Machine Learning: Proceedings of the Thirteenth International Conference, 1996.

Experiments with a New Boosting Algorithm

Yoav Freund Robert E. Schapire

AT&T Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974-0636

{yoav, schapirp@research.att.com

Abstract. In an earlier paper, we introduced a new “boosting” This paper describes two distinct sets of experiments.
algorithm calledAdaBoost which, theoretically, can be used to In the first set of experiments, described in Section 3, we
significantly reduce the error of any learning algorithm that con-compared boosting to “bagging,” a method described by
sistently generates classifiers whose performance is a little bettgsrejman [1] which works in the same general fashion (i.e.,
than random guessing. We also introduced the related notion of By repeatedly rerunning a given weak learning algorithm

“pseudo-loss” which is a method for forcing a learning algorithm nd combining the computed classifiers), but which con:

of multi-label conceptsto concentrate on the labels that are harde t h distributioni imol Details ai
to discriminate. In this paper, we describe experiments we carrie ructs each distributionin a simpler manner. (Details given

out to assess how welldaBoost with and without pseudo-loss, P€low.) We compared boosting with bagging because both
performs on real learning problems. methods work by combining many classifiers. This com-
We performed two sets of experiments. The first set comparegparison allows us to separate out the effect of modifying
boosting to Breiman'’s “bagging” method when used to aggregatethe distribution on each round (which is done differently by
various classifiers (including decision trees and single attribute-each algorithm) from the effect of voting multiple classifiers
value tests). We compared the performance of the two methodgyhich is done the same by each).
on a collection of machine-learning benchmarks. In the secon In our experiments, we compared boosting to bagging
set of experiments, we studied in more detail the performance Obsing a number of different weak learning algorithms of
boosting using a nearest-neighbor classifier on an OCR problem; : S . .
varying levels of sophistication. These include: (1) an
algorithm that searches for very simple prediction rules
1 INTRODUCTION which test on a single attribute (similar to Holte’s very sim-
“Boosting” is a general method for improving the perfor- ple classification rules [14]); (2) an algorithm that searches
mance of any learning algorithm. In theory, boosting can bdor a single good decision rule that tests on a conjunction
used to significantly reduce the error of any “weak” learningof attribute tests (similar in flavor to the rule-formation
algorithm that consistently generates classifiers which neegart of Cohen’s RIPPER algorithm [3] andiffikranz and
only be a little bit better than random guessing. DespiteWidmer's IREP algorithm [11]); and (3) QuinlanG4.5
the potential benefits of boosting promised by the theoretdecision-tree algorithm [18]. We tested these algorithms on
ical results, the true practical value of boosting can onlya collection of 27 benchmark learning problems taken from
be assessed by testing the method on real machine learnittege UCI repository.
problems. In this paper, we present such an experimental The main conclusion of our experiments is that boost-
assessment of a new boosting algorithm calleldBoost. ing performs significantly and uniformly better than bag-
Boosting works by repeatedly running a given wkak ging when the weak learning algorithm generates fairly
learning algorithm on various distributions over the train- simple classifiers (algorithms (1) and (2) above). When
ing data, and then combining the classifiers produced bgombined withC4.5, boosting still seems to outperform
the weak learner into a single composite classifier. Thdyagging slightly, but the results are less compelling.
first provably effective boosting algorithms were presented We also found that boosting can be used with very sim-
by Schapire [20] and Freund [9]. More recently, we de-ple rules (algorithm (1)) to construct classifiers that are quite
scribed and analyzeddaBoost, and we argued that this good relative, say, t64.5. Kearns and Mansour [16] argue
new boosting algorithm has certain properties which makehat C4.5 can itself be viewed as a kind of boosting algo-
it more practical and easier to implement than its prederithm, so a comparison gfdaBoost andC4.5 can be seen
cessors [10]. This algorithm, which we used in all ouras a comparison of two competing boosting algorithms. See
experiments, is described in detail in Section 2. Dietterich, Kearns and Mansour’s paper [4] for more detail

Home page: “http://www.research.att.com/orgs/ssr/people/uiao.n this point. .

Expected to change to “http:/mwww.research.att.com/uid” some- 1N the second set of experiments, we test the perfor-
time in the near future (for uig {yoav, schapirg). mance of bpostmg ona nearest' neighbor classifier for h'and-
We use the term “weak” learning algorithm, even though, in Written digit recognition. In this case the weak learning
practice, boosting might be combined with a quite strong learningalgorithm is very simple, and this lets us gain some insight
algorithm such a€4.5. into the interaction between the boosting algorithm and the

Algorithm AdaBoost.M 1

nearest neighbor classifier. We show that the boosting a nput: sequence ol examples (21, 41), - . (£ms yon))

gorithm is an effective way for finding a small subset of with labelsy, € V' = {1 1)
prototypes that performs almost as well as the complete set. weak Iearningyélgorithrid\/e:'aj(.l_. earn
We also show that it compares favorably to the standard integerT" specifying number of iterations
method of Condensed Nearest Neighbor [13] in terms of |t§nitiajize D1(i) = 1/m for all .
test error. Dofort=1,2,...,T"

There seem to be two separate reasons for the improve-1. callweakL earn, providing it with the distributionD;.
ment in performance that is achieved by boosting. The first 2. Get back a hypothesis : X — Y.
and better understood effect of boostingis thatitgenerates a3 - ciculate the error df,: ¢, = Z D).
hypothesis whose error on the training set is small by com- ihetz ity
bining many hypotheses whose error may be large (butstill ¢ 1/2,thensell = ¢ — 1 and albortlloop.
better thanrandom guessing). It seems thatboostingmay bes getg, — et,/(l —€t).
helpful on learning problems having either of the following 5. update distributiorD; :
two properties. The first property, which holds for many L D) B if he(z:) =y
real-world problems, is that the observed examples tend to ~ De+1(i) = 7 1 otherwise
have varying degrees of hardness. For such problems, the \herez, is a normalization constant (chosen so that,1
boosting algorithm tends to generate distributionsthat con- wjll be a distribution).
centrate on the harder examples, thus challenging the weabutput the final hypothesis:
learning algorithm to perform well on these harder parts of _ 1
the sargple?space. Tﬁe second property is that the learning hin(z) = arg;ré%x Z log Be
algorithm be sensitive to changes in the training examples)=y
so that significantly different hypotheses are generated fogjg e 1: The algorithridaBoost.M 1
different training sets. In this sense, boosting is similar to
Breiman’s bagging [1] which performs best when the weak2 THE BOOSTING ALGORITHM
learner exhibits such “unstable” behavior. However, unlike

: : : ; . In this section, we describe our boosting algorithm, called
bagging, boosting tries actively to force the weak learning ' X :
algorithm to change its hypotheses by changing the distri-:d2B00st. See our earlier paper [10] for more details about

he algorithm and its theoretical properties.

bution over the training examples as a function of the error§
g P We describe two versions of the algorithm which we

made by previously generated hypotheses. h
The second effect of boosting has to do with variance redénoteAdaBoost.M1 and AdaBoost.M2. The two ver-

duction. Intuitively, taking a weighted majority over many sions are equivalent for binary classification problems and

hypotheses, all of which were trained on different sample iffer only in their handling of problems with more than
taken out of the same training set, has the effect of retWo classes.
ducing the random variability of the combined hypothesis.
Thus, like bagging, boosting may have the effect of produc-z'l ADABOOST.M1
ing a combined hypothesis whose variance is significantiWWe begin with the simpler versioAdaBoost.M1. The
lower than those produced by the weak learner. Howevehoosting algorithm takes as input a training setoéxam-
unlike bagging, boosting may also reduce the bias of thelesS = {(z1,41), ..., (zm, ym)) Wherez; is an instance
learning algorithm, as discussed above. (See Kong and Didrawn from some spac& and represented in some man-
etterich [17] for further discussion of the bias and variancener (typically, a vector of attribute values), apde Y is
reducing effects of voting multiple hypotheses, as well asghe class label associated with. In this paper, we al-
Breiman'’s [2] very recent work comparing boosting andways assume that the set of possible labéls of finite
bagging in terms of their effects on bias and variance.) Ircardinalityk.
our first set of experiments, we compare boosting and bag- In addition, the boosting algorithm has access to another
ging, and try to use that comparison to separate between thispecified learning algorithm, called the weak learning
bias and variance reducing effects of boosting. algorithm, which is denoted generically &geaklL earn.
Previous work. Drucker, Schapire and Simard [8, 7] The boosting algorithm call§VeakLearn repeatedly in
performed the first experiments using a boosting algorithma series of rounds. On round the booster provides
They used Schapire’s [20] original boosting algorithm com-WeakL earn with a distributionD; over the training set
bined with a neural net for an OCR problem. Follow- S. In responseWeaklL earn computes a classifier dy-
up comparisons to other ensemble methods were done tppthesis 2, : X — Y which should correctly classify
Drucker et al. [6]. More recently, Drucker and Cortes [5] a fraction of the training set that has large probability
usedAdaBoost with a decision-tree algorithm for an OCR with respect toD;. That is, the weak learner’'s goal is
task. Jackson and Craven [15] us&daBoost to learn tofind a hypothesis; which minimizes the (training) error
classifiers represented by sparse perceptrons, and tested the= Pr;..p, [h:(x;) # y;|. Note that this error is measured
algorithm on a set of benchmarks. Finally, Quinlan [19] with respect to the distributioR; that was provided to the
recently conducted an independent comparison of boostingeak learner. This process continuesforounds, and, at
and bagging combined wit4.5 on a collection of UCI last, the booster combines the weak hypothésges ., At
benchmarks. into a single final hypothesisg;, .

Algorithm AdaBoost.M2
Input: sequence of exampleg(z 1, y1), - . ., (Tm, Ym))
with labelsy; € Y = {1,... k}
weak learning algorithrieakL earn . T T
integer" specifying number of iterations [{é : hiin(2i) # yi < H /1_ 442 < exp _2272
. . — j— L2

LetB={(i,y):i€{l,...,m},y #yi} m i} =1

Initialize D1(s, y) = 1/|B| for (¢,y) € B.

Dofor¢t=1,2...,T S o Theorem 1 implies that thigaining error of the final hy-
1. CallWeakL earn, providing it with mislabel distributior; . pothesis generated bydaBoost.M1 is small. This does
g' ggfcﬂ?;'é?hiypggﬁasfm? Y —[01]. not necessarily imply that thest error is small. However,

: P : if the weak hypotheses are “simple” aiid'not too large,”

Then the following upper bound holds on the error of the
final hypothesis hyp:

=3 > Dili,y)(1— hu(wiy) + hi(wi,). then the difference between the training and test errors can
(i,w)EB also be theoretically bounded (see our earlier paper [10] for

4. Setde = er/(1—ev). more on this subject).

5. UpdateD;: Dots The experiments in this paper indicate that the theoreti-
Diya(i,y) = Dilivy) BLLDhe(wiyi)=he(=i,9)) cal bound on the training error is often weak, but generally
whereZ, is a norZr?maIization constant (chosen so that, 1 correct qualitatively. However, the test error 'gends to be
will be a distribution). much better than the theory would suggest, indicating a

Output the final hypothesis: clear defect in our theoretical understanding.
T 1 The main disadvantage @&daBoost.M1 is that it is
hiin(z) = arg maxZ (Iog —) he(z,y). unable to handle weak hypotheses with error greater than
Ve B 1/2. The expected error of a hypothesis which randomly

) _ guesses the label is-1 1/k, wherek is the number of

Figure 2: The algorithmhdaBoost.M 2 possible labels. Thus, fdr= 2, the weak hypotheses need
Still unspecified are: (1) the manner in whiéh is O be just slightly better than random guessing, but'when

computed on each round, and (2) héw, is computed. * > 2, the requirement that the error be less thaf ik
Different boosting schemes answer these two questions iuite strong and may often be hard to meet.
different ways.AdaBoost.M 1 uses the simple rule shown
in Figure 1. The initial distributiom is uniformovers so 22 ADPABOOST.M2
Ds(i) = 1/m for all i. To compute distributiof, 1, from The second version ofdaBoost attempts to overcome
D, and the last weak hypothegis we multiply the weight this difficulty by extending the communication between the
of examplei by some numbeg; € [0, 1) if &, classifiesy; boosting algorithm and the weak learner. First, we allow
correctly, and otherwise the weight is left unchanged. Théhe weak learner to generate more expressive hypotheses,
weights are then renormalized by dividing by the normal-which, rather than identifying a single label ¥, instead
ization constantZ;. Effectively, “easy” examples that are choose a set of “plausible” labels. This may often be easier
correctly classified by many of the previous weak hypothethan choosing just one label. For instance, in an OCR
ses get lower weight, and “hard” examples which tend oftersetting, it may be hard to tell if a particular image is “7”
to be misclassified get higher weight. ThéslaBoost fo- ~ or a “9”, but easy to eliminate all of the other possibilities.
cuses the most weight on the examples which seem to 08 this case, rather than choosing between 7 and 9, the

hardest foMeakL earn. hypothesis may output the s€¥, 9} indicating that both
The numbeps; is computed as shown in the figure as alabels are plausible.
function of¢,. The final hypothesig, is a weighted vote We also allow the weak learner to indicate a “degree of

(i.e., a weighted linear threshold) of the weak hypothesegplausibility.” Thus, each weak hypothesis outputs a vector
That is, for a given instance, .z, outputs the labey that [0,1]*, where the components with values close to 1 or
maximizes the sum of the weights of the weak hypothese@ correspond to those labels considered to be plausible or
predicting that label. The weight of hypothesids defined implausible, respectively. Note that this vector of values is
to be lod1/3:) so that greater weightis given to hypotheseshot a probability vector, i.e., the components need not sum
with lower error. to one?

The importanttheoretical property abéddaBoost.M 1 While we give the weak learning algorithm more ex-
is stated in the following theorem. This theorem shows thapressive power, we also place a more complex requirement
if the weak hypotheses consistently have error only slightlyon the performance of the weak hypotheses. Rather than
better than 12, then the training error of the final hypothesis using the usual prediction error, we ask that the weak hy-
hs, drops to zero exponentially fast. For binary classifi- potheses do well with respect to a more sophisticated error
cation problems, this means that the weak hypotheses nesteasure that we call thpseudo-loss. Unlike ordinary error
be only slightly better than random. which is computed with respect to a distribution over exam-

Theorem 1 ([10]) Suppose the weak learning algorithm ples, pseudo-loss is computed with respect to a distribution

WeakL earn, when called by AdaBoost.M 1, generates hy- %We deliberately use the term “plausible” rather than “prob-
potheses with errors i, ..., ex, where ¢ is as defined in able” to emphasize the fact that these numbers should not be
Figure 1. Assume each ¢, < 1/2,and let v, = 1/2 — ¢,. interpreted as the probability of a given label.

over the set of all pairs of examples and incorrect labelsonly that the weak hypotheses have pseudo-loss less than
By manipulating this distribution, the boosting algorithm 1/2, i.e., only slightly better than a trivial (constant-valued)
can focus the weak learner not only on hard-to-classify exhypothesis, regardless of the number of classes. Also, al-
amples, but more specifically, on the incorrect labels thathough the weak hypothesksare evaluated with respect to
are hardest to discriminate. We will see that the boostinghe pseudo-loss, we of course evaluate the final hypothesis
algorithm AdaBoost.M 2, which is based on these ideas, /5, using the ordinary error measure.
achieves boosting if each weak hypothesis has pseudo-loss
slightly better than random guessing. Theorem 2 ([10]) Suppose the weak learning algorithm

More formally, amidabel is a pair(i,y) wherei is ~ WeakLearn, when called by AdaBoost.M 2 generates hy-
the index of a training example ands anincorrect label ~ potheses with pseudo-losses ¢y, . . ., ep, where ¢; is as de-
associated with example Let B be the set of all misla- fined in Figure 2. Lety; = 1/2 — ¢,. Then the following
bels: B = {(i,y) :i € {1,...,m},y # v;}. A mislabel upper bound holds on the error of the final hypothesis A in:
distribution is a distribution defined over the sét of all

mislabels. 1{i © hn(z:) # vi }] K
On each round of boosting AdaBoost.M 2 (Figure 2) m < (k-1 H 1— 4y
supplies the weak learner with a mislabel distributidn =1
In response, the weak learner computes a hypothesit £l)
the formh; : X x Y — [0,1]. There isno restriction on < (k-Dexp|-2> 7
t=1

>y he(2,y). In particular, the prediction vector does not
have to define a probability distribution. where k isthe number of classes.
Intuitively, we interpret each mislabél, y) as repre-
senting a binary question of the form: “Do you predict 3 BOOSTING AND BAGGING
that the label associated with exampileis y; (the correct
label) ory (one of the incorrect labels)?” With this in- In this section, we describe our experiments comparing
terpretation, the weighb. (¢, y) assigned to this mislabel boosting and bagging on the UCI benchmarks.
represents the importance of distinguishing incorrect label We first mention briefly a small implementation issue:
y on examplez;. Many learning algorithms can be modified to handle ex-
Aweak hypothesis; istheninterpretedinthe following amples that are weighted by a distribution such as the one
manner. Ifh,(z;,y;) = 1 andh:(x;,y) = 0, thenh; has created by the boosting algorithm. When this is possi-
(correctly) predicted that;’s label isy;, noty (sinceh; ble, the booster’s distributioR is supplied directly to the
deemsy; to be “plausible” and; “implausible”). Similarly, weak learning algorithm, a method we call boosting by
if he(x;, y;) = 0andh(x;, y) = 1, them, has (incorrectly) reweighting. However, some learning algorithms require
made the opposite prediction. M (x;,y;) = h:«(z;,y), an unweighted set of examples. For such a weak learn-
then/,’s prediction is taken to be a random guess. (Valuesng algorithm, we instead choose a set of examples ffom
for h, in (0, 1) are interpreted probabilistically.) independently at random according to the distribution
This interpretation leads us to define fheeudo-lossof ~ with replacement. The number of examples to be chosen
hypothesish; with respect to mislabel distributio®; by ~ on each round is a matter of discretion; in our experiments,

the formula we chosen examples on each round, whereis the size
. of the original training set. We refer to this method as
a=3 > Dii,y) (1= hi(wi,ui) + ho(wi,v)) J g

boosting byresampling.

Boosting by resampling is also possible when using the
Space limitations prevent us from giving a complete derivafseudo-loss. Inthis case, a set of mislabels are chosen from
tion of this formula which is explained in detail in our earlier the set3 of all mislabels with replacement according to the
paper [10]. It can be verified though that the pseudo-losgliven distributionD;. Such a procedure is consistent with
is minimized when correct labelg are assigned the value the interpretation of mislabels discussed in Section 2.2. In
1 and incorrect labelg # y; assigned the value 0. Fur- ourexperiments, we chose a sample of size= m(k—1)
ther, note that pseudo-losgZ2Lis trivially achieved by any on each round when using the resampling method.
constant-valued hypothedis.

The weak Iear)r/1per’s goal is to find a weak hypothesi§-l THE WEAK LEARNING ALGORITHMS
hs with small pseudo-loss. Thus, standard “off-the-shelf” As mentioned in the introduction, we used three weak learn-
learning algorithms may need some modification to be usethg algorithms in these experiments. In all cases, the exam-
in this manner, although this modification is often straight-ples are described by a vector of values which corresponds
forward. After receiving:;, the mislabel distributionis up- to a fixed set of features or attributes. These values may
dated using a rule similar to the one usedaBoost.M 1. be discrete or continuous. Some of the examples may have
The final hypothesig g, outputs, for a given instance, missing values. All three of the weak learners build hy-
the labely that maximizes a weighted average of the weakpotheses which classify examples by repeatedly testing the
hypothesis values; (z,). values of chosen attributes.

The following theorem gives a bound on the traininger- The first and simplest weak learner, which we call
ror of the final hypothesis. Note that this theorem requiresFindAttr Test, searches for the single attribute-value test

(1,y)eB

boosting FindAttrTest boosting FindDecRule bagging FindAttrTest bagging FindDecRule

examples # # attributes missing
name train | test | classes | disc. | cont. | values
soybean-small 47 4 35 . B
labor 57 2 8 8 X
promoters 106 2 57 - -
iris 150 3 - 4 -
hepatltls 155 2 13 6 ><] 20 40 60 80 o 20 40 60 80) 20 40 60 80) 20 40 60 80
sonar 208 2 - 60 - ol
glass 214 7 - 9 pseudo-loss
audiology.stand 226 24 69 - X
clevg3 | 303 - 2 7 6 X Figure 3: Comparison of using pseudo-loss versus ordinary error
soybean-large 307 376 19 35 - X i i i
onosphere post ° 5 ’ u " on multi-class problems for boosting and bagging.
h"fsi"’mes'g“ j:: ; ig | x In the first phase, the growing set is used to grow a list of
WV - X . .
Jo 690 ol I e attribute-value tests. Each test compares an attribtde
breast-cancer-w 699 2 - 9 X valuew, similar to the tests used BindAttrTest. We use
pima-indians-di 768 2 8| - an entropy-based potential function to guide the growth of
venice s ol B the list of tests. The list is initially empty, and one test is
german 1000 - 2 13 7 - added at a time, each time choosing the test that will cause
segmentation 2310 7 - 19 : the greatest drop in potential. After the test is chosen, only
o eod | sisa B A B one branch is expanded, namely, the branch with the highest
splice 3190 3 60 ; ; remaining potential. The list continues to be grown in this
kr-vs-kp 3196 - 2| 3 : - fashion until no test remains which will further reduce the
satimage 4435 2000 6 - 36 - potential
agaricus-lepiot 8124 - 2 22 - - ' L)
letier-recognit | 16000 4000 2 - 16 - In the second phase, the list is pruned by selecting the

prefix of the list with minimum error (or pseudo-loss) on
Table 1: The benchmark machine learning problems used in thehe pruning set.
experiments. The third weak learner is Quinlan®4.5 decision-tree
algorithm[18]. We used all the default options with pruning
with minimum error (or pseudo-loss) on the training set.turned on. Sinc€4.5 expects an unweighted training sam-
More preciselyFindAttr Test computes a classifier which Ple, we used resampling. Also, we did not attempt to use
is defined by an attribute, a valuev and three predictions AdaBoost.M2 sinceC4.5 is designed to minimize error,
po, p1 andp,. This classifier classifies a new example not pseudo-loss. Furtherr_nore, we did not' expect _pseudo-
as follows: if the value of attribute is missing onz, then 10ss to be helpful when using a weak learning algorithm as
predictp,; if attributea is discrete and its value on example StrongasC4.5, since such an algorithm will usually be able
x is equal tov, or if attributea is continuous and its value to find a hypothesis with error less thafi2l
on z is at mosty, then predicpo; otherwise predicp;. If
using ordinary errorAdaBoost.M 1), these “predictions” 32 BAGGING
Po, p1, p> Would be simple classifications; for pseudo-loss,We compared boosting to Breiman'’s [1] “bootstrap aggre-
the “predictions” would be vectors [0, 1]* (wherek isthe gating” or “bagging” method for training and combining
number of classes). multiple copies of a learning algorithm. Briefly, the method
The algorithmFindAttr Test searches exhaustively for works by training each copy of the algorithm on a bootstrap
the classifier of the form given above with minimum error or sample, i.e., a sample of sizechosen uniformly at random
pseudo-loss with respect to the distribution provided by thewith replacement from the original training s&t(of size
booster. In otherwords, all possible values of, po, prand ~ m). The multiple hypotheses that are computed are then
prare considered. With some preprocessing, this search caombined using simple voting; that is, the final composite
be carried outfor the error-based implementatiofifrm) hypothesis classifies an exampldo the class most often
time, wheren is the number of attributes amd the number assigned by the underlying “weak” hypotheses. See his
of examples. As is typical, the pseudo-loss implementatiopaper for more details. The method can be quite effective,
adds a factor of) (k) wheref is the number of class labels. especially, according to Breiman, for “unstable” learning
For this algorithm, we used boosting with reweighting. algorithms for which a small change in the data effects a
The second weak learner does a somewhat more sophlafge change in the computed hypothesis.
ticated search for a decision rule that tests on a conjunction In order to comparéddaBoost.M 2, which uses pseudo-
of attribute-value tests. We sketch the main ideas of thidoss, to bagging, we also extended bagging in a natural
algorithm, which we calFindDecRule, but omit some of way for use with a weak learning algorithm that minimizes
the finer details for lack of space. These details will bepseudo-loss rather than ordinary error. As described in
provided in the full paper. Section 2.2, such a weak learning algorithm expects to be
First, the algorithm requires an unweighted training set,provided with a distribution over the st of all mislabels.
so we use the resampling version of boosting. The giverOn each round of bagging, we construct this distribution
training set is randomly divided into a growing set using using the bootstrap method; that is, we se]&jtmislabels
70% of the data, and a pruning set with the remaining 30%from B (chosen uniformly at random with replacement),

FINOATr I est rFinuuelcruie 4.0

ol e)
0 5 10 15 20 25 30 O 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

boosting FindAttrTest boosting FindDecRule boosting C4.5 bagging C4.5

0
0O 20 40 6 8 0 20 40 60 80 0 5 10 15 20 25 30

boosting

Figure 5: Comparison of4.5 versus various other boosting and
Figure 4: Comparison of boosting and bagging for each of theP2gging methods.
weak learners. for each benchmark. These experiments indicate that boost-
and assign each mislabel weighf{ 8| times the number of ing using pseudo-loss clearly outperforms boosting using
times it was chosen. The hypothedggescomputed in this ~ €rror. Using pseudo-loss did dramatically better than error
manner are then combined using voting in a natural manne@n every non-binary problem (except it did slightly worse
namely, given:, the combined hypothesis outputs the labelon “iris” with three classes). BecaugedaBoost.M2 did
y which maximizes , h(x, y). so much better thaAdaBoost.M 1, we will only discuss

For either error or pseudo-loss, the differences betweeftdaBoost.M 2 henceforth.

bagging and boosting can be summarized as follows: (1) As the figure shows, using pseudo-loss with bagging
bagging always uses resampling rather than reweighting; (ZJave mixed results in comparison to ordinary error. Over-
bagging does not modify the distribution over examples orall, pseudo-loss gave better results, but occasionally, using
mislabels, but instead always uses the uniform distributionpseudo-loss hurt considerably.
and (3) in forming the final hypothesis, bagging gives equal Figure 4 shows similar scatterplots comparing the per-

weight to each of the weak hypotheses. formance of boosting and bagging for all the benchmarks
and all three weak learner. For boosting, we plotted the er-
33 THEEXPERIMENTS ror rate achieved using pseudo-loss. To present bagging in

We conducted our experiments on a collection of machinéhe best possible light, we used the error rate achieved using
learning datasets available from the repository at Universityither error or pseudo-loss, whichever gave the better result
of California at Irvine3 A summary of some of the proper- 0On that particular benchmark. (For the binary problems,
ties of these datasets is given in Table 1. Some datasets #8d experiments witl4.5, only error was used.)

provided with a test set. For these, we reran each algorithm For the simpler weak learning algorithmiigdAttr-

20 times (since some of the algorithms are randomized)Jest andFindDecRule), boosting did significantly and uni-
and averaged the results. For datasets with no provided tefarmly better than bagging. The boosting error rate was
set, we used 10-fold cross validation, and averaged the ravorse than the bagging error rate (using either pseudo-loss
sults over 10 runs (for a total of 100 runs of each algorithmor error) on a very small number of benchmark problems,

on each dataset). and on these, the difference in performance was quite small.
In all our experiments, we set the number of rounds ofOn average, foFindAttr Test, boosting improved the error
boosting or bagging to b€ = 100. rate over usingrindAttr Test alone by 55.2%, compared to
bagging which gave an improvement of only 11.0% using
34 RESULTSAND DISCUSSION pseudo-loss or 8.4% using error. FindDecRule, boost-

The results of our experiments are shown in Table 2!N9Y improved the error rate by 53.0%, bagging by only
The figures indicate test error rate averaged over mult8-8% using pseudo-loss, 13.1% using error.
tiple runs of each algorithm. Columns indicate which ~ WhenusingC4.5as the weak learning algorithm, boost-
weak learning algorithm was used, and whether pseuddd and bagging seem more evenly matched, although
loss (AdaBoost.M2) or error AdaBoost.M1) was used. bPoosting still seems to have a slight advantage. On av-
Note that pseudo-loss was not used on any two-class prol§‘age, boosting improved the error rate by 24.8%, bagging
lems since the resulting algorithm would be identical to theby 20.0%. Boosting beat bagging by more than 2% on 6 of
corresponding error-based algorithm. Columns labeled “—the benchmarks, while bagging did notbeat boosting by this
indicate that the weak learning algorithm was used by itself@mount on any benchmark. For the remaining 20 bench-
(Wlth no boosting or baggmg) Columns using boosting or marks, the difference in performance was less than 2%.
bagging are marked “boost” and “bag,” respectively. Figure 5 shows in a similar manner h@4.5 performed
One of our goals in carrying out these experiments wagompared to bagging wit4.5, and compared to boosting
to determine if boosting using pseudo-loss (rather than erwith each of the weak learners (using pseudo-loss for the
ror) is worthwhile. Figure 3 shows how the different al- non-binary problems). As the figure shows, using boosting
gorithms performed on each of the many-clagsx{ 2) With FindAttr Test does quite well as a learning algorithm
problems using pseudo-loss versus error. Each pointin thi@ its own right, in comparison t€4.5. This algorithm
scatter plotrepresents the error achieved by the two compegeatC4.5 on 10 of the benchmarks (by at least 2%), tied

ing algorithms on a given benchmark, so there is one poin@n 14, and lost on 3. As mentioned above, its average
performance relative to usirigindAttr Test by itself was

SURL “nttp://www.ics.uci.edu/ mlearn/MLRepository.html” 55.2%. In comparisoiG4.5's improvementin performance

FindAttrTest FindDecRule C45
error pseudo-loss error pseudo-loss error
name - | boost | bag | boost | bag - | boost| bag | boost| bag - | boost| bag
soybean-small 576 564 487 02 205 | 518 560 457 04 29 22 34 2.2
labor 251 8.8 19.1 240 7.3 146 15.8 131 11.3
promoters 29.7 8.9 16.6 259 8.3 13.7 220 5.0 12.7
iris 35.2 47 284 4.8 71 | 383 43 188 48 55 5.9 5.0 5.0
hepatitis 19.7 18.6 16.8 216 18.0 20.1 212 16.3 175
sonar 259 16.5 259 314 16.2 26.1 28.9 19.0 243
glass 515 51.1 50.9 294 54.2 49.7 485 47.2 25.0 52.0 317 22.7 25.7
audiology.stand 535 535 535 236 657 | 535 535 535 199 657 | 231 162 201
cleve 27.8 18.8 224 274 19.7 20.3 26.6 217 20.9
soybean-large 648 645 59.0 98 742 | 736 736 736 72 660 | 133 68 122
ionosphere 17.8 85 173 10.3 6.6 9.3 8.9 5.8 6.2
house-votes-84 44 37 44 5.0 44 44 35 5.1 3.6
votesl 127 8.9 12.7 13.2 9.4 112 10.3 10.4 9.2
Crx 145 144 145 145 135 145 158 13.8 136
breast-cancer-w 8.4 4.4 6.7 8.1 41 53 5.0 33 3.2
pima-indians-di 26.1 244 26.1 27.8 253 26.4 284 25.7 244
vehicle 64.3 64.4 57.6 26.1 56.1 61.3 61.2 61.0 25.0 54.3 29.9 226 26.1
vowel 81.8 81.8 76.8 18.2 747 82.0 727 716 6.5 63.2 2.2 0.0 0.0
german 30.0 249 304 30.0 254 296 294 250 246
segmentation 75.8 75.8 54.5 42 725 737 533 54.3 24 58.0 3.6 14 2.7
hypothyroid 2.2 1.0 22 0.8 1.0 0.7 0.8 1.0 0.8
sick-euthyroid 5.6 3.0 5.6 24 24 22 2.2 2.1 21
splice 37.0 92 356 44 334 | 295 80 295 40 295 5.8 4.9 5.2
kr-vs-kp 32.8 44 307 246 07 208 05 0.3 0.6
satimage 583 583 583 149 416 | 576 565 567 131 300 | 148 89 106
agaricus-lepiot 11.3 00 113 8.2 0.0 8.2 0.0 0.0 0.0
letter-recognit 929 929 919 341 937 | 923 918 918 304 937 | 138 33 6.8

Table 2: Test error rates of various algorithms on benchmark problems.

overFindAttr Test was 49.3%. standard Euclidean distance between the images (viewed
Using boosting withFindDecRule did somewhat bet- as vectors ink?*%). This is a very naive metric, but it
ter. The win-tie-lose numbers for this algorithm (comparedgives reasonably good performance. A nearest-neighbor
to C4.5) were 13-12-2, and its average improvement overclassifier which uses all the training examples as prototypes
FindAttr Test was 58.1%. achieves a test error of B% (23% on randomly partitioned

data). Using the more sophisticated tangent distance [21]
4 BOOSTING A NEAREST-NEIGHBOR is in our future plans.

CLASSIFIER Each weak hypothesis is defined by a subBedf the
training examples, and a mapping P — [0, 1]*. Given a

In this section we study the performance of a leamning alygy test poing, such a weak hypothesis predicts the vector
gorithm which combineg\daBoost and a variant of the 7(z0) Wherezo € P is the closest point to.

nearest-neighbor classifier. We test the combined algorithm
on the problem of recognizing handwritten digits. Our goal
is not to improve on the accuracy of the nearest neighbo
classifier, but rather to speed it up. Speed-up is achieved
reducing the number of prototypes in the hypothesis (an . o ;
thus the required number of distance calculations) withouP. [N resulting weak hypothesis (with respect to the given
increasing the error rate. Itis a similar approach to that OIm'Sla_b_el distribution). i
nearest-neighbor editing [12, 13] in which one tries to find ~ Initially, the set of prototype$” is empty. Next, ten
the minimal set of prototypes that is sufficient to label all candidate prototypes are selected at random according to
the training set correctly. the current (margmal') distribution over the training exam-
The dataset comes from the US Postal Service (USP$)es. Of these candidates, the one that causes the largest
and consists of 9709 training examples and 2007 test exan§lecrease in the pseudo-loss is added to thé’seind the
ples. The training and test examples are evidently drawRrocess is repeated. The boosting process thus influences
from rather different distributions as there is a very signifi- the weak learning algorithmin two ways: first, by changing
cant improvement in the performance if the partition of thethe way the ten random examples are selected, and second
data into training and testing is done at random (rather thaRY changing the calculation of the pseudo-loss.
using the given partition). We report results both on the It often happens that, on the following round of boost-
original partitioning and on a training set and a test set ofing, the same sé&® will have pseudo-loss significantly less
the same sizes that were generated by randomly partitionirthan 1/2 with respect to the new mislabel distribution (but
the union of the original training and test sets. possibly using a different mapping. In this case, rather
Each image is represented by ax1@6-matrix of 8-bit than choosing a new set of prototypes, we reuse the same
pixels. The metric that we use for identifying the near-set P in additional boosting steps until the advantage that
est neighbor, and hence for classifying an instance, is thean be gained from the given partition is exhausted (details

On each round of boosting, a weak hypothesis is gener-
rilted by adding one prototype at a time to the/3eintil the

t reaches a prespecified size. Given any’sete always
hoose the mapping which minimizes the pseudo-loss

4:1/0.27,4/0.17 5:0/0.26,5/0.17 7:4/0.25,9/0.18 1:9/0.15,7/0.15 2:0/0.29,2/0.19 9:7/0.25,9/017

271019

3:5/0.28,3/0.28 9:7/0.19,9/0.19 4:1/0.23,4/0.23 4:1/0.21,4/0.20 4:9/0.16,4/0.16 9:9/0.17,4/017 \

o5 560 Tobo 1500 2000 1
num_pr ot ot ypes

4:4/0.18,9/0.16 4:4/0.21,1/0.18 7:7/0.24,9/0.21 9:9/0.25,7/0.22 4:4/0.19,9/0.16 9:9/0.20,7/QL7

LOT1a7 |\

Figure 7: Graphs of the performance of the boosting algorithm
Figure 6: A sample of the examples that have the largest weighP" @ randomly partitioned USPS dataset. The horizontal axis
after 3 of the 30 boosting iterations. The first line is after itera-ndicates the total number of prototypes that were added to the
tion 4, the second after iteration 12 and the third after iteration 2560Mbined hypothesis, and the vertical axis indicates error. The
Underneath eachimage we have a line of the faréa/ w12/ w2, topmost jagged line indicates the error of the weak hypothesis
whered is the label of the examplé; and/(, are the labels that that is trained at this point on the weighted training set. The
get the highest and second highest vote from the combined hybold curve is the bound on the training error ce_llculated using
pothesis at that point in the run of the algorithm, and w, are 1heorem 2. The lowest thin curve and the medium-bold curve
the corresponding normalized votes. show the performance of the combined hypothesis on the training
set and test set, respectively.

omitted). :
We ran 30 iterations of the boosting algorithm, and €omparing to CNN, we see that both the strawman
the number of prototypes we used were 10 for the firs@90rithm andAdaBoost perform better than CNN even
weak hypothesis, 20 for the second, 40 for the third, 80 for¥hen they use about 900 examples in their hypotheses.
the next five, and 100 for the remaining twenty-two weak -arger hypotheses generatedAyaBoost or strawman are
hypotheses. These sizes were chosen so that the errorsTBfCh better than that generated by CNN. The main problem
all of the weak hypotheses are approximately equal. with CNN seems to be its tendency to overfit the training
We compared the performance of our algorithm to data.AdaBoost'and the strawman algorithm seem to suffer
strawman algorithm which uses a single set of prototyped€SS from overfitting.
Similar to our algorithm, the prototype set is generated in- Figure 7 shows a typical run é¢{daBoost. The upper-
crementally, comparing ten prototype candidates at eacostjagged line is a concatenation of the errors of the weak
step, and always choosing the one that minimizes the enflypotheses with respect to the mislabel distribution. Each
pirical error. We compared the performance of the boostingeak followed by a valley corresponds to the beginning and
algorithm to that of the strawman hypothesis that uses th€nd errors of a weak hypothesis as it is being constructed,
same number of prototypes. We also compared our pefne prototype at a time. The weighted error always starts
formance to that of the condensed nearest neighbor rul@round 50% at the beginning of a boosting iteration and
(CNN) [13], a greedy method for finding a small set of drops to around 20-30%. The heaviest line describes the
prototypes which correctly classify the entire training set. Upper bound on the training error that is guaranteed by The-
orem 2, and the two bottom lines describe the training and
4.1 RESULTSAND DISCUSSION test error of the final combined hypothesis.

The results of our experiments are summarized in Ta- It is interesting that the performance of the boosting
ble 3 and Figure 7. Table 3 describes the results from exalgorithm on the test set improved significantly after the
periments withAdaBoost (each experiment was repeated error on the training set has already become zero. This
10 times using different random seeds), the strawman al$ surprising because an “Occam’s razor” argument would
gorithm (each repeated 7 times) , and CNN (7 times). Weredict that increasing the complexity of the hypothesis
compare the results using a random partition of the data intgfter the error has been reduced to zero is likely to degrade
training and testing and using the partition that was definedhe performance on the test set.
by USPS. Figure 6 shows a sample of the examples that are given

We see thatin both cases, after more than 970 examplelgirge weights by the boosting algorithm on a typical run.
the training error oAdaBoost is much better than that of There seem to be two types of “hard” examples. First are
the strawman algorithm. The performance on the test setxamples which are very atypical or wrongly labeled (such
is similar, with a slight advantage thdaBoost when the as example 2 on the first line and examples 3 and 4 on the
hypotheses include more than 1670 examples, but a sligisecond line). The second type, which tends to dominate on
advantage to strawman if fewer rounds of boosting are usedhter iterations, consists of examples that are very similar
After 2670 examples, the error AlaBoost on the random to each other but have different labels (such as examples 3
partition is (on average).2%, while the error achieved versus 4 on the third line). Although the algorithm at this
by using the whole training set is26. On the random point was correct on all training examples, it is clear from
partition, the final error is @%, while the error using the the votes it assigned to different labels for these example
whole training set is 5%. pairs that it was still trying to improve the discrimination

random partition USPS partition
AdaBoost Strawman CNN AdaBoost Strawman CNN
rmd | size | theory | train | test | train | test | test(size)| theory | train | test | train | test | test(size)
1 10 5246 459 46.1 379 38.3 536.3 425 431 36.1 37.6
5 230 86.4 6.3 85 49 6.2 83.0 51 123 42 10.6
10 670 16.0 04 46 2.0 43 109 01 8.6 14 8.3
13 970 45 0.0 3.9 15 3.8 4.4(990) 33 0.0 8.1 1.0 7.7 8.6 (865)
15 1170 2.4 0.0 3.6 1.3 3.6 15 0.0 7.7 0.8 75
20 1670 04 0.0 31 0.9 33 0.2 0.0 7.0 0.6 7.1
25 2170 0.1 0.0 2.9 0.7 3.0 0.0 0.0 6.7 04 6.9
30 2670 0.0 0.0 2.7 0.5 2.8 0.0 0.0 6.4 0.3 6.8

Table 3: Average error rates on training and test sets, in percent. For columns labeled “random partition,” a random partition of the union
of the training and test sets was used; “USPS partition” means the USPS-provided partition into training and test sets was used. Columns
labeled “theory” give theoretical upper bounds on training error calculated using Theorem 2. “Size” indicates number of prototypes
defining the final hypothesis.

between similar examples. This agrees with our intuitiorris Drucker, Jeff Jackson, Michael Kearns, Ofer Matan, Partha

that the pseudo-lossis a mechanism that causes the boostiNgyogi, Warren Smith, David Wolpert and the anonymous ICML
algorithm to concentrate on the hard to discriminate labelgeviewers for helpful comments, suggestions and criticisms. Fi-

of hard examples.

nally, thanks to all who contributed to the datasets used in this

paper.

5 CONCLUSIONS

We have demonstrated thatlaBoost can be used in many
settings to improve the performance of a learning algorithm. [&
When starting with relatively simple classifiers, the im- 3
provement can be especially dramatic, and can often lead to
a composite classifier that outperforms more complex “one-*
shot” learning algorithms lik€4.5. This improvement is

far greater than can be achieved with bagging. Note, how-
ever, that for non-binary classification problems, boosting g,
simple classifiers can only be done effectively if the more
sophisticated pseudo-loss is used.

When starting with a complex algorithm lik€4.5,
boosting can also be used to improve performance, but
does not have such a compelling advantage over baggmg[
Boosting combined with a complex algorithm may give the
greatest improvement in performance when there is a reat
sonably large amount of data available (note, for instance,,
boosting’s performance on the “letter-recognition” problem
with 16,000 training examples). Naturally, one needs to
consider whether the improvement in error is worth the ad-
ditional computation time. Although we used 100 roundsii1]
of boosting, Quinlan [19] got good results using only 10
rounds. [12]

Boosting may have other applications, besides reducin .
the error of a classifier. For instance, we saw in Section
that boosting can be used to find a small set of prototypeg4]
for a nearest neighbor classifier. (1]

As described in the introduction, boosting combines two
effects. It reduces the bias of the weak learner by forcingjel
the weak learner to concentrate on different parts of the
instance space, and it also reduces the variance of the wepk
learner by averaging several hypotheses that were generated
from different subsamples of the training set. While thereyg)
is good theory to explain the bias reducmg effects, there i |s
need for a better theory of the variance reduction.

Acknowledgements. Thanks to Jason Catlett and William Cohen [20]
for extensive advice on the design of our experiments. Thank
to Ross Quinlan for first suggesting a comparison of boostin
and bagging. Thanks also to Leo Breiman, Corinna Cortes, Har-

(1]

[7]

™
=

References

Leo Breiman. Bagging predictors. Technical Report 421, Department of
Statistics, University of California at Berkeley, 1994.

Leo Breiman. Bias, variance, and arcing classifiers. Unpublished manuscript,
1996.

William Cohen. Fast effective rule induction. Froceedings of the Twelfth
International Conference on Machine Learning, pages 115-123, 1995.

] Tom Dietterich, Michael Kearns, and Yishay Mansour. Applying the weak

learning framework to understand and improve C4.5Machine Learning:
Proceedingsof the Thirteenth International Conference, 1996.

Harris Drucker and Corinna Cortes. Boosting decision treeddimncesin
Neural Information Processing Systems 8, 1996.

Harris Drucker, Corinna Cortes, L. D. Jackel, Yann LeCun, and Vladimir Vap-
nik. Boosting and other ensemble metholNsural Computation, 6(6):1289—
1301, 1994.

Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance
in neural networkslnternational Journal of Pattern Recognitionand Artificial
Intelligence, 7(4):705-719, 1993.

] Harris Drucker, Robert Schapire, and Patrice Simard. Improving performance

in neural networks using a boosting algorithm.Advancesin Neural Infor-
mation Processing Systems 5, pages 42—49, 1993.

Yoav Freund. Boosting a weak learning algorithm by majorltyformation

and Computation, 121(2):256-285, 1995.

Yoav Freund and Robert E. Schapire. A decision-theoreticgeneralization of on-
line learning and an application to boosting. Unpublished manuscript available
electronically (on our web pages, or by email request). An extended abstract
appeared irComputational Learning Theory: Second European Conference,
EuroCOLT ' 95, pages 23-37, Springer-Verlag, 1995.

Johannes#rhkranz and Gerhard Widmer. Incremental reduced error pruning.
In Machine Learning: Proceedingsof the Eleventh International Conference,
pages 70-77,1994.

Geoffrey W. Gates. The reduced nearest neighbor tEHIEE Transactionson
Information Theory, pages 431-433,1972.

Peter E. Hart. The condensed nearest neighbor HHEE Transactions on
Information Theory, 1T-14:515-516, May 1968.

Robert C. Holte. Very simple classification rules perform well on most com-
monly used datasetdlachineLearning, 11(1):63-91, 1993.

Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons.
Advancesin Neural Information Processing Systems 8, 1996.

Michael Kearns and Yishay Mansour. On the boosting ability of top-down
decision tree learning algorithms. Rnoceedingsof the Twenty-Eighth Annual
ACM Symposiumon the Theory of Computing, 1996.

Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding cor-
rects bias and variance. Rnoceedingsof the Twel fth I nternational Conference

on Machine Learning, pages 313-321, 1995.

J. Ross QuinlanC4.5: Programsfor Machine Learning. Morgan Kaufmann,
1993.

In

19] J. Ross Quinlan. Bagging, boosting, and C4.5.Pinceedings, Fourteenth

National Conference on Artificial Intelligence, 1996.

Robert E. Schapire. The strength of weak learnabiljachine Learning,
5(2):197-227, 1990.

Patrice Simard, Yann Le Cun, and John Denker. Efficient pattern recogni-
tion using a new transformation distance.Advances in Neural Information
Processing Systems, volume 5, pages 50-58, 1993.

