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Abstract

We present a simple algorithm for playing a repeated game. We show that a player using this
algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any
fixed strategy. Our bounds are non-asymptotic and hold for any opponent. The algorithm, which uses
the multiplicative-weight methods of Littlestone and Warmuth, is analyzed using the Kullback-Liebler
divergence. Thisanalysisyieldsanew, simpleproof of the minmax theorem, as well asaprovable method
of approximately solving a game. A variant of our game-playing algorithmis proved to be optimal in a
very strong sense.

1 Introduction

We study the problem of learning to play a repeated game. Let M be a matrix. On each of a series of
rounds, one player chooses a row ¢ and the other chooses a column j. The selected entry M(s, j) is the
loss suffered by the row player. We study play of the game from the row player’s perspective, and therefore
leave the column player’s loss or utility unspecified.

A simple goal for the row player isto suffer loss which is no worse than the value of the game M (if
viewed as a zero-sum game). Such agoal may be appropriate when it is expected that the opposing column
player’'s goal is to maximize the loss of the row player (so that the gameisin fact zero-sum). In this case,
the row player can do no better than to play using a minmax mixed strategy which can be computed using
linear programming, provided that the entire matrix M isknown ahead of time, and provided that the matrix
isnot too large. Thisapproach has a number of potential drawbacks. For instance,

e M may be unknown;
e M may be so large that computing a minmax strategy using linear programming isinfeasible; or

e the column player may not be truly adversarial and may behave in a manner that admits loss signifi-
cantly smaller than the game value.

Overcoming these difficultiesin the one-shot gameishopeless. In repeated play, however, one can hope
to learn to play well against the particular opponent that is being faced.

Algorithms of this type were first proposed by Hannan [20] and Blackwell [3], and later algorithms
were proposed by Foster and Vohra [14, 15, 13]. These agorithms have the property that the loss of the



row player in repeated play is guaranteed to come close to the minimum loss achievable with respect to the
sequence of plays taken by the column player.

In this paper, we present a simple algorithm for solving this problem, and give a simple analysis of the
algorithm. The boundswe obtain are not asymptotic and holdfor any finite number of rounds. Thealgorithm
and its analysis are based directly on the “on-line prediction” methods of Littlestone and Warmuth [25].

The analysis of this algorithm yields a new (as far as we know) and simple proof of von Neumann’s
minmax theorem, aswell asa provable method of approximately solving agame. We also give more refined
variants of the algorithm for this purpose, and we show that one of these isoptimal in a very strong sense.

The paper is organized as follows. In Section 2 we define the mathematical setup and notation. In
Section 3 we introduce the basic multiplicativeweights algorithm whose average performance is guaranteed
to be almost as good asthat of the best fixed mixed strategy. In Section 4 we outlinethe relationship between
our work and some of the extensive existing work on the use of multiplicative weightsalgorithmsfor on-line
prediction. In Section 5 we show how the algorithm can be used to give a smple proof of Von-Neumann's
min-max theorem. In Section 6 we give a version of the algorithm whose distributions are guaranteed to
converge to an optimal mixed strategy. We note the possible application of this algorithm to solving linear
programming problems and reference other work that have used multiplicativeweightsto thisend. Finaly,
in Section 7 we show that the convergence rate of the second version of the algorithm is asymptotically
optimal.

2 Playing repeated games

We consider non-collaborative two-person gamesin norma form. The gameis defined by a matrix M with
n rows and m columns. There are two players called the row player and column player. To play the game,
the row player chooses a row 7, and, simultaneously, the column player chooses a column ;. The selected
entry M(4, j) isthe loss suffered by the row player. The column player’sloss or utility is unspecified.

For the sake of simplicity, throughout this paper, we assume that all the entries of the matrix M are in
the range [0, 1]. Simple scaling can be used to get similar results for general bounded ranges. Also, we
restrict ourselves to the case where the number of choices available to each player isfinite. However, most
of the results trandate with very mild additional assumptionsto cases in which the number of choices is
infinite. For a discussion of infinite matrix games see, for instance, Chapter 2 in Ferguson [11].

Following standard terminology, we refer to the choice of a specific row or column as a pure strategy
and to a distribution over rows or columns as a mixed strategy. We use P to denote a mixed strategy of the
row player, and Q to denote a mixed strategy of the column player. We use P (7) to denote the probability
that P associates with the row ¢, and we write M (P, Q) = PTMQ to denote the expected loss (of the row
player) when the two mixed strategies are used. In addition, we write M (P, j) and M (7, Q) to denote the
expected loss when one side uses a pure strategy and the other a mixed strategy. Although these quantities
denote expected losses, we will usualy refer to them simply aslosses.

If we assumethat thelossof the row player isthe gain of the column player, we can think about the game
as azero-sum game. Under such an interpretation we use P* and Q* to denote optimal mixed strategies for
M, and v = M(P*, Q*) to denote the value of the game.

The main subject of thispaper isan algorithmfor adaptively selecting mixed strategies. Theagorithmis
used to choose a mixed strategy for one of the playersin the context of repeated play. We usually associate
the algorithm with the row player. To emphasize the roles of the two playersin our context, we sometimes
refer tothe row and column playersasthelearner and the environment, respectively. Aninstance of repeated
play is a sequence of rounds of interactions between the learner and the environment. The game matrix M
used in theinteractionsisfixed but isunknown to thelearner. Thelearner only knowsthe number of choices
that it has, i.e., the number of rows. Onround¢ =1,...,T:



1. thelearner chooses mixed strategy P;;
2. the environment chooses mixed strategy Q; (which may be chosen with knowledge of P,)

3. the learner is permitted to observe the loss Mz, Q) for each row i; thisisthe loss it would have
suffered had it played using pure strategy i;

4. thelearner suffersloss M (P, Q).

The basic goal of the learner is to minimize its total loss Y., M(P;, Q;). If the environment is
maximally adversarial then a related goal isto approximate the optimal mixed row strategy P*. However,
in more benign environments, the goal may be to suffer the minimum loss possible, which may be much
better than the value of the game.

Finally, in what follows, we find it useful to measure the distance between two distributionsP; and P,
using the Kullback-Leibler divergence, also called the relative entropy, which is defined to be

e 7= S (52)

Asiswell known, the relative entropy is a measure of discrepancy between distributionsin that it is non-
negative and is equal to zero if and only if P, = P». For real numbers p1, p» € [0, 1], we use the shorthand
RE (p1 || p2) todenotethe relative entropy between Bernoulli distributionswith parameters p1 and p», i.e.,

RE(py | 2) = pain (22) + (L= poyn (322,

— P2

3 Thebasicalgorithm

We now describe our basic agorithm for repeated play, which we call MW for “multiplicative weights.”
Thisalgorithmisadirect generalization of Littlestone and Warmuth's “weighted mgjority algorithm” [25],
which was discovered independently by Fudenberg and Levine [17].

The learning algorithm MW starts with someinitial mixed strategy P 1 which it uses for the first round
of the game. After each round ¢, the learner computes a new mixed strategy P, 1 by asimple multiplicative
rule: SMGQ)

Pi11(i) = P(d) Z,
where Z; isanormalization factor:

= Z Pt(i)ﬂM(i’Qt) ;
=1

and § € [0, 1) isaparameter of the algorithm.
The main theorem concerning thisalgorithm is the following:

Theorem 1 For any matrix M with n rows and entriesin [0, 1], and for any sequence of mixed strategies
Q1, - - -, Qr played by the environment, the sequence of mixed strategiesPs, . . ., Pr produced by algorithm
MW satisfies:

T
> M(P, Q) < mm aﬁZM (P,Q:) + csRE(P || P1)
t=1 t=1

where In(1/5) 1
n




Our proof usesakind of “amortized analysis’ in which relative entropy isused asa“ potential” function.
This method of analysisfor on-line learning algorithmsis due to Kivinen and Warmuth [23]. The heart of
the proof isin the following lemma, which bounds the change in potential before and after a single round.

Lemma 2 For any iteration t where MW is used with parameter 3, and for any mixed strategy P,
. . 1 .
RE(P || Py1) —RE(P || P/) < (InB)M(P, Q) +In(1—(1-BM(P, Q).
Proof: The proof of the lemma can be summarized by the following sequence of inequalities:

RE(P || Piyr) —RE(P || Py

_ il S py; P(i)

= ;P()InPtH(i) ;P()InPt(i) )

_ Y pyp i Pl

= ;P()lnpm(i) )
e 7

= ;P(z)lnﬁM(LQt) ©)

= <|n1>zn:f>(i)M(i,Qt)+ant 4

ﬁ =1
< (In%)M(f’,Qt)+ln[Zn:Pt(i)(1—(1—ﬂ)M(i,Qt)) (5)
=1
= (In%)M(f’,Qt) +In(1-(1- /)M(P, Q).

Line (1) follows from the definition of relative entropy. Line (3) follows from the update rule of MWand
line (4) followsby simple agebra. Finaly, line (5) followsfrom the definition of .7, combined with the fact
that, by convexity, 3* <1— (1— g)zfor 3 > 0andz € [0,1]. H

Proof of Theorem 1: LetP be any mixed row strategy. We first smplify the last term in the inequality of
Lemma 2 by using thefact that In(1 — z) < —a for any < 1 which impliesthat

RE(P || Piy1) —RE(P || P,) < (In%)M(f’,Qt) — (1- B)M(P4, Qs

Summing thisinequality over t = 1, ..., T we get

RE (f> I PT+1) _RE (f> I Pl) < (In%) éM(f’,Qt) —(1-9)Y_M(P, Q).

t=1

Noting that RE (f’ I PT+1) > 0, rearranging theinequality and noting that P was chosen arbitrarily gives
the statement of the theorem. .

In order to use MW, we need to choose the initial distribution P and the parameter 5. We start with
the choice of P;. In general, the closer Py isto agood mixed strategy P, the better the bound on the total
loss MW. However, even if we have no prior knowledge about the good mixed strategies, we can achieve
reasonabl e performance by using the uniform distribution over the rows as theinitial strategy. Thisgivesus
a performance bound that holds uniformly for al gameswith » rows:

4



Corollary 3 If MW isused with P; set to the uniformdistribution then itstotal lossis bounded by

T T

> M(P:, Q) < ag manZM (P,Qy) +cslnn

where ag and ¢z are as defined in Theorem 1.

Proof: If P1(i) = 1/nforalithenRE(P || P1) <Innforadl P. W

Next we discuss the choice of the parameter 3. As 3 approaches 1, ag approaches 1 from above while
cp increases to infinity. On the other hand, if we fix 3 and let the number of rounds 7" increase, the second
term ¢z Inn becomes negligible (since it is fixed) relative to 7. Thus, by choosing 3 as a function of T’
which approaches 1 for " — oo, thelearner can ensure that its average per-trial losswill not be much worse
than the loss of the best strategy. Thisisformalized in the following corollary:

Corollary 4 Under the conditions of Theorem 1 and with /5 set to

the average per-trial loss suffered by the learner is

1 o 1d
72 M(Po Q) <ming3 M(P.Q) +Ar.
t= t=1

2lnn Inn Inn
Ar, = = —.
T, T T O( T)

Proof: It can be shownthat —Ing < (1 — 3?%)/(28) for 5 € (0, 1]. Applying this approximation and the
given choice of 3 yieldstheresult. B

Since A, -+ 0asT — oo, we see that the amount by which the average per-trial loss of the learner
exceeds that of the best mixed strategy can be made arbitrarily small for large T'.

Note that in the analysiswe made no assumption about the strategy used by the environment. Theorem 1
guarantees that its cumulative loss is not much larger than that of any fixed mixed strategy. As shown
below, thisimpliesthat the loss cannot be much larger than the game value. However, if the environment is
non-adversarial, there might be a better row strategy, in which case the algorithm is guaranteed to be almost
as good as this better strategy.

where

Corollary 5 Under the conditionsof Corollary 4,

1 T
72 M(P1, Q) < vt Ay,
t=1

where v isthe value of the game M.

Proof: Let P* beaminmax strategy for M so that for all column strategies Q, M (P*, Q) < v. Then, by

Corallary 4,
T T

1 1
T E M(P, Q) < T E M(P*, Q¢) + A7 < v+ Ary.



3.1 Convergencewith probability one

Suppose that the mixed strategies that are generated by MW are used to select one of the rows at each
iteration. From Theorem 1 and Corollary 4 we know that the expected per-iteration loss of MW approaches
the optimal achievable valuefor any fixed strategy asT — oc. However, we might want astronger assurance
of the performance of MW, for example, we would like to know that the actual per-iteration lossis, with
high probability, close to the expected value. As the following lemma shows, the per-trial loss of any
algorithm for the repeated game is, with high probability, at most O(1/+/T') away from the expected value.
The only required game property is that the game matrix elementsare al in [0, 1].

Lemma6 Let the players of a matrix game use any pair of methods for choosing their mixed strategies
on iteration ¢ based on past game events. Let P; and Q; denote the mixed strategies used by the players
on iteration ¢ and let M (4,, j;) denote the actual game outcome on iteration ¢ that is chosen at random
according to P; and Q;. Then, for every ¢ > 0,

1| o 1
Pr [T Z (M (¢, 1) — M(P;, Q1)) | > €| < 2exp <_§T62) ,
=1
where probability is taken with respect to the random choice of rows ¢4, . . ., 27 and columns jy, . . ., jr.

Proof: The proof follows directly from a theorem proved by Hoeffding [22] about the convergence of a
sum of bounded-step martingales which is commonly caled “Azuma’s lemma.” The sequence of random
variablesY; = M(i, ji) — M (P, Q) isamartingaledifference sequence. Astheentriesof M are bounded
in [0, 1] we have that |Y;| < 1. Thuswe can directly apply Azuma's Lemmaand get that, for any « > 0

[£]- ] com( )

t=1

Substituting a« = €T we get the statement of the lemma. B

If we want to have an algorithm whose performance will converge to the optimal performance we need
the value of § to approach 1 as the length of the sequence increases. One way of doing this, which we
describe here, is to have the row player divide the time sequence into “epochs.” In each epoch, the row
player restarts the algorithm MW (resetting all the row distribution to the uniform distribution) and uses a
different value of 3 which istuned according to the length of the epoch. We show that such a procedure can
guarantee, almost surely, that the long term per-iteration lossis at most the expected | oss of any fixed mixed
strategy.

We denote the length of the kth epoch by T} and the value of 5 used for that epoch by 5;.. One choice
of epochs that gives convergence with probability oneisthe following:

Ty = k2, ﬁk:;- (6)

1+

The convergence properties of thisstrategy are given in the following theorem:

> a

Theorem 7 Supposethe repeated gameis continued for an unbounded number of rounds. Let P; be chosen
according to the method of epochs with the parameters described in Equation (6), and let ¢; be chosen at
random according to P;. Let the environment choose j; as an arbitrary stochastic function of past plays.
Then, for every ¢ > 0, with probability one with respect to the randomization used by both players, the
following inequality holdsfor all but a finite number of values of 7

1

—Z (it, 1) <M Z (P, i) +

H



Proof: For each epoch k& we select the accuracy parameter ¢, = 2v/Ink/k. We denote the sequence of
iterationsthat constitute the &’th epoch by .S%.. We call the kth epoch “good” if the average per trial lossfor
that epoch iswithin ¢;, from its expected value, i.e., if

Z M (i, ji) < Z M(Py, ji) + Trey. (7)
teSk teSk

From Lemma 6 (where we define (); to be the mixed strategy which gives probability oneto j;), we get that
the probability that the kth epoch is bad is bounded by

1 2

The sum of thisbound over al & from 1 to oo isfinite. Thus, by the Borel-Cantelli lemma, we know that
with probability one al but afinite number of epochs are good. Thusfor the sake of computing the average
lossfor T" — oo we can ignore the influence of the bad epochs.

We now use Corollary 4 to bound the expected total loss. We apply this corollary in the case that Q; is
again defined to be the mixed strategy which gives probability oneto j;. We have from the corollary:

ZM(Pt7]t <m nZM P,j)+v2TkInn+Inn . (8)

teSk teSk

Combining Equations (7) and (8) we find that if the kth epoch is good then, for any distribution P over
the actions of the algorithm

ST M) <03 M(P,j) + VaTiInn +Inn + They,

teSk teSk
< 3 M(P,ji) +kV2Inn +Inn 4 2kVink
teSk

Thus the total loss over the first m epochs (ignoring the finite number of bad iterations whose influence is
negligible) isbounded by

ST M(inj) < S M@, ) +Z[k\/2|nn+|nn+2k\/ﬁ}

t€S1U...USm, t€51U...USm,
< Z M( 7j,g)—l—m nm{\/Zlnn—l—lnn—l—Z} .
t€S51U...US,

Asthe total number of rounds in the first m epochsis "7, k% = O(m?) we find that, after dividing both
sides by the number of rounds, the error term decreases to zero. Bl

4 Relation to on-line learning

One interesting use of game theory is in the context of predictive decison making (see, for instance,
Blackwell and Girshick [4] or Ferguson [11]). On-Line decision making can be viewed as arepeated game
between a decision maker and nature. The entry M (¢, ¢) represents the loss of (or negative utility for) the
prediction algorithm if it chooses action i at time t. The goa of the algorithm is to adaptively generate
distributions over actions so that its expected cumulative loss will not be much worse than the cumulative
lossit would have incurred had it been able to choose a single fixed distribution with prior knowledge of the
whole sequence of columns.



This is a non-standard framework for analyzing on-line decision algorithms in that one makes no
statistical assumptions regarding the relationship between actions and their losses. The only assumption
is that there exists some fixed mixed strategy (distribution over actions) whose expected performance is
nontrivial. This approach was previously described in one of our earlier papers [16]; the current paper
expands and refines the results given there.

The algorithm MW was originally suggested by L ittlestone and Warmuth [25] and (in a somewhat more
sophisticated form) by Vovk [30] in the context of on-line prediction. The algorithm was also discovered
independently by Fudenberg and Levine [17]. Research on the use of the multiplicative weights algorithm
for on-line prediction is extensive and on-going, and it is out of the scope of this paper to give a complete
review of it. However, we try to sketch some of the main connections between the work described in this
paper and this expanding line of research.

The on-line prediction framework is a refinement of the decision theoretic framework described above.
Here the prediction algorithm generates distributions over predictions, nature chooses an outcome and the
lossincurred by the prediction agorithm is a known loss function which maps action/outcome pairs to real
values. Thisframework restricts the choices that can be made by nature because once the predictions have
been fixed, the only loss columns that are possible are those that correspond to possible outcomes. Thisis
the reason that for various loss functions one can prove better bounds than in the less structured context of
on-line decision making. The approach is closely related to work by Dawid [9], Foster [12] and Vovk [30].

One loss function that has received particular attention is the log loss function. Here the prediction is
assumed to be a distribution P” over some domain X, the outcome is an element from the domain z € X,
and the lossis — log P(z). This loss has several important interpretations which connect it to likelihood
analysisand to coding theory. Notethat asthe probability of an el ement can be arbitrarily small, thelosscan
be arbitrarily high. On-Line algorithmsfor making predictionsin this case have been extensively studied in
information theory under the name universal compression of individual sequences [32, 28]. In particular, a
well-known result isthat the multiplicative weights algorithm, with 3 set to 1/e isanear-optimal algorithm
in this context. It is aso interesting to note that this version of the multiplicative weights algorithm is
equivalent to the Bayes prediction rule, where the generated distributions over the rows are equal to the
Bayesian posterior distributions. On the other hand, this equivalence holds only for the log-loss; for other
loss functionsthere isno simplerel ationship between the multiplicativeweights algorithm and the Bayesian
algorithm.

Cover and Ordentlich [7, 6] and later Helmbold et al. [21] extended the log-loss analysis to the design
of agorithms for “universal portfolios” There is an extensive literature on on-line prediction with other
specific loss functions. For example, for work on prediction loss, see Feder, Merhav and Gutman [10],
Cesa-Bianchi et al. [5] and for work on more general families of 1oss functions see Vovk [29] and Kivinen
and Warmuth [23].

Another extension of the on-line decision problem that is worth mentioning here is making decisions
when the feedback given isasingle entry of the game matrix. In other words, we assume that after the row
player has chosen adistribution over therows, asinglerow ischosen at random according to the distribution.
Therow player suffersthe loss associated with the sel ected row and the column chosen by its opponent, and
the game repeats. The goal of the row player is the same as before—to minimize its expected average loss
over a sequence of repeated games. Clearly, the goal is much harder here since only a single entry of the
matrix is revealed on each round. Auer et a. [2] study this model in detail and show that a variant of the
multiplicative weights algorithm converges to the performance of the best row distributionin repeated play.



5 Proof of the minmax theorem

Corollary 5 showsthat theloss of MW can never exceed the value of the game M by morethan Az ,,. More
interestingly, Corollary 4 can be used to derive avery simple proof of von Neumann’'s minmax theorem. To
prove thistheorem, we need to show that

mPIanaXM(P, Q) < m(_g;\me!nM(P7 Q). (9)
(Proving that minp maxq M (P, Q) > maxq minp M (P, Q) isrelatively straightforward and so is omitted.)

Suppose that we run algorithm MW against a maximally adversarial environment which alwayschooses
strategies which maximize the learner’s loss. That is, on each round ¢, the environment chooses

Qi = agmaxM(Pr, Q). (10)
LetP = 157 P, andQ = 25", Q;. Clearly, P and Q are probability distributions.
Then we have:

minmaxP'™MQ < maxP' M
inme Q < s Q

T
= maXlZPtTMQ by definition of P
Q Tt:l
1L .
< T;mgxpt MQ
1 d T e .
= f;Pt MQ; by definition of Q,

1 T
< mn=SN"P™™M Ar, llary 4
< mFlJnT; Q:;+ Ar,, by Corollary

= min PTMQ + A7, by definition of Q

IN

mgx mFi)n PTMQ + Ar,.

Since Ar,, can be made arbitrarily close to zero, this proves Eq. (9) and the minmax theorem.

6 Approximately solving a game

Aside from yielding a proof for a famous theorem that by now has many proofs, the preceding derivation
shows that algorithm MW can be used to find an approximate minmax or maxmin strategy. Finding these
“optimal” strategiesis called solving the game M.

We give three methods for solving a game using exponential weights. In Section 6.1 we show how one
can use the average of the generated row distributions over T iterations as an approximate solution for the
game. Thismethod setsT" and 3 as afunction of the desired accuracy before starting the iterative process.

In Section 6.2 we show that if an upper bound « on the value of the game is known ahead of time then
one can useavariant of MW that generates a sequence of row distributionssuch that the expected lossof the
tth distribution approaches «. Finally, in Section 6.3 we describe arelated adaptive method that generates a
gparse approximate solution for the column distribution. At the end of the paper, in Section 7, we show that
the convergence rate of the two last methodsis asymptotically optimal.

9



6.1 Usingtheaverage of therow distributions

Skipping the first inequality of the sequence of equalities and inequalities at the end of Section 5, we see
that

mgxM(ﬁQ) < mgmeiJnM(P,Q)ﬁ—AT,n:vﬁ—AT’n.

Thus, the vector P is an approximate minmax strategy in the sense that for all column strategies Q,
M(ﬁ Q) does not exceed the game value v by more than Az ,,. Since A7 ,, can be made arbitrarily small,
this approximation can be made arbitrarily tight.

Similarly, ignoring the last inequality of this derivation, we have that

mFi)nM (P,Q) >v—Ar,

s0 Q aso is an approximate maxmin strategy. Furthermore, it can be shown that a column strategy Q;
satisfying Eq. (10) can always be chosen to be a pure strategy (i.e., amixed strategy concentrated on asingle
column of M). Therefore, the approximate maxmin strategy Q has the additional favorable property of
being sparsein the sense that at most 7" of its entries will be nonzero.

6.2 Usingthefinal row distribution

In the analysis presented so far we have shown that the average of the strategies used by MW converges to
an optimal strategy. Now we show that if the row player knows an upper bound « on the value of the game
v then it can use a variant of MW to generate a sequence of mixed strategies that approach a strategy which
achieveslossu.! To do that we have the algorithm select a different value of 3 for each round of the game.
If the expected loss on the ¢th iteration M (P, Q;) islessthan «, then the row player does not change the
mixed strategy, because, in a sense, it is “good enough.” However, if M(P;, Q;) > u then the row player
uses MW with parameter
_ u(l- M(P, Q)
B = :

(1—u)M(P, Q:)
We call thisalgorithm vMW (the “v” stands for “variable”). For this algorithm, as the following theorem
shows, the distance between P; and any mixed strategy that achieves « decreases by an amount that is a
function of the divergence between M (P;, Q) and u.

Theorem 8 Let P be any mixed strategy for the rows such that maxq M (I?, Q) < u. Then on any iteration
of algorithmvMW in which M (P, Q;) > u therelative entropy between P and P,.; satisfies

RE(P || Puy1) <RE(P || P) —RE(u || M(P, Q) .

Prqof: Note that when « < M (P, Q) weget that 5, < 1. Combining this observation with the definition
of P and the statement of Lemma 2 we get that

RE(P || Py1) —RE(P || Py

< M(P,Q,)In(1/5) +In(1- (1- B)M(P;,Q,)) (12)
< uIn(1/B) +In(1— (1— 5)M(P,, Q).

LI no such upper bound is known, one can use the standard trick of solving the larger game matrix

M 0
0 _MT ’

10

whose valueis aways zero.



The choice of 3; was chosen to minimizethe last expression. Plugging the given choice of 3; into this last
expression we get the statement of the theorem. B

Suppose M (P4, Q;) > «u for al t. Then the main inequality of this theorem can be applied repeatedly
yielding the bound

T
RE(P || Pry1) <RE(P || P1) -3 RE(u || M(P,, Q).
t=1
Since relative entropy is nonnegative, and since the inequality holdsfor al T', we have
> RE(u || M(P,, Q) <RE(P || Py). (12)
=1

Assuming that RE (f’ I Pl) isfinite (asit will be, for example, if Py isuniform), thisinequality implies,
for instance, that M (P, Q;) can exceed u + ¢ at most finitely often for any ¢ > 0. More specifically, we
can prove the following:

Corollary 9 Supposethat VMW is used to play a game M whose value is known to be at most . Suppose
alsothat we choose P; to bethe uniformdistribution. Then for any sequence of column strategiesQ 1, Qo, - . .,
the number of rounds on which thelossM (P, Q;) > u + € isat most

Inn
RE(u || u+e€)

Proof: Since rounds on which M(P;, Q) < u are effectively ignored by vMW, we assume without oss
of generality that M (P, Q,) > u for al roundst. Let S = {t : M(P4, Q) > u + ¢} bethe set of rounds
for whichthelossisat least u + ¢, and let P* be aminmax strategy. By Eq. (12), we have that

Y RE(u || ut+e¢) < > RE(u | M(P;,Qy))
tes teES
< Y RE(u || M(P:, Q)
=1
< RE(P* || P1) <Inn.
Therefore,
5] < Inn
“RE(u || u+te)’
|

In Section 7, we show that this dependence on », « and ¢ cannot be improved by any constant factor.

6.3 Convergenceof a column distribution

When 3 isfixed, we showed in Section 6.1 that the average Q of the Q;’s is an approximate solution of the
game, i.e., that there are no rows i for which M(i,ﬁ) isless than v — Ar,,. For the algorithm described
above in which 3; varies, we can derive a more refined bound of this kind for a weighted mixture of the

Q:/'s.
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Theorem 10 Assumethat on every iteration of algorithmvMW, we have that M (P, Q;) > u. Let

Q _ Zthl Q:In(1/5) ‘
Zthl In(1/5)

Then .
> Pi(i) < exp (— > RE(u || M(P;, Qt))).
M (1,Q)<u =1
Proof: If M(P, Q) < u, then, combining Eq. 11for¢ = 1,...,T, we have

T
E(P || Pry1) —RE(P | P1) < Y M(P, >|n1/ﬁt-+§:|n (1= B)M(P;, Q)
t=1

T
= (]-3762)2 n(1/3) ‘|‘Z|n (1-5)M(P;,Qy))

T

< wu- Zln 1/5:) —I—Z:ln (1-3:)M(P, Qy))
T

= - RE(u || M(P, Q)
t=1

for our choice of 3. In particular, if i is arow for which M (¢, Q) < u, then, setting P to the associated
pure strategy, we get

|4Pl) i (u || M(P;, Q)

Pria(7)

N
N
A

T
Y. Pru(i) ( > RE(u | M Pt,Qt>>)
t=1

M (5,Q)<u M (6,Q) <u

exp (— > RE(u || M(P,, Qt)))

t=1

IN

since P71 isadistribution. B

Thus, if M(P,, Q,) is bounded away from u, the fraction of rows ¢ (as measured by P1) for which
M(, Q) < u drops to zero exponentially fast. This will be the case, for instance, if Eg. (10) holds and
u < v — ¢ for somee¢ > 0 where v isthe value of M.

Thus a single application of the exponential weights algorithm yields approximate solutions for both
the column and row players. The solution for the row player consists of the multiplicative weights, while
the solution for the column player consists of the distribution on the observed columns as described in
Theorem 10.

Given a game matrix M, we have a choice of whether to solve M or —M. One natural choice would
be to choose the orientation which minimizes the number of rows. In a related paper [16], we studied
the relationship between solving M or —M T using the multiplicative weights algorithm in the context of
machine learning. In that context, the solution for game matrix M is related to the on-line prediction
problem described in Section 4, while the “dual” solution for —M" corresponds to a method of learning
called “boosting.”

12



6.4 Applicationtolinear programming

It is well known that any linear programming problem can be reduced to the problem of solving a game
(see, for instance, Owen [26, Theorem 111.2.6]). Thus, the algorithmswe have presented for approximately
solving a game can be applied more generally for approximate linear programming.

Similar and closely related methods of approximately solving linear programming problems have pre-
viously appeared, for instance, in the work of Young [31], Grigoriadis and Khachiyan [18, 19] and Plotkin,
Shmoys and Tardos [27].

Although, in principle, our agorithmsare applicable to general linear programming problems, they are
best suited to problems of a particular form. Specifically, they may be most appropriate for the setting
we have described of approximately solving a game when an oracle is available for choosing columns of
the matrix on every round. When such an oracle is available, our algorithm can be applied even when the
number of columns of the matrix is very large or even infinite, a setting that is clearly infeasible for some
of the other, more traditional linear programming algorithms. Solving linear programming problemsin the
presence of such an oracle was also studied by Young [31] and Plotkin, Shmoys and Tardos [27]. See also
our earlier paper [16] for detailed examples of problems arising naturally in the field of machine learning
with exactly these characteristics.

7 Optimality of the convergencerate

In Corollary 9, we showed that using the algorithm vMW starting from the uniform distribution over therows
guarantees that the number of timesthat M (P, Q;) can exceed u+ ¢ isbounded by (Inn)/RE (v || u + €)
where « isaknown upper bound on the value of the game M. In this section, we show that this dependence
of the rate of convergence on n, « and ¢ isoptimal in the sense that no adaptive game-playing algorithm can
beat this bound even by a constant factor. This result isformalized by Theorem 11 below.

A related lower bound result is proved by Klein and Young [24] in the context of approximately solving
linear programs.

Theorem 11 Let 0 < u < u + ¢ < 1, and let n be a sufficiently large integer. Then for any adaptive
game-playing algorithm A, there exists a game matrix M of » rows and a sequence of column strategies
such that:

1. thevalue of game M isat most «; and

2. thelossM (P;, Q;) suffered by A oneachroundt = 1,...,7 isat least u 4 ¢, where

_ | Inn—5Ininn (1—0(1))Inn
r= {RE(U I u—l—e)J = RE(u || ute€)

Proof: The proof uses a probabilistic argument to show that for any algorithm, there exists a matrix (and
sequence of column strategies) with the properties stated in the theorem. That is, for the purposes of the
proof, we imagine choosing the matrix M at random according to an appropriate distribution, and we show
that the stated properties hold with strictly positive probability, implying that there must exist at least one
matrix for which they hold.

Letr = u+ €. Therandom matrix M hasn rowsand 7' columns, and is chosen by selecting each entry
M((¢, 7) independently to be 1 with probability r, and O with probability 1 — ». On round ¢, the row player
(algorithm A) chooses arow distribution P, and, for the purposes of our construction, we assume that the
column player responds with column ¢. That is, the column strategy Q; chosen on round ¢ is concentrated
on columnit.

13



Given this random construction, we need to show that properties 1 and 2 hold with positive probability
for n sufficiently large.

We begin with property 2. Onround ¢, the row player chooses a distribution P, and the column player
responds with column ¢. We require that the loss M (P, t) be at least r = u + €. Since the matrix M
is chosen at random, we need a lower bound on the probability that M(P,,¢) > r. Moreover, because
the row player has sole control over the choice of P;, we need a lower bound on this probability which is
independent of P. To thisend, we prove the following lemma:

Lemma 12 For every r € (0, 1), there exists a number B, > 0 with the following property: Let n be any
positive integer, and let aq, . . ., o, be nonnegative numbers such that > ; o; = 1. Let Xy,..., X, be
independent Bernoulli randomvariableswith Pr[X; = 1] = r and Pr [X; = 0] = 1 — r. Then

Pr [Z%’Xi >r

=1

> B, > 0.

Proof: See appendix. &
To apply thelemma, let o; = P, () and let X; = M(4, t). Then the lemmaimplies that

Pr(M(P,t) > r] > B,
where B, isapositive number which depends on r but which isindependent of » and P;. It follows that

Privt: M(P,t) > r] > B

In other words, property 2 holdswith probability at least BT .

We next show that property 1 failsto hold with probability strictly smaller than B! sothat both properties
must hold simultaneously with positive probability.

Define the weight of row ¢, denoted ¥ (i), to bethe fraction of 1'sintherow: W (i) = S27_; M(i, §)/T.
We say that arow islightif W (i) < u — 1/7. Let P’ bearow distribution which isuniform over the light
rows and zero on the heavy rows. We will show that, with high probability, max; M(P’, j) < u, implying
an upper bound of « on the value of game M.

Let A denote the probability that agiven row ¢ islight; thiswill be the same probability for all rows. Let
n’ be the number of light rows.

We show first that »’ > An/2 with high probability. The expected value of »’ is An. Using aform of
Chernoff bounds proved by Angluin and Valiant [1], we have that

Prin’ < An/2] < exp(—An/8). (13)

We next upper bound the probability that M (P’, j) exceeds u for any column j. Conditional on i being
alight row, the probability that M (¢, 7) = lisat most« —1/7". Moreover, if i1 and i, are distinct rows, then
M(i1, ) and M (42, j) are independent, even if we condition on both being light rows. Therefore, applying
Hoeffding's inequality [22] to column j and the »’ light rows, we have that, for al j,

PriM(P’,j) >u | n'] < e 2T,

Thus,
PrimaxM(P’,j) > u | n'| < Te2"/T°
J
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and so
Pr [maxM(Pﬂj) >u | n > /2| < Te /T2,
J

Combined with Eq. (13), thisimpliesthat
Pr |:maXM(P/7]) > u:| S 6_/\77‘/2 + 1”6_/\77‘/712 S (T + 1)6—/\n/T2
J

forT > 3.
Therefore, the probability that either of properties 1 or 2 failsto hold is at most

(T +1)e /T +1- BT,

If thisquantity isstrictly lessthan 1, then there must exist at |east one matrix M for which both properties 1
and 2 hold. Thiswill bethe caseif and only if

T2
A> —(TIn(1/B,) +In(T + 1)), (14)

Therefore, to complete the proof, we need only prove Eq. (14) by lower bounding A.
We have that

A= Pr[W(i) T <Tu-1]
> Pr[W(i) T =|Tu-1]]
1
> _T. _
> T—I—leXp< T-RE(|Tu—1)/T || u+e))
1
> — . — .
> T—I—leXp< T-RE(u—2/T || ute))
The second inequality follows from Cover and Thomas [8, Theorem 12.1.4].
By straightforward algebra,

T -RE(u—2/T || ute)

T-(RE(u || u+¢€¢) —RE(u || uw—2/T))
1—u+2/T u+e

+2|n< 1—u—c¢ 'u—Z/T)

T-RE(u I u—l—e)—l—C

IN

for T sufficiently large, where C' is the constant

C:ZIn( 1—u/2 u—l—e)'

1—u—c u/2

Thus,
-C

T+1

A> exp(—T -RE(u || u+e))
and therefore, Eq. (14) holdsif
T-RE(u || ute) <Inn—C—In(TXT +1)(TIn(1/B,) +In(T +1))).

By our choice of T', we have that the |eft hand side of thisinequality isat most Inn — 5Inin», and the right
hand sideisInn — (4 + o(1)) InInn. Therefore, theinequality holdsfor » sufficiently large. B
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A Proof of Lemma 12

Let
dimg Xy —r

2
Z?:l ai

Our goal isto derive alower boundon Pr[Y > 0]. Let s = (1 — r). It can be easily verified that EY = 0
and Var Y = s. Inaddition, by Hoeffding's inequality [22], it can be shown that, for all € > 0,

Y =

2

Priy > <e (15)

and
Priy < —¢] < e 2,

Forz € R, let D(2) = Pr[Y = z]. Throughout thisproof, weuse} ", to denote summation over afinite
set of z’s which includes all = for which D(z) > 0. Restricted summations (such as )" o) are defined
analogously.

Let d > 0 be any number. We define the following quantities:

G = Z D(z)
O<e<d

R = - Z xD(z)
—d<z<0

FE1 = ZxD(x)
r>d

FE, = Z 22D ()
r<—d

F3 = szD(x).
r>d

We prove the lemmaby deriving alower boundon G < Pr[Y > 0].
The expected value of Y is:

0=EY = > aD(z)

= Z xD(z) 4+ Z zD(x) + Z xD(ac)—l—ZxD(x)

r<—d —d<z<0 O<z<d r>d
< 0—R+dG+ Fy.

Thus,
R < dG + F1. (16)

Next, we have that

s=VaYy = szD(ac)
= Z 22D (z) + Z 22D (z) + Z xzD(x)—l—szD(x)

r<—d —d<z<0 O<z<d r>d
< Fy+dR+ d°G + Es.

18



Combined with Eqg. (16), it follows that

s < 2d°G + dE1+ Ey+ Fs.

(17)

We next upper bound £1, F» and F3. Thiswill allow usto immediately lower bound GG using Eq. (17).

To bound £1, note that

To bound £3, let d

db1=d Z xD(x

:yo<yl<...

)< D ?D(x) =

r>d
< ym be asequence of numbers such that if D(z) > Oandz > d

(18)
r>d

then z = y; for some ¢. In other words, every = > d with positive probability is represented by some y;.
LetS(y) = P>y D(z). By Eq. (15), S(y) < e=2v for y > 0. We can compute F3 asfollows:

Fa =

Z xzD(x)

r>d

IN

To bound the summation, note that

Thus, F3 < (d?

m—1

Z (%’24-1 -

1=0

yf)e

i yZD
=0

m m—1 m
2
w6y D)+ Y |Wha—vd) > Dlyj)
=0 i—0 j:i-l—l
m—1
Y55 (o) + Z (vf1 — v2) S (yir1)
=0
) m—1
P2 13 (g — yP)e P,
=0
m—1
yz-l-l
2yz+1 — Z/ z+1dw
i=0 ‘Y
m—1
yz-l-l
i—0 Y
= / 2262 dy
K]
1/ —22 -2 1 _—242
= E( Yo ym) S E

+ 1/2)e~2” A bound on F; follows by symmetry.

Combining with Egs. (17) and (18), we have

and so

s < 2d2G + 3(d? 4 1/2)e~ 2

Py >0 >G> "

3(d2 +1/2)e=2"
242 ‘

Sincethisholdsfor al d, we havethat Pr[Y > O] > B, where

ands =r(1—

B,

— 3(d? + 1/2)e2F
242

d>0

r). Thisnumber is clearly positive since the numerator of the inside expression can be made

positive by choosing d sufficiently large. (For instance, it can be shown that thisexpression is positive when

wesetd = /1/s.) B
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