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Abstract

Inthemulti-armed bandit problem, agambler must decidewhich arm of K non-identical slot machines
to play in a sequence of trials so as to maximize hisreward. This classical problem has received much
attention because of the simple model it provides of the trade-off between exploration (trying out each
armto find the best one) and exploitation (playing the arm believed to give the best payoff). Past solutions
for the bandit problem have almost always relied on assumptions about the statistics of the slot machines.

Inthiswork, we make no statistical assumptionswhatsoever about the nature of the process generating
the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather
than awell-behaved stochastic process, has compl ete control over the payoffs. In asequence of 7" plays,
we prove that the expected per-round payoff of our algorithm approaches that of the best arm at the rate
O(T-1/2), and we give an improved rate of convergence when the best arm has fairly low payoff. We
also prove a general matching lower bound on the best possible performance of any agorithm in our
setting. In addition, we consider a setting in which the player has a team of “experts’ advising him on
which arm to play; here, we give a strategy that will guarantee expected payoff close to that of the best
expert. Finally, we apply our result to the problem of learning to play an unknown repeated matrix game
against an al-powerful adversary.

1 Introduction

Inthewell studied multi-armed bandit problem, originally proposed by Robbins[16], agambler must choose
which of K dlot machinesto play. At each time step, he pullsthe arm of one of the machines and receives a
reward or payoff (possibly zero or negative). The gambler’s purpose isto maximize histotal reward over a
sequence of trials. Since each arm is assumed to have a different distribution of rewards, the goal isto find
the arm with the best expected return as early as possible, and then to keep gambling using that arm.

*An early extended abstract of thispaper appearedin the proceedingsof the 36th Annual Symposiumon Foundationsof Computer
Science, pages 322—331, 1995. The present draft isavery substantially revised and expanded version which has been submitted for
journal publication.



The problem is a classical example of the trade-off between exploration and exploitation. On the one
hand, if the gambler plays exclusively on the machine that he thinksis best (*exploitation”), he may fail to
discover that one of the other arms actually has a higher average return. On the other hand, if he spends too
much time trying out all the machines and gathering statistics (“ exploration™), he may fail to play the best
arm often enough to get a high total return.

Asamorepractically motivated exampl e, consider thetask of repeatedly choosing aroutefor transmitting
packets between two points in a communication network. Suppose there are K possible routes and the
transmission cost is reported back to the sender. Then the problem can be seen as that of selecting a route
for each packet so that the total cost of transmitting a large set of packets would not be much larger than the
cost incurred by sending all of them on the single best route.

In the past, the bandit problem has amost always been studied with the aid of statistical assumptions
on the process generating the rewards for each arm. In the gambling example, for instance, it might be
natural to assume that the distribution of rewards for each arm is Gaussian and time-invariant. However, it
islikely that the costs associated with each route in the routing example cannot be modeled by a stationary
distribution, so a more sophisticated set of statistical assumptionswould be required. In general, it may be
difficult or impossibleto determine the right statistical assumptionsfor a given domain, and some domains
may be inherently adversarial in nature so that no such assumptionsare appropriate.

In this paper, we present a variant of the bandit problem in which no statistical assumptions are made
about the generation of rewards. In our model, the reward associated with each arm is determined at each
time step by an adversary with unbounded computational power rather than by some benign stochastic
process. We only assumethat the rewards are chosen from abounded range. The performance of any player
is measured in terms of regret, i.e., the expected difference between the total reward scored by the player
and the total reward scored by the best arm.

Atfirst it may seem impossiblethat the player should stand a chance against such a powerful opponent.
Indeed, adeterministic player will fare very badly against an adversary who assignslow payoff tothe chosen
arm and high payoff to all the other arms. However, in this paper we present a very efficient, randomized
player agorithmthat performswell against any adversary. We provethat the difference between the expected
gain of our algorithm and the expected gain of the best out of K armsisat most O (/T K log K ), whereT' is
the number of time steps. Note that the average per-time-step regret approaches zero at the rate O (1/v/T).
We also present more refined bounds in which the dependence on T is replaced by the total reward of the
best arm (or an assumed upper bound thereof).

Our worst-case bounds may appear weaker than the bounds proved using statistical assumptions, such
as those shown by Lai and Robbins [12] of the form O(log7’). However, when comparing our results
to those in the statistics literature, it is important to point out an important difference in the asymptotic
quantification. In the work of Lai and Robbins the assumption is that the distribution of rewards that is
associated with each arm is fixed as the total number of iterations 7" increases to infinity. In contrast, our
bounds hold for any finite 7', and, by the generality of our model, these bounds are applicable when the
payoffs are randomly (or adversarially) chosen in a manner that does depend on T'. It is this quantification
order, and not the adversarial nature of our framework, which is the cause for the apparent gap. We prove
this point by showing that, for any algorithm for the /& '-arm bandit problem and for any 7" there exists a set
of K reward distributionssuch that the expected regret of the algorithm when playing against such arms for
T iterationsislower bounded by Q(v/KT).

We can also show that the per-sequence regret is well behaved. More precisely, we show that our
algorithm can guarantee that the actual (rather than expected) difference between itsgain and the gain of the
best arm on any run is upper bounded by O (7'%/3(K In K)*3) with high probability. Thisbound isweaker
than the bound on the expected regret. It isnot clear whether or not this bound can be improved to have a
dependence of O(v/T') on the number of trials.



A non-stochastic bandit problem was also considered by Gittins [9] and Ishikida and Varaiya [11].
However, their version of the bandit problem is very different from ours: they assume that the player can
compute ahead of time exactly what payoffswill be received from each arm, and their problem isthus one
of optimization, rather than exploration and exploitation.

Our algorithm is based in part on an algorithm presented by Freund and Schapire [6, 7], which in turn
is avariant of Littlestone and Warmuth's [13] weighted majority algorithm, and Vovk's [17] aggregating
strategies. 1n the setting analyzed by Freund and Schapire (which we call here the full information game),
the player on each trial scores the reward of the chosen arm, but gains access to the rewards associated with
all of the arms (not just the one that was chosen).

In some situations, picking the same action at al trials might not be the best strategy. For example, in
the packet routing problem it might be that no single route is good for the whole duration of the message,
but switching between routes from time to time can yield better performance. We give a variant of our
algorithm which combines the choices of N strategies (or “experts’), each of which recommends one of
the K actions at each iteration. We show that the regret with respect to the best strategy is O (vT'K InN).
Note that the dependence on the number of strategiesis only logarithmic, and therefore the bound is quite
reasonable even when the player iscombining a very large number of strategies.

The adversarial bandit problem is closely related to the problem of learning to play an unknown
repeated matrix game. In this setting, a player without prior knowledge of the game matrix is playing the
game repeatedly against an adversary with complete knowledge of the game and unbounded computational
power. It iswell known that matrix games have an associated value which is the best possible expected
payoff when playing the game against an adversary. If the matrix isknown, then arandomized strategy that
achieves the value of the game can be computed (say, using alinear-programming a gorithm) and employed
by the player. The case where the matrix is entirely unknown was previousy considered by Bafios [1]
and Megiddo [14], who proposed two different strategies whose per-round payoff converges to the game
value. Both of these algorithms are extremely inefficient. For the same problem, we show that by using our
algorithm the player achieves an expected per-round payoff in T' rounds which efficiently approaches the
value of the game at the rate O (7—%/2). This convergence is much faster than that achieved by Bafios and
Megiddo.

Our paper isorganized asfollows. 1n Section 2, wegivetheformal definition of theproblem. In Section 3,
we describe Freund and Schapire's agorithm for the full information game and state its performance. In
Section 4, we describe our basic algorithm for the partial information game and prove the bound on the
expected regret. In Section 5, we prove a bound on the regret of our algorithm on “typical” sequences. In
Section 6, we show how to adaptively tune the parameters of the a gorithm when no prior knowledge (such
as the length of the game) is available. In Section 7, we give a lower bound on the regret suffered by any
algorithmfor the partial information game. In Section 8, we show how to modify the algorithmto use expert
advice. Finaly, in Section 9, we describe the application of our algorithm to repeated matrix games.

2 Notation and ter minology

We formalize the bandit problem as a game between a player choosing actions and an adversary choosing
the rewards associated with each action. The game is parameterized by the number K of possible actions,
where each action isdenoted by an integer 7, 1 < ¢« < K. We will assume that all the rewards belong to the
unit interval [0, 1]. The generalization to rewardsin [, b] for arbitrary a < b is straightforward.

The game is played in a sequence of trialst = 1,2, ..., 7. We distinguish two variants: the partial
information game, which captures the adversarial multi-armed bandit problem; and the full information
game, which is essentially equivalent to the framework studied by Freund and Schapire [6]. On each tria ¢
of the full information game:



1. The adversary selects a vector x(t) € [0, 1] of current rewards. The ith component z;(t) is
interpreted as the reward associated with action ¢ at trial ¢.

2. Without knowledge of the adversary’s choice, the player chooses an action by picking a humber
i € {1,2,..., K} and scores the corresponding reward z;, ().

3. The player observes the entire vector x(¢) of current rewards.

The partial information game corresponds to the above description of the full information game but with
step 3 replaced by:

3. Theplayer observes only thereward «;, (¢) for the chosen action i;.

Let G4 = .1 2;,(t) bethetotal reward of player A choosing actions iy, iy, . . ., iT.

Weformally define an adversary asadeterministic! function mapping the past history of play i1, . . ., i:_1
to the current reward vector x(¢). Asaspecial case, we say that an adversary isobliviousif it isindependent
of the player'sactions, i.e., if thereward at tria ¢ isafunction of ¢ only. All of our results, which are proved
for anonoblivious adversary, hold for an oblivious adversary as well.

As our player algorithms will be randomized, fixing an adversary and a player algorithm defines a
probability distribution over the set {1,..., K}7 of sequences of 7" actions. All the probabilities and
expectations considered in this paper will be with respect to thisdistribution. For an obliviousadversary, the
rewards are fixed quantities with respect to this distribution, but for a nonoblivious adversary, each reward
z;(t) isarandom variable defined on the set {1, ..., K}~ of player actionsup to trial ¢ — 1. We will not
use explicit notation to represent this dependence, but will refer to it in the text when appropriate.

The measure of the performance of our algorithm isthe regret, which isthe difference between the total
reward of the algorithm &4 and the total reward of the best action. We shall mostly be concerned with the
expected regret of the algorithm. Formally, we define the expected total reward of algorithm A by

T
ElGa] =Eiy. ir [Z L1y (t)] )
t=1

the expected total reward of the best action by

T
FEGmax = 122)%, Ei,...ir [; wj(t)] )
and the expected regret of algorithm A by R4 = FGmax — E[G 4]. Thisdefinition is easiest to interpret for
an oblivious adversary since, inthis case, £'Gmax truly measures what could have been gained had the best
action been played for the entire sequence. However, for a nonoblivious adversary, the definition of regret
isabit strange: It still compares thetotal reward of the algorithm to the sum of rewards that were associated
with taking some action j on al iterations; however, had action ; actually been taken, the rewards chosen
by the adversary would have been different than those actually generated since the variable z;(¢) depends
on the past history of plays i, ..., ;1. Although the definition of R4 looks difficult to interpret in this

Thereisno loss of generality in assuming that the adversary is deterministic. To seethis, assume that the adversary maps past
histories to distributions over the values of x(¢). This definesa stochastic strategy for the adversary for the T" step game, which is
equivalent to a distribution over al deterministic adversarial strategiesfor the 7" step game. Assumethat A is any player algorithm
and that B is the worst-case stochastic strategy for the adversary playing against A. The stated equivalenceimplies that thereis a
deterministic adversarial strategy B against which the gain of A isat most aslarge asthe gain of A against B. (The same argument
can easily be made for other measures of performance, such asthe regret, which is defined shortly.)



Algorithm Hedge
Parameter: A real number n > O.
Initialization: Set G;(0) :=0fori=1,..., K.

Repeat for ¢t = 1,2, ... until game ends
1. Choose action i according to the distribution p(¢), where

xp(nGi(t—1)
=1 &Xp(nGi(t — 1))

pi(t) =

2. Receive the reward vector x(t) and score gain z;, (t).

3. SetGZ(t) = GZ(t — 1) + xl(t) fori=1,..., K.

Figure 1: Algorithm Hedge for the full information game.

case, in Section 9 we prove that our bounds on the regret for a nonoblivious adversary can also be used to
derive an interesting result in the context of repeated matrix games.

We shall also give abound that holds with high probability on the actual regret of the algorithm, i.e., on
the actual difference between the gain of the algorithm and the gain of the best action:

T
maxZ xj(t) — G4,
J =1

3 Thefull information game

In this section, we describe an algorithm, called Hedge, for the full information game which will also
be used as a building block in the design of our algorithm for the partial information game. The version of
Hedge presented here is avariant? of the algorithm introduced by Freund and Schapire [6] which itself is
adirect generalization of Littlestone and Warmuth’s Weighted Mgjority [13] algorithm.

Hedge isdescribed in Figure 1. The main ideais simply to choose action : at time ¢ with probability
proportional to exp (nG(t — 1)), where o > Oisaparameter and G;(t) = 31—, 2;(¢') isthetotal reward
scored by action ¢ up through trial ¢. Thus, actions yielding high rewards quickly gain a high probability of
being chosen.

Since we allow for rewards larger than 1, proving bounds for Hedge is more complex than for Freund
and Schapire’s original algorithm. Thefollowingisan extension of Freund and Schapire’s Theorem 2. Here
and throughout this paper, we make use of the function ®;,(z) which is defined for M # 0to be

eMe 1 Mz

CDM(x) = M2

2These modifications enable Hedge to handle gains (rewards in [0, M]) rather than losses (rewards in [—1, 0]). Note that we
also allow rewardslarger than 1. These changesare necessary to use Hedge as abuilding block in the partial information game.



Theorem 3.1 For » > 0, and for any sequence of reward vectors x(1), ..., x(T") with z;(¢) € [0, M],
M > 0, the probability vectors p(t) computed by Hedge satisfy

T K

T - T K
S5 piltrilt) = Y () — PSS 2
=1 t=1:=1

t=14i=1 1 n

for all actionsj =1,..., K.

Inthespecial casethat M = 1, wecanreplaced ", "X | p;(t)z;(t)2withitsupperbound " S°E  pi(t)4(t)
to get the following lower bound on the gain of Hedge.

Corollary 3.2 For > 0, and for any sequence of reward vectors x(1), ..., x(T") with z;(¢) € [0, 1], the
probability vectors p(¢) computed by Hedge satisfy

ZT:p(t) x(t) > T Tz 2i() ~InK
t=1

en —1

Notethat p(¢) - x(t) = E;,[@;,(¢) | t1, ..., i¢—1], SO thiscorollary immediately impliesthe lower bound:

T T
E[GHedge] =E [Z Liy (t)] = E [Z p(t) 'X(t)]
t=1

t=1
nE {maxj Y1 (t)} —InK

- el —1
NEGmax — INK
en—1 '

In particular, it can be shown that if we choosen = In(1+ /2(In K') /T') then Hedge suffersregret at most
v/ 2T In K inthe full information game, i.e.,

To prove Theorem 3.1, we will use the following inequality.

>

Lemma 3.3 For all » > 0O, for all M # Oand for all z < M:
e < l—l—nx—l—CDM(n)xz.

Proof. It suffices to show that the function
fla) =

is nondecreasing since the inequality f(nz) < f(nM) immediately implies the lemma. (We can make f
continuous with continuous derivatives by defining f(0) = 1/2.) We need to show that the first derivative
f'(x) > 0, for which it is sufficient to show that

L3 (x) e’ -1
o= wrr =2

e —1—-=

72

is nonnegative for positive = and nonpositive for negative z. This can be proved by noting that ¢(0) = 0
and that ¢’sfirst derivative
v = (52)
er +1

is obviously nonnegative. O




Proof of Theorem 3.1. Let W; = SR | exp (3G;(t — 1)). By definition of the algorithm, we find that, for
all<t<T,

Wir1 e~ exp(nGilt — 1)) exp (nzi(t))
7:1 2. W

=1

= sz exp 7790 ))

IN

K
1+n2p2 t) + Par(n )Zpi(t)w (t)?

using Lemma 3.3. Taking logarithmsand summingover ¢t = 1, ..., T yields

T
W - Sl
T K
< Yin (1+772p2 t) + P ( )Zpi(t)%(t)z)
:lT K - T K -
< Z sz )+ () DD pilt)ai(t)? 1)

t=1:=1
sincel+ z < ¢” forall «. Observing that W1 = K and, for any j, Wr41 > exp (nG;(T)), we get

Wri1
1

In >nG;(T) —InkK . (2)

Combining Equations (1) and (2) and rearranging we obtain the statement of the theorem. O

4 Thepartial information game

In this section, we move to the analysis of the partial information game. We present an algorithm
Exp3 that runsthe algorithm Hedge of Section 3 as a subroutine. (Exp3 standsfor “ Exponentia -weight
algorithm for Exploration and Exploitation.”)

Thealgorithmisdescribed in Figure 2. On each trial ¢, Exp3 receives the distribution vector p(¢) from
Hedge and selectsan action i, according to thedistribution p(¢) which isamixture of p(¢) and the uniform
distribution. Intuitively, mixing in the uniform distribution is done to make sure that the algorithm tries out
al K actionsand gets good estimates of the rewards for each. Otherwise, the algorithm might missa good
action because the initial rewards it observes for this action are low and large rewards that occur later are
not observed because the action is not selected.

After Exp3 receivesthereward z;, () associated with the chosen action, it generates asimulated reward
vector x(t) for Hedge. As Hedge requires full information, all components of this vector must be filled
in, even for the actionsthat were not selected. For the chosen action i,, we set the simulated reward z;, (¢) to
z;,(t)/p:, (t). Dividingtheactual gain by the probability that the action was chosen compensates the reward
of actions that are unlikely to be chosen. The other actions all receive a simulated reward of zero. This
choice of simulated rewards guarantees that the expected simulated gain associated with any fixed action j
isequal to the actual gain of the action; that is, E;, [Z;(¢) | i1, ..., tz—1] = z;(t).

We now give the first main theorem of this paper, which boundsthe regret of algorithm Exp3.



Algorithm Exp3
Parameters: Realsn > 0and v € (0, 1]
Initialization: Initialize Hedge(n).

Repeat for ¢t = 1,2, ... until game ends
1. Get thedistribution p(¢) from Hedge.

2. Select action i, to be j with probability 5; () = (1— 7)p;(t) + %
3. Receive reward z;, (t) € [0, 1].
Liy (t) if 7 .
4. Feed the simulated reward vector %(¢) back to Hedge, where 2; (1) = { 5, (1) =
0 otherwise.

Figure 2: Algorithm Exp3 for the partia information game.

Theorem 4.1 For » > Oand~ € (0, 1], the expected gain of algorithmExp3 is at least

K®g 1-—
E[Gexps) > FGmax — (7 + %(")) EG max — ; "nk |

To understand thistheorem, it ishel pful to consider asimpler bound which can be obtained by an appropriate
choice of the parameters v and 7:

Corollary 4.2 Assumethat ¢ > FGmax and that algorithm Exp3 is run with input parameters n = v/ K

and
—mind1 KInK
= Ve-Dgf”

Then the expected regret of algorithm Exp3 is at most

Rexpz < 2Ve — 1/gKInK < 2.63/gKInK.

Proof. If ¢ < (KInK)/(e— 1), thentheboundistrivia since the expected regret cannot be more than g.
Otherwise, by Theorem 4.1, the expected regret is at most

K®y K
(7 4 M) PR e N T T
n n
a

To apply Corollary 4.2, it is necessary that an upper bound ¢ on F'Gmax be available for tuning n and
~. For example, if the number of trials 7" is known in advance then, since no action can have payoff greater
than 1 on any trial, we can use ¢ = T as an upper bound. In Section 6, we give a technique that does not
require prior knowledge of such an upper bound.

If the rewards z;(t) are in the range [a,b], a < b, then Exp3 can be used after the rewards have
been trandated and rescaled to the range [0, 1]. Applying Corollary 4.2 with ¢ = T gives the bound



(b — a)2y/e — IYTK InK) on theregret. For instance, thisis applicable to a standard loss model where
the “rewards’ fall intherange [—1, O].

Proof of Theorem 4.1. By the definition of the algorithm, we have that Z; () < 1/p;(t) < K/v. Thuswe
find, by Theorem 3.1, that for al actionsj =1,..., K

T K T . T K
. R In K CD]X
SN ni0F () = 3 () - ” LSS i
t=1i=1 =1 n t=1i=1
Since
xit(t) xit(t)
K3 Tt S 3
Zp - ()pu(t) 1-v 3
and
Li, (t) ~ iit (t)
g (23 ~ xltt S 3 4
Zp = P38l < T (4)
we get that for al actionsj =1,..., K
T T Dy T
GExps = 2 _ i (t) > (1—~ Zaz " Tink - I/”(")Z@t(t). (5)
t=1 t=1 n n t=1
Note that P
Bioft) = Y 8i(0). (6)
=1

We next take the expectation of Equation (5) with respect to thedistributionof (i1, . .., ¢7). For theexpected
value of z;(t), we have:

E[2;(t)] = Eipio [EalZi(0) g,y dia]]
I P71 B
- Ezl ..... 1—1 p](t) ﬁ](t) —I_ (1 p](t)) 0
= Elz;(1)]. )

Combining Equations (5), (6) and (7), we find that
T 1 1-+ I«/w T K
E[GExp3] > v) > Elx InK — Z > Elx

=1 n t=1i=1

Since max; 371 E[z;(1)] = EGmax and 71 S8 E[#,(1)] < K EGmax We obtain the inequality in the
statement of the theorem. O

5 A bound on theregret that holds with high probability

In the last section, we showed that algorithm Exp3 with appropriately set parameters can guarantee an
expected regret of at most O(v/g K InK). In the case that the adversarial strategy is oblivious (i.e., when
the rewards associated with each action are chosen without regard to the player’s past actions), we compare
the expected gain of the player to F'G/nax, Which, inthis case, isthe actual gain of the best action. However,
if the adversary is not oblivious, our notion of expected regret can be very weak.



Consider, for example, arather benign but nonobliviousadversary which assignsreward 0 to all actions
on the first round, and then, on al future rounds, assigns reward 1 to action #; (i.e., to whichever action
was played by the player on the first round), and O to all other actions. In this case, assuming the player
chooses the first action uniformly at random (as do all algorithms considered in this paper), the expected
total gain of any actionis (7' — 1)/ K. Thismeansthat the bound that we get from Corollary 4.2 in thiscase
will guarantee only that the expected gain of the algorithmis not much smaller than EGmax = (T — 1)/ K.
Thisis a very weak guarantee since, in each run, there is one action whose actua gainis7 — 1. On the
other hand, Exp3 would clearly perform much better than promised in this simple case. Clearly, we need
a bound that relates the player’s gain to the actual gain of the best action in the samerun.

In this section, we prove such a bound for Exp3. Specifically, |et us define the random variable

G, = Z xz(t)

t=1

to be the actual total gain of action ¢+, and let
Gmax = Max G

be the actual total gain of the best action :. The main result of thissection isa proof of abound which holds
with high probability relating the player's actual gain G'gxp3 10 G max-

We show that the dependence of the difference Gimax — GExps asafunction of 7' isO(1'%/3) with high
probability for an appropriate setting of Exp3’s parameters. This dependence is sufficient to show that
the average per-trial gain of the algorithm approaches that of the best action as " — oo. However, the
dependence is significantly worse than the O (v/T') dependence of the bound on the expected regret proved
in Theorem 4.1. It is an open question whether the gap between the boundsisreal or can be closed by this
or some other agorithm.

For notational convenience, let us also define the random variables

Gi =

t

T
(1)

=1

and A A

The heart of the proof of the result in this section is an upper bound that holds with high probability on
the deviation of &G; from G, for any action <. The main difficulty in proving such abound is that the gains
associated with a single action in different trials are not independent of each other, but may be dependent
through the decisions made by the adversary. However, using martingal e theory, we can prove the following
lemma:

Lemmab5.1 Let A > Oand ¢ > 0. Then with probability at least 1 — &, for every action ¢,

O > (1_ Kch(A))GZ» In(K/6)

) DY

Proof. Givenin Appendix A. O

Using thislemma, we can prove the main result of this section:

10



Theorem 5.2 Let > 0, v € (0,1], A > Oandé > 0. Then with probability at least 1 — §, the gain of
algorithmExp3isat least

)Gmax_l—_mnK_M.
n A

K®g/,(n) L+ K®4(N)

GEexp3 2 Gmax — (7 + 7 Y

Proof. Notefirst that
T K K A
Ziit (t) = Z Z iZ(t) = ZGi < KGmax.
t=1 1

t=1:=1 =1

Combining with Equation (5) gives
A - Koy R
Geps 2 max [(1— 7G; - 1k - ﬂGmax
J ] n
K®yp R _
K 7
K®y A _
> (1_7_B7M(77))Gi—1 7|n[(
K 1

for al «.
Next, we apply Lemma 5.1 which impliesthat, with probability at least 1 — §, for al actions ¢,

K®y ¢ ¢ -
Cons > (1_7_ B/W(n)) ((1_ KCDl(/\)) G In(A/(S)) 1oy
n YA A n
K®y ¢ ¢ -
> G (w K/ (1) N KCDl(/\))Gi_ In(k/8) 1-v, .
YA A U
Choosing ¢ to be the best action gives the result. O

To interpret this result we give the following simple corollary.
Corollary 5.3 Let § > 0. Assumethat ¢ > Gmax and that algorithm Exp3 is run with input parameters

n =~/K and
. KIn(K/§\Y?3
v =min {1, (T)
where b = (e — 1) /2. Then with probability at least 1 — § the regret of algorithm Exp3 is at most
Rexps < (b3 4 40Y3)g23(K In(K /6))Y/3 < 4.62 ¢?/3(K In(K /§))Y3,

Proof. We assumethat ¢ > 62K In(K/§) since otherwise the bound follows from the trivial fact that the
regret isat most g. We apply Theorem 5.2 setting

L (nt/)2\
N bK g2 '
Given our assumed lower bound on ¢, we have that A < 1 which impliesthat ®;(\) < A2. Plugging into
the bound in Theorem 5.2, thisimplies a bound on regret of
b2/3¢Y3K InK
(K In(K/5))1/3

The result now follows by upper bounding K In K in the first term by (K In(K/§))%/3(gb%)*/2 using our
assumed lower bound on g. O

+ 4(bg’K In(K /5))Y/3,
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Algorithm Exp3.1
e e KInK A . i
Initialization: Lett =0, ¢ = 1 ,andG;(0) =0fori=1,..., K
6 J—
Repeat for » = 0,1, 2, .. . until game ends
1 Let S, =t+1landg, = c4".

2. Restart Exp3 choosing v and  asin Corollary 4.2 (with ¢ = ¢,), namely, v = v, = 27" and
n=n=7/K.
3. While max; (A}i(t) <g, — K/~ do:
@ t=t+1
(b) Let p(t) and i, be the distribution and random action chosen by Exp3.
(c) Computex(t) from p(¢) and observed reward z;, (¢) asin Figure 2.
d Gi(t) =Gt =)+ &) fori=1,... K.

4. LetT, =t

Figure 3: Algorithm Exp3.1 for the partial information game when a bound on F (/s is not known.

Asg = T isan upper bound that holdsfor any sequence, we get that the dependence of the regret of the
algorithmon T'is O (T?%/3).

6 Guessing the maximal reward

In Section 4, we showed that algorithm Exp3 yields a regret of O(y/gK In K) whenever an upper
bound ¢ on the total expected reward F'Gmax Of the best action is known in advance. In this section, we
describe an agorithm Exp3.1 which does not require prior knowledge of a bound on FGma and whose
regret is at most O (v/ /G max IS IN ). Along the same lines, the bounds of Corollary 5.3 can be achieved
without prior knowledge about G nax.

Our agorithm Exp3.1, described in Figure 3, proceeds in epochs, where each epoch consists of a
sequence of tridls. Weuse r = 0,1, 2,... to index the epochs. On epoch r, the algorithm “guesses’ a
bound ¢, for the total reward of the best action. It then uses this guess to tune the parameters » and v of
Exp3, restarting Exp3 at the beginning of each epoch. Asusual, we uset to denote the current time step.3
Exp3.1 maintains an estimate

t
Gi(t) =Y &i(t)
=1
of the total reward of each action :. Since E[Z;(t)] = E[x;(¢)], this estimate will be unbiased in the sense
that .
E[G:()] =E [Z xi(t’)]

=1

3Note that, in general, this t may differ from the “local variable’ ¢ used by Exp3 which we now regard as a subroutine.
Throughout this section, we will only uset to refer to the total number of trials asin Figure 3.
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for all < and ¢. Using these estimates, the algorithm detects (approximately) when the actual gain of some
action has advanced beyond g.. When this happens, the algorithm goes on to the next epoch, restarting
Exp3 with alarger bound on the maximal gain.

The performance of the algorithm is characterized by the following theorem which isthe main result of
this section.

Theorem 6.1 The regret suffered by algorithm Exp3.1 is at most

Rexpz1 < 8Ve — 1W/EGmaKk INK +8(c — 1)K 4+ 2K InK
< 105EGmxK INK +13.8 K + 2K InK.

The proof of thetheoremisdivided intotwo lemmas. Thefirst boundsthe regret suffered on each epoch,
and the second bounds the total number of epochs.

Asusual, we use T' to denote the total number of time steps (i.e., the final value of t). We also define
the following random variables: Let R be the total number of epochs (i.e., the fina value of ). Asinthe
figure, S, and T, denote the first and last time steps completed on epoch r (where, for convenience, we
define Tr = T). Thus, epoch r consists of trials S,., S, + 1, ..., T,.. Note that, in degenerate cases, some
epochs may be empty inwhichcase S, = 7, + 1. Let Gmax(t) = max; G;(t) and let Gnax = Gimax(T).

Lemma 6.2 For any action 5 and for every epoch r, the gain of Exp3.1 during epoch r islower bounded by

T, T,
S oa(t) = > #(t) - 2vVe—1/g.KInK.
t:Sr t:ST

Proof. If S, > T, (sothat notrialsoccur on epoch r), then thelemmaholdstrivially since both summations
will be equal to zero. Assumethenthat S, < 7,. Letg = ¢,, v = v, and n = n,. We use Equation (5)
from the proof of Theorem 4.1:

T T T
” . 1 Pr /(1) X .
Sat) > A7) Y ) - Tl Ink -~ S R (1)
t=S, t=S, n U t=5Sr
T T K
~ . . Dy L (1-7v)InK
S SENURSD SENUREUS 5 SERURN e L
=S, t=Sr =5, 1=1
T T K
o R L (1-9)Ink
S R U R L 9) SRS L
=5, =1 i=1=1 n

From the definition of the termination condition and since S, < 7;., we know that Gi(T, —1) < g—K/~.
Since z;(t) < K/~ (by Exp3's choice of p(t)), thlSlmpllesthatG (T,) < g forali. Thus,

i 2, (1) > i Fi(t) — g (H KCDR'M")) _(1-9)InK

t=Sy t=Sr 77 77

By our choicesfor 1 and +, we get the statement of the lemma. O

The next lemma gives an implicit upper bound on the number of epochs R.

Lemma 6.3 The number of epochs R satisfies

2fi—t < 5+\/Gm""x+}.
c 2

13




Proof. If R = 0, then the bound holdstrivially. So assume R > 1. Let z = 2F~, Because epoch R — 1
was completed, by the termination condition,

K

YR-1

=41 g1 2 K. (8)

Clnax > émax(TR—l) > gRr-1—

Suppose the claim of the lemmais false. Then z > K/c 4 1/Gma/c. Since the function cz? — Kz is
increasing for = > K /(2¢), thisimpliesthat

~ 2 ~
K K /
P Kz>c (— + Gmax) - K (— + Gmax) =K Gmax + GmaX7
c c c c

contradicting Equation 8. O
Proof of Theorem 6.1. Using the lemmas, we have that
T R T,
GExp3.1 = th (t) = Z Z Ly (t)
t=1 r=0¢=5,
> maxZ (Z 2\/6—1\/g,,lﬁlnlﬁ)
=5,

R
= maxG:(T) - 2KInKS 2
; i(T) Z:%

= Gmx — 2K InK (2841 — 1)

A K ; 1
> Gmx+2KInK —8KInK (— + Cima + E)
c c

= Gmax—2KInK —8(e — 1)K — 8Ve — 1/ G K INK. 9)
Here, we used Lemma 6.2 for thefirst inequality and Lemma 6.3 for the second inequality. The other steps
follow from definitions and simple algebra.
Let f(z) =2 —ay/z —bforz > Owherea = 8V/e —1IVKINK and b = 2KInK + 8(e — 1)K
Taking expectations of both sides of Equation (9) gives

E[GExp&l] > E[f(émaX)] (10)
Since the second derivative of f ispositivefor = > 0, f isconvex so that, by Jensen’s inequality,
E[f(Gmad)] > f(E[Gmad)- (11)
Note that,
E[Gima] = E [max(}j(T)] > max E[G(T = maxE [Z a;(t ] = EGmax-
J J

The function f isincreasing if and only if « > a?/4. Therefore, if EGma > a2/4 then f(E[Gma]) >
J(FGmax). Combined with Equations (10) and (11), this gives that E[G'Exp3.1] > f(FGmax) Which is
equivalent to the statement of the theorem. On the other hand, if EGma < a?/4 then, because f is
nonincreasing on [0, a?/4],

f(EGmax) < f(O) =-b6<0< E[GExp3.1]

so the theorem follows trivially in this case as well. O
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7 A lower bound

In this section, we state an information-theoretic lower bound on the regret of any player, i.e., alower bound
that holds even if the player has unbounded computational power. More precisely, we show that there exists
an adversarial strategy for choosing the rewards such that the expected regret of any player algorithm is
Q(VTK). Observe that this does not match the upper bound for our algorithms Exp3 and Exp3.1 (see
Corollary 4.2 and Theorem 6.1); it is an open problem to close this gap.

The adversarial strategy we usein our proof is obliviousto the algorithm; it simply assignsthe rewards
at random according to some distribution, similar to a standard statistical model for the bandit problem. The
choice of distribution depends on the number of actions K and the number of iterations7". Thisdependence
of the distributionon 7 is the reason that our lower bound does not contradict the upper bounds of the form
O(logT') which appear in the statistics literature [12]. There, the distribution over the rewards is fixed as
T — oo.

For thefull information game, matching upper and lower boundsof theform © (/7T Tog K') were aready
known [3, 6]. Our lower bound showsthat for the partial information game the dependence on the number
of actionsincreases considerably. Specifically, our lower bound impliesthat no upper bound is possible of
theform O(7T*(log K)”) where0 < a < 1,3 > 0.

Theorem 7.1 For any number of actions K > 2 and any number of iterationsT’, there exists a distribution
over the rewards assigned to different actions such that the expected regret of any algorithmis at least

% MN{VKT, T}

The proof is given in Appendix B.
The lower bound on the expected regret implies, of course, that for any algorithm there is a particular
choice of rewards that will cause the regret to be larger than this expected value.

8 Combining the advice of many experts

Up to this point, we have considered a bandit problem in which the player's goal is to achieve a payoff
close to that of the best single action. In a more general setting, the player may have a set of strategies for
choosing the best action. These strategies might select different actionsat different iterations. The strategies
can be computationsperformed by the player or they can be external advice given to the player by “experts.”
We will use the more general term “expert” (borrowed from Cesa-Bianchi et al. [3]) because we place no
restrictions on the generation of the advice. The player’s goal in this case is to combine the advice of the
expertsin such away that itstotal reward iscloseto that of the best expert (rather than the best single action).

For example, consider the packet-routing problem. In this case there might be several routing strategies,
each based on different assumptionsregarding network load distribution and using different data to estimate
current load. Each of these strategies might suggest different routes at different times, and each might be
better in different situations. In this case, we would like to have an algorithm for combining these strategies
which, for each set of packets, performs almost as well as the strategy that was best for that set.

Formally, at each trial ¢, we assume that the player, prior to choosing an action, is provided with a set of
N probability vectors &7 () € [0,1]%,j = 1,...,N, K &/ (1) = 1. Weinterpret & (t) as the advice of
expert j ontrial ¢, where the :ith component & (¢) represents the recommended probability of playing action
1. (Asaspecial case, the distribution can be concentrated on asingle action, which representsa deterministic
recommendation.) If the adversary chooses payoff vector x(t), then the expected reward for expert j (with
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Algorithm Exp4
Parameters. Realsn > 0and v € [0, 1]
Initialization: Initialize Hedge (with K replaced by V)

Repeat for ¢t = 1,2, ... until game ends
1. Get thedistribution q(¢) € [0, 1] from Hedge.
2. Get advice vectors & (¢) € [0, 1)%, and let p(t) := S20L; q;(1)€ (1).
3. Select action 7; to be j with probability p;(t) = (1 — v)p;(t) + v/ K.
4. Receive reward ;, (t) € [0, 1].
i, (1)

5. Compute the simulated reward vector X(t) asz;(t) = { B (1) if =1,
0 otherwise.

6. Feed the vector §7(¢) € [0, K /9] to Hedge where §; (t) = &’ (t) - X(t).

Figure 4: Algorithm Exp4 for using expert advice in the partia information game.

respect to the chosen probability vector &7 (¢)) issimply &7 (t) - x(t). In analogy of EG max, We define

T
I o i -
EGmax - 12n]a§XN Ezl ..... (2 |JZ:;L§ (t) X(t)] ?

sothat theregret B4 = E[G4]— EG max measures the expected difference between the player’stotal reward
and the total reward of the best expert.

Our resultshold for any finite set of experts. Formally, we regard each & (¢) as arandom variable which
isan arbitrary function of the random sequence of playsis, . . ., i;_1 (just like the adversary’s payoff vector
x(t)). Thisdefinition allows for experts whose advice depends on the entire past history as observed by the
player, aswell as other side information which may be available.

We could at this point view each expert as a “meta-action” in a higher-level bandit problem with payoff
vector defined at trial ¢ as (€1(t) - x(¢), ..., &" (t) - x(t)). We could then immediately apply Corollary 4.2
to obtain a bound of O (/g N Tog V) on the player’s regret relative to the best expert (where ¢ is an upper
bound on EG max). However, this bound is quite weak if the player is combining many experts (i.e., if N
isvery large). We show below that the algorithm Exp3 from Section 4 can be modified yielding a regret
term of the form O (/g K Tog N). Thisbound is very reasonable when the number of actionsis small, but
the number of expertsis quite large (even exponential).

Our algorithm Exp4 is shown in Figure 4, and is only a slightly modified version of Exp3. (Exp4
standsfor “ Exponential-weight al gorithm for Exploration and Exploitation using Expert advice.”) Asbefore,
we use Hedge as a subroutine, but we now apply Hedge to a problem of dimension N rather than K.
Attrial ¢, we receive a probability vector q(¢) from Hedge which represents a distribution over strategies.
We compute the vector p(t) as aweighted average (with respect to q(t)) of the strategy vectors & (t). The
vector p(t) is then computed as before using p(¢), and an action ¢ is chosen randomly. We define the
vector %(t) € [0, K/v]* as before, and we finally feed the vector y(¢) € [0, K/v]Y to Hedge where
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J;(t) = &7 (t) - %(t). Letusalso define y(t) € [0, 1]V to be the vector with components corresponding to
the gains of the experts: y;(t) = &’(t) - x(t).

The simplest possible expert is one which always assigns uniform weight to all actionsso that &, (¢) =
1/K on each round ¢t. We call this the uniform expert. To prove our results, we need to assume that the
uniform expert isincluded in the family of experts.* Clearly, the uniform expert can always be added to any
given family of experts at the very small expense of increasing NV by one.

Theorem 8.1 For n > O and v € (0, 1], and for any family of experts which includes the uniform expert,
the expected gain of algorithm Exp4 is at least

~ Koy ~ 1-—
E[Gexpal > ECimax — (7 + %w) ECmax — ; “inN |

Proof. We prove thistheorem along the lines of the proof of Theorem 4.1. By Theorem 3.1, for all experts
j=21...,N,

T
S a9 > S g0 - N CDI‘” S0
=1 =1 n t=1;=1
Now
< al j & & xlt(t)
ale) - 510) = Y 008 ()-X(0) = () 500 < 2

N N .
>4 () Z% WELO:, (1) < 8, (073 q (D€ (1) = pi (35, (1) < 1
7=1

Therefore, using Equatlon (6), for al experts j,

T T
. 1- Dy
Gepa =Y wiclt) > (1=7) Y §;(t) = =L InN - ”” )3 S
=1 =1 U t=1i=1
As before, we take expectations of both sides of thisinequality. Note that
; S5 yed gy £ j
Bl (1] = E |2 si(0€/ (055 | = E € (1) - x(t)] = Ely; (1))
Le=1 ¢

Further,

T K T T 1 K T
B R T

< maxE [Z Yj (t)] = Eémax
i=1i=1 J i=1

since we have assumed that the uniform expert isincluded in the family of experts. Combining these facts
immediately implies the statement of the theorem. O

Analogous versions of the other main results of this paper can be proved in which occurrences of In K
are replaced by In N. For Corollary 4.2, thisisimmediate using Theorem 8.1, yielding a bound on regret
of at most 2/e — 1,/gK InN. For the analog of Lemma 5.1, we need to prove a bound on the difference
between 3", y;(¢) and )", §;(t) for each expert j which can be done exactly as before replacing §/ K with
d/N in the proof. The analogs of Theorems 5.2 and 6.1 can be proved as before where we again need
to assume that the uniform expert is included in the family of experts. The analog of Corollary 5.3 is
straightforward.

4In fact, we can use a slightly weaker sufficient condition, namely, that the uniform expert is included in the convex hull of
the family of experts, i.e., that there exists nonnegative numbers a1, . .., ax with Zjvzlaj = 1 such that, for all ¢ and dl 1,

SN el (t) = VK.

17



9 Nearly optimal play of an unknown repeated game

The bandit problem considered up to this point is closely related to the problem of playing an unknown
repeated game against an adversary of unbounded computational power. In this latter setting, a game is
defined by ann x m matrix M. On each trid ¢, the player (also called the row player) choosesarow i of the
matrix. At the same time, the adversary (or column player) chooses a column ;. The player then receives
the payoff M;;. In repeated play, the player’s goal isto maximize its expected total payoff over a sequence
of plays.

Supposeinsometrial the player choosesits next move : randomly according to a probability distribution
on rows represented by a (column) vector p € [0, 1], and the adversary similarly chooses according to a
probability vector q € [0,1]™. Then the expected payoff is p’ Mq. Von Neumann's celebrated minimax
theorem states that , .

mgxrrgnp Mq = rrgan?Xp Mq,

where maximum and minimum are taken over the (compact) set of al distribution vectors p and q. The
guantity v defined by the above equation is called the value of the game with matrix M. In words, this says
that there exists amixed (randomized) strategy p for the row player that guarantees expected payoff at |east
v, regardless of the column player’s action. Moreover, this payoff is optimal in the sense that the column
player can choose a mixed strategy whose expected payoff isat most v, regardless of therow player’s action.
Thus, if the player knows the matrix M, it can compute a strategy (for instance, using linear programming)
that is certain to bring an expected optimal payoff not smaller than v on each trial.

Suppose now that the game M is entirely unknown to the player. To be precise, assume the player
knows only the number of rows of the matrix and a bound on the magnitude of the entries of M. The main
result of this section is a proof based on the resultsin Section 4 showing that the player can play in such
amanner that its payoff per trial will rapidly converge to the optimal maximin payoff v. Thisresult holds
even when the adversary knows the game M and also knows the (randomized) strategy being used by the
player.

The problem of learning to play arepeated game when the player getsto see thewhole column of rewards
associated with the choice of the adversary corresponds to our full-information game. This problem was
studied by Hannan [10], Blackwell [2] and more recently by Foster and Vohra[5], Fudenberg and Levin [8]
and Freund and Schapire [7]. The problem of learning to play when the player gets to see only the single
element of the matrix associated with his choice and the choice of the adversary corresponds to the partial
information game which is our emphasis here. This problem was previously considered by Bafios [1] and
Megiddo [14]. However, these previously proposed strategies are extremely inefficient. Not only is our
strategy simpler and much more efficient, but we also are able to prove much faster rates of convergence.

In fact, the application of our earlier algorithmsto thisproblem isentirely straightforward. The player’'s
actions are now identified with the rows of the matrix and are chosen randomly on each trial according to
algorithm Exp3, where we tune « and v asin Corollary 4.2 with ¢ = T, where T is the total nhumber of
epochs of play.> The payoff vector x(t) issimply M.;,, the j;~th column of M chosen by the adversary on
trial ¢.

Theorem 9.1 Let M be an unknown game matrix in [a, b]**™ with value v. Suppose the player, knowing
only a, b and n, uses the algorithm sketched above against any adversary for T trials. Then the player’s
expected payoff per trial isat least

(e—1)ninn

v—2(b—a) T

5If T is not known in advance, the methods devel oped in Section 6 can be applied.
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Proof. Weassumethat [«, b] = [0, 1]; theextensionto the general caseisstraightforward. By Corollary 4.2,
we have

T T
E [Z Mm‘t] = E [Z i, (t)]
t=1 t=1
> maxE[ZT:xi(t)] —2y/(e=1L)TnlInn.
¢ t=1

Let p be amaxmin strategy for the row player such that
_ Tt — minal
v_mgxmqlnp Mq_mqlnp Mq,

and let q(¢) be adistribution vector whose j;-th component is 1. Then

n T T
max E lz ()| =D pE lz xi(t)] =E [Zﬁ.x(t)] - E [ZﬁTMq(t) > 0T
! t=1 i=1 t=1 t=1 t=1
sincep’Mq > v for dl q.
Thus, the player’s expected payoff is at |east
vl —2¢y/(e — 1)TnlInn.
Dividing by 7' to get the average per-trial payoff gives the result. O

Notethat the theorem isindependent of the number of columnsof M and, with appropriate assumptions,
the theorem can be easily generalized to adversaries with an infinite number of strategies. If thematrix M is
very large and all entriesare small, then, evenif M isknown to the player, our algorithm may be an efficient
alternative to linear programming.

The generality of the theorem also allows us to handle games in which the outcome for given plays ¢
and j is arandom variable (rather than a constant M;;). Finally, as pointed out by Megiddo [14], such a
resultis valid for non-cooperative, multi-person games; the average per-trial payoff of any player using this
strategy will converge rapidly to the maximin payoff of the one-shot game.
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A Proof of Lemmab.1

It suffices to prove that, for any fixed action ¢

P{éi<<1—$§”)@—w}g% (12)

since then the lemmafollows by the union bound. Therefore, let usfix « and ssimplify notation by dropping
¢ subscripts when clear from context.
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L et us define the random variable

Zi = exp (/\ Z(Qf(t/) . i(t/)) B I(CDl(A) Z $(t/)) )
t'=1

7 t'=1

The main claim of the proof isthat E[Z7] < 1. Given thisclaim, we have by Markov’s inequality that
P{Zr > K/é} <§/K
which, by ssimple algebra, can be seen to be equivalent to Equation (12).

Weprovethat E[Z;] < 1fort = O,..., T by inductionont using amethod given by Neveu [15][Lemma
VI1I-2-8]. Fort = 0, Zp = 1trivialy. To prove theinductive step for ¢ > 0, we have that

Ei[Z | ity ita] = Zioa eXp (—M) Ei [z () = 3(0) | ins-oriea) (13)

Now by Lemma3.3, since z (t) — z(¢) < 1, we have that

Es[expA (2 (t) = (1)) | i1, oyiem] < Egf[14 A2 () = (1)) + ®1(N) (2 (1) = 2()% [ in, -+, i)
I(Cpl(/\)
< 14 S
< exp (LCD;(/\)x(t)) . (14)

The second inequality follows from thefact that E;, [ (¢) | ¢1, .. ., ¢z—1] = = (¢) and that

Ei[(x(t) —2(t)% i1, ... i—1] = Eo[3(0)%]i1,... 0-1] — z(t)?

< EL[E(6)? | g, .-y dia] ,

< IiEit[aE(t) | i1y oytpo1] = %x(t).
Thelast lineusesthefact that 0 < Z(¢) < K /7.

Combining Equations (13) and (14) gives that
Ei,[Z | in, ... 1] < Zi_q
(i.e., that the 7;’s forms a supermartingale), and so
E[Z] <E[Z1] <1

by inductive hypothesis. This completes the proof. O

B Proof Of Theorem 7.1

We construct the random distribution of rewardsasfollows. First, before play begins, oneaction I ischosen
uniformly at random to be the “good” action. The 7" rewards z;(¢) associated with the good action are
chosen independently at random to be 1 with probability 1/2 + ¢ and 0 otherwise for some small, fixed
constant ¢ € (0, 1/2] to be chosen later in the proof. The rewards z; (¢) associated with the other actions
j # I are chosen independently at random to be O or 1 with equal odds. Then the expected reward of the
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best actionisat least (1/2+ ¢)7". Themain part of the proof below isa derivation of an upper bound on the
expected gain of any algorithm for this distribution of rewards.

We write P..{-} to denote probability with respect to this random choice of rewards, and we aso write
P;{-} to denote probability conditioned on ¢ being the good action: P {-} = P.{- | I = i}. Finally, we
write P,,;s{-} to denote probability with respect to a uniformly random choice of rewards for all actions
(including the good action). Analogous expectation notation E, [-], E; [-] and E,,,,; [-] will also be used.

Let A betheplayer strategy. Let r, = z;,(¢) be arandom variable denoting the reward received at time
t, and let v’ denote the sequence of rewards received up through tria ¢: v = (rq,...,r;). For shorthand,
r = r’ isthe entire sequence of rewards.

Any randomized playing strategy is equivalent to an a-priori random choice from the set of all deter-
ministic strategies. Thus, because the adversary strategy we have defined is obliviousto the actions of the
player, it suffices to prove an upper bound on the expected gain of any deterministic straregy (this is not
crucia for the proof but simplifies the notation). Therefore, we can formally regard the algorithm A as a
fixed function which, at each step ¢, maps the reward history rf~?* to its next action i;.

Asusud, G4 = Y"1, r; denotesthe total reward of the algorithm, and Gimax = max; Y7 z;(t) isthe
total reward of the best action. Note that, because we here assume an oblivious strategy, Gmax and F G max
are the same.

Let N; be a random variable denoting the number of times action ¢ is chosen by A. Our first lemma
bounds the difference between expectations when measured using E; [] or E,;.;7 [-].

LemmaB.1 Let f: {0,1}7 — [0, M] be any function defined on reward sequencesr . Then for any action
i,

E; [f(r)] < Eunif [f(l’)] + %\/—Eunif [N;]In(1 - 462).

Proof. We apply standard methods that can be found, for instance, in Cover and Thomas [4]. For any
distributionsP and Q, let

IP-Qlly= > [P{r}-Q{r}

re{0,1}7
be the variational distance, and let

. Pir)
KLP Q= Y Plrlig
> pis(g)

be the Kullback-Liebler divergence or relative entropy between the two distributions. (We uselg to denote
log,.) We also use the notation

ry t—1
KL (P [ 175 11 QGr | 1) = Y P{rf}lg(%)
rte{0,1}¢ t

for the conditional relative entropy of r; given ri=2. Finally, for p, ¢ € [0, 1], we use

1-»p

KL (p || q)z'plg(g)“l_p)'g(l—q)

as shorthand for the relative entropy between two Bernoulli random variables with parameters p and ¢.
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We have that
E:[f(N] = Euwit [f(N] = D> F)(P{r} = Pune{r})
Z f(l’)(PZ{I’} - Punif{r})

I’ZPl‘{I’}ZPunif{l’}
Moy (P{r} - Puie{r})

I’ZPl‘{I’}ZPunif{l’}

M
= 7sz' — Punit |- (15)

IN

IN

Also, Cover and Thomas's Lemma12.6.1 statesthat
IPunit — P: |3 < (2In2)KL (Pynit || Py)- (16)

The*“chain rulefor relative entropy” (Cover and Thomas's Theorem 2.5.3) gives that

]~

KL (Punif | Pi) = KL (Punif{rt | rt_l} || Pi{re | I’t_l})

o
Il
-

[
] =

(Punie{ie # i} KL (3 || £) +Punt{i = 3 KL (3 || $+¢))

o
Il
-

[
]~

Punt {ir = i} (=3 19(1 - 4¢%))

o
Il
-

= Eunif [Vi] (_% Ig(1 - 462)) . (17)

The second equality can be seen as follows: Regardless of the past history of rewards r‘~?, the conditional
probability distribution Pyns{r; | r*~1} on the next reward r; is uniform on {0, 1}. The conditional
distribution P;{r; | r~'} isalso easily computed: Given r*=1, the next action i, is fixed by A. If this
action is not the good action 7, then the conditional distribution is uniform on {0, 1}; otherwise, if ¢, = ¢,
then r, is 1 with probability 1/2 + ¢ and O otherwise.

The lemma now follows by combining Equations (15), (16) and (17). O

We are now ready to prove the theorem. Specifically, we show the following:

Theorem B.2 For any player strategy A, and for the distribution on rewards described above, the expected
regret of algorithm A islower bounded by:

Proof. If action i ischosen to be the good action, then clearly the expected payoff at time¢ is1/2 + e if

Eilrd = (3+¢€)Pidis =i+ 3Plic # 1}
= I+eP{i;=1}.
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Thus, the expected gain of algorithm A is
T T
Ei[Gal =) Eilrd = 5 + BN (18)
=1

Next, we apply Lemma B.1 to /V;, which is a function of the reward sequence r since the actions of
player strategy A are determined by the past rewards. Clearly, N; € [0, T]. Thus,

E; [Ni] < Eunit [NVi] + g\/—Eunif [NV;]In(1— 4¢?)

and so

K

K ,
; E[N] < > (Eunif [Vi] + 5\/_Eunif [N;]In(1 - 462))

=1

T
Y ” _ 2
< T—|—2\/ TK In(1— 4¢2)

using the fact that -5 | Eynit [V;] = 7', which implies that S, /Euif [NV] < VTK. Therefore,
combining with Equation (18),

1 & T T T /| T
(; = — - (; < — —_— — —_— — 2 .
E. [ A] K ;:1 Ez [ A] =9 + € (I( + 2\/ K In(l 4e ))

The expected gain of the best action is at least the expected gain of the good action, so E, [Gmax] >
T(1/2+ ¢). Thus, we get that the regret is lower bounded by the bound given in the statement of the
theorem. O

For small ¢, the bound given in Theorem B.2 isof the order

C] (Te —Té? Z) .
V K
Choosing ¢ = ¢/ K /T for some small constant ¢, givesalower bound of Q(v/ K'T'). Specifically, the lower

bound given in Theorem 7.1 is obtained from Theorem B.2 by choosing ¢ = (1/4) min{\/K/T,1} and
using the inequality — In(1 — z) < (4In(4/3))x for z € [0, 1/4].
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