to use expert
advice. Finally, in Section 9, we describe the application of our algorithm to repeated matrix games.

2 Notation and terminology

We formalize the bandit problem as a game between a player choosing actions and an adversary choosing
the rewards associated with each action. The game is parameterized by the number K of possible actions,
where each action is denoted by an integer i, 1 � i � K. We will assume that all the rewards belong to the
unit interval �0� 1�. The generalization to rewards in �a� b� for arbitrary a � b is straightforward.

The game is played in a sequence of trials t � 1� 2� � � � � T . We distinguish two variants: the partial
information game, which captures the adversarial multi-armed bandit problem; and the full information
game, which is essentially equivalent to the framework studied by Freund and Schapire [6]. On each trial t
of the full information game:

3



1. The adversary selects a vector x�t� � �0� 1�K of current rewards. The ith component xi�t� is
interpreted as the reward associated with action i at trial t.

2. Without knowledge of the adversary’s choice, the player chooses an action by picking a number
it � f1� 2� � � � � Kg and scores the corresponding reward xit�t�.

3. The player observes the entire vector x�t� of current rewards.

The partial information game corresponds to the above description of the full information game but with
step 3 replaced by:

3�. The player observes only the reward xit�t� for the chosen action it.

Let GA
�
�
PT

t�1 xit�t� be the total reward of player A choosing actions i1� i2� � � � � iT .
We formally define an adversary as a deterministic1 function mapping the past history of play i1� � � � � it�1

to the current reward vector x�t�. As a special case, we say that an adversary is oblivious if it is independent
of the player’s actions, i.e., if the reward at trial t is a function of t only. All of our results, which are proved
for a nonoblivious adversary, hold for an oblivious adversary as well.

As our player algorithms will be randomized, fixing an adversary and a player algorithm defines a
probability distribution over the set f1� � � � � KgT of sequences of T actions. All the probabilities and
expectations considered in this paper will be with respect to this distribution. For an oblivious adversary, the
rewards are fixed quantities with respect to this distribution, but for a nonoblivious adversary, each reward
xi�t� is a random variable defined on the set f1� � � � � Kgt�1 of player actions up to trial t � 1. We will not
use explicit notation to represent this dependence, but will refer to it in the text when appropriate.

The measure of the performance of our algorithm is the regret, which is the difference between the total
reward of the algorithm GA and the total reward of the best action. We shall mostly be concerned with the
expected regret of the algorithm. Formally, we define the expected total reward of algorithm A by

E�GA�
�
� Ei1�����iT

�
TX
t�1

xit�t�

�
�

the expected total reward of the best action by

EGmax
�
� max

1�j�K
Ei1�����iT

�
TX
t�1

xj�t�

�
�

and the expected regret of algorithm A by RA
�
� EGmax � E�GA�� This definition is easiest to interpret for

an oblivious adversary since, in this case, EGmax truly measures what could have been gained had the best
action been played for the entire sequence. However, for a nonoblivious adversary, the definition of regret
is a bit strange: It still compares the total reward of the algorithm to the sum of rewards that were associated
with taking some action j on all iterations; however, had action j actually been taken, the rewards chosen
by the adversary would have been different than those actually generated since the variable xj�t� depends
on the past history of plays i1� � � � � it�1. Although the definition of RA looks difficult to interpret in this

1There is no loss of generality in assuming that the adversary is deterministic. To see this, assume that the adversary maps past
histories to distributions over the values of x�t�. This defines a stochastic strategy for the adversary for the T step game, which is
equivalent to a distribution over all deterministic adversarial strategies for the T step game. Assume that A is any player algorithm
and that B is the worst-case stochastic strategy for the adversary playing against A. The stated equivalence implies that there is a
deterministic adversarial strategy B̃ against which the gain of A is at most as large as the gain of A againstB. (The same argument
can easily be made for other measures of performance, such as the regret, which is defined shortly.)

4



Algorithm Hedge
Parameter: A real number � � 0.
Initialization: Set Gi�0� :� 0 for i � 1� � � � � K.

Repeat for t � 1� 2� � � � until game ends
1. Choose action it according to the distribution p�t�, where

pi�t� �
exp��Gi�t� 1��PK
j�1 exp��Gj�t� 1��

�

2. Receive the reward vector x�t� and score gain xit�t�.

3. Set Gi�t� :� Gi�t� 1� � xi�t� for i � 1� � � � � K.

Figure 1: AlgorithmHedge for the full information game.

case, in Section 9 we prove that our bounds on the regret for a nonoblivious adversary can also be used to
derive an interesting result in the context of repeated matrix games.

We shall also give a bound that holds with high probability on the actual regret of the algorithm, i.e., on
the actual difference between the gain of the algorithm and the gain of the best action:

max
j

TX
t�1

xj�t��GA�

3 The full information game

In this section, we describe an algorithm, called Hedge, for the full information game which will also
be used as a building block in the design of our algorithm for the partial information game. The version of
Hedge presented here is a variant2 of the algorithm introduced by Freund and Schapire [6] which itself is
a direct generalization of Littlestone and Warmuth’s Weighted Majority [13] algorithm.

Hedge is described in Figure 1. The main idea is simply to choose action i at time t with probability
proportional to exp

�
�Gi�t� 1�

�
, where � � 0 is a parameter and Gi�t� �

Pt
t��1 xi�t

�� is the total reward
scored by action i up through trial t. Thus, actions yielding high rewards quickly gain a high probability of
being chosen.

Since we allow for rewards larger than 1, proving bounds for Hedge is more complex than for Freund
and Schapire’s original algorithm. The following is an extension of Freund and Schapire’s Theorem 2. Here
and throughout this paper, we make use of the function ΦM�x� which is defined for M �� 0 to be

ΦM�x�
�
�

eMx � 1�Mx

M2 �

2These modifications enable Hedge to handle gains (rewards in �0�M �) rather than losses (rewards in ��1� 0�). Note that we
also allow rewards larger than 1. These changes are necessary to use Hedge as a building block in the partial information game.

5



Theorem 3.1 For � � 0, and for any sequence of reward vectors x�1�� � � � � x�T � with xi�t� � �0�M �,
M � 0, the probability vectors p�t� computed by Hedge satisfy

TX
t�1

KX
i�1

pi�t�xi�t� �
TX
t�1

xj�t�� lnK
�

� ΦM���

�

TX
t�1

KX
i�1

pi�t�xi�t�
2

for all actions j � 1� � � � � K.

In the special case thatM � 1, we can replace
PT

t�1
PK

i�1 pi�t�xi�t�
2 with its upper bound

PT
t�1

PK
i�1 pi�t�xi�t�

to get the following lower bound on the gain of Hedge.

Corollary 3.2 For � � 0, and for any sequence of reward vectors x�1�� � � � � x�T � with xi�t� � �0� 1�, the
probability vectors p�t� computed by Hedge satisfy

TX
t�1

p�t� � x�t� � �maxj
PT

t�1 xj�t�� lnK
e� � 1

�

Note that p�t� �x�t� � Eit �xit�t� j i1� � � � � it�1�, so this corollary immediately implies the lower bound:

E�GHedge� � E

�
TX
t�1

xit�t�

�
� E

�
TX
t�1

p�t� � x�t�
�

�
�E
h
maxj

PT
t�1 xj�t�

i
� lnK

e� � 1

� �EGmax � lnK
e� � 1

�

In particular, it can be shown that if we choose � � ln�1�
p

2�lnK��T� thenHedge suffers regret at mostp
2T lnK in the full information game, i.e.,

E�GHedge� � EGmax �
p

2T lnK�

To prove Theorem 3.1, we will use the following inequality.

Lemma 3.3 For all � � 0, for all M �� 0 and for all x �M :

e�x � 1 � �x� ΦM���x2�

Proof. It suffices to show that the function

f�x�
�
�

ex � 1� x

x2

is nondecreasing since the inequality f��x� � f��M� immediately implies the lemma. (We can make f
continuous with continuous derivatives by defining f�0� � 1�2.) We need to show that the first derivative
f ��x� � 0, for which it is sufficient to show that

g�x�
�
�

x3f ��x�

ex � 1
� x� 2

�
ex � 1
ex � 1

�

is nonnegative for positive x and nonpositive for negative x. This can be proved by noting that g�0� � 0
and that g’s first derivative

g��x� �

�
ex � 1
ex � 1

�2

is obviously nonnegative. �

6



Proof of Theorem 3.1. Let Wt �
PK

i�1 exp
�
�Gi�t� 1�

�
. By definition of the algorithm, we find that, for

all 1 � t � T ,

Wt�1

Wt
�

KX
i�1

exp
�
�Gi�t � 1�

�
exp

�
�xi�t�

�
Wt

�
KX
i�1

pi�t� exp
�
�xi�t�

�

� 1 � �
KX
i�1

pi�t�xi�t� � ΦM���
KX
i�1

pi�t�xi�t�
2

using Lemma 3.3. Taking logarithms and summing over t � 1� � � � � T yields

ln
WT�1

W1
�

TX
t�1

ln
Wt�1

Wt

�
TX
t�1

ln

�
1 � �

KX
i�1

pi�t�xi�t� � ΦM ���
KX
i�1

pi�t�xi�t�
2

�

� �
TX
t�1

KX
i�1

pi�t�xi�t� � ΦM���
TX
t�1

KX
i�1

pi�t�xi�t�
2 (1)

since 1 � x � ex for all x. Observing that W1 � K and, for any j, WT�1 � exp
�
�Gj�T �

�
, we get

ln
WT�1

W1
� �Gj�T �� lnK � �2�

Combining Equations (1) and (2) and rearranging we obtain the statement of the theorem. �

4 The partial information game

In this section, we move to the analysis of the partial information game. We present an algorithm
Exp� that runs the algorithmHedge of Section 3 as a subroutine. (Exp� stands for “Exponential-weight
algorithm for Exploration and Exploitation.”)

The algorithm is described in Figure 2. On each trial t, Exp� receives the distribution vector p�t� from
Hedge and selects an action it according to the distribution p̂�t� which is a mixture of p�t� and the uniform
distribution. Intuitively, mixing in the uniform distribution is done to make sure that the algorithm tries out
all K actions and gets good estimates of the rewards for each. Otherwise, the algorithm might miss a good
action because the initial rewards it observes for this action are low and large rewards that occur later are
not observed because the action is not selected.

AfterExp� receives the reward xit�t� associated with the chosen action, it generates a simulated reward
vector x̂�t� for Hedge. As Hedge requires full information, all components of this vector must be filled
in, even for the actions that were not selected. For the chosen action it, we set the simulated reward x̂it�t� to
xit�t��p̂it�t�. Dividing the actual gain by the probability that the action was chosen compensates the reward
of actions that are unlikely to be chosen. The other actions all receive a simulated reward of zero. This
choice of simulated rewards guarantees that the expected simulated gain associated with any fixed action j
is equal to the actual gain of the action; that is, Eit �x̂j�t� j i1� � � � � it�1� � xj�t�.

We now give the first main theorem of this paper, which bounds the regret of algorithmExp�.

7



Algorithm Exp3
Parameters: Reals � � 0 and � � �0� 1�
Initialization: InitializeHedge���.

Repeat for t � 1� 2� � � � until game ends
1. Get the distribution p�t� from Hedge.

2. Select action it to be j with probability p̂j�t� � �1� ��pj�t� �
�

K
.

3. Receive reward xit�t� � �0� 1�.

4. Feed the simulated reward vector x̂�t� back to Hedge, where x̂j�t� �

	

�
xit�t�

p̂it�t�
if j � it

0 otherwise.

Figure 2: AlgorithmExp� for the partial information game.

Theorem 4.1 For � � 0 and � � �0� 1�, the expected gain of algorithm Exp3 is at least

E�GExp3� � EGmax �
�
� �

KΦK�����

�

�
EGmax � 1� �

�
lnK �

To understand this theorem, it is helpful to consider a simpler bound which can be obtained by an appropriate
choice of the parameters � and �:

Corollary 4.2 Assume that g � EGmax and that algorithm Exp3 is run with input parameters � � ��K
and

� � min

�
1�

s
K lnK
�e� 1�g



�

Then the expected regret of algorithm Exp3 is at most

RExp3 � 2
p
e� 1

p
gK lnK � 2�63

p
gK lnK�

Proof. If g � �K lnK���e� 1�, then the bound is trivial since the expected regret cannot be more than g.
Otherwise, by Theorem 4.1, the expected regret is at most�

� �
KΦK�����

�

�
g �

lnK
�

� 2
p
e � 1

p
gK lnK�

�

To apply Corollary 4.2, it is necessary that an upper bound g on EGmax be available for tuning � and
�. For example, if the number of trials T is known in advance then, since no action can have payoff greater
than 1 on any trial, we can use g � T as an upper bound. In Section 6, we give a technique that does not
require prior knowledge of such an upper bound.

If the rewards xi�t� are in the range �a� b�, a � b, then Exp� can be used after the rewards have
been translated and rescaled to the range �0� 1�. Applying Corollary 4.2 with g � T gives the bound

8



�b� a�2
p
e � 1

p
TK lnK� on the regret. For instance, this is applicable to a standard loss model where

the “rewards” fall in the range ��1� 0�.
Proof of Theorem 4.1. By the definition of the algorithm, we have that x̂i�t� � 1�p̂i�t� � K��. Thus we
find, by Theorem 3.1, that for all actions j � 1� � � � � K

TX
t�1

KX
i�1

pi�t�x̂i�t� �
TX
t�1

x̂j�t�� lnK
�

� ΦK�����

�

TX
t�1

KX
i�1

pi�t�x̂i�t�
2 �

Since
KX
i�1

pi�t�x̂i�t� � pit�t�
xit�t�

p̂it�t�
� xit�t�

1� �
�3�

and
KX
i�1

pi�t�x̂i�t�
2 � pit�t�

xit�t�

p̂it�t�
x̂it�t� �

x̂it�t�

1� �
� �4�

we get that for all actions j � 1� � � � � K

GExp� �
TX
t�1

xit�t� � �1� ��
TX
t�1

x̂j�t�� 1� �

�
lnK � ΦK�����

�

TX
t�1

x̂it�t� � �5�

Note that

x̂it�t� �
KX
i�1

x̂i�t�� �6�

We next take the expectation of Equation (5) with respect to the distribution of hi1� � � � � iTi. For the expected
value of x̂j�t�, we have:

E�x̂j�t�� � Ei1�����it�1

�
Eit �x̂j�t� j i1� � � � � it�1�

�
� Ei1�����it�1

�
p̂j�t� � xj�t�

p̂j�t�
� �1� p̂j�t�� � 0

�

� E�xj�t��� (7)

Combining Equations (5), (6) and (7), we find that

E�GExp�� � �1� ��
TX
t�1

E�xj�t��� 1� �

�
lnK � ΦK�����

�

TX
t�1

KX
i�1

E�xi�t�� �

Since maxj
PT

t�1 E�xj�t�� � EGmax and
PT

t�1
PK

i�1 E�xi�t�� � K EGmax we obtain the inequality in the
statement of the theorem. �

5 A bound on the regret that holds with high probability

In the last section, we showed that algorithm Exp� with appropriately set parameters can guarantee an
expected regret of at most O�

p
gK lnK�. In the case that the adversarial strategy is oblivious (i.e., when

the rewards associated with each action are chosen without regard to the player’s past actions), we compare
the expected gain of the player to EGmax, which, in this case, is the actual gain of the best action. However,
if the adversary is not oblivious, our notion of expected regret can be very weak.

9



Consider, for example, a rather benign but nonoblivious adversary which assigns reward 0 to all actions
on the first round, and then, on all future rounds, assigns reward 1 to action i1 (i.e., to whichever action
was played by the player on the first round), and 0 to all other actions. In this case, assuming the player
chooses the first action uniformly at random (as do all algorithms considered in this paper), the expected
total gain of any action is �T � 1��K. This means that the bound that we get from Corollary 4.2 in this case
will guarantee only that the expected gain of the algorithm is not much smaller than EGmax � �T � 1��K.
This is a very weak guarantee since, in each run, there is one action whose actual gain is T � 1. On the
other hand, Exp� would clearly perform much better than promised in this simple case. Clearly, we need
a bound that relates the player’s gain to the actual gain of the best action in the same run.

In this section, we prove such a bound for Exp�. Specifically, let us define the random variable

Gi �
TX
t�1

xi�t�

to be the actual total gain of action i, and let

Gmax � max
i

Gi

be the actual total gain of the best action i. The main result of this section is a proof of a bound which holds
with high probability relating the player’s actual gain GExp� to Gmax.

We show that the dependence of the difference Gmax �GExp� as a function of T is O�T 2�3� with high
probability for an appropriate setting of Exp�’s parameters. This dependence is sufficient to show that
the average per-trial gain of the algorithm approaches that of the best action as T � �. However, the
dependence is significantly worse than the O�

p
T � dependence of the bound on the expected regret proved

in Theorem 4.1. It is an open question whether the gap between the bounds is real or can be closed by this
or some other algorithm.

For notational convenience, let us also define the random variables

Ĝi �
TX
t�1

x̂i�t�

and
Ĝmax � max

i
Ĝi�

The heart of the proof of the result in this section is an upper bound that holds with high probability on
the deviation of Ĝi from Gi for any action i. The main difficulty in proving such a bound is that the gains
associated with a single action in different trials are not independent of each other, but may be dependent
through the decisions made by the adversary. However, using martingale theory, we can prove the following
lemma:

Lemma 5.1 Let 	 � 0 and 
 � 0. Then with probability at least 1� 
, for every action i,

Ĝi �
�

1� KΦ1�	�

�	

�
Gi � ln�K�
�

	
�

Proof. Given in Appendix A. �

Using this lemma, we can prove the main result of this section:

10



Theorem 5.2 Let � � 0, � � �0� 1�, 	 � 0 and 
 � 0. Then with probability at least 1 � 
, the gain of
algorithm Exp3 is at least

GExp3 � Gmax �
�
� �

KΦK�����

�
�
KΦ1�	�

�	

�
Gmax � 1� �

�
lnK � ln�K�
�

	
�

Proof. Note first that
TX
t�1

x̂it�t� �
TX
t�1

KX
i�1

x̂i�t� �
KX
i�1

Ĝi � KĜmax�

Combining with Equation (5) gives

GExp3 � max
j

�
�1� ��Ĝj � 1� �

�
lnK � KΦK�����

�
Ĝmax

�

�

�
1� � � KΦK�����

�

�
Ĝmax � 1� �

�
lnK

�
�

1� � � KΦK�����

�

�
Ĝi � 1� �

�
lnK

for all i.
Next, we apply Lemma 5.1 which implies that, with probability at least 1� 
, for all actions i,

GExp3 �
�

1� � � KΦK�����

�

���
1� KΦ1�	�

�	

�
Gi � ln�K�
�

	

�
� 1� �

�
lnK

� Gi �
�
� �

KΦK�����

�
�
KΦ1�	�

�	

�
Gi � ln�K�
�

	
� 1� �

�
lnK�

Choosing i to be the best action gives the result. �

To interpret this result we give the following simple corollary.

Corollary 5.3 Let 
 � 0. Assume that g � Gmax and that algorithm Exp3 is run with input parameters
� � ��K and

� � min

�
1�
�
K ln�K�
�

b2g

�1�3



where b � �e� 1��2. Then with probability at least 1� 
 the regret of algorithm Exp3 is at most

RExp3 � �b4�3 � 4b1�3�g2�3�K ln�K�
��1�3 � 4�62 g2�3�K ln�K�
��1�3�

Proof. We assume that g � b�2K ln�K�
� since otherwise the bound follows from the trivial fact that the
regret is at most g. We apply Theorem 5.2 setting

	 �

�
�ln�K�
��2

bKg2

�1�3

�

Given our assumed lower bound on g, we have that 	 � 1 which implies that Φ1�	� � 	2. Plugging into
the bound in Theorem 5.2, this implies a bound on regret of

b2�3g1�3K lnK

�K ln�K�
��1�3
� 4�bg2K ln�K�
��1�3�

The result now follows by upper bounding K lnK in the first term by �K ln�K�
��2�3�gb2�1�3 using our
assumed lower bound on g. �

11



Algorithm Exp3�1

Initialization: Let t � 0, c �
K lnK
e � 1

, and Ĝi�0� � 0 for i � 1� � � � � K

Repeat for r � 0� 1� 2� � � � until game ends
1. Let Sr � t � 1 and gr � c 4r.

2. Restart Exp� choosing � and � as in Corollary 4.2 (with g � gr), namely, � � �r � 2�r and
� � �r � �r�K.

3. While maxi Ĝi�t� � gr �K��r do:

(a) t :� t � 1

(b) Let p̂�t� and it be the distribution and random action chosen by Exp�.

(c) Compute x̂�t� from p̂�t� and observed reward xit�t� as in Figure 2.

(d) Ĝi�t� � Ĝi�t � 1� � x̂i�t� for i � 1� � � � � K.

4. Let Tr � t

Figure 3: AlgorithmExp��� for the partial information game when a bound on EGmax is not known.

As g � T is an upper bound that holds for any sequence, we get that the dependence of the regret of the
algorithm on T is O�T 2�3�.

6 Guessing the maximal reward

In Section 4, we showed that algorithm Exp� yields a regret of O�
p
gK lnK� whenever an upper

bound g on the total expected reward EGmax of the best action is known in advance. In this section, we
describe an algorithm Exp��� which does not require prior knowledge of a bound on EGmax and whose
regret is at most O�

p
EGmaxK lnK�. Along the same lines, the bounds of Corollary 5.3 can be achieved

without prior knowledge about Gmax.
Our algorithm Exp���, described in Figure 3, proceeds in epochs, where each epoch consists of a

sequence of trials. We use r � 0� 1� 2� � � � to index the epochs. On epoch r, the algorithm “guesses” a
bound gr for the total reward of the best action. It then uses this guess to tune the parameters � and � of
Exp�, restartingExp� at the beginning of each epoch. As usual, we use t to denote the current time step.3

Exp��� maintains an estimate

Ĝi�t� �
tX

t��1

x̂i�t
��

of the total reward of each action i. Since E�x̂i�t�� � E�xi�t��, this estimate will be unbiased in the sense
that

E�Ĝi�t�� � E

�
tX

t��1

xi�t
��

�

3Note that, in general, this t may differ from the “local variable” t used by Exp3 which we now regard as a subroutine.
Throughout this section, we will only use t to refer to the total number of trials as in Figure 3.

12



for all i and t. Using these estimates, the algorithm detects (approximately) when the actual gain of some
action has advanced beyond gr. When this happens, the algorithm goes on to the next epoch, restarting
Exp� with a larger bound on the maximal gain.

The performance of the algorithm is characterized by the following theorem which is the main result of
this section.

Theorem 6.1 The regret suffered by algorithm Exp3�1 is at most

RExp3�1 � 8
p
e� 1

p
EGmaxK lnK � 8�e� 1�K � 2K lnK

� 10�5
p
EGmaxK lnK � 13�8 K � 2K lnK�

The proof of the theorem is divided into two lemmas. The first bounds the regret suffered on each epoch,
and the second bounds the total number of epochs.

As usual, we use T to denote the total number of time steps (i.e., the final value of t). We also define
the following random variables: Let R be the total number of epochs (i.e., the final value of r). As in the
figure, Sr and Tr denote the first and last time steps completed on epoch r (where, for convenience, we
define TR � T ). Thus, epoch r consists of trials Sr� Sr � 1� � � � � Tr. Note that, in degenerate cases, some
epochs may be empty in which case Sr � Tr � 1. Let Ĝmax�t� � maxi Ĝi�t� and let Ĝmax � Ĝmax�T �.

Lemma 6.2 For any action j and for every epoch r, the gain of Exp3�1 during epoch r is lower bounded by

TrX
t�Sr

xit�t� �
TrX
t�Sr

x̂j�t�� 2
p
e� 1

p
grK lnK�

Proof. If Sr � Tr (so that no trials occur on epoch r), then the lemma holds trivially since both summations
will be equal to zero. Assume then that Sr � Tr. Let g � gr, � � �r and � � �r. We use Equation (5)
from the proof of Theorem 4.1:

TrX
t�Sr

xit�t� � �1� ��
TrX

t�Sr

x̂j�t�� 1� �

�
lnK � ΦK�����

�

TrX
t�Sr

x̂it�t�

�
TrX
t�Sr

x̂j�t�� �
TrX

t�Sr

x̂j�t��
ΦK�����

�

TrX
t�Sr

KX
i�1

x̂i�t�� �1� �� lnK
�

�
TrX
t�Sr

x̂j�t�� �
TrX
t�1

x̂j�t��
ΦK�����

�

KX
i�1

TrX
t�1

x̂i�t�� �1� �� lnK
�

�

From the definition of the termination condition and since Sr � Tr, we know that Ĝi�Tr � 1� � g �K��.
Since x̂i�t� � K�� (by Exp3’s choice of p̂�t�), this implies that Ĝi�Tr� � g for all i. Thus,

TrX
t�Sr

xit�t� �
TrX

t�Sr

x̂j�t�� g

�
� �

KΦK�����

�

�
� �1� �� lnK

�
�

By our choices for � and �, we get the statement of the lemma. �

The next lemma gives an implicit upper bound on the number of epochs R.

Lemma 6.3 The number of epochs R satisfies

2R�1 � K

c
�

s
Ĝmax

c
�

1
2
�

13



Proof. If R � 0, then the bound holds trivially. So assume R � 1. Let z � 2R�1. Because epoch R� 1
was completed, by the termination condition,

Ĝmax � Ĝmax�TR�1� � gR�1 � K

�R�1
� c 4R�1 �K 2R�1 � cz2 �Kz� �8�

Suppose the claim of the lemma is false. Then z � K�c �
q
Ĝmax�c. Since the function cx2 � Kx is

increasing for x � K��2c�, this implies that

cz2 �Kz � c

�
�K

c
�

s
Ĝmax

c

�
A

2

�K

�
�K

c
�

s
Ĝmax

c

�
A � K

s
Ĝmax

c
� Ĝmax�

contradicting Equation 8. �

Proof of Theorem 6.1. Using the lemmas, we have that

GExp��� �
TX
t�1

xit�t� �
RX
r�0

TrX
t�Sr

xit�t�

� max
j

RX
r�0

�
� TrX
t�Sr

x̂j�t�� 2
p
e � 1

p
grK lnK

�
A

� max
j

Ĝj�T �� 2K lnK
RX
r�0

2r

� Ĝmax � 2K lnK�2R�1 � 1�

� Ĝmax � 2K lnK � 8K lnK

�
�K

c
�

s
Ĝmax

c
�

1
2

�
A

� Ĝmax � 2K lnK � 8�e� 1�K � 8
p
e� 1

q
ĜmaxK lnK� (9)

Here, we used Lemma 6.2 for the first inequality and Lemma 6.3 for the second inequality. The other steps
follow from definitions and simple algebra.

Let f�x� � x � a
p
x � b for x � 0 where a � 8

p
e � 1

p
K lnK and b � 2K lnK � 8�e � 1�K.

Taking expectations of both sides of Equation (9) gives

E�GExp���� � E�f�Ĝmax��� �10�

Since the second derivative of f is positive for x � 0, f is convex so that, by Jensen’s inequality,

E�f�Ĝmax�� � f�E�Ĝmax��� �11�

Note that,

E�Ĝmax� � E
�
max
j

Ĝj�T �

�
� max

j
E�Ĝj�T �� � max

j
E

�
TX
t�1

xj�t�

�
� EGmax�

The function f is increasing if and only if x � a2�4. Therefore, if EGmax � a2�4 then f�E�Ĝmax�� �
f�EGmax�. Combined with Equations (10) and (11), this gives that E�GExp���� � f�EGmax� which is
equivalent to the statement of the theorem. On the other hand, if EGmax � a2�4 then, because f is
nonincreasing on �0� a2�4�,

f�EGmax� � f�0� � �b � 0 � E�GExp����

so the theorem follows trivially in this case as well. �

14



7 A lower bound

In this section, we state an information-theoretic lower bound on the regret of any player, i.e., a lower bound
that holds even if the player has unbounded computational power. More precisely, we show that there exists
an adversarial strategy for choosing the rewards such that the expected regret of any player algorithm is
Ω�
p
TK�. Observe that this does not match the upper bound for our algorithms Exp� and Exp��� (see

Corollary 4.2 and Theorem 6.1); it is an open problem to close this gap.
The adversarial strategy we use in our proof is oblivious to the algorithm; it simply assigns the rewards

at random according to some distribution, similar to a standard statistical model for the bandit problem. The
choice of distribution depends on the number of actionsK and the number of iterations T . This dependence
of the distribution on T is the reason that our lower bound does not contradict the upper bounds of the form
O�logT � which appear in the statistics literature [12]. There, the distribution over the rewards is fixed as
T ��.

For the full information game, matching upper and lower bounds of the form Θ
�p

T logK
�

were already
known [3, 6]. Our lower bound shows that for the partial information game the dependence on the number
of actions increases considerably. Specifically, our lower bound implies that no upper bound is possible of
the form O�T��logK��� where 0 � � � 1, � � 0.

Theorem 7.1 For any number of actions K � 2 and any number of iterations T , there exists a distribution
over the rewards assigned to different actions such that the expected regret of any algorithm is at least

1
20 minf

p
KT� Tg�

The proof is given in Appendix B.
The lower bound on the expected regret implies, of course, that for any algorithm there is a particular

choice of rewards that will cause the regret to be larger than this expected value.

8 Combining the advice of many experts

Up to this point, we have considered a bandit problem in which the player’s goal is to achieve a payoff
close to that of the best single action. In a more general setting, the player may have a set of strategies for
choosing the best action. These strategies might select different actions at different iterations. The strategies
can be computations performed by the player or they can be external advice given to the player by “experts.”
We will use the more general term “expert” (borrowed from Cesa-Bianchi et al. [3]) because we place no
restrictions on the generation of the advice. The player’s goal in this case is to combine the advice of the
experts in such a way that its total reward is close to that of the best expert (rather than the best single action).

For example, consider the packet-routing problem. In this case there might be several routing strategies,
each based on different assumptions regarding network load distribution and using different data to estimate
current load. Each of these strategies might suggest different routes at different times, and each might be
better in different situations. In this case, we would like to have an algorithm for combining these strategies
which, for each set of packets, performs almost as well as the strategy that was best for that set.

Formally, at each trial t, we assume that the player, prior to choosing an action, is provided with a set of
N probability vectors �j�t� � �0� 1�K, j � 1� � � � � N ,

PK
i�1 �

j
i �t� � 1. We interpret �j�t� as the advice of

expert j on trial t, where the ith component �ji �t� represents the recommended probability of playing action
i. (As a special case, the distribution can be concentrated on a single action, which represents a deterministic
recommendation.) If the adversary chooses payoff vector x�t�, then the expected reward for expert j (with

15



Algorithm Exp4
Parameters: Reals � � 0 and � � �0� 1�
Initialization: InitializeHedge (with K replaced by N )

Repeat for t � 1� 2� � � � until game ends

1. Get the distribution q�t� � �0� 1�N from Hedge.

2. Get advice vectors �j�t� � �0� 1�K, and let p�t� :�
PN

j�1 qj�t��
j�t�.

3. Select action it to be j with probability p̂j�t� � �1� ��pj�t� � ��K.

4. Receive reward xit�t� � �0� 1�.

5. Compute the simulated reward vector x̂�t� as x̂j�t� �

	

�
xit�t�

p̂it�t�
if j � it

0 otherwise.

6. Feed the vector �y�t� � �0� K���N to Hedge where ŷj�t�
�
� �j�t� � x̂�t�.

Figure 4: AlgorithmExp� for using expert advice in the partial information game.

respect to the chosen probability vector �j�t�) is simply �j�t� � x�t�. In analogy of EGmax, we define

EG̃max
�
� max

1�j�N
Ei1�����iT

�
TX
t�1

�j�t� � x�t�
�
�

so that the regret R̃A
�
� E�GA��EG̃max measures the expected difference between the player’s total reward

and the total reward of the best expert.
Our results hold for any finite set of experts. Formally, we regard each �j�t� as a random variable which

is an arbitrary function of the random sequence of plays i1� � � � � it�1 (just like the adversary’s payoff vector
x�t�). This definition allows for experts whose advice depends on the entire past history as observed by the
player, as well as other side information which may be available.

We could at this point view each expert as a “meta-action” in a higher-level bandit problem with payoff
vector defined at trial t as ��1�t� � x�t�� � � � � �N �t� � x�t��. We could then immediately apply Corollary 4.2
to obtain a bound of O�

p
gN logN� on the player’s regret relative to the best expert (where g is an upper

bound on EG̃max). However, this bound is quite weak if the player is combining many experts (i.e., if N
is very large). We show below that the algorithm Exp� from Section 4 can be modified yielding a regret
term of the form O�

p
gK logN�. This bound is very reasonable when the number of actions is small, but

the number of experts is quite large (even exponential).
Our algorithm Exp� is shown in Figure 4, and is only a slightly modified version of Exp�. (Exp�

stands for “Exponential-weight algorithm for Exploration and Exploitation using Expert advice.”) As before,
we use Hedge as a subroutine, but we now apply Hedge to a problem of dimension N rather than K.
At trial t, we receive a probability vector q�t� from Hedge which represents a distribution over strategies.
We compute the vector p�t� as a weighted average (with respect to q�t�) of the strategy vectors �j�t�. The
vector p̂�t� is then computed as before using p�t�, and an action it is chosen randomly. We define the
vector x̂�t� � �0� K���K as before, and we finally feed the vector �y�t� � �0� K���N to Hedge where

16



ŷj�t�
�
� �j�t� � x̂�t�. Let us also define y�t� � �0� 1�N to be the vector with components corresponding to

the gains of the experts: yj�t�
�
� �j�t� � x�t�.

The simplest possible expert is one which always assigns uniform weight to all actions so that �i�t� �
1�K on each round t. We call this the uniform expert. To prove our results, we need to assume that the
uniform expert is included in the family of experts.4 Clearly, the uniform expert can always be added to any
given family of experts at the very small expense of increasing N by one.

Theorem 8.1 For � � 0 and � � �0� 1�, and for any family of experts which includes the uniform expert,
the expected gain of algorithm Exp4 is at least

E�GExp4� � EG̃max �
�
� �

KΦK�����

�

�
EG̃max � 1� �

�
lnN �

Proof. We prove this theorem along the lines of the proof of Theorem 4.1. By Theorem 3.1, for all experts
j � 1� � � � � N ,

TX
t�1

q�t� � ŷ�t� �
TX
t�1

ŷj�t�� lnN
�

� ΦK�����

�

TX
t�1

NX
j�1

qj�t�ŷj�t�
2 �

Now

q�t� � ŷ�t� �
NX
j�1

qj�t��
j�t� � x̂�t� � p�t� � x̂�t� � xit�t�

1� �

by Equation (3). Also, similar to Equation (4),
NX
j�1

qj�t�ŷj�t�
2 �

NX
j�1

qj�t���
j
it
�t�x̂it�t��

2 � x̂it�t�
2
NX
j�1

qj�t��
j
it
�t� � pit�t�x̂it�t�

2 � x̂it�t�

1� �
�

Therefore, using Equation (6), for all experts j,

GExp4 �
TX
t�1

xit�t� � �1� ��
TX
t�1

ŷj�t�� 1� �

�
lnN � ΦK�����

�

TX
t�1

KX
i�1

x̂i�t��

As before, we take expectations of both sides of this inequality. Note that

E�ŷj�t�� � E

�
KX
i�1

p̂i�t��
j
i �t�

xi�t�

p̂i�t�

�
� E

h
�j�t� � x�t�

i
� E�yj�t���

Further,
1
K

E

�
TX
t�1

KX
i�1

x̂i�t�

�
� E

�
TX
t�1

1
K

KX
i�1

xi�t�

�
� max

j
E

�
TX
t�1

yj�t�

�
� EG̃max

since we have assumed that the uniform expert is included in the family of experts. Combining these facts
immediately implies the statement of the theorem. �

Analogous versions of the other main results of this paper can be proved in which occurrences of lnK
are replaced by lnN . For Corollary 4.2, this is immediate using Theorem 8.1, yielding a bound on regret
of at most 2

p
e� 1

p
gK lnN . For the analog of Lemma 5.1, we need to prove a bound on the difference

between
P

t yj�t� and
P

t ŷj�t� for each expert j which can be done exactly as before replacing 
�K with

�N in the proof. The analogs of Theorems 5.2 and 6.1 can be proved as before where we again need
to assume that the uniform expert is included in the family of experts. The analog of Corollary 5.3 is
straightforward.

4In fact, we can use a slightly weaker sufficient condition, namely, that the uniform expert is included in the convex hull of
the family of experts, i.e., that there exists nonnegative numbers �1� � � � � �N with

PN

j�1 �j � 1 such that, for all t and all i,PN

j�1
�j�

j
i �t� � 1�K .

17



9 Nearly optimal play of an unknown repeated game

The bandit problem considered up to this point is closely related to the problem of playing an unknown
repeated game against an adversary of unbounded computational power. In this latter setting, a game is
defined by an n	mmatrixM. On each trial t, the player (also called the row player) chooses a row i of the
matrix. At the same time, the adversary (or column player) chooses a column j. The player then receives
the payoff Mij . In repeated play, the player’s goal is to maximize its expected total payoff over a sequence
of plays.

Suppose in some trial the player chooses its next move i randomly according to a probability distribution
on rows represented by a (column) vector p � �0� 1�n, and the adversary similarly chooses according to a
probability vector q � �0� 1�m. Then the expected payoff is pTMq. Von Neumann’s celebrated minimax
theorem states that

max
p

min
q
pTMq � min

q
max
p
pTMq �

where maximum and minimum are taken over the (compact) set of all distribution vectors p and q. The
quantity v defined by the above equation is called the value of the game with matrixM. In words, this says
that there exists a mixed (randomized) strategy p for the row player that guarantees expected payoff at least
v, regardless of the column player’s action. Moreover, this payoff is optimal in the sense that the column
player can choose a mixed strategy whose expected payoff is at most v, regardless of the row player’s action.
Thus, if the player knows the matrixM, it can compute a strategy (for instance, using linear programming)
that is certain to bring an expected optimal payoff not smaller than v on each trial.

Suppose now that the game M is entirely unknown to the player. To be precise, assume the player
knows only the number of rows of the matrix and a bound on the magnitude of the entries of M. The main
result of this section is a proof based on the results in Section 4 showing that the player can play in such
a manner that its payoff per trial will rapidly converge to the optimal maximin payoff v. This result holds
even when the adversary knows the game M and also knows the (randomized) strategy being used by the
player.

The problem of learning to play a repeated game when the player gets to see the whole column of rewards
associated with the choice of the adversary corresponds to our full-information game. This problem was
studied by Hannan [10], Blackwell [2] and more recently by Foster and Vohra [5], Fudenberg and Levin [8]
and Freund and Schapire [7]. The problem of learning to play when the player gets to see only the single
element of the matrix associated with his choice and the choice of the adversary corresponds to the partial
information game which is our emphasis here. This problem was previously considered by Baños [1] and
Megiddo [14]. However, these previously proposed strategies are extremely inefficient. Not only is our
strategy simpler and much more efficient, but we also are able to prove much faster rates of convergence.

In fact, the application of our earlier algorithms to this problem is entirely straightforward. The player’s
actions are now identified with the rows of the matrix and are chosen randomly on each trial according to
algorithm Exp�, where we tune � and � as in Corollary 4.2 with g � T , where T is the total number of
epochs of play.5 The payoff vector x�t� is simplyM�jt , the jt-th column of M chosen by the adversary on
trial t.

Theorem 9.1 Let M be an unknown game matrix in �a� b�n�m with value v. Suppose the player, knowing
only a, b and n, uses the algorithm sketched above against any adversary for T trials. Then the player’s
expected payoff per trial is at least

v � 2�b� a�

s
�e� 1�n lnn

T
�

5If T is not known in advance, the methods developed in Section 6 can be applied.

18



Proof. We assume that �a� b� � �0� 1�; the extension to the general case is straightforward. By Corollary 4.2,
we have

E

�
TX
t�1

Mitjt

�
� E

�
TX
t�1

xit�t�

�

� max
i

E

�
TX
t�1

xi�t�

�
� 2

q
�e� 1�Tn lnn�

Let p be a maxmin strategy for the row player such that

v � max
p

min
q

pTMq � min
q

pTMq�

and let q�t� be a distribution vector whose jt-th component is 1. Then

max
i

E

�
TX
t�1

xi�t�

�
�

nX
i�1

piE

�
TX
t�1

xi�t�

�
� E

�
TX
t�1

p � x�t�

�
� E

�
TX
t�1

pTMq�t�

�
� vT

since pTMq � v for all q.
Thus, the player’s expected payoff is at least

vT � 2
q
�e� 1�Tn lnn�

Dividing by T to get the average per-trial payoff gives the result. �

Note that the theorem is independent of the number of columns ofM and, with appropriate assumptions,
the theorem can be easily generalized to adversaries with an infinite number of strategies. If the matrixM is
very large and all entries are small, then, even ifM is known to the player, our algorithm may be an efficient
alternative to linear programming.

The generality of the theorem also allows us to handle games in which the outcome for given plays i
and j is a random variable (rather than a constant Mij). Finally, as pointed out by Megiddo [14], such a
result is valid for non-cooperative, multi-person games; the average per-trial payoff of any player using this
strategy will converge rapidly to the maximin payoff of the one-shot game.

Acknowledgments

We express special thanks to Kurt Hornik for his advice and his patience when listening to our ideas and
proofs for an earlier draft of this paper. We thank Yuval Peres and Amir Dembo for their help regarding the
analysis of martingales. Peter Auer and Nicolò Cesa-Bianchi gratefully acknowledge support of ESPRIT
Working Group EP 27150, Neural and Computational Learning II (NeuroCOLT II)

References

[1] Alfredo Baños. On pseudo-games. The Annals of Mathematical Statistics, 39(6):1932–1945, 1968.

[2] David Blackwell. Controlled random walks. invited address, Institute of Mathematical Statistics
Meeting, Seattle, Washington, 1956.

19



[3] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and
Manfred K. Warmuth. How to use expert advice. Journal of the Association for Computing Machinery,
44(3):427–485, May 1997.

[4] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

[5] Dean P. Foster and Rakesh V. Vohra. A randomization rule for selecting forecasts. Operations Research,
41(4):704–709, July–August 1993.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

[7] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, (to appear).

[8] Drew Fudenberg and David K. Levine. Consistency and cautious fictitious play. Journal of Economic
Dynamics and Control, 19:1065–1089, 1995.

[9] J. C. Gittins. Multi-armed Bandit Allocation Indices. John Wiley & Sons, 1989.

[10] James Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. W. Tucker, and
P. Wolfe, editors, Contributions to the Theory of Games, volume III, pages 97–139. Princeton University
Press, 1957.

[11] T. Ishikida and P. Varaiya. Multi-armed bandit problem revisited. Journal of Optimization Theory and
Applications, 83(1):113–154, October 1994.

[12] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

[13] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and
Computation, 108:212–261, 1994.

[14] N. Megiddo. On repeated games with incomplete information played by non-Bayesian players.
International Journal of Game Theory, 9(3):157–167, 1980.

[15] J. Neveu. Discrete-Parameter Martingales. North Holland, 1975.

[16] H. Robbins. Some aspects of the sequential design of experiments. Bulletin American Mathematical
Society, 55:527–535, 1952.

[17] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Compu-
tational Learning Theory, pages 371–383, 1990.

A Proof of Lemma 5.1

It suffices to prove that, for any fixed action i

P

�
Ĝi �

�
1� KΦ1�	�

�	

�
Gi � ln�K�
�

	

�
� 


K
�12�

since then the lemma follows by the union bound. Therefore, let us fix i and simplify notation by dropping
i subscripts when clear from context.

20



Let us define the random variable

Zt � exp

�
	

tX
t��1

�x�t��� x̂�t���� KΦ1�	�

�

tX
t��1

x�t��

�
�

The main claim of the proof is that E�ZT � � 1. Given this claim, we have by Markov’s inequality that

PfZT � K�
g � 
�K

which, by simple algebra, can be seen to be equivalent to Equation (12).
We prove that E�Zt� � 1 for t � 0� � � � � T by induction on t using a method given by Neveu [15][Lemma

VII-2-8]. For t � 0, Z0 � 1 trivially. To prove the inductive step for t � 0, we have that

Eit �Zt j i1� � � � � it�1� � Zt�1 exp
�
�KΦ1�	�x�t�

�

�
Eit �exp�	�x�t�� x̂�t��� j i1� � � � � it�1�� �13�

Now by Lemma 3.3, since x�t�� x̂�t� � 1, we have that

Eit �exp�	�x�t�� x̂�t��� j i1� � � � � it�1� � Eit �1 � 	�x�t�� x̂�t�� � Φ1�	��x�t�� x̂�t��2 j i1� � � � � it�1�

� 1 �
KΦ1�	�

�
x�t�

� exp
�
KΦ1�	�

�
x�t�

�
� (14)

The second inequality follows from the fact that Eit �x̂�t� j i1� � � � � it�1� � x�t� and that

Eit ��x�t�� x̂�t��2 j i1� � � � � it�1� � Eit �x̂�t�
2 j i1� � � � � it�1�� x�t�2

� Eit �x̂�t�
2 j i1� � � � � it�1�

� K

�
Eit �x̂�t� j i1� � � � � it�1� �

K

�
x�t��

The last line uses the fact that 0 � x̂�t� � K��.
Combining Equations (13) and (14) gives that

Eit �Zt j i1� � � � � it�1� � Zt�1

(i.e., that the Zt’s forms a supermartingale), and so

E�Zt� � E�Zt�1� � 1

by inductive hypothesis. This completes the proof. �

B Proof Of Theorem 7.1

We construct the random distribution of rewards as follows. First, before play begins, one action I is chosen
uniformly at random to be the “good” action. The T rewards xI�t� associated with the good action are
chosen independently at random to be 1 with probability 1�2 � 
 and 0 otherwise for some small, fixed
constant 
 � �0� 1�2� to be chosen later in the proof. The rewards xj�t� associated with the other actions
j �� I are chosen independently at random to be 0 or 1 with equal odds. Then the expected reward of the

21



best action is at least �1�2� 
�T . The main part of the proof below is a derivation of an upper bound on the
expected gain of any algorithm for this distribution of rewards.

We write P�f�g to denote probability with respect to this random choice of rewards, and we also write
Pif�g to denote probability conditioned on i being the good action: Pif�g � P�f� j I � ig. Finally, we
write Punif f�g to denote probability with respect to a uniformly random choice of rewards for all actions
(including the good action). Analogous expectation notationE� [�], Ei [�] and Eunif [�] will also be used.

Let A be the player strategy. Let rt � xit�t� be a random variable denoting the reward received at time
t, and let rt denote the sequence of rewards received up through trial t: rt � hr1� � � � � rti. For shorthand,
r � rT is the entire sequence of rewards.

Any randomized playing strategy is equivalent to an a-priori random choice from the set of all deter-
ministic strategies. Thus, because the adversary strategy we have defined is oblivious to the actions of the
player, it suffices to prove an upper bound on the expected gain of any deterministic straregy (this is not
crucial for the proof but simplifies the notation). Therefore, we can formally regard the algorithm A as a
fixed function which, at each step t, maps the reward history rt�1 to its next action it.

As usual, GA �
PT

t�1 rt denotes the total reward of the algorithm, and Gmax � maxj
PT

t�1 xj�t� is the
total reward of the best action. Note that, because we here assume an oblivious strategy, Gmax and EGmax

are the same.
Let Ni be a random variable denoting the number of times action i is chosen by A. Our first lemma

bounds the difference between expectations when measured using Ei [�] or Eunif [�].

Lemma B.1 Let f : f0� 1gT � �0�M � be any function defined on reward sequences r. Then for any action
i,

Ei
�
f�r�

� � Eunif
�
f�r�

�
�
M

2

q
�Eunif [Ni] ln�1� 4
2��

Proof. We apply standard methods that can be found, for instance, in Cover and Thomas [4]. For any
distributions P and Q, let

kP�Qk1
�
�

X
r�f0�1gT

jPfrg �Qfrgj

be the variational distance, and let

KL
�
P k Q

� �
�

X
r�f0�1gT

Pfrg lg
�

Pfrg
Qfrg

�

be the Kullback-Liebler divergence or relative entropy between the two distributions. (We use lg to denote
log2.) We also use the notation

KL
�

Pfrt j rt�1g k Qfrt j rt�1g
� �
�

X
rt�f0�1gt

Pfrtg lg

�
Pfrt j rt�1g
Qfrt j rt�1g

�

for the conditional relative entropy of rt given rt�1. Finally, for p� q � �0� 1�, we use

KL
�
p k q

� �
� p lg

�
p

q

�
� �1� p� lg

�
1� p

1 � q

�

as shorthand for the relative entropy between two Bernoulli random variables with parameters p and q.

22



We have that

Ei

�
f�r�

�� Eunif
�
f�r�

�
�

X
r
f�r��Pifrg � Puniffrg�

�
X

r:Pifrg�Punif frg

f�r��Pifrg � Punif frg�

� M
X

r:Pifrg�Punif frg

�Pifrg � Puniffrg�

�
M

2
kPi � Punif k1� (15)

Also, Cover and Thomas’s Lemma 12.6.1 states that

kPunif � Pik2
1 � �2 ln 2�KL

�
Punif k Pi

�
� �16�

The “chain rule for relative entropy” (Cover and Thomas’s Theorem 2.5.3) gives that

KL
�
Punif k Pi

�
�

TX
t�1

KL
�

Punif frt j rt�1g k Pifrt j rt�1g
�

�
TX
t�1

�
Puniffit �� ig KL

�
1
2 k 1

2

�
� Punif fit � ig KL

�
1
2 k 1

2 � 

��

�
TX
t�1

Puniffit � ig
�
�1

2 lg�1� 4
2�
�

� Eunif [Ni]
�
�1

2 lg�1� 4
2�
�
� (17)

The second equality can be seen as follows: Regardless of the past history of rewards rt�1, the conditional
probability distribution Punif frt j rt�1g on the next reward rt is uniform on f0� 1g. The conditional
distribution Pifrt j rt�1g is also easily computed: Given rt�1, the next action it is fixed by A. If this
action is not the good action i, then the conditional distribution is uniform on f0� 1g; otherwise, if it � i,
then rt is 1 with probability 1�2 � 
 and 0 otherwise.

The lemma now follows by combining Equations (15), (16) and (17). �

We are now ready to prove the theorem. Specifically, we show the following:

Theorem B.2 For any player strategy A, and for the distribution on rewards described above, the expected
regret of algorithmA is lower bounded by:

E� [Gmax �GA] � 


�
�T � T

K
� T

2

s
� T

K
ln�1� 4
2�

�
A �

Proof. If action i is chosen to be the good action, then clearly the expected payoff at time t is 1�2 � 
 if
it � i and 1�2 if it �� i:

Ei [rt] �
�

1
2 � 


�
Pifit � ig� 1

2 Pifit �� ig
� 1

2 � 
 Pifit � ig�

23



Thus, the expected gain of algorithm A is

Ei [GA] �
TX
t�1

Ei [rt] �
T

2
� 
 Ei [Ni] � �18�

Next, we apply Lemma B.1 to Ni, which is a function of the reward sequence r since the actions of
player strategy A are determined by the past rewards. Clearly, Ni � �0� T �. Thus,

Ei [Ni] � Eunif [Ni] �
T

2

q
�Eunif [Ni] ln�1� 4
2�

and so

KX
i�1

Ei [Ni] �
KX
i�1

�
Eunif [Ni] �

T

2

q
�Eunif [Ni] ln�1� 4
2�

�

� T �
T

2

q
�TK ln�1� 4
2�

using the fact that
PK

i�1 Eunif [Ni] � T , which implies that
PK

i�1
p

Eunif [Ni] � p
TK. Therefore,

combining with Equation (18),

E� [GA] �
1
K

KX
i�1

Ei [GA] � T

2
� 


�
� T

K
�
T

2

s
� T

K
ln�1� 4
2�

�
A �

The expected gain of the best action is at least the expected gain of the good action, so E� [Gmax] �
T �1�2 � 
�. Thus, we get that the regret is lower bounded by the bound given in the statement of the
theorem. �

For small 
, the bound given in Theorem B.2 is of the order

Θ

�
�T
 � T
2

s
T

K

�
A �

Choosing 
 � c
p
K�T for some small constant c, gives a lower bound of Ω�

p
KT�. Specifically, the lower

bound given in Theorem 7.1 is obtained from Theorem B.2 by choosing 
 � �1�4�minfpK�T� 1g and
using the inequality� ln�1� x� � �4 ln�4�3��x for x � �0� 1�4�.

24


