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Abstract

We consider some of our recent work on Good�Turing estimators in the larger
context of learning theory and language modeling� The Good�Turing estimators
have played a signi
cant role in natural language modeling for the past twenty
years� We have recently shown that these particular leave�one�out estimators
converge rapidly� We present these results and consider possible consequences
for language modeling in general� In particular� other leave�one�out estimators�
such as for the cross entropy of various forms of language models� might also
be shown to be rapidly converging using proof methods similar to those used
for the Good�Turing estimators� This could have broad rami
cation in the
analysis and development of language modeling methods� We suggest that� in
language modeling at least� leave�one�out estimation may be more signi
cant
than Occam�s razor�

� INTRODUCTION

How people manage to acquire language in the 
rst few years of life is one of the great
mysteries of human cognition� Computers cannot� at present� duplicate this ability� There
has been considerable recent work in learning theory and one would certainly expect a
mathematical theory of learning to be relevant in the study of language learning� In this
paper we present some of our recent theoretical work motivated by the desire to better
understand language learning� We take a statistical view of language and our results are
fundamentally statistical in nature� Ultimately we expect that a proper understanding



of language learning will encompass syntax and semantics� However� it seems possible
that language is statistical� at least to some extent� at all levels � sentences can be
grammatically ambiguous with some interpretations being more likely than others and
statements can have uncertain truth values with some more likely to be true than others�
It is hoped that the statistical results developed here� although not explicitly about syntax
and semantics� will continue to prove their worth as our understanding of language learning
evolves�

We are interested in what computational linguists call �language models�� attempts to
capture regularities in language by statistically modeling the probabilistic distribution of
words� phrases and sentences as they occur in actual use� The 
rst section of this paper
consists of a formal de
nition of the notion of a language model in general and motivates
a widely used formal measure of the �amount of regularity� uncovered by a given model�

The second section describes what is seemingly a very weak class of models � n�gram
models� These are essentially simple Markov models of the language that do not capture
any notions of grammar� meaning� etc� In spite of the intuitive weakness of these models�
they have proved very e�ective in supporting speech recognition � more e�ective than
models that intuitively seem more sophisticated�

The third section considers n�gram models from the point of view of learning theory�
Although we believe that ultimately n�gram models will be replaced in most applications
by more sophisticated forms of language models� the fundamental learning theory issues
that arise in n�gram models seem likely to arise in more sophisticated models as well�
A fundamental issue is the relation between n�gram models and the notion of Occam�s
razor as a foundation for learning theory� Informally� Occam�s razor �Blumer� Ehrenfeucht�
Haussler� and Warmuth ����� states that� for learning to occur� i�e�� for our model to give
accurate predictions on data not seen during training� the model must be substantially
�simpler� or �more compact� than the data itself� However� in general� n�gram models
are not small � the model essentially memorizes the training data� So most standard
theorems of learning theory that are based on Occam�s razor become irrelevant� they do
not provide meaningful performance guarantees for n�gram models even in the limit of
in
nite training data�

The fourth section introduces the Good�Turing leave�one�out estimators and discusses
their relation to n�gram language models� The fundamental Good�Turing estimator is
simply an estimate of the probability of seeing a word that has not been seen during
training �or a word that has not been seen in a particular context�� In other words� given
a sample of English� Good�Turing estimators tell us how to estimate the probability of
seeing a new English word in a new sample� Good�Turing estimators are relevant to n�
gram models because they are used in setting certain key parameters called interpolation
coe�cients in the n�gram models� Empirically� setting these parameters according to Good�
Turing performs better in practice than other methods such as those inspired by so�called
Bayesian methods� In this section we present very recent theorems on the accuracy of the
Good�Turing estimators�

A 
nal section discusses leave�one�out error estimators in general� The leave�one�out error
is computed by evaluating the expected error on a single randomly chosen training example
based on an estimate obtained using the remaining training examples� It seems likely to
us that the proof methods developed for the Good�Turing estimators can be used to prove



rapid convergence of other leave�one�out estimators for n�gram language models� This
suggests a learning procedure in which one chooses the model whose generalization error�
as measured by its leave�one�out estimate� is smallest� This approach seems fundamentally
di�erent from the more standard approach of minimizing training error over a large family
of models�

� LANGUAGE MODELS IN GENERAL

We would like a computer to read a large corpus of text� perhaps several years of issues
of The New York Times� and 
nd regularities in the text� For example� one might hope
to discover that sentences tend to contain a noun phrase followed by a verb phrase� In
this section we describe a widely used mathematical notion of what it means to �
nd
regularities��

Language can have various kinds of regularities� For example� one might 
nd that� in
The New York Times at least� grammatical sentences are much more common than
ungrammatical ones� One might 
nd that� among the grammatical sentences with objective
truth values� true sentences are more common than false sentences � The New York Times
is� to some extent� trustworthy� No unsupervised language learning computer can currently

nd these syntactic and semantic regularities� although presumably these regularities do
exist in the training corpus� Computers can currently 
nd more obvious regularities such
as the statement that the word of tends to be followed by the word the or that the word
habit is much more likely if the preceding word is bad� Hopefully computers will some day
be able to 
nd deeper regularities either by using better learning methods or by seeding
the search with su�cient initial regularities�

In spite of the current weakness of computers in 
nding regularities� it is possible to
de
ne a quantitative measure of the amount of regularity that has been found� We can
then at least measure the progress of our learning systems� A common measure of the
amount of regularity is based on data compression � any real regularity can� in principle�
be exploited in compressing English text� For instance� simply knowing the frequency
of each word allows us� using standard methods from information theory �Cover and
Thomas ����� to compress the text to a fraction of its original size �where that fraction
turns out to be the entropy of the distribution of words�� At the opposite extreme of
sophistication� if objectively true statements are much more common in The New York
Times than objectively false statements then one could� in principle� exploit this fact for
compression � if we represent each sentence by a bit string then we can use smaller bit
strings for the true sentences than for the false sentences� Of course there is at present
no computationally tractable method of modeling truth in a computer� Nonetheless� any
regularity can in principle be exploited in compression�

Given a compression scheme one can de
ne the quantity of regularity implicit in that
scheme to be the amount of compression achieved by the scheme� Consider a coding scheme
c that compresses a sentence s into a bit string code word c�s�� For a given probability
distribution P on sentences� the average number of bits per sentence using coding scheme
c� denoted H�P jjc�� can be de
ned as follows where jc�s�j denotes the number of bits in
the code word for s�

H�P jjc� �
X
s

P �s�jc�s�j� ���



Our objective is� essentially� to 
nd a compression scheme c with a small quantity H�P jjc�
of bits per sentence� �Actually� since sentence length varies from author to author� a more
stable measure of regularity is H�P jjc��n where n is the average number of words per
sentence� This is the number of bits per word in the compressed text��

It turns out that any coding scheme for sentences corresponds to a probability distribution
on sentences� We are interested in coding schemes that allow us to transmit a sequence of
sentences as a sequence of code words� It is important to know where one code word ends
and the next begins� This can be done if we assume that no code word is a proper pre
x
of any other � such a code is called pre
x�free� For a pre
x�free code we can interpret
	�jc�s�j as a probability of the sentence s � it is the probability that if we generate an
in
nite random bit string and then decode one sentence from the front of this string we
get sentence s�

Conversely� information theory gives a way of converting any probability distribution over
sentences into a coding scheme� Let �P be a model �such as a probabilistic grammar or
an n�gram model� that de
nes a probability distribution over sentences where �P �s� is the
probability of sentence s under the model �P � If we use block codes � code words for large
blocks of sentences rather than code words for individual sentences � then in the limit
of large block size the average number of bits used to code sentence s in the code de
ned
by �P is exactly log���� �P �s��� So if the true probability of a sentence s is P �s�� then the
average number of bits used to transmit a sentence under the code de
ned by �P is given
by

H�P jj �P � �
X
s

P �s� log
�

�P �s�
� �	�

Now suppose that �P �s� is actually de
ned by a coding scheme c� i�e�� we have that �P �s� is
de
ned to be 	�jc�s�j� In that case we have that log��� �P �s�� equals jc�s�j and so equations
��� and �	� agree� In general� coding schemes correspond to probability distributions and
probability distributions correspond to �block� coding schemes� The quantity H�P jj �P � is
sometimes called the cross�entropy of P with respect to model �or coding scheme� �P �

If P is the true probability distribution over words then one can show that P is its own best
model� i�e�� the compression scheme implicit in the distribution P achieves the greatest
possible compression� More formally� we have the following for any model �P �

H�P jjP � � H�P jj �P ��

The quantity H�P jjP � is usually written as H�P � and is the entropy of the distribution
P � A widely used quantity is the Kullback�Leibler divergence� written D�P jj �P �� which is
de
ned as follows�

D�P jj �P � � H�P jj �P � �H�P jjP � �
X
s

P �s� log
P �s�

�P �s�
�

We can then write H�P jj �P � as

H�P jj �P � � H�P � �D�P jj �P ��

In practice� however� the true entropyH�P � of English is unknown and the only measurable
quantity is H�P jj �P � for particular models �P � Each model then provides an upper bound
on the true entropy of English�



We are interested in 
nding a probability model �coding scheme� that minimizes the
average compressed length of sentences� Again� the average number of bits per word�
H�P jj �P ��n� tends to be a more stable measure of the amount of identi
ed regularity
�it is not sensitive to variations in the average sentence length�� Most authors state the

performance of language models by giving the perplexity which is de
ned to be 	H�P jj �P��n�
Here� however� we will use the cross entropy per word H�P jj �P ��n rather than perplexity�

It has been shown that n�gram models of business news text achieve a cross�entropy of
about ��� compressed bits per word as calculated by �	� �Chen and Goodman ������
Models based on longer distance syntactic regularities currently only reduce this by a
small fraction of a bit per word �Chelba and Jelinek ������ But it seems plausible that
signi
cantly greater reductions are possible�

� n�GRAM MODELS

Among the simplest and most widely used language models are the n�gram models�
Essentially� these models attempt to estimate the distribution of n�grams� i�e�� tuples of
length n� This is roughly the same as estimating the distribution of words that will follow
a sequence of n�� words� For instance� such a model might capture the fact that the word
following the phrase �black and� is likely to be �white�� Although n�gram models do not
capture long distance syntactic or semantic regularities� they have proved very useful in
speech recognition systems�

One of the remarkable characteristics of n�gram models is that they include parameters
estimating conditional probabilities of the form �P ��j�� where the conjunction � �� has
only occurred a single time in the training data� For instance� in the example above� ���
is the event that the entire phrase �black and white� occurs� In a large corpus� such a
phrase may occur repeatedly� but there are bound to be many others that occur only once�

We will call a model parameter derived from a single training sample a one�count
parameter� By the nature of language� the number of one�count parameters in an n�gram
language model is likely to be close to the number of samples in the training data �
the n�gram model essentially memorizes the training data� It is well known that the one�
count parameters of an n�gram model signi
cantly improve the model � the one�count
parameters signi
cantly reduce cross entropy of the model� More sophisticated language
models� such as stochastic grammars used in open�domain parsing �Collins ����� Charniak
	����� also involve a number of one�count parameters essentially equal to the size of the
training data� The fundamental theoretical challenge is to explain why such �one�count
models� do not over
t as is typical of overly complex models�

Bayesian explanations for the performance of one�count models can be given with an
appropriate choice of the Bayesian model prior �Pereira and Singer ������ The large one�
count model is viewed as a posterior mixture of much smaller models� However� the validity
of the Bayesian assumptions are questionable� Furthermore� the performance of Bayesian�
inspired smoothing is inferior to the performance of Good�Turing inspired smoothing
�smoothing is described below�� Here we are interested in non�Bayesian explanations that
account for the performance of Good�Turing inspired smoothing� The n�gram models
provide a simple theoretical setting to explore this issue�



To simplify the discussion �and to allow provable bounds� we assume a 
nite 
xed
vocabulary of words� In speech recognition applications one might simply restrict the
vocabulary to the 
nite set of words known to the speech recognition system � other
words must be spelled out by the speaker�

An n�gram over vocabulary V is a tuple of n words� Intuitively� one can consider a
probability distribution over n�grams de
ned by sampling a sequence of n words from
a random position in a randomly selected sample of English text and replacing words not
in V by an �unknown� token� Let S be a sample of m n�grams hw�

� � � �w�
ni� hw�

� � � �w�
ni� � � ��

hwm� � � �wmn i� In practice these n�grams would be adjacent so that wij � wi��j��� However�
considering independently sampled n�grams simpli
es the theoretical analysis� For a given
distribution on n�grams we can think of w�� � � �� wn as dependent random variables� We
are interested in estimating P �wnjw�� � � � � wn���� For a given sample S of m n�grams
and � � j � k � n we de
ne C�hwj � � � wki� to be the number of n�grams hwi� � � �wini in
the sample such that wih � wh for j � h � k� For instance� C�hwn��i� is the number of
n�grams whose second to last word is wn��� and C�hwn��wni� is the number of n�grams
ending with the pair wn� �� wn� thus� the ratio C�hwn��wni��C�hwn��i� is the empirical
probability of wn following wn���

It may be very di�cult to estimate the distribution of words following a phrase if that
phrase was only seen a small number of times during training� To handle this very common
case� an n�gram model is typically �mixed� or �smoothed� or �interpolated� with an
�n����gram model� and �n�	��gram model� etc� More speci
cally� for � � k � n we de
ne
the interpolated k�gram model �P �wnjwn�k � � � wm��� derived from the sample as follows
where ��hwn�k � � � wn��i� is a real number in ��� � called the interpolation coe�cient for
the context hwn�k � � � wn��i�

�P �wn� � ��hi�C�hwni�
m

� �� � ��hi�� �

jV j

�P �wnjwn��� � ��hwn��i�C�hwn��� wni�
C�hwn��i�

��� � ��hwn��i�� �P �wn�

���

�P �wnjwn�k � � � wm��� � ��hwn�k � � � wn��i� C�hwn�k � � � wn��� wni�
C�hwn�k � � � wn��i�

��� � ��hwn�k � � � wn��i�� �P �wnjwn�k�� � � �wn����

The models �P �wn�� �P �wnjwn��� and �P �wnjwn��� wn��� are called the interpolated un�
igram� bigram and trigram models� respectively� The interpolated trigram model inter�
polates between trigram count ratios and the interpolated bigram model which� in turn�
interpolates between the bigram count ratios and the interpolated unigram model which�
in turn� interpolates between the empirical word frequencies and the uniform distribution�
At all levels a separate interpolation coe�cient is used for each conditioning context � the
trigram model has a separate interpolation coe�cient for each bigram context which� in
turn� has a separate interpolation coe�cient for each unigram context which� in turn� has
a single interpolation coe�cient for its single empty context� If C�hwn�k � � � wn��i� � �



then we require that ��hwn�k � � � wn��i� � � so that we avoid division by zero in the
count ratios� Interpolation is one form of �smoothing� where smoothing can be inter�
preted loosely as any method of mixing information from various empirical conditional
probabilities �Chen and Goodman ������

Note that the empirical count ratios will typically assign zero probability to many words
that in fact have nonzero probabilities� If a model assigns zero probability to an event
which actually has nonzero probability then the cross entropy of that model is in
nite�
However� assuming all interpolation coe�cients are less than �� each interpolated k�gram
model assigns nonzero probability to all words for all contexts�

Intuitively� if a context has occurred a large number of times then the count ratio should
be somewhat reliable� Unfortunately� the count of the context turns out to be a poor
predictor of the appropriate interpolation weight� A better analysis of the appropriate
interpolation weight can be given in terms of leave�one�out estimators�

� THE GOOD�TURING LEAVE�ONE�OUT

ESTIMATORS

We will argue in Section � that the setting of the interpolation parameters in an
interpolated n�gram model should be theoretically analyzed in terms of leave�one�out
estimates of the cross�entropy of the model as a whole� Unfortunately� the theoretical
analysis of leave�one�out estimators is mathematically challenging� In this section we
present a theoretical analysis of the Good�Turing leave�one�out estimators� The study
of these estimators can be motivated in two ways� First� these estimators have played an
important role in practical methods for setting interpolation coe�cients in interpolated n�
gram models� Second� they provide a case study in the analysis of leave�one�out estimation�
a kind of warm�up exercise for the more challenging study of leave�one�out cross�entropy
estimation for complete interpolated n�gram models�

Consider the problem of setting the interpolation coe�cients in an interpolated n�gram
model� In particular� consider the unigram model� This has one interpolation coe�cient for
mixing the unigram model with the uniform model� If the sample does not contain all words
in V then this interpolation coe�cient should be strictly less than �� Intuitively we would
like to set the interpolation coe�cient to ���M�� where M� is the probability that� when
we draw a fresh n�gram� the word wn is one that did not occur in the training sample� More
generally� we would intuitively like to set ��hwn�k � � � wn��i� to ���M��hwn�k � � � wn��i��
where M��hwn�k � � � wn��i� is the probability� given context hwn�k � � � wn��i� that wn has
not occurred previously with this context in the sample� The fundamental Good�Turing
estimator estimates this �missing mass��

Since the publication of the Good�Turing estimators in ���� �Good ������ these estimators
have been used extensively in language modeling applications �Chen and Goodman �����
Church and Gale ����� Katz ������ According to Good �Good 	����� the Good�Turing
estimators were developed by Alan Turing during World War II while breaking Enigma
codes� The Enigma was an encryption device used by the German navy� The Enigma
used� as part of its encryption key� a three letter sequence� These three letter sequences
were selected from a book containing all such sequences in a random order� However� a
person opening the book and selecting an entry was likely to select a previously used



entry� say the entry on the top of a page where the binding of the book was creased� Given
a sample of previously used entries� Turing wanted to estimate the likelihood that the
current unknown entry was one that had been previously used� and further� to estimate
the probability distribution over the previously used entries�

Although Good�Turing estimation can be motivated by n�gram models� the discussion of
these estimators can be simpli
ed by considering a process of drawing words from a single

xed distribution on words� In an n�gram model� the distribution will be the conditional
distribution for some context of the model� But for the remainder of this section we
consider drawing words from an arbitrary 
xed distribution on words� The analysis of
Good�Turing estimators discussed here does not rely on the use of a 
nite vocabulary so�
for this section only� we allow the underlying vocabulary of words to be in
nite� We simply
assume an unknown probability distribution P on a countable set V and we denote the
probability of word w by Pw� Although V can be any countable set we will continue to
call the elements of V �words�� We consider a sample S of m words drawn independently
from V � each according to distribution P � For a sample S of m words and for any word
w � V we de
ne the count of w� denoted c�w�� to be the number of times word w occurs
in the sample S� For any integer k � �� we de
ne Sk to be the set of words w � V such
that c�w� � k� Note that S� is the set of words in V not occurring in S� We de
ne Mk to
be the probability of drawing a word in the set Sk�

Mk �
X
w�Sk

Pw�

Note that Mk depends on the sample� i�e�� it is a random variable� The quantity M� is
the so�called missing mass� i�e�� the total probability mass of words not occurring in the
sample�

The Good�Turing estimator of the missing mass M� is G� � jS�j�m� i�e�� the fraction
of examples seen exactly once� More generally� the Good�Turing estimator Gk of Mk is
de
ned to be

Gk � k � �

m
jSk��j� ���

To understand these de
nitions� it is useful to view the Good�Turing estimators as leave�
one�out estimators of the random variables Mk� We can de
ne a general notion of a
leave�one�out estimator by letting ��S� w be any statement relating a sample S to
a word w� De
ne P ���S� w � to be the probability that when we draw a sample S
and then a fresh word w we have that ��S� w holds� Consider P �w � Sk�� Note that
P �w � Sk j S� equals the value of Mk for the sample S� So we have that the expected
value of Mk is

P
S
P �S�P �w � Sk j S� which equals P �w � Sk�� For any 
xed sample

S and element w � S de
ne Snw to be the sample with the element w removed �the
count of w is reduced by one�� The leave�one�out estimate of P ���S� w � is de
ned to be
�
m
jfw � S � ��Snw� w gj� In general we have that the expectation of the leave�one�out

estimate of P ���S� w � on a sample of size m equals P ���S� w � on a sample of size m���
The leave�one�out estimate of P �w � Sk� turns out to be the fraction of the sample that
occurs k � � times in the sample� i�e�� Gk as de
ned in equation ����

It is not hard to show that the expectations of Gk and Mk are close to one another�
Nevertheless� this does not tell us how good an estimate Gk will be of Mk� We are therefore
interested in giving a con
dence interval for Mk as a function of Gk� the sample size m



and the con
dence level �� We do this by showing that� with high con
dence� both Gk and
Mk are near their respective expectations� In �McAllester and Schapire 	���� we prove
the following where� for 
xed constants� we have that ��� and ��� hold with probability at
least � � ��

jE �Gk � E �Mk j � O
�
k � �

m

�
�!�

jGk � E �Gk j � O

�
�k � ��

r
ln �

�

m

�
���

jMk � E �Mk j � O

��
� � k � ln

m

�

�r ln �
�

m

�
� ���

Thus� together these bounds imply that as m gets large �with k 
xed�� the di�erence
between Gk and Mk goes to zero� the bounds also tell us that this convergence to zero
goes like ��

p
m� The constants in the bounds are modest but greater than one and both

��� and ��� become vacuous for k � p
m� Bound ��� is a simple corollary of McDiarmid�s

theorem �given below�� Bound ��� is also proved using McDiarmid�s theorem but the
proof is considerably more di�cult and the term of ln�m��� is probably an artifact of the
proof method� In the next section we focus on the special case of M� and refer the reader
to �McAllester and Schapire 	���� for the case of k � ��

� AN ANALYSIS OF G�

Here we focus on the estimate G� of the missing mass� The accuracy of this estimator is
covered by the above theorem for the case of k � �� However� we were able to prove an
upper bound M� that eliminates the term ln�m��� in ���� More speci
cally� the following
holds with high probability over the choice of the sample�

Theorem � With probability at least � � � over the choice of the sample

M� � G� � �	
p

	 �
p

��

r
ln� �

�
�

m
�

Because theorem � is potentially signi
cant for language modeling� and because it provides
a case study in the analysis of a nontrivial leave�one�out estimator� we now present some
of the details of its proof�

It is shown in �McAllester and Schapire 	���� that E �M� � E �G� � This implies that

M� � G� � �E �G� �G�� � �M� � E �M� ��

So it now su�ces to give convergence rates of G� and M� to their respective means� To
bound the di�erence between G� and its expectation� and the di�erence between M� and
its expectation� we use McDiarmid�s theorem� This beautiful and very useful theorem
allows us to bound how fast any function of m independent random variables converges to
its mean� provided that the function is not too sensitive to changes in individual variables�



Theorem � �McDiarmid ����� Let X�� � � �� Xm be independent random variables taking
values in a set V and let f � V m � R be such that

sup
x������xm�x

�

i
�V

jf�x�� � � � � xm� � f�x�� � � � � xi��� x
�
i� xi��� � � � � xm�j � ci�

Then with probability at least � � �

f�X�� � � � � Xm� � E �f�X�� � � � � Xm� �
r

ln� �
�
�
Pm

i	�
c�i

	
�

and with probability at least � � �

E �f�X�� � � � � Xm� � f�X�� � � � � Xm� �
r

ln� �
�
�
Pm

i	�
c�i

	
�

A natural special case is xi � ��� � and f�x�� � � � � xn� � �
m

Pm

i	�
xi� In this case� ci � ��m

and McDiarmid�s theorem reduces to the Hoe�ding inequalities�

We 
rst note that a single change in the sample can change G� by at most 	�m� Thus�
applying McDiarmid�s theorem immediately gives a bound on the di�erence between G�

and its mean� In the following� 	�S��S� � is an alternate notation for P ���S� � � � �� �
so we can read 	�S ��S� � as �for all but a fraction � of the samples S we have ��S� � ��

Lemma �

	� � � 	�S E �G� �G� �
p

	

r
ln �

�

m

This leaves us with the more di�cult problem of bounding M� � E �M� � To bound
this di�erence we divide M� into a high frequency component M�

� and a low frequency
component M�

� as follows�

M�
� �

X
w
Pw���m� c�w�	�

Pw�

M�
� �

X
w
Pw���m� c�w�	�

Pw�

We prove the following two lemmas separately�

Lemma � 	� � � 	�S M�
� � E

�
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�

�
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� ln� �

�
�

m
�

Lemma � 	� � � 	�S M�
� � E

�
M�

�

�
�

r
	 ln� �

�
�

m
�

Lemma � follows from an application of McDiarmid�s theorem and the observation that a
single change in the sample can change M�

� by at most 	�m� Lemma ! is more involved



and is proved at the end of this section� Theorem � now follows by applying the union
bound to Lemmas �� ! and �� The union bound implies that if we have

	� � � 	�S ���S� � 

���

	� � � 	�S �k�S� � 

then we have
	� � � 	k�S ���S� � � � � � � �k�S� � 

since

Pr

��
i


�i�S� � 

	
�
X
i

Pr �
�i�S� �  �

It now remains only to prove Lemma !� Let B � fw � V � Pw � ��mg� For each word
w � B� we introduce a random variable Xw which is � if w does not occur in the sample
and � otherwise� We can then write M�

� as

M�
� �

X
w�B

PwXw�

The counts are �contravariant�� meaning that making one larger tends to make the others
smaller and vice�versa� Furthermore� any system of monotonic functions of the counts
is also contravariant� This allows us to prove the following lemma which generalizes an
observation made in �Panconesi and Srinivasan ������ and which will allow us to treat
these dependent count variables as if they were independent�

Lemma � For any �nite subset B of the underlying vocabulary� and for any choice of
a non�negative monotonically decreasing function fw for each word w � B� we have the
following	

E �"w�B fw�c�w�� � "w�BE �fw�c�w�� 

Proof� See appendix� �

Lemma � also holds if all fw are monotonically increasing� but we will only need the
decreasing case here�

We now use lemma � to prove the following�

Lemma 	 For � � � and � � � we have
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�
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X
w
 Pw���m



ln�Qwe
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�
and Qw � �� � Pw�m is the probability that word w does not occur in the sample
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The 
rst inequality uses Markov�s inequality �E �X � aPr �X � a for X nonnegative��
Lemma � was used in the second inequality� �

Next we prove the following bound on the function F ����

Lemma 
 For � � m�	

F ��� � ��

�e� ��m
�

Proof� First� note that F ��� � �� Now let F ���� denote the 
rst derivative of F � i�e��
dF�d� evaluated at �� Then
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X

w
 Pw���m

QwPw
�� �Qw�e��Pw �Qw

�QwPw�

Note that F ���� � �� Now letting F ����� denote the second derivative of F we get that
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where the last two inequalities use the inequality Qw � �� � Pw�m � e�mPw which is at
most ��e for Pw � ��m� For � � � and x � � one can show� by maximizing over x� that

xe��x � �

�e
�

For � 	 m� we can use this inequality with � � �m� �� to get that

F ����� �
X

w
 Pw���m

Pw
�

�e� ���m� ��

� �

�e� ���m� ��
�

Since � � m�	 we then have that

F ����� � 	

�e� ��m
�

By Taylor�s formula�

F ��� � F ��� � �F ���� �
��

	
F ������

for some �� � ��� ��� The lemma now follows from F ��� � �� F ���� � � and F ������ �
	���e� ��m�� �

Proof of Lemma �� Let � � m��	� Lemmas � and � together imply that
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Lemma ! now follows by setting this probability equal to � and solving for �� �



� CONCLUSIONS� LEAVE�ONE�OUT MINIMIZATION

We stated in Section � that one of the fundamental problems in the theory of language
modeling is to explain why models that memorize the training data do not over
t� There
are various approaches to this problem� Bayesian model averaging memorizes the training
data and can be justi
ed with Bayesian assumptions� PAC�Bayesian model averaging is
similar to Bayesian model averaging in that it is based on a prior distribution on models
but� unlike Bayesian model averaging� PAC�Bayesian model averaging can be justi
ed
independent of Bayesian assumptions about the meaning of the prior �McAllester ������
Unfortunately� neither the Bayesian approach nor the PAC�Bayesian approach justify the
particular form of the smoothing methods in language modeling that work well in practice�
So the real theoretical challenge is to explain the superiority of the methods that are in
fact empirically best�

The Good�Turing estimate of the missing mass is fundamentally non�Bayesian � it is a
direct measure of the quantity of missing mass and converges rapidly to the estimated
quantity� The estimate of the missing mass is analogous to a statistical mean estimator�
such as estimating the bias of a biased coin� The convergence rate guarantees that for large
samples the estimate is accurate independent of Bayesian assumptions� It seems that a
non�Bayesian justi
cation � a justi
cation not involving a prior on models � should be
possible for modeling methods based on the Good�Turing estimators�

The Good�Turing estimators are leave�one�out estimators� The convergence results on
the Good�Turing estimators show that� at least in some cases� leave�one�out estimators
can be guaranteed to be accurate � one can give Cherno��like con
dence intervals for
the true value of the estimated quantity� Recently Bousquet and Elissee� have de
ned
a general notion of a stable learning algorithm and have used McDiarmid�s theorem
to show that for any algorithm that is stable in their sense the leave�one�out estimate
of the generalization loss has Cherno��like convergence �Bousquet and Elissee� 	�����
Unfortunately their de
nition of stability is fairly restrictive� They require� essentially�
that changing a single instance in a sample of m instances does not change the model
by more than O���m� where the distance between models is taken to be the maximum
di�erence between the loss of the two models over all possible instances� It is interesting
that several well known modeling algorithms can be shown to be stable in this very strong
sense� But these stability requirements are too strong to make Bousquet and Elissee��s
results applicable to Good�Turing estimation or n�gram language models� A single change
in a �very unlikely� sample can radically alter M�

� � Our proof of a convergence rate for
M�

� is not based on McDiarmid�s theorem�

We will say that a learning algorithm is leave�one�out measurable if the leave�one�out
estimate of the error of the algorithm has Cherno��like convergence � with probability
at least �� � the di�erence between the leave�one�out estimate of the generalization error
and the true generalization error on a sample of size m is bounded by O�

p
ln������m��

Bousquet and Elissee� show that stable algorithms are leave�one�out measurable but
presumably many unstable algorithms are also leave�one�out measurable� It is known
that many learning algorithms are not leave�one�out measurable � the algorithm that
produces the model that either always guesses � or always guesses � based on the number
of ��s and ��s in the sample is not leave�one�out measurable� However� we conjecture that



n�gram language models under any of a variety of smoothing methods are leave�one�out
measurable�

For any family of leave�one�out measurable algorithms we could select an algorithm by
minimizing leave�one�out error over the algorithms in the family� For example� we can
de
ne a family of n�gram learning algorithms where each algorithm uses a di�erent �large�
set of interpolation parameters� In general one could combine the Cherno��like convergence
of the leave�one�out estimator with a union bound over a large class of learning algorithms
to bound the generalization error of the algorithm minimizing the leave�one�out estimate�
This leave�one�out minimization over a large class of algorithms seems fundamentally
di�erent from the usual empirical loss minimization over a class of models� We hope to
investigate leave�one�out minimization in future work on language modeling�
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A PROOF OF LEMMA �

To prove Lemma � we need some preliminary lemmas� For each word w 
x a monotonically
decreasing non�negative function fw� For any sample S let SB be the subset of the sample
consisting of words in the set B� We start with the following lemma�

Lemma � For any �possibly in�nite� subset B of the vocabulary we have that

E �"w�B fw�c�w�� j jSB j � k 

is a monotonically decreasing function of k


Proof� For any sample S let c�w� S� be the count of word w in sample S� For any pair of
samples S and U we have c�w� SB � UB� � c�w� SB� and hence

"w�B fw�c�w� SB � UB�� � "w�B fw�c�w� SB���

So for k� � k� we haveX
jSB j	k�� jUB j	k��k�

P �SB j jSB j � k��P �UB j jUB j � k� � k��"w�B fw�c�w� SB � UB��

�
X

jSB j	k�� jUB j	k��k�

P �SB j jSB j � k��P �UB j jUB j � k� � k��"w�B fw�c�w� SB���

The left hand side equals E �"w�B fw�c�w�� j jSB j � k� and the right hand side equals
E �"w�B fw�c�w�� j jSB j � k� � �

Lemma �� For w� �� B we have that E �"w�B fw�c�w�� j c�w�� � k is a monotonically
increasing function of k


Proof� Let V nw� be the set of all words other than w�� Let gw be fw for w � B and the
constant function � otherwise� We then have "w�Bfw�c�w�� � "w�V nw�gw�c�w�� which
gives the following�

E
�
"w�B fw�c�w�� j c�w�� � k

�
� E

�
"w�V nw� gw�c�w�� j jSV nw� j � m� k

�
�

The result now follows from Lemma �� �



We now prove Lemma � by induction on the number of words in B� The result is immediate
if B contains only a single word� Now assume the result holds for sets smaller than B and
consider w � B� Let Bnw be the word set B minus the word w� We now have

E �"w�B fw�c�w�� �

mX
k	�

P �c�w� � k�fw�k�E
�
"w��Bnw fw� �c�w��� j c�w� � k

�
�

We now use the fact that for any functions f and g from reals to reals� and any distribution
P on the reals� we have that if f is monotonically decreasing and g is monotonically
increasing then Ek�P �f�k�g�k� � Ek�P �f�x� Ek�P �g�x� � This gives

E �"w�B fw�c�w�� � E �fw�c�w� E
�
"w��Bnw fw� �c�w���

�
�

Lemma � now follows from the induction hypothesis applied to the set Bnw�


