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Abstract� We investigate the problem of estimating the proportion vector which maximizes the
likelihood of a given sample for a mixture of given densities� We adapt a framework developed for
supervised learning and give simple derivations for many of the standard iterative algorithms like
gradient projection and EM� In this framework� the distance between the new and old proportion
vectors is used as a penalty term� The square distance leads to the gradient projection update�
and the relative entropy to a new update which we call the exponentiated gradient update �EG���
Curiously� when a second order Taylor expansion of the relative entropy is used� we arrive at an
update EM� which� for � � �� gives the usual EM update� Experimentally� both the EM��update
and the EG��update for � � � outperform the EM algorithm and its variants� We also prove a
polynomial bound on the rate of convergence of the EG� algorithm�

�� Introduction

The problem of maximum�likelihood �ML� estimation of a mixture of densities is
an important and well known learning problem ���� ML estimators are asymptot�
ically unbiased and are a basic tool for other more complicated problems such as
clustering and learning hidden Markov models� We investigate the ML�estimation
problem when the densities are given and only the mixture proportions are un�
known� That is� we assume that we are given a set of distributions D�� � � � � DN

over some domain� together with a sample of points from this domain� Our goal
is to 	nd the mixture coe
cients v�� � � � � vN �vi � � and

P
vi � 
� which maxi�

mize �approximately� the likelihood of the sample under the mixture distributionP
viDi� Most of the common techniques to solve this problem are based on either

gradient ascent iterative schemes �

� or on the Expectation Maximization �EM�
algorithm for parameter estimation from incomplete data ���� �
���

We derive the standard iterative algorithms for the unsupervised mixture propor�
tions estimation problem by placing them in a common hill�climbing framework�
This framework is analogous to the one developed by Kivinen and Warmuth ���
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for supervised on�line learning� Our goal is to maximize the log likelihood of the
observations as a function of the mixture vector w� denoted by LogLike�w�� This
is computationally hard and requires iterative methods� In the tth iteration we
approximate the log�likelihood LogLike�wt��� at the new mixture vector wt�� by
LogLike�wt��rLogLike�wt���wt���wt�� which is the Taylor expansion of the log�
likelihood around the old mixture vector wt� It is now easy to maximize this approx�
imated log�likelihood� However the approximation degrades the further we move
from the old mixture vector wt��� Thus we subtract a penalty term d�wt���wt�
which is a non�negative function measuring the distance between the new and old
mixture vector� This penalty term keeps wt�� close to wt as measured by the
distance function d� In summary we are maximizing the function

F �wt��� � � �LogLike�wt� �rLogLike�wt� � �wt�� �wt�� � d�wt���wt� � �
�

The relative importance between the penalty term and increasing the log�likelihood
is governed by the positive parameter �� called the learning rate�
Maximizing the function F with di�erent distance functions leads to various iter�

ative update rules� Using the square distance gives the update rule of the gradient
projection algorithm and the relative entropy distance gives a new update called
the exponentiated gradient update �EG��� By using a second order Taylor expan�
sion of the relative entropy we get the �� distance function� When this distance
function is used and � is set to one� we get the same update as an iteration of the
EM algorithm for the simple mixture estimation problem considered in this paper�
Our experimental evidence suggests that setting � � 
 results in a more e�ective
update� These results agree with the in	nitesimal analysis in the limit of n � �
based on a stochastic approximation approach �
��� �
��� �
���
For the exponentiated gradient algorithm� we are able to prove rigorous polyno�

mial bounds on the number of iterations needed to get an arbitrarily good ML�
estimator� However� this result assumes that there is a positive lower bound on
the probability of each sample point under each of the given distributions� When
no such lower bound exists �i�e�� when some point has zero or near�zero probability
under one of the distributions�� we are able to prove similar but weaker bounds for
a modi	ed version of EG��
We obtain our convergence results by viewing the mixture estimation problem as

an on�line learning problem� Each iteration becomes a trial where the algorithm is
charged a �loss� of�LogLike�wt�� so minimizing the loss corresponds to maximizing
the log�likelihood� Note that the ML solution will also have a loss on each trial�
By bounding the extra loss of the algorithm over the loss incurred by the ML
solution u over a sequence of iterations� we can show that at least one of the wt

vectors produced by the algorithm is reasonably good� Note that these results show
convergence in log�likelihood rather than convergence of the mixture vector to the
ML solution� Furthermore� the standard rate of convergence results usually apply
only when the algorithm is started with a vector near the ML solution� whereas
our results show convergence for any initial probability vector with strictly positive
components�
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The derivations of the learning rules using the above framework are simple and
can readily be applied to other settings� They are similar to previous derivations
found in the literature �
��� �
���

�� De�nitions and Problem Statement

Let R represent the real numbers� We say a vector v � �v�� ���� vN� � RN is a
probability vector if� �i � vi � � and

Pn
i�� vi � 
� The vector �
�N� � � � � 
�N �

is called the uniform probability vector� We use the following distance functions
between probability vectors u and v�

dEUC�ujjv� def
� �

�

NX
i��

�ui � vi�
� � �

�ku� vk�

dRE�ujjv� def
�

NX
i��

ui ln
ui
vi

and

d���ujjv� def
� �

�

NX
i��

�ui � vi��

vi
�

All three distance functions are non�negative and zero i� u � v� The 	rst one is
half of the square of the Euclidean length of the vector u�v� The second one is the
standard relative entropy and the last one is a second order Taylor approximation
�at u � v� of the relative entropy called the ���distance� These distance functions
are used in Section � to derive the updates used in this paper �See discussion at
the end of Section � and Figure 
��
We consider the following maximum�likelihood mixture estimation problem�

Input� A P�N matrixX of non�negative real numbers with rows x� through xP �
Goal� Find a probability vector w that maximizes the log�likelihood�

LogLike�w� �



P

PX
p��

ln

�
NX
i��

xp�iwi

�
�




P

PX
p��

ln�xp �w� �

where xp is the pth row of X�
The maximizers of the log�likelihood are called the maximum likelihood �ML�

solutions� It is easy to see that the Hessian of the log�likelihood is negative semi�
de	nite� Thus there are no spurious local maxima and the ML solutions form a
convex region� We use u to denote an arbitrary ML solution� and call u �the ML
solution� for brevity� As there is no straightforward method for computing an ML
solution� iterative methods which compute a sequence� w�� � � � �wt� � � �� converging
to an ML solution are popular�
It is most natural to view each row xp of X as representing an observation and

the ith column of X as containing the probability of each observation under some
known distribution Di� The entry xp�i is then the probability under distribution Di
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of the pth observation� and� for any probability vector v� xp � v is the probability

under mixture v of the pth observation under the mixture distribution
PN

i�� viDi�
The ML solution u gives the proportions or weightings of the Di�s that maximize
the log�likelihood of the observations�
We use rL�wt� to represent the gradient of the log�likelihood function at prob�

ability vector wt�

rL�wt�
def
�

�
�LogLike�wt�

�wt��
� � � � �

�LogLike�wt�

�wt�N

�
�

�



P

PX
p��

xp��
xp �wt

� � � � �



P

PX
p��

xp�N
xp �wt

�
�

�� The Updates

Kivinen and Warmuth ��� studied a general framework for on�line learning in which
they derived algorithms for a broad class of loss functions� Here� we apply their
method speci	cally to negative log�likelihood�
Assume that at iteration t we have the current probability vectorwt and are trying

to 	nd a better vector wt��� Kivinen and Warmuth study the supervised on�line
setting where the vector wt summarizes the learning done in previous iterations�

and that learning can be preserved by choosing a wt�� that is �close� to wt� Their
method 	nds a new vector wt�� that �approximately� maximizes the following
function�

�F �wt��� � �LogLike�wt��� � d�wt���wt�� � � � � ���

The penalty term� �d�wt���wt�� tends to keep wt�� close to wt �with respect to
the distance measure d� and the relative importance between the penalty term and
maximizing the log�likelihood on the current iteration is governed by the positive
parameter �� called the learning rate� A large learning rate means that maximizing
the likelihood for the current row is emphasized while a small learning rate leads to
an update which keeps wt�� close to wt� Since our iterative updates will be based
on the local conditions at the start vector wt� the penalty term and the learning
rate measure how rapidly these local conditions are expected to change as we move
away fromwt� Unfortunately� 	nding awt�� maximizing �F is computationallyhard
because rL�wt���� the gradient of the log�likelihood at wt��� is unknown� Kivinen
and Warmuth bypass this di
culty by approximating rL�wt��� by rL�wt� and
thus are really maximizing the function F from Equation �
��
To maximize this function F � we add a Lagrange multiplier for the constraint

that the components of wt�� sum to one� leading us to maximize

�F �wt��� �� � � �LogLike�wt� � rL�wt� � �wt�� �wt��

�d�wt���wt� � �

�
NX
i��

wt���i � 


�
�
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This is done by setting the N partial derivatives to zero and enforcing the nor�
malization constraint� So our framework consists of solving the following N � 

equations for the N coe
cients of wt���

� �F �wt��� ��

�wt���i
� �rL�wt�i � �d�wt���wt�

�wt���i
� � � � ���

and

NX
i��

wt���i � 
 � ���

We now derive all updates used in this paper by plugging di�erent distance
functions into the above framework� For the standard gradient projection up�

date �which we abbreviate GP�� we use the distance function dEUC�wt��jjwt� �
�
�kwt�� �wtk�� In this case the equations ��� become

�rL�wt�i � �wt���i � wt�i� � � � � �

By summing the aboveN equalities and using the identities
PN

i��wt�i �
PN

i��wt���i �


 we see that � � �
N

PN
i��rL�wt�i and obtain the update

wt���i � wt�i � �

�
rL�wt�i � 


N

NX
i��

rL�wt�i

�
� ���

If we use the relative entropy� dRE�wt��jjwt� �
Pn

i��wt���i ln�wt���i�wt�i�� as a
distance function then the equations ��� become

�rL�wt�i � �ln
wt���i

wt�i
� 
� � � � � �

By solving for the wt���i we have

wt���i � wt�ie
�rL�wt�i���� �

Enforcing the normalization constraint ��� gives a new update which we call the
exponentiated gradient� �EG�� update�

wt���i �
wt�ie

�rL�wt�iPN
j��wt�je

�rL�wt�j
� ���

The framework can also be used to motivate the Expectation Maximization al�
gorithm �EM� which is another algorithm commonly used for maximum likeli�
hood estimation problems� For this we use the �� �Chi�squared� distance measure

d���wt��jjwt� �
�
�

PN
i���wt���i � wt�i���wt�i� Now the equations ��� become
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�rL�wt�i �
�
wt���i

wt�i
� 


�
� � � � �

By solving for the wt���i we get

wt���i � �wt�irL�wt�i �wt�i�� � 
� �

We can now sum the above N equalities and use the constraints that
PN

i��wt�i � 


and
PN

i��wt���i � 
� Our particular mixture estimation problem has the invariant�PN
i��wt�irL�wt�i � 
� Thus � � �� and we obtain the update

wt���i � wt�i �� �rL�wt�i � 
� � 
� � ���

We call Equation ��� the EM��update because when � � 
 this gives the standard
Expectation�Maximization �EM� update� wt���i � wt�irL�wt�i� for the problem
considered in this paper� The EM� update can be motivated by the likelihood
equations� and the generalization to arbitrary � was studied by Peters and Walker
�
��� �
���
Since the �� distance approximates the relative entropy it may not be surprising

that the EM��update ��� also approximates the EG��update ���� We 	rst rewrite
the exponentiated gradient update by dividing the numerator and denominator by
e� and then replace the exponential function ez by its 	rst order lower bound 
�z�

wt���i �
wt�ie

��rL�wt�i���PN
j��wt�je

��rL�wt�j���

	 wt�i�
 � ��rL�wt�i � 
��PN
j��wt�j�
 � ��rL�wt�j � 
��

� wt�i���rL�wt�i � 
� � 
� �

Thus the EM��update can be viewed as a 	rst order approximation of the EG��
update� The approximation is accurate when the exponents ��rL�wt�j � 
� are
small� The advantage of the EM��update is that it is computationally cheaper as
it avoids the exponentiation� However the EG��update is easier to analyze� Our
experiments indicate that these two update rules tend to approximate each other
well�
Each of the di�erent distance functions leads to a di�erent bias that is encoded

in the update� In Figure 
 we plot the three distance functions dEUC�wt��jjwt��
dRE�wt��jjwt� and d���wt��jjwt� as a function of wt�� for the three dimensional
problem �with a triangle as the feasible region for wt���� The contour lines for
the distance function dEUC are circles and the contour lines for d�� are ellipses
that become more degenerate as the old weight vector wt approaches the boundary
of the feasible region� The contour lines for dRE are deformed ellipses that bend
towards the vertices of the triangular feasible region�
One can also get an update by re�parameterizing the probability vectors and doing

unconstrained gradient ascent in the new parameter space� We use the standard
exponential parameterization ���� wi � eri�

PN
j�� e

rj and maximize the function
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Figure 	
 The 	gure contains plots of the three distance functions dEUC�wt��jjwt� �	rst row��
dRE�wt��jjwt� �second row� and d���wt��jjwt� �third row� as a functionofwt��� The dimension
is three and the non�negativity constraint on the three components of wt�� plus the fact that the
componentmust sum to one result in a triangle as the feasible region for wt��� The corners of the
triangle correspond to the vector wt�� � �
�
��� at the top vertex and vectors ���
�
� and �
���
�
at the left and right bottom vertices� The plots are contour plots of the distance function while
looking at the triangle from above� The left column gives the distance from the uniform vector
wt � ������������� which is at the center of the triangle and the right column the distance from
the point �
��� 
��� 
�
�� Note that contour lines may represent di�erent distances in di�erent
diagrams�

ParLogLike�r� � LogLike�w�r���

�Note that the w�s are probability vectors whereas the corresponding vectors r
are unconstrained and lie in RN �� For this parameterization the gradient descent
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update becomes

rt���i � rt�i � �
�ParLogLike�rt�

�rt�i

� rt�i � �wt�i�rL�wt�i � 
� �

This update can also be derived in our framework by approximately maximizing a
function corresponding to �F �Equation �����

�G�rt��� � �ParLogLike�rt���� d�rt��� rt�� � � � �

For this maximization� we use d�rt��� rt� �
�
�
jjrt�� � rtjj� as a distance function

and approximate the gradient at rt�� with the gradient at rt�
All of the above update rules can be turned into algorithms by specifying the

learning rate � to use in each iteration� The EM algorithm uses a 	xed scheduling�
where the same learning rate �namely� � � 
� is used in each iteration� Another
possibility is to anneal the learning rate� At 	rst� a high learning rate is used to
quickly approach the ML solution� Later iterations use a lower learning rate to aid
convergence�
The EM algorithm is in fact a limiting case of a more general approach usually

called Generalized EM �GEM� ���� �
��� Neal and Hinton �
�� considered another
extension of EM which involves examining only a portion of the observation matrix
X on each iteration� In general� any subset of the observations could be used� and
the algorithm which considers a di�erent row �observation� on each iteration is the
natural analogue of on�line algorithms in the supervised case�
Note that in the above derivations of the updates we ignored the non�negativity

constraints on the new weights wt���i� For the EG� update and for the gradient
descent update with exponential parameterization the non�negativity constraints
follow from the non�negativity of the previous weights wt�i� However for EM� and
GP� the learning rate � has to be su
ciently small to assure the non�negativity
of the wt���i� In particular� the standard EM algorithm �using � � 
� has the
property that the non�negativity constraints are always preserved�

�� Convergence and Progress

In this section we discuss the convergence properties of the algorithms� Using
standard methods �with the usual assumptions for convergence proofs� as in Lu�
enberger �

�� it can be shown that all updates described in the previous section
converge locally to an optimal ML solution� provided that the current mixture vec�
tor wt is close to the ML solution and given the usual assumptions� Moreover�
using techniques similar to those in �
��� �
��� it can be shown that it is better to
use a learning rate � � 
 rather than the rate � � 
� This implies that the EM
algorithm is not optimal for this family of update rules� This analysis is supported
by the experimental results presented in the next section� where choosing � � 
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leads to faster convergence� even when the current mixture vector is far from the
ML solution�
These methods su�er from a number of limitations� For instance� the proof of

convergence is only valid in a small neighborhood of the solution� In this section�
we present a di�erent technique for proving the convergence of the EG� update and
�under non�negativity assumptions� the GP� updates�
If an update is derived with a distance function d then it is natural to analyze how

fast the mixture vector moves towards an �unknown� ML solution u as measured
by this distance function� More precisely� we use the same distance function that
motivates the update as a potential function to obtain worst�case cumulative loss
bounds over sequences of updates �similar to the methods applied to the supervised
case ����� The natural loss of a mixture vector wt for our problem is �LogLike�wt��
Note that this loss is unbounded since the likelihood for wt is zero when there is
some xp for whichwt �xp � �� In the supervised case� one can obtain 	rm worst�case
loss bounds with respect to the square loss for various updates by analyzing the
progress ���� But the square loss is bounded and it is not surprising that it is much
harder to obtain strong loss bounds for our �unbounded loss� unsupervised setting�
Nevertheless this type of analysis can give insight on how an iterative algorithm
moves towards the ML solution and on the relationships between di�erent update
rules� We obtained some reasonably good bounds for the GP� and EG� updates�
We deal with the unboundedness of the loss function by initially assuming that

the smallest entry in the matrix is bounded away from zero� Thus� for all p and
i we assume xp�i � r � �� In the following section we give a proof bounding the
average additional loss during T trials of the algorithm EG� over the loss of the
ML solution by




r

r
lnN

�T
�

Thus� by picking T � lnN��	�r� we can guarantee that at least one of the wt�s
computed by algorithm EG� has loss at most 	 larger than the ML solution�
In contrast� we prove a similar bound for the GP� update

� in Section ��� showing
that the average additional loss during T trials of the algorithmGP� above the loss
of the ML solution is at most




r

r
�N

T
�

However� the analysis assumes that the GP� algorithm does not produce mixture
vectors with negative components� This assumption may not always hold since the
update of the GP� algorithm is additive� We have been unable to prove that the �
used to obtain the above bound avoids this di
culty�
Even though the above bounds are weak in that they grow with 
�r� and even

though we don�t know of any matching lower bounds� they suggest a crucial dif�
ference between the exponentiated gradient and gradient descent family� namely�
the logarithmic growth �in terms of N � of the additional loss bound of the former
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versus the square�root growth of the latter family� Similar observations were made
in the supervised setting ���� ����
We also show below how to obtain bounds when the entries in the matrix have

zero�valued components� We essentially average the data matrix with a uniform
matrix �this 	�Bayesian averaging was also used in �
�� and then use the averaged
matrix to run our algorithm� One can show that the ML solution for the averaged
matrix is not too far �in loss� away from the ML solution of the original matrix�
but the averaged matrix has the advantage of having entries bounded away from
zero�

���� Convergence proofs for exponentiated�gradient algorithms

Recall that the EG� algorithm receives a �	xed� set of P instances� x�� � � � �xP �

each in RN with positive components� At each iteration� the algorithm produces
a mixture or probability vector wt � RN and su�ers a loss related to the log�
likelihood of the set under the algorithm�s mixture� The algorithm then updates
wt�
The loss su�ered by the algorithm at time t is

� 


P

PX
p��

ln�wt � xp��

while the loss of the �unknown� ML solution u is

� 


P

PX
p��

ln�u � xp��

We are interested in bounding the �cumulative� di�erence between the loss of the
algorithm and the loss of the ML solution�
We assume that maxi xt�i � 
 for all p� We make this assumption without loss of

generality since multiplying an instance xp by some constant simply adds a constant
to both losses� leaving their di�erence unchanged� Put another way� the assumed
lower bound r on xp�i used in Theorem 
 �below� can be viewed as a lower bound
on the ratio of the smallest to largest component of any instance xp�
The EG� algorithm uses the update rule�

wt���i �
wt�i exp

�
�
P

PP
p��

xp�i
wt�xp

�
Zt

where � � � is the learning rate� and Zt is the normalization

Zt �
NX
i��

wt�i exp

�
�

P

PX
p��

xp�i
wt � xp

�
�
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Theorem � Let u � RN be a probability vector� and let x�� � � � �xP be a sequence

of instances with xp�i � r � � for all i� p� and maxi xp�i � 
 for all p� For � � ��
EG� produces a sequence of probability vectors w�� � � � �wT such that

�
TX
t��




P

PX
p��

ln�wt � xp� 
 �T

P

PX
p��

ln�u � xp� � dRE�ujjw��

�
�

�T

�r�
� ���

Furthermore� if w� is chosen to be the uniform probability vector� and we set

� � �r

r
� lnN

T

then

�
TX
t��




P

PX
p��

ln�wt � xp� 
 �T

P

PX
p��

ln�u � xp� �
p
�T lnN

�r
� ���

Proof� We have that

dRE�ujjwt���� dRE�ujjwt� � �
X
i

ui ln�wt���i�wt�i�

� �
X
i

ui

�
� lnZt �

�

P

PX
p��

xp�i
wt � xp

�

� � �

P

PX
p��

u � xp
wt � xp � lnZt � �
��

We now work on bounding Zt�

Zt �
NX
i��

wt�i

PY
p��

exp

�
�

P

xp�i
wt � xp

�

�
NX
i��

wt�i

PY
p��

�
exp

�
�

wt � xp

�xp�i���P

Since xt�i � ��� 
� and since 
x 
 
� �
� 
�x for 
 � � and x � ��� 
� we can upper
bound the right�hand side by�

NX
i��

wt�i

PY
p��

�

�

�

� exp

�
�

wt � xp

��
xp�i

���P

�
NX
i��

PY
p��

�
wt�i �

�

� exp

�
�

wt � xp

��
wt�ixp�i

���P

We will need the following fact� For non�negative numbers Ai�p�
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NX
i��

PY
p��

Ai�p 

PY
p��

�
NX
i��

AP
i�p

���P

�

This fact can be proved by repeated application of H�older�s inequality�	

Using this fact with

Ai�p �

�
wt�i �

�

� exp

�
�

wt � xp

��
wt�ixp�i

���P

yields an upper bound on Zt of

PY
p��

�
NX
i��

�
wt�i �

�

� exp

�
�

wt � xp

��
wt�ixp�i

����P

�

�

�
PY
p��

�

�wt � xp

�

� exp

�
�

wt � xp

�����P

�

To further bound lnZt� we apply the following�

Lemma � For all � � ��� 
� and x � R�

ln�
� ��
� ex�� 
 �x� x��� �

Proof� Fix � � ��� 
�� and let

f�x� � �x� x���� ln�
� ��
� ex�� �

We wish to show that f�x� � �� We have that

f ��x� � ��
x

�
� g�x�

where

g�x� �
�ex


� �� �ex
�

Clearly� f ���� � �� Further�

f ���x� �



�
� g�x� � �g�x���

which is non�negative for all x �the minimum is attained when g�x� � 
����
Therefore� f is minimized when x � �� since f��� � �� this proves the claim�
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Taking logs of Equation �

�� the upper bound on Zt� and then applying Lemma 

gives us

lnZt 
 


P

PX
p��

ln

�

�wt � xp

�

� exp

�
�

wt � xp

���


 


P

PX
p��

�
� �




�

�
�

wt � xp

��
�


 � �
��

�r�

since r is a lower bound on wt � xp� Plugging into Equation �
�� we obtain

dRE�ujjwt���� dRE�ujjwt� 
 � �

P

PX
p��

�
u � xp
wt � xp

�
� � �

��

�r�

�
�

P

PX
p��

�

� u � xp

wt � xp

�
�

��

�r�


 �

P

PX
p��

�
� ln

u � xp
wt � xp

�
�

��

�r�

using the fact that 
� ex 
 �x for all real x� By summing over all t 
 T we get

�dRE�ujjw�� 
 dRE �ujjwT �� dRE�ujjw��


 �

P

TX
t��

PX
p��

�
� ln

u � xp
wt � xp

�
�
T��

�r�
�

which implies the 	rst bound ��� stated in the theorem� The second bound ���
follows by straightforward algebra� noting that dRE�ujjw�� 
 lnN when w� is the
uniform probability vector�

Note that if any other upper bound KRE on dRE �ujjw�� is known a priori �pos�
sibly for some other choice of w��� then by tuning � as a function of KRE the lnN
term in the bound ��� of the theorem can be replaced by KRE � This gives a bound
of

p
�TKRE

�r
�
��

of the additional loss of the algorithm over the ML solution�
It follows from Theorem 
 that� if we run for T iterations� then the average loss

�or average minus log�likelihood� of the wt�s will be at mostr
lnN

�Tr�
�
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greater than the loss of u� Therefore� picking T � �lnN ����	�r�� guarantees that
at least one of the wt�s will have a log�likelihood within 	 of u� Furthermore� it is
easy to 	nd the best candidate wt that maximizes the likelihood amongw�� � � � �wT

by simply computing the likelihood of each�
When some of the components xp�i are zero� or very close to zero� we can use the

following algorithm which is parameterized by a real number � � ��� 
�� Let

�xp � �
� ��N �xp � ���N ��

where � is the all 
�s vector� As before� we maintain a probability vector wt which
is updated using �xp rather than xp�

wt���i �
wt�i exp���xp�i�wt � �xp�P
iwt�i exp���xp�i�wt � �xp� �

The vector that we output is also slightlymodi	ed� Although eachwt�� is produced
from the previous wt as above� the algorithm outputs the modi	ed mixture

�wt � �
� ��wt � ���N ��

and so su�ers loss � ln� �wt � xp��
We call this modi	ed procedure gEG����

Theorem � Let u � RN be any probability vector� and let x�� � � � �xP be a sequence

of instances with xp�i � � for all i� p� and maxi xt�i � 
 for all p� For � � ��� 
���

and � � �� gEG��� produces a sequence of probability vectors �w�� � � � � �wT such that

�
TX
t��




P

PX
p��

ln� �wt � xp� 
 �T

P

PX
p��

ln�u � xp� � ��T

�
dRE�ujjw��

�
�
�TN�

���
� �
��

Furthermore� if w� is chosen to be the uniform probability vector� T � �N� lnN �

and we set

� �

�
N� lnN

�T

����

� �
��

N

r
� lnN

T

then

�
TX
t��




P

PX
p��

ln� �wt � xp� 
 �T

P

PX
p��

ln�u � xp� � ���N� lnN �����T ���� � �
��

Proof� From our assumption that maxi xt�i � 
� we have
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�wt � xp
wt � �xp �

�
� ��wt � xp � ��N

�
� ��N �wt � xp � ��N
�

The right hand side of this inequality is decreasing as a function of wt � xp and so
is minimized when wt � xp � 
� Thus�

�wt � xp
wt � �xp � �
 � �� � ��N�

or equivalently�

� ln� �wt � xp� 
 � ln�wt � �xp�� ln�
� �� ��N �


 � ln�wt � �xp� � �� �
��

�since � 
 
����
From Theorem 
 applied to the instances �xp� we have that

�
TX
t��




P

PX
p��

ln�wt � �xp� 
 �T

P

PX
p��

ln�u � �xp� � dRE�ujjw��

�
�
�TN�

���
�
��

where we used the fact that �xp�i � ��N �
Note that

u � �xp � �
� ��N �u � xp � ��N � u � xp�
Combined with inequalities �
�� and �
��� and summing over all t� this gives the
	rst bound �
�� of the theorem� The second bound follows from the fact that
dRE�ujjw�� 
 lnN when w� is the uniform probability vector�

From Theorem �� it follows that the average additional loss of the wt�s for this
algorithm over that of the ML solution is at most

O

��
N� lnN

T

����
�
�

This is unfortunately a rather weak bound�

���� Convergence proofs for gradient�projection algorithms

In this section� we prove a convergence result for the gradient�projection algorithm�
The setup is exactly as in Section ��
�
The update rule used by GP� is

wt�� � wt �
�

P

PX
p��




wt � xp

�
xp �

PN
i��xp�i
N

�

�
where � � � is the learning rate� and � is the all 
�s vector� We assume that wt�i

remains non�negative�
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Theorem � Let u � RN be a probability vector� and let x�� � � � �xP be a sequence

of instances with xp�i � r � � for all i� p� and maxi xp�i � 
 for all p� For � � ��
assume that GP� produces a sequence of probability vectors w�� � � � �wT so that all

components of each are nonnegative� Then

�
TX
t��




P

PX
p��

ln�wt � xp� 
 �T

P

PX
p��

ln�u � xp� � �NT

�r�
�

dEUC�ujjw��

�
� �
��

Furthermore� if w� is chosen to be the uniform probability vector� T � �N� lnN �

and we set

� �
rp
NT

then dEUC�ujjw�� 
 �
� and

�
TX
t��




P

PX
p��

ln�wt � xp� 
 �T

P

PX
p��

ln�u � xp� � 


r

p
NT� �
��

Proof� We use dEUC�ujjwt� �
�
�ku�wtk� as the potential function since it is

the distance function used to derive the GP� update� We can bound the change in
potential at time t using straightforward algebra as follows�




�
ku�wt��k� � 


�
ku�wtk�

�
�

P

PX
p��

�

� u � xp

wt � xp

�
�
��

�

					 
P
PX
p��




wt � xp

�
xp � �

N

NX
i��

xp�i

�					
�


 � �

P

PX
p��

ln

�
u � xp
wt � xp

�
�

��

�P

PX
p��

					 


wt � xp

�
xp � �

N

NX
i��

xp�i

�					
�

In the second step we used the convexity of the function k�k�� and the fact that

� ex 
 �x for all real x� Since xp�i � �r� 
�� and assuming that wt�i � �� it follows
that this is bounded by

� �

P

PX
p��

ln

�
u � xp
wt � xp

�
�
��N

�r�
�

Thus� summing over all t 
 T � we get




�
ku�wT��k� � 


�
ku�w�k� 
 � �

P

TX
t��

PX
p��

ln

�
u � xp
wt � xp

�
�
��NT

�r�
�

So
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TX
t��

PX
p��

ln

�
u � xp
wt � xp

�

 P

�

�
�NT

r�
�
ku�w�k�

�

�
� P

�
�NT

�r�
�

dEUC�ujjw��

�

�

which implies the bound in Equation �
��� The derivation of the second bound in
Equation �
�� follows by straightforward algebra�

When tuning � to obtain bound �
��� we used the fact that dEUC�ujjw�� is at
most �

� � If a better upper bound� KEUC� on this distance is available a priori� then
we can tune � in �
�� accordingly to obtain the bound of

p
�NTKEUC

r
�
��

on the additional loss of GP� above that of the ML solution�
One way to compare the bound for EG� �
�� and the bound for GP� �
�� is to

assume that both algorithms know the true distance to the ML solution� so that
KRE � dRE�ujjw�� and KEUC � dEUC�ujjw��� In this case each algorithm can
use the value of � minimizing its bound� If the algorithms are tuned in this way
and the starting vector w� is �
�N� � � � � 
�N �� then one can show that the bound
for EG� is never higher that the bound for GP�� i�e��p

�TdRE�ujjw��

�r


p
�NTdEUC�ujjw��

r
�

The above may be seen as theoretical support for our observation that that EG�

always converges faster than GP� when the start vector is uniform and both algo�
rithms use the �empirically found� best 	xed learning rate �
Theorem � assumes a lower bound on the xp�i� When no such lower bound r is

available� then we can use similar techniques to those described in Section ��
�

	� Experimental Results

In this section we brie�y present and discuss a few of the empirical tests we per�
formed� In order to compare the various algorithms� data was synthetically cre�
ated from N normal distributions evenly spaced on the unit circle in R�� The
ith distribution was generated from a normal distribution with a mean vector
�
 �



sin���iN �� cos���iN �

�
� Each observation was created by uniformly picking one of

the distributions� and sampling that distribution to obtain a point �� � ���� ��� � R��
The corresponding row of X contains the probability density at �� for each of the N
distributions� The examples presented in this section were obtained by generating
hundreds of observations �P � 
��� from at least � distributions �N � �� each
with variance 
� The same qualitative results are obtained when using matrices of
di�erent sizes and other stochastic sources �such as the uniform distribution�� We
tested all the described algorithms� The algorithms were tested using both 	xed
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Figure �
 When the EG� update is used� the log�likelihood as a function of � may have local
maxima� At the bottom part of the 	gure� the log�likelihood is plotted as a function of � for a
given wt� At the top� the corresponding path is plotted over the log�likelihood as a function of
the 	rst two weights wt���� and wt���� �denoted in the 	gure by W� and W���

scheduling and line�searches to 	nd the best choice of � on each iteration� The line�
searches allow us to compare the updates when they are optimally tuned� Note
that when the EG��update is used� the likelihood may have two local maxima as
a function of � as shown in Figure �� so the searches must be careful to pick the
global maximum�

The optimal learning rate determined by the line�searches tended to oscillate� as
shown at the bottom part of Figure �� When a momentum term was added� the
oscillations were damped and the convergence was accelerated�


Using 	xed scheduling turned out to be a competitive alternative to the expensive
line�searches� Furthermore� we found that the learning rates used for deriving
the bounds in the previous section are too conservative� For the 	xed scheduling
experiments reported in this section we used a higher learning rate in the range
�
����� All these phenomena are depicted at the top part of Figure ��

The gradient ascent update with exponential parameterization appears inferior
to all other methods� A good 	xed scheduling for that method is di
cult to obtain
as the optimal learning rate has large oscillations� The EM� and EG� updates have
about the same performance� which is expected as the EM� update approximates
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Figure �
 Top� The log�likelihood using the exponentiated gradient algorithm� with line�searches�
line�searches plus a momentum term� and 	xed scheduling with � � ��
 and � � ��
� The 	xed
schedulings are only slightly worse than setting the rate by expensive line�searches� while adding
a momentum term accelerates the increase in the likelihood� Bottom� The values of � � e��

when using line�searches for the exponentiated gradient update� The ��value oscillates� eventually
converging to a typical value� This anomaly is common with gradient ascent algorithms�

the EG� update� Both methods outperform the EM algorithm� and the EM� and
EG� updates are superior to the EM algorithm even when � is set to a 	xed value
greater than one �see Figure ���

When the uniform start vector and �empirically found� best 	xed learning rates
for each algorithm are used� then EG� �as well as EM�� always converge faster
than GP� in the experiments we have done �see Figure ��� The bounds at the end
Section � may be seen as theoretical support for this behavior� However when the
start vector is not uniform and the ML solution u is close to the uniform vector
then we have observed cases where GP� converges faster than EG� �and EM���

One of the main observation in the experiments is the following� EG� and EM�

clearly outperformGP� when the solution is sparse �see Figure ��� This is consistent
with other settings ���� ���� �
��� where updates derived using the relative entropy
distance outperform gradient�descent�type updates when the solution is �sparse��
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Figure �
 Top� Comparison of the performance of the EM��update algorithm and the standard
EM algorithm� The EM��update clearly outperforms the standard EM algorithm� even when
a 	xed conservative scheduling is used� Bottom� comparison of the EM��update with gradient
ascent algorithms� The gradient�projection is comparable to the EM��update and the gradient
ascent update with exponential parameterization is inferior�

We also compared the performance of the various updates with second order
methods� Second order methods �also known as Newton methods� are based on
a quadratic approximation of the objective function� Near the solution we can
approximate the log�likelihood by the truncated Taylor series�

LogLike�w� 	 LogLike�wt� �rL�wt�
T
�w �wt�

�



�
�w �wt�

T
H�wt��w �wt� �

where H�wt� is the Hessian calculated at wt�

Hij�wt� �
��

�wt�i�wt�j
LogLike�wt� �

The right�hand side is minimized at�

wt�� � wt �H�wt�
��rL�wt� �
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Figure �
 Comparisons of the performanceof the EG� and GP� algorithms� Consider �
 Gaussian
distributionswith their centers equally spaced on the unit circle� The observations were generated
from a perturbation of the uniform mixture on only 
 of the �
 Gaussians and the algorithms are
started with the uniform start vector� This �and similar experiments� indicate that the EG�
algorithm performs better when the optimum mixture vector u has few large components�

This is the basic Newton method� which requires calculations of second order deriva�
tives and inversion of the Hessian� Newton methods converge to a vector close to
the solution in fewer updates than the EM� and EG� updates� However� the EM�

and EG� updates can often do signi	cantly more iterations than Newton methods
with the same computational e�ort� We found that when N is su
ciently large
�N � 
�� the EM� and EG� algorithms converged more rapidly than the basic
Newton�s method when running time �rather than number of iterations� is consid�
ered� In Figure � we plotted N iterations of EM� against one iteration of Newton�s
method� In this qualitative comparison again EM� outperform Newton�


� Applications and future research

We investigated various algorithms for learning the proportion vector which maxi�
mizes the likelihood of a mixture of given densities� This is a very simple mixture
estimation problem since the parameters of the densities don�t have to be learned
as well� We presented some new algorithms called EG� and EM�� The EG� al�
gorithm uses the gradient of the log�likelihood in the exponent and the EM� is a
	rst�order approximation of the latter algorithm that replaces the exponentiation
by a multiplication� When the learning rate � of the EM� algorithm is set to one
then we get the standard EM algorithm for our simple mixture estimation problem�
Identifying the distance function associated with an update helps explain what

the update is doing and facilitates comparisons between iterative methods� Af�
ter explaining the standard algorithms using distance functions we might wonder
what are the distance functions most appropriate for a particular situation� One
important area for future research is identifying good distance functions when the
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Figure �
 Comparison of EM��update with second order algorithms �Newton methods�� Second
order methods require fewer iterations than either the EM��update algorithmwith 	xed scheduling
or EM� with line searches� However� the basic second order method requires that the Hessian
be calculated as well as its inverse� Since these calculations require O�PN� �N�� time and the
EM� algorithm with 	xed scheduling requires only O�PN� time per iteration we can compare a
single Newton iteration with N iterations of EM�� This qualitative comparison shows that the
EM��update performs better even when 	xed scheduling is used for the learning rate� The EG�
algorithm behaves essentially the same as EM�in the experiments� however it requires slightly
more time because of the exponentiation�

parameters do not form a probability vector� We have already applied our method�
ology for deriving updates to more complicated mixture estimation problems such
as training hidden Markov models �
�� and we are currently applying this method�
ology to mixtures of Gaussians with arbitrary mean and variance� In this more
complicated setting we need distance functions that depend on the means and vari�
ances given to the Gaussians as well as the mixture probabilities assigned to them�
Our framework naturally leads to on�line versions of our algorithms where only

a single observation �instead of the whole matrix� is used each iteration� In par�
ticular� we have derived an on�line version of EM�� Experimentally� this version
outperforms the known on�line versions of EM which is the EM�algorithm with
� � 
 We have also applied the on�line versions of our algorithms to a portfo�
lio selection problem ��� investigated by Cover ���� Although Cover�s analytical
bounds appear better than ours� experimental results indicate that EM� and EG�

outperform Cover�s algorithm on historical stock market data� Furthermore� our
algorithms are computationally e
cient while Cover�s algorithm is exponential in
the number of possible investments�
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Notes

�� In the on�line setting each iteration typically uses only a single observation� It is therefore de�
sirable to preserve information about the previous observations while improving the likelihood
of the current observation�

�� A similar update for the case of linear regression was 	rst given by Kivinen and Warmuth ����

��
PN

i��
wt�irL�wt�i �

PN

i��
�

P

PP

p��

wt�ixp�i
xp �wt

� �

P

PP

p��

wt�xp

xp �wt
� ��

�� This algorithm�s performance was analyzed in the PAC model in ����


� In one form� H�older�s inequality states that� for non�negative ai� bi�

X
i

aibi �

�X
i

api

���p�X
i

bqi

���q

for any positive p� q satisfying ��p� ��q � ��

�� The conjugate gradient search is a method for iteratively searching a quadratic cost func�
tion ����� ���� When the cost function is non�quadratic� as is the likelihood function in our
case� a variant of the conjugate gradient method can be devised� This variant� termed partial
conjugate gradient �PCG�� is restarted after every K conjugate gradient steps� so that the
search direction every K iteration becomes the gradient� Adding a momentum term can be
seen as an approximation of the partial conjugate gradient algorithm� with no restarts �i�e��
the PCG method with K ����
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