Machine Learning, 22(1/2/3):95-121, 1996.

On the Wor st-case Analysis of Tempor al-difference
L earning Algorithms

ROBERT E. SCHAPIRE schapire@research.att.com
AT& T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974

MANFRED K. WARMUTH manfred@cse.ucsc.edu
Computer and Information Sciences, University of California, Santa Cruz, CA 95064

Editor: Leslie Pack Kaelbling

Abstract. We study the behavior of a family of learning algorithms based on Sutton’s method of temporal
differences. In our on-line learning framework, learning takes place in a sequence of trials, and the goal of
the learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the
future. In this setting, we are able to prove general upper bounds on the performance of a slightly modified
version of Sutton’s so-called TD) algorithm. These bounds are stated in terms of the performance of the best
linear predictor on the given training sequence, and are proved without making any statistical assumptions of any
kind about the process producing the learner's observed training sequence. We also prove lower bounds on the
performance of any algorithm for this learning problem, and give a similar analysis of the closely related problem
of learning to predict in a model in which the learner must produce predictions for a whole batch of observations
before receiving reinforcement.

Keywords: machine learning, temporal-difference learning, on-line learning, worst-case analysis

1. Introduction

As an example, consider the problem of estimating the present value of a company. At the
end of each quartér a company returns a profit. In terms of its future profits, what is
the company worth today? One possible answer is simply the sum total of all future profits
> reo Tt+k, but this is clearly an unsatisfactory measure of present worth since a dollar
earned today is certainly worth more than a dollar earned ten years from now. Indeed,
taking into account inflation and the exponential growth rate of money that is invested, it
can be argued that future profits drop in value exponentially with time.

For this reason, itis common to discount profits; earned: time steps in the future by
~*, wherey < 1 is a parameter that estimates the rate at which future profits diminish in
value. This leads to a definition of the present value of the company as the discounted sum

e = ik 1)
k=0

Suppose now that we want to predict or estimate the presentyehsedefined in Eq. (1).
Obviously, if we know all the future profits;, r;+1, . . ., then we can computg directly,
but it would be absurd to assume that the future is known in the present.

2 R. E. SCHAPIRE AND M. K. WARMUTH

Instead, we consider the problem of estimatingased on current observations that can
be made about the world and the company. We summarize these observations abstractly by
a vectorx, € Y. This vector might include, for instance, the company’s profits in recent
guarters, current sales figures, the state of the economy as measured by gross national
product, etc.

Thus, at the beginning of each quartethe vectorx, is observed and an estimagec R
is formulated of the company’s present valye At the end of the quarter, the company
returns profit-;. The goal is to make the estimatgsas close as possible tg.

We study this prediction problem more abstractly as follows: At each point inttisme
1,2,..., alearning agent makes an observation about the current state of its environment,
which is summarized by a real vectey € ™. After having made this observation, the
learning agent receives some kind of feedback from its environment, which is summarized
by a real number;. The goal of the learning agent is to learn to predict the discounted
sumy; given in Eq. (1) wherey € [0, 1) is some fixed constant called thescount rate
parameter.

At each time step, after receiving the instance vectgr and prior to receiving the
reinforcement signal;, we ask that the learning algorithm make a predicgioof the value
of y;. We measure the performance of the learning algorithm in terms of the discrepancy
betweeny, andy;. There are many ways of measuring this discrepancy; in this paper, we
use the quadratic loss function. That is, we definddbeof the learning algorithm at time
t to be(g; — y:)?, and the loss for an entire sequence of predictions is just the sum of the
losses at each trial. Thus, the goal of the learning algorithm is to minimize its loss over a
sequence of observation/feedback trials.

We study the worst-case behavior of a family of learning algorithms based on Sutton’s
(1988)method of temporal differences. Specifically, we analyze a slightly modified version
of Sutton’s so-called TD\) algorithm in a worst-case framework that makes no statistical
assumptions of any kind. All previous analyses of(RPhave relied heavily on stochastic
assumptions about the nature of the environment that is generating the data observed by
the learner (Dayan, 1992; Dayan & Sejnowski, 1994; Jaakkola, Jordan & Singh, 1993;
Sutton, 1988; Watkins, 1989). For instance, the learner’s environment is often modeled by
a Markov process. We apply some of our results to Markov processes later in the paper.

The primary contribution of our paper is to introduce a method of worst-case analysis
to the area of temporal-difference learning. We present upper bounds on the loss incurred
by our temporal-difference learning algorithm (denoted by D) which hold even when
the sequence of observatiatsand reinforcement signais is arbitrary.

To make our bounds meaningful in such an adversarial setting, we compare the perfor-
mance of the learning algorithm to the loss that would be incurred by the best prediction
function among a family of prediction functions; in this paper, this class will always be the
set of linear prediction functions. More precisely, for any veeiar 2™, let

Lz(u, S) = Z(u Xy — yt)2

t=1

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 3

denote the loss of vectar on the first¢ trials of training sequencs. That is, L¢(u, S)
is the loss that would be incurred by a prediction function that predicts; on each
observation vectox;.

We compare the performance of our learning algorithms to the performance of the best
vectoru (of bounded norm) that minimizes the loss on the given sequence. For example,
we prove below that, for any training sequeritehe loss on the first trials of TD*(1) is
at most

min (LZ(U,S)—i—Q\/EUXocW—I— ||u||2onc$) (2)
[lal|<U
L*(u,5)<K

wherec, = (14 v)/(1 —). (Here,U, X, and K are parameters that are used to
“tune” the algorithm’s “learning rate:” specifically, it is assumed that|| < X,, and

that min{ L(u, S) : |[u|] < U} < K. Various methods are known for guessing these
parameters when they are unknown; see, for instance, Cesa-Bianchi, Long and Warmuth'’s
paper (1993).) Thus, TH1) will perform reasonably well, provided that there exists some
linear predictom that gives a good fit to the training sequence.

To better understand bounds such as those given in Eq. (2), it is often helpful to consider
the average per-trial loss that is guaranteed by the bound. Suppose for the moment, as is
likely to be the case in practice, that X, andy are fixed, and thak™ grows linearly with
the number of trial€, so thatx’ = O(¢). Then Eq. (2) implies that the average per-trial
loss of TD'(1) (i.e., the total cumulative loss of TD1) divided by the number of trial§
is at most

min - (F0(7)).

L*(u,5)<K

In other words, as the number of trialsbecomes large, the average per-trial loss of
TD*(1) rapidly approaches the average loss of the best vectéurthermore, the rate of
convergence is given explicitly @(1/v/¢).

Note that the above result, like all the others presented in this paper, provides a charac-
terization of the learner’s performance after onfjnste number of time steps. In contrast,
most previous work on TD\) has focused on its asymptotic performance. Moreover, pre-
vious researchers have focused on the convergence of the learner’s hypothesis to a “true”
or “optimal” model of the world. We, on the other hand, take the view that the learner’s
one and only goal is to make good predictions, and we therefore measure the learner’s
performance entirely by the quality of its predictions.

The upper bound given in Eq. (2) on the performance of (IDis derived from a more
general result we prove on the worst-case performance 6{NjCfor general. Our
bounds for the special case wher= 0 or A = 1 can be stated in closed form. The proof
techniques used in this paper are similar but more general than those used by Cesa-Bianchi,
Long and Warmuth (1993) in their analysis of the Widrow-Hoff algorithm (corresponding
to the case that = 0).

4 R. E. SCHAPIRE AND M. K. WARMUTH

Note thatmin{L‘(u,S) : u € R} is the best an arbitrary linear model can do that
knows ally; - - -y, ahead of time. If the on-line learner were givgrat the end of triat
(i.e., if ¥y = 0), then the Widrow-Hoff algorithm would achieve a worst case bound of

min (Lf(u, S)+ 2VEKU X, + ||u||2X02)
llull<U
Lf(u,5)<K

(matching the bound in Eqg. (2) withset to0). However, in our model, the learner is given
only the reinforcements;, even though its goal is to accurately estimate the infinite sum
y: given in Eqg. (1). Intuitively, as gets larger, this task becomes more difficult since the
learner must make predictions about events farther and farther into the future. All of our
worst-case loss bounds depend explicitlhycend, not surprisingly, these bounds typically
tend to infinity or become vacuous a@pproaches. Thus, our bounds quantify the price
one has to pay for giving the learner successively less information.

In addition to these upper bounds, we prove a general lower bound on the lagg of
algorithm for this prediction problem. Such a lower bound may be helpful in determining
what kind of worst-case bounds can feasibly be proved. None of our upper bounds match
the lower bound; it is an open question whether this remaining gap can be closed (this is
possible in certain special cases, such as when)).

Finally, we consider a slightly different, but closely related learning model in which the
learner is given a whole batch of instances at once and the task is to give a prediction for all
instances before an outcome is received for each instance in the batch. The loss in a trial
is ||§7: — ¥+ ||, wherey, is the vector of predictions ang the vector of outcomes. Again,
the goal is to minimize the additional total loss summed over all trials in excess of the total
loss of the best linear predictor (of bounded norm).

In this batch model all instances count equally and the exact outcome for each instance
is received at the end of each batch. A special case of this model is when the algorithm has
to make predictions on a whole batch of instances before receivirsptieeoutcome for
all of them (a case studied by Sutton (1988)).

We again prove worst-case bounds for this model (extending Cesa-Bianchi, Long and
Warmuth’s (1993) previous analysis for the noise-free case). We also prove matching lower
bounds for this very general model, thus proving that our upper bounds are the optimal
worst-case bounds.

The paper is outlined as follows. Section 2 describes the on-line model for temporal
difference learning. Section 3 gives Sutton’s original temporal difference learning algorithm
TD(X) and introduces our new algorithm TD\). Section 4 contains the worst-case loss
bounds for the new algorithm, followed by Section 5 containing a lower bound for the
on-line model. In Section 6, we illustrate our results with an application of (TDto
obtain a kind of convergence resultin a Markov-process setting. We present our results for
the batch model in Section 7. Finally, we discuss the merits of the method of worst-case
analysis in Section 8.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 5

2. Theprediction model

In this section, we describe our on-line learning model. Throughout the psipgenotes
the dimension of the learning problem. Eddial ¢ (t = 1,2, ...) proceeds as follows:

1. The learner receives instance vectpe B
2. The learner is required to compute a predictjor R.
3. The learner receivesreinforcement signal r; € R.

The goal of the learner is to predict not merely the next reinforcement signal, but rather a
discounted sum of all of the reinforcements that will be received in the future. Specifically,
the learner is trying to make its predictignas close as possible to

(o)
k
t :Z’Y Tt4k
k=0

wherey € [0, 1) is a fixed parameter of the problem. (We will always assume that this
infinite sum converges absolutely for &l

Note that if we multiplyy; by the constant — ~, we obtain a weighted average of all
the futurer,’s; that is,(1 — y)y; is a weighted average of, r;11,.... Thus it might be
more natural to use the variablgs= y;(1 —). (For instance, if alt; equalr, then the
modified variableg/, all equalr as well.) However, for the sake of notational simplicity,
we use the variableg instead (as was done by Sutton (1988) and others).

The infinite sequence of pairs of instanegsand reinforcement signals is called a
training sequence (usually denoted by). The loss of the learner at trialis (y; — 9:)?,
and the total loss of an algorithrmon the firsté trials is

4
Z Y — yt
t=1

Similarly, the total loss of a weight vectare Y on the first/ trials is defined to be

L
Zyt—u Xt

o~
—_

The purpose of this paper is to exhibit algorithms whose loss is guaranteed to be “not
too much worse” than the loss of thest weight vector for the entire sequence. Thus, we
would like to show that if there exists a weight vectothat fits the training sequence well,
then the learner’s predictions will also be reasonably good.

6 R. E. SCHAPIRE AND M. K. WARMUTH

3. Temporal-difference algorithms

We focus now on a family of learning algorithms that are only a slight modification of those
considered by Sutton (1988). Each of these algorithms is parameterized by a real number
A €[0,1]. For any sequencg andt = 1,2, - - -, let

13
XP =) () €)
k=1
be a weighted sum of all previously observed instangesThe parametek controls how
strong an influence past instances have. For instance, Whei, X{ = x; so only the
most recent instance is considered.

The learning algorithni'D()) works by maintaining a weight vecter, € R". The
initial weight vectorw; may be arbitrary, although in the simplest case = 0. The
weight vectow, is then updated to the new weight vector, ; using the following update
rule:

Wit = Wi + (7 + Y41 — @t)X? 4)

As suggested by Sutton (1988), the weight vectors are updated Xigirigther thanx,,
allowing instances prior t&; to have a diminishing influence on the update.

The constant; appearing in Eq. (4) is called thearning rate on trialt. We will discuss
later how to set the learning rates using prior knowledge about the training sequence.

In Sutton’s original presentation GfD(A), and in most of the subsequent work on the
algorithm, the prediction at each step is simgly= w; - x;. We, however, have found that
a variant on this prediction rule leads to a simpler analysis, and, moreover, we were unable
to obtain worst-case loss bounds for the original algorithni X)Cas strong as the bounds
we prove for the new algorithm.

Our variant of TQYA) uses the same update (4) for the weight vector as the original
algorithm, but predicts as follows:

t—1

Y = Wy X+ Z(’Y/\)t_k(wt CXp — gk)
k=1
t—1

= w X2 =) () . (5)
k=1

This new algorithm, which we call TDA), is summarized in Fig. 1.

The rule (4) for updatingv:+1 hasw;; implicitin y;41, S0 at first it seems impossible
to do this update rulé.However, by multiplying Eq. (4) b7, ,, one can first solve for
¢:+1 and then computer; ;. Specifically, this gives a solution g, of

(wi e — 50XD) - Xy = Sy ()
+ k=1
L= niyX3 'X?\+1
(We 4 m(re — 90X3) - X — () we - X7
L=y X3 XZ\+1

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 7

Algorithm TD* ()
Parameters: discountratey € [0,1)
Aef0,1]
start vectow; € RV
method of computing learning ratg
Given: training sequencey, 1, X2, 7, . . .
Predict: 1,92, - -
Procedure:
getx1
Xi\ — X1
g —wy - X}
fort=1,2,...
predicty; (§: = wy - X} — S0 (YA P g %)
get?”t
getxH_l
X — X1 + (7)X]
computery;
W X1 + (e — 90X - X4
1—nyX3 - Xy
Wip1 — Wi + 0(rs + Y41 — Qt)Xf‘
end

Y41 —

Figure1l. Pseudocode for TD(A).

WXy F ne(ry — @t)X? 'Xi\+1
1=y Xy - X3y,

where, in the first equality, we assume inductively that Eq. (5) holds at tri@dhus, we
can solve successfully fg¢,; provided thatyn; X7 - X?H #+ 1, as will be the case for all
the values ofjy, we consider. Also, note that,, is computed after the instange,; is
received but before the reinforcement, is available (see Fig. 1 for details).

Note that for the predictiof; = w; - x; of TD(}),

Ve, (¥ — 0)* = —20:(ye — 91)%
=20:(7e + Y41 — U)Xz

X

(Sincey; = r + yy:41 IS not available to the learner, it is approximatedpy vy +1.)
Thus with the prediction rule of TD\) the update rule (4)s not gradient descent for
all choices ofA. In contrast, with the new prediction rule (5) of TD\), the update
rule (4) used by both algorithmsgradient descentsince ify; is set according to the new

8 R. E. SCHAPIRE AND M. K. WARMUTH

prediction rule then

th(yt - yt)z = _277t(yt — yt)X?
~ =20:(re 4 Ve —)X

We can also motivate the termzz;l1 (yA)!~* g, in the prediction rule of TD()) given

in Eqg. (5): In this paper, we are comparing the total loss of the algorithm with the total
loss of the best linear predictor, so both algorithmgXDand TD'(A) try to match the
y¢'s with an on-line linear model. In particular, 4 = w - x; (that is, they;'s are a linear
function of thex,’s) and the initial weight vector is the “correct” weight vecter then the
algorithms should always predict correctly (so that y;) and the weight vectow, of the
algorithms should remain unchanged. Itis easy to prove by induction that both algorithms
have this property.

Thus, in sum, the prediction rulg = w; - X} + ¢, is motivated by gradient descent,
wherec, is any term that does not depend on the weight veetorThe exact value fot;
is derived using the fact that, in the case described above, wegywany, for all .

4. Upper boundsfor TD*(A)

In proving our upper bounds, we begin with a very general lemma concerning the perfor-
mance of TD(A). We then apply the lemma to derive an analysis of some special cases of
interest.

LEmMMA 1 Lety €[0,1),A € [0,1],andlet.S beanarbitrary training sequence such that
[|X3|| < X, for all trialst. Let u be any weight vector, and let ¢ > 0.

If we execute TD*(A) on S with initial vector w; and learning rates n, = n where
0 < nX)?y < 1, then

bL (u, S) 4 |Ju— wy|?
Cy

LYTD*(X), 9) ginf{ :b>0,Cb>0}

where C equals
2 2
a2y, 2 2y _ 1~ 7 —A
— " Xa"(1+797) p (1—1—(1_7/\))

- E) (2= D))

Proof: Forl <i¢ < ¢, we lete; = y;, — 9, andey; = y¢ — u - x;. We further define
es41 = 0. Note that the loss of the algorithm at trials e;? and the loss of1 is ey ;2.
Since, fort < ¢,

T+ YY1 — U = T YY1 — (P F Y1) Y — U

= €t — Y€t+1,

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 9

we can write Eg. (4), the update of our algorithm, conveniently as

Wiyl = Wi + (e — 76t+1)X?' (6)
To simplify the proof, we also define

Wit = Wy + neX)

so that Eq. (6) holds for ail < ¢. (In fact, this definition ofw,, differs from the vector
that would actually be computed by TDV). This is not a problem, however, since we are
here only interested in the behavior of the algorithm on theffirgals which are unaffected
by this change.)

We use the functioprogr, to measure how much “closer” the algorithm getaturing
trial ¢ as measured by the distance functipn||*:

progr, = |ju— Wt||2 — |[a— Wt+1||2~
Let Aw, = w; 1 — wy for ¢ < £. We have that
IAW* = n*(ec = yersn) X1
< X (e —vern)’
and that
Aw, - (wi—u) = g(e; —yern)(we - X3 —u- X3)

t

= nles = veip1) (PN (G —u-x)

= nler — yet41) Z(’Y/\)t_k(eu,k — €k)

k=1

where the second equality follows from Egs. (3) and (5), and the last equality from the fact
that

Yr—U-Xp = Up — Yp T Yp — 0 Xp
= €uk — €k
Since—progr, = 2Aw; - (w; —u) + ||]Aw||?, we have that

lIwerr —ul” = [Jwi — ulf”

14
= - Z progr;
t=1

4 t
20 |(ee = veir) D (A " (ewr —ex)
t=1 k

=1

~[lwy —ulf?

IN

IN

4
0’ X0 (e — verqn)” (7

t=1

10 R. E. SCHAPIRE AND M. K. WARMUTH

This can be written more concisely using matrix notation as followsZdbe thel x ¢
matrix whose entryi, j) is defined to bd if j = i + k& and0 otherwise. (For instanc&g
is the identity matrix.) LeD = Z, — vZ;, and let

-1

V=> (7N)'Z.

t=0

Finally, lete (respectivelye,) be the lengtif vector whosé'" element is:; (respectively,
eu,t). Then the last expression in Eq. (7) is equal to

’X,’e" DT De + 2’ DTV (e, —e). (8)
This can be seen by noting that, by a straightforward computation'treement ofDe

ise; — ves11, and the'™ element oV (e, — e) is

> (A T (eun —).

k=1

We also used the identiiDe)” = e” DT
Using the fact thatp”q < ||p||? + ||a||? for any pair of vectorp, q € I, we can
upper bound Eq. (8), for anly> 0, by

X ’e'DTDe — 2pe’ DT VTe + "—;eTDTVTVDe + beyl ey (9)
(where we us@ = (1/vb) VDe andq = /b e,). Defining

M =’ X,’D'D — n(VD + DTVT) + %DTVTVD,
and noting that¢" D7 VTe = e” VDe, we can write Eq. (9) simply as

e"Me + be, L ey.

Note thatM is symmetric. It is known that in this case

= p(M) (10)

wherep(M) is the largest eigenvalue . (See, for instance, Horn and Johnson (1985)
for background on matrix theory.) Thus, for all vecteyse” Me < p(M)e”e. It follows
from Eq. (7) that

4
—llwi=u” <5 e+ p(M) D e/

t=1 t=1

SO

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 11

4 4

—p(M)> e <|lwi—u|P+b eus”.

t=1 t=1

In the appendix, we complete the proof by arguing tHaMl) < —C.]

Having proved Lemma 1 in gory generality, we are now ready to apply it to some special
cases to obtain bounds that are far more palatable. We begin by considering the case that
A = 0. Note that TQ¥0) and TD'(0) are identical.

THEOREM 1 Let 0 < v < 1, and let S be any sequence of instances/reinforcements.
Assume that we know a bound X, for which ||x;|| < X.

If TD*(0) uses any start vector w; and learning ratesn; = n = 1/(X” + 1), we have
forall ¢ > 0 andfor all u € RY:

(1 + Xo*) (L (u,) + [Iw1 — u[*)

L *
LH(TD*(0),) < i

. (11)

Assume further that we know bounds K and U/ such that for some u we have L¢(u, S) < K
and ||w; — ul|| < U. Then for thelearning rate
o U
T NWVE + X0t

we have that

Lf(u, S) 4 2U XoV'K + Xo?||w1 —u]]?

L *
LH(TD(0),) < —

(12)

Proof: When = 0, C simplifies to
1 1
2 — 7’ (onJrg) (1+72)—27‘77—772 (X02+3)‘.

To minimize the loss bound given in Lemma 1, we need to maximjzeith respect to;.
It can be shown that, in this cagg, is maximized, for fixed, when

1

= ST (13)

n
The first bound (Eqg. (11)) is then obtained by chooging 1.
If boundsK andU are known as stated in the theorem, an optimal choicé éan be
derived by plugging the choice for given in Eq. (13) into the bound in Lemma 1, and
replacingZ*(u, 5) by K and|ju — w1 ||? by U2, This gives

(bK + U?)(Xo? 4 1/b)
1—~2

12 R. E. SCHAPIRE AND M. K. WARMUTH

which is minimized whert = U/(X,v/K). Plugging this choice of into the bound of
Lemma 1 (and setting as in Eq. (13)) gives the bound

(ULf(u, S)/XoVE + |Ju— w1||2) (X02 + XWE/U)

1—~2
~ L'(u,8) + L*(u, S)XoU/VE + [[u— wi|[*XovVE /U + |Ju — w1]|2X,°
— T
< Lf(u, S) 4 2XoUVEK + |Ju — wq||>Xo?

Next, we consider the case that= 1.

THEOREM 2 Let0 <~ < 1,¢ > 0andlet S beany sequence of instances/reinforcements.
Assume that we know a bound X; for which || X}|| < X, and that we know bounds K and
U such that for some u we have Lf(u, S) < K and ||w; — u|| < U. Thenif TD*(1) uses
any start vector w; and learning rates

U
UX:*(1+7)? + Xi(L+ VK

nh=1n= 3
then

LYTD*(1),5) < L (u, 8) + 2VE (1 + U X1 + (1 +7)?||w1 — ul]?X, 7.
Proof: WhenA =1,

2

Cy=2n— 772X12(1 +) — %
This is maximized, with respect tg when

1
X (LA)21/
Proceeding as in Theorem 1, we see that the best choiéegor

v
(1+7)XVE

Plugging into the bound in Lemma 1 completes the theorem.]

n

The bound in Eq. (2) is obtained from Theorem 2 by setting= 0, and noting that

t
_ max{||xi||: 1 <k <t
D S e
k=1

(14)

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS

100

6500

6000

5500

5000

4500

4000

3500

Figure2. The loss bound given in Lemma 1 as a functiorhafthens is chosen so as to minimize the bound.

by the triangle inequality; thusy, can be replaced bj,/(1 —). Note that the bounds

in Egs. (2) and (12) are incomparable in the sense that, depending on the values of the
quantities involved, either bound can be better than the other. This suggests tt{é} TD
may or may not be better than TQl) depending on the particular problem at hand; the
bounds we have derived quantify those situations in which each will perform better than
the other.

Ultimately, we hope to extend our analysis to facilitate the optimal choieg>ef0 and
A € [0, 1]. In the meantime, we can numerically find the choices ahdA that minimize
the worst-case bound given in Lemma 1. Fig. 2 shows graphs of the worst-case bound given
in Lemma 1 as a function of wheny is chosen so as to minimize our worst-case bound
and for fixed settings of the other parameters. More specifically, in all the graphs we have
assumed|w; —u|| = 1, and||x;|| < 1 (whichimplies that|X}|| < 1/(1—7X)). We have
also fixedy = 0.7. Figs. 2a, b, c and d assume tiiatu, S) equals3, 30, 300 and3000,
respectively, and each curve shows the upper bound GFD* (), S) given in Lemma 1.
The straight solid line in each figure shows the lower bound obtained in Section 5. In each

14 R. E. SCHAPIRE AND M. K. WARMUTH

figure thez-axis crosses thg-axis at the value of.*(u, S). Note that the gap between
the lower bound and.*(u, S) grows asd(y/L*(u, S)) when all other variables are kept
constant. (This is not visible from the figures because the scaling of the figures varies.)
The figures were produced using Mathematica.

As the figures clearly indicate, the higher the Idggu, S), the higher should be our
choice forA. It is interesting that in some intermediate cases, an intermediate valye for
in (0, 1) is the best choice.

5. A lower bound

We next prove a lower bound on the performancargflearning algorithm in the model
that we have been considering.

THEOREM 3 Lety € [0,1], Xo > 0, K > 0, U > 0 and ¢ a positive integer. For every
algorithm A, there exists a sequence S such that the following hold:

L[l < Xo,
2. K =min{Lu,S) : |ju|| < U}, and
3. LY(A4,9) > (VK + UXo\/o7)*

where o, := Zi;é 42k,

Proof: The mainidea of the proofis to construct a training sequence in which the learning
algorithm A receives essentially no information until triglat which time the adversary
can force the learner to incur significant loss relative to the best linear predictor.

Without loss of generality, we prove the resultin the one-dimensionat ¢asg N = 1),
so we write the instance; simply asxz;. The sequencé is defined as follows: We let
xy = y'71 X,y fort < ¢, andz; = 0 for ¢ > ¢ (thus satisfying part 1). The reinforcement
givenisr, = 0 if ¢t # ¢, andr, = sz wherez = UX, + \/K/o, ands € {—1,+1} is
chosen adversarially after has made predictions, . . ., g, on the first/ trials. Then

(o] —1t .
_ A Al it <
ve= ;7 Tk = { 0 otherwise.

To see that part 2 holds, let = « be any vector (scalar, really, sin¢é = 1) with
|u] < U. Then

J2

LZ(U,S) = Z(Ul‘t—yt)z

t=1

¢
= nyz(z_t)(uXo — 52)*

t=1
(uXo — sz)zaz.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 15

Since |u| < U, it can be seen that this is minimized when= sU, in which case
L*(u, S) = K by z’s definition.
Finally, consider the loss of on this sequence:

¢ ¢
LYAS) =D (e —w)* =D (5 — 57" '2)°
t=1 t=1

For any real numbersandgq, we have(p — ¢)? + (p + ¢) = 2(p* + ¢%) > 2¢*. Thus, if
s € {—1,+1} is chosen uniformly at random, thetis expected loss will be

4
1 . _ . _
3 ((G =772+) (0 +7 tZ)z)
t t=1

> Y (47)? = 2oy = (VE + UXoyae).

]~

1

]~

o~
1

1

It follows that for the choice of € {—1, +1} that maximizesA’s loss, we will have that
LY(A,S) > (VK + UXy\/o0)? as claimed. |

When K = 0, Theorem 3 gives a lower bound éf*X,*/s, which approaches
U?Xo?/(1 — 4*) as(becomes large. This lower bound matches the second bound of
Theorem 1 in the corresponding case. Thus, in the “noise-free” case that there exists a
vectoru that perfectly matches the data (iin{ Z*(u, S) : |[u|| < U} = 0), this shows
that TD"(0) is “optimal” in the sense that its worst-case performance is best possible.

6. An application to Markov processes

For the purposes of illustration, we show in this section how our results can be appliedin the
Markov-process setting more commonly used for studying temporal-difference algorithms.
Specifically, we prove a kind of convergence theorem fof (TR

We consider Markov processes consisting of a finite set of states danated., N. An
agent moves about the Markov process in the usual manner: An initial stestehosen
stochastically. Then, at each time stgpthe agent moves stochastically from stateo
statei; 1 wherei; 1 may depend only on the preceding stateUpon exiting state,, the
agent receives a probabilistic rewatdvhich also may depend only ap

Formally, the Markov process is defined by a transition magix [0, 1]V>*" and an
initial state distribution matrip; € [0,1]". The entries of each column 6§ sum tol,
as do the entries gb;. The interpretation here is that the initial stateis distributed
according tg1, and if the agent is in stafeat timet, then the next state,, is distributed
according to the;*™™ column ofQ. Thus, state; has distributionp; = Q*~'p

The rewardr; received at tim¢ depends only on the current stateso formally we
can writer; = r(wy, i) wherewy, ws, ... are independent identically distributed random
variables from some event spaeandr : 2 x {1,..., N} — R is some fixed function.

16 R. E. SCHAPIRE AND M. K. WARMUTH

Let V; denote the expected discounted reward for arandom walk produced by the Markov
process that begins in stateThat is, we define thealue function

Vi=E lkamk i1 :i]

k=0

where, as usuad; € [0, 1) is a fixed parameter. Our goal is to estimétea problem often
referred to as value-function approximation. R

At each time step, the learner computes an estiméteof the value function. Thus,
learning proceeds as follows. Attinte=1,2,... ¢

1. The learner formulates an estimated value fundtjon
2. The current statg is observed.

3. The current reward, is observed.

4. The learner moves to the next state; .

The state$; and rewards; are random variables defined by the stochastic process described
above. All expectations in this section are with respect to this random process.

Theorem 4, the main result of this section, gives a bound fdi(TDon the average
expected squared distanceﬂ(p‘fto the correct valueg;. Specifically, we show that

by el -] <o (%)

for some setting of the learning rate, and given certain benign assumptions about the
distribution of rewards. Note thét [(Wt - Vit)z] is the expected squared distance between

thet*® estimatef/j and the true value functiori where the expectation is with respect to

the stochastic choice of th&' statei,. Thus, the states more likely to be visited at step

t receive the greatest weight under this expectation. Theorem 4 states that the average of
these expectations (over the fifdime steps) rapidly drops to zero.

We apply TDA@ to this problem in the most natural manner. We define the observation
vectorx; € R" to have al in componenti;, and 0 in all other components. (The
generalization to other state representations is straightforward.) We then exeéyte TD
using the sequence, r1,x2, 79, . . ., X¢, ¢ Where these are random variables defined by
the Markov process.

The estimated value functiori! is computed as follows: Recall that TQl), at each
time step!, generates an estimageof the discounted sumy = > "7~ v*r:+x. Note that
if we are in state at timet, then the expected value gfis exactlyV;, i.e.,

Ely: | i =1 = Vi.

So it makes sense to use the estimatan computing thet*™" value-function approxima-
tion V7.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 17

A minor difficulty arises from the fact tha}, is computedafter x; is observed (and
therefore afteri; is observed), buf/j must be computed for all statesbefore i; is
observed. However, if we fix the history prior to trigltheny, is a function only ofx.,
which in turn is determined bi;. Therefore, for each statewe can precompute what the
value ofy, will be if i, turns out to be. We then definé’! to be this value. Note that, with
this definition, the estimatg computed by TD(1) oncei, is observed is equal ﬂzfjt

We now state and prove our convergence theorem. For this result, we assume a finite
upper bound both on the value function and on the variance of the sum of discounted
rewards.

TuEOREM 4 Suppose the Markov processis such that, for all i, |V;| < V and

. 2
E (Z'ykr1+k—Vi) iy =il <R (15)

k=0

for finiteand known V" and R.
Suppose that TD*(1) is executed as described above with w; = 0 and learning rate

_ VVN
TS e VR

where J = V/N(147)/(1 — 7). Then
liE [<on B L
¢ t=1 h B B ¢ ¢ .

Proof: From Eq. (14)]|X}|| < 1/(1 —v) sowe choos&; = 1/(1 — 7). Letu be such

thatu; = V;. Then||u|| < U wherel/ = V/N. Finally, let K = R¢. Our choice for is

identical to that in Theorem 2 where the appropriate substitutions have been made.
Note that

N oo 2
B (v —Vi)*] =Y _Prli=i]-E (kamk—w) i =i| <R
i=1 k=0

by the assumption in Eq. (15). Thus, becausex; = V;,,

4 4

E[Lf(u,9)] =) Elu-xi—y)] => E[Vi—w)’] <R(=K.

t=1 t=1
Taking expectations of both sides of the bound in Lemma 1, we have that

< bE [L:(u, S)] + [[u— w1 |?

B [L4(TD" (1), 9)] G

18 R. E. SCHAPIRE AND M. K. WARMUTH

foranyb > 0 for whichC; > 0. Therefore, by a proof identical to the proof of Theorem 2
(except that we assume only thit(u, S) is bounded byk in expectation), we have

E[L4(TD*(1),5)] < E[LY(w,9)] + 2VE(1 +7)UX1 + (1 +7)%||u|>X,%.(16)

Sinceu - x; = V;,, % = V;', andE [y, | i,] = V;,, it can be verified that

Bl 50— (v x)) = B[V, - V)7

The theorem now follows by averaging over all time stepad combining with Eq. (16).
|

Unfortunately, we do not know how to prove a convergence result similar to Theorem 4
for TD*(A) for general. This is because this proof technique requires a worst-case bound
in which the termZ.*(u, S) appears with a coefficient af

Of course, Theorem 4 represents a considerable weakening of the worst-case results
presented in Section 4. These worst-case bounds are stronger because (1) they are in terms
of the actual discounted sum of rewards rather than its expectation, and (2) they do not
depend on any statistical assumptions. Indeed, the generality of the results in Section 4
allows us to say something meaningful about the behavior 6f{XPfor many similar but
more difficult situations such as when

e there are a very large or even an infinite number of states (a state can be any vector
in 2Y).

e some states are ambiguously represented so that two or more states are represented by
the same vector.

¢ the underlying transition probabilities are allowed to change with time.

e each transition is chosen entirely or in part by an adversary (as might be the case in a
game-playing scenario).

~

Algorithm for the batch model

In the usual supervised learning setting, the on-line learning proceeds as follows: In each
trial ¢ > 1 the learner receives an instangec I2™¥ . Then, after producing a predictign
it gets a reinforcemeny, and incurs losgg; — y:)?.

A classical algorithm for this problem is the Widrow-Hoff algorithm. It keeps a linear
hypothesis represented by the veatgrand predicts withy; = w; - x,. The weight vector
is updated using gradient descent:

Wipl = Wy — 277t(Wt c Xy — yt)xt~

Note that2(w; - x; — y:)x; is the gradient of the logsv, - x; — y;)? with respect tow;.

There is a straightforward generalization of the above scenario when more than one
instance is received in each trialln this generalization, the learner does the following in
each trial:

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 19

1. receives a real-valued mati; with N columns;
2. computes a predictign;

3. gets reinforcemeny;; bothy, andy; are real column vectors whose dimension is
equal to the number of rows &f;

4. incurs losd|y; — y:||*.

The rows of the matrifM; can be viewed as a batch of instances received at trishe
algorithm has to predict on all instances received in trizdfore it gets the reinforcement
vectory; which contains one reinforcement per row. For each instance, the algorithm
is charged for the usual square loss, and the loss inttiasummed over all instances
received in that trial.

The algorithm we study, called WHM, is a direct generalization of the Widrow-Hoff
algorithm and was previously analyzed in the noise-free case by Cesa-Bianchi, Long and
Warmuth (1993), The learner maintains a weight vestpre =¥ and, on each trial,
computes its prediction as

Vi = Mywy.
After receiving reinforcemery;, the weight vector is updated using the rule
Wipl = Wy — QUtMtT(MtWt - Yt)~

Note that the Widrow-Hoff algorithm is a special case of WHM in which each ma-
trix M, contains exactly one row. Also, the update is standard gradient descent in that
2M7 (M;w; — y;) is the gradient of the lo§$M,w; — y.||> with respect tow;.

To model a particular reinforcement learning problem, we have the freedom to make up
the matricesM; and reinforcementg; to suit our purpose. For example, Sutton (1988)
and others have considered a model in which the learner takes a random walk on a Markov
chain until it reaches a terminal state, whereupon it receives some feedback, and starts over
with a new walk. The learner’s goal is to predict the final outcome of each walk. This
problemis really a special case of our model in which wéMgtcontain the instances of a
run and sey; = (2, - -, z), wherez is the reinforcement received for thié run. (In
this case, Sutton shows that the Widrow-Hoff algorithm is actually equivalent to a version
of TD(1) in which updates are not made to the weight veetountil the final outcome is
received.)

An exampleis a pairf M., y:), and, as before, we ustto denote a sequence of examples.

We write L‘(A, S) to denote the total loss of algorithmon sequence:

4
LZ(Aa S) = Z(f’t - yt)za
t=1

wherey; is the prediction of4 in the¢*" trial, and/ is the total length of the sequence.
Similarly, the total loss of a weight vectare R” is defined as

20 R. E. SCHAPIRE AND M. K. WARMUTH

L (u, S) = Z(Mtu —y)?.

t=1

The proof of the following lemma and theorem are a straightforward generalization of
the worst-case analysis of the Widrow-Hoff algorithm given by Cesa-Bianchi, Long and
Warmuth (1993). In the proof, we definglM||, the norm of any matridM, as

[IM]| = max [[Mx]|.
l1xl|=1

For comparison to the results in the first part of this paper, it is useful to notg Mift<
X +/m wherem is the number of rows d¥1, andX is an upper bound on the norm of each
row of M.

For any vector, we writex” to denotex” x.

LEMMA 2 Let (M, y) beanarbitrary example such that ||M|| < M. Let s and u be any
weight vectors. Let b > 0, and let the learning rate be

1
T (MIE+ 1/8)

Then

[IMs — y[|* < (MZb+ 1)[[Mu = y[|* + (M? + 1/b)([Ju = s|]* = [[u — w]]?),
17)

where w = s — 2npM7 (Ms — y) denotes the weight vector of the algorithm WHM after
updating its weight vector s.

Proof: Lete:=y — Ms ande, := y — Mu. Then inequality (17) holds if
fo=lu—w|? = |Ju—s||? + 2ne? — be,” < 0.
Sincew = s + 2nM7 e, f can be rewritten as

f = —4n(u—s)"'M%e + 4n*||MTe||? + 2ne” — be,”
= —dnle —ey) e+ 477 || M7 e||? + 2ne” — bey”
= —2e’ 4+ 4ne T e +4p* || MTe||? — be, 2.

Since2e, e < %euz + 2Le? and sincg|M”e|| < ||[M]]||e||, we can upper boungl by
e’ (=2 + 4n*(|IM]||* + 1/b)) = 0.
]

THEOREM 5 Let S be any sequence of examples and let M be the largest norm || M,|].
If the matrix algorithmWHM uses any start vector s and learning rates

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 21

1
T (ML 1 M)
then we have for any vector u the bound
LY(WHM, 8) < 2(L*(u, 5) + M?[|s — u|*). (18)

Assume further that we know bounds K and U/ such that for someuwe have L (u, S) < K
and ||s — u|| < U. Then for thelearning rates

U

n=n= =
T 2|IMy[U+ MVE)

we have
LYWHM, S) < Lf(u, S) + 2MUVE + M?||s — ul|*. (19)

Proof: Assume that
1

T S(IMIE + 1/8)

for someb > 0 to be chosen later. By summing the inequality of Lemma 2 over all runs of
S we get
LYWHM, S) < (bM* + 1)L (u, 8) + (M? + 1/b)(|[u = s[|* — [Ju — w'[|?),

where w’ is the weight vector after the last reinforcement.%fis processed. Since
[lu —w’||> > 0, we have

LYWHM, S) < (bM? + 1)L (u, S) + (M? 4 1/b)|[u — s

Now setting = 1/M 2 gives the choice af in the first part of the theorem and so yields
the bound in Eqg. (18).
Assuming further that‘(u, S) < K and||s — u|| < U, we get

LY(WHM, S) < L(u, S) + M?||s — u||* + bKM* + U?/b. (20)

The part of the right hand side that dependshas b K M2 + U/2/b which is minimized
whent = U/(M~/K). Using this value o in Eq. (20) gives the desired choicespand
the bound in Eqg. (19).]

In the special case thaf = 0, settingn; = 1/(2||M,||?) gives a bound of
LYWHM, S) < Lf(u, S) + M?||s — u||?.

Note that to prove thig} = oo is used. The bound fak = 0 was previously proved by
Cesa-Bianchi, Long and Warmuth (1993). An alternate proof of the above theorem via
a reduction from the corresponding theorem for the original Widrow-Hoff algorithm was
recently provided by Kivinen and Warmuth (1994).

The following lower bound shows that the bounds of the above theorem are best possible.

22 R. E. SCHAPIRE AND M. K. WARMUTH

THEOREM 6 Let Nym > 1, K, U > 0and M > 0. For every prediction algorithm A
there exists a sequence .S consisting of a single example (M, y) such that the following
hold:

1. Misanm x N matrixand ||M|| = M;
2. K =min{Lu,S) : |ju|| < U}; and

3. LYA,S) > K+ 2UMVK +U*M?>.

Proof: As in the proof of Theorem 3, we prove the result in the case/that 1, without
loss of generality. ThusyI is actually a column vector iR™.

Let each component & be equal tal/ /+/m so thaf|M|| = M. Leteach component of
y be equal tesz wherez = (MU ++/K)/\/m ands € {—1,+1} is chosen adversarially
after A has made its prediction = (91, ..., 9m)" .

To see that part 2 holds, lat= « be a vector (scalar, really). Then

L, $) = [Mu— | = m(Mu//im - s2)°

which is minimized when: = sU for |u| < U. In this case[‘(u, S) = K.
Finally, by choosing adversarially to maximize algoritho’s loss, we have

LY(A,S) = g — s2)?
(4,9) se{n_l?fil};(y 52)
1 < ~ 2 2
2 5 2 (== e))
> > 2= K +2MUVKE + MU,

8. Discussion

The primary contribution of this paper is the analysis of some simple temporal-difference
algorithms using a worst-case approach. This method of analysis differs dramatically from
the statistical approach that has been used in the past for such problems, and our approach
has some important advantages.

First, the results that are obtained using the worst-case approach are quite robust. Ob-
viously, any analysis of any learning algorithm is valid only when the assumed conditions
actually hold in the real world. By making the most minimal of assumptions — and, in
particular, by making no assumptions at all about the stochastic nature of the world — we
hope to be able to provide analyses that are as robust and broadly applicable as possible.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 23

Statistical methods for analyzing on-line learning algorithms are only necessary when
worst-case bounds cannot be obtained. In this paper, we demonstrated that temporal-
difference learning algorithms with simple linear models are highly amenable to worst-
case analysis. Although one might expect such a pessimistic approach to give rather weak
results, we have found, somewhat surprisingly, that very strong bounds can often be proved
even in the worst case.

Worst-case bounds for on-line linear learning algorithms can be very tight even on
artificial data (Kivinen & Warmuth, 1994). Good experimental performance of a particular
algorithm might be seen as weak evidence for showing that the algorithmis good since every
algorithm performs well on some data, particularly when the data is artificial. However, if
we have a worst-case bound for a particular algorithm, then we can use experimental data
to show how much worse the competitors can perform relative to the worst-case bound of
the algorithm in question.

Another strength of the worst-case approach is its emphasis on the actual performance
of the learning algorithm on the actually observed data. Breaking with more traditional
approaches, we do not analyze how well the learning algorithm performs in expectation,
or how well it performs asymptotically as the amount of training data becomes infinite, or
how well the algorithm estimates the underlying parameters of some assumed stochastic
model. Rather, we focus on the quality of the learner’s predictions as measured against the
finite sequence of data that it actually observes.

Finally, our method of analysis seems to be more fine-grained than previous approaches.
As a result, the worst-case approach may help to resolve a number of open issues in
temporal-difference learning, such as the following:

e Whichlearning rules are best for which problems? We use the total worst-case loss as
our criterion. Minimizing this criterion led us to discover the modified learning rule
TD*(A). Unlike the original TG \), this rule has a gradient descent interpretation for
generalx. Our method can also be used to derive worst-case bounds for the original
rule, but we were unable to obtain bounds for (RIp stronger than those given for
TD*(A). Itwill be curious to see how the two rules compare experimentally.

Also, the results in Section 4 provide explicit worst-case bounds on the performance
of TD*(0) and TD'(1). These bounds show that one of the two algorithms may or
may not be better than the other depending on the values of the paratkigtéys etc.

Thus, using a priori knowledge we may have about a particular learning problem, we
can use these bounds to guide us in deciding which algorithm to use.

e How should alearning algorithm's parameters betuned? For instance, we have shown
how the learning rate should be chosen for T0) and TD' (1) using knowledge
which may be available about a particular problem. For the choige ®fitton showed
experimentally that, in some cases, the learner’'s hypothesis got closest to the target
when X is chosen in0, 1) and that there is clearly one optimal choice. So far, our
worst-case bounds for TDA) are notin closed formwheh e (0, 1), but, numerically,
we have found that our results are entirely consistent with Sutton’s in this regard.

¢ How does the performance of a learning algorithm depend on various parameters of
the problem? For instance, our bounds show explicitly how the performance 6{XD

24 R. E. SCHAPIRE AND M. K. WARMUTH

degrades as approaches. Furthermore, the lower bounds that can sometimes be
proved (such as in Section 5) help us to understand what performance is best possible
as a function of these parameters.

Open problems. There remain many open research problems in this area. The first
of these is to reduce the bound given in Lemma 1 to closed form to facilitate the optimal
choice ofA € [0, 1]. However, as clearly indicated by Fig. 2, even wheandr are chosen

S0 as to minimize this bound, there remains a significant gap between the upper bounds
proved in Section 4 and the lower bound proved in Section 5. This may be a weakness
of our analysis, or this may be an indication that an algorithm better than either) TD

TD*(A) is waiting to be discovered.

So far, we have only been able to obtain results when the comparison class consists of
linear predictors defined by a weight vectorvhich make predictions of the form - x;.

It is an open problem to prove worst-case loss bounds with respect to other comparison
classes.

As described in Section 3, TD\) can be motivated using gradient descent. Rules
of this kind can alternatively be derived within a framework described by Kivinen and
Warmuth (1994). Moreover, by modifying one of the parameters of their framework, they
show that update rules having a qualitatively different flavor can be derived that use the
approximation of the gradie® w, (y: — 9:)? in the exponent of a multiplicative update.
(Note that the TDA) update is additive.) In particular, they analyze such an algorithm,
which they call EG, for the same problem that we are considering in the special case that
v = 0. Although the bounds they obtain are generally incomparable with the bounds
derived for gradient-descent algorithms, these new algorithms have great advantages in
some very important cases. Itis straightforward to generalize their update rylesfar,
but the analysis of the resulting update rule is an open problem (although we have made
some preliminary progress in this direction).

Lastly, Sutton’s TIDA) algorithm can be viewed as a special case of Watkif'd¢arning”
algorithm (1989). This algorithm is meant to handle a setting in which the learner has a
set of actions to choose from, and attempts to choose its actions so as to maximize its total
payoff. A very interesting open problem is the extension of the worst-case approach to
such a setting in which the learner has partial control over its environment and over the
feedback that it receives.

Acknowledgments

We are very grateful to Rich Sutton for his continued feedback and guidance. Thanks also
to Satinder Singh for thought-provoking discussions, and to the anonymous referees for
their careful reading and feedback.

Manfred Warmuth acknowledges the support of NSF grant IRI-9123692 and AT&T Bell
Laboratories. This research was primarily conducted while visiting AT&T Bell Laborato-
ries.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 25

Appendix

In this technical appendix, we complete the proof of Lemma 1 by boundih), the
largest eigenvalue of the matriM.
Let I be thel x ¢ identity matrix, and, foi, j > 0, define

S; = Z; +Z7,
R, = Z!Z;,
P = Z]Z; + 7] Z;.
SinceZ; is the zero matrix fog > ¢, we can rewritéV’ more conveniently as
V=> (70)Z:.
i>0
By direct but tedious computations, we have that
DD =1—-+S; ++’Ry,
and
VD =1+ (1 - %) ;(yx)izi

sinceZ;Z, = Z;4, for¢ > 0. Also,

1\? . L
D'VIVD = 1+ (1— X) STONTRi+ Y ()P
i>1 i>i>1

+ (1 - %) ;(7;)isi.

Thus,M can be written as:
2

2
(anxz — 2+ %) I+ <—772X/\2’Y + (77 — %) y(1 - A)) S1+ 72X\ Ry

NERICOE

i>32
n? 1\?2 . .
i>1 i>i>1

Itis known thatp(A4 + B) < p(A) + p(B) for real, symmetric matriced and B. Further,
it can be shown (for instance, using Eq. (10)) that

p(I) = 1;
p(R;) < 1
p(£S:) < 2
p(Pij) < 2

26 R. E. SCHAPIRE AND M. K. WARMUTH

Applying these bounds gives that
2

2
p(M) < 9°X,* —2n+ % +2 ‘ (77 — %) (1 =X) = > X3y |+ 97 X2
2

> ()

i>32

+§ (1 — %) SN +2 Y ()

i>1 i>ix>1
= —Cy.
Notes
1. Inthis paper we only use one vector norm, fhe-norm: ||u|| = 4 /Zf‘\; u?.
2. In some versions of TD), this difficulty is overcome by replacing:+1 = W41 - X¢41 in the update

rule (4) by the approximatiow ¢ - X;41.
The factor of two in front of;+ can be absorbed intg; .
4. If N > 1, we can reduce to the one-dimensional case by zeroing all but one of the components of

w

References

Nicold Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-case quadratic loss bounds for a
generalization of the Widrow-Hoff rule. IIRroceedingsof the Sxth Annual ACM Conferenceon Computational
Learning Theory, pages 429-438, July 1993.

Peter Dayan. The convergencelab () for general\. MachineLearning, 8(3/4):341-362, May 1992.

Peter Dayan and Terrence J. SejnowdKiD (1) convergeswith probability IMachineLearning, 14(3):295-301,

1994.

Roger A. Horn and Charles R. Johnsdviatrix Analysis. Cambridge University Press, 1985.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Technical Report 9307, MIT Computational Cognitive Science, July 1993.

Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated gradient updates for learning linear
functions. Technical Report UCSC-CRL-94-16, University of California Santa Cruz, Computer Research
Laboratory, 1994.

Richard S. Sutton. Learningto predict by the methods of temporal differeashineLearning, 3:9-44, 1988.

C. J. C. H. Watkins.Learning from delayed rewards. PhD thesis, University of Cambridge, England, 1989.

