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Abstract

We study the problem of learning to accurately rank a set of objects by combining a given
collection of ranking or preference functions� This problem of combining preferences arises
in several applications� such as that of combining the results of di�erent search engines� or
the �collaborative��ltering� problem of ranking movies for a user based on the movie rankings
provided by other users� In this work� we begin by presenting a formal framework for this general
problem� We then describe and analyze an e�cient algorithm called RankBoost for combining
preferences based on the boosting approach to machine learning� We give theoretical results
describing the algorithm	s behavior both on the training data� and on new test data not seen
during training� We also describe an e�cient implementation of the algorithm for a particular
restricted but common case� We next discuss two experiments we carried out to assess the
performance of RankBoost� In the �rst experiment� we used the algorithm to combine di�erent
web search strategies� each of which is a query expansion for a given domain� The second
experiment is a collaborative��ltering task for making movie recommendations�

� Introduction

Consider the following movie�recommendation task� sometimes called a �collaborative��ltering�
problem ���� 	
�� In this task� a new user� Alice� seeks recommendations of movies that she is
likely to enjoy� A collaborative��ltering system �rst asks Alice to rank movies that she has already
seen� The system then examines the rankings of movies provided by other viewers and uses this
information to return to Alice a list of recommended movies� To do that� the recommendation
system looks for viewers whose preferences are similar to Alice
s and combines their preferences to
make its recommendations�

In this paper� we introduce and study an e�cient learning algorithm called RankBoost for
combining multiple rankings or preferences �we use these terms interchangeably�� This algorithm
is based on Freund and Schapire
s ��
� AdaBoost algorithm and its recent successor developed by
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Schapire and Singer ����� Similar to other boosting algorithms� RankBoost works by combining
many �weak� rankings of the given instances� Each of these may be only weakly correlated with
the target ranking that we are attempting to approximate� We show how to combine such weak
rankings into a single highly accurate ranking�

We study the ranking problem in a general learning framework described in detail in Section 	�
Roughly speaking� in this framework� the goal of the learning algorithm is simply to produce a single
linear ordering of the given set of objects by combining a set of given linear orderings called the
ranking features� As a form of feedback� the learning algorithm is also provided with information
about which pairs of objects should be ranked above or below one another� The learning algorithm
then attempts to �nd a combined ranking that misorders as few pairs as possible� relative to the
given feedback�

In Section �� we describe RankBoost in detail and we prove a theorem about its e�ectiveness
on the training set� We also describe an e�cient implementation for �bipartite feedback�� a special
case that occurs naturally in many domains� We analyze the complexity of all of the algorithms
studied�

In Section �� we describe an e�cient procedure for �nding the weak rankings that will be
combined by RankBoost using the ranking features� For instance� for the movie task� this procedure
translates into using very simple weak rankings that partition all movies into only two equivalence
sets� those that are more preferred and those that are less preferred� Speci�cally� we use another
viewer
s ranked list of movies partitioned according to whether or not he prefers them to a particular
movie that appears on his list� Such partitions of the data have the advantage that they only depend
on the relative ordering de�ned by the given rankings rather than absolute ratings� In other words�
even if the ranking of movies is expressed by assigning each movie a numeric score� we ignore
the numeric values of these scores and concentrate only on their relative order� This distinction
becomes very important when we combine the rankings of many viewers who often use completely
di�erent ranges of scores to express identical preferences� Situations where we need to combine the
rankings of di�erent models also arise in meta�searching problems ��� and in information�retrieval
problems ���� ����

In Section �� for a particular probabilistic setting� we study the generalization performance
of RankBoost� that is� how we expect it to perform on test data not seen during training� This
analysis is based on a uniform�convergence theorem that we prove relating the performance on the
training set to the expected performance on a separate test set�

In Section �� we report the results of experimental tests of our approach on two di�erent
problems� The �rst is the meta�searching problem� In a meta�search application� the goal is to
combine the rankings of several web search strategies� Each search strategy is an operation that
takes a query as input� performs some simple transformation of the query �such as adding search
directives like �AND�� or search tokens like �home page�� and sends it to a particular search engine�
The outcome of using each strategy is an ordered list of URL
s that are proposed as answers to the
query� The goal is to combine the strategies that work best for a given set of queries�

The second problem is the movie�recommendation problem described above� For this problem�
there exists a large publicly available dataset that contains ratings of movies by many di�erent
people� We compared RankBoost to nearest�neighbor and regression algorithms that have been
previously studied for this application using several evaluation measures� RankBoost was the clear
winner in these experiments�

In addition to the experiments that we report� Collins ��� and Walker� Rambow and Rogati �		�
describe recent experiments using the RankBoost algorithm for natural�language processing tasks�
Also� in a recent paper ����� two versions of RankBoost were compared to traditional information

	



retrieval approaches�
Despite the wide range of applications that use and combine rankings� this problem has received

relatively little attention in the machine�learning community� The few methods that have been
devised for combining rankings tend to be based either on nearest�neighbor methods ���� 	
� or
gradient�descent techniques ��� ��� In the latter case� the rankings are viewed as real�valued scores
and the problem of combining di�erent rankings reduces to numerical search for a set of parameters
that will minimize the disparity between the combined scores and the feedback of a user�

While the above �and other� approaches might work well in practice� they still do not guarantee
that the combined system will match the user
s preference when we view the scores as a means to
express preferences� Cohen� Schapire and Singer ��� proposed a framework for manipulating and
combining multiple rankings in order to directly minimize the number of disagreements� In their
framework� the rankings are used to construct preference graphs and the problem is reduced to a
combinatorial optimization problem which turns out to be NP�complete� hence� an approximation
is used to combine the di�erent rankings� They also describe an e�cient on�line algorithm for a
related problem�

The algorithm we present in this paper uses a similar framework to theirs but avoids the
intractability problems� Furthermore� as opposed to their on�line algorithm� RankBoost is more
appropriate for batch settings where there is enough time to �nd a good combination� Thus� the
two approaches complement each other� Together� these algorithms constitute a viable approach
to the problem of combining multiple rankings that� as our experiments indicate� works very well
in practice�

� A formal framework for the ranking problem

In this section� we describe our formal model for studying ranking�
Let X be a set called the domain or instance space� Elements of X are called instances� These

are the objects that we are interested in ranking� For example� in the movie�ranking task� each
movie is an instance�

Our goal is to combine a given set of preferences or rankings of the instance space� We use the
term ranking feature to denote these given rankings of the instances� A ranking feature is nothing
more than an ordering of the instances from most preferred to least preferred� To make the model
�exible� we allow ties in this ordering� and we do not require that all of the instances be ordered
by every ranking feature�

We assume that a learning algorithm in our model is given n ranking features denoted f�� � � � � fn�
Since each ranking feature fi de�nes a linear ordering of the instances� we can equivalently think
of fi as a scoring function where higher scores are assigned to more preferred instances� That is�
we can represent any ranking feature as a real�valued function where fi�x�� � fi�x�� means that
instance x� is preferred to x� by fi� The actual numerical values of fi are immaterial� only the
ordering that they de�ne is of interest� Note that this representation also permits ties �since fi can
assign equal values to two instances��

As noted above� it is often convenient to permit a ranking feature fi to �abstain� on a particular
instance� To represent such an abstention on a particular instance x� we simply assign fi�x� the
special symbol � which is incomparable to all real numbers� Thus� fi�x� � � indicates that no
ranking is given to x by fi� Formally� then� each ranking feature fi is a function of the form
fi � X � R� where the set R consists of all real numbers� plus the additional element ��

Ranking features are intended to provide a base level of information about the ranking task�
Said di�erently� the learner
s job will be to learn a ranking expressible in terms of the primitive
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ranking features� similar to ordinary features in more conventional learning settings� �However� we
choose to call them �ranking features� rather than simply �features� to stress that they have a
particular form and function��

For example� in one formulation of the movie task� each ranking feature corresponds to a single
viewer
s past ratings of movies� so there are as many ranking features as there are past users of
the recommendation service� Movies which were rated by that viewer are assigned the viewer
s
numerical rating of the movie� movies which were not rated at all by that viewer are assigned
the special symbol � to indicate that the movie was not ranked� Thus� fi�x� is movie�viewer i
s
numerical rating of movie x� or � if no rating was provided�

The goal of learning is to combine all of the ranking functions into a single ranking of the
instances called the �nal or combined ranking� The �nal ranking should have the same form as that
of the ranking features� that is� it should give a linear ordering of the instances �with ties allowed��
However� unlike ranking features� we do not permit the �nal ranking to abstain on any instances
since we want to be able to rank all instances� even those not seen during training� Thus� formally
the �nal ranking can be represented by a function H � X � R with a similar interpretation to that
of the ranking features� i�e�� x� is ranked higher than x� by H if H�x�� � H�x��� Note the explicit
omission of � from the range of H� thus prohibiting abstentions� For example� for the movie task�
this corresponds to a complete ordering of all movies �with ties allowed�� where the most highly
recommended movies at the top of the ordering have the highest scores�

Finally� we need to assume that the learner has some feedback information describing the desired
form of the �nal ranking� Note that this information is not encoded by the ranking features which
are merely the primitive elements with which the learner constructs its �nal ranking� In traditional
classi�cation learning� this feedback would take the form of labels on the examples which indicate
the correct classi�cation� Here our goal is instead to come up with a good ranking of the instances�
so we need some feedback describing� by example� what it means for a ranking to be �good��

One natural way of representing such feedback would be in the same form as that of a ranking
feature� i�e�� as a linear ordering of all instances �with ties and abstentions allowed�� The learner
s
goal then might be to construct a �nal ranking which is constructed from the ranking features and
which is �similar� �for some appropriate de�nition of similarity� to the given feedback ranking�
This model would be �ne� for instance� for the movie ranking task since the target movie�viewer
Alice provides ratings of all of the movies she has seen� information that can readily be converted
into a feedback ranking in the same way that other users
 have their rating information converted
into ranking features�

However� in other domains� this form and representation of feedback information may be overly
restrictive� For instance� in some cases� two instances may be entirely unrelated and we may not
care about how they compare� For example� suppose we are trying to rate individual pieces of fruit�
We might only have information about how individual apples compare with other apples� and how
oranges compare with oranges� we might not have information comparing apples and oranges� A
more realistic example is given by the meta�search task described in Section 	���

Another di�culty with restricting the feedback to be a linear ordering is that we may consider
it very important �because of the strength of available evidence� to rank instance x� above x�� but
only slightly important that instance x� be ranked above x�� Such variations in the importance of
how instances are ranking against one another cannot be easily represented using a simple linear
ordering of the instances�

To allow for the encoding of such general feedback information� we instead assume that the
learner is provided with information about the relative ranking of individual pairs of instances�
That is� for every pair of instances x�� x�� the learner is informed as to whether x� should be ranked
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above or below x�� and also how important or how strong is the evidence that this ranking should
exist� All of this information can be conveniently represented by a single function �� The domain
of � is all pairs of instances� For any pair of instances x�� x�� ��x�� x�� is a real number whose
sign indicates whether or not x� should be ranked above x�� and whose magnitude represents the
importance of this ranking�

Formally� then� we assume the feedback function has the form � � X�X � R� Here� ��x�� x�� �

 means that x� should be ranked above x� while ��x�� x�� � 
 means the opposite� a value of zero
indicates no preference between x� and x�� As noted above� the larger the magnitude j��x�� x��j� the
more important it is to rank x� above or below x�� Consistent with this interpretation� we assume
that ��x� x� � 
 for all x � X � and that � is anti�symmetric in the sense that ��x�� x�� � ���x�� x��
for all x�� x� � X � Note� however� that we do not assume transitivity of the feedback function��

For example� for the movie task� we can de�ne ��x�� x�� to be �� if movie x� was preferred to
movie x� by Alice� �� if the opposite was the case� and 
 if either of the movies was not seen or if
they were equally rated�

As suggested above� a learning algorithm typically attempts to �nd a �nal ranking that is
similar to the given feedback function� There are perhaps many possible ways of measuring such
similarity� In this paper� we focus on minimizing the �weighted� number of pairs of instances
which are misordered by the �nal ranking relative to the feedback function� To formalize this goal�
let D�x�� x�� � c � maxf
���x�� x��g so that all negative entries of � �which carry no additional
information� are set to zero� Here� c is a positive constant chosen so thatX

x��x�

D�x�� x�� � ��

�When a speci�c range is not speci�ed on a sum� we always assume summation over all of X �� Let
us de�ne a pair x�� x� to be crucial if ��x�� x�� � 
 so that the pair receives non�zero weight under
D�

The learning algorithms that we study attempt to �nd a �nal ranking H with a small weighted
number of crucial�pair misorderings� a quantity called the ranking loss and denoted rlossD�H��
Formally� the ranking loss is de�ned to beX

x��x�

D�x�� x�� ��H�x�� � H�x���� � Pr�x��x���D �H�x�� � H�x��� � ���

Here and throughout this paper� we use the notation ����� which is de�ned to be � if predicate �
holds and 
 otherwise�

There are many other ways of measuring the quality of a �nal ranking� Some of these alternative
measures are described and used in Section ��

Of course� the real purpose of learning is to produce a ranking that performs well even on
instances not observed in training� For instance� for the movie task� we would like to �nd a ranking
of all movies that accurately predicts which ones a movie�viewer will like more or less than others�
obviously� this ranking is only of value if it includes movies that the viewer has not already seen� As
in other learning settings� how well the learning system performs on unseen data depends on many

�In fact� we do not even use the property that � is anti�symmetric� so this condition also could be dropped� For
instance� we might instead formalize � to be a nonnegative function in which a positive value for ��x�� x�� indicates
that x� should be ranked higher than x�� but there is no prohibition against both ��x�� x�� and ��x�� x�� being
positive� This might be helpful when we have contradictory evidence regarding the �true� ranking of x� and x��
and is analogous in classi	cation learning to the same example appearing twice in a single training set with di
erent
labels�
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factors� such as the number of instances covered in training and the representational complexity of
the ranking produced by the learner� Some of these issues are addressed in Section ��

In studying the complexity of our algorithms� it will be helpful to de�ne various sets and
quantities which measure the size of the input feedback function� First of all� we generally assume
that the support of � is �nite� Let X� denote the set of feedback instances� i�e�� those instances
that occur in the support of ��

X� � fx � X j �x� � X � ��x� x�� 	� 
g�

Also� let j�j be the size of the support of ��

j�j � jf�x�� x�� � X � X j ��x�� x�� 	� 
gj �

In some settings� such as the meta�search task described next� it may be appropriate for the
learner to accept a set of feedback functions ��� � � � ��m� However� all of these can be combined
into a single function � simply by adding them� � �

P
j �j� �If some have greater importance

than others� then a weighted sum can be used��

��� Example� Meta�search

To illustrate this framework� we now describe the meta�search problem and how it �ts into the
general framework� Experiments with this problem are described in Section ����

For this task� we used the data of Cohen� Schapire and Singer ���� Their goal was to simulate the
problem of building a domain�speci�c search engine� As test cases� they picked two fairly narrow
classes of queries�retrieving the homepages of machine�learning researchers �ML�� and retrieving
the homepages of universities �UNIV�� They chose these test cases partly because the feedback was
readily available from the web� They obtained a list of machine�learning researchers� identi�ed by
name and a�liated institution� together with their homepages�� and a similar list for universities�
identi�ed by name and �sometimes� geographical location from Yahoo� We refer to each entry on
these lists �i�e�� a name�a�liation pair or a name�location pair� as a base query� The goal is to learn
a meta�search strategy that� given a base query� will generate a ranking of URL
s that includes the
correct homepage at or close to the top�

Cohen� Schapire and Singer also constructed a series of special�purpose search templates for
each domain� Each template speci�es a query expansion method for converting a base query into a
likely seeming AltaVista query which we call the expanded query� For example� one of the templates
has the form ��NAME� �machine �learning which means that AltaVista should search for all the
words in the person
s name plus the words �machine
 and �learning
� When applied to the base
query �Joe Researcher from Learning University
 this template expands to the expanded query
��Joe Researcher� �machine �learning�

A total of �� search templates were used for the ML domain and 		 for the UNIV domain��

Each search template was used to retrieve the top thirty ranked documents� If none of these lists
contained the correct homepage� then the base query was discarded from the experiment� In the
ML domain� there were 	�
 base queries for which at least one search template returned the correct
homepage� for the UNIV domain� there were 	�
 such base queries�

We mapped the meta�search problem into our framework as follows� Formally� the instances
now are pairs of the form �q� u� where q is a base query and u is one of the URL
s returned by one

�From �http�

www�aic�nrl�navy�mil
�aha
research
machine�learning�html��
�See Cohen� Schapire and Singer ��� for the list of search templates�
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Algorithm RankBoost

Given
 initial distribution D over X �X �
Initialize
 D� � D�
For t � �� � � � � T 


� Train weak learner using distribution Dt�
� Get weak ranking ht 
 X � R�
� Choose �t � R�

� Update
 Dt��
x�� x�� �
Dt
x�� x�� exp 
�t
ht
x��� ht
x����

Zt
where Zt is a normalization factor 
chosen so that Dt�� will be a distribution��

Output the �nal ranking
 H
x� �

TX
t��

�tht
x��

Figure �� The RankBoost algorithm�

of the search templates for this query� Each ranking feature fi is constructed from a corresponding
search template i by assigning the jth URL u on its list �for base query q� a rank of �j� that
is� fi��q� u�� � �j� If u was not ranked for this base query� then we set fi��q� u�� � �� We also
construct a separate feedback function �q for each base query q that ranks the correct homepage
URL u� above all others� That is� �q��q� u�� �q� u��� � �� and �q��q� u��� �q� u�� � �� for all u 	� u��
All other entries of �q are set to zero� All the feedback functions �q were then combined into one
feedback function � by summing as described earlier� � �

P
q �q�

The output of a learning algorithm is some �nal ranking H� To apply H� given a test base
query q� we �rst form all of the expanded queries and send these to the search engine to obtain
lists of URL
s� We then evaluate H on each pair �q� u�� where u is a returned URL� to obtain a
predicted ranking of all of the URL
s�

� A boosting algorithm for the ranking task

In this section� we describe an approach to the ranking problem based on a machine learning
method called boosting� in particular� Freund and Schapire
s ��
� AdaBoost algorithm and its
successor developed by Schapire and Singer ����� Boosting is a method of producing highly accurate
prediction rules by combining many �weak� rules which may be only moderately accurate� In the
current setting� we use boosting to produce a function H � X � R whose induced ordering of X
will approximate the relative orderings encoded by the feedback function ��

��� The RankBoost algorithm

We call our boosting algorithm RankBoost� and its pseudocode is shown in Figure �� Like all
boosting algorithms� RankBoost operates in rounds� We assume access to a separate procedure
called the weak learner that� on each round� is called to produce a weak ranking� RankBoost
maintains a distribution Dt over X �X that is passed on round t to the weak learner� Intuitively�
RankBoost chooses Dt to emphasize di�erent parts of the training data� A high weight assigned
to a pair of instances indicates a great importance that the weak learner order that pair correctly�

Weak rankings have the form ht � X � R� We think of these as providing ranking information
in the same manner as ranking features and the �nal ranking� The weak learner we used in our
experiments is based on the given ranking features� details are given in Section ��
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The boosting algorithm uses the weak rankings to update the distribution as shown in Figure ��
Suppose that x�� x� is a crucial pair so that we want x� to be ranked higher than x� �in all other
cases� Dt will be zero�� Assuming for the moment that the parameter �t � 
 �as it usually will
be�� this rule decreases the weight Dt�x�� x�� if ht gives a correct ranking �ht�x�� � ht�x��� and
increases the weight otherwise� Thus� Dt will tend to concentrate on the pairs whose relative
ranking is hardest to determine� The actual setting of �t will be discussed shortly�

The �nal rankingH is a weighted sum of the weak rankings� In the following theorem we prove a
bound on the ranking loss of H on the training set� This theorem also provides guidance in choosing
�t and in designing the weak learner as we discuss below� As in standard classi�cation problems�
the loss on a separate test set can also be theoretically bounded given appropriate assumptions
using uniform�convergence theory �	� ��� � � 	��� In Section � we will derive one such bound on the
ranking generalization error of H and explain why the classi�cation generalization error bounds do
not trivially carry over to the ranking setting�

Theorem � Assuming the notation of Figure �� the ranking loss of H is

rlossD�H� �
TY
t��

Zt �

Proof� Unraveling the update rule� we have that

DT	��x�� x�� �
D�x�� x�� exp �H�x���H�x���Q

t Zt
�

Note that ��x 
 
�� � ex for all real x� Therefore� the ranking loss with respect to initial distribution
D is X

x��x�

D�x�� x�� ��H�x�� 
 H�x���� �
X
x��x�

D�x�� x�� exp �H�x���H�x���

�
X
x��x�

DT	��x�� x��
Y
t

Zt �
Y
t

Zt�

This proves the theorem�
Note that our methods for choosing �t� which are presented in the next section� guarantee that

Zt � �� Note also that RankBoost generally requires O�j�j� space and time per round�

��� Choosing �t and criteria for weak learners

In view of the bound established in Theorem �� we are guaranteed to produce a combined ranking
with low ranking loss if on each round t we choose �t and the weak learner constructs ht so as to
minimize

Zt �
X
x��x�

Dt�x�� x�� exp ��t�ht�x��� ht�x���� �

Formally� RankBoost uses the weak learner as a black box and has no control over how it chooses
its weak rankings� In practice� however� we are often faced with the task of implementing the weak
learner� in which case we can design it to minimize Zt�

There are various methods for achieving this end� Here we sketch three� Let us �x t and drop
all t subscripts when clear from context� �In particular� for the time being� D will denote Dt rather
than an initial distribution��

 



First method� First and most generally� for any given weak ranking h� it can be shown that
Z� viewed as a function of �� has a unique minimum which can be found numerically via a simple
binary search �except in trivial degenerate cases�� For details� see Section ��	 of Schapire and
Singer �����

Second method� The second method of minimizing Z is applicable in the special case that h
has range f
� �g� In this case� we can minimize Z analytically as follows� For b � f��� 
���g� let

Wb �
X
x��x�

D�x�� x�� ��h�x��� h�x�� � b�� �

Also� abbreviate W	� by W	 and W�� by W�� Then Z � W�e
�� �W� �W	e

�� Using simple
calculus� it can be veri�ed that Z is minimized by setting

� � �
� ln

�
W�

W	

�
�	�

which yields
Z � W� � 	

p
W�W	� ���

Thus� if we are using weak rankings with range restricted to f
� �g� we should attempt to �nd h
that tends to minimize Eq� ��� and we should then set � as in Eq� �	��

Third method� For weak rankings with range �
� ��� we can use a third method of setting �
based on an approximation of Z� Speci�cally� by the convexity of e�x as a function of x� it can be
veri�ed that

e�x �
�
� � x

	

�
e� �

�
�� x

	

�
e��

for all real � and x � �������� Thus� we can approximate Z by

Z �
X
x��x�

D�x�� x��

��
� � h�x��� h�x��

	

�
e� �

�
�� h�x�� � h�x��

	

�
e��

�

�

�
�� r

	

�
e� �

�
� � r

	

�
e�� ���

where
r �

X
x��x�

D�x�� x���h�x��� h�x���� ���

The right hand side of Eq� ��� is minimized when

� � �
� ln

�
� � r

�� r

�
���

which� plugging into Eq� ���� yields Z � p
�� r�� Thus� to approximately minimize Z using weak

rankings with range �
� ��� we can attempt to maximize jrj as de�ned in Eq� ��� and then set � as
in Eq� ���� This is the method used in our experiments�

We now consider the case when any of these three methods for setting � assign a weak ranking
h a weight � � 
� For example� according to Eq� �	�� � is negative if W	� the weight of misordered
pairs� is greater than W�� the weight of correctly ordered pairs� Similarly for Eq� ���� � � 
 if r � 

�note that r � W��W	�� Intuitively� this means that h is negatively correlated with the feedback�
the reverse of its predicted order will better approximate the feedback� RankBoost allows such
weak rankings and its update rule re�ects this intuition� the weights of the pairs that h correctly
orders are increased� and the weights of the incorrect pairs are decreased�
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��� An e�cient implementation for bipartite feedback

In this section� we describe a more e�cient implementation of RankBoost for feedback of a special
form� We say that the feedback function is bipartite if there exist disjoint subsets X� and X� of
X such that � ranks all instances in X� above all instances in X� and says nothing about any
other pairs� That is� formally� for all x� � X� and all x� � X� we have that ��x�� x�� � ���
��x�� x�� � �� and � is zero on all other pairs�

Such feedback arises naturally� for instance� in document rank�retrieval tasks common in the
�eld of information retrieval� Here� a set of documents may have been judged to be relevant or
irrelevant� A feedback function that encodes these preferences will be bipartite� The goal of an
algorithm for this task is to discover the relevant documents and present them to a user� Rather
than output a classi�cation of documents as relevant or irrelevant� the goal here is to output a
ranked list of all documents that tends to place all relevant documents near the top of the list� One
reason a ranking is preferred over a hard classi�cation is that a ranking expresses the algorithm
s
con�dence in its predictions� Another reason is that typically users of ranked�retrieval systems do
not have the patience to examine every document that was predicted as relevant� especially if there
is large number of such documents� A ranking allows the system to guide the user
s decisions about
which documents to read�

The results in this section can also be extended to the case in which the feedback function is not
itself bipartite� but can nevertheless be decomposed into a sum of bipartite feedback functions� For
instance� this is the case for the meta�search problem described in Sections 	�� and ���� However�
for the sake of simplicity� we omit a full description of this straightforward extension and instead
restrict our attention to the simpler case�

If RankBoost is implemented naively as in Section ��	� then the space and time�per�round re�
quirements will beO�jX�j jX�j�� In this section� we show how this can be improved to O�jX�j� jX�j��
Note that� in this section� X� � X� �X��

The main idea is to maintain a set of weights vt over X� �rather than the two�argument distri�
bution Dt�� and to maintain the condition that� on each round�

Dt�x�� x�� � vt�x��vt�x�� ���

for all crucial pairs x�� x� �recall that Dt is zero for all other pairs��
The pseudocode for this implementation is shown in Figure 	� Eq� ��� can be proved by induction

on t� It clearly holds initially� Using our inductive hypothesis� it is straightforward to expand the
computation of Zt � Z�

t � Z�
t in Figure 	 to see that it is equivalent to the computation of Zt in

Figure �� To show that Eq� ��� holds on round t� �� we have� for crucial pair x�� x��

Dt	��x�� x�� �
Dt�x�� x�� exp ��t�ht�x��� ht�x����

Zt

�
vt�x�� exp ��tht�x���

Z�
t

� vt�x�� exp ���tht�x���
Z�
t

� vt	��x�� � vt	��x���
Finally� note that all space requirements and all per�round computations are O�jX�j� jX�j��

with the possible exception of the call to the weak learner� However� if we want the weak learner
to maximize jrj as in Eq� ���� then we also only need to pass jX�j weights to the weak learner� all
of which can be computed in time linear in jX�j� Omitting t subscripts� and de�ning

s�x� �

�
�� if x � X�

�� if x � X�
�

�




Algorithm RankBoost�B

Given
 disjoint subsets X� and X� of X �
Initialize


v�
x� �

�
��jX�j if x � X�

��jX�j if x � X�

For t � �� � � � � T 


� Train weak learner using distribution Dt 
as de�ned by Eq� 
����
� Get weak ranking ht 
 X � R�
� Choose �t � R�
� Update


vt��
x� �

����
��	

vt
x� exp 
��t ht
x��

Z�
t

if x � X�

vt
x� exp 
�t ht
x��

Z�
t

if x � X�

where Z�
t and Z�

t normalize vt over X� and X�


Z�
t �

X
x�X�

vt
x� exp
��tht
x��

Z�
t �

X
x�X�

vt
x� exp
�tht
x��

Output the �nal ranking
 H
x� �

TX
t��

�tht
x��

Figure 	� A more e�cient version of RankBoost for bipartite feedback�

we can rewrite r as

r �
X
x��x�

D�x�� x���h�x��� h�x���

�
X

x��X�

X
x��X�

v�x��v�x�� �h�x��s�x�� � h�x��s�x���

�
X

x��X�



�v�x�� X

x��X�

v�x��

�
A s�x��h�x�� �

X
x��X�



�v�x�� X

x��X�

v�x��

�
A s�x��h�x��

�
X
x

d�x�s�x�h�x� � �

where
d�x� � v�x�

X
x�
s�x���s�x��

v�x�� �

All of the weights d�x� can be computed in linear time by �rst computing the sums that appear in
this equation for the two possible cases that x is in X� or X�� Thus� we only need to pass jX�j�jX�j
weights to the weak learner in this case rather than the full distribution Dt of size jX�j jX�j�

� Finding weak rankings

As described in Section �� our algorithm RankBoost requires access to a weak learner to produce
weak rankings� In this section� we describe an e�cient implementation of a weak learner for ranking�
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Perhaps the simplest and most obvious weak learner would �nd a weak ranking h that is equal
to one of the ranking features fi� except on unranked instances� That is�

h�x� �



fi�x� if fi�x� � R

qdef if fi�x� � �

for some qdef � R�
Although perhaps appropriate in some settings� the main problem with such a weak learner is

that it depends critically on the actual values de�ned by the ranking features� rather than relying
exclusively on the relative�ordering information which they provide� We believe that learning
algorithms of the latter form will be much more general and applicable� Such methods can be used
even when features provide only an ordering of instances and no scores or other information are
available� Such methods also side�step the issue of combining ranking features whose associated
scores have di�erent semantics �such as the di�erent scores assigned to URL
s by di�erent search
engines��

For these reasons� we focus in this section and in our experiments on f
� �g�valued weak rankings
that use the ordering information provided by the ranking features� but ignore speci�c scoring
information� In particular� we will use weak rankings h of the form

h�x� �

���
�	

� if fi�x� � �

 if fi�x� � �
qdef if fi�x� � �

���

where � � R and qdef � f
� �g� That is� a weak ranking is derived from a ranking feature fi by
comparing the score of fi on a given instance to a threshold �� To instances left unranked by fi�
the weak ranking assigns the default score qdef� For the remainder of this section� we show how to
choose the �best� feature� threshold� and default score�

Since our weak rankings are f
� �g�valued� we can use either the second or third methods
described in Section ��	 to guide us in our search for a weak ranking� We chose the third method
because we can implement it more e�ciently than the second� According to the second method�
the weak learner should seek a weak ranking that minimizes Eq� ���� For a given candidate weak
ranking� we can directly compute the quantities W��W�� and W	� as de�ned in Section ��	� in
O�j�j� time� Moreover� for each of the n ranking features� there are at most jX�j � � thresholds
to consider �as de�ned by the range of fi on X�� and two possible default scores �
 and ��� Thus
a straightforward implementation of the second method requires O�nj�jjX�j� time to generate a
weak ranking�

The third method of Section ��	 requires maximizing jrj as given by Eq� ��� and has the disad�
vantage that it is based on an approximation of Z� However� although a straightforward implemen�
tation also requires O�nj�jjX�j� time� we will show how to implement it in O�njX�j� j�j� time�
�In the case of bipartite feedback� if the boosting algorithm of Section ��� is used� only O�njX�j�
time is needed�� This is a signi�cant improvement from the point of view of our experiments in
which j�j was large�

We now describe a time and space e�cient algorithm for maximizing jrj� Let us �x t and drop
it from all subscripts to simplify the notation� We begin by rewriting r for a given D and h as
follows�

r �
X
x��x�

D�x�� x�� �h�x��� h�x���

�	



�
X
x��x�

D�x�� x��h�x���
X
x��x�

D�x�� x��h�x��

�
X
x

h�x�
X
x�

D�x�� x��
X
x

h�x�
X
x�

D�x� x��

�
X
x

h�x�
X
x�

�D�x�� x��D�x� x���

�
X
x

h�x���x� � ��
�

where we de�ne ��x� �
P

x��D�x�� x� � D�x� x��� as the potential of x� Note that ��x� depends
only on the current distribution D� Hence� the weak learner can precompute all the potentials at
the beginning of each boosting round in O�j�j� time and O�jX�j� space� When the feedback is
bipartite� comparing Eqs� � � and ��
�� we see that ��x� � d�x�s�x� where d and s are de�ned in
Section ���� thus� in this case� � can be computed even faster in only O�jX�j� time�

Now let us address the problem of �nding a good threshold value � and default value qdef�
We need to scan the candidate ranking features fi and evaluate jrj �de�ned by Eq� ��
�� for each
possible choice of fi� � and qdef� Substituting into Eq���
� the h de�ned by Eq� ���� we have that

r �
X

x
fi�x���

h�x���x� �
X

x
fi�x���

h�x���x� �
X

x
fi�x���

h�x���x� ����

�
X

x
fi�x���

��x� � qdef
X

x
fi�x���

��x�� ��	�

For a �xed ranking feature fi� let Xfi � fx�X� j fi�x� 	� �g be the set of feedback instances ranked
by fi� We only need to consider jXfi j� � threshold values� namely� ffi�x� j x � Xfig � f��g since
these de�ne all possible behaviors on the feedback instances� Moreover� we can straightforwardly
compute the �rst term of Eq� ��	� for all thresholds in this set in time O�jXfi j� simply by scanning
down a presorted list of threshold values and maintaining the partial sum in the obvious way�

For each threshold� we also need to evaluate jrj for the two possible assignments of qdef �
 or ���
To do this� we simply need to evaluate

P
x
fi�x��� ��x� once� Naively� this takes O�jX� �Xfi j� time�

i�e�� linear in the number of unranked instances� We would prefer all operations to depend instead
on the number of ranked instances since� in applications such as meta�searching and information
retrieval� each ranking feature may rank only a small fraction of the instances� To do this� note
that

P
x ��x� � 
 by de�nition of ��x�� This implies thatX

x
fi�x���

��x� � �
X

x
fi�x� ���

��x�� ����

The right hand side of this equation can clearly be computed in O�jXfi j� time� Combining Eqs� ��	�
and ����� we have

r �
X

x
fi�x���

��x�� qdef
X
x�Xfi

��x�� ����

The pseudocode for the weak learner is given in Figure �� Note that the input to the algo�
rithm includes for each feature a sorted list of candidate thresholds f�jgJj�� for that feature� For
convenience we assume that �� � � and �J � ��� Also� the value jrj is calculated according to
Eq� ����� the variable L stores the left summand and the variable R stores the right summand�
Finally� if the default rank qdef is speci�ed by the user� then step � is skipped�

Thus� for a given ranking feature� the total time required to evaluate jrj for all candidate weak
rankings is only linear in the number of instances that are ranked by that feature� In summary� we
have shown�
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Algorithm WeakLearn

Given
 distribution D over X � X �
set of features ffig

N
i���

for each fi� the set Xfi � fxkg
K
k�� such that fi
x�� � � � � � fi
xK��

for each fi� the set of candidate thresholds f�jg
J
j�� such that �� � � � � � �J �

Initialize
 for all x � X�� �
x� �
X
x��X�

D
x�� x��D
x� x�� �

r � ��

For i � �� � � � � N 


�� L � ��
�� R �

X
x�Xfi

�
x� � �� L� qdefR is rhs of Eq� 
��� ��

�� �� ���
�� For j � �� � � � � J 


�� L � L�
X

x� �j���fi�x���j

�
x� � �� compute L �
X

x�fi�x���

�
x� ��

�� if jLj � jL�Rj �� �nd best value for qdef ��
�� then q � ��
�� else q � ��
�� if jL� q Rj � jrj �� �nd best weak ranking ��
��� r� � L� q R�
��� i� � i�
��� �� � �j �
��� q�

def
� q�

Output weak ranking 
fi� � �� qdef��

Figure �� The weak learner�

Theorem � The algorithm of Figure � �nds the weak ranking of the form given in Eq� ��	 that

maximizes jrj as in Eq� ��
	� The running time is O�nj�jjX�j� per round of boosting� An e�cient

implementation runs in time

O

�
j�j�

nX
i��

jXfi j
�

� O�j�j� njX�j� �

If the feedback is bipartite� the running time can be improved to O�njX�j��

Positive cumulative weights� Since the �nal ranking has the form H�x� �
PT

t�� �tht�x� and
the rankings output by WeakLearn are binary� if ht�x� � � then ht contributes its weight �t to
the �nal score of x� During the boosting process� WeakLearn may output distinct rankings that
correspond to di�erent thresholds of the same feature f � If we view these rankings in increasing
order by threshold� we see that f 
s contribution to the �nal score of x is the sum of the weights of
the rankings whose thresholds are less than f�x�� To simplify matters� if we assume that ht occurs
exactly once among h�� � � � � hT � then if the weights �t are always positive� then f 
s contribution
increases monotonically with the score it assigns instances�

This behavior of a feature
s contribution being positively correlated with the score it assigns
is desirable in some applications� In the meta�search task� it is natural that the search strategy
f should contribute more weight to the �nal score of those instances that appear higher on its
ranked list� Put another way� it would seem strange if� for example� f contributed more weight to

��



instances in the middle of its list and less to those at either end� as would be the case if some of the
�t
s were negative� Also� from the perspective of generalization error� if we allow some �t
s to be
negative then we can construct arbitrary functions of the instance space by thresholding a single
feature� and this is probably more complexity than we would like to allow in the combined ranking
�in order to avoid over�tting��

To address this situation� we implemented an additional version of WeakLearn that chooses
its rankings to exhibit this monotonic behavior� In practice� our earlier assumption that all ht
s
are unique may not hold� If it does not� then the contribution of a particular ranking h will be
its cumulative weight� the sum of those �t
s for which ht � h� Thus we need to ensure that this
cumulative weight is positive� Our implementation outputs the ranking that maximizes jrj subject
to the constraint that the cumulative weight of that ranking remains positive� We refer to this
modi�ed weak learner as WeakLearn�cum�

� Generalization Error

In this section� we derive a bound on the generalization error of the combined ranking when the
weak rankings are binary functions and the feedback is bipartite� That is� we assume that the
feedback partitions the instance space X into two disjoint sets� X and Y � such that ��x� y� � 
 for
all x � X and y � Y � meaning the instances in Y are ranked above those in X� Many problems can
be viewed as providing bipartite feedback� including the meta�search and movie recommendation
tasks described in Section �� as well as many of the problems in information retrieval ���� ����

��� Probabilistic Model

Up to this point we have not discussed where our training and test data come from� The usual
assumption of machine learning is that there exists a �xed and unknown distribution over the
instance space� The training set �and test set� is a set of independent samples according to this
distribution� This model clearly translates to the classi�cation setting where the goal is to predict
the class of an instance� The training set consists of an independent sample of instances where
each instance is labeled with its correct class� A learning algorithm formulates a classi�cation rule
after running on the training set� and the rule is evaluated on the test set� which is a separate
independent sample of unlabeled instances�

This probabilistic model does not translate as readily to the ranking setting� however� where
the goal is to predict the order of a pair of instances� A natural approach for the bipartite case
would be to assume a �xed and unknown distributionD over X �X � pairs from the instance space��

The obvious next step would be to declare the training set to be a collection of instances sampled
independently at random according to D� The generalization results for classi�cation would then
trivially extend to ranking� The problem is that the pairs in the training set are not independent�
if �x�� y�� and �x�� y�� are in the training set� then so are �x�� y�� and �x�� y���

Here we present a revised approach that permits sampling independence assumptions� Rather
than a single distribution D� we assume the existence of two distributions� D� over X and D�

over Y � The training instances are the union of an independent sample according to D� and
an independent sample according to D�� �This is similar to the �two button� learning model in
classi�cation ��	��� The training set� then� consists of all pairs of training instances�

�Note that assuming a distribution over X � Y trivializes the ranking problem� the rule which always ranks the
second instance over the 	rst is perfect�

��



Consider the movie recommendation task as an example of this model� The model suggests that
movies viewed by a person can be partitioned into an independent sample of good movies and an
independent sample of bad movies� This assumption is not entirely true since people usually choose
which movies to view based on movies they
ve seen� However� such independence assumptions are
common in machine learning�

��� Sampling Error De	nitions

Given this probabilistic model of the ranking problem� we can now de�ne generalization error� The
�nal ranking output by RankBoost has the form

H�x� �
TX
t��

�tht�x�

and orders instances according to the scores it assigns them� We are concerned here with the
predictions of such rankings on pairs of instances� so we consider rankings of the form H � X �X �
f��� 
���g� where

H�x� y� � sign

�
TX
t��

�tht�y��
TX
t��

�tht�x�

�
����

where the ht come from some class of binary functions H� Let C be the set of all such functions H�
A functionH misorders �x� y� � X�Y ifH�x� y� 	� �� which leads us to de�ne the generalization

error of H as

��H� � Prx�D��y�D�
�H�x� y� 	� ��

� ED��D�
���H�x� y� 	� ���� �

We �rst verify that this de�nition is consistent with our notion of test error� For a given test sample
T� � T� where T� � hx�� � � � � xpi and T� � hy�� � � � � yqi� the expected test error of H is

ET��T�

�
� �

pq

X
i�j

��H�xi� yj� 	� ���

�
� �

�

pq

X
i�j

ET��T� ���H�xi� yj� 	� ����

�
�

pq

X
i�j

Prxi�yj �H�xi� yj� 	� ��

�
�

pq

X
i�j

��H� � ��H� �

Similarly� if we have a training sample S� � S� where S� � hx�� � � � � xmi and S� � hy�� � � � � yni�
the training �or empirical� error of H is

!��H� �
�

mn

X
i�j

��H�xi� yj� 	� ��� �

Our goal is to show that� with high probability� the di�erence between !��H� and ��H� is small�
meaning that the performance of the combined ranking H on the training sample is representative
of its performance on any random sample�
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��� VC analysis

We now bound the di�erence between the training error and test error of the combined ranking
output by RankBoost using standard VC�dimension analysis techniques � � 	��� We will show that�
with high probability taken over the choice of training set� this di�erence is small for every H � C�
If this happens then no matter which combined ranking is chosen by our algorithm� the training
error of the combined ranking will accurately estimate its generalization error� Another way of
saying this is that the probability �over the choice of training set� is very small that there exists an
H � C such that !��H� and ��H� di�er by more than a small amount� In other words� we will show
that for every 	 � 
� there exists a small 
 such that

PrS��Dm
�
�S��D

n
�

�
��H � C �

������
�

mn

X
i�j

��H�xi� yj� 	� ���� Ex�y ���H�x� y� 	� ����

������ � 


�
� � 	 ����

where the choice of 
 will be determined during the course of the proof�
Our approach will be to separate ���� into two probabilities� one over the choice of S� and

the other over the choice of S�� and then to bound each of these using classi�cation generalization
error theorems� In order to use these theorems� we will need to convert H into a binary function�
De�ne F � X � Y � f
� �g as a function which indicates whether or not H misorders the pair
�x� y�� meaning F �x� y� � ��H�x� y� 	� ���� Although H is a function on X � X � we only care about
its performance on pairs �x� y� � X � Y � which is to say that it incurs no penalty for its ordering
of two instances from either X or Y � The quantity inside the absolute value of ���� can then be
rewritten as

�

mn

X
i�j

F �xi� yj�� Ex�y �F �x� y��

�
�

mn

X
i�j

F �xi� yj�� �

m

X
i

Ey �F �xi� y�� �
�

m

X
i

Ey �F �xi� y��� Ex�y �F �x� y��

�
�

m

X
i



� �

n

X
j

F �xi� yj�� Ey �F �xi� y��

�
A� ����

Ey

�
�

m

X
i

F �xi� y�� Ex �F �x� y��

�
� �� �

So if we prove that there exist 
� and 
� such that 
� � 
� � 
 and

PrS��Dn
�

�
��F � F ��x � X �

������
�

n

X
j

F �x� yj�� Ey �F �x� y��

������ � 
�

�
� � 	�	 ����

PrS��Dm
�

�
�F � F ��y � Y �

����� �m
X
i

F �xi� y�� Ex �F �x� y��

����� � 
�

�
� 	�	 � �	
�

we will have shown ����� because with high probability� the summand of �� � will be less than 
�
for every xi� which implies that the average will be less than 
�� Likewise� the quantity inside the
expectation of �� � will be less than 
� for every y and so the expectation will be less than 
��

We now prove �	
� using standard classi�cation results� and ���� follows by a symmetric argu�
ment� Consider �	
� for a �xed y� which means that F �x� y� is a single argument binary�valued
function� Let Fy be the set of all such functions F for a �xed y� Then the choice of F in �	
� comes
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from
S
y Fy� A theorem of Vapnik �	�� applies to �	
� and gives a choice of 
� that depends on the

size m of the training set S�� the error probability 	� and the complexity d� of
S
y Fy� measured as

its VC�dimension �for details� see Vapnik �	�� or Devroye� Gy"or�� and Lugosi � ��� Speci�cally� for
any 	 � 
�

PrS��Dm
�

�
�F �

�
Fy �

����� �m
X
i

F �xi� y�� Ex �F �x� y��

����� � 
��m� 	� d
��

�
� 	 �

where


��m� 	� d
�� � 	

s
d��ln�	m�d�� � �� � ln���	�

m
�

The parameters m and 	 are given� it remains to calculate d�� the VC�dimension of
S
y Fy� �We

note that although we are using a classi�cation result to bound �	
�� the probability corresponds to
a peculiar classi�cation problem �trying to di�erentiate X from Y by picking an F and one y � Y �
that does not seem to have a natural interpretation��

Let
s determine the form of the functions in
S
y Fy� For a �xed y � Y �

F �x� y� � ��H�x� y� 	� ���

�

��
sign

�
TX
t��

�tht�y��
TX
t��

�tht�x�

�
	� �

��

�

��
TX
t��

�tht�x��
TX
t��

�tht�y� 
 


��

�

��
TX
t��

�tht�x�� b 
 


��

where b �
PT

t�� �tht�y� is constant because y is �xed� So the functions in
S
y Fy are a subset

of all possible thresholds of all linear combinations of T weak rankings� Freund and Schapire
s
Theorem  ��
� bounds the VC�dimension of this class in terms of T and the VC�dimension of the
weak ranking class H� Applying their result� we have that if H has VC�dimension d 
 	� then d� is
at most 	�d� ���T � �� log��e�T � ���� where e is the base of the natural logarithm�

As the �nal step� repeating the same reasoning for ���� keeping x �xed� and putting it all
together� we have thus proved the main result of this section�

Theorem � Let C be the set of all functions of the form given in Eq ���	 where all the ht
s belong
to a class H of VC�dimension d� Let S� and S� be samples of size m and n� respectively� Then

with probability at least �� 	 over the choice of training sample� all H � C satisfy

j!��H�� ��H�j � 	

s
d��ln�	m�d�� � �� � ln�� �	�

m
� 	

s
d��ln�	n�d�� � �� � ln�� �	�

n
�

where d� � 	�d� ���T � �� log��e�T � ����

� Experimental evaluation of RankBoost

In this section� we report experiments with RankBoost on two ranking problems� The �rst is a
simpli�ed web meta�search task� the goal of which is to build a search strategy for �nding homepages

� 



of machine�learning researchers and universities� The second task is a collaborative��ltering problem
of making movie recommendations for a new user based on the preferences of other users�

In each experiment� we divided the available data into training data and test data� ran each
algorithm on the training data� and evaluated the output ranking on the test data� Details are
given below�


�� Meta�search

We �rst present experiments on learning to combine the results of several web searches� This
problem exhibits many facets that require a general approach such as ours� For instance� approaches
that combine similarity scores are not applicable since the similarity scores of web search engines
often have di�erent semantics or are unavailable�

����� Description of task and data set

Most of the details of this dataset and how we mapped it into the general ranking framework were
described in Section 	���

Given this mapping of the ranking problem into our framework� we can immediately apply
RankBoost� Note that the feedback function for this problem is a sum of bipartite feedback func�
tions so the more e�cient implementation described in Section ��� can be used�

Under this mapping� each weak ranking is de�ned by a search template i �corresponding to
ranking feature fi�� and a threshold value �� Given a base query q and a URL u� this weak ranking
outputs � or 
 if u is ranked above or below the threshold � on the list of URL
s returned by the
expanded query associated with search template i applied to base query q� As usual� the �nal
ranking H is a weighted sum of the weak rankings�

For evaluation� we divided the data into training and test sets using four�fold cross�validation�
We created four partitions of the data� each one using ��# of the base queries for training and 	�#
for testing� Of course� the learning algorithms had no access to the test data during training�

����� Experimental parameters and evaluation

Since all search templates had access to the same set of documents� if a URL was not returned in
the top �
 documents by a search template� we interpreted this as ranking the URL below all of
the returned documents� Thus we set the parameter qdef� the default value for weak rankings� to
be 
 �see Section ���

Our implementation of RankBoost used a de�nition of ranking loss modi�ed from the original
given in Section 	� Eq� ����

rlossD�H� �
X
x��x�

D�x�� x�� ��H�x�� � H�x���� �

If the output ranking ranked as equal a pair �x�� x�� of instances that the feedback ranked as
unequal� we assigned the ranking an error of ��	 instead of �� This represents the fact that if we
used the ranking to produce an ordered list of documents� breaking ties randomly� then its expected
error on �x�� x�� is ��	� since the probability that x� is listed above x� is equal to the probability
that x� is listed above x�� The modi�ed de�nition is

rlossD�H� �
X
x��x�

D�x�� x�� ��H�x�� � H�x���� �
�
�

X
x��x�

D�x�� x�� ��H�x�� � H�x���� � �	��

��
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Figure �� Performance of the four weak learners WeakLearn�f	���	�cum���cumg on the ML dataset�
Left� Train error Right� Test error

RankBoost parameters� Since WeakLearn outputs binary weak rankings� we can set the pa�
rameter � using either the second or third methods presented in Section ��	� The second method
sets � as the minimum of Z� and the third method sets � to approximately minimize Z� The third
method can be implemented more easily and runs faster� We implemented both methods� called
WeakLearn�	 and WeakLearn��� to determine if the extra time required by the second method �al�
most ten times that of the third method on the ML dataset� was made up for by a reduction in test
error rate� We also implemented weak learners that restricted their rankings to have positive cumu�
lative weights in order to test whether such rankings were helpful or harmful in reducing test error
�as discussed at the end of Section ��� We called these WeakLearn�	�cum and WeakLearn���cum�

To measure the accuracy of a weak learner on a given dataset� after each round of boosting we
plotted the train and test error of the combined ranking generated thus far� We ran each weak
learner for �


 rounds of boosting on each of the four partitions of the data and averaged the
results� Figure � displays the plots of train error �left� and test error �right� for the �rst 	

 rounds
of boosting on the ML dataset� �The slopes of the curves did not change during the remaining  


rounds�� The plots for the UNIV dataset were similar�

WeakLearn�	 achieved the lowest train error� followed by WeakLearn��� and �nally Weak�
Learn�	�cum and WeakLearn���cum� whose performance was nearly identical� However� Weak�
Learn�	�cum and WeakLearn���cum produced the lowest test error �again behaving nearly iden�
tically� and resisted over�tting� unlike their counterparts� So we see that restricting the weak
rankings to have positive cumulative weights hampers training performance but improves test per�
formance� Also� when we subject the rankings to this restriction� we see no di�erence between the
second and third methods of setting �� Therefore� in our experiments we used WeakLearn���cum�
the third method of setting � that allows only positive cumulative ranking weights�

Evaluation� In order to determine a good number of boosting rounds� we �rst ran RankBoost
on each partition of the data and produced a graph of the average training error� For the ML data
set� the training error did not decrease signi�cantly after �
 rounds of boosting �see Fig� � �left���
so we used the �nal ranking built after �
 rounds� For the UNIV data set� the training error did
not decrease signi�cantly after �
 rounds of boosting �graph omitted�� so we used the �nal ranking
built after �
 rounds�

To evaluate the performance of the individual search templates in comparison to the combined

	




Top Top Top Top Top Top Avg
ML Domain � 	 � �
 	
 �
 Rank

RankBoost �
	 ��� ��� � � ��� 	
	 ��� 
Best �Top �� ��� ��� ��� ��� ��� � � �� 

Best �Top �
� ��	 ��� ��� ��	 � � � � 
���
Best �Top �
� �� �	� ��� �� ��� �	� ��� 

University Domain

RankBoost �� ��� ��� 	�� 	�� 	�� ����
Best single query ��	 ��� �� 		� 	� 	��  ���

Table �� Comparison of the combined ranking and individual search templates�

ranking output by RankBoost� we measured the number of queries for which the correct document
was in the top k ranked documents� for various values of k� We then compared the performance
of the combined ranking to that of the best search template for each value of k� The results for
the ML and UNIV domains are shown in Table �� All columns except the last give the number
of base queries for which the correct homepage received a rank greater than or equal to k� Bold
�gures give the maximum value over all of the search templates on the test data� Note that the
best search template is determined based on its performance on the test data� while RankBoost
only has access to training data�

For the ML data set� the combined ranking closely tracked the performance of the best expert
at every value of k� which is especially interesting since no single template was the best for all values
of k� For the UNIV data set� a single template was the best� for all values of k� and the combined
ranking performed almost as well as the best template for k � �� 	� � � � � �
 and then outperformed
the best template for k � 	
� �
� Of course� having found a single best template� there is no need
to use RankBoost�

We also computed �an approximation to� average rank� i�e�� the rank of the correct homepage
URL� averaged over all base queries in the test set� For this calculation� we viewed each search
template as assigning a rank of � through �
 to its returned URL
s� rank � being the best� Since
the correct URL was sometimes not ranked by a search template� we arti�cially assigned a rank of
�� to every unranked document� For each base query� RankBoost ranked every URL returned by
every search template� Thus if the total number of URL
s was larger than �
� RankBoost assigned
to some instances ranks greater than �
� To avoid an unfair comparison to the search templates�
we limited the maximum rank of RankBoost to ��� The last column of Table � gives average rank�


�� Movie recommendations

Our second set of experiments dealt with the movie�recommendation task described in the intro�
duction� The goal here is to produce for a given user a list of unseen movies ordered by predicted
preference� Unlike the meta�search task where the output ordering was evaluated according to the
relative rank of a single document �the correct homepage�� in the movie task the output ordering
is compared to the correct ordering given by the user� Thus� the movie task tests RankBoost on a
more general ranking problem� However� performance measures for comparing two ranked lists are
not as clear cut� we de�ned four such measures for this purpose� To evaluate the performance of

�The best search template for the UNIV domain was �NAME� PLACE�
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RankBoost� we compared it to a nearest�neighbor algorithm and a regression algorithm�

����� Description of task and data set

For these experiments we used publicly available data
 provided by the Digital Equipment Cor�
poration which ran its own EachMovie recommendation service for the eighteen months between
March ���� and September ���� and collected user preference data� Movie viewers were able to
assign a movie a score from the set R � f
�
� 
�	� 
��� 
��� 
� � ��
g� ��
 being the best� We used
the data of ����	� viewers entering a total of 	� ���� � numeric ratings for ���	 di�erent movies
��lms and videos��

Most of the mapping of this problem into our framework was described in Section 	� For our
experiments� we selected a subset C of the viewers to serve as ranking features� each viewer in C
de�ned an ordering of the set of movies that he or she viewed� The feedback function � was then
de�ned as in Section 	 using the movie ratings of a single target user� We used half of the movies
viewed by the target user for the feedback function in training and the other half of the viewed
movies for testing� as described below� We then averaged all results over multiple runs with many
di�erent target users �details are given in Section ��	����

����� Experimental parameters

In the meta�search task we assumed that all search engines had access to all documents and thus
the absence of a document on a search engine
s list indicated low preference� This assumption does
not hold in the movie task as it is not clear what a viewer
s preference will be on an unseen movie�
Thus we did not set the parameter qdef� allowing the weak learner to choose it adaptively� As in
the meta�search task� we used the modi�ed de�nition of ranking loss given in Eq� �	��� We also
used WeakLearn���cum because preliminary experiments revealed that this weak learner achieved
a lower test error rate than WeakLearn�� and also resisted over�tting� In these experiments� we
set the number of rounds T to be �
 �N��
 where N is the number of features� This choice was
based on performance on held�out data which was not used in any of the other experiments�

����� Algorithms for comparison

We compared the performance of RankBoost on this data set to three other algorithms� a regression
algorithm� a nearest�neighbor algorithm� and a memory�based algorithm called vector similarity�

Regression� We used a regression algorithm similar to the ones used by Hill et al� ����� The
algorithm employs the assumption that the scores assigned a movie by a target user Alice can
be described as a linear combination of the scores assigned to that movie by other movie viewers�
Formally� let a be a row vector whose components are the scores Alice assigned to movies �discarding
unranked movies�� Let C be a matrix containing the scores of the other viewers for the subset of
movies that Alice has ranked� Since some of the viewers have not ranked movies that were ranked
by Alice� we need to decide on a default rank for these movies� For each viewer represented by a
row in C� we set the score of the viewer
s unranked movies to be the viewer
s average score over
all movies� We next use linear regression to �nd a vector w of minimum length that minimizes
jjwC� ajj� This can be done using standard numerical techniques �we used the package available
in Matlab�� Given w we can now predict Alice
s ratings of all the movies�

Nearest neighbor� Given a target user Alice with certain movie preferences� the nearest�
neighbor algorithm �NN� �nds a movie viewer Bob whose preferences are most similar to Alice
s

�From �http�

www�research�digital�com
SRC
eachmovie
��

		



and then uses Bob
s preferences to make recommendations for Alice� More speci�cally� we �nd the
ranking feature fi �corresponding to one of the other movie viewers� that gives an ordering most
similar to that of the target user as encoded by the feedback function �� The measure of similarity
we use is the ranking loss of fi with respect to the same initial distribution D that was constructed
by RankBoost� Thus� in some sense� NN can be viewed as a single weak ranking output after one
round of RankBoost �although no threshold of fi is performed��

As with regression� a problem with NN is that the neighbor it selects may not rank all the
movies ranked by the target user� To �x this� we modi�ed the algorithm to associate with each
feature fi a default score qdef � R which fi assigns to unranked movies� When searching for the best
feature� NN chooses qdef by calculating and then minimizing the ranking loss �on the training set�
for each possible value of qdef� If it is the case that this viewer ranks all of the �training� movies seen
by the target user� then NN sets qdef to the average score over all movies that it ranked �including
those not ranked by the target user��

Vector Similarity �VSIM
� This algorithm was proposed by Breese� Heckerman and Kadie ���
and is based on the notion of similarity between vectors that is commonly used in information re�
trieval� In the �eld of information retrieval� the similarity between two documents is often measured
by treating each document as a vector of term frequencies� The similarity between two documents
is de�ned to be the normalized inner�product formed by the two frequency vectors representing
the di�erent documents ����� Breese� Heckerman and Kadie adopted this formalism for the task
of collaborative �ltering by viewing the rating of each viewer as a sparse vector over the reals� In
their setting� the users take the role of documents� movies take the role of the terms appearing in
documents� and viewers
 scores take the role of term frequencies� Let Ci denote the scores of the
ith viewer� Then correlation between the jth viewer and the ith viewer is

wi�j �
Ci �Cj

k Ci k�k Cj k�
�

where both the inner product and the norms are computed over the subset of movies rated by
each viewer� To accommodate di�erent scales� Breese� Heckerman and Kadie also compute for each
viewer i her average score� denoted $Ci� To predict the rating of a new viewer� indexed k� we �rst
compute the similarity coe�cients wk�i with each previous viewer i and then assign a real�valued

score !Ck�j for each movie j as follows�

!Ck�j � $Ck � �
X
i

wk�i�Ci�j � $Ci� �

where � is a normalizing factor which ensures that
P

i jwk�ij � �� We use the abbreviation VSIM
when referring to this algorithm� VSIM and another correlation�based algorithm were found to
be the top performers in the experiments performed by Breese� Heckerman and Kadie ��� with
the EachMovie dataset� Furthermore� in the experiments they described� VSIM outperformed four
other algorithms when the number of movies that were rated was small �less than ���

����� Performance measures

In order to evaluate and compare performance� we used four error measures� disagreement� predicted�
rank�of�top� coverage� and average precision� Disagreement compares the entire predicted order to
the entire correct order� whereas the other three measures are concerned only with the predicted
rank of those instances that should have received the top rank�

	�



We assume that each of the algorithms described in the previous section produces a real�valued
function H that orders movies in the usual way� x� ranked higher than x� if H�x�� � H�x��� The
correct ordering of test movies� c� is also represented as a real�valued function�

For each of the following measures� we �rst give the de�nition when H is a total order� meaning
it assigns a unique score to each movie� When H is a partial order� as is the case for some of the
algorithms� we assume that ties are broken randomly when producing a list of movies ordered by
H� In this situation we calculate the expectation of the error measure over the random choices to
break the ties�

Disagreement� Disagreement is the fraction of distinct pairs of movies �in the test set� that H
misorders with respect to c� If N is the number of distinct pairs of movies ordered by c� then the
disagreement d is

disagreement �
�

N

X
x��x�
 c�x���c�x��

��H�x�� � H�x���� �

This is equivalent to the ranking loss of H �Eq� ���� where c is used to construct the feedback
function� If H is a partial order� then its expected disagreement with respect to c is

E �disagreement� �
�

N

X
x��x�
 c�x���c�x��

�
��H�x�� � H�x���� �

�
� ��H�x�� � H�x����

�
�

This is equivalent to Eq� �	�� where c is used to construct the feedback function��

Precision�recall measures Disagreement is one way of comparing two orderings� and it is the
function that both RankBoost and NN attempt to minimize� We should consider evaluating the
rankings of these algorithms using other measures as well� for a number of reasons� One reason
is to test whether RankBoost
s minimization of ranking loss produces rankings that have high
quality with respect to other measures� This can be evaluated also by looking at the comparative
performance on another measure of RankBoost and regression� since the latter doesn
t directly
minimize disagreement� Another reason is motivated by the application� people looking for movie
recommendations will likely be more interested in the top of the predicted ranking than the bottom�
That is� they will want to know what movies to go and see� not what movies to avoid at all costs�

For these reasons we considered three other error measures� which view the movie recommen�
dation task as having bipartite feedback� According to these measures� the goal of the movie task
is to �nd movies that Alice will love� Thus any set of movies that she has seen is partitioned in
two� those which she assigned her highest score and those which she assigned a lesser score� This
is an example of a ranked�retrieval task in the �eld of information retrieval� where only the movies
to which Alice assigns her highest score are considered relevant� As discussed in Section ���� the
goal here is not to classify but to rank�

We refer to the movies to which Alice assigns her highest score as good movies� We based our
error measures on the precision measures used for that task� The precision of the kth good movie
appearing in a ranked list is de�ned as k divided by the number of movies on the list up to and
including this movie� For example� if all the good movies appear one after another at the top of a
list� then the precision of every good movie is ��

More formally� de�ne rank�m�� the rank of movie m appearing in the list ordered by H� as the
position of m in the list� e�g� �rst��� second�	� etc� Suppose there are K good movies �according

�This disagreement measure is proportional to another measure of two linear orders� the Pearson r correlation
coe�cient� which was found by Shardanand and Maes ���� to be the best in their collaborative 	ltering experiments�
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to Alice�� and denote their sequence on H
s list as ftkgKk��� In other words� H�t�� 
 � � � 
 H�tK��
Then the precision of the �rst good movie is ��rank�t��� and� more generally� the precision of the
kth good movie is k�rank�tk�� Again� if all K good movies appear one after another at the top of
H
s list� meaning rank�tk� � k for every k� then the precision of every good movie is ��

Average Precision �AP
� Average precision� commonly used in the information retrieval
community� measures how good H is at putting good movies high on its list� It is de�ned as

AP �
�

K

KX
k��

k

rank�tk�
�

If H is a partial order� then tk is a random variable� and therefore so is rank�tk�� and we calculate
expected average precision� Let N be the total number of movies ranked by H� Then�

E �AP� �
�

K

KX
k��

k
N�K	kX
i�k

Pr �rank�tk� � i�
�

i
�

The formula for Pr �rank�tk� � i� is a ratio with binomial coe�cients in the numerator and denom�
inator� and we defer its statement and derivation to Appendix A�

Predicted�rank�of�top �PROT
� PROT is the precision of the �rst good movie on H
s list
and measures how good H is at ranking one good movie high on its list� It is

PROT �
�

rank�t��
�

If H is a partial order� its expected PROT is

E �PROT� �
N�K	�X
i��

Pr �rank�t�� � i�
�

i
�

Coverage� Coverage is the precision of the last good movie on H
s list �also known as precision
at recall ��� and it measures how good H is at ranking its lowest good movie� It is

coverage �
�

rank�tK�
�

If H is a partial order� its expected coverage is

E �coverage� �
NX
i�K

Pr �rank�tK� � i�
K

i
�

����
 Experimental results

We now describe our experimental results� We ran a series of three tests� examining the performance
of the algorithms as we varied the number of features� the density of the features� meaning the
number of movies ranked by each movie viewer� and the density of the feedback� meaning the
number of movies ranked by each target user�

We �rst experimented with the number of features used for ranking� We selected two disjoint
random sets T and T � of 	


 viewers each� Subsets of the viewers in T were used as feature sets�
and each of the users in T � was used as feedback� Speci�cally� we divided T into six subsets
T�� T�� � � � � T
 of respective sizes �

� 	

� �

� ��
� �


� 	


� such that T� 
 T� 
 � � � 
 T
� Each
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Tj served as a feature set for training on half of a target user
s movies and testing on the other
half� for each user in T �� For each algorithm� we calculated the four measures described above�
averaged over the 	


 target users� We ran the algorithms on �ve disjoint random splits of the
data into feature and feedback sets� and we averaged the results� which are shown in Figure ��

RankBoost clearly outperformed regression and NN for all four performance measures� Rank�
Boost also outperformed VSIM when the feature set size was greater than 	

� For medium and
large feature sizes� RankBoost achieved the lowest disagreement and the highest AP� PROT� and
coverage� Also� the slopes of the curves indicated that RankBoost was best able to improve its
performance as the number of features increased�

NN did well on disagreement� AP� and coverage� but on PROT it performed worse than random
guessing �whose PROT was 
����� This suggests that� although NN places good movies relatively
high in its list �because of its good AP�� it does not place a single good movie near the top of its list
�because of its poor PROT�� An investigation of the data revealed that almost always the nearest
neighbor did not view all of the movies in the test feedback and therefore NN assigned some movies
a default score �as described in Section ��	���� Sometimes the default score was high and placed
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Figure �� Performance of the algorithms on di�erent feature densities�

the unseen movies at the top of NN
s list� which can drive down the PROT if most of the unseen
movies are not good movies �according to the feedback��

RankBoost and NN directly tried to minimize disagreement whereas regression did not� and
its disagreement was little better than that of random guessing �whose disagreement was 
����
Regression did perform better than random guessing on PROT and coverage� but on AP it was
worse than random guessing �whose AP was 
����� This suggests that most of the good movies
appear low on regression
s list even though the �rst good movie appears near the top� Also�
judging by the slopes of its performance curves� regression did not make much use of the additional
information provided by a larger number of features� We discuss possible reasons for this poor
performance at the end of this section�

The performance of VSIM was very close to RankBoost for feature sets of size �

 and 	

� This
performance is especially impressive considering the fact that RankBoost attempts to minimize
the number of disagreements while VSIM is a rather simple approach based on correlations� A
similar behavior for VSIM was observed by Breese� Heckerman and Kadie ��� in the experiments
they performd with the EachMovie dataset� However� VSIM does not seem to scale as well as
RankBoost when the size of the feature set increases� Like regression� it seems that VSIM did not
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Figure �� Performance of algorithms on di�erent feedback densities�

make much use of the additional information provided by a large number of features and� in fact�
its performance degraded when moving from feature sets of size ��
 to size �


� We defer further
discussion of possible reasons for this behavior of VSIM compared to RankBoost to the end of this
section�

In our next experiment� we explored the e�ect of the density of the features� the number
of movies ranked by each viewer� We partitioned the set of features into bins according to their
density� The bins were �
�	
� 	���
� ����
� ����

� �
������� where ���� was the maximum number
of movies ranked by a single viewer in the data set� We selected a random set of �


 features
�viewers� from each bin to be evaluated on a disjoint random set of �


 feedback target users �of
varying densities�� We ran the algorithms on six such random splits� calculated the averages of
the four error measures on each split� and then averaged them together� The results are shown in
Figure �� The x�coordinate of each point is the average density of the features in a single bin� for
example�  
 is the average density of features whose density is in the range ����

�

The relative performance of the algorithms was similar to that in Figure �� RankBoost was the
winner again� and it was best able to improve its performance when presented with the additional
information provided by the denser features� As feature density increased� NN
s performance on

	 



AP� disagreement� and coverage improved more signi�cantly than when simply the number of
features increased �Figure ��� However� on PROT NN continued to perform worse than random
guessing �whose PROT was 
����� Furthermore� the performance of NN degraded as feature density
increased� Regression maintained the same relative performance to random guessing as in the
previous experiment� and its performance was largely una�ected as feature density increased�

Here again VSIM comes up the second best and its performance is close to the performance of
RankBoost with respect to all four performance measures� Furthermore� like RankBoost� VSIM
seems to scale well as the feature density increases� The rate of increase seems comparable to
that of RankBoost for Coverage� AP� and PROT� and with a slightly slower increase in the case
of disagreements� Although the di�erences in the performance between RankBoost and VSIM are
statistically signi�cant� the advantage of RankBoost over VSIM is far less pronounced than the
overwhelmingly better performance of RankBoost compared to NN and regression�

The previous two experiments varied the amount of information provided by the features� in
the next experiment� we varied the amount of information provided by the feedback� We varied the
feedback density� the number of movies ranked by the target user� We partitioned the users into
bins according to density in the same way as in the previous experiment� We ran the algorithms
on �


 target users of each density� using half of the movies ranked by each user for training and
the other half for testing� We used a �xed randomly chosen set of �


 features� We repeated this
experiment on six random splits of the data and averaged the results� which appear in Figure ��

The most noticeable e�ect of increasing the feedback density is that it degrades the performance
of all four algorithms on coverage and AP and the performance of VSIM� NN� and regression on
PROT �RankBoost is able to improve PROT�� Other than that� the comparative performance of the
algorithms to one another was similar to the results in the previous experiments� with the exception
that the di�erences between RankBoost and VSIM� as a function of the feedback densities� are more
pronounced�

Especially interesting is the good performance of VSIM when the feedback density is at most
�
� In this case� VSIM is the best performing algorithm with respect to disagreements� AP� and
PROT� and achieves practically the same coverage as RankBoost� However� as the density of the
feedback grows� the performance of VSIM deteriorates and for feedback densities of over �

 the
performance of VSIM becomes mediocre and it is comparable to NN with respect to all of the
performance measures� with the exception of PROT� In contrast� RankBoost consistently improves
as the size of the feedback set grows� This behavior of RankBoost is common in supervised learning
algorithms which typically improve proportionally to the amount of supervision they get�

At �rst� it appears counterintuitive that the algorithms should perform worse as the number
of movies ranked by the target user increases� One would expect that the algorithms would do
better with more training feedback� Indeed this is the case for the disagreement measure �with
the exception of regression and VSIM� as in the �rst set of experiments�� This might suggest a
weakness of the precision�based measures� that they are sensitive to the number of movies in the
feedback� On the other hand� we observed that the performance of random guessing also degrades
as the feedback density increases� which suggests that the ranking problem is intrinsically more
di�cult� This would certainly be the case if the fraction of good movies in the feedback decreases
as feedback density increases� We discovered that both e�ects occur�

We �rst calculated the fraction of good movies in the feedback for each feedback density� For
densities of �
�	
� 	���
� ����
� ����

� and over �

� the fractions were� respectively� 
���� 
�	��

�		� 
�	
� 
�� � As this fraction decreases� the ranking problem becomes more di�cult� For
example� the left plot of Figure  shows the performance of random guessing� with respect to the
three measures� as the fraction of good movies varies as �

� �
�
� �

�
� �

�
� �the number of movies ranked

	�
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Figure  � Left� The performance of random guessing when the fraction of good movies is varied
�the number of movies is �
�� Right� The performance of random guessing when the number of
movies ranked is varied �the fraction of good movies is 
�	���

was �
��
However� consider the right plot of Figure  � which shows the performance of random guessing

when the fraction of good movies is constant �
�	�� and the number of movies ranked is varied�
Here the measured performance degrades� which is an e�ect of the measures� not the di�culty of
the problem� That is� this is the e�ect of taking a training set of data and making a ��xed� number
of copies of each �movie� score� pair� which provides no additional information or challenge to the
algorithms described in Section ��	��� This sensitivity to the number of movies ranked is a weakness
of these three precision�based measures� since ideally we would like them to remain constant for
problems of the same di�culty�

����� Discussion

Our experiments show that RankBoost clearly performed better than regression and nearest neigh�
bor on the movie recommendation task� It also performs better than VSIM when the feature size
or the feedback density is relatively large�

RankBoost
s approach of ordering based on relative comparisons performed much better than
regression which treats the movie scores as absolute numerical values� One reason for regression
s
poor performance may be over�tting� its solution is subject only to a mild restriction �shortest
length� as described in Section ��	���� Even so� it is not clear whether this improvement of Rank�
Boost over regression is due to using relative preferences or to boosting or both� To try to separate
these e�ects� we could test regression on relative preferences by normalizing the scores of each movie
viewer so that the distribution of scores used by that viewer has the same mean and variance as
the distribution of scores of every other viewer�

RankBoost also performed better than the nearest�neighbor algorithm presented here� Based
on these experiments we could design a better nearest�neighbor algorithm� choosing default ranks
in a better way and� when choosing a nearest neighbor� perhaps taking into account the number
of movies ranked by the neighbor� It would also be worthwhile to compare RankBoost to an
algorithm which �nds k nearest neighbors to a target user and averages their predictions� Such
an experiment would di�erentiate between a straightforward search for and combination of similar
users and boosting
s method of search and combination� Averaging the prediction of the k nearest

�




neighbors introduces a dependence on absolute scores� so this proposed experiment would further
test our hypothesis that relative preferences are more informative�

In our experiments� VSIM was the algorithm that achieved the closest performance to Rank�
Boost� and for small�scale problems� it often achieved better performance than RankBoost� How�
ever� as the complexity of the training data �i�e�� feature size� or the amount of supervision �feed�
back� increases� RankBoost
s performance gets a boost while the performance of VSIM seems to
asymptote or even degrade� A possible explanation is that RankBoost� being a learning algorithm
that attempts to minimize an objective function designed for ranking� is able to build more complex
hypotheses as the amount and variety of training examples increase� VSIM� on the other hand� em�
ploys a �xed memory�based correlation paradigm and thus exhibits less �exibility and adaptability
as the number of training examples grows� We would like to note that it seems possible to take
the best from each approach� RankBoost can use VSIM as one of the possible weak ranking func�
tions it can choose on each round� The end result would be an algorithm that resorts to a simple
memory�based correlation when the amount of data is small and gradually shifts to discriminative
approaches as the amount of training data grows�

� Conclusion

Summary

The problem of combining preferences arises in several applications� including combining the results
of di�erent search engines and collaborative��ltering tasks such as making movie recommendations�
One important property of these tasks is that the most relevant information to be combined repre�
sents relative preferences rather than absolute ratings� We have given both a formal framework and
an e�cient algorithm for the problem of combining preferences� which our experiments indicate
works well in practice�

E�ciency of algorithms� Our learning system consists of two algorithms� the boosting
algorithm RankBoost and the weak learner� The input to the system includes an instance space X �
n ranking features� and a feedback function of size j�j that ranks a subset of the instances X� � X �
Given this input� RankBoost generally runs in O�j�j� time� and a naive implementation of the
weak learner we present runs in O�nj�jX�� time� We have shown two improvements in e�ciency�
as summarized in Theorem 	 of Section �� If we use binary weak rankings and we search for the
best weak ranking using the third method in Section ��	� then we can implement the weak learner
in time O�njX�j� j�j�� If we use a binary feedback function� then we can implement RankBoost in
time linear in the number of instances in the feedback� If in addition we use binary weak rankings�
we can implement the weak learner in O�njX�j� time�

These two restriction are both natural and useful� Binary rankings are quite simple and this
makes them easy to design� analyze� and compute e�ciently� Although a single such ranking may
have only weak predictive power� many of them can be combined via boosting into a highly accurate
prediction rule� as is indicated by our experiments� As for restricting the feedback function to be
binary� this often does not reduce the applicability of the algorithm� since many applications come
with binary feedback� such as those in information retrieval�

Experimental results� In our experiments� we used the weak learner that outputs a thresh�
olded ranking feature as the weak ranking� Although these prediction rules have limited power�
RankBoost was nevertheless able to combine them into a highly accurate prediction rule� In the
meta�search task� RankBoost performed just as well as the best search strategy for each error
measure� In the movie�recommendation task� RankBoost consistently outperformed a standard

��



regression algorithm and a nearest�neighbor algorithm and was consistently better than the vector
similarity method in medium to large problem settings�

Our experiments also indicate that RankBoost is able to do well on data sets of varying sizes�
The meta�search task had a small number of ranking features ��� to 		�� a large instance space
��
�


 URL
s� and large feedback ��
�


 URL
s�� The movie task had a large number of ranking
features ��

 to 	


�� a smaller instance space ����	 movies�� and a range of feedback sizes
��
�������

One important inherent feature of RankBoost� being a boosting algorithm� is its ability to
combine di�erent approaches for ranking� While the task of combining general ranking features
given non�bipartite feedback can be rather involved� the boosting�for�ranking framework that we
introduced in this paper o�ers a principled and e�cient algorithmic infrastructure� Therefore�
RankBoost can also be used as a tool for building a hybrid ranking system that combines di�erent
ranking algorithms� yielding a high precision and recall ranking meta�algorithm�

Current directions

There are numerous directions for future work� We contend that relative preferences can be more
important than absolute scores� The results of our experiments on the movie recommendation
task support this� RankBoost signi�cantly outperformed nearest neighbor and regression� To
further di�erentiate between scores and ranks� we proposed two experiments �Section ��	���� testing
regression on relative preferences by normalizing the scores of each movie viewer� and testing the
averaged combination of k nearest neighbors�

As we have pointed out before� many ranking problems have bipartite feedback and therefore
can also be viewed as binary classi�cation problems� For such problems it would be interesting to
compare RankBoost to AdaBoost combined with a weak leaner for minimizing classi�cation error�
AdaBoost outputs a real�valued score for each instance which is then thresholded to produce a
classi�cation� We could compare RankBoost
s ordering to AdaBoost
s ordering of the instances by
classi�cation weight to see if minimizing ranking loss is superior to minimizing classi�cation error�

As for the RankBoost algorithm itself� the �rst method for setting �t is the most general and
requires numerical search� Schapire and Singer ���� suggest using general iterative methods such as
Newton�Raphson� Because such methods often have no proof of convergence or can be numerically
unstable� we would like to �nd a special purpose iterative method with a proof of convergence� Of
course� to be practical� the method would also need to converge quickly�

Perhaps the most important practical research direction is to apply RankBoost to information
retrieval �IR� problems� including text� speech� and image retrieval� These IR problems are im�
portant today due to the vast amount of data available to people via the WWW and large scale
databases� and they are receiving attention from a variety of scienti�c communities� In a recent pa�
per ����� two versions of RankBoost were compared to traditional information retrieval approaches�
The experiments in the paper indicate that RankBoost can provide an alternative approach of
combining term weights� however� RankBoost
s performance greatly depends on the quality of the
feedback that is provided�

Various versions of RankBoost might turn out to be useful in learning problems that at �rst
sight do not seem to be related to ranking� For instance� Walker� Rambow and Rogati �		� recently
used RankBoost successfully to train a sentence�generation system� In other work� Collins ����
describes experiments using the RankBoost for a natural�language processing task� speci�cally� to
re�rank the candidate parses produced by a probabilistic parser� The paradigm suggested by Collins
can be applied to other settings in which the results of an approximate or exact search yield an

�	



ordered list of candidates with the �correct� element appearing somewhere down the ordered list�
This list can then be re�ranked by applying RankBoost to a fresh set of features�

Finally� we would like to note that this work is part of a general research e�ort on learning
algorithms for ordinal data� We hope that this work will spark further interest in such problems
which are challenging and relatively unexplored� Indeed� recent work ��� on ranking problems
indicate that some of the techniques explored in this paper can be carried over to online learning
algorithms of ranking functions�
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A Performance measures for the movie task

For the movie recommendation task� we provided various measures of the performance of a predicted
ordering H of movies output by a ranking algorithm �Section ��	���� We assumed that if there were
ties between movies� meaning that H is a partial order� the ties would be broken randomly when
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listing one item over an other� To analyze this performance� we calculated the expectation over
all ways to break ties� that is� over all total orders that are consistent with H� This expectation
involved the quantity Pr �rank�tk� � i�� the probability� over all total orders consistent with H� that
the kth good movie on H
s list occurs at position i on the list� Here we calculate this probability�

Let M be the set of all movies� Let R be the number of movies that de�nitely appear before tk
on H
s list�

R � jfm �M � H�m� � H�tk�gj �
Let r be the number of good movies that de�nitely appear before tk�

r � jft � ft�� � � � � tk��g � H�t� � H�tk�gj �

Let Q be the number of movies tied with tk�

Q � jfm �M � H�m� � H�tk�gj �

Let q be the number of good movies tied with tk�

q � jft � ft�� � � � � tKg � H�t� � H�tk�gj �

Then�

Pr �rank�tk� � i� �

�i�R��
k�r��

��Q�i	R
q�k	r

�
�Q
q

� � �		�

We prove �		� as follows� Let j � k� r� Then when tk is listed at position i� tk is the jth good
movie appearing within the list of Q tied movies� De�ne the random variable Yj to be the rank of
tk within the list of tied movies� For example� if tk is the second movie listed then Yj � 	� Then

Pr �rank�tk� � i� � Pr �R� Yj � i� � Pr �Yj � �� � �	��

where � � i � R� So now we need to calculate the probability that� in a group of equally scored
movies� the jth good movie appears at position ��

This process can be modeled as sampling without replacement Q times from an urn with Q
balls� q colored green and Q� q colored red� �Balls of the same color are indistinguishable�� The
event Yj � � means that the jth green ball was drawn on the �th draw� Looking at the entire
sequence of draws� this means that j � � green balls came up during draws �� � � � � � � �� the jth
green ball was drawn on draw �� and q � j green balls came up during draws �� �� � � � � Q� There
are

����
j��

�
ways to arrange the drawings of the �rst j � � green balls and

�Q��
q�j

�
ways to arrange the

drawings of the remaining q� j green balls� The total number of all possible sequences of draws is�Q
q

�
� Thus

Pr �Yj � �� �

����
j��

��Q��
q�j

�
�Q
q

� � �	��

Substituting � � i�R from �	�� into this equation gives �		�� the desired result�
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