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Abstract. We study online learning algorithms that predict by com-  diction. Experts that are given the possibility to abstain are
bining the predictions of several subordinate prediction algorithms, calledspecialists, because we think of them as making their
sometimes called “experts.” These simple algorithms belong to the prediction only when the instance to be predicted falls within
multiplicative weights family of algorithms. The performance of {heir area of expertise. We say that a specialisniakewhen
these algorithms degrades only logarithmically with the number of it makes a prediction and that itésleep otherwise. We refer
experts, making them particularly useful in applications where the to the conventional framework as tiesomniac framework

number of experts is very large. However, in applications such . e . . . L
umber of e perts Is very larg bp since itis a special case in which all specialists are awake all
as text categorization, it is often natural for some of the experts the time

to abstain from making predictions on some of the instances. We
show how to transform algorithms that assume that all experts are  An important real-world application of prediction for
always awake to algorithms that do not require this assumption. We which specialists are very useful is in the field of information
also show how to derive corresponding loss bounds. Our method is yetrieval. Consider the problem of predicting the category to
very general, and can be applied to a large family of online learning \ynich a news article belongs (such as “politics,” “weather,”
?Igorit.hms‘ we also give appllsatlpns_to Yanous prediction models “sports,” etc.) based on the appearance of words in the given
including decision graphs and *switching” experts. article. We can think of each word as a feature and represent
each article as a vector of features. In this case the num-
1 Introduction ber of features is huge (on the order of),0vhich makes
multiplicative weight-update algorithms very attractive. Itis
We study online learning algorithms that predict by combin- intuitively clear that most of the features are relevant only to
ing the predictions of several subordinate prediction algo- the small subset of the documents in which they appear. A
rithms, sometimes called “experts.” Starting with the work natural way for using this intuition is to use specialists that
of Vovk [19] and Littlestone and Warmuth [14], many algo- predict when a specific word or combination of words ap-
rithms have been developed in recent years which use multi-pear in the document and are asleep otherwise. This leads to
plicative weight updates. These algorithms enjoy theoretical very efficient algorithms that can deal with huge vocabularies
performance guarantees which can be proved without mak-and make very good predictions. This was demonstrated by
ing any statistical assumptions. Such results can be madecghen and Singer [3] who used one of the specialist algo-
meaningfulin a non-statistical setting by proving thatthe per- rithms described in this paper for such a text-classification
formance of the master algorithm can never be much worsetask. Thus, our results generalize a theoretical foundation to

than that of the best expert. Furthermore, the dependence ofn algorithm that has already been shown to be of practical
such a bound on the number of experts is only logarithmic, yajye.

making such algorithms applicable even when the number of
experts is enormous.

In this paper, we study an extension of the online pre-
diction framework first proposed by Blum [1]. The added
feature is that we allow experts to abstain from making a pre-

In the first part of this paper, we give a general transforma-
tion for converting an insomniac algorithm into the specialist
framework and how the corresponding bounds can also be
transformed. This transformation can be applied to a large
family of learning problems and algorithms, including all

*AT&T Labs is planning to move from Murray Hill in 1997. The new  those that fall within Vovk's [18] very general framework of
address will be: 180 Park Avenue, Florham Park, NJ 07932-0971. online learning, as well as the algorithms belonging to the
Permission to make digital or hard copies of part or all of this work for “exponentiated gradient” family of algorithms introduced by
personal or classroom use is granted without fee provided that copies are notKivinen and Warmuth [12]. The feature common to the anal-
made or distributed for profit or commercial advantage and that copies bear ysis of all these algorithms is that they use an amortized
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of this work owned by others than ACM must be honored. Abstracting with analysis in which relative entropy is the potential function.

credit is permitted. To copy otherwise, to republish, to poston serversorto  In the second part of the paper we show that using special-
redistribute to lists, requires prior specific permission and/or a fee. ists is a powerful way fodecomposing complex prediction




problems. The naive solution to these prediction problems iteration. In order to give a meaningful bound, we consider
uses a very large set of experts, making the calculations ofthe difference between the total loss of the algorithm and
the prediction computationally infeasible. We show how a the total loss of the experts. The total loss of insomniac
large set of experts can be represented using a much smallealgorithms is usually compared to the loss of the best expert.
set of specialists. Each expert corresponds to a subset of th&uch a comparison does not make sense in the specialists
specialists which take turnsin making their predictions. Only framework because it is possible that no expert is awake
a small fraction of the specialists are involved in producing all of the time. Instead, we compare the total loss of our
each prediction, which reduces the computational load evenalgorithm to the loss of the best fixedxture of the experts,
further. as defined precisely below. Our goal is to derive bounds
Specifically, we apply this decomposition to the problem which guarantee that the performance of the algorithm will
of predicting almost as well as the best pruning of a decision be good whenever there exists some mixture of the specialists
graph. This generalizes previous work on predicting almost that is good. Thus, the adversary cannot make the algorithm
as well as the best pruning of a decision tree [21, 10]. suffer large loss unless it inflicts large loss on all mixtures of
We also apply our methods to the problem of predict- specialistg.
ing in a model in which the “best” expert may change with This mixture of experts can be done in two ways, and we
time. We derive a specialist-based algorithm for this prob- consider both in this paper. We denote by the set of
lem that is as fast as the best known algorithm of Herbster probability vectors of dimensioN.
and Warmuth [11] and achieves almost as good a loss bound. e Comparison to average loss: In the easier type of
However, unlike their algorithm, ours does not require prior comparison, we compare the total loss of the algorithm to
knowledge of the length of the sequence and the number of

switches. 5 LI 1
min
uedy u(%e, ye) (1)
2 Thespecialist framework
] o ] where
We now give a formal definition of the framework. We define S wi L(zeq,ye)
. . . e . LI - i€ Fy ) ’y
online learning with specialists as a game that is played be- u(Xe, ye) = S, Ui
1€l

tween the prediction algorithm and an adversary. We assume
that there areV specialists, indexed byl,..., N}. We The expressiod ,_, LI (x;,y:) describes the total loss of
assume that predictions and outcomes are real-valued numan algorithm that at each iteratienpredicts by randomly

bers from a bounded rang@ 1].! We define doss function choosing one of the specialists irf7; according to the fixed
L : [0,1] x [0,1] — [0, 00) that associates a non-negative distributionu restricted toZ; and re-normalized. Equa-
loss to each pair of prediction and outcome. tion (1) defines the total loss of the best distributignvhich

The game proceeds in iterations= 1,...,7, each con-  suffers the minimal loss for the particular sequence. As this
sisting of the following five steps: optimalu is not known in advance, it is impossible to actu-

ally achieve a total loss of (1), and all we can hope for is to

1. The adversary chooses a $21C {1,..., N} of spe- guarantee that the loss of our algorithms is never much larger

cialists that are awake at iteration

than it.

2. The adversary chooses a predictipn for each awake + Comparison to average prediction: In this case we

specialist € L. compare the total loss of the algorithm to
3. The algorithm chooses its own predictign ~ .

min LE (%, ) (2)

4. The adversary chooses an outcaome ueAN i
5. The algorithm suffers los§, = L(%:,y:) and each  where

of the awake specialists suffers lo&s= L(z;;, y:). L (x,, ) = L Dier, WiTt

Specialists that are asleep suffer no loss. u \Xe, Ye) = > iep, Ui Yt

The performance of an algorithm is measured in terms of This has a similar interpretation to the average loss compar-
its total lossL4 = Y;_; ¢,. We are interested in bounds ison but in this case we consider the loss of an idealized
that hold forany adversarial strategy. As the adversary  algorithm which predicts with the combined prediction of
chooses the outcome after the algorithm made its prediction,the awake specialists, rather than choosing one of them at
it can clearly inflict on the algorithm a large loss on each

2This definition is similar in motivation to the definition of regret in

1In two of the three cases we present here, the outcomes must lie in the statistical analysis of prediction algorithms. However, unlike in that
{0,1}. While some results can be presented in the much more general case, no statistical assumptions are made here regarding the mechanism
online prediction framework of Vovk [18], we chose to simplify this paper that is generating the sequence. The bounds here hold for any sequence of
by making these more restrictive choices. outcomes.




random and predicting with its prediction. Since in most their average with respect {n and predicting; = p; - x;.
interesting cases the loss function is convex, bounds of thisThe outcomeay then defines the loss of each expert and of
form imply bounds of the previous form but not vice versa. the master algorithm. The weights are then updated so as to

Bounds of this second form are harder to achieve. increase the weights of the experts with relatively small loss,
In his work on predicting using specialists [1], Blum tnheexrterigjigsunng that their predictions will count more on the

proves a bound on the performance of a variant of the Win- In our context the justification for using this algorithm is

now glgonthm[lS]. This algorlthmls.u'sed formakmg binary the following bound on the total loss relative to the loss of
predictions and Blum made the additional assumption that athe best expert:

non-empty subset of the specialists never make a mistake. It
is assumed that at any iteration at least one of these infallible -, _ r X
specialists is awake. This is a special case of our framework Y_ L (71 ) < amn (Z > uil (e w) + RE <“||p1))
in which there exists a vectar (which has non-zero compo- =1 t=1i=1

nents on the infallible subset of specialists) such that the loss

associated with this vector is zeto. <min > L(eeiw) +InN 3)
t=1

. . - . where the last inequality holds if the initial “prior” distribu-
3 Design and analysusof speC|aI|st al go”thms tion p; is chosen to be uniform. Note that this bound holds
In this section we show how to transform insomniac learning for all sequences of expert predictions and outcomes. Also,
algorithms into the specialist framework. We start with a note that the additional loss grows only logarithmically with
simple case and then describe a general transformation whicthe number of experts.

T

we then apply to other, more complex cases. On the right side of Figure 1, we present the algorithm
A few preliminaries: Recall tha\y denotes the set SBayes, an adaptation of the insomniac algoritiayes

of probability vectors of dimensiotv, i.e., Ay = {p € to the case of specialists. The adaptation is simple: on each

[0,1Y : Y.p; = 1}. For two probability vectors ~round, we treat;, the set of specialists that are awake, as if

u,v € Ay, the relative entropy, writterRE (ul|v) is it were the complete set of specialists and leave the weights

S uiIn(ui/v;).  (We follow the usual convention that of the other specialists untouched. We then re-normalize the

0In0 = 0.) For probability vectora € Ay and a set ~ Weights of the awake specialists so that their total weight

EC{1,...,N}, we defineu(E) = ¥, p wi. remains unchanged. The main theorem regarding the perfor-
mance ofSBayes is a direct adaptation of the well-known

31 Logloss theorem regardinBayes.

f the simpl K . . Theorem 1 For any sequence of awake specialists, specialist
Qne 0 't e simplest and pest nown online predlct!on algo- predictions and outcomes and for any distribution u over
rithms is the Bayes algorithm, which has been redlscovered{1 ..., N}, theloss of SBayes satisfies

many times, for instance, in the context of universal coding,

. . . . T
Bayesian estimation and investment management [4, 6, 7]. 2L
In this case, the predictions are from the raf@d], the out- Z u(E)L(

T
Joou) <D wil(zei,u) + RE (ullpa) -

comes are fronf0, 1} and the loss is the log loss, or coding =+ t=liek:
length, defined as Proof: We show first that
—Iny ify=1 RE (u|lp:) — RE (u||p¢+1)
L(y = R i - .
(@ v) { —In(1-g) ify=0. = uw(Ey)L(Ge, ye) — Z wiL (e, Ye).- (4)

1€EF;
Note that this loss is always nonnegative, but may be infinite Consider the change in the relative entropy betwaemd

(for instance, ify"= 0 andy = 1). on two consecutive trials:
Bayes algorithm is described on the left side of Figure 1. Pt '

. - oo . N
This algorithm maintains a probability vectpg over theN RE ( ) RE ( ) B i PeLi
expertst On each round, each expettprovides a prediction ullp:) ~ ullpets) = Z ui N Dii
z:; € [0,1]. The Bayes algorithm combines these by taking =1 Prati
= u; In =122
SHowever, the bounds derived by Blum are not comparable with the ZEZE; ' Pt,i
bounds given here because he considers bounds which have no dependency L !
on the total number of specialists, while all our bounds have some depen- If ¥, = 1, then the latter quantity is equal to
dence on this number. Tt ~
4This distribution over experts is often called the posterior distribution, Z u;In——=— = Z uilnzy ; — u(Ey) In g,
and it has a natural probabilistic interpretation. However, as in this work ;- g, Yt iEE,

we make no probabilistic assumptions, the posterior distribution should .
be regarded simply as real-valued weights that are used by the prediction - Z wil (ze i, ) + w(E)L (G, ue)-
algorithm. i€ B,



Parameters. Prior distributionp; € Ax; number of trialsl".

Algorithm Bayes Algorithm SBayes
Dofort=121,2,...,7 Dofort=121,2,...,7
1. Predict with the weighted average of the experts predic- 1. Predict with the weighted average of the predictions of
tions: the awake specialists:
R N G, = ZieEt JUREAR
= ;Pt,mt,i ¢ Sierm, Pt
2. Observe outcomg 2. Observe outcomg
3. Calculate a new posterior distribution: 3. Calculate a new posterior distribution:
pt,;ft,i if Y = 1 pt,;ft,i if Y = 1
Peali = 3 pi(l—wy) o If i € Ey, thenp, i1, = pi(l=res) =0
1-y Yo =1 1—y ¢ ’

Otherwisep;+1; = pe.i.

Figure 1: The Bayes algorithm and the Bayes algorithm for specialists.

The proofis similar whery; = 0. We thus get Equation (4). 3.2 Thegeneral case
Summing this equality for = 1, ..., 7"and using the fact

that the relative entropy is always positive we get In this section, we generalize the method suggested in the

last section and show how it can be applied to a large family

RE (ul|p1) > RE (ul|p1) — RE (UIlpT+1) of o'n-llne glgorlthms. Wg give a gengral methoq for con-
; verting an insomniac on-line algorithm in this family, along
with its relative loss bound, into the corresponding specialist
=D u(E)L(Ge, ye) ZZULl‘m,yt P gsp

algorithm and loss bound.
We focus in this section on algorithms which, liBayes,

Rearranging terms then gives the statement of the theoremMmaintain a distribution vectop; € Ay. In general, such

t=1 t=1i€E,

[ algorithms consist of two parts:

If, in addition to the conditions ofTheor.em &) =U . 1. a prediction function preg : Ay x [0,1¥ — [0,1]
for gll 1 <t< T then we get the following bound that is which maps the current weight vectpr and instance
easier to interpret than the theorem: % to a predictiony;; and

T Siem, wil (2, yt) (ul|p1) 2. an update function update: Ay X [0, 1V x [O, 1 —
Z L(Ge,3e) < Z 5 + i : An which maps the current weight vectpy, instance
t=1 ier, ! x; and outcomey; to a new weight vectop; +1.

(5
The first term on the right hand side of this inequality is equal When clear from context, we drop the subscript on gred
to the expected loss of a prediction algorithm that predicts and updatg .

according to the distribution vectaras follows. On iteration ~ The functioning of such an algorithm is shown on the left
t the algorithm chooses one of the awake experts according teside of Figure 2-_ ' o
the distribution defined by restrictingto the set&,. It then The conversion of such an algorithm to the specialist

predicts with the prediction of the chosen expert. Equation (5) framework in which some of the experts may be sleep-
shows that the total loss of our algorithm is never much larger ing is fairly straightforward. First, for any nonempty sub-
than the total loss incurred by usiagy such fixedu. It also set /' C {1,...,N} of awake specialists and instance
shows that the gap is proportional to the distance between thex € [0, v, letx” e [0, 1]/#! denote the restriction of to
prior distributionp ; and the comparison distributianand the components of. Formally, if & = {i1, ..., g} with

is inversely proportional to the fraction of the specialists that i; < --- < g thenac";J = ;. Similarly, IetpE € Mg

are awake at each iteration. denote the restriction g to £ but now the components are
Lastly, note that algorithnmBayes is a special case of also normalized. Thu%g =pi;/ ier Pi-

SBayes whereE;, = {1,..., N} for allt. Thus, the bound The specialist version of our abstract on-line learning al-

given in Equation (3) is derived from Equation (5) by setting gorithm is shown on the right side of Figure 2. The predic-

U=1. tion depends only on the awake specialists, and is given by



Insomniac algorithm
Dofort=121,2,...,7

1. Observex;.

. Predicty; = predp:, x).

Observe outcomg and suffer loss L[5, y:).

2 =

3.

4. Calculate the new weight vector
Pi+1 = updatép:, x¢, y: )

Specialist algorithm
Dofort=121,2,...,7

1. ObservefZ, andx’™

Predicty; predpt ,xt .

Observe outcomg and suffer loss (g, v:).

2. =

3.

4. Calculate the new weight vectpr; so that it satisfies
the following:

(@) prt1i =prifori g By
(b) pf, = updatép;”, %7, ye)

(c) vazlptﬂ,i =1.

Figure 2: Abstract insomniac and specialist on-line learning algorithms.

predp’*, x"*). The update rule says to leave the weights of

sleeping specialists unchanged, and to modify the weights of
awake experts in the natural Way That is, we modify these

weights so thathrl = updateépt ,xt t, 1) while meeting
the requirement that
> Pi+1i = 1 (or equivalently, thatZiEEt P
ZiEEt pt,i)-

It can be verified that, when this transformation is applied
to Bayes, the resulting algorithm is exactyBayes.

Analysis

As in the case oBayes, a large family of on-line learning
algorithms can be analyzed by examiniR& (ul|p;), the
relative entropy between a comparison distribution veator
and the algorithm'’s weight vectgs;. For instance, the key
fact in the analysis oBayes is the following:

ZUL l‘tz,yt

This is a trivial special case of Equation (4) with all specialists
awake.

RE (u||pe41) = L (e, ve)

E (ullp:) —

The analysis of many other insomniac algorithms is based

on a similar core inequality of the form
RE (ul|p:) — RE (u||pe41) > al(§e, v:) — blu(xe, ve)-

Here,a and b are positive constants which depend on the
specific on-line learning problem,(f, y) is the loss of the
algorithm, and ly(x, y) is the comparison loss of vector
u, which in this paper will always be either{{(x,y) or
Li{ (x,y) as defined in the introduction. For instance, for
Bayes, a = b = 1, L is log loss, and our bound is with
respect to [;.

Equation (6) immediately gives a bound on the cumulative

loss of the algorithm since, by summing ovee 1,...,7

we get

RE (ullp1) > RE (ul|p1)

— RE (ullpr+1)

T T
Z (Tt ye) ZL (x¢, yt)
t=1 t=1

SO

T
ZL Yt Yt)
t=1

Suppose now that we move to the specialist algorithm. We
have that

RE (qut)

RN,
Z u; In p—+ L=
i L i€B,

u(F) (RE (wP[lpf") - RE (u(pfy) )

Assuming Equation (6) holds, this last term is at least

u(Ee) (al (e, ve) = Dous: (< )

by construction ofy, andp;+1. Thus, we have proved the
following general bound which is the main result of this
section:

T

Z u( B )L (Je, ) <

t=1
oSl L u(EB)Lys, (xF*,y) + 1RE (ullpy) .

In short, we have shown that essentially any online insomniac
algorithm with a bound of the form given in Equation (7) has
a corresponding specialist algorithm with a bound of the form
given in Equation (8), provided that the insomniac bound was
proved using the inequality in Equation (6).

We now give several applications of this bound for specific
loss functions. In addition to those included in this abstract,
the method can be applied to many other online algorithms,

b
<_

a

Z Lulxi, v) + =RE (ullps).  (7)

— RE (u[|pi41) =

41
Zuimm

Pt

(8)

including all the algorithms derived for the expert setting
[19, 8, 2]. Thisis possible because the analysis of all of these
algorithms can be rewritten using the relative entropy as a
measure of progress.



Parameters: Prior distributionpy € Ay; Parameters: Prior distributionp; € Ay;

learning rate; > 0; number of trialg". learning rate; > 0; number of trials/".
Algorithm SAbs Algorithm SEG
Dofort=121,2,...,7 Dofort=1,2,....7T
1. Predict with: 1. Predict with:
~ ZiEEt JUREAR ~ ZiEEt Prite,i
= Fy | Hep LUt T Tenro
ZiEEt Pt i€ F, Dt
whereF, : [0,1] — [0, 1] is any function which satis- 2. Observe outcomg and incurloss kg, y:) = |5t — vt |.

fies, forall 0< r < 1: o
3. Calculate a new posterior distributionsi iE Z,

IN((L—r)e™" +7r) —In(l—r+re ")
SU Y e < Byl < 2In 2= —224,i(J1=y1) Lijem Pri
Tfe=7 Tfe=7 De+15 = Drji€ BT

Yjem, Pt jem21meildmvo)
t B

2. Observe outcomg and incurloss K, y:) = |g: — . Otherwisep1: = pi.i.

3. Calculate a new posterior distributions i€ ',

S e p Pt Figure 4: The exponentiated gradient algorithm for specialists and
Prg1i = pr e NTnimvil JEB ) square loss.
+1: Ji ZjeE ptje_nlxt’j_ytl
. Pt
Otherwisepii1,; = pri- this case depend opand are
2
Figure 3: The multiplicative weights algorithm for specialists and a, =2In = and b, =17 . (9)

absolute loss.

Itis easy to verify that in this case the two types of comparison
losses are equal._, u;|z; — y| = |u-x —y|.

33 Absoluteloss Applying the general reduction from Section 3.2 to this
case we get the following bound:

The absolute loss function is defined byily) = |5 — y|,

where, in this section, we assume that= {0,1}. For T R
this loss function, it is natural to interprgt € [0,1] as a > u(ENG - wl < (10)
randomized prediction if0, 1} which is 1 with probability =1

¢ and 0 otherwise. Then the lofs— y| is the probability 1 El
of a mistake, and the cumulative loss measures the expected ay \ 1 Z u(Ey)[u-x; — [+ RE (UHPl) :
number of mistakes in a sequence of randomized predictions. =1

For the absolute loss, we can apply the transformation of 34 |
Section 3.2 to the algorithm of Cesa-Bianchi et al. [2] which ** Square loss

is based on the work of Vovk [19]. This yields an algorithm \yie next consider the square losgily) = (i — y)2. Us-

that is similar but somewhat more complex tBayes,  ing the algorithm for on-line prediction with square loss de-
which we callS Abs, and which is shown in Figure 3. Like  g¢riped by Vovk [19], we can derive an algorithm whose
SBayes, S Abs maintains a weight for each specialistwhich j5nd is in terms of the comparison los§ (x, y). In this

it updates by multiplicative factors after each iteration. There section, we show how to get a more powerful bound in terms
are two main differences betweBA bs andSBayes. First, of L (x, y) using a different family of algorithms, called the
SAbs has a parameter > 0, sometimes called a “learning exponentiated gradient (EG) algorithms. This family was
rate,” that has to be set before the sequence is observed (sg&troduced by Kivinen and Warmuth [12] and is derived and

Cesa-Bianchi et al. [2] for a detailed discussion of how 10 4na1yzed using the relative entropy. It thus fits within the
choosey). Second, the prediction is not a weighted average framework of Section 3.2.

of the predictions of the experts, but rather a function of this

: The EG algorithm is similar to the algorithms based on
average which also dependsmn

Vovk’s work in that they maintain one weight per input and

To analyzeS Abs, we first rewrite the analysis of this update these weights multiplicatively. The main difference is
algorithm [19, 2] using the notation from Section 3.2. The thatinstead of having the loss in the exponent of the update
coefficients in the instantiation of Equation (6) that apply to factor, we have the gradient of the loss.



Applying the transformation of Section 3.2 G, we To analyze this algorithm, we wish to compare the absolute
obtain the algorithn$ EG shown in Figure 4. LikeS Abs, loss of our algorithm to the absolute loss of the “best” table-
this algorithm has a parameter> 0 that needs to be tuned. lookup functions. To do so, let the comparison vectar

Atthe core of the relative loss bound BG, thereisagain ~ be uniform over the set of*2specialists identified by,
an inequality of the form given in Equation (6). Kivinenand i.e., the set{(s,b) : u(s) = b}. Clearly, on each round,
Warmuth [12, Lemma 5.8] prove that such an inequality holds exactly one of these is awake s9F;,) = 2% for all ¢.
fora, =n, b, = 22_—”77 and Ii{ (x,y) = (u-x —y)% We Also, note that the prediction associated witlis identical
therefore can apply our general results to obtain the bound to that of u. If we choosep; to be uniform over all of the

defined specialists, theRE (u|[p1) = In2. Equation (10)

T then implies immediately that the loss of our algorithm is at
Y ulE) (G —w)? < most(1/a,)L* + (1/a,)2" In2 where L* is the loss of the
t=1 best table-lookup function, and, andb, are as defined in

P S u(B)(uf - xP— )2+ RE (u||p1) Equation (10). This bound coincides exactly with the bound

which would be obtained using the more naive approach
on the relative loss BEG with respect to any comparison  of maintaining an expert for each of thé 2table-lookup
vectoru. functions.

This conversion also works for all other on-line algorithms ~ We included this example as a simple illustration of the
derivable fromthe relative entropy such as the versiolis®f general method. The result is not new; for instance, the same
where the loss of the algorithm is compared to the loss of the loss bound and time and space complexity can be achieved
best sigmoided linear neuron [9]. using a variant of Cover and Shenhar’s [5] method of parti-
tioning the data sequence. However, as will be seen in the
. next sections, we can apply the specialist framework to much
4 Applications more powerful models and derive algorithms that are, to our
In this section, we describe several applications of the spe-knowledge, more efficient than the best existing algorithms
cialist framework. For concreteness, we focus for each appli-0@sed on the experts approach.
cation on a specific loss function. The applications described
can easily be extended and used with other loss functions. 4.2 Decision graphs

The Markov models described in the previous section are
4.1 Markov models a special case of decision trees which are a special case
of decision graphs. In this section we describe decision

As an illustration of the specialist methodology, we begin graphs and prunings of decision graphs. We give an efficient
with an application to a simple prediction problem. Suppose pregiction algorithm, based on specialists, which predicts
we are predicting a binary sequence one bit at a time, and Weg most as well as the best pruning of a decision graph.
want to minimize the expected number of mistakes, i.e., the |, this section, we use the log loss. On each iteratjon
absolute loss. One common approach is to predict accordingne prediction algorithm receives an instanée We will be
to ak-th order Markov model for some fixeel > 0. In this interested in predictions computed by decision graphde-A
case the prediction of each bitis a function of tfgreceding  cigion graph G is a directed acyclic graph with interior nodes
bits. More formally, we want our prediction algorithm t0 54 terminal nodes, and a designated start node. The interior
predict aimost as well as the best table-lookup function  nodes are associated with tests on the inputinstandgach
{0.1}* = {0, 1}, where we interpret(s) as the prediction  jnterior node has two outgoing edges, one for each possible
of such a function or expert given thatis the preceding  gytcome of the test. Each terminal node is associated with
sequence of bits. a prediction in[0, 1]. The prediction associated with an in-

Without applying the specialist framework, we could use, stance is calculated in the natural way. Starting from the start
forinstance, Vovk's [19] (insomniac) expert-prediction algo- node, the graph is traversed by performing the test associated
rithm in which we maintain one expert for each table-lookup ith the current node, selecting the edge that corresponds to
function. Naively, this would require maintenance 6f 2 the outcome of the test, and moving to the node pointed to
weights, all of which must be updated on every trial. by the selected edge. This process continues until a terminal

Alternatively, we propose maintaining*®' specialists, node is reached. The prediction associated with this terminal
one for every paits, b) in {0, 1}* x {0, 1}. Such a specialist  node is the prediction of the graph.

is awake if and only if the sequengeexactly matches the For instance, for the graph on the left in Figure 5, given
precedingt bits, and, when awake, it always preditts the instance: = 010, the terminal node reached is ndde
This set up requires maintenance of onfyr2 weights. whose prediction is .@.

Furthermore, since only two specialists are awake on each When decision graphs are very large, it is sometime ad-
round, the time to formulate each prediction and to update vantageous to stop the decision process before reaching a
the weights ig)(1) per round. terminal node and instead associate the prediction with an in-



located is equal to the number of edges of the decision graph
G, and the time needed to formulate a prediction is the length
of the path from the start node to a terminal node.

To analyze the algorithm, we compare the log loss of the
algorithm to the loss of any pruning. L&t be the pruning
which achieves the smallest total loss. We say that an edge is
aterminal edgeif itis an ingoing edge of a terminal node. We
let the comparison vectar be uniform over all the terminal
edges inP. Let k be the number of terminal edgesh
and letm be the total number of edges in the full decision
graphG. On each round, exactly one terminal edgefof
is traversed inG; this follows from the manner in which
prunings have been defined. Hence, exactly one specialist
05 in the support set ofi is awake sou(E;) = 1/k for all
t. By construction, the loss af is equal to the loss of the
predictions computed by prunir®d. From Theorem 1, we
therefore get that the additional loss of the algorithm relative
to the loss ofP is at mostk - RE (u||p1). If we choosep;

ternal node. We call the decision graph that is derived in such to be uniform over all the edges in the full decision graph

a way apruning of the original decision graph. Animportant thenRE (ul|p1) = In(m/k), giving an additional loss bound

example is the well-studied [16, 20, 15, 17, 21] variable- Of kIn(m/k). This bound is essentially optimal for general

length Markov model, in which the order of decisions is decision graphs.

fixed in advance, but the depth of the decision process might In the special case that the decision graph is actually a de-

depend on the instance. In other words, as in Section 4.1 cisiontree, we could instead apply the techniques of Willems,

decisions are based on the preceding sequence of bits, but thehtarkov and Tjalkens [21] and Helmbold and Schapire [10].

number of bits that are examined may not be the same for all Their methods also lead to an algorithm for predicting almost

instances. as well as the best pruning of the decision tree, but results in
More precisely, assume now that predictions are associ-2n additional loss bound of ony(k) where, as above is

ated withall of the nodes of (including interior nodes). In  the number of terminal edgesBf which, for trees, is simply

the context of this paper, a pruniyof this decision graph gzqual to the number 'of Igave;s: For trees, our bounds can be

is any decision graph that can be generated in the following imProved toO (2) which s still inferior to the above bound.

way. First, a set of pruning nodes is selected. Second, allHowever, our method is more general and can be applied not

edgesthat are reachable from the pruning nodes are removed Only to decision trees but to any directed acyclic graph.

Finally, all nodes that cannot be reached from the start node

are removed and all nodes without outgoing edges are de-4.3 Switching experts

fined to be terminal. Note that the terminal nodes include

the pruning nodes but can also include other nodes. Figure 5In the corventional (insomniac) on-line learning model, we
shows all of the prunings of the left-most graph compare the loss of the master algorithm to the loss of the

. . . N for th [ . H iti -
Our goal is to predict almost as well as the pruning that best of V" experts for the entire sequence. However, itis nat

. o ) L ural to expect that different experts will be best for different
gives the predictions with the minimum loss on the observed : .

. oo segments of the data sequence. In this section, we study such
sequence. The naive approach would be to maintain one S ) N "
. : . . : a model of prediction in which the “best” expert may change
insomniac expert for each possible pruning and adjust theWith time
weight of each pruning based on its performance. However,

. - Specifically, we imagine that the sequencé&gdrediction
the number of prunings of a decision graph can be exponen- : o ;
. . . : . rounds is subdivided (in a manner unknown to the learner)
tially large in the size of the graph, making this approach

; ; . into at mostt segments where each segment is associated
computationally infeasible.

Instead th ialist f Kb iati with a unique expert which suffers the minimal loss on the
nstead, we use the speclalist framework by assoclating asegment. The sequence of segments and its associated se-
specialist with each edge in the full decision graph. The pre-

L L - ) uence of best experts is calledegmentation. Our goal is
diction of a specialist is the prediction of the node pointed to d P dg g

: ! T . to perform well relative to the best segmentation.
by its corresponding edge. A specialist is awake at time step This prediction problem was first studied by Littlestone
t if and only the sequence of tests performed:btraverses

it igned edgeClearly, the total ber of ialists al and Warmuth [14]. Currently, the best of the known algo-
IS assighede early, tne totalnumber ot Specialists al- - jihms for this problem are due to Herbster and Warmuth [11].

s i : .. Although the algorithms we obtain are just as efficient as
In order to handle degenerate situations, we also assign a specialist to

a “dummy” edge that comes in to the start node; this specialist is always tN€irs (O(NV) time per iteration), our bounds are slightly
awake. weaker than Herbster and Warmuth’s. However, their algo-

Figure 5: A decision graph and its possible prunings.




frithms require estimates éfand7" and their bounds degrade ~ Parameters: Prior distribution overly;
as the quality of the estimates degrades. Our algorithm does number of trials’".

not require prior knowledge of and7".

L . . Specialists Algorithm for Switching Experts
We use the log loss in this section. We call theriginal Initialize: Q! = 1/N ; Fy = 3220, (t)/(¢N).

experts theground experts, and we define a set of higher- oo 4 — 1.2, ...T

level experts calledegmentation experts. A k-segmentation

expert is defined by a segmentation of the sequencekinto 1. Predict with the weighted average of the experts predic-
segments, each associated with a ground expert. Thatis, each tions:

k-segmentation expert is defined by a sequence of switch At vazl Qi
points 0=ty < t1 < --- < t; = 1 and a sequence of = va—lQﬁ ’
ground expertsy, . . ., e;. Here, the interpretation is that the B
segmentation expert predicts the same as expen trials 2. Observe outcomg and incur loss.
t;_1+ 1 through, (inclusive). Our goal is to predict almost i
as well as the best segmentation expert. 3. Calculate new weights:

If the algorithm were provided in advance with the number (@) Fip1=Fr —v(t)/(tN)
of segments: and the length of the sequenég then we Tii if g = 1
could keep one weight for each of the exponentially many (b) Rt = { L
k-segmentation experts and apply Bayes algorithm of 4 if y = 0.

Section 3.1. In this case, the additional loss, relative to the ©) Q' = Fipn (1+ M)
bestk-segmentation expert, is upper boundediig N + ! i
(k — 1)In(T/k). Note that this bound coincides with the
description length (in nats) of a segmentation expert (when Figure 6: The SBayes algorithm for switching experts.
and7" are known), a bound which seems impossible to beat.
Herbster and Warmuth’s bound is essentially larger than this
bound byk, provided that and7" are known ahead of time
by their algorithm. Our bound Is(In T'+o(InT")) larger than
either bound, but our algorithm requires no prior knowledge
of T"andk. RE (u||p1)

We now describe our construction of specialists for the u(E)
switching experts problem. We construct one specialist
S(t1,t2,4) for each ground expert and for each pair of
positive integers; < t,. Such a specialist uses the pre-
Q|ctlons of expert on roundstl through (mclugvg) and' normalizing constant, then the bound is at moktn( N /%) +
is asleep the rest of the time. We choose the initial weight 2kINT + k- o(INT)
of this specialist to be1(S(t1,12,¢)) = v(t2)/(t2N) where :

v(t) is any distribution on the natural numbers. Itisnothard It is not immediately obvious how to implement this al-
to show thatp; sums to one when summed over all of the gorithm since it requires maintenance of an infinite number
defined specialists. of specialists. We describe below an efficient scheme that
requires maintenance of on{y(NV) weights, and in which
predictions and updates also require ofilyN) time per
round. The main idea is to show that the predictions of
SBayes can be written in the form

to anyk-segmentation expert is at most

N k k
kin (?) +;mtj —;Iny(tj).

This bound clearly depends on the choice of-or instance,
if we chooser(t) = ¢/(t[In(t + 1)]?) for the appropriate

With this construction of specialists, we are ready to apply
SBayes.% Let us first analyze the additional loss of the algo-
rithm. For anyk-segmentation expert of the form described
above, we can set the comparison veattw be uniform over
the k specialists naturally associated with the segmentation,
namely,S(l, 1, 61), S(tl—l—l, 2, 62), R S(tk_]_—l— 1,7, 6k). “ Zi\;l Q§$t,i
Since exactly one of these is awake at each time step, Y = Z{V_l Q!
u(E:) = 1/k. Furthermore, note that the prediction asso- B
ciated withu is identical to that of thé-segmentation expert
from which it was derived. Therefore, from Theorem 1, we
get that the additional loss incurred by our algorithm relative

wherez, ; is the prediction of ground expeitat time¢ and

Q! is the total weight of all specialists associated with ground
expert; that are active at time We then show how to update
these weights efficiently, resulting in the algorithm shown in
Figure 6.

6Although presented for a finite number of speciali§d}ayes (or . . L
any of the other algorithms in this paper) can easily be modified to handlea |—_et Piy e, D€ the Welght maintained b?’B.ayes for spe-
countably infinite number of specialists. cialist S(¢1, 2, ¢) at timet. Then the prediction of our algo-



rithm at timet is

t

N
Z Z Zptlvtzv i Tt i

~ i=1t1=1tr=¢t
Yt = )

- N ot
Z Z Zptlytzy

i=1t1=1t=¢t

wherez, ; is the prediction of ground expert timet. Let

Q! be the total weight of all specialists associated with ground

expert: that are active at timg that is,

t 00
— t
=22 P

t1=1tr=t

Then,
G = Zi\%%,@fxt’l .
Zi:l Qf
Our implementation maintains only th€ weights Q.

We now show how to update these weights efficiently.
Let

Tt,q H _
Rt _ lgt if Y = 1
.
ol fw=0

Then, from the manner in which weights are updated by

SBayes, we have that

o _ vl T e
Pty tai = 1N H Ri .
s=t1
Therefore,
v(ty)
t _ s
Qi = ZZ H
=1t=t¢ s=t1
t t-1
ovNite
t1=1s=ty
whereF, = y"°_, l;;@ We can thus updatg; using the
recurrence
t+1 ¢
Q¥ =y ]
t1=1s=ty
t t-1 RLQ!
=l |14 sz H R} ) =Fia (1-1- T )
t

t1=1s=ty

This update take® (1) time per weight, assuming tha

has been precomputed. The resulting algorithm is shown in

Figure 6.
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