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Abstract

We study a simple learning algorithm for binary classification. Instead of pre-
dicting with the best hypothesis in the hypothesis class, i.e., the hypothesis that
minimizes the training error, our algorithm predicts with a weighted average of all
hypotheses, weighted exponentially with respect to their training error. We show
that the prediction of this algorithm is much more stable than the prediction of
an algorithm that predicts with the best hypothesis. By allowing the algorithm to
abstain from predicting on some examples, we show that the predictions it makes
when it does not abstain are very reliable. Finally, we show that the probability
that the algorithm abstains is comparable to the generalization error of the best
hypothesis in the class.

�Part of this work was done while visiting AT&T Labs. This research was supported in part by a grant
from the Israel Academy of Science.



1 Introduction

Consider a binary classification learning problem. Suppose we use a hypothesis classH
and are presented with a training set �x�� y��� � � � � �xm� ym� drawn independently from
a distribution D over the example domain X � f�����g. Most learning algorithms
for this problem that have been studied in computational learning theory are based
on identifying the hypothesis h � H that minimizes the training error. One of the
main problems with this approach is the phenomenon called overfitting. Overfitting
is encountered when the hypothesis class H is too “large,” “complex” or “flexible”
relative to the size of the training set. In this case, it is likely that the algorithm will
find a hypothesis whose training error is very small but whose generalization error, or
test error, is large. To overcome this problem, one usually uses either model-selection
or regularization terms. Model selection methods try to identify the “right” complexity
for H. A regularization term is a measure of the complexity of the hypothesis h that is
added to the training error to define a cost for each hypothesis. By minimizing this cost,
the learning algorithm attempts to minimize both the training error and the amount of
overfitting.

However, it is not clear that predicting with the hypothesis that minimizes the train-
ing error is indeed the only or the best prediction. One popular alternative to predicting
using the single best hypothesis is to average the prediction of those hypotheses whose
performance on the training set is close to optimal. Two popular methods of this type
are Bayesian averaging [13] and bagging [3, 4]. There is considerable experimental ev-
idence that such averaging can significantly reduce the amount of overfitting suffered
by the learning algorithm. However, there is, we believe, a lack of theory for explaining
this reduction.

In the context of bagging, the common explanation is based on the argument that
averaging reduces the variance of the classification rule. However, as argued else-
where [9, 16], there is currently no adequate definition of variance for classification
problems. In addition, this explanation fails to take into account the effect that the
complexity of the model class has on overfitting.

In the Bayesian approach, the problem of overfitting is generally ignored. Instead,
the basic argument is that the Bayesian method is always the best method, and there-
fore, the only important issues are how to choose a good prior distribution and how
to efficiently calculate the posterior average. However, the optimality of the Bayesian
method is based on the assumption that the data we observe are generated according
to one of the distribution models in the chosen class of models. While this assump-
tion is attractive for theory, it almost never holds in practice. In practice, one usually
uses relatively simple models, either because there is not enough data to estimate the
“true” model, because the computational complexity is prohibitive, or because our prior
knowledge of the system is only partial. Even when very complex models are used, it
is rarely the case that one can assume that the data are generated by a model in the
class. As a result, Bayesian theory is inadequate for explaining why Bayesian predic-
tion methods are better than predicting with the best model in the class.

In this paper, we propose a prediction method that is based on averaging among
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the empirically best classification rules. This method is similar to, but different from,
the Bayesian method. The advantage of this method is that we can theoretically jus-
tify its usage without making the aforementioned Bayesian assumption that the data
is generated by a distribution from a given class of distributions. Instead, we make
the following weaker assumptions which are common in the context of empirical error
minimization methods. First, we assume that the data is generated i.i.d. according to
the distribution D defined above but make absolutely no assumption about D other
than that it is a fixed distribution. Second, we choose a class of prediction rules (map-
pings from the input to the binary output) and assume that there are prediction rules in
that class whose probability of error (with respect to the distribution D) is small, but
not necessarily equal to zero.

We deviate from the analysis used for empirical error minimization methods in our
definition of a classification rule. In the context of a binary prediction problem, we
allow the classifier three possible outputs. Two of them, �� and �� are interpreted, as
before, as predictions of the label. The third, denoted by �, should be interpreted as
“no prediction” or “insufficient data”.

What is the benefit of allowing the predictor this new output? The advantage is
that it allows the user of the classifier to identify those examples on which overfitting
might occur. For example, suppose that the best hypothesis h in our hypothesis class
H has an expected error of ��. Suppose further that the size of the training set and
the complexity of H are such that the hypothesis that minimizes the empirical error h �

is likely to have a generalization error of ��. If we use h� to make our predictions,
then the most we can hope to get from a uniform-convergence type analysis is an upper
bound on the generalization error that is close to ��; we have no way of identifying
where these errors might occur. On the other hand, if we allow the algorithm to output
a zero, we can hope that the algorithm will output zero on about �� of the input, and
will be incorrect on about �� of the data. In such a case, we say that the classifier
identifies the locations of potential overfitting and allows the user to choose a special
course of action for this case (such as referring the example back to a human to make
the classification). In this case, we can justifiably say that the algorithm managed to
avoid overfitting. It is not misleading us into thinking that we have a classifier that is
very accurate just because its error on the training set is small.

As a toy example, Figure 1 shows a tiny learning problem in which positive and
negative training examples are indicated by pluses and minuses. In this example, hy-
potheses are represented by rectangles, and we suppose that there is a large space of
rectangular hypotheses, the best three of which are shown in the figure. Each of these
makes two mistakes on this data set. However, if we take an average of hypotheses,
one can imagine that it would be possible to obtain a combined classifier that abstains
on all points in the shaded region where there is likely to be disagreement among the
hypotheses, and predicts according to the weighted majority elsewhere. Such a com-
bined classifier, when it does not abstain, would give nearly perfect predictions having
successfully identified the regions where errors are most likely to occur.

Of course, if the generated classifier outputs zero most of the time, then there is no
benefit from having it. We need to show two things to be convinced that the addition of
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Figure 1: A toy example.

the new output is useful. First, we need to show that the probability of outputting a zero
is of the same order as the bounds on overfitting that we would get from an analysis
based on uniform convergence. Second, we need to show that when the output is ��
or ��, the probability of making a mistake is similar to the generalization error of the
best hypothesis in the class. In this paper, we prove that our algorithm has both these
properties in the case that H is a finite class of models. In future work, we hope to
show how this work can be extended to infinite model classes.

If H is finite, the uniform convergence bound is the well-known Occam’s razor
bound [2]. If H is infinite, we have to resort to bounds based on VC-dimension [18].
Unfortunately, these bounds are usually very loose and provide very poor estimates for
the generalization error of learning algorithms in real-world applications.

In recent years, researchers in computational learning theory have started to con-
sider algorithms that search for a good classification rule by optimizing quantities other
than the training error. Algorithms of this type include support-vector machines [18]
and boosting [16] which maximize the “margin” of a linear classifier. Other work by
Shawe-Taylor and Williamson [17] and McAllester [14] provide PAC-style analysis of
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Bayesian algorithms. Bayesian algorithms compute the posterior distribution over the
space of hypotheses and predict by averaging the predictions of all hypotheses whose
training error is close to the minimum.

In this paper, we study a learning algorithm that is very similar to the algorithm
that would be suggested by Bayesian analysis but uses a slightly different formula
for computing the posterior distribution. This formula is the “exponential weights”
formula introduced by Littlestone and Warmuth in the context of the weighted-majority
algorithm [12] and further analyzed by Cesa-Bianchi et al. [6]. Note however that we
are generating a fixed classification rule and are therefore working in the standard batch
learning model and not in the online learning model.

The analysis of the algorithm consists of two parts. First, we consider, for each
instance x, the log of the ratio of the total weight between those hypotheses that pre-
dict �� on x and those hypotheses that predict ��, where the weights depend on a
parameter �. We denote this ratio by 	��x�. We prove that 	��x� is rather insensitive to
the random choice of the training set. In particular, we prove that the variation in 	��x�
is independent of the concept class H! This proof is interesting because it avoids using
the standard “union bound”; in fact, it altogether avoids making any uniform claim on
all of the hypotheses in H.

Using this central theorem, we can show that if 	��x� is far from zero, then predicting
with sign�	��x�� is very stable, i.e., is unlikely to change from training set to training
set. More precisely, we introduce a non-stochastic quantity ��x� and show that 	��x� is,
with high probability, very close to ��x�. Our algorithm predicts with sign� 	��x�� when
	��x� is far from zero and abstains from prediction when 	��x� is close to zero. We prove
that the probability that this algorithm makes a prediction different from sign���x��
when it does not abstain is very small. On the other hand, we show that if H is finite
and there is a hypothesis h � H whose error is � then we can set the parameter � such
that the error of sign���x�� is at most about 
�.

The relation between our algorithm and algorithms that predict with the best hy-
pothesis on the training set has a close correspondence to the relation between Bayesian
prediction algorithms and MAP (maximum a-posteriori) algorithms. However, the
analysis is carried out without making a Bayesian assumption, that is, we do not as-
sume that the training data are generated by a model in a pre-specified class chosen by
a pre-specified prior distribution. The prior and posterior distributions are internal to
the algorithm and are not part of the world around it.

We hope that this paper will shed some new light on the use of algorithms that
average many hypotheses such as Bayesian algorithms and averaging methods such as
bagging [3, 4].

The paper is organized as follows. We start in Section 2 by describing the prediction
algorithm. We give the basic analysis of the algorithm in Section 3. In Section 4, we
bound the performance of ��x� in terms of the error of the best hypothesis in the class.
In Section 6, we give a bound that is uniform with respect to the learning rate parameter
� which makes it possible to choose this parameter after observing the training set.
Finally, in Section 7, we outline how the ideas and results in Sections 2, 3 and 4 can be

5



extended to infinite hypothesis classes.

2 The algorithm

Let D be a fixed but unknown distribution over �x� y� pairs, where x � X and y �
f�����g. Let H be a fixed class of hypotheses, i.e., mappings from X to f�����g.
Let S denote a sample ofm training examples, each drawn independently at random ac-
cording toD. We denote the true error of a hypothesish by ��h�

�
� Pr�x�y��D �h�x� �� y


and the estimated error according to the sample S by 	��h�
�
� �

m

Pm
i�� �h�x� �� y
.

The prediction algorithm that we study calculates for each hypothesis h a weight
that is defined as w�h�

�
� e�����h� where � � � is a parameter of the algorithm. The

prediction on a new instance x is defined as a function of the empirical log ratio:

	���x�
�
�

�

�
ln

�P
h�h�x����w�h�P
h�h�x����w�h�

�

�
�

�
ln

�P
h�h�x���� e

�����h�P
h�h�x���� e

�����h�

�
�

The prediction is defined to be

	p����x� �

�
sign�	��x�� if j	��x�j � �
� otherwise

where � � � is a second parameter of the algorithm. Intuitively, the parameter �
characterizes the range of values of 	���x� in which the training data is insufficient to
make a good prediction and a better choice is to abstain. When clear from context, we
generally drop the subscripts and write simply 	��x� and 	p�x�.

3 Analysis of the algorithm

For an instance x, we define the true log ratio to be

���x�
�
�

�

�
ln

P
h�h�x���� e

����h�P
h�h�x���� e

����h�

which we often write as ��x� when � is clear from context. The basic idea of our
analysis is to show that 	��x� must usually be close to ��x� with high probability. In
particular, we will prove the following two theorems. First, we will prove that for any
fixed x the difference between the empirical log ratio and the true log ratio is small:

Theorem 1 For any distributionD, any instance x, any�� � � � and any s � f�����g:

Pr
S�Dm

h
s���x� � 	��x�� � 
��

�

�m

i
� 
e���

�m�
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Then, in order to show that our algorithm has reasonable performance, we will
transform Theorem 1 which gives a guarantee that holds with high probability for any
fixed instance to a claim that holds with respect to a randomly chosen instance:

Theorem 2 For any 	 � � and � � �, if we set

� � 


s
ln�
p


	�

m
�

�

�m

then, with probability at least �� 	 over the random choice of the training set

Pr
�x�y��D

�	p�x� �� � and 	p�x� �� sign���x��
 � 	�

This theorem guarantees that, when our algorithm predicts something different than
� (which can be interpreted as “I don’t know”) it is very likely to be making the same
prediction as ��x�. Note that the statements of Theorems 1 and 2 have no dependence
on the hypothesis class H. In fact, the theorems and their proofs can be extended to
infinite hypothesis classes, as discussed in Section 7.

We define some notation that will be used in the proofs. For K � H, let

R��K� � �

�
ln

�X
h�K

e����h�

�

and let 	R��K� be the random variable

	R��K� � �

�
ln

�X
h�K

e�����h�

�
�

We show that 	R��K� is close to R��K� (with high probability) in two steps: First, we

show that 	R��K� is close to its expectation E
h
	R��K�

i
with high probability. Then we

show that E
h
	R��K�

i
is close to R��K�.

To prove the first result, we apply McDiarmid’s theorem [15]:

Theorem 3 (McDiarmid) Let X�� � � � � Xm be independent random variables taking
values in a set V . Let f � V m � R be such that, for i � �� � � � �m:

jf�x�� � � � � xm�� f�x�� � � � � xi��� x
�
i� xi��� � � � � xm�j � ci

for all x�� � � � � xm�x�i � V . Then for � � �, s � f�����g

Pr

�
s

�
f�X�� � � � � Xm�� E �f�X�� � � � � Xm�


�
� �

�
� exp

�
� 
��Pm

i�� c
�
i

�
�

Lemma 1 Let K and 	R��K� be as above for a sample of size m. For � � �, � � �
and s � f�����g

Pr

�
s

�
	R��K� � E

h
	R��K�

i�
� �

�
� e���

�m�
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Proof: We apply McDiarmid’s theorem with the X i’s set to the labeled examples of S,
and the function f set equal to the random variable 	R��K�. Let S� be the sample S in
which one example �xi� yi� is replaced by �x�i� y

�
i�. Let 	���h� be the empirical error of

h on S �, and let

	R���K� �
�

�
ln

�X
h�K

e����
��h�

�
�

Then

	R���K�� 	R��K� �
�

�
ln

�P
h�K e

������h�P
h�K e

�����h�

�

� �

�
ln

�
max
h�K

e�����
��h�����h��

�

� max
h�K

�	���h�� 	��h�� � �

m
�

The first inequality uses the fact that �
P

i ai�
�
P

i bi� � maxi ai
bi for positive ai’s
and bi’s. The second inequality uses the fact that changing one example can change the
empirical error by at most �
m.

By the symmetry of this argument, j 	R��K� � 	R���K�j � �
m. Plugging in ci �
�
m in McDiarmid’s theorem gives the result.

Lemma 2 Let K, R��K� and 	R��K� be as above for a sample of size m. Then for
� � �

R��K� � E
h
	R��K�

i
� R��K� � �

�m
�

Proof: For the lower bound on E
h
	R��K�

i
, let K � fh�� � � � � hNg. For x � RN , let

g�x� � ln

�
NX
i��

exi

�
�

Then g is convex: Given � � ��� �� and x�y � RN , let p � �
�, q � �
��� ��, and
define ri � e�xi and si � e�����yi . Since �
p� �
q � �, by Hölder’s inequality,

X
i

risi �
�X

i

rpi

���p�X
i

sqi

���q

�

Plugging in definitions and taking logarithms, this is equivalent to

g��x� ��� ��y� � �g�x� � ��� ��g�y�

so g is convex as claimed.
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Therefore, by Jensen’s inequality,

�E
h
	R��K�

i
� E �g�h��	��h��� � � � ���	��hN �i�


� g�

�
��E �	��h��
� � � � ���E �	��hN �


	
�

� g�h����h��� � � � �����hN�i� � �R��K��

To prove the upper bound on E
h
	R��K�

i
, we have by Jensen’s inequality (applied

to the concave log function),

E
h
	R��K�

i
�

�

�
E



ln

�X
h�K

e�����h�

��

� �

�
ln

�X
h�K

E
h
e�����h�

i�
� (1)

Fix h and let � � ��h� and 	� � 	��h�. Let Zi be a Bernoulli random variable that is
� if h�xi� �� yi and � otherwise. Then we can write

E
h
e�������

i
� E



exp

�
�

m

mX
i��

��� Zi�

��

�

mY
i��

E
h
exp

� �
m
��� Zi�


i

�
�
e�

��	m�

m

� e�
��	m�

The second equality uses independence of the Z i’s. The last step uses the fact, proved
by Hoeffding [11], that for any random variable X with E �X 
 � � and a � X � b,

E
�
eX
� � e�b�a�

��	�

Here we let X � ��
m���� Zi�.
Thus, E

�
e�����h�

� � e�
��	me����h�. Combined with Eq. (1), this gives that

E
h
	R��K�

i
� �

�
ln

�
e�

��	m
X
h�K

e����h�

�
� R��K� � �

�m

as claimed.
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Proof of Theorem 1: Given x, we partition the hypothesis set H into two. The subset
K includes the hypotheses h such that h�x� � �� and its complement K c includes all
h for which h�x� � ��. We can now write

��x�� 	��x� �
�

�
ln

�P
h�K e

����h�P
h�K e

�����h�

�
�

�

�
ln

�P
h�Kc e

�����h�P
h�Kc e

����h�

�

� R��K��R��Kc�� 	R��K� � 	R��Kc� (2)

Combining Lemmas 1 and 2 we find that

Pr
h
R��K� � 	R��K� � �

i
� e���

�m� (3)

and
Pr
h
	R��Kc��R��Kc� � ��

�

�m

i
� e���

�m� (4)

Combining Eqs. (2), (3) and (4) we prove the claim for s � ��. The proof for s � ��
is almost identical.

Lemma 3 For any distributionD, any �� � � � and any s � f�����g, the probability
over samples S 	 Dm that

Pr
�x�y��D

h
s���x�� 	��x�� � 
��

�

�m

i
�
p

e��

�m

is at most
p

e��

�m.

Proof: Since Theorem 1 holds for all x, it also holds for a random x. Thus,

E
S�Dm

�
Pr

�x�y��D

h
s���x�� 	��x�� � 
��

�

�m

i�

� E
�x�y��D

h
Pr

S�Dm

h
s���x�� 	��x�� � 
��

�

�m

ii
� 
e���

�m�

The lemma now follows using Markov’s inequality.

Theorem 2 follows immediately from this lemma.

4 Performance relative to the best hypothesis

We now show that there exists a setting of � and � that yields performance guarantees
relative to the best hypothesis in the class. We compare these guarantees to those given
by the Occam argument [2] for the algorithm that uses a hypothesis that minimizes the
empirical error rate.
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In Lemma 3, we showed that the value of 	��x� is, with high probability, close to
��x�. We now show that, with respect to the actual distribution D, the sign of ��x� is
closely related to that of the best hypothesis in H. By combining these theorems, we
show that the generalization error of our algorithm is close to that of the best hypothesis
in H.

Note that the following theorem does not involve the training set in any way; it is
a claim about y��x� which is a deterministic function of �x� y�. Intuitively, for large
enough values of �, the function ��x� essentially averages the best hypotheses from
H. In the worst case, as we show in Section 5, this can at most double the error. The
following theorem gives a detailed tradeoff between all the parameters.

Theorem 4 Let H be a finite hypothesis class and let � be the error of the best hypoth-
esis in H with respect to the distribution D over the examples, i.e., � � minf��h� �
h � Hg. Let � � � and � � � be such that �� � �

. Then for any � � ln��jHj�
�,

Pr
�x�y��D

�y��x� � �
 � 

�
� � 
jHje������� ���

and

Pr
�x�y��D

�y��x� � 
�
 � �
� � e���

��
� � 
jHje�������



��� ��

� �
�
� � 
jHje�������



��� ���

Proof: We partition the hypotheses in H into two sets according to their true error. We
call those hypotheses whose error is smaller than ��� strong and the other hypotheses
weak.

We denote by Ww the total weight of the weak hypotheses:

Ww �
�

Z

X
h�H
 ��h�����

e����h�

where
Z �

X
h�H

e����h��

To upper bound Ww, note that we always have at least one strong hypothesis, namely,
the one that achieves ��h� � �. Thus,

Ww � jHje�������
e���

� jHje��� � (5)

From the assumption that � � ln��jHj�
�, we get that Ww � �
�.
For a given example �x� y�, we partition the strong hypotheses into two subsets

according to whether or not the hypothesis gives the correct prediction on �x� y�. We
denote the total weight of these subsets by

W�
s �x� y� �

�

Z

X
h�H
 ��h�	���� h�x��y

e����h�
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W�
s �x� y� �

�

Z

X
h�H
 ��h�	���� h�x���y

e����h��

By the definition of Z, for any �x� y�,

W�
s �x� y� �W�

s �x� y� �Ww � ��

We now prove the second part of the theorem; the first part follows from the second
part by setting � � �. We first bound y��x� using Ww, W�

s �x� y� and W�
s �x� y�:

y��x� � �

�
ln

�
W�

s �x� y�

W�
s �x� y� �Ww

�
�

Thus, y��x� � 
� implies

W�
s �x� y� �Ww

�� �W�
s �x� y� �Ww

� � e�����

or equivalently,

W�
s �x� y� �Ww � �

� � e���
�
� c�

We denote by h 	 S the random choice of a hypothesis from the strong set with
probability e����h�
Zs where Zs normalizes the weights within the strong set to sum
to 1. We find that

Pr
�x�y��D

�y��x� � 
�
 � Pr
�x�y��D

�
W�

s �x� y�

W�
s �x� y� �W�

s �x� y�
� c�Ww

��Ww

�

� Pr
�x�y��D

�
Pr
h�S

�h�x� �� y
 � c�Ww

��Ww

�

� E
�x�y��D

�
Pr
h�S

�h�x� �� y


�
��Ww

c�Ww
(6)

� E
h�S

�
Pr

�x�y��D
�h�x� �� y


�
��Ww

c�Ww
(7)

� ��� ��
��Ww

c�Ww
(8)

� ��� ��
�
� � e���

��
� � 
Wwe

���
�
� (9)

Eqs. (6) and (7) use Markov’s inequality and Fubini’s theorem. Eq. (8) follows from
the fact that ��h� 
 ��� for every strong hypothesis. Eq. (9) uses our assumptions that
�� � �

 andWw � �
� together with the inequality ���x�
���x���r�� � ��
xr
for x � �, r � � and x�� � r� � �

 (with x � Ww and r � e���).

Combining this bound with Eq. (5) proves the second statement of the theorem.
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5 Discussion

We now discuss the implications of Theorems 2 and 4. We start with a corollary of
Theorem 4 for a specific setting of the parameters � and � as a function of the sample
size m, the size of the hypothesis class H and the reliability parameter 	.

Corollary 1 Let �

 � � � �, 	 � � and

� � ln ��jHj�m����
� � � 


s
ln
�p



	
�

m
�

ln ��jHj�
�m����


�

For m � �,

Pr
�x�y��D

�y��x� � �
 �
�

 �

�

�m

��
��

�

m����

�

lnm

m����
 ln �jHj
�
�

and for

m �
�
��
vuutln

�p



	

�
ln��jHj�

�
�
��


�

we have

Pr
�x�y��D

�y��x� � 
�
 � �

�
�� 
��

�

m����


�
�

Proof: To prove the corollary, we use Theorem 4 with two different settings of �. The
first bound is a result of choosing � � �
m����
 � lnm
m����
 ln �jHj, the second
is a result of choosing � � 
��m
����.

We now discuss the significance of each statement in the corollary. Let us fix the
reliability parameter 	.

The first statement of Corollary 1 shows that the sign of the true log ratio is a
reasonably good proxy for the best hypothesis in the class. Specifically, the error of
sign���x�� is


��h�� �O

�
ln�m�

m����


�
�

Combining this with the statement of Theorem 2, we find that the probability that our
algorithm does not abstain and makes an incorrect prediction is upper bounded by


��h�� �O

�
ln�m�

m����


�
� 	� (10)

Note that this bound is independent of jHj.
In comparison, the upper bound on the hypothesis that minimizes the empirical risk

is

��h�� �O

�r
ln�jHj
	�

m

�
� (11)
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We see that the dependence on m here is slightly better, but the bound depends on the
hypothesis class, which is what we expect from an algorithm that cannot abstain.

For our algorithm, the dependence on jHj instead appears in the bound on the
probability of abstaining on a test example; this is given in the second statement of the
corollary. Combining that statement with Lemma 3, we find that for

m � �

��p
ln��
	� ln�jHj�


��
�
�

our algorithm will predict zero with probability at most

���h�� �O

�p
ln��
	� � ln�jHj�

m����


�
�

This bound is similar to the Occam bound (Eq. 11), but the choice of � makes an
important difference in the dependence on m.

We now argue that the factor of two in front of the error of the best hypothesis in
the class which appears in the first part of the corollary is necessary. Suppose that the
input domain X is partitioned into two parts A� and A� such that D�A�� � � � 
�
and D�A�� � 
�. Suppose that all the hypotheses in H predict correctly on instances
in A�. For each x � A� the prediction of each hypothesis is chosen independently at
random to be correct with probability �

� �� and incorrect with probability �

 �
��. (Suppose further the number of elements in A� and the number of hypotheses
is sufficiently large so that on most of the points in A� the actual fraction of correct
predictions is sufficiently close to �

 � ��.) In this case, each of the hypotheses in
H has error close to 
���

� ��� 
 ��� �O�m�
��. This also implies that all of the
hypotheses have approximately the same weight.

Consider now the value of ��x� for x � A�. As the weights of all of the hypotheses
is similar, we get that

�x � A�� y��x� 
 �

�
ln

�
�

� ��

�

 � ��

�

 ����

As 	� is likely to be very close to � we conclude that for x � A� our algorithm will
usually make a non-zero prediction that is incorrect. In other words our algorithm will
have a prediction error of about 
� while each of the hypotheses has error of about �.

It may seem impossible that the bound in Equation (10) is independent of the num-
ber of hypotheses. First, one should recall that a similar phenomenon exists in the
large margin analysis for hyperplanes, where the generalization error depends only on
the margin and not on the dimension of the class. One should not interpret our rsult
as suggesting that overfitting can never happen, regardless of the complexity of the
hypothesis space. In truth, if the hypothesis space is too complex, the algorithm will
simply abstain more often. For example, suppose that the hypothesis space consists
of all binary functions on a finite domain. For any set of training examples, there is a
function that has zero training error (assuming no example appears twice with different
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labels). However, we expect any algorithm to be unable to predict the label of a new
test example. Indeed, in this case, our algorithm will abstain on all unseen examples
(since 	��x� is exactly zero outside the training set).

In effect, we are replacing one type of guarantee with a different one. In the tradi-
tional analysis that is based on uniform convergence theory, the guarantee is of the form
“the error of the classification rule is at most �� O�ln�jH j�
pm�”. Our algorithm is
one for which there are two guarantees. First, we can say that “the error of the classi-
fication rule, when this rule makes a non-zero prediction, is at most 
� � �O ��


p
m�

(no dependence on the size of H here). Second, we can show that the probability that
the classification rule will generate a � (“I don’t know” prediction) is upper bounded
by ��� �O �ln�jH j�
pm�. This second bound does depend on the size of H ; however,
note that this quantity (the probability of predicting �) can be estimated directly from
the training sample, so in practice there is little need for an a-priori upper bound on it.

Using the size of the hypothesis class as the measure of its complexity is clearly
a very rough upper bound. For example, consider the case in which a large fraction
of the hypotheses in H are all equal, or almost equal, to a single function h �. It is
not hard to see that in this case our prediction algorithm, as stated, will have a strong
bias towards predicting like h�. This bias can be removed by replacing the set of
almost identical hypotheses by the single hypothesis h�. Doing this also improves
the guaranteed performance bounds because it reduces jH j. A systematic way for
removing this type of bias is to replace H with an �-net that covers it. In other words,
find a set of functions H� such that for any h � H there exists f � H� such that
Pr�x�y��D �h�x� �� f�x�
 � �. Of course, choosing an �-cover requires knowledge
of the marginal distribution over x defined by D and is a non-trivial computational
problem. Potential future research regarding the use of �-covers in conjunction with
our prediction algorithm is discussed in Section 8.

Finally, Theorem 4 shows that the error of our predictor cannot be much worse
than twice the error of the best hypothesis. On the other hand, it is possible in some
favorable situations for our predictor to significantly outperform the best hypothesis.
For example, suppose that there is an h� � H such that ��h�� � �
�, and that for
each h � H� � H � fh�g, we have ��h� � �
�. Suppose further that for each x, the
fraction of h � H� with the right label is �
�. Choosing the hypothesis with lowest
observed error would give, hopefully, the hypothesis h � that has an error rate of �
�.
In our setting, for a labeled example �x� y�, if h��x� � y, then

y��x� �
�

�
ln

�
e���	 � ��
��jH�je����

��
��jH�je����
�

�
�

�
ln

�
� �

�e��	

jH�j
�
�

Thus, for � � �, we have y��x� � ln����e��	
jH�j�. Similarly, if h��x� �� y we have
y��x� � ln����
e��	
jH�j�. Note that this implies that p����x� correctly classifies all
the examples (for jHj large). Theorem 1, with � set to a constant, then guarantees for
m � O�lg �
	� that 	p����x� has an error rate of at most 	. Note that in this example
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we choose to average (almost) uniformly the hypotheses although one hypothesis is
clearly superior. In case there are more hypotheses with low error, the balance between
the two sets becomes more delicate, and this is what our predictor performs.

6 Uniform bounds

The bound given in Lemma 1 applies to the case in which the parameter � is fixed

ahead of time so that 	R��K� converges to E
h
	R��K�

i
for only a single value of �. In

the next lemma, we show that on a single sample, this convergence is likely to take
place for all values of � � � simultaneously.� The proof of this is primarily taken from
Allwein, Schapire and Singer [1].

Lemma 4 Let K and 	R��K� be as above for a sample of size m. For � � �,

Pr

�
�� � � �

���� 	R��K� � E
h
	R��K�

i���� � �

�
� � ln jKj

�
e��

�m���

The proof is given in Appendix A.
We can now state the following theorems similar to Theorems 1 and 2. These

theorems show that it is possible to design an algorithm that chooses � after the sample
has been chosen without paying a large penalty in accuracy.

Theorem 5 Let K and 	R��K� be as above for a sample of size m. For any distribution
D, any � � � and any s � f�����g:

Pr
S�Dm

h
�� � � � s����x� � 	���x�� � 
��

�

�m

i
� � ln jKj

�
e��

�m���

Theorem 6 For any 	 � �, if we set

�� � 


s



m
ln

�
��m ln jHj

	�

�
�

�

m

then, with probability at least �� 	 over the random choice of the training set, for all
� � �

Pr
�x�y��D

�
	p����

�x� �� � and 	p����
�x� �� sign����x��

� � 	�

7 Infinite hypothesis classes

The ideas and results of Sections 2, 3 and 4 can be directly extended to infinite, even
uncountable, hypothesis spaces. To make this extension, we need to add as a parameter

�We can prove a similar result for � � � using a slightly more complicated proof. However, because � is
typically large in this paper, we omit this proof.
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of the algorithm a measure� � over the hypothesis space H (or, more formally, over
some �-algebra of subsets of H). For convenience, we assume in fact that � is a
probability measure so that

��H� �

Z
H

d� � ��

The results for finite H presented earlier in the paper are of course a special case in
which � is the uniform discrete measure ��K� � jKj
jHj for all K � H.

Formally, the measure � is used much like a Bayesian prior. However, unlike a
prior, we do not assume that there is a target hypothesis in H that has been chosen
randomly according to �.

Naturally, we will require certain measurability assumptions so that everything is
measurable that needs to be so. For our purposes, it is sufficient to assume that the
following sets are measurable:

fh � H � h�x� � ��g for all x � X

fh � H � ��h� 
 �g for all � � R
since if these sets are measurable, then all other sets considered are measurable as well
since they all can be written as algebraic combinations of these.

The algorithm in Section 2 can now be extended by simply re-defining the empirical
log ratio to be

	���x�
�
�

�

�
ln

�R
fh
h�x����g

w�h�R
fh
h�x����g

w�h�

�

where as usual w�h�
�
� e�����h�. The true log ratio ���x� is redefined analogously.

To prove Theorems 1 and 2 and Lemmas 1, 2 and 3 in this more general setting, we
simply need to replace each sum of the form

P
h�K f�h� by the integral

R
K
f�h�d� for

measurable sets K. (If K has measure zero, then R��K� and 	R��K� are both defined
to be zero.)

The only potential difficulty occurs in proving in Lemma 2 thatR ��K� � E
h
	R��K�

i
.

When K is finite, we can simply apply Jensen’s inequality to a function of jKj real
variables. When K is infinite, however, this may be a problem since standard forms of
Jensen’s inequality do not apply. Nevertheless, we can effectively reduce to the finite
case as follows:

Let 	 � �. Let
Bi � fh � K � i	 � ��h� 
 �i� ��	g�

Since ��h� � ��� �
, B�� � � � � Bk form a partition of K for k � b�
	c. For ��Bi� � �,
define ��i to be a random variable that is the average of 	��h� over h � B i, i.e.,

��i
�
�

R
Bi

	��h�d�

��Bi� �

�Naturally, we will require certain measurability assumptions which can in principal be worked out;
however, since such technical details would only detract from the focus of this work, we simply ignore this
issue and instead assume benignly that everything is measurable that needs to be so.
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Then

E ���i
 �

R
Bi
��h�d�

��Bi� � �i� ��	�

Combined with the fact that ��h� � i	 for h � Bi givesZ
K

e����h�d� �
X

��Bi�e��i�

�
X

��Bi�e���E 
��i����

� e��
X

��Bi�e��E 
��i�

where it is understood that all sums are over i for which ��B i� � �. Thus,

R��K� �
�

�
ln

Z
K

e����h�d�

� 	 �
�

�
ln
X

��Bi�e�� E 
��i�

� 	 �
�

�
E
h
ln
X

��Bi�e����i
i

(12)

� 	 �
�

�
E



ln
X

��Bi� exp
�
��
R
Bi

	��h�d�

��Bi�

��

� 	 �
�

�
E



ln
X

��Bi�
R
Bi
e�����h�d�

��Bi�

�
(13)

� 	 �
�

�
E

�
ln

Z
K

e�����h�d�
�

� 	 �E
h
	R��K�

i
�

Eq. (12) uses Jensen’s inequality applied to the convex function

x 
� ln
X
i

��Bi�exi �

(Convexity follows from a minor modification of the proof given in Lemma 2 for the
function g.) Eq. (13) applies Jensen’s inequality to the convex function e x. Since 	 is
arbitrary, the result follows.

The results in Section 4 compare performance to that of the best single hypothesis.
WhenH is infinite, such a comparison may be meaningless since this single hypothesis
is likely to have measure zero. Moreover, the bounds in Section 4 are in terms of jHj
which will now be infinite.

Therefore, rather than comparing to a single best hypothesis, we compare to a set
of good hypotheses. In particular, for any � � �, let V � be the volume of all hypotheses
with error at most �:

V�
�
� ��fh � ��h� � �g��
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Then throughout this section, we need to replace jKj with �
V �.
Specifically, the generalization of Theorem 4 becomes:

Theorem 7 Let H be any hypothesis class. Let � � � and let V� � ��fh � ��h� � �g�.
Assume � is large enough that V� � �. Let � � � and � � � be such that �� � �

.
Then for any � � ln��
V��
�,

Pr
�x�y��D

�y��x� � �
 � 

�
� � �

V��e

���
�
��� ���

and

Pr
�x�y��D

�y��x� � 
�
 � �
� � e���

��
� � �

V��e

�������


��� ��

� �
�
� � �

V��e

�������


��� ���

The modification of Corollary 1 is immediate. In the discussion following Corol-
lary 1, ��h�� is replaced by � as in Theorem 7.

Besides replacing jHj by �
V�, the proof of Theorem 4 only needs to be modified
by replacing all sums with integrals. Also, to upper bound Ww , we lower bound Z by
V�e

���, a fact that follows immediately from the definition of V �.
Generalizing the results of Section 6 to infinite class H seems harder and remains

an open problem for future research.

8 Future research

In this paper we present a new algorithm for prediction of binary functions using a
weighted vote over all prediction rules within a class. We have shown when, and
in what sense, this algorithm can perform better than the more common approach of
choosing the prediction function which performs best on the training data. We sug-
gest two directions for future work, one regarding computational efficiency, the other
regarding the choice of a prior distribution.

Consider first the computational issue. For most interesting hypothesis classes the
task of finding the hypothesis that minimizes the training error is computationally in-
tractable. Obviously, calculating the error of all of the hypotheses in the class is at least
as hard as finding the best hypothesis and probably much harder. Does this mean that
our algorithm cannot be used for practical learning problems? Not necessarily. Here
are three approaches to solving the computational problem:

1. Sometimes the problem of learning a complex classification rule can be broken
down into several problems of learning very simple rules. For example, Freund
and Mason [8] show how to break down the problem of learning alternating deci-
sion trees (a class of rules which generalizes decision trees and boosted decision
trees). into a sequence of simpler learning problems using boosting. Each of
the simpler problems involves finding the best threshold rule in one dimension.
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These last problems are so simple the calculation can be done in time linear in
the size of the training set. In this context, our algorithm can be used directly
and its use might significantly increase the robustness of the system as a whole.

2. In some cases a careful choice of the prior distribution over the hypotheses makes
it possible to calculate the posterior average efficiently. For example, conjugate
priors commonly used in Bayesian statistics are prior distribution which main-
tain their functional form as they are updated. A more interesting case which
involves variable-length Markov models for sequences was studied by Willems,
Shtarkov and Tjalkens [19] and extended by Helmbold and Schapire [10]. It
might be possible to adapt these techniques to efficiently calculate the empirical
log ratio for our algorithm.

3. In some cases, the posterior distribution can be approximated by a single sharp
peak around the best hypothesis. In such a case, the empirical log ratio can be
approximated using Laplace approximation method. This technique was used by
Freund [7]. For an introduction to this type of approximation methods see the
excellent book by de Bruijn [5].

4. Another approach to estimating the average vote over the empirically best hy-
pothesis is to use random sampling. Suppose we are given a learning algorithm
capable of finding a hypothesis with small training error. Our goal is to tweak the
algorithm in a way that will randomly create a hypothesis whose performance is
almost as good as the original untweaked hypothesis. Moreover, we want the
distribution according to which the hypothesis is generated to be close to the
distribution defined by our exponential weights.

There are several learning algorithms that sample hypotheses and average them.
The best known of these so-called ensemble algorithms is Breiman’s bagging
algorithm [3, 4]. It might be that bagging is indeed an efficient randomized
algorithm of the type suggested here. On the other hand, it might be possible
to adapt the theory presented in this paper to give a rigorous analysis for the
performance of bagging and other ensemble methods.

The second direction we suggest for future work is to consider the choice of the
prior measure � defined in Section 7. Clearly, the choice of measure has a large influ-
ence on the algorithm and on the upper bound given in Theorem 7.

Intuitively, we would like to maximize the probability measure of the set V �. How-
ever, we need to define the measure � before observing the training data, i.e., before we
know what V� is. One natural approach is to maximize the minimum over the measure
of all possible sets V�.

Consider first a case in which we have prior knowledge of the distribution over
the instances, without the labels. In this case, we can use the measure which places
uniform weights over an �-net on the hypothesis class, as was suggested in Section 5.
This will ensure that if the best hypothesis in the class has error �� then the set V����
will have measure at least �
N where N is the size of the �-net. The disturbing thing
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about this choice for � is that it depends on �. Possibly this disturbance can be cleared
if one can use a limit distribution where � � �. Intuitively, such a limit measure will
capture the detailed structure of the hypothesis space in a way similar to Jeffrey’s prior
in Bayesian analysis.

Assuming that this analysis can be carried through, one should return to the original
problem in which the distribution over the instances is unknown. In this case, we
need to approximate the “ideal” algorithm by using the information about the instance
distribution that we get from the training examples. Ultimately, we would like to find
an averaging algorithm whose performance is close to the averaging algorithm that has
this prior knowledge and that is efficiently computable.
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A Proof of lemma 4

First, let K � fh�� � � � � hNg, and let

F ���x� �
�

�
ln

�
NX
i��

e��xi

�
�

For any x, by checking derivatives, it can be verified that the function � 
� F ���x� is
non-increasing, while the function � 
� F ���x� � �lnN�
� is nondecreasing. There-
fore, if � 
 �� � �� then for any x � RN ,

� � F ����x�� F ����x� �
�

�

��
� �

��

�
lnN� (14)
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Now let

E �

�
� lnN

i�
� i � �� � � � �

�
� lnN

�

��
�

We show next that for any � � �, there exists 	� � E such that������ � �

	�

���� lnN � �

�
�

For if � � ��lnN�
� then let 	� � ��lnN�
�. Then

� �
�
�

	�
� �

�

�
lnN � �

	�
lnN �

�

�
�

Otherwise, if � � � � ��lnN�
�, then let 	� � ��lnN�
�i�� be the smallest element
of E that is no smaller than �. That is,

� lnN

�i� ���

 � � � lnN

i�
�

Then

� �
�
�

�
� �

	�

�
lnN �

�
�

�
� i�

� lnN

�
lnN

�
�
�i� ���

� lnN
� i�

� lnN

�
lnN

�
�

�
�

Since 	R��K� � F ��� h	��h��� � � � � 	��hN �i�, Eq. (14) and the argument above imply that
for any � � �, there exists 	� � E such that

��� 	R��K�� 	R���K�
��� � �

�

and so ����
�
	R��K�� E

h
	R��K�

i�
�
�
	R���K� � E

h
	R���K�

i����� � �



�

Thus,

Pr

�
�� � � �

���� 	R��K�� E
h
	R��K�

i���� � �

�
� Pr

�
�	� � E �

���� 	R���K�� E
h
	R���K�

i���� � �




�

� 
jEje���m��

where the second inequality uses the union bound combined with Lemma 1.
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