
Boosting for Document Routing

Raj D. Iyer
�

David D. Lewis
y

Robert E. Schapire Yoram Singer
z

Amit Singhal
AT&T Labs � Research

Shannon Laboratory
180 Park Avenue

Florham Park, NJ 07932 USA

ABSTRACT
RankBoost is a recently proposed algorithm for learning ranking
functions. It is simple to implement and has strong justifications
from computational learning theory. We describe the algorithm
and present experimental results on applying it to the document
routing problem. The first set of results applies RankBoost to a
text representation produced using modern term weighting meth-
ods. Performance of RankBoost is somewhat inferior to that of
a state-of-the-art routing algorithm which is, however, more com-
plex and less theoretically justified than RankBoost. RankBoost
achieves comparable performance to the state-of-the-art algorithm
when combined with feature or example selection heuristics. Our
second set of results examines the behavior of RankBoost when
it has to learn not only a ranking function but also all aspects of
term weighting from raw data. Performance is usually, though not
always, less good here, but the term weighting functions implicit
in the resulting ranking functions are intriguing, and the approach
could easily be adapted to mixtures of textual and nontextual data.

Keywords: routing, boosting, ranking, supervised learning, text
representation.

1. INTRODUCTION
Recent years have seen an explosion in applications of machine

learning to information retrieval. Some benefits of this interest have
been algorithms with clear theoretical properties, the ability to han-
dle both textual and nontextual data, and, occasionally, better effec-
tiveness. However, this new attention has fallen disproportionately
on a subset of IR tasks, in particular the classification tasks of text
categorization and document filtering.

Classification is not the only behavior one would like from IR
systems. Of even more interest is ranking. Ranking of documents

�Current address: Living Wisdom School, 456 College Avenue,
Palo Alto, CA 94306. Research conducted while visiting AT&T
Labs and with support from an NSF Graduate Fellowship.
yContact author. Email: ddlewis2@worldnet.att.net.
zCurrent address: School of Computer Science & Engineering, The
Hebrew University, Jerusalem 91904, Israel. Research conducted
while at AT&T Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Ninth International Conference on Information and Knowledge Manage-
ment (CIKM) 2000
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

by some measure of relevance is an extremely effective interface
strategy, one now used millions of times a day by World Wide Web
search engines.

IR has developed many approaches for training models to rank
documents. These have been applied to both interactive searches
of an existing collection, called ad-hoc retrieval, and to prioritizing
new documents that arrive in the future, a task which has come to
be called routing.

Most IR techniques for ranking have two facets [13]. One is the
selection and weighting of terms for a particular information need.
When only a textual query is available, this process is called query
weighting. When training data is available in the form of docu-
ments judged for relevance, the process is called relevance feed-
back in an interactive context and fitting, training, tuning, or opti-
mization in a routing context; we will use the term model fitting.
The techniques used are often similar to those explored in machine
learning but with the goal of ranking rather than classification.

The second facet of ranking techniques is the conversion of tex-
tual documents first into tokens for index terms (words, phrases,
n-grams, etc.) and then into numeric vectors. The process of as-
sociating a numeric value with the occurrence of an index term in
a document is variously called document weighting, within docu-
ment weighting, or term weighting. We will use the last term. Term
weighting has received little attention outside of IR.

This paper reports an attempt to bring machine learning approaches
to bear on both of these facets of ranking. We adapt RankBoost [5],
a boosting algorithm designed to produce models for ranking ob-
jects, to the widely studied routing task.

Our first study applies RankBoost to documents represented us-
ing modern IR term weighting techniques. We compare its ability
to fit routing models to that of a state-of-the-art ranking algorithm
applied to the same text representation. Our second study discards
modern term weighting and tests whether RankBoost can simulta-
neously learn both term weighting functions and a routing model,
starting only with raw textual data represented in various forms.

Our results show that RankBoost tends to overfit in the absence
of some additional feature selection mechanism. On a restricted
feature set however, results are quite competitive, particularly when
substantial training data is available. Interesting term weighting
functions were learned in a number of cases, suggesting a new ap-
proach for term weighting that may be particularly useful for non-
standard text representations.

We begin in Section 2 by discussing previous approaches to term
weighting and model fitting for ranking. Section 3 describes the
RankBoost algorithm. Section 4 discusses feature engineering to
support the learning of term weighting functions. Section 5 reviews
our benchmarking methods. Section 6 details our experiments and
presents their results. Section 7 concludes the study and points to
some future directions.

2. BACKGROUND
A quandary in both relevance feedback and routing scenarios is

that the input to the learning algorithm is (almost always) a set
of documents classified according to binary relevance judgments,
but the trained model must produce a ranking of future documents
rather than a binary classification. One way of reconciling this mis-
match is to train a model to estimate the probability that a document
belongs to the relevant class and then rank documents based on this
probability [9]. Probabilistic retrieval [20, 19] is based on this no-
tion, and parameter estimation in a Bayes independence framework
is the most common approach to training.

Conversely, one can view relevance as a matter of degree, of
which binary relevance judgments are only a coarse reflection. A
training algorithm observes these coarse judgments on many train-
ing documents and attempts to produce a model estimating the un-
derlying degree of relevance, which is then used to rank documents.
Early vector space retrieval relevance feedback algorithms [12, 11]
embody this view, emphasizing the construction of a prototypical
relevant vector to which similarity can be measured.

In recent years, IR researchers working in both frameworks have
used increased computing power to search for models that optimize
ranking effectiveness on training data [1, 3, 10]. The resulting algo-
rithms have much in common with techniques from machine learn-
ing but lack the theoretical analyses (such as proofs of convergence)
often pursued in machine learning. Conversely, machine learning
has devoted relatively little attention to ranking, although some ar-
eas of statistics and social science have paid a bit more attention.
This literature is surveyed elsewhere [4].

3. BOOSTING FOR RANKING
In this section we describe our approach to document routing us-

ing the RankBoost boosting algorithm [5]. RankBoost is based on
Freund and Schapire’s AdaBoost algorithm [6] and its recent suc-
cessor developed by Schapire and Singer [15]. The goal of Rank-
Boost is to produce a statistical model that, when applied to a set
of documents, orders them in a fashion that approximates their true
order, that is, an ordering according to relevance. This true order-
ing may be obtained from a human expert providing feedback in
the form of relevance judgments. We expect the true ordering to
rank all relevant documents above all non-relevant documents; for-
mally it is a two-tier partial order. Thus the goal of RankBoost is
to produce an order which places as many relevant documents as
possible at the top.

There are various methods that can be used to measure the simi-
larity between the approximate order and the true order. RankBoost
attempts to minimize one possible measure which we call pair-wise
disagreement. This is the number of pairs of documents which the
approximate order misorders with respect to the true order. In our
study this is simply the number of pairs of documents �d�� d�� for
which the approximate ranking orders d� above d� but the feedback
judges d� as relevant and d� as non-relevant.

RankBoost approximates the true ordering by combining many
simple rankings of the documents. For example, one simple rank-
ing considered in this study is based on the frequency of a particular
term, such as an ordering of the documents according to how many
times the word “treaty” appears in each. Clearly, ranking a set of
documents by the frequency of even the best single term is likely
to place many non-relevant documents above relevant documents.
However, the idea of boosting is to generate and combine many dif-
ferent simple rankings in a principled manner to produce a single
highly accurate ordering.

Formally, the simple rankings are real-valued functions called

weak hypotheses. Given a ranking h and document d, we refer to
h�d� as the score that h assigns d. Also, h orders d above d� if
h�d� � h�d��. Boosting assumes access to an algorithm or sub-
routine for generating these rankings, called the weak learner. The
boosting algorithm calls the weak learner many times to generate
many rankings, and these are then combined into a single ordering
called the final or combined hypothesis.

The boosting algorithm proceeds in rounds. One of its main fea-
tures is that, during the course of its execution, it assigns different
importance weights to different pairs of training documents. The
weights represent how important it is for the weak learner to dif-
ferentiate between the two documents (to determine which of the
two is more relevant). These weights are not maintained for all
possible document pairs: since the boosting algorithm’s goal is to
order relevant documents over non-relevant documents, the crucial
document pairs are of the form �d�� d�� where the feedback judges
d� as relevant and d� as non-relevant. The weak learner chooses a
simple ranking which correctly orders as many pairs as possible,
taking into account the greater importance of correctly ordering
pairs which have been assigned greater weight. As the algorithm
progresses, pairs of documents that are hard to differentiate cor-
rectly get higher weights while pairs that are easy to differentiate
get lower weights. This in effect forces the weak learner to concen-
trate on document pairs that have been misordered by previously
derived simple rankings.

The final hypothesis orders a set of new documents by assigning
to each a real-valued score. The score of a document is a weighted
combination of the scores assigned to that document by the weak
hypotheses.

A description of RankBoost is shown in Figure 1. RankBoost
takes as input a set X of training documents composed of two dis-
joint subsets: X�, the set of relevant documents and X�, the set of
non-relevant documents (as judged by a human expert). As just de-
scribed, RankBoost calls the weak learner WeakLearn repeatedly
in a series of rounds. On round s, RankBoost provides WeakLearn
with a set of importance weights over the pairs of training docu-
ments. In response, WeakLearn computes a weak hypothesis (sim-
ple ranking) hs which, given a document d, assigns it a real-valued
score. We later discuss the weak learners that were used in our
experiments.

The importance weights are maintained formally as a distribu-
tion D over pairs of training documents from X� � X�. Since
this distribution changes after each round, we denote the distri-
bution before round s by Ds. The weight of a pair of training
documents �d�� d�� (d� is relevant and d� is non-relevant) under
distribution Ds is written Ds�d�� d��, and we maintain the condi-
tions that Ds�d�� d�� � � and

P
d��d�

Ds�d�� d�� � �. (Here
and below, it is understood that this sum is over all pairs �d�� d��
in X� � X�.) Initially we set all the weights equally, that is,
D��d�� d�� � ���jX�jjX�j�.

The goal of the weak learner is to find a simple ranking which
misorders as few document pairs as possible, relative to the dis-
tribution Ds. Formally, the weak learner attempts to find a weak
hypothesis hs with low weighted pair-wise disagreement

disagreeD�h� �
X

d��d�� hs�d���hs�d��

Ds�d�� d�� � (1)

This error can be interpreted as the probability of misordering a
document pair chosen randomly according to distribution Ds.

Having obtained a hypothesis hs from WeakLearn, RankBoost
next chooses a value �s � R which, intuitively, is the impor-
tance assigned to hs; its computation is discussed below. Next,
RankBoost updates the weights of all the document pairs in such a

2

way that pairs which are correctly ordered by hs (in the sense that
hs�d�� � hs�d��) get a lower weight while misordered pairs get a
higher weight (assuming for the moment that �s � �, as it usually
will be). Finally, to ensure that the new weights Ds�� form a dis-
tribution (so that

P
d��d�

Ds���d�� d�� � �), we renormalize the
weights, resulting in the update rule shown in Figure 1.

This process of generating weak hypotheses and updating the
weights is repeated for T rounds. How we decide on a value of
T is discussed later in this section. After T rounds, we have T
hypotheses h�� � � � � hT , as well as the values ��� � � � � �T . A set of
new documents is then ordered according to the scores assigned by
the following final hypothesis H: for each new document d,

H�d� �
TX
s��

�shs�d��

That is, the predictions of all the weak hypotheses are evaluated on
the new document d, and the average of their predictions, weighted
by the �s’s, forms the score assigned to d by H . To generate an
ordered list, the set of new documents is sorted decreasing by score.

We now discuss the exact choice of �s. Freund et al. [5] prove
that the pair-wise disagreement (Eq. (1)) of the final hypothesis
H is bounded above by the product of the normalization factors,QT

s�� Zs. Thus, to minimize Eq. (1), on each round we should
choose �s to minimize Zs. For general weak learners whose hy-
potheses assign documents arbitrary real numbers, they suggest
finding �s via numerical search. This is the method we used in
combination with the weak learner WeakReal, discussed in the next
section. If the hypotheses generated by the weak learner have the
range f�� �g, as is the case with our other weak learner, Weak-
Threshold, Freund et al. provide a direct calculation of �s:

�s �
�
�
ln

�
� � rs
�� rs

�
(2)

where

rs �
X
d��d�

D�d�� d���hs�d��� hs�d���� (3)

To understand what this choice entails, suppose that a highly accu-
rate weak hypothesis hs has been found. Then rs will be close to
1 and �s will be large. This translates into more drastic updates to
the distribution and a greater weight assigned to the predictions of
hs in the computation of the final hypothesis. On the other hand, if
hs is about as accurate as a random ranking of documents, then rs
will be close to 0 and �s will also be close to 0. Thus, the updates
to the distribution will be quite conservative, and the predictions of
hs in the final hypothesis will receive rather low weight.

For our task, we allow �s to be negative. This will be the case
whenever a weak hypothesis hs is found with rs � �, indicating
that hs is negatively correlated with the data. Such a hypothesis can
be useful if we use the opposite of its predictions. However, a weak
hypothesis h may be output multiple times during the boosting pro-
cess, and we do not allow its cumulative weight

P
s� hs�h

�s to be
negative. We impose this restriction to reduce the danger of over-
fitting.

In our experiments, we implemented a more efficient version of
RankBoost given by Freund et al. [5]. Its behavior is exactly the
same as that of the pseudocode given in Figure 1. The code in
Figure 1 runs in time proportional to jX�jjX�j, whereas the more
efficient code (omitted due to the lack of space) runs in time pro-
portional to jX�j� jX� j. This is a significant speedup for large text
collections such as TREC. Note that this time does not include the
running time of WeakLearn; however, a similar speedup is possible
for all of the weak learners used in our experiments.

Input a set X of documents separated into disjoint subsets
X� of relevant documents and X� of non-relevant documents;
Initialize ��d�� d�� � X� �X� � D��d�� d�� � ���jX�j jX�j�.
Do for s � �� � � � � T :

1. Train WeakLearn using distribution Ds over X� �X�.
2. WeakLearn returns a weak hypothesis hs � X � R .
3. Compute �s � R .
4. Update: ��d�� d�� � X� �X� �

Ds���d�� d�� �
Ds�d� � d�� exp ���s �hs�d��� hs�d����

Zs
where Zs is the normalization factor:

Zs �
X

d��d�

Ds�d�� d�� exp ���s �hs�d��� hs�d���� �

Output the final hypothesis: H�d� �
TX

s��

�shs�d��

Figure 1: RankBoost algorithm for document routing

3.1 Weak learners
We now discuss the two weak learners used in our experiments.

Since a weak learner is called on each round of boosting, we use
the notation of the previous section, omitting s subscripts. A weak
learner takes as input a distribution D over the document pairs and
a set of N ranking features. A ranking feature is a function that
assigns a real-valued score to a document. A ranking feature is also
allowed to leave some documents unranked, which we indicate by
a “score” of �. For instance, the value of a ranking feature might
equal the term frequency of the word treaty in the document, or
equal � if treaty does not appear in the document.

The weak learner uses the ranking features to form its weak hy-
pothesis, attempting to find one with small pair-wise disagreement
relative to distribution D. Rather than minimize this quantity di-
rectly, the weak learner finds a weak hypothesis which minimizes
Z, the normalization constant in Figure 1, which is an upper bound
on the pair-wise disagreement, as discussed in the previous section.

We describe two weak learners which differ in the types of weak
hypotheses they generate. The first weak learner, WeakReal, sim-
ply selects one of the available ranking features to be the weak
hypothesis. Thus its weak hypotheses are real-valued functions.
(In our study, a score of � is treated as a zero score for this weak
learner.) The second weak learner, WeakThreshold, also selects
a ranking feature, but converts it into a binary (0-1) function by
choosing a threshold score. The thresholded feature judges docu-
ments with scores above the threshold as relevant (score of 1) and
documents with scores below the threshold as non-relevant (score
of 0). A score of � could be mapped to either 1 or 0, but in this
study it is always mapped to 0.

WeakReal. This weak learner searches for a ranking feature
which minimizes Z. To achieve this, for each ranking feature, the
algorithm calculates the � which minimizes Z by running New-
ton’s method for a fixed number of steps. We were able to imple-
ment this numerical search in time proportional to

PN

i�� jXfi j, the
sum over all features of the number of documents ranked by each
feature (details omitted for lack of space). If the ranking features
are associated with terms, for example, then this number is exactly
the size of an inverted index for these terms.

WeakThreshold. This weak learner takes a set of ranking fea-
tures ffig and outputs a weak hypothesis of the form

h�d� �

�
� if fi�d� � �
� if fi�d� � � or fi�d� � � (4)

To implement the weak learner efficiently, we search for h to max-

3

Rocchio- RankBoost with
QZ-DFO WeakReal WeakThreshold

Reuters-21578
all topics 0.6786 0.6284 0.5836
� � rel. test 0.8078 0.7501 0.7446

Table 1: Non-interpolated average precision results for
Reuters-21578 and TREC-3. RankBoost uses all terms that oc-
cur in at least two positive training documents as features. The
WeakThreshold version uses the Q representation (Section 4.3)
based on the same terms. The second Reuters line gives results
restricted to the 59 topics with at least five relevant test docu-
ments.

imize jrj (as defined in Eq. (3)) rather than minimize Z. This
is justified since Freund et al. [5] show that, for binary weak hy-
potheses weighted using � as computed in Eq. (2), Z �p

�� r�.
WeakThreshold searches for h by checking all possible thresholds
of all features. This can be done very efficiently, as described
by Freund et al. [5] who show how the search can can be carried
out in time proportional to

PN
i�� jXfi j, the same running time as

WeakReal. This is the implementation we used in our experiments.
Note that WeakThreshold treats unranked documents as if they

are ranked below every ranked document.

Choosing the number of rounds. Finally, we need to specify
how we set the number of rounds T . Intuitively, as boosting runs
for more rounds, the final hypothesis it outputs grows larger and
more complicated. Although a larger final hypothesis predicts more
accurately on the training data, it may overfit and not generalize
well to future data. Thus we want to use the training data to select
T in a fashion that minimizes the risk of overfitting. Although there
are theoretical analyses of the number of rounds needed for boost-
ing [6, 14], these tend not to give practical answers; therefore, we
use heuristics to estimate a good number of rounds of boosting. We
found that the following rule yields good results. When running on
a particular topic, we looked at the number of features in the fea-
ture set (see Section 6.1) and the number of positive examples in
the training set, and we set T to be the smaller of the two.

4. TERM WEIGHTING BY WEAK
HYPOTHESIS FORMATION

While RankBoost is quite different from typical learning ap-
proaches to routing, the ranking function it produces when used
with WeakReal has a common form: a linear model applied to
real-valued term weights. Since term weighting approaches for
handling within document frequency and document length have
been highly optimized for use with linear models, there seems lit-
tle reason to explore alternative term weighting approaches when
WeakReal is used.

However, when RankBoost is used with WeakThreshold, the rank-
ing function is a linear combination of thresholded feature val-
ues, a model structure rarely used in IR. Applying a standard term
weighting function seems peculiar with such a model, since the
real-valued feature values would simply be thresholded to 0/1. We
instead explored the possibility of using a very raw representation
of the document content. RankBoost can then implicitly construct
a separate term weighting function for each term by choosing and
weighting multiple thresholded weak hypotheses for the term. We
describe in this section the nature of the term weighting functions
produced using each of several raw representations of text.

Rocchio- RankBoost with
QZ-DFO WeakReal WeakThreshold

Reuters-21578
all topics 0.6786 0.6956 0.5817
� � rel. test 0.8078 0.8455 0.7483

TREC-3
all documents 0.4669 0.3974 0.4276
top 1,000 � rel. 0.4669 0.4638 –

Table 2: Non-interpolated average precision results for
Reuters-21578 and TREC-3. RankBoost here is restricted to
using features given a nonzero weight by Rocchio-QZ-DFO.
The WeakThreshold version uses the Q representation (Sec-
tion 4.3). The second Reuters line gives results only on topics
with at least five relevant test documents. The second TREC
line gives results for the top 1,000 test documents as ranked by
Rocchio-QZ-DFO, plus any remaining relevant test documents.

4.1 The rawtf representation
In the simplest case we define one ranking feature, ft, for each

term t, where ft�d� is equal to the raw tf (number of occurrences)
of term t in document d. If there are no occurrences of t in d, we
can view the feature as not ranking the document (ft�d� � �) or
as having a tf of 0 (ft�d� � �): the effect is the same with our use
of WeakThreshold. We call this the rawtf representation.

A weak hypothesis h�d� produced by boosting with the rawtf
representation has the form:

h�d� �

�
� if tf � �
� if tf � �

where � is a threshold, and tf is the within document frequency
of some term. Each such hypothesis is given a weight � by the
boosting algorithm, so the above hypothesis contributes � to a doc-
ument’s score if the tf of the selected term is � � and contributes 0
otherwise.

However, the final hypothesis H�d� used to rank documents is
a weighted combination of many weak hypotheses of the above
form. RankBoost may choose several weak hypotheses based on
the same indexing term. Each such hypothesis may have a different
threshold � and weight �. Therefore, the overall contribution of a
term to document d’s score is a step function produced by summing
all weak hypotheses derived from that term:

g�d� �

�����
����

wn if tf � �n
wn�� if tf � �n�� and tf � �n
wn�� if tf � �n�� and tf � �n��
� � �
� if tf � ��

where �n � �n�� � � � � � �� are the set of thresholds seen in
weak hypotheses for this term. The wj’s result from summing the
�’s for all weak hypotheses that are based on the term and that have
thresholds � �j . Note that this implies that wn � wn�� � � � � �
�, since, as discussed in Section 3.1, we force WeakThreshold to
produce a cumlative nonnegative weight for each weak hypothesis.

In other words, as in conventional within document weighting
functions, larger values of tf cause a term to have a larger contribu-
tion to a document’s score. The differences are that (1) the within
document weighting function is a step function rather than a con-
tinuous function such as log tf, and (2) the function is learned rather
than prespecified and is different for each term.

4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
vg

. P
re

c.
 R

an
kB

oo
st

 (
R

ea
l)

Avg. Prec. Rocchio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
vg

. P
re

c.
 R

an
kB

oo
st

Avg. Prec. Rocchio

Figure 2: Comparison of RankBoost with WeakReal and
Rocchio-QZ-DFO on Reuters-21578 (left) and TREC-3 (right)
text collections. Each point in each scatterplot shows the test
average precision of the two competing algorithms on a single
topic. The x- and y-coordinates of each point give the test av-
erage precision of Rocchio-QZ-DFO and RankBoost (respec-
tively) on the given topic.

4.2 The length feature and the rawtf&length
representation

It is common in term weighting to use document length normal-
ization, i.e. to reduce the scores that long documents would oth-
erwise get. The rationale is that long documents will tend to have
higher tf values for all terms, regardless of the actual content of
the document. Document length normalization approaches such as
cosine normalization or pivoted normalization [17] use the same
normalization formula for each ranking task that is presented.

We investigated learning a customized document length normal-
ization for each ranking task. We defined a ranking feature, length(d),
whose value equals the negative of the document length if the term
occurs in the document and � otherwise. We negate the length be-
cause WeakThreshold uses positive weights and � tests on thresh-
olds, and we want shorter documents to get a boost to their score,
not longer ones. A weak hypothesis based on the length feature has
the form:

h�d� �

�
� if length � �
� if length � �

where we have reversed the inequalities rather than writing the
negated document lengths. As with all weak hypotheses, this one
will have some weight �. The cumulative effect of all weak hy-
potheses based on the length feature is a step function that gives
a large positive contribution to short documents with the contribu-
tion decreasing as document length increases. (Section 6.2 gives an
example.)

We refer to the representation that includes both the rawtf and
length features as the rawtf&length representation.

4.3 The Q (quadrant) representation
The length feature allows only an overall downweighting of long

documents. It is also possible to define features that allow a docu-
ment length to affect each term differently. In this representation,
we define multiple ranking features for each term, one for each tf
value observed for the term on the training corpus. The value of the
feature ft�u on document d is the negated document length if that
term has a tf � u on the document and � otherwise.

By selecting a feature ft�u, WeakThreshold is implicitly choos-
ing a threshold of u on the tf value of t. Then, as always, Weak-
Threshold explicitly chooses a threshold � on ft�u�d�, the negated
length of d. The resulting weak hypothesis therefore is based on

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
vg

. P
re

c.
 R

an
kB

oo
st

-R
ea

l

Avg. Prec. RankBoost-Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
vg

. P
re

c.
 R

an
kB

oo
st

-R
ea

l

Avg. Prec. RankBoost-Threshold

Figure 3: Comparison of RankBoost with two weak learn-
ers, WeakReal and WeakThreshold on Reuters-21578 (left) and
TREC-3 (right) text collections. WeakThreshold uses the Qr

representation. (See Figure 2.)

two thresholds:

h�d� �

�
� if tf � u and length � �
� otherwise.

We call this representation the quadrant or Q representation since
the set of documents assigned a value of 1 by a weak hypothesis
is a quadrant of length � tf space. The cumulative effect of all
weak hypotheses based on a single term is a complicated function
of document length and tf value. (See Figure 5 for an example.)
We hypothesized that the functions learned in this manner would
be similar and possibly superior to conventional term weighting
functions. Section 6.2 examines this question.

5. METHODS
This section reviews the datasets that we tested the boosting al-

gorithms on and the standard IR techniques that we compared them
to.

5.1 Datasets
Our studies used two datasets previously used in a study of boost-

ing for text classification [16] and used the same procedures for
processing those datasets. The TREC-3 routing dataset consists
of 741,856 training documents and 336,310 test documents dis-
tributed on TREC disks 1-3. We used fifty TREC topics (numbers
101-150) and corresponding relevance judgments from the TREC-
3 routing evaluation [8]. Textual queries for each topic exist but
were not used in our experiments.

While the TREC-3 routing dataset and other TREC routing col-
lections are the most widely used benchmark for machine learning
of ranking functions, their size was problematic for our prototype
code. We therefore used as our second dataset the much smaller
Reuters-21578 collection. The Reuters-21578 collection consists
of 21,578 documents which appeared on the Reuters newswire in
1987. Each document has been categorized with respect to each
one of 135 financial topic categories. We used the “ModApte” split
of the data into 9,603 training documents, 3,299 test documents,
and 8,676 documents which are ignored. We used the 90 categories
that have at least one positive training instance and at least one pos-
itive test instance under this split. Some results are also presented
for the set of 59 categories that have at least one positive train-
ing instance and at least five positive test instances under this split,
since test set average precision figures are less erratic for these cat-
egories.1

�More details on the collection are available at
http://www.research.att.com/	lewis.

5

Both datasets were indexed using standard SMART tokenization,
stoplists, and phrase formation [16]. Experiments used either raw tf
(SMART triple nnn) or log tf pivoted normalization (Lnu) versions
of the data produced by SMART.

Note that most studies on Reuters-21578 have used effectiveness
measures for binary classification. Our use of Reuters-21578 is as
a surrogate routing dataset, and so we evaluate our results on both
it and TREC-3 using non-interpolated average precision, a widely
used measure of ranking effectiveness. Average precision was com-
puted using the standard TREC evaluation software.

5.2 Comparing with a state-of-the-art
routing method

A wide range of highly tuned learning algorithms for producing
ranking functions have been explored in the TREC routing evalua-
tions. Some of the consistently most successful approaches [2, 21]
are multipass optimization algorithms initialized using Rocchio’s
relevance feedback formula [12, 11]. We therefore compared the
effectiveness of RankBoost with the latest in this series of algo-
rithms. This version, which we will call Rocchio-QZ-DFO here,
incorporates dynamic feedback optimization [3] and query zoning
[18]. The algorithm has 5 parameterized phases and is described in
detail elsewhere [16].

6. EXPERIMENTS
We now report our experimental results on applying RankBoost

to train ranking models. Study 1 focuses on issues of model fitting,
while Study 2 focuses on the character of learned term weighting
functions.

6.1 Study 1: Boosting with real-valued weak
hypotheses

Our first study focuses on the properties of RankBoost using
WeakReal as a weak learner applied in a standard IR context. We
therefore used a standard text representation for documents con-
sisting of Lnu weighted words and phrases. That is, each ranking
feature is associated with a term whose value is given by its Lnu
weight for that document. The resulting final hypothesis is there-
fore a linear combination of the within document weights for a set
of terms.

We first ran RankBoost with candidate weak hypotheses corre-
sponding to all terms that occurred in at least two positive train-
ing instances of the class. With this as the only feature selection,
RankBoost’s performance was worse than Rocchio-QZ-DFO’s on
the Reuters collection (Table 1). RankBoost gave better average
precision than Rocchio-QZ-DFO on only 22 of the topics, while
Rocchio-QZ-DFO was better on 61. Averaged over the 90 topics,
RankBoost’s non-interpolated average precision was 7.4% worse
than Rocchio-QZ-DFO’s. If we restricted topics to those that had
at least 5 test examples, the difference was still 7.1%.

These initial results suggested that RankBoost was doing a bet-
ter job of weighting features than selecting them, so we conjectured
that restricting it to use a high quality feature set would result in bet-
ter effectiveness. We tested this by simply restricting RankBoost to
use exactly the features that Rocchio-QZ-DFO selects. This signif-
icantly improved the effectiveness of RankBoost/WeakReal (from
0.6284 to 0.6956), as seen in Table 2, so that RankBoost now is ac-
tually performing slightly better than Rocchio-QZ-DFO. Figure 2
(left) shows in a scatterplot how RankBoost compares to Rocchio-
QZ-DFO on all 90 topics in the Reuters collection. Now Rank-
Boost outperforms Rocchio-QZ-DFO on 53 topics, while Rocchio-
QZ-DFO has the advantage on only 29 topics (and tied on the re-
maining 8 topics).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 25 50 75 100 125 150 175

D
is

ag
re

em
en

ts
 o

n
te

st
 (

no
rm

al
iz

ed
)

Number of rounds

Query 134
Query 117

Figure 4: For two TREC-3 topics, the pairwise disagreement on
a test set for RankBoost with WeakReal, measured as a function
of the number of rounds of boosting.

We next compared RankBoost (with Rocchio-QZ-DFO feature
selection) to Rocchio-QZ-DFO on the TREC-3 collection. Our
current implementation of RankBoost with WeakReal is too slow
to run on all of the available training data, even with feature se-
lection. We instead trained RankBoost using the top 10,000 doc-
uments ranked by Rocchio-QZ-DFO, plus any remaining relevant
documents. Rocchio-QZ-DFO, on the other hand, was trained on
the entire corpus. As Table 2 and Figure 2 (right) show, Rank-
Boost’s performance (0.3974 average precision) was still worse
than Rocchio-QZ-DFO’s (0.4669 average precision), though it is
still better than all but one of the 49 original TREC-3 runs [8].

We believe that the inferior performance of RankBoost on the
TREC-3 data is due in large part to the limited dataset used in
training, since it certainly had very different statistical properties
from either the entire training set or the entire test set. To test
this hypothesis, we evaluated RankBoost on a test set selected in
a similar manner to that used in choosing the training set, namely,
the top 1,000 test documents (as ranked by Rocchio-QZ-DFO) to-
gether with all remaining relevant documents. On this more limited
test set, RankBoost’s performance (0.4638 average precision) was
comparable to that of Rocchio-QZ-DFO, as can be seen in Table 2.
(Rocchio-QZ-DFO’s effectiveness does not change when evaluated
on this subset, because the TREC evaluation software only takes
into account the top 1000 retrieved documents when computing ef-
fectiveness.)

One of the problematic aspects of RankBoost is choosing the
number of rounds of boosting to perform. In the above experi-
ments, we used the heuristic presented in Section 3. How critical
is the choice of the number of rounds? We found that RankBoost
tended to exhibit two sorts of behavior. On some topics, Rank-
Boost overfit badly, meaning that the pairwise disagreement on a
test set, as a function of the number of rounds of boosting, quickly
reached a minimum and then rose significantly. This can be seen
in the learning curve for TREC-3 topic 134 in Figure 4. On other
topics, however, RankBoost did not overfit; instead, the pairwise
disagreement continued to drop, eventually reaching an asymptote.
This behavior is seen in Figure 4 for TREC-3 topic 117. The former
case seems to occur on topics with few relevant documents, and this
also is the case in which RankBoost’s performance is most likely to
be worse than Rocchio-QZ-DFO’s. Conversely, RankBoost tends
to perform much better in the latter case. Thus, overfitting on top-
ics with few relevant documents seems to be a significant cause of

6

rawtf rawtf&length Q
Reuters-21578

all features 0.6420 0.6557 0.5836
Rocchio features 0.5834 0.5952 0.5638

TREC-3
all features 0.3797 – 0.4233
Rocchio features 0.3909 – 0.4276

Table 3: Non-interpolated average precision results for
Reuters-21578 and TREC-3 using RankBoost with Weak-
Threshold. Six text representations are compared: rawtf,
rawtf&length, and Q (Section 4.3), plus the versions of these re-
stricted to features selected by Rocchio (rawtf r, rawtf&lengthr,
and Qr). TREC-3 data for the rawtf&length representations
was lost due to a bug.

failure for RankBoost.

6.2 Study 2: Learning term-weighting
functions from raw data

Our second study tested the ability of RankBoost to extract effec-
tive term weighting functions from raw data. We began with raw
tf (nnn) vectors and converted them into sets of ranking features
of the forms rawtf, rawtf&length, and Q described in Section 4.
Document length was computed as the sum of raw tf values for
words (not phrases) in that document. We also produced pruned
sets of ranking features for each topic using only the features as-
signed nonzero weight by Rocchio-QZ-DFO (as in Study 1). We
refer to these pruned feature sets as rawtf r, rawtf&lengthr , and
Qr . Results with these Rocchio-QZ-DFO-pruned feature sets were
slightly better in general, so we concentrate on them here.

RankBoost with the WeakThreshold weak learner was applied to
training data represented in each of these forms. Boosting stopped
after the number of rounds specified by the heuristic in Section 3.1.
The learned model was run on the test data as represented by the
same type of ranking features used in the training.

Results are summarized in Table 3. Restricting the representa-
tions to features chosen by Rocchio-QZ-DFO helps for TREC-3 but
hurts for Reuters, perhaps because of the larger amount of labeled
data available for Reuters. The Q representations are better for
TREC-3 but worse for Reuters, probably due to the greater range
of document lengths for TREC-3. In no case does the mean value
of noninterpolated average precision for RankBoost with Weak-
Threshold exceed that for Rocchio-QZ-DFO. Table 2 compares
the Qr results for RankBoost/WeakThreshold with those for Rank-
Boost/WeakReal and Rocchio-QZ-DFO. Figure 3 plots this data
in more detail. RankBoost/WeakReal substantially outperforms
RankBoost/WeakThreshold (again using the Qr representation) on
Reuters, while results are mixed on TREC. Overall, the threshold-
ing method did not appear to have produced term weighting quite
as good as the traditional highly tuned methods.

We hypothesized in Section 4 that RankBoost/WeakThreshold
would, by selecting multiple weak hypotheses based on the same
term but with different thresholds, learn topic-specific within docu-
ment weighting functions. This happened in some cases, but more
often all weak hypotheses for a term used the same threshold, par-
ticularly with the rawtf and rawtf&length variants. In retrospect,
this is not surprising. For boosting to select different thresholds
of a ranking feature on different rounds, that ranking feature must
have not only substantial overlap with both positive and negative
training instances but also a substantial variation in raw tf values
among those instances.

Document length

R
aw

 T
F

 o
f "

do
lla

r"

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

Document length

R
aw

 T
F

 o
f "

do
lla

r"

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

Document length

R
aw

 T
F

 o
f "

do
lla

r"

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

Document length

R
aw

 T
F

 o
f "

do
lla

r"

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

Figure 5: Contribution of dollar for different tf values and doc-
ument lengths under rawtf r , rawtf&lengthr, Qr , and Lnu rep-
resentations.

For our Q features, however, the feature values were document
lengths. These vary more than tf values, so selection of multiple
thresholds was more common. We give a particularly interesting
example in the next section.

An example of learned weighting functions. Figure 5 plots
four term weighting functions for the term dollar on Reuters topic
DLR (stories about the US dollar). This term, the best predictor for
the DLR topic, has a nonzero tf on 628 Reuters training documents,
124 of which are drawn from the 131 positive training instances of
the DLR topic.

The x-axis of the plots is the document length, and the y-axis is
the raw tf of dollar. The gray scale intensity encodes the contribu-
tion that dollar makes to the score of a document with this length
and this dollar tf. Intensities are normalized so that an average
length document (75 non-stopword tokens) with a dollar tf of 1 has
the same intensity on all graphs.

The upper left plot shows the contribution of dollar for the rawtf r
model. A total of 19 weak hypotheses with 3 thresholds among
them were selected in the first 69 rounds. Document length is not
explicitly represented in this feature set, so the model can take it
into account only by giving high tf’s slightly less weight than it
might otherwise do.

This can be seen (though only barely without a color plot) by
comparing the upper left and upper right plot. The upper right
plot shows the contribution of dollar (19 weak hypotheses cover-
ing 4 thresholds) for the rawtf&lengthr model. The contribution
of a dollar tf of 4 is 5.48811 in the rawtf&lengthr model, which
has the ability to downweight long documents, but only 5.07414
in the rawtf r model. More impact can be given larger tf’s in the
rawtf&lengthr model, because the length feature keeps long docu-
ments from having inappropriately high scores.

The rawtf&lengthr model in fact incorporates 20 weak hypothe-
ses (covering 10 thresholds) derived from the length feature. The
combined effect of these is a decreasing contribution for docu-
ment length, ranging, in 11 steps, from 3.30744 for documents with
length 11 or less, down to 0.0 for documents with length greater
than 149.

The lower left plot shows the effect of the 19 weak hypotheses
for dollar in the Qr model. Among the 19 weak hypotheses are

7

11 distinct ones representing 6 different tf thresholds and 8 differ-
ent length thresholds. The effect is similar to that of standard term
weighting functions: a contribution that increases with tf at sublin-
ear pace, but where high tfs have less impact for long documents
than short ones.

However, the plot also shows a glaring problem with the result-
ing term weighting function. Documents with a length greater than
430 get no contribution for dollar, no matter how many times it
appears. The problem is that any given training set has a longest
positive example, and RankBoost will see no advantage to setting
a threshold longer than that length. For our approach to be practi-
cal, the system will need to be given some bias in favor of infinite
length thresholds.

For comparison, the lower right plot shows the contribution of
dollar under Lnu weighting, as used by RankBoost/WeakReal and
Rocchio-QZ-DFO. Since Lnu weights are not a function of the sum
of tf’s, we cannot compute Lnu’s for hypothetical documents on the
grid. We instead plot the actual value of dollar’s Lnu weight for all
Reuters training and test documents. The pattern is notably similar
to that learned with the Qr representation, showing that, for this
term at least, RankBoost has induced a sensible term weighting
function from raw data.

7. CONCLUSIONS AND FUTURE WORK
We have presented preliminary evidence that RankBoost, a sim-

ple boosting algorithm with strong theoretical foundations, can learn
ranking models with effectiveness roughly comparable to that of
leading edge routing algorithms developed in IR. We believe we
can strengthen the case for RankBoost by replacing our use of
Rocchio-QZ-DFO for feature selection (a choice made for conve-
nience) with a simpler and theoretically motivated feature selection
method. We also hope to produce a more efficient implementation
of RankBoost that would eliminate the need for example selection.

Our results show that a boosting approach applied to a raw char-
acterization of document content (tf weights and document lengths)
can, in some cases, learn term weighting functions similar to those
used in IR. For most terms, however, only one or two distinct weak
hypotheses were used, giving a crude treatment of term weighting
for that term.

Attempting to learn a separate term weighting function for each
term is perhaps too much to ask from any reasonably sized training
set. An alternative would be to allow great flexibility in learning
the term weighting function, but force the same function to be used
for all terms. This might be viewed as an automated version of the
exploratory data analysis approach to term weighting proposed by
Greiff [7].

In any case, our approach of inducing term weighting functions
from raw data is perhaps of less interest for ranking based on textual
features (where highly refined term weighting methods are already
known) than for ranking based on nontextual or mixed nontext/text
data, a less well studied task that is of interest in text mining appli-
cations.

As a final note, all our experiments assumed binary relevance
feedback, but RankBoost can equally well work with graded rele-
vance judgments. This raises the possibility of learning when no
completely relevant examples are available, as long as judgments
of degree of partial relevance are possible. This is often the case,
for instance, in Web search, and we plan to investigate the use of
RankBoost there.

8. REFERENCES
[1] B.T. Bartell, G.W. Cottrell, and R.K. Belew. Automatic combination

of multiple ranked retrieval systems. In Proceedings of the 17th An-

nual International Conference on Research and Development in In-
formation Retrieval, 1994.

[2] Chris Buckley, James Allan, and Gerard Salton. Automatic routing
and ad-hoc retrieval using SMART: TREC 2. In Proceedings of the
Second Text Retrieval Conference, pages 45–56, 1994.

[3] Chris Buckley and Gerard Salton. Optimization of relevance feedback
weights. In Proceedings of the 18th Annual International Conference
on Research and Development in Information Retrieval, pages 351–
357, July 1995.

[4] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning
to order things. Journal of Artificial Intelligence Research, 10:243–
270, 1999.

[5] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. In Machine
Learning: Proceedings of the Fifteenth International Conference,
1998.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119–139, August 1997.

[7] Warren R. Greiff. A theory of term weighting based on exploratory
data analysis. In Proceedings of the 21st International Conference on
Research and Development in Information Retrieval, pages 11–19,
1998.

[8] Donna Harman. Overview of the third text retrieval conference. In
Proceedings of the Third Text Retrieval Conference, pages 1–27,
1995.

[9] S. E. Robertson. The probability ranking principle in IR. Journal of
Documentation, 33(4):294–304, December 1977.

[10] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford. Okapi at TREC-3. In Proceedings of the Third Text Re-
trieval Conference, pages 109–126, 1995.

[11] J. Rocchio. Relevance feedback information retrieval. In The Smart
retrieval system—experiments in automatic document processing,
pages 313–323. Prentice Hall, 1971.

[12] J.J. Rocchio. Document Retrieval Systems–Optimization and Evalua-
tion. PhD thesis, Harvard Computational Laboratory, 1966.

[13] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing and Management,
24(5):513–523, 1988.

[14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of
voting methods. The Annals of Statistics, 26(5):1651–1686, October
1998.

[15] Robert E. Schapire and Yoram Singer. Improved boosting algorithms
using confidence-rated predictions. Machine Learning, 37(3):297–
336, December 1999.

[16] Robert E. Schapire, Yoram Singer, and Amit Singhal. Boosting and
Rocchio applied to text filtering. In Proceedings of the 21st Annual
International Conference on Research and Development in Informa-
tion Retrieval, 1998.

[17] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document
length normalization. In Proceedings of the 19th Annual International
Conference on Research and Development in Information Retrieval,
pages 21–29, 1996.

[18] Amit Singhal, Mandar Mitra, and Chris Buckley. Learning routing
queries in a query zone. In Proceedings of the 20th Annual Inter-
national Conference on Research and Development in Information
Retrieval, pages 25–32, 1997.

[19] Howard Turtle and W. Bruce Croft. Inference networks for document
retrieval. In Proceedings of the 13th Annual International Conference
on Research and Development in Information Retrieval, pages 1–24,
1990.

[20] C. J. van Rijsbergen. Information Retrieval. Butterworths, London,
second edition, 1979.

[21] E.M. Voorhees and D.K. Harman. Overview of the sixth text retrieval
conference. In Proceedings of the Sixth Text Retrieval Conference,
pages 1–24, 1998.

8

