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Abstract most successful of a family of boosting algorithms. The main

idea of boosting is to generate many, relatively weak classifi-
We discuss two learning algorithms for text filtering: modifiedcation rules and to combine these into a single highly accurate
Rocchio and a boosting algorithm called AdaBoost. We showlassification rule. Boosting algorithms have attractive theoreti-
how both algorithms can be adapted to maximize any genekall properties, and have also been shown to perform well exper-
utility matrix that associates cost (or gain) for each pair of mamentally on more standard machine learning tasks [10, 25, 4].
chine prediction and correct label. We first show that AdaBoost/e compare AdaBoost to Sleeping-Experts, an algorithm pro-
significantly outperforms another highly effective text filteringposed by Blum [3], studied further by Freund et al. [11], and
algorithm. We then compare AdaBoost and Rocchio over thréiest applied to text filtering by Cohen and Singer [8]. This al-
large text filtering tasks. Overall both algorithms are comparagorithm has been shown to be more effective than many current
ble and are quite effective. AdaBoost produces better classifigext filtering algorithms [8]. We show that, for text filtering,
than Rocchio when the training collection contains a very larg&daBoost is definitively superior to Sleeping-Experts. We then
number of relevant documents. However, on these tasks, Raompare AdaBoost to Rocchio’s method and show that the two
chio runs much faster than AdaBoost. algorithms are quite competitive. Even though both algorithms
learn a linear classifier, AdaBoost is superior to Rocchio when
there is a large amount of training data to learn from. However,
it is much faster to train a Rocchio classifier.

With the explosion in the amount of information available elec- Previous studies in text filtering have used many different
tronically, information filtering systems that automatically sendatasets and many different evaluation measures. This renders
articles of potential interest to a user are becoming increasin%em've_ comparison of any two approaches almostimpossible.
important. If users indicate their interests to a filtering systerftS described in the next section, most evaluation measures used
with some examples of their liking and disliking, a system caf! the past for evaluating filtering effectiveness are unfit for the
automatically learn aser profileor arelevance classifiefora  PUrpose. Recently the TREC conferences have been moving
user. As and when a new article exhibits a substantial match@vard the use aftility as the measure of choice for evaluating
auser's profile, itis filtered and sent to the user. Thus text filtefeXt filtering [18, 19, 13]. This study also presents results using
ing is just binary text classification into the categories “relevantitility that can be used by other researchers for comparison
and “not relevant.” purposes in the future.

The problem of text filtering has been studied in two dif- 10 Summarize, in this study we aim to:
fere_nt communities — machine Iearning (ML) and information 4 Develop a new algorithm for text filtering based on
retrieval (IR). Many algorithms for text filtering have been pro- boosting, and show that our algorithm is better than

posed and evalua_ted in the past, for example, Bayesi_an classi- Sleeping-Experts, another highly effective algorithm for
fiers, k nearest neighbors, neural networks, rule-leaming algo-  text filtering.

rithms, and many more [17, 20, 40, 2, 41, 14, 22, 8, 24]. Most

studies use Rocchio’s method [28], a well known algorithm in e Adapt a recent version of Rocchio’s algorithm for text

the IR community (traditionally used for relevance feedback and filtering, and study the relative merits of boosting-based

more recently for document routing [38]), as a comparison base-  and Rocchio-based classifiers.

line for their classifiers. However, most such studies use a weak

version of Rocchio’s algorithm, not well-suited for text filtering.

In recent years, the IR community has proposed several modi-

fications to Rocchio’s algorithm that have vastly improved the

performance of this algorithm: better term weighting [26, 35]The rest of this study is organized as follows. Section 2 dis-

query-zoning [36], and dynamic feedback optimization [6] beeusses the evaluation measures used for text filtering. Section 3

ing the three most notable improvements. In this study, we adagéscribes an adaptation of AdaBoost for text filtering. Sec-

a state of the art Rocchio’s algorithm for the text filtering taskiion 4 presents a modified version of Rocchio’s algorithm for

and compare it to a fairly new ML algorithm called “boosting."text filtering. Section 5 describes the datasets used in this study.
We first develop a text filtering algorithm based on Freungection 6 describes our experiments and discusses the results.

and Schapire’s AdaBoost algorithm [9], which is currently the=inally, Section 7 concludes the study.

1 Introduction

e Present results based on new and better evaluation mea-
sures that can be used by other researchers in the future
for comparison.

Permission to make digital/hard copy of all or part of this work for persona? Evaluation measures
or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage, the copyright notice, the title of theya 5 g1 djes on text filtering have used a variety of measures for
publication and its date appear, and notice is given that copying is by permission | . f hat is | .
of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribut@v_a uating performance. One mea$ure thatis requz_an_t y used in
to lists, requires prior specific permission and/or fee. SIGIR'98, Melbournefloing Cross-system comparisons is the recall-precision break-
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the measure of choice in many studies on text filtering [17, 21, 8ltility

24, 39, 23, 15]. Roughly speaking, break-even point is the pOII%tecently, the TREC text filtering evaluations have been using

at which recall of a filtering system is the same as its precision: . . ) .
So if the break-even point of a system is said to be 0.45, thérW“ty measures, which assign rewards (or penalties) for each

at recall 0.45, the precision of the system is also 0.45. The aiffil of machine prediction and correct label [19, 13, 14]. et
of a filtering system is to obtain as high a break-even point the number of relevant documents that are classified relevant

possible. y thg_machir_]e, and_ the r_]ur_nber of relevant documents mis-
This measure, though popular, has several problems forevgl‘lass'f'ed as irrelevant. Slmllarly_u_r andn_ are the nu_mber
uating a filtering system [16]: of non-relevant documents classified as relevant and irrelevant,
respectively. With each pair of human judgement: relevant or
e Often, we need to interpolate the scores to obtain theon-relevantrgl or nrel, respectively), and machine prediction
break-even point. Interpolation gives values not achie~ or —) we associate a utility value. We denote the utility
able by the system. values byurery, Unperr, Uper— @Nduy.—. Therefore, the

. S . .overall performance of a classifier in terms of the utility matrix
e The point where recall equals precision is neither a desq—

- ; ) 2SS Py Uy T Ul F N Uppeir + N Uppe—. The aim of
able nor an informative target from a user’s perspective.o filtering system then, is to maximize the utility.

We strongly believe that break-even point should not be used for The first evaluation measure we use—classification error—
evaluating text filtering effectiveness, and do not use it in thits simply the number of mistakes a classifier makesthe sum
study. of the number of positive (relevant) documents that are classified
Some other measures that have been used to evaluate &negative, and the number of non-relevant documents classi-
filtering are: fied as positive. Note that minimizing the classification error is
. . i equivalent to maximizing a utility whes,..;, = u,.e =0
e Average precision, or precision at a fixed rank cutoffynq Upel— = Upyers = —1. Therefore, a learning algorithm
Many studies have used one of these measures to evalugig maximizes utility can be used for minimizing the classifi-
filtering effectiveness [2, 40, 41, 22, 1, 7]. These meagation error.
sures are intended to evaluate the ranking effectiveness of one problem with the classification error is that for datasets
a system [31], not its filtering effectiveness. Even thouglyith very few relevant documents, a classifier that uses the sim-
the filtering effectiveness of a system is related to its ranks|e strategy of predicting that every document is non-relevant, is
ing effectiveness, this relationship is not strong enough ign|e to achieve very low error. To handle this common difficulty,
use ranking evaluation measures to evaluate text filteringee need to specifically reward a classifier for finding relevant

e Van Rijsbergen's F-measures: Used in [20, 22, 8, 3gjocuments. We therefore use two other utility measures, Util-1
to evaluate filtering, this is a single valued measure th&nd Util-2 (described below) which explicitly reward a system
depends upon the relative importance a user assigns o finding relevantdocuments. Insummary, the utility measures

recall and precision (see [37], pp. 168-176). The maiHS€d in this study are:

drawbacks of this measure are that its value is not directly | Uretr  Urel—  Uppelr  Uprel—
interpretable by a user, and it is usually hard for a user Error: 0 -1 -1 0
to judge the relative importance of recall and precision. Util-1: 3 0 -2 0
For example, most users would find it hard to say whether Util-2: 3 -1 -1 0

recall is twice as important as precision for them, or thrice,
or some other ratio. However, in our view, the F-measur
is the best suited measure (among the above measures) for

evaluating filtering. In this section, we describe how we have adapted Freund and

A big drawback of all the measures listed above is theppchapire’s AdaBoost boosting algorithm [10] for text filtering.
dependence on recall. Recall is not available until all the tege main idea of boosting is to combine many “rules-of-thumb.”
documents have been seen. These measures can't be usegPf@xample, in this study, we use rules-of-thumb which test on
evaluate a system on-the-flye. to compute any of these mea-the presence of a term, such as the following simple rule: “If
sure if only a portion of the documents have been classified aHte Word ‘money’ appears in the document then predict that
the rest still need to be classified. Thus, if for instance a uséte document is ‘relevant’; otherwise predict ‘not relevant.’ ”
wants to check at the end of the day how a filtering system fsl€arly, a simple-minded rule of this kind will misclassify many
doing, he or she would not be able to assess the performancélgguments. The main idea of boosting, however, is to generate
the system using the above measures. and combine many such rules in a principled manner to produce

In this study we use three utility-based evaluation measur&ssingle highly accurate classification rule.
that don't suffer from the drawbacks mentioned above. We Formally, the rules-of-thumb are calledeak hypotheses

also report performance results for non-interpolated avera®osting assumes access to an algorithm or subroutine for gen-
precisioﬁ, and Fs_; (which is 2-Tecall-preczszon) through our erating these rules-of-thumb, called tweak learneror weak

7 recall+precision o learning algorithm The boosting algorithm calls the weak
web pagé Though we believe that average precision (and tRarner many times to generate many rules-of-thumb, and these
some degreéj_1) is not well suited to evaluate filtering effec- are then combined into a single classification rule calleditia
tiveness, we still report these figures for comparison purposggcombined hypothesis

with other research. One main feature of the boosting algorithm is that, during the

*Following the notation used in later sections, fetnk(d) be the rank as- COUISe of its e_Xe_CUtion, it assigns diﬁeré'm‘portan?e WeighFS
signed by the classifier to documesitand let the set of relevant document be to different training documents. The weak learning algorithm

Boosting for text filtering

denoted byfel. Then, the non-interpolated average precision is, takes these weights into consideration, and chooses each rule-of-
1 [{d’|d" € Rel, Rank(d') < Rank(d)}| thumb so as to correctly classify as many documents as possible,

|Rel]| Z Rank(d) : taking into account the greater importance of correctly classify-
d€Rel ing documents which have been assigned greater weight. As the

algorithm progresses, training documents that are hard to clas-
2w, resear ch. att . conl ~si nghal / si gi r 98- r ocboost . dat sify correctly get incrementally higher weights while documents



Input:

N documents and labels{(di,y1),...,(dn,yn)) where
yi € {—1,+1};

integerT" specifying number of iterations

Initialize D1(#)  (for classification errorDy (i) = 1/N)
Dofor s =1,2,...,T:

1. Call WeakLearn and get a weak hypothésis

2. Calculate the error dis: €; = Z Ds(i).
iths (di)#y;

1—

3. Seta; = 31n (—ES)
€s
4. Update distribution:
D, (i) exp(—asyihs(d;))
Zs

Ds (i) o et it he(di) =y
Zs es  if hs(di) # yi

whereZ; is a normalization factor.

Dsqa(i) =

Output the final hypothesis:

T
hfin(d) = sign(Z ashs(d)> .
s=1

Figure 1: AdaBoost algorithm for binary text filtering

This error can be interpreted as the probability of misclassifying
a document chosen randomly according to distribufidn It

is the sum of the weights of all relevant documents classified
as irrelevant byh,, and all irrelevant documents classified as

relevant.

Having obtained a hypothesis from WeakLearn, Ada-
Boost next updates the weights of all the documents in such
a way that documents classified correctly get a lower weight
and the misclassified documents get a higher weight. To be
more specific, AdaBoost multiplies the weight of each docu-
ment correctly classified by, by e™*¢, and the weight of each
incorrectly classified document ky*s. Here,a; is a num-
ber whose computation is discussed below. Assuming for the
moment thatky, is positive, this update of the weights has the
effect of decreasing the weights of correctly classified docu-
ments (since” “* < 1) and increasing the weight of correctly
classified documents (sinegs > 1).

To ensure that the new weighl3,1 form a distribution
(so thatZZV:1 Ds41(7) = 1), we then renormalize the weights,
resulting in the update rule shown in Figure 1:

D, (i) y e~ if hs(di) = y;
Z, e*s if ho(ds) # s

whereZ; is a normalization factor. Note also that, becayse
and hs(d;) are each—1 or +1, their product is equal te-1
if they disagree, and-1 otherwise. Thus, in general, we can
rewrite the update rule more succinctly as in the figure.

This process of generating weak hypotheses and updating
the weights is repeated f@ rounds. How we decide on a value
of T' is discussed later in this section. AftErrounds, we have
T hypothesesu, ..., hr, as well as the valueas, ..., ar.

Ds+1(i) =

that are easy to classify get lower weights. This, in effect, forceg ey document is then classified using the following final

the weak learning algorithm to concentrate on documents t
have been misclassified most often by the previously derive

rules-of-thumb.

The final combined hypothesis classifies a new document by
computing the prediction of each of the weak hypotheses on this

pothesis:

hgn(d) = sign(Z ashs(d)> ,
s=1

document anc_i taking a (weigh;ed) vote pf these predictions. \yhere sigiz) is +1 if z > 0 and—1 otherwise. In words, the

A description of AdaBoost is shown in Figure 1. AdaBoosiyeqictions of all of the weak hypotheses are evaluated on the
takes as input a training set of document-judgment pairs pey documend, and their predictions are combined by voting.
((d1,91), ..., (dn, yn)) whered; is a document in the training |t more weak hypotheses predict the document is releva)
collection, andy; € {—1, +1} is the label associated with the \5iher than irrelevant{1) then the sum above will be positive
document where-1 or —1 means that the document is relevangng the combined prediction will be relevantX); otherwise

or irrelevant (as judged by a human expert).

the prediction is irrelevant. However, we do not assign equal

_As just described, AdaBoost calls the weak learmning algqmportance to the predictions of each of the weak hypotheses.
rithm WeakLearn repeatedly in a series of rounds. On roynd |hstead, we weight the votes of the different weak hypotheses

AdaBoost p_ro_vides WeakLearn with a set of importance Weigh{%ing the same values which were previously used to update
over the training set. In response, WeakLearn computes a Wegk distributionD. .

hypothesis (rule-of-thumb)s which, given a document, clas-

We now discuss the exact choice @f. Let e; be the

sifies it as+1 (relevant) or—1 (non-relevant). We later discuss \eighted error of weak hypothesis (as computed in Figure 1

the weak learner that was used in our experiments.

The importance weights are maintained formally as a distri-
bution D over training documents. As this distribution changes

and Eq. (1)). We compute; as

s = 1 In (ﬁ) .
after each round, we denote the distribution before roubg 2 €s
D,. The weight of a training documew} under distribution To understand what this choice entails, suppose that a highly
D; is written D, (¢), and we maintain the condition tha% (i)  accurate weak hypotheshs has been found. Then will be
is always positive anEfV:l D, (i) = 1. Initially, for classifica- small anda; will be large. This translates into more drastic
tion error, we set all the weights equally so tha(i) = 1/N.  updates to the distribution and a greater weight assigned to the
(As described below, a different initialization procedure is useredictions ofz, in the computation of the final hypothesis. On
for other utility functions.) the other hand! ihs is highly inaccurate (with err_oxs_clo'_se to
The goal of the weak learner is to find a rule-of-thumb whicH/2), thena, will be small, the updates to the distribution will
misclassifies as few documents as possible, relative to the disPf quite conservative, and the predictionshofin the final
bution D,. Formally, the weak learner attempts to find a weaklypothesis will receive rather low weight. See Freund and
hypothesigh, with low weighted error Schapire [10] for more complete motivation for this choice of
Q.
. = Z D, (i). (1) For our task, we also allow; to be negative. This will be
the case whenever a weak hypothédsiss found with errore;
itha (di)Zyi greater than A2. This is discussed further below.



3.1 Findingweak hypotheses This utility matrix implies that each relevant document is
‘worth” ¢ = (upery — Urer—)/(Unrei— — Unrer) irrelevant

In ?ulrl algor'lirl}m, ”:je wegk Ie_arn?r %(_enerates tr:je hypom@s's.%ocuments. For instance, for Util-1 we get that each relevant
as follows. All words and pairs of adjacent words are potentig)o e ment is wort=3 = 1.5 non-relevant documents, and for
terms. Our implementation is capable of using arbitrary lon +

. ? il- +1
n-grams but we restrict ourselves to words and word bigranfdlil-2 We get a factor off = 4. We therefore need to set
for this study. For each term, the weak learner computes ti€ initial distribution of the examples before the first round of

error (relative to the distributiom,) incurred by predicting boosting so that it will reflect this ratio between positive and

that a document is relevant if and only if it contains that tem{)e_gative exa”.‘?'es- It isfairly strgightfo_rward to shqvv_ th_aF max-
Formally, this error is Imizing the utility for a matrixU is equivalent to minimizing

the error when the initial distribution is such that the weight of
. . . the relevant documents {stimes the weight of the irrelevant
e(t) = Z D,(i) + Z D.(i). documents.
ited;, d; zRel itgd;, d;eRel Formally, then, to handle general utility functions, we need

. to modify AdaBoost only in the manner in which the weights
(Here,t € d means ternt occurs in document, andd € Rel D, are initialized. Specifically, we set

means document is relevant.)

Ordinarily, one would select the term which has the lowest 1 { +1 (d; is relevant)
Zo

—1 (d; is irrelevant)

Upel+ — Upel— If Yi
Uprel— — Unpel+ If Yi

classification error. However, consistent with the main aim of #1(¢) = —
classifier, we instead select the term that maximally differenti-

ates relevance and non-relevance. For example, if teimas
the lowest error, say 0.25, and tetgrhas the highest error, say
0.90, then, is a better discriminator of non-relevance thars

of relevance. This is because wheneyés present, we can say
that the document is non-relevant with a much higher confidence )

than the confidence we have in the relevance of a document ifi8 Choosing the number of rounds

containst,. Therefore, we seleej for use in hypo_th_es_lhs. ... Finally, we need to specify how we set the number of roufids
Formally, then, we choose the term that minimizes eithegince there is no theoretical analysis of the number of rounds
e(t) or 1—e(t). Letts be the selected term. We then form theneeqed to hoost a weak hypothesis, we set this value empirically.
hypothesish, for a document using the rule: We found that the following procedure yields good results. We
) first run the boosting algorithm until thteaining error reaches
hs(d) = +1 iftsed its minimal value, which often is zefoLet T, be the number
-1 ifts ¢d. of rounds needed to reach the minimal training error. We then
continue boosting for an additidfy/10 rounds. Thus, the total
As mentioned above, if we select a term with very high erroiumber of rounds i¢1.1)7s. This typically means that we run
(more than 12) for use in hypothesis;, the boosting algorithm  more rounds of the boosting algorithm if the problem is “hard,”
automatically assigns a negative weight to that hypothesis. Thisquiring many features to attain a small training error. Put
means that if a word is a better predictor of non-relevance, themother way, the size of the resulting classifier, as a function of
its presence would automaticafBducethe score of a document. the number of features it employs, depends on how “easy” the
classification problem is: the more difficult the problem is the

3.2 Boosting with general utility functions larger the classifier we build.

where Zp is a normalization factor which ensures that
>, Di(i) = 1. Note that the rest of the algorithm is unaf-
fected by the change of the initial distribution.

It remains to describe how to modify our algorithm in order to . —
maximize gain for a general utility matrix. Let 4 Rocchiofor text filtering

challenging problem in the field of information retrieval. In its
early days, researchers realized that itis very hard for an average
- . . L . . user to formulate a “good query,” and therefore, for successful
bhe a u_t|||t); Tlamlx' U_?lng the notation introduced in Section 2pgyrieval, aids for good query formulation should be provided to
the gain of the classmer 1, uye;. +7—trei— + Nilinrel+ +  ysers. Automatic query formulation usinglevance feedback
n—Uprei . \We make the natural assumption that there is moIg, o the yser has marked some of the documents (possibly
to be gained from correct classifications than incorrect classifizyiayed by the initial user-query) as relevant and some as non-
cations, that iSuyery > tper— @ unrer > Unrery- TNE ojauant has been one of the most successful methods in IR [30].
minimum poss'b'.e gain for a cIaSS|f|er_ is when it classifies A feedback query creation algorithm developed by Rocchio
every document incorrectly; that gain ig.;_(r+ +r-) + i3 the mid-1960's has, over the years, proven to be one of the best
Unret1 (n4 +n-). If we assign this initial gain to the classifier, \gjeyance feedback algorithms [27, 28]. Rocchio’s algorithm
then the aim of a classifier is to maximize its additional gaity ¢ geveloped in the framework of the vector space model [32].
above this amount. Every time the classifier classifies a relevaif,an documents are to be ranked for a queryideal query
document correctly, we increase its gaindy,; — ure;—, and - gna1d rank all the relevant documents above all non-relevant
every time a non-relevant document is classified correctly, W, ments. However, such a query might just not exist, or even
increase its gain by, ¢, —upyer4- NOthingis done onamis- i it qoes exists for the training data, it might be over-fitting
classification since we have already accounted for all possiligs (raining documents and might not generalize to new (test)
m|s_(|:_lr¢]s135|f|catlonsl.oI oh s if the followi documents. Therefore we lower our aims and instead develop a
us, weé would get the same results it we use the 10llowing e ry that maximizes the difference between the average score

U= ( Uprel+  Unprel+

Retrieving useful documents for a user-query has always been a
Upel—  Unrel— >

utility matrix: of a relevant document and the average score for a non-relevant
/ Upel4 — Upel— 0 3Although the training error of the combined hypothesis may be zero, it is
U= Uprel— — Uprel . possible and not uncommon for boosting to proceed and for further reductions in
nret— nret+ the test error to occur. See Schapire et al. [33] for further discussion.



document. Rocchio calls this aptimal query([28], page 315).

Rocchio shows that under this definition, an optimal query vecttr
is the difference vector of the centroid vectors for the relevant
and the non-relevant articles,

> d

1 o
72 4=
d¢ Rel

d€Rel

1
N-R

Cjopt - (2)

whered denotes the weighted term vector for documem =

| Rel| is the number of relevant articles, aivds the total number
of articles in the collection. All negative components of the
resulting query are assigned a zero weight.

To maintain focus of the query, researchers have found that
it is useful to include the original user-query in the feedbac
query creation process. Coefficients have been introduced
Rocchio’s formulation which control the contribution of the

k Itu weighting: | factor x t factor x u factor

| tf factor: 14 log(tf)

] 1+log(tf)
L tf factor: THTog average %
t idf factor: log(=g—)

1
number of unique words in text
0.8+0.2 average number of unique words per document

is the term’s frequency in text (query/document)

N s the total number of documents in the training collection

df is the number of documents that contain the term, and

the average number of words/document is 45 for Reuters-215
137 for AP-BODY, and 110 for TREC.

the average number of phrases/document is 27 for Reuters-21578,

40 for AP-BODY, and 37 for TREC.

u normalization factor:

tf

78,

nu weighting: L factor x u factor
tu weighting: L factor x t factor x u factor

original query, the relevant articles, and the non-relevant articl
to the feedback query. These modifications yield the following
query reformulation function [30]:

Qnew:aéori9+ﬂ% Z J_Vﬁ Z J (3)

d€Rel dgRel

This formulation, which was developed for ranking documents

after relevance feedback, mainly in interactive settings, has also

been used successfully for text filtering. In an information

filtering scenario, once several documents have been marked as

relevant to a user’s information need, a “user profile” is created
using Rocchio’s formulation (Eqg. (3)). Any new article that has
high similarity (we use vector inner-product as the similarity

measure in all our experiments, see [29], page 318) to this user

profile is considered potentially useful for the user and is sent to
the user.

Several techniques are known to improve the effectiveness
of Rocchio’s method. The three new developments that have
been quite effective in conjunction with Rocchio’s algorithm
are:

1. Better Term Weights: A much better understanding of
term weights has been developed in the IR community in
recent years [26, 35]. Better term weights in the train-
ing documents yield a better Rocchio query. A better
Rocchio query along with better term weights for the test
documents yields much improved scores. (better rank-
ing) for the test documents.

. Query Zoning: Recently Singhal et al. [36] have pro-

posed that only a selected set of hon-relevant documents

that have some relationship to a user’s interest should be
used in Rocchio’s method. They proposed sampling of
the non-relevant documents to forngaery zone

. Dynamic Feedback Optimization: Buckley et al. [6]
have shown that further optimizing the term weights pro-
posed by Rocchio’s formulation on the training collection
improves the quality of a feedback query for the test data.

We view these techniques as tools that bring a Rocchio query
closer to theideal query We use all these techniques in our
version of Rocchio.

Since there is no initial user-query in a text filtering scenario,
the first factor in Eq. (3)q Q_’OW, is not used in our system.
Also, when using query zones, Singhal et al. [36] have shown
that3 = v in Eq. (3) is a reasonable parameter setting. There-
fore for text filtering, we are back to using the original Rocchio
formulation of Eq. (2) instead of Eq. (3).

We use the centroid vector of the relevant documents in the
training corpus as the initial query and use this vector to form the
query zone. Here are the steps involved in modified Rocchio’s
method for text filtering:

i

Table 1: Term weights

1. Initial query: Create the centroid vector for the rele-
vant documents in the training data. DocumentslLaue
weighted (see Table 1). Remove all words that appear in
fewer than 5% of the relevant documents and all phrases
that appear in fewer than 2% of the relevant documents.
This keeps infrequent (possibly “random”) terms from
influencing the query. Select the highest weighted
words andn,, phrases, where,, is the average number

of words per document, ang, is the average number of
phrases per document (Table 1). This is the initial query.

2. Using the above initial query, aidhu weightedtraining
documentsform a training “query-zone” by selecting the
most similardM/ A X (N/100, R) non-relevant documents
for the initial query (using the inner-product similarity).
Here N is the total number of documents in the training
collection andR is the number of relevant documents for

this query (class) in the training collection.

3. Using the non-relevant documents in the query-zone and
all the relevant documents in the training corpus, form
a feedback query using Rocchio’s formulation using the
following constraints/parameters:

e Document terms arketu weighted.

¢ Only the “non-random” words and phrases, the
words that appear in at least 5% of the relevant ar-
ticles, and phrases that occur in at least 2% of the
relevant articles are considered for use in the feed-
back query.

Top n,, words andn, phrases (same as step 1), as
weighted by the original Rocchio formula (Eq. 2)
are retained in the feedback query with weights pre-
dicted by the above formula.

4. Termweightsinthis query of, words and, phrases are
further optimized using three-pass dynamic feedback op-
timization (DFO) with pass ratios 1.00, 0.50, and 0.25 [6].
Since DFO optimizes average precision in the training col-
lection, and a fixed number of top documents are ranked
in this process [6], we rank the tad A X (500, 5R) doc-

uments in this step.

5. The optimized feedback query is used to rank lthe
weighted training documents (using inner-product sim-
ilarity). By going down in this ranked list of training
documents, find a similarity threshold that would maxi-
mize the evaluation measure (error rate or utility) on the

training data. This will be théhresholdfor the classifier.
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e Since the user query is not being used in any way, the rel-
evant centroid is used to fo_rm_the query zone. In previous Figure 2: Comparison of AdaBoost and Sleeping-Experts.
work on query zones, the initial user query was used for

this purpose [36] This collection was first used by Lewis et al. in [22]. One

e The query zone sizef A X (&5, R)) grows with the class  should note that even though the original distribution of this
size for classes that have more thijtraining relevant data has 79,919 documents from the year 1988, and 84,678

documents. from the year 1989, making a total of 164,597 training doc-
uments, 21,806 of the documents that have non-standard for-

e DFO is also modified to rank more documents for verynats or structures have been omitted by Lewis et al. Simi-

large classesM A X (500, 5R)). larly, out of the 78,321 possible test documents, 11,329 have
) been skipped. Details of what documents were skipped in
e Word cooccurrence pairs are not used. the creation of this collection are available from David Lewis

We deliberately didn’t tune Rocchio’s algorithm any further to(I ew s@esearch. att. com.

cover some of its weaknesses. For example, post-hoc analysis

shows that it is possible to improve Rocchio’s method for large-3 TREC-3
classes by increasing the number of terms (words and phra ﬁ)

used in the classifier. But we didn’t do any such tuning. Thougg
not straightforward, it is possible to enhance DFO and tune
Rocchio classifier explicitly to maximize utility. We did not do
any such tuning for this study but plan to investigate this in ne
future.

s collection, once again from the TREC disks 1-3, was used
the routing task in the third Text REtrieval Conference (TREC-
ﬁ [12]. The training collection contains all documents on TREC
disks 1 and 2, whereas the test collection is made up of all the
Yocument contained in disk 3. There are a total of 741,856
training documents and 336,310 test documents. Fifty TREC
topics, numbered 101-150 are used as individual classes in this
5 Test corpora collection [12].
Even though these TREC topics are long user-queries which

We use three different text corpora for testing our algorithmssontain many useful words for text filtering, we again emphasize
Reuters-21578, AP-Body, and TREC-3. For the Reuters-2157iat wedo notuse the topic texts in either of our systems. The
and the AP-Body collections, one should pay special attentionelevance judgments for these topics are also available with
which particular documents are used in the collection, there afige TREC data. A summary of the collections used in our
some possible variations. For the TREC-3 data, we would likexperiments is shown in Table 2.
to emphasize that the original topic text supplied by the users is
notbeing used in our experiments. 54 Preprocessing
51 Reuters-21578 In our experi_ments, we gs_ed the entire_ Reuters-21578 and AP-

Body collections for training and testing. Unfortunately, it
The Reuters-21578 text categorization test collection has begould have taken a very long time to run AdaBoost had we
made publicly available from the web page used the entire TREC collection. We therefore used a subset
of the training collection as a training set. We selected the top
10,000 documents retrieved from the training collection by a

by David Lewis, who originally compiled the collection. Docu-9uery léarned using Rocchio's method (following the idea of
ments in this collection were collected from Reuters newswire iguery-zonlng as in [36]). In addition, we added all relevant
1987. We use the modified Apte split (ModApte), which assign ocumentsiot retrle_ved by the above procedure to the training
9,603 documents dated before April 8, 1987 to the training s&¢t: We also applied the same procedure to the collection of
and 3,299 documents dated from April 8, 1987 to the test set. {pSt documents. The classifier built by AdaBoost was tested
our experiments, we use thinety TOPIC categories that have N all the relevant documents in the test collection and only

at least one relevant (positive) training documents and at le4¥t the the top 000 non-relevant test documents that were re-
one relevant test document. trieved by Rocchio’s query, the same query used for obtaining a

sample of the training collection. Since Rocchio’s method was

used as the means of sub-sampling both the training and test
5.2 AP-Body collections, these sub-sampled collections include many of non-
This test collection is made up of documents from the Apelevant documents that are relatively difficult to classify. We
newswire included in the TREC disks 1-3 [12]. 142,791 dodherefore believe that the results obtained on the sub-sampled
uments from the years 1988 and 1989 are used as the trainfifjasets are a good estimate of the performance of the classi-
collection, and 66,992 documents from the year 1990 are usfs. Butitis also true that such sampling of the test collection
as the test collection. Each document in this collection hasa/tomatically rejects a large number of non-relevant documents
distinct title field (marked by the SGML tagHEAD>), and a  from the pool of documents to be classified by the AdaBoost
distinct body field (marked by the SGML tagTEXT>). We classifier. These documents can potentially be misclassified and
only use the body of a document in our experiments. There af@n Possibly yield results poorer than the results reported in this
twentyclasses in this collection. See [20] for a description oftudy for the AdaBoost algorithm for the TREC-3 task.
how the classes for this corpus were derived.

http://wwmv. research. att.com ~l ew s



Utility Number of | Min. Pos.| Max. Pos.| Train Set| Test Set
Dataset Checked Tasks (Train) (Train) Size Size
Reuters-21578| Err, Util-1, Util-2 90 1 2877 9,603 3,299
AP-Body Err, Util-1, Util-2 20 88 2901 142,791| 66,992
TREC-3 Err, Util-1, Util-2 50 31 803 741,856 | 336,310

Table 2: Summary of datasets used in the experiments.

6 Experimentsand Results We also timed our algorithms for the AP-Body task. Our
current implementation of AdaBoost, which is rather non-

This section discusses our experiments and results. optimized, takes on an average 180 minutes per class to learn
a classifier. In contrast, our implementation of Rocchio, which

6.1 AdaBoost compared to Sleeping Experts can also be further optimized, takes about 3 minutes per class

on an average. This difference in running time is significant
We first give experimental results which show that our adaptand makes the use of Rocchio’s method quite attractive even if
tion of AdaBoost for text filtering achieves better results thart comes at a slight loss of effectivenessg, for big classes).
Sleeping-Experts, another effective algorithm for text filtering
studied recently by Cohen and Singer in [8]. We compar, 4 TREC-3
the performance of AdaBoost and Sleeping-Experts on the AP-
Body and the Reuters-21578 tasks. Figure 2 shows the resufisy the TREC task, we once again observe in Figure 3 (bottom
of this comparison. The scatter plot on the left hand side abw) that there is no noticeable difference in the performance of
Figure 2 show the error-difference on corresponding classes hike two algorithms. We observe in the scatter plots that many
tween Sleeping-Experts and AdaBoost as function of the numbgsints for classes with few relevant training examples are below
of relevant documents in the training collection for the Reutefihe z-axis indicating that Rocchio is marginally better for these
collection. The right hand side plot is for the AP collection. Acases. Overall, for this task as well, there is no noticeable differ-
point above the:-axis indicates that Sleeping-Experts is inferiorence between the two methods. As in the other two collections,
to AdaBoost as it makes more errors. These plots indicate thaé observe that for TREC as well, the relative performance of
for classes of all size (where size of a class is the number gtdaBoost is weaker when evaluated using Util-2, and Rocchio’s
relevant training documents for that class), AdaBoost generalfgethod is clearly better than AdaBoost for Util-2.
outperforms Sleeping-Experts, often with a large margin.

6.5 Analysis

6.2 Reuters-21578 . .
In our view, one of the foremost results of this study is that a

Figure 3 (top row) shows similar comparative plots for the perstate of the art version of Rocchio’s algorithm is quite competi-
formance of AdaBoost and Rocchio on Reuters-21578 datasgge with modern machine learning algorithms for text filtering.
The left hand side scatter plot give the difference in error, th€his result contradicts the claims made in several previous stud-
middle plot shows the difference in Util-1, and the right ploties [22, 8, 39, 15] that infer that Rocchio’s method is inferior to
shows the difference in Util-2 between AdaBoost and Rocchistate of the art machine learning algorithms.
as a function of the number of relevant training documents. As These results show that when there is enough training data to
before, point above the-axis indicates that AdaBoost achievedearn from, a principled learning algorithm (AdaBoost), which is
better results, whereas a point below thaxis indicates that derived from theoretical foundations of computational learning
for that class, Rocchio outperforms AdaBoost. and is specifically designed for general classification, does learn
For error and Util-1, the scatter plots are “skewed” towarda better classifier than an algorithm designed to rank documents
the top-right corner indicating that AdaBoost is better than RogRocchio) which does minimal learning.
chio for classes that have a large number of relevant documents On the contrary, when there is little data to learn from,
in the training collection. When we look at the raw numbersa strong learning algorithm like AdaBoost stands a chance of
we find that the two classes for which AdaBoost significantlypver-fitting to the data. For this reason we would have expected
outperforms Rocchiearnandacqare also the classes with theRocchio to consistently outperform AdaBoost for small classes.
highest number of positive training documents, 2,877 and 1,650ven though, for small classes, Rocchio is quite effective at the
respectively. In general we observe that whenever a class hask it was designed for, namely ranking relevant documents
a large number of relevant documents in its training set, Adabove non-relevant documents, it often fumbles in selecting a
Boost tends to achieve lower error rates and higher utility valuethreshold for filtering. For example, for the clads in Reuters-
However, we observe that for Util-2, Rocchio is somewhat bettex1578, Rocchio achieves an average precision of 0.5085 which

than AdaBoost. is much better than average precision of AdaBoost (0.0018).
However, when evaluated using the utility measures, the two
6.3 AP-Body algorithms have essentially the same performance indicating

that Rocchio was unable to capitalize on its superior ranking.
The results for this dataset, shown in Figure 3 (middle row), argimilar behavior is observed for many other classeg, dfl,
quite parallel to the results for Reuters-21578. Out of the twent)istal-debf andsun-meal This also indicates why using average
classes, AdaBoost is better than Rocchio in terms of Error apglecision to evaluate text filtering is not sufficient.
Util-1 for the four largest classes. These classes lré:t x, Our current implementation of AdaBoost does not utilize
bush, israel, japan. Each of these classes has morgerm weights, which are known to be crucial for most IR tasks [5]
than 2,000 relevant documents in its training set. However, f@ind are the basis of good performance of Rocchio’s algorithm.
Util-2 this advantage is not there. Overall, there isn't muclyve believe that AdaBoost would benefit significantly by using
difference in the performance of these two algorithms. term weights, and we are currently studying ways of incorpo-

rating these weights into AdaBoost.
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Figure 3: Comparison of AdaBoost and Rocchio.

These results also show that for all tasks, filtering for Util-AdaBoost is also better than Rocchio if there is a large number
2, when a relevant documents is much more important than(laundreds or even thousands) of relevant documents to learn
non-relevant document, is a hard job. For many classes, bdtbm. Otherwise, there is no noticeable difference between the
the algorithms get a negative Util-2 value, indicating that theperformance of the two algorithms. It is not clear how often
are having troubles classifying for this measure. Apparenthye get a large number of relevant documents in an operational
Rocchio is more robust to this skew in the relative importanctext filtering system. From our current experiments, Rocchio is
of relevant documents. AdaBoost doesn’t do as well for Util-Bignificantly faster than AdaBoost. Thus, it seems that classi-
as it does for error and Util-1 when compared to Rocchio. Weers based on Rocchio’s method are and would be viable tools
haven't studied this phenomenon in greater details yet, but vire large scale filtering systems. In order to make AdaBoost
suspect that the high importance of relevant documents is fortiore attractive for large problems with sparse relevant docu-
ing AdaBoost to select non-general features from the relevamtents, algorithmic improvements that will significantly reduce
documents, which results in over-fitting of the classifier to théhe computation time should be sought.
training relevant documents.

The poor performance of AdaBoost on TREC can possibly
be attributed to the sampling used to train the algorithm for
this task (see Section 5.4). When AdaBoost is trained using\ge would like to thank David Lewis for help with the data and
small set of training documents, it is unable to learn the globgl, his useful comments on this work.
occurrence pattern for words. Rocchio, on the other hand, uses
this information as the idf-factor (Table 1) in term weights. DueR
to such sampling, AdaBoost tends to over-emphasize commo
terms that happen to occur in the relevant documents in thfj james Allan. Incremental relevance feedback for information fil-
sample of documents it is trained on. Had it been trained on the * tering. InProceedings of the Nineteenth Annual International ACM
entire collections, this wouldn’t be a problem, and the results  SIGIR Conference on Research and Development in Information
should have been better. Retrieval pages 270-278. Association for Computing Machinery,
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Chidanand Apte, Fred Damerau, and Sholom Weiss. Towards
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