YALE: Yet Another Learning Environment

Tutorial

Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, Oliver Ritthoff

University of Dortmund,
Department of Computer Science,
Chair of Artificial Intelligence,
44221 Dortmund, Germany

{fischer,klinkenberg,mierswa,ritthoff}@1s8.cs.uni-dortmund.de
http://yale.cs.uni-dortmund.de/
http://www-ai.cs.uni-dortmund.de/

June 19, 2002

Contents

Introduction

1.1 Motivation
1.2 Existing environments Lo
1.3 Operators and operator chains
14 Datahandling.
1.5 Metaknowledge.
Installation notes

21 Download
2.2 Imstallation
2.3 General settings.o Lo

First steps

3.1 Firstexample
3.2 Configuration files
33 Imputfiles o
3.3.1 Exampledatafiles
3.3.2 Attribute set description files
333 Modelfiles
3.3.4 Attribute generation files

Advanced experiments

4.1 Feature selection,
4.2 Splitting up experiments
421 Learningamodel
4.2.2 Applying themodel,
4.3 Parameter and performance analysis

Operator reference

5.1 Basicoperators
51.1 Operator
5.1.2 OperatorChain,

5.2 Input/Ouput operators.
5.2.1 ExampleSource,

11
11
12
13
14
15

17
17
17
18

21
21
23
25
25
25
26
26

29
29
31
31
31
34

5.3

5.4

5.5

5.6

CONTENTS

5.2.2 DatabaseExampleSource 40
5.2.3 ExampleSetWriter 40
5.2.4 AttributeSetWritero 0oL L 41
52.5 ModelLoader 0. 41
5.2.6 ResultWriter, 41
5.2.7 ExperimentLog 42
Machine learning algorithms 43
5.3.1 Learner e e e e 43
5.3.2 ModelApplier 43
53.3 SVMLearner 44
534 SVMApplier 45
5.3.50 SVMLightLearner 46
5.3.6 SVMLightApplier 47
5.3.7 CdbLearner i i 48
5.3.8 RuleSetApplier 48
5.3.9 ID3Learner 49
5.3.10 DecisionTreeLearner 49
5.3.11 DecisionTreeApplier 50
5.3.12 NeuralNetLearner 50
5.3.13 NeuralNetApplier. 51
5.3.14 MultiClassLearner 51
5.3.15 MultiModelApplier 52
5.3.16 WekaLearner 53
5.3.17 WekaApplier 0. 53
Cluster algorithms 54
5.4.1 Clusterer 54
5.4.2 WekaClusterer 54
54.3 ClusterWrapper. 55
Validation and performance evaluation 56
5.5.1 PerformanceEvaluator 56
5.5.2 ValidationChain 57
5.5.3 FixedSplitValidationChain. 58
5.5.4 RandomSplitValidationChain 59
5.5.5 XValidationo L. 60
5.5.6 MethodValidationChain 61
5.5.7 RandomSplitMethodValidationChain 62
5.5.8 MethodXValidation 63
5.5.9 ParameterOptimization 64
Feature selection and generation 65
5.6.1 FeatureOperator 65
5.6.2 BruteForce 66
5.6.3 FeatureSelection 67
5.6.4 GeneticAlgorithm L. 69

5.6.5 GeneratingGeneticAlgorithm 71

CONTENTS

5.6.6 DirectedGeneratingGeneticAlgorithm

5.6.7 YAGGA . ..

5.6.8 FeatureGeneration
5.6.9 MissingValueReplenishment

6 Extending YALE
6.1 Operator skeleton . .

6.1.1 Writing simple operators
6.2 Useful methods for operator design
6.2.1 Getting parameters.o
6.2.2 Imputandoutput
6.2.3 Tterating over an ExampleSet

6.2.4 Log messages

6.3 Building operator chains
6.3.1 Additional input,

6.3.2 Using output
6.4 Adding your operator

7 Acknowledgements

73
76
78
79

81
81
82
83
83
86
86
87
88
88
89
89

93

CONTENTS

List of Figures

1.1
21

3.1
3.2

4.1
4.2
4.3
4.4
4.5

4.6

6.1
6.2
6.3
6.4
6.5

A simple example of a nested operator chain.
Installation test Lo

Simple example configuration file L.
An example attribute set description file in XML syntax.

A feature selection experiment
Training a model and writing it toafile
Applying the model to unlabelled data
Parameter and performance analysis
The performance of a SVM (gnuplot input data file auto-

matically generated by YALE)
The performance of a SVM (plot generated by gnuplot) . . .

Operator skeleton
Implementation of an ExampleSetWriter operator
Creating and using an ExampleReader
In- and output of an inner operator
Declaring operators to YALE

LIST OF FIGURES

List of Tables

2.1 Possible global settings

6.1 Methods for obtaining parameters from Operator
6.2 Methods for logging purposes

10

LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

In practical data mining applications data often has to be pre-processed to
be usable by a chosen machine learning method and to achieve an acceptable
level of performance in prediction. One central problem in this context is
the representation of the examples by a good set of features, i. e. a set
of features that allows the learning method to find a candidate hypothesis
solving the learning task at hand within its hypothesis search space. Hence,
finding a suitable set of features may be far more important for the overall
learning success than the choice of a particular learning method. Therefore
it is often necessary to use complex operator chains, combining different pre-
processing and learning steps, rather than using a particular single learning
scheme. While such methods can be combined manually and by writing
special scripts whenever a new data mining task arises, much less effort is
required, if a flexible machine learning and data mining environment can be
used.

A tool that meets all the described requirements is YALE - Yet another
learning environment [9], which allows to easily specify and execute such
learning chains for pre-processing, especially comprising feature generation
and selection as well as multi-strategy learning. This modular, non-com-
mercial environment supports nested operator chains and the exchange of
individual operators by alternative operators and thereby the systematic
evaluation and comparison of different operators and operator chains for the
same (sub)task. To guarantee the re-usability and applicability to new tasks,
this machine learning environment was designed to be easily extendable.

For an enhanced scalability and applicability, YALE was designed to read
data from files, main memory, or a database, which ever seems to be most
appropriate for the current task, without making changes in the data mining
operators necessary when changing the data source or switching between
keeping all or just one example at a time in main memory. The latter may

11

12 CHAPTER 1. INTRODUCTION

be the preferable approach in case of very large data sets. Thus, the source
and the way of handling the example is transparent to the other operators in
the data mining chain. For efficiency reasons, YALE does not create copies
of the data unless really necessary for the task. This a clear advantage
compared to other existing data mining tools (see section 1.2).

1.2 Existing environments

There already exist several machine learning and data mining environments
that provide a number of methods from machine learning, statistics, and
pattern recognition. This sections describes two of the most popular existing
non-commercial learning environments and explains why they do not fully
meet our requirements. These two freely available data mining enviroments
are WEKA! (Waikato Environment for Knowledge Analysis) [13], developed
at University of Waikato, NZ, and MLC++2 [7], first developed at Stanford
University, CA, USA, and then extended by Silicon Graphics, Inc. (SGI),
CA, USA.

Weka is a collection of machine learning algorithms implemented in Java.
WEKA supports a large number of learning schemes for classification and
regression (numeric prediction) like decision tree inducers, rule learners, sup-
port vector machines, instance-based learners, naive Bayes, multi-layer per-
ceptrons, etc. and basic evaluation methods like cross-validation and boot-
strapping [2]. WEKA has some pre-processing algorithms for the manipula-
tion of attributes as well as three basic feature selection schemes, namely the
feature correlation based approach [3], a wrapper approach [6], and a filter
approach [5]. Additionaly WEKA provides meta classifiers like bagging [1]
and boosting [11].

MLC++ is a library of C++ classes for supervised machine learning.
It provides a number of learning schemes similar to those used in WEKA.
Additionally wrappers around these basic inducers like a discretization filter,
a bagging wrapper, and a feature selection wrapper are provided.

Unfortunately neither of these two data mining environments meets all
of our requirements, because for example both of them neither support the
composition and analysis of complex operator chains consisting of different
nested pre-processing, learning, and evaluation steps nor sophisticated fea-
ture generators for the introduction of new attributes. MLC++ supports
operator chains in a rather restrictive way. One can only build wrappers
around basic inducers (learning schemes), but not around nested operator
chains. The same applies to WEKA, where nesting can only be realized
by numerous comand line calls, by creating copies of (subsets of) the data
set, and manual data file management or by writting your own experiment
and data management program. An additional shortcoming of WEKA is its

1h'l:'l:p ://www.cs.waikato.ac.nz/ml/weka/
zhttp ://www.sgi.com/tech/mlc/

1.3. OPERATORS AND OPERATOR CHAINS 13

lacking scalability. It expects the example set to fit completely into main
memory, which for many data mining tasks is not possible, and it is very
slow on large data sets. For n-fold cross-validation WEKA creates n copies
of the original data set, only one at a time, but still requiring the resources
for the copying.

1.3 Operators and operator chains

Real-world data mining tasks are often solved by a sequence or combination
of several data pre-processing and machine learning methods. In YALE, each
such method is considered an operator.

A sequence of such operators is called an operator chain. An operator
chain again is an operator, both in the sense of a definition as well as in the
object-oriented programming sense. One central aspect is, that by enclosing
other operators or operator chains, operators are arbitrarily nestable, so that
even complex experimental setups can be built.

For example a nested cross-validation could be used to first optimize
some parameters of a data pre-processing and learning chain (inner valida-
tion) and to then evaluate the performance of the whole experimental set-up
(outer validation).

Operators that enclose other operators or operator chains are often re-
ferred to as wrappers. Typical examples of wrappers are cross-validation
and feature selection wrappers [6]. Section 4 describes an example of such a
nested cross-validation experiment for the learning task of selecting a good
attribute set.

To explain some basic concepts behind operator chains in YALE, let us
first consider a simple learning chain presented in figure 1.1 .

Operator Chain
Cross Validation AREIE G
ExampleSet| average
Example ExampleSet | Learner "7 Model ExampleSet Evaluator Paform%,, F?tfo,r[n,a}ie
Source Mogel | Applier

Figure 1.1: A simple example of a nested operator chain.

This figure shows an example of a simple nested operator chain. The
outmost operator is an Operator Chain which sequentially applies its inner
operators. The first of them is an instance of the operator ExampleSource
which loads a set of labelled examples from a file. These examples are passed

14 CHAPTER 1. INTRODUCTION

to a CrossValidation Chain which splits them up into a training and a test set.
The Learner uses the training set for the generation of a model which then is
used by the ModelApplier to label the test set. The Evaluator compares the
generated and the actual labels and returns the performance value. Finally,
the enclosing CrossValidation Chain outputs the average performance value
of all cross-validation steps.

The operator chain in figure 1.1 showed rather abstract operator types
like learner, model applier, and evaluator than concrete operators like e.g.
a specific decision tree learner.

The different types of operators can be organized in a hierarchy in the
object-oriented programming sense with the class Operator at its top and
for example OperatorChain, Learner, ModelApplier, and Evaluator as
some of its descendants and with e.g. DecisionTreelLearner as a subclass
of Learner, which again has C45Learner, a C4.5 decision tree learner [8],
as a subclass.

Similarly, the things passed between operators can be organized in a
hierarchy. As already explained in the previous section, among the ob-
jects passed between operators in an operator chain are attribute sets, ex-
ample sets, classification and regressions models, example sets with addi-
tional labels, and performance evaluation results. Each operator receives an
I0Container as input that may contain some of these objects and delivers
an I0Container with such objects. During its execution, an operator may
modify, remove, or add objects in the I0Container before passing it to the
next operator in the operator chain. Some operators may require certain
objects to be present in their input and guarantee others to be in their out-
put. For example a Learner requires a labeled set of examples as input and
generates a model, a ModelApplier requires a model and a set of examples,
for which it should predict the labels, and so on. Objects that are present
in the input of an operator without being required are usually ignored and
passed on to the next operator. YALE verifies that each operator receives
its required inputs before executing an operator chain.

In order to support the comparison of different operators and operator
chains for the same (sub)tasks, operators are easily ezchangable by other
operators. The only premise is, that the subsequent operators in an operator
chain, or more general all operators that share a common interface, have
fitting input /output types.

1.4 Data handling

The data is described in an attribute set description file® and the experiment
is specified in a configuration file* containing a description of the employed

3For a more elaborate description of attribute set description files see section 3.3.2
*A detailed description of configuration files is provided in section 3.2

1.5. META KNOWLEDGE 15

operator chain. Two additional types of files are needed to execute an ex-
periment. One file type contains the examples (attribute values file) and
the other contains the labels of the examples for a particular classification
or regression task (label file). YALE can process data sets that can be de-
scribed in a single table, i.e. in an attribute-value vector format, in which
each example is described by an attribute-value vector of equal fixed length.

For almost all operators in YALE it is transparent, whether the examples
are read in from a text file, from main memory or from a database, and
whether only one or all examples are kept in main memory at a time. The
environment only uses an internal structure to iterate over the instances in
an example set and hence does not need to distinguish between the different
possible data sources and ways of managing the data. The source and way
of handling the data only depend on the chosen example source operator
and its parameterization.

1.5 Meta knowledge

While the use of meta knowledge is standard in database and software en-
gineering systems, many learning systems do not consider meta knowledge.
YALE supports the (optional) use of meta knowledge, especially for the task
of feature generation.

Attributes in YALE are described by two data structures, the value type
and the block type. While the value type of an attribute (or label) specifies
the data type of the individual attribute (like e.g. numerical or nominal),
the block type contains some meta-data about the attribute, e.g. if it is
just an individual attribute or part of a more complex data structure like
an interval boundary or a time series. For each data structure, there exists
an ontology describing the hierarchical is-more-general-than- /is-superset-of-
relation between the different types.

The information about the attribute types of an example is useful for
feature generators, which can check their applicability to given attributes by
verifying their attribute types. A generator extracting the maximum value of
a time series can for example restrict its application to all value series in the
attribute value vector of an example and generate the maximum for each
such series separately while ignoring for example all individual attributes
and interval attributes.

16

CHAPTER 1. INTRODUCTION

Chapter 2

Installation notes

2.1 Download

The latest version of YALE is available on the YALE homepage:
http://yale.cs.uni-dortmund.de/ .

The YALE homepage also contains this document, the YALE javadoc, exam-
ple datasets, and example configuration files.

2.2 Installation

YALE is completely written in Java, which makes it run on almost every
platform. Therefore it requires a Java Runtime Environment (jre) or a
Java Development Kit (jdk) version 1.2 or above. Both are available at
http://java.sun.com/. After unzipping the downloaded YALE version to
a directory of your choice, it is necesssary that the bin directory is added
to the PATH environment variable.

Congratulations: YALE is now installed. In order to check if YALE is
working correctly, you can change to another directory and create the fol-
lowing file installtest.xml:

<operator name="Global" class="OperatorChain'">
</operator>

Figure 2.1: Installation test

It shows the simplest experiment which can be done with YALE. More
precisely, it isn’t even an experiment, because nothing will be done. Nev-
ertheless, start YALE typing yale installtest.xml and you should see
the message ”Experiment finished successfully” after a few moments if ev-
erything goes well. Otherwise the words ”Experiment not successful” or

17

18 CHAPTER 2. INSTALLATION NOTES

another error message can be read. In this case something is wrong with
the installation. Please check if you execute the correct file.

2.3 General settings

Certainly you have seen that a running installation of Java is essential for
working with YALE. The possibility of using external programs such as
machine learning methods is discussed in the operator reference (chapter 5).
These programs must have been properly installed and must be executable
without YALE, before they can be used in any YALE experiment. You have
to specify the paths to this programs and some other general or platform
dependant settings which do not need to be declared in every experiment
file. Similarly one can specify different settings for each user.

In order to use the external operators, you need to download the software
called by these operators, i.e. some of the following. Please make sure that
the programs run properly without using YALE first and specify the paths
to the programs as described below.

e mySVM is Stefan Riping’s implementation of a support vector ma-
chine [12].
http://www-ai.informatik.uni-dortmund.de/SOFTWARE/MYSVM/

e SVMU 9ht is Thorsten Joachim’s implementation of a support vector
machine.
http://svmlight.joachims.org/

e The Weka package contains many learning and clustering algorithms.
In order to use Weka, you do not need to specify a path in a config file,
but simply put the file weka. jar from the downloaded Weka library
in the 1ib directory of YALE. Please refer to the description of the
Weka, operators in section 5.3.16.
http://www.cs.waikato.ac.nz/ml/weka/

e (C4.5 is a widely used descision tree learner by Ross Quinlan [8].
http://www.cse.unsw.edu.au/ "quinlan/

You can specify the paths to external programs, which of course may
be platform dependent in a network environment, or general settings, which
should be applied for all users, in the YALE configuration files, which can be
found in the etc directory. Additionaly, a user can declare options which
exclusively hold for himself. In each line of these files a parameter can be
specified by key = wvalue. Comments start with #. Table 2.1 shows all
possible keys. Please also consult the operator reference in chapter 5.

There are several ways to use these settings files. You can store them in
different places or pass them to YALE via the command line. In all cases,
local settings are more binding than global settings.

2.3. GENERAL SETTINGS 19

‘ Key ‘ Description
yale.logfile.format declares if YALE should format the log file
(true or false or yes or no)
yale.mysvm.learncommand absolute path to the mySVM model learner
yale.mysvm.applycommand absolute path to the mySVM model applier

yale.svmlight.learncommand | absolute path to the SVM!9ht model learner
yale.svmlight.applycommand | absolute path to the SVM' 9" model applier

yale.c4b.learncommand absolute path to the C4.5 decision tree
learner

yale.c4b.rulecommand absolute path to the C4.5 tree to rule
converter

Table 2.1: Possible global settings

global: In the etc subdirectory of the YALE directory with names yalerc
for global settings or yalerc.OS for platform dependent global set-
tings like absolute pathes to the learning methods. OS can be Sun0S,
Linux or other platforms supported by Java. You can pass the place
where the global files are stored to YALE with the option
-Dyale.globalrc=filename .

user: In his home directory, each user can declare settings that only apply
to him in configuration files named .yalerc and/or .yalerc. OS.

directory: Files named like the files mentioned under global are also searched
for in the current working directory from where YALE is invoked. All
experiments executed in this directory use these settings.

commandline: After all you can start YALE with the option
-Dyale.rcfile = filename , e.g.

yale -Dyale.rcfile=mySettings myExperiment.xml

YALE searches for the given file mySettings and for mySettings. OS
with the current value of OS, which is the value of the Java property
os.name. If you don’t know the value of this porperty, scan the output
of YALE for the configuration files it tries to read. If you want to use
different settings for a certain experiment you can pass these settings
to YALE in this way.

20

CHAPTER 2. INSTALLATION NOTES

Chapter 3

First steps

3.1 First example

Let’s start with a simple example similar to the one you know from the
introduction (simpleezample.xzml). The example at hand loads an example
set from a file, generates a model using a support vector machine (SVM)
and evaluates the performance of the SVM on this dataset by estimating the
expected absolute and squared error by means of a ten-fold cross-validation.
In the following we will describe what the parameters mean without going
into detail to much. We will describe the used operators later on in this
section.

But first of all let’s start the experiment. We assume that your cur-
rent folder contains the two files simpleexample.xml (see figure 3.1) and
attributes.cml. Also make sure you have a tmp subdirectory to store tem-
porary files in. Now start YALE typing yale simpleexample.xml. After a
short while you should read the words “Experiment finished successfully”.
Congratulations, you just made your first YALE experiment. If you read
“Experiment not successful” instead, something went wrong. In either case
you should have a newly generated file named simpleezample.log in your
working directory. In the latter case it should give you information about
what went wrong. All kinds of debug as well as information messages and
the measured absolute and squared errors are written to this file. Have a
look at it now.

The log file starts with the experiment tree and contains a lot of warnings,
because most of the parameters are not set. Don’t panic, reasonable default
values are used for all of them. At the end you find the experiment tree
again. The number in squared brackets following each operator gives the
number of times the operator was applied. It is one for the outer operators
and ten within the ten-fold cross-validation. Every time an operator is
applied a message is written to the log file indicating its input objects (like
example sets and models). When the operator terminates its application it

21

22 CHAPTER 3. FIRST STEPS

<operator name="Global" class="OperatorChain">

<parameter key="logfile" value="simpleexample.log"/>
<parameter key="logverbosity" value="0"/>
<parameter key="temp_dir" value="./tmp"/>

<operator name="ExampleSource" class="ExampleSource'">
<parameter key="attributes" value="attributes.xml"/>

</operator>

<operator name='"XValid" class="XValidation">
<parameter key='"number_of_validations" value="10"/>

<parameter key="type" value="polynomial"/>
<parameter key="degree" value="3"/>

<operator name="Learner" class="SVMLearner" parentlookup="1"/>

<operator name="ApplierChain" class="OperatorChain'">
<operator name="Applier" class="SVMApplier" parentlookup="2"/>
<operator name="Performator" class="PerformanceEvaluator">

<parameter key="criteria_list" value="absolute squared"/>

</operator>

</operator>

</operator>
</operator>

Figure 3.1: Simple example configuration file

3.2. CONFIGURATION FILES 23

writes the output to the log file again. You can find the average performance
estimated by the cross-validation close to the end of the file.

Taking a look at the experiment tree in the log file once again, you will
quickly understand how the configuration file is structured. There is one
operator tag for each operator specifying its name and class. Names must
be unique and have the only purpose of distinguishing between instances of
the same class. Operator chains like the cross-validation chain may contain
one or more inner operators. Parameters can be specified in the form of
key-value pairs using a parameter tag.

We will now focus on the operators without going into detail too much.
If you are interested in the the operator classes, their input and output ob-
jects, parameters, and possible inner operators you may consult the reference
section of this tutorial (chapter 5).

The outermost operator called “Global” is an OperatorChain. An oper-
ator chain works in a very simple manner. It applies its inner operators
successively passing their respective output to the next inner operator. The
ouptut of the operator chain is the output of the last inner operator. While
normal operator chains do not take any parameters, this particular oper-
ator chain (being the outermost operator) has two parameters: the name
of the log file (logfile) and the name of the directory for temporary files
(temp_dir).

The ExampleSource operator loads an example set from a file. An ad-
ditional file containing the attribute descriptions is specified (simpleezam-
ple.zml). References to the actual data files are specified in this file as well
(see section 3.3 for a description of the files). The resulting example set is
then passed to the cross-validation chain.

The CrossValidation evaluates the learning method by splitting the input
example set into ten subsets Si,...,S19. The inner operators are applied
ten times. In run number 7 the first inner operator, which is a SVMLearner,
generates a model using the training set (J;.; Sj. The second inner operator,
an evaluation chain, evaluates this model by applying it to the remaining
test set S;. The SVMApplier predicts labels for the test set and the Perfor-
manceEvaluator compares them to the real labels. Afterwards the absolute
and squared errors are calculated. Finally the cross-validation chain re-
turns the average absolute and squared errors over the ten runs and their
variances.

3.2 Configuration files

Configuration files are XML documents containing of only three types of
tags. They define the operator tree and the parameters for the operators.
Parameters can have a single value or a set of values. This feature must
not be mistaken. If a parameter is defined as a set of values, then certain

24 CHAPTER 3. FIRST STEPS

operators facilitate repetitive execution of operator chains with the different
parameter values. Without those special operators only the first value for
each parameter will be used.

operator

The operator tag represents one instance of an operator class. Three at-
tributes can be set:

name: A unique name identifying this particular operator instance

class: The operator class. See the operator reference (chapter 5) for a list
of operators.

parentlookup: If this parameter is set to the integer n, then every time a
parameter for this operator is queried, but undefined for this operator,
the n enclosing operator chains will be queried for the parameter as
well. The default value is zero.

For instance, an operator tag for an operator that reads an example set from
a file might look like this:
<operator name='"MyExampleSource" class="ExampleSource">

If class is a subclass of OperatorChain, then nested operators may be con-
tained within the opening and closing tag. Parameters for this operator are
defined by means of parameter tags.

parameter

As discussed above, a parameter can have a single value or a set of values.
In either case it must have a name which is unique for the operator. The
attributes of the parameter tag are as follows:

key: A unique name for the parameter.

value: The value of the parameter. The character ’$’ has a special meaning.
Parameter values are expanded as follows:

$n becomes the name of the operator.

$c becomes the class of the operator.

$a becomes the number of times the operator was applied.
$t becomes the system time.

$$ becomes $.

group: This attribute is optional and rarely needed. The respective oper-
ator description gives information about how grouped parameters are
interpeted. The group attribute is used when the key does not have
a fixed value.

3.3. INPUT FILES 25

In order to specify a filename for the above example one might use the
following parameter:

<parameter key="attributes" value="myexamples.txt"/>

If the value attribute is not used, all text between the opening and closing
tag is interpreted as the value. Similarly one can use the set tag to define
a set of values.

set

This tag can only be used within a parameter tag. All enclosed text is
interpreted as a comma separated list of parameter values. See section 5.5.9
for the purpose of this tag.

3.3 Input files

YALE knows four kinds of input files, which are discussed in this section.

3.3.1 Example data files

The data for an example set can be distributed over several files. Therefore
it is possible to specify the way example files are parsed, there is a default
meeting the usual requirements: examples are separated by newlines, the
columns are separated by whitespace.

3.3.2 Attribute set description files

Attribute set description files are read by the ExampleSource operator. They
are simple XML documents defining the properties of the attributes (like
their name and range) and their source files.

The outer tag must be an <attributeset> tag. The only attribute of
this tag may be default_source=filename. This file will be used as a default
file if it is not specified with the feature.

The inner tags can be at most one <label> and at most one <weight>
tag and an arbitrary number of <attribute> tags. Apart from their obvious
meaning all of them have the same attributes:

name: The name of the attribute.

sourcefile: The name of the file containing the data. If this name is not
specified, the default file is used.

sourcecol: The column within this file (numbering starts at 1). If this
attribute is a label and your dataset is unlabelled you can omit the
sourcecol attribute. Note that you cannot omit the whole label tag

26 CHAPTER 3. FIRST STEPS

if you have unlabelled data and intend to label it! In that case you
can specify this by setting sourcecol to none.

sourcecol _end: If this parameter is set, its value must be greater than the
value of sourcecol. In that case, sourcecol — sourcecol_end attributes
are generated with the same properties. Their names are generated
by appending numbers to the value of name. If the blocktype is
value_series, then value_series_start and value_series_end re-
spectively are used for the first and last attribute bocktype in the
series.

unit: The unit given as a list of m, s, kg, A, K, cd, mol followed by an

exponent (only necessary if different from 1). Example : kgms-2 (=

k‘; 2 = Newton). The specification of of a unit is optional.

valuetype: One out of nominal, numeric, integer, real, and ordered.

blocktype: Oneout of single value, value_series, value_series_start,
and value _series_end

blocknumber: A block number.

classes: A whitespace-separated list of values for nominal attributes. For
classification learners that can handle only binary classifications (“pos-
itive” and “negative”) the first entry in this list is assumed to be the
positive label.

See figure 3.2 for an example attribute description file.

3.3.3 Model files

Model files contain the models generated by learning operators in previous
YALE runs. They can be read in and applied by the appropriate model
applier, i.e. the appropriate subclass of ModelApplier.

3.3.4 Attribute generation files

An AttributeSetWriter can write an attribute set to a text file. This file can
later be used by a FeatureGeneration operator to generate the same set of
attributes in another experiment and/or for another set of data.

The attribute generation files can as well be generated by hand. Every
line is of the form f(attribute_-names,...,attribute_name,). The functions
can as well be nested. An example of a nested generation description might
be: f(g(a),h(b),c). See page 5.6.8 for a reference of the available functions.

3.3. INPUT FILES

<attributeset default_source="polynom.dat">

<attribute name = "attl"
sourcecol = """
valuetype = "real"
blocktype = "single_value"
blocknumber = "1"
unit = "n
/>
<attribute name = "att2"
sourcecol = nan
valuetype = "real"
blocktype = "single_value"
blocknumber = "2"
unit = un
/>
<attribute name = "att3"
sourcecol = 3"
valuetype = "real"
blocktype = "single_value"
blocknumber = "3"
unit = un
/>
<attribute name = "att4"
sourcecol = ""4n
valuetype = "real"
blocktype = "single_value"
blocknumber = "4"
unit = "n
/>
<attribute name = "attb"
sourcecol = "g"
valuetype = "real"
blocktype = "single_value"
blocknumber = "H"
unit = "n
/>
<label name = "label"
sourcecol = "g"
valuetype = "real"
blocktype = "single_value"
blocknumber = "6"
unit =
/>
</attributeset>

Figure 3.2: An example attribute set description file in XML syntax.

28

CHAPTER 3. FIRST STEPS

Chapter 4

Advanced experiments

At this point, we assume that you are familiar with the simple example
from section 3.1. You should know how to read a dataset from a file, what
a learner and an applier do, and how a cross-validation chain works. These
operators will be used frequently and without further explanation in this
chapter.

4.1 Feature selection

Let us assume that we have a dataset with numerous attributes. We would
like to test, whether all of these attributes are really relevant, or whether
we can get a better model by omitting some of the original attributes. This
task is called feature selection and the backward elimination algorithm is an
approach that can solve it for you.

Here is how backward elimination works within YALE: Enclose the cross-
validation chain by a FeatureSelection operator. This operator repeatedly
applies the cross-validation chain, which now is its inner operator, until the
specified stopping criterion is complied with. The backward elimination
approach iteratively removes the attribute whose removal yields the largest
performance improvement. The stopping criterion may for example be that
there has been no improvement for a certain number of steps. See page 67 for
a detailed description of the algorithm. Figure 4.1 shows the configuration
file.

You can try most of the algorithms in YALE with small modifications of
this configuration file. You can try some of the following things:

e Use forward selection instead of backward elimination by changing
the parameter value of selection_direction from backward to forward.
This approach starts with an empty attribute set and iteratively adds
the attribute whose inclusion improves the performance the most.

e Use the GeneticAlgorithm operator for feature selection instead of the

29

30 CHAPTER 4. ADVANCED EXPERIMENTS

FeatureSelection operator (see page 69).

e Compare the results of the three approaches above to the BruteForce
operator. The brute force approach tests all subsets of the original at-
tributes, i.e. all combinations of attributes, to select an optimal subset.
While this operator is prohibitively expensive for large attribute sets,
it can be used to find an optimal solution on small attribute sets in
order to estimate the quality of the results of other approaches.

<operator name='"Global" class="OperatorChain">

<parameter key="logfile" value="advancedl.log"/>
<parameter key="logverbosity" value="0"/>
<parameter key='"temp_dir" value="./tmp"/>

<operator name="Input" class="ExampleSource">
<parameter key="attributes" value="./attributes.xml"/>
</operator>

<operator name='"BackwardElimination" class="FeatureSelection">
<parameter key="selection_direction" value="backward"/>

<operator name="XVal" class="XValidation">
<parameter key="number_of_validations" value="5"/>

<parameter key="type" value="polynomial"/>

<parameter key="degree" value="3"/>

<operator name="Learner" class="SVMLearner" parentlookup="1"/>

<operator name="ApplierChain" class="OperatorChain">
<operator name="Applier" class="SVMApplier" parentlookup="2"/>
<operator name="Evaluator" class="PerformanceEvaluator">

<parameter key="criteria_list" value="absolute"/>

</operator>

</operator>

</operator>
</operator>
</operator>

Figure 4.1: A feature selection experiment

4.2. SPLITTING UP EXPERIMENTS 31

4.2 Splitting up experiments

If you are not a computer scientist but a data mining user, you are probably
interested in a real-world application of YALE. May be, you have a small la-
belled dataset and would like to train a model with an optimal attribute set.
Later you would like to apply this model to your huge unlabelled database.
Actually you have two separate experiments.

4.2.1 Learning a model

This phase is basically the same as described in the preceeding section.
We append two operators to the configuration file that write the results
of the experiment to files. First, we write the attribute set to the file
selected attributes.att using an AttributeSetWriter. Second, we once
again train a model, this time using the entire example set, and we write it
to the file model.mod. For the configuration file see figure 4.2. Execute the
experiment and take a look at the file attributes.att. It should contain
the selected subset of the originally used attributes, one per line.

4.2.2 Applying the model

In order to apply this learned model to new unlabelled dataset, you first
have to load this example set using an ExampleSource. You can now load
the trained model using a ModelLoader. Unfortunately, your unlabelled data
probably still uses the original attributes, which are incompatible with the
model learned on the reduced attribute set. Hence, we have to transform the
examples to a representation that only uses the selected attributes, which
we saved to the file attributes.att. The FeatureGenerator loads this file
and generates (or rather selects) the attributes accordingly. Now we can
apply the model and finally write the labelled data to a file. See figure 4.3
for the corresponding configuration file.

As you can see, you can easily use different dataset source files even in
different formats as long as you use consistent names for the attributes. You
could also split the experiment into three parts:

1. Find an optimal attribute set and train the model.

2. Generate or select these attributes for the unlabelled data and write
them to temporary files.

3. Apply the model from step one to the temporary files from step two
and write the labelled data to a result file.

32 CHAPTER 4. ADVANCED EXPERIMENTS

<operator name="Global" class="OperatorChain">

<parameter key="logfile" value="advanced2.log"/>
<parameter key="logverbosity" value="0"/>

<parameter key="temp_dir" value="./tmp"/>
<parameter key='"type" value="polynomial"/>
<parameter key='"degree" value="3"/>

<operator name="Input" class="ExampleSource'>
<parameter key="attributes" value="./attributes.xml"/>
</operator>

<operator name="BackwardElimination" class="FeatureSelection">
<parameter key="selection_direction" value="backward"/>

<operator name="XVal" class="XValidation">
<parameter key="number_of_validations" value="2"/>

<operator name="Learner" class="SVMLearner" parentlookup="3"/>

<operator name="ApplierChain" class="OperatorChain">
<operator name="Applier" class="SVMApplier" parentlookup="4"/>
<operator name="Evaluator" class="PerformanceEvaluator">

<parameter key="criteria_list" value="absolute"/>

</operator>

</operator>

</operator>
</operator>

<operator class="AttributeSetWriter" name="AttributeSetWriter">
<parameter key="attribute_set_file" value="selected_attributes.txt"/>
</operator>
<operator name="ModelWriter" class="SVMLearner" parentlookup="1">
<parameter key="model_file" value="model.mod"/>
</operator>
</operator>

Figure 4.2: Training a model and writing it to a file

4.2. SPLITTING UP EXPERIMENTS 33

<operator name="Global" class="OperatorChain">

<parameter key="logfile" value="advanced3.log"/>
<parameter key="logverbosity" value="0"/>
<parameter key="temp_dir" value="./tmp"/>

<operator name="Input" class="ExampleSource'>
<parameter key="attributes" value="./attributes.unlabelled.xml"/>
</operator>

<operator name="FeatureGenerator" class="FeatureGeneration">
<parameter key="filename" value="selected_attributes.txt"/>
</operator>

<operator name="ModelLoader" class="ModelLoader">
<parameter key="model_file" value="model.mod"/>

</operator>

<operator name="Applier" class="SVMApplier">

<parameter key="type" value="polynomial"/>
<parameter key="degree" value="3"/>
</operator>

<operator class="ExampleSetWriter" name="ExampleSetWriter">
<parameter key="example_set_file" value="polynom.labelled.dat"/>
</operator>
</operator>

Figure 4.3: Applying the model to unlabelled data

34 CHAPTER 4. ADVANCED EXPERIMENTS

4.3 Parameter and performance analysis

In this section we show how one can easily record performance values of an
operator or operator chain depending on varied parameter values. In order
to achieve this, the YALE experiment chain described in this section makes
use of two new YALE operators: ParameterOptimization and ExperimentLog.

We will see how to analyse the performance of a support vector machine
(SVM) with a polynomial kernel depending on the two parameters (poly-
nom) degree and . We start with the usual experiment core: a validation
chain containing a SVMLearner, a SVMApplier, and a PerformanceEvaluator.
Now we would like to vary the parameters. In order to provide a set of pa-
rameters one can use the set tag. Figure 4.4 shows how this works: within
the parameter tag there must be a set tag holding a comma-separated list
of values. Since we have four different values for the parameter (polynom)
degree and five different values for the parameter e, there are 20 possi-
ble parameter combinations. The ParameterOptimization operator applies
its inner operators 20 times using a different one of these combinations each
time. Finally the ParameterOptimization operator returns an optimal param-
eter value combination. In our case, a polynom degree of 3 and the smallest
tested ¢, i.e. 0.01, should be selected, because this combination produces
the optimal performance among the parameter value combinations tested,
i.e. it minimizes the absolute regression error.

In order to create a chart showing the absolute error over the parameters
degree and €, we can create a datafile using the ExperimentLog operator. All
parameters in the group log are evaluated. The key provides the name for
the column and the value specifies where to retrieve the value or parameter
from. See page 42 for details about the format. Figure 4.5 shows the result-
ing file. You can use tools like gnuplot to generate a fancy chart like that
in figure 4.6.

Now you already know quite a lot about YALE. You can try to combine
some of the experiments of this chapter:

e Analyse the performance of a feature selection algorithm over time
(current number of generations).

e Try to optimize the parameters of a genetic algorithm (but be sure to
have a good book to read meanwhile).

!The performance of a polynomial SVM also depends on other parameters like e.g. C,
but this is not the focus of this experiment.

4.3. PARAMETER AND PERFORMANCE ANALYSIS 35

<operator name="Global" class="OperatorChain'">

<parameter key="logfile" value="advanced4.log"/>
<parameter key="logverbosity" value="0"/>
<parameter key="temp_dir" value="./tmp"/>

<operator name="Input" class="ExampleSource'>
<parameter key="attributes" value="./attributes.xml"/>
</operator>

<operator name="ParameterOptimization" class="ParameterOptimization">

<operator name="Validation" class="RandomSplitValidationChain">
<parameter key="split_ratio" value="0.5"/>

<parameter key="type" value="polynomial"/>
<parameter key="epsilon'"><set>0.01,0.03,0.05,0.075,0.1</set></parameter>
<parameter key="degree'"><set>1,2,3,4</set></parameter>

<operator name='"Learner" class="SVMLearner" parentlookup="1"/>

<operator name="ApplierChain" class="OperatorChain">
<operator name="Applier" class="SVMApplier" parentlookup="2"/>
<operator name="Evaluator" class="PerformanceEvaluator">

<parameter key="criteria_list" value="absolute"/>

</operator>

</operator>

</operator>

<operator name="ExpLog" class="ExperimentLog">
<parameter key="filename" value="svm_degree_epsilon.txt"/>
<parameter group="log"
key="degree"
value="operator.Learner.parameter.degree"/>
<parameter group="log"
key="epsilon"
value="operator.Learner.parameter.epsilon"/>
<parameter group="log"
key="absolute"
value="operator.Validation.value.performance"/>
</operator>

</operator>
</operator>

Figure 4.4: Parameter and performance analysis

36 CHAPTER 4. ADVANCED EXPERIMENTS

Generated by
ExpLogledu.udo.cs.yale.operator.ExperimentLogOperator]
degree epsilon absolute

1 0.01 53.687639080124534
1 0.03 49.38624625677904
1 0.05 47.49028865368657
1 0.075 46.32938028661449
1 0.1 59.45448890118538
2 0.01 21.846579110313726
[...]

Figure 4.5: The performance of a SVM (gnuplot input data file automati-
cally generated by YALE)

Absolute error

Figure 4.6: The performance of a SVM (plot generated by gnuplot)

Chapter 5

Operator reference

This chapter describes the built-in operators that come with YALE. Each
operator section is subdivided into several parts.

1. An enumeration of the required input and the generated output ob-
jects. The input objects are usually consumed by the operator and
are not part of the output. Operators may receive more input objects
than required. In that case the unused input objects will be appended
to the output and can be used by the next operator.

2. If the operator is an operator chain: A list of the required inner oper-
ators.

3. The parameters that can be used to configure the operators. Ranges
and default values are specified. The values for boolean parameters
can be yes, true, on, no, false, and off. Required parameters are
indicated by bullets (o) and optional parameters are indicated by an
open bullet (o)

4. A list of values that can be logged using the ExperimentLog operator
(see p. 42).

5. A textual description of the operator.

Notice that some operators extend the functionality of other operators. This
is indicated by the word eztends. In this case, the operator inherits its
parent’s input and output classes, parameters, and values. Actually all
operators extend Operator or OperatorChain but this is not indicated.

Some of the operators are abstract and can not be used. They only
serve as a superclass for other operators that have a common behaviour or
purpose. Abstract classes are set italic.

37

38 CHAPTER 5. OPERATOR REFERENCE

5.1 Basic operators

5.1.1 Operator (abstract)

Values
e applycount: the number of times this operator was applied
e time: the time elapsed since the application of this operator started

e [ooptime: the time elapsed since the last application loop started (only
relevant for some wrappers which call the inApplyLoop() method)

Description: This is the abstract superclass of all operators. It has no
semantics apart from some basic values, that can be queried.

5.1.2 OperatorChain
Input

e the first inner operator’s input
Output

e the last inner operator’s output

Description: An operator chain consecutively calls its inner operators
passing their respective output to the next inner operator.

5.2. INPUT/OUPUT OPERATORS 39

5.2 Input/Ouput operators

In this section operators are described which provide functionalty to read
or write data and results respectively.

5.2.1 ExampleSource

Input
e none
Output

e ExampleSet: the example set which is generated from the data in the
given file

Parameters
e attributes: filename for the attribute XML file, see section 3.3

o separator_chars: the characters given by this string are separators be-

tween the values. Default values are all whitespace characters and

99
7

o ignore_chars: the characters given by this string are ignored by the op-
erator

o comment_chars: lines beginning with these characters will be ignored
by the operator

o maz_examples: the maximum number of examples to read from the file,
default: -1 (read all examples)

Description: This operator reads an example set from one or several files.
You can specify several delimiter characters and characters that will be ig-
nored totally. Additionally, comment characters can be given. The charac-
ters ” and ’ quote intermediate text. The default values of the ExampleSource
operator can probably be used for most commonly used text file data for-
mats.

40 CHAPTER 5. OPERATOR REFERENCE

5.2.2 DatabaseExampleSource
Input
e none
Output
e ExampleSet: the example set read from the database
Parameters
e attributes: filename for the attribute XML file, see section 3.3
e query_file: a file containing the SQL query

o sample_size: the maximum number of examples to read from the database

Description: This operator reads an example set from an SQL database.

5.2.3 ExampleSetWriter
Input
e ExampleSet: the example set to be written to a file
Output
e ExampleSet: the example set which has been written to a file
Parameters

o cxample_set_file: name of the file the example set is to be written to

Description: This operator writes the values of all examples and labels of
the example set into a file. Every line represents one example and is written
in the following form:

[valuel value2...valueN] labell...labelN.

5.2. INPUT/OUPUT OPERATORS 41

5.2.4 AttributeSetWriter
Input

e ExampleSet: the attributes of this example set will be written to the
given file

Output
e ExampleSet: the input example set is returned
Parameters

o attribute_set_file: name of the file the attributes are to be written to

Description: This operator writes all attributes of an example set to a
file. Each line holds the construction description of one attribute.

5.2.5 ModelLoader
Input

e none
Output

e Model: the loaded model
Parameters

e model_file: name of the file containing the model

Description: This operator loads a model from the given file, which has
been written by a learning operator (see section 5.3.1). Afterwards, the
model is passed on and can be used by subsequent operators.

5.2.6 ResultWriter
Input
e none
Output
e none
Description: This simple operator can be used at any position in an Op-

eratorChain. It writes all results of the input objects into the result file and
simply returns the objects.

42 CHAPTER 5.

5.2.7 ExperimentLog
Input
e none
Output
e none
Parameters

e filename: name of the output file

OPERATOR REFERENCE

e Jog: in this group you specify the values of the parameters which should

be looked up by the operator

Description: This operator saves almost arbitrary data to a given file
and is therefore more powerful than the simple ResultWriter operator. All
parameters in the group log are interpreted as follows: The key determines
the column name in the log file. The value specifies where to get the value
from. All values can be registered in the log parameter group by

operator.opName.{parameter|value}.name

and are described in the values list in each operator section.

Ezample: operator.GA.value.generation looks up the operator with
the name ” GA” and then searches for the current value of the field generation.
Or operator.SVMLearner.parameter.C logs the value of the parameter C

of the SVMLearner.

Hint: If you want to sort the output in some way, try the following trick:
Specify the columns in decreasing order (the output will presumably respect
this). Then use a Unix command like "sort” or any other tool to sort the

output.

5.3. MACHINE LEARNING ALGORITHMS 43

5.3 Machine learning algorithms

Acquiring knowledge is fundamental for the development of intelligent sys-
tems. The operators described in this section were designed to automatically
discover hypotheses to be used for future decisions. They can learn models
from the given data and apply them to new data to predict a label for each
observation in an unpredicted example set.

5.3.1 Learner (abstract)
Input
e ExampleSet: the training example set
Output
e Model: the learned model
Parameters
o model_file: name of the file that the Learner writes the learned model

nto

Description: A Learner is an operator that encapsulates the learning step
of a machine learning method. This can be an external program or realised
within YALE.

5.3.2 ModelApplier (abstract)
Input
e ExampleSet: the examples to which the model is applied to
e Model: the model for predicting the labels of the examples
Output

e ExampleSet: the example set with predicted labels

Description: A ModelApplier predicts the labels of an example set by
means of a previously learned model.

44 CHAPTER 5. OPERATOR REFERENCE

5.3.3 SVMLearner
extends Learner (p. 43)

Input

e ExampleSet: the training example set
Output

e Model: the learned model
Parameters

o model_file: the Learner writes the learned model into this file

C: the SVM complexity constant (capacity constant)

epsilon: the SVM insensitivity constant

type: the type of the SVM kernel; legal values are dot (linear ker-
nel), polynomial, radial (RBF kernel), neural (sigmoidal kernel)
or anova

o

degree: only needed for polynomial or anova kernel

o gamma: only needed for radial or anova kernel

(e]

a: only needed for neural kernel

(e]

b: only needed for neural kernel

o

pattern: use SVM for pattern recognition (classification); if this value
is not given, the SVM will be used for regression, which is the default.

(e]

weighted_examples: if the value of this parameter is true, a weight for
each example will be used by the SVM. If this parameter is not speci-
fied, the SVM automatically uses weights if and only if they are given
in the example set.

Description: The SVMLearner encapsulates an external implementation
of Vladimir Vapnik’s Support Vector Machine (SVM) [12], the mySVM
learning algorithm by Stefan Riiping'. The path to the program should be
given by the global parameter yale.mysvm.learncommand (see section 2.3 for
download and parameter settings information). It supports pattern recog-
nition, regression, and distribution estimation. Additionally, each instance
can be weighted for learning. For a more extensive description, especially
concerning the parameters, please consult [10] and [12].

1h1:'l'.p ://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/

5.3. MACHINE LEARNING ALGORITHMS 45
5.3.4 SVMApplier
extends ModelApplier (p. 43)

Input

e ExampleSet: the examples to which the model is applied to

e Model: the model for predicting the labels of the examples
Output

e ExampleSet: the example set with predicted labels
Parameters

e (: the SVM complexity constant (capacity constant)

e epsilon: SVM insensitivity constant

e type: the type of the SVM kernel; legal values can be dot (linear ker-
nel), polynomial, radial (RBF kernel), neural (sigmoidal kernel) or
anova

o degree: only needed for polynomial or anova kernel
o gamma: only needed for radial or anova kernel

o a: only needed for neural kernel

o b: only needed for neural kernel

o pattern: use SVM for pattern recognition (classification); if this value
is not given, the SVM will be used for regression, which is the default.

o weighted_examples: if the value of this parameter is true, a weight for
each example will be used by the SVM. If this parameter is not speci-
fied, the SVM automatically uses weights if and only if they are given
in the example set.

Description: The SVMApplier encapsulates an external implementation
of the SVM, the mySVM applier algorithm by Stefan Riiping. The SVMAp-
plier can use a model learned by a SVMLearner to predict the labels of ex-
amples. The path to the program should be given by the global parameter
yale.mysvm.learncommand (see section 2.3 for download and parameter set-
tings information). The model (i.e. the calculated hyperplane) is used to
predict the labels of the example set. For a more extensive description,
especially concerning the parameters, please consult [10] and [12].

46 CHAPTER 5. OPERATOR REFERENCE

5.3.5 SVMlLightLearner
extends Learner (p. 43)

Input

e ExampleSet: the training example set
Output

e Model: the learned model
Parameters

o model_file: name of the file into which the Learner writes the learned
model

e kernel_type: type of the SVM'9"* kernel (1inear, polynomial, RBF, or
sigmoid). The default value for the kernel type is linear.

o additional_parameters: other parameters for the SVM"9ht written like
in the SVM"9"* command line, and passed directly like this to SVMight,

Description: SVM"9" is an implementation of Vladimir Vapnik’s Sup-
port Vector Machine[12] for pattern recognition (classification) by Thorsten
Joachims?. The algorithm has scalable memory requirements and can handle
problems with many thousands of support vectors efficiently. This learner
writes the training set into a file and calls the native version of the § VA9t
which must be given by the global parameter yale.svmlight.learncommand
(see section 2.3 for download and parameter settings information). It works
fine for classification problems with two classes. If you need more than two
classes, you should use the MultiClassLearner described in section 5.3.14. For
a more extensive description, especially concerning the parameters, please
consult [4].

zhttp ://svmlight. joachims.org

5.3. MACHINE LEARNING ALGORITHMS 47

5.3.6 SVMlLightApplier
extends ModelApplier (p. 43)

Input

e ExampleSet: the examples to which the model is applied to

e Model: the model for predicting the labels of the examples
Output

e ExampleSet: the example set with predicted labels
Parameters

e kernel_type: type of the SVM"9" kernel (1inear, polynomial, RBF, or
sigmoid). The default value is linear

o additional_parameters: other parameters for the SVM'9" written like
in the § VM"9h* command line, and passed directly like this to § VM9t

Description: This model applier calls the native version of the SV tight
model applier by Thorsten Joachims [4], whose path must be given by the
global parameter yale.svmlight.applycommand (see section 2.3 for download
and parameter settings information). This operator predicts the labels of
the given ExampleSet.

48 CHAPTER 5. OPERATOR REFERENCE
5.3.7 C45Learner
extends Learner (p. 43)

Input

e ExampleSet: the training example set
Output

e Model: the learned model
Parameters

o model_file: name of the file the Learner writes the learned model into

o s: force subsetting of all tests based on discrete attributes with more
than two values.

o p: probabilistic thresholds used for continuous attributes

o g: use the gain criterion to select tests. The default uses the gain ratio
criterion.

o m: In all tests, at least two branches must contain a minimum number of
objects (default 2). This option allows to alter the minimum number.

o ¢: sets the pruning confidence level (default 25%)
Description: C45Learner wraps the C4.5-algorithm by Quinlan [8]. It
learns a decision tree, which it then transforms into a set of rules. It uses
the external implementation whose path should be specified using the global

parameter yale.c45.learncommand (see section 2.3 for download and param-
eter settings information) and delivers a RuleSet as model.

5.3.8 RuleSetApplier
extends ModelApplier (p. 43)

Input
e ExampleSet: the examples to which the model is applied to
e Model: the model for predicting the labels of the examples
Output
e ExampleSet: the example set with predicted labels
Description: The RuleSetApplier requires a RuleSet model as input (like

the one learned by a C45Learner) and predicts the labels of the given example
set.

5.3. MACHINE LEARNING ALGORITHMS 49

5.3.9 ID3Learner
extends Learner (p. 43)

Input

e ExampleSet: the training example set
Output

e Model: the learned model
Parameters

o model_file: name of the file the Learner writes the learned model into

Description: ID3Learner is an internal learner based on Quinlan’s [8] ID3
decision tree induction algorithm. It is a simple classification learner which
can only handle nominal attribute values and delivers a decision tree as
model.

The operator identifies the best attribute using the information gain
criterion in each iteration step. Then it divides the example set according
to the values of the specified attribute. This is done recursively until all
examples of a created subset belong to the same class and this fact holds for
all created example subsets.

5.3.10 DecisionTreeLearner
extends ID3Learner (p. 49)

Input

e ExampleSet: the training example set
Output

e Model: the learned model
Parameters

o model_file: name of the file the Learner writes the learned model into

50 CHAPTER 5. OPERATOR REFERENCE

Description: DecisionTreelearner is also an internal learner, based on the
ID3Learner. It can handle both nominal and numeric attributes, but can
not process incomplete examples or prune the learned tree afterwards. The
DecisionTreeLearner merges the subsets that are divided by one attribute and
belong to the same class afterwards.

The operator identifies the best attribute using the information gain
criterion in each iteration step. Then it divides the example set according
to the values of the specified attribute. This is done recursively until all
examples of a created subset belong to the same class and this fact holds for
all created example subsets.

5.3.11 DecisionTreeApplier
extends ModelApplier (p. 43)

Input
e ExampleSet: the examples to which the model is applied to
e Model: the model for predicting the labels of the examples
Output

e ExampleSet: the example set with predicted labels

Description: The DecisionTreeApplier is an internal model applier for de-
cision trees of the ID3Learner described in section 5.3.9 or the Decision Tree-
Learner in section 5.3.10. With a suitable model (i.e. decision tree) the
operator can predict the labels of the given example set.

5.3.12 NeuralNetLearner
extends Learner (p. 43)

Input
e ExampleSet: the training example set
Output
e Model: the learned model
Parameters
o model_file: name of the file the Learner writes the learned model into

o hidden_layer: number of neurons in the hidden layer. The default value
is 10.

o lambda: approximation increment. The default value is 0.05.

5.3. MACHINE LEARNING ALGORITHMS 51

Description: The operator learns a simple neural net which consists of an
input layer, a hidden layer and an output layer. The output layer appends
an additional 1 to the input vector. This operator is included in YALE and
can be used directly like the other internal operators. The current version
of this operator is limited to linear functions.

5.3.13 NeuralNetApplier
extends ModelApplier (p. 43)

Input
e ExampleSet: the examples to which the model is applied to
e Model: the model for predicting the labels of the examples
Output

e ExampleSet: the example set with predicted labels

Description: This operator applies a neural net learned by the Neural-
NetLearner and delivers an example set with labeled examples.

5.3.14 MultiClassLearner
Input

e ExampleSet the learning example set
Output

e Model the learned model
Inner Operator(s)

1. The inner operator must take an ExampleSet as input and return a
learned Model. Right now only the SVMlightLearner is allowed as inner
operator.

Parameters

o model_file: name of the file the Learner writes the learned model into

52 CHAPTER 5. OPERATOR REFERENCE

Description: A MultiClassLearner contains a classification learner which
only differentiates between two classes. In many problems the data is clas-
sified into more than two classes and therefore every occuring class must be
delimited against each other class.

The operator iterates over the classes which occur in the given data and
the inner learner is used to learn a model which discriminates if the examples
belong to the current class or not. Every learning step delivers a model and
all models are combined into a MultiModel. This MultiModel can be used by
the MultiModelApplier described in section 5.3.15.

5.3.15 MultiModelApplier
extends ModelApplier (p. 43)

Input
e ExampleSet: the examples to which the model is applied to
e Model: the model for predicting the labels of the examples
Output
e ExampleSet: the example set with predicted labels
Inner Operator(s)

1. The inner operator must take an ExampleSet and a Model as input and
must return an ExampleSet as output. Up to now, only the SVMLigh-
tApplier is allowed as inner operator.

Description: A MultiModelApplier contains a classification applier which
only differentiates between two classes. For predicting the labels of the given
example set all models are iterated, for each example, and the classification
with the greatest confidence is chosen.

5.3. MACHINE LEARNING ALGORITHMS 53

5.3.16 WekaLearner
extends Learner (p. 43)

Input

e ExampleSet: the training example set
Output

e Model: the learned model
Parameters

o weka_learner_name: the fully qualified WEKA classname of the WEKA
classifier /learner to be used, e.g. weka.classifiers.Id3

o All parameters from the group weka_parameters are assumed to be key-
value pairs that are passed to the classifier/learner. The leading dash
in front of the parameter name must not be part of the key!

o model_file: name of the file the Learner writes the learned model into

Description: This operator can wrap all classifiers from the Weka pack-
age. The classifier type can be selected by a parameter. See the Weka
javadoc for descriptions (http://www.cs.waikato.ac.nz/ml/weka/) and
consult section 2.3 for download and parameter settings information.

5.3.17 WekaApplier
extends ModelApplier (p. 43)

Input
e ExampleSet: the examples to which the model is applied to
e Model: the model for predicting the labels of the examples
Output
e ExampleSet: the example set with predicted labels
Description: This operator applies a Weka model. See the Weka javadoc

(http://www.cs.waikato.ac.nz/ml/weka/) and consult section 2.3 for
download and parameter settings information.

54 CHAPTER 5. OPERATOR REFERENCE

5.4 Cluster algorithms

In case that the example set has no label attribute, unsupervised learning
methods can be applied. Clustering algorithms segment the example space
according to a given distance measure.

5.4.1 Clusterer (abstract)
Input

e ExampleSet: the example set to be clustered
Output

e Model: the learned cluster model

e ExampleSet: the clustered example set
Parameters

o cluster_file: name of the file the Clusterer writes the learned cluster
model into

Description: Clusterer is the abstract superclass of all clusterer operators.
Values are assigned to the cluster attributes of the examples.

5.4.2 WekaClusterer
extends Clusterer (p. 54)

Input

e ExampleSet: the example set to be clustered
Output

e Model: the learned cluster model

e ExampleSet: the clustered example set
Parameters

o weka_clusterer_name: fully qualified WEKA classname of the WEKA
clusterer to be used, e.g. weka.clusterers.EM for the expectation
maximization approach

o All parameters from the group weka_parameters are assumed to be key-
value pairs that are passed to the classifier. The leading dash in front
of the parameter name must not be part of the key!

o cluster_file: name of the file the Clusterer writes the learned model into

5.4. CLUSTER ALGORITHMS 55

Description: This operator can wrap all clusterers from the Weka clus-
terers package. The clusterer type can be selected by a parameter. See
the Weka javadoc for descriptions of the clusteres types that are available
(http://www.cs.waikato.ac.nz/ml/weka/).

5.4.3 ClusterWrapper
extends OperatorChain (p. 38)

Input
e ExampleSet a clustered example set
Output

® none

Description: This operator applies its inner operators once for each clus-
ter.

56 CHAPTER 5. OPERATOR REFERENCE

5.5 Validation and performance evaluation

When applying a model to a real-world problem, one usually wants to rely
on a statistically significant estimation of its performance. There are several
ways to measure this performance by comparing predicted label and true la-
bel. This can of course only be done if the latter is known. The usual way to
estimate performance is therefore, to split the labelled dataset into a train-
ing set and a test set, which can be used for performance estimation. The
operators in this section realise different ways of evaluating the performance
of a model and splitting the dataset into training and test set.

5.5.1 PerformanceEvaluator
Input

e ExampleSet: a labelled example set with true labels and predicted labels
Output

e PerformanceVector: a list of performance criteria and their values
Parameters

e criteria_list: possible performance criteria are absolute error, scaled
error, squared error, relative error, classification_error,
accuracy, precision, recall, and fallout.

o skip_undefined_labels: boolean value which indicates whether examples
should be skipped if their label or predicted label is undefined

Values

e any of the performance criteria specified by the parameter criteria_list
(may be specified)

Description: This operator evaluates a learning method by comparing the
predicted labels of an example set with its true labels. Errors are counted,
summed up, and finally the average of each criterion over all examples is
computed. There are several commonly used criteria available as the list
above shows. Some or all of them can be selected.

5.5. VALIDATION AND PERFORMANCE EVALUATION 57

5.5.2 ValidationChain (abstract)

Inner Operator(s)

1. Training: The first inner operator expects a training ExampleSet as
input. Usually this operator is a learner which returns a Model

2. Test: The second inner operator must be able to handle the output
of the first inner operator plus a test ExampleSet and return a Perfor-
manceVector. Usually this operator is a chain that contains a Model-
Applier and a PerformanceEvaluator.

Input

e ExampleSet: the data set to be used to evaluate the learning algorithm
Output

e PerformanceVector: list of performance criteria for the evaluation
Values

e performance: value of the first performance criterion in the performance
vector

Description: There are several ways of validating the performance of
learning methods on a given data set. All validation chains in YALE inherit
from this operator and have common inner operators, input and output.
All of them split the ExampleSet into training and test set(s), train one or
more Models and evaluate them. They differ in the way they split up the
ExampleSet.

58 CHAPTER 5. OPERATOR REFERENCE

5.5.3 FixedSplitValidationChain
extends ValidationChain (p. 57)

Inner Operator(s)

1. Training: The first inner operator expects a training ExampleSet as
input. Usually this operator is a learner which returns a Model

2. Test: The second inner operator must be able to handle the output
of the first inner operator plus a test ExampleSet and return a Perfor-
manceVector. Usually this operator is a chain that contains a Model-
Applier and a PerformanceEvaluator.

Input

e ExampleSet: the data set to be used to evaluate the learning algorithm
Output

e PerformanceVector: list of performance criteria for the evaluation
Parameters

e training_set_size: the exact number of examples to be used for learning
Values

e performance: value of the first performance criterion in the performance
vector

Description: A FixedSplitValidationChain splits up the example set at a
fixed point, i.e. after a specific number of examples, into a training and a
test set, and evaluates the model. The examples are not shuffled, i.e. their
order is not changed.

5.5. VALIDATION AND PERFORMANCE EVALUATION 59
5.5.4 RandomSplitValidationChain

extends ValidationChain (p. 57)

Inner Operator(s)

1. Training: The first inner operator expects a training ExampleSet as
input. Usually this operator is a learner which returns a Model

2. Test: The second inner operator must be able to handle the output
of the first inner operator plus a test ExampleSet and return a Perfor-
manceVector. Usually this operator is a chain that contains a Model-
Applier and a PerformanceEvaluator.

Input

e ExampleSet: the data set to be used to evaluate the learning algorithm
Output

e PerformanceVector: list of performance criteria for the evaluation
Parameters

e split_ratio: relative size of the training set in comparison to the complete
example set, i.e. the size of the fraction of the input example set to
the use for training (€ [0,1], default: 0.7).

Values

e performance: value of the first performance criterion in the performance
vector

Description: This operator evaluates the performance of an enclosed learn-
ing algorithm on a given data set L. This is done by randomly splitting

up the example set into a training set (holding split_ratio - |L| examples)

and generating a model. The model is then evaluated using the remaining

(1 — split_ratio) - |L| examples.

60 CHAPTER 5. OPERATOR REFERENCE

5.5.5 XValidation
extends ValidationChain (p. 57)

Inner Operator(s)

1. Training: The first inner operator expects a training ExampleSet as
input. Usually this operator is a learner which returns a Model

2. Test: The second inner operator must be able to handle the output
of the first inner operator plus a test ExampleSet and return a Perfor-
manceVector. Usually this operator is a chain that contains a Model-
Applier and a PerformanceEvaluator.

Input

e ExampleSet: the data set to be used to evaluate the learning algorithm
Output

e PerformanceVector: list of performance criteria for the evaluation
Parameters

e number_of_validations: the number of subsets into which the example
set should be partioned (€ [2, 00|, default value: 10)

Values

e performance: value of the first performance criterion in the performance
vector

e variance: variance of this performance criterion

e validation: the number of the current validation

Description: This operator evaluates the performance of an enclosed learn-
ing algorithm on a given data set L. A k-fold cross-validation is done by
splitting up the example set into k& = number_of _validations disjoint sub-
sets L;. Then k models M; are generated using U;<;< ix; Li as training
data and evaluating them on L;. The average values of the performance
criteria and their variances are calculated.

5.5. VALIDATION AND PERFORMANCE EVALUATION 61

5.5.6 MethodValidationChain (abstract)
Input

e ExampleSet: the input example set to be used for the evaluation of a
feature selection/generation method

Output
e PerformanceVector:
o AttributeVector:
Inner Operator(s)

1. The first inner operator should be a FeatureOperator (see p. 65) or a
similar method which returns a modified ExampleSet.

2. The second inner operator, usually a learner, must be able to handle
an ExampleSet.

3. The third inner operator must be able to handle an ExampleSet plus
the output of the second inner operator, usually an applier plus Per-
formanceEvaluator, and return a PerformanceVector.

Values

e performance: value of the first performance criterion in the performance
vector

Description: Similar to a ValidationChain (see p. 57), this operator evalu-
ates the performance of an algorithm, but while the first evaluates a learning
algorithm, the latter evaluates a feature selection method.

The input ExampleSet is split up into training and test set. The first
inner operator (the feature selection method) operates on the training set.
It may return an example set with modified, deselected or newly generated
attributes. The second operator should be a learner which generates a model
on another copy of the training set using the new attributes. The third
operator must evaluate this model by using the remaining test set.

62 CHAPTER 5. OPERATOR REFERENCE

5.5.7 RandomSplitMethodValidationChain
extends MethodValidationChain (p. 61)

Input

e ExampleSet: the input example set to be used for the evaluation of a
feature selection/generation method

Output
e PerformanceVector:
e AttributeVector:
Inner Operator(s)

1. The first inner operator should be a FeatureOperator (see p. 65) or a
similar method which returns a modified ExampleSet.

2. The second inner operator, usually a learner, must be able to handle
an ExampleSet.

3. The third inner operator must be able to handle an ExampleSet plus
the output of the second inner operator, usually an applier plus Per-
formanceEvaluator, and return a PerformanceVector.

Parameters

o split_ratio: relative size of the training set in comparison to the complete
example set, i.e. the size of the fraction of the input example set to
the use for training (€ [0,1], default: 0.7).

Values

e performance: value of the first performance criterion in the performance
vector

Description: Splits the example set according to the description given for
the normal RandomSplitValidationChain (see p. 59) and evaluates the inner
method as described in section 5.5.6.

5.5. VALIDATION AND PERFORMANCE EVALUATION 63

5.5.8 MethodXValidation
extends MethodValidationChain (p. 61)

Input

e ExampleSet: the input example set to be used for the evaluation of a
feature selection/generation method

Output
e PerformanceVector:
e AttributeVector:
Inner Operator(s)

1. The first inner operator should be a FeatureOperator (see p. 65) or a
similar method which returns a modified ExampleSet.

2. The second inner operator, usually a learner, must be able to handle
an ExampleSet.

3. The third inner operator must be able to handle an ExampleSet plus
the output of the second inner operator, usually an applier plus Per-
formanceEvaluator, and return a PerformanceVector.

Parameters
o number_of_validations: (€ [0, 0], default: 10)
Values

e performance: value of the first performance criterion in the performance
vector

e variance: variance of this performance criterion

e validation: the number of the current validation
Description: Splits the example set according to the description given

for the normal XValidation (see p. 60) and evaluates the inner method as
described in section 5.5.6.

64 CHAPTER 5. OPERATOR REFERENCE

5.5.9 ParameterOptimization

Inner Operator(s)

1. An arbitrary number of inner operators. The last of them must return
a PerformanceVector, whose first value is used for the performance
optimization.

Input
e any
Output

e ResultObject: An object that can only be used for logging purposes. A
ResultWriter (see p. 5.2.6) will print the optimal parameter set

Parameters

o operator: name of an operator chain (default: this ParameterOptimiza-
tionOperator itself)

Description: This operator repeatedly executes its inner operators with
changing parameter values. If the operator holds some inner operators with
a total of n parameters, each of which having p; parameter values. There
are [[;-, pi ways of assigning these values to the corresponding parameters.
The ParameterOptimizationOperator finds an optimal combination by trying
all these combinations, applying its inner operators on the cloned objects,
and selecting a combination that optimizes the value of the first performance
criterion in the performance vector returned by the inner operator.

5.6. FEATURE SELECTION AND GENERATION 65

5.6 Feature selection and generation

Data preprocessing is an important means for improving the performance
of a machine learning algorithm. Transforming the input data into a more
suitable form can greatly enhance both efficiency and prediction accuracy.
The following operators can generate new attributes from the original ones,
e.g. by multiplying two numerical attributes. Even more important, it can
find an optimal feature set automatically.

5.6.1 FeatureOperator (abstract)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters

o remove_unused: Usually feature selection algorithms will produce an
example set with irrelevant attributes switched off. If this parameter
is set to true (default), the unused attributes will be entirely removed.

Values

e generation: number of the the current generation (in case of multi-
generation feature transformation methods like EAs)

e best: the performance of the best individual over all generations

e performance: the performance of the best individual in the current gen-
eration

66 CHAPTER 5. OPERATOR REFERENCE

Description: This operator is the superclass of all feature selection and
generation operators. Feature selection and generation algorithms try to find
a set of input attributes that is optimal with respect to a given performance
criterion, learning method, and dataset.

All feature selection and generation algorithms have one inner operator
that evaluates an ExampleSet by creating a PerformanceVector. See section
4 for an example.

5.6.2 BruteForce
extends FeatureOperator (p. 65)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters

o remove_unused: If this parameter is set to true (default), the unused
attributes will be entirely removed when the algorithm terminates.

Values

e generation: number of the the current generation (in case of multi-
generation feature transformation methods like EAs)

e best: the performance of the best individual over all generations

e performance: the performance of the best individual in the current gen-
eration

Description: This operator performs an exhaustive search over all com-
binations of attributes. Hence, it is very slow, but it is the only feature
selection algorithm that is guaranteed to find the optimal feature set.

5.6. FEATURE SELECTION AND GENERATION 67

5.6.3 FeatureSelection
extends FeatureOperator (p. 65)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters
o selection_direction: forward or backward

o keep_best: use the n best individuals for initialising the next generation
(default=1)

o generations_without_improval: terminate after n unsuccessful generations

(default=1)

o remove_unused: If this parameter is set to true (default), the unused
attributes will be entirely removed when the algorithm terminates.

Values

e generation: number of the the current generation (in case of multi-
generation feature transformation methods like EAs)

e best: the performance of the best individual over all generations

e performance: the performance of the best individual in the current gen-
eration

Description: This operator covers the two well-known feature selection
algorithms forward selection and backward elimination. Let us assume there
are n attributes.

68 CHAPTER 5. OPERATOR REFERENCE

Forward selection: The initial generation has n attribute sets, each hav-
ing one different attribute switched on. As long as the performance
increases, a new generation is created by selecting the best individual
and making as many copies as there are unused attributes. In each of
the copies one additional attribute is switched on.

Backward elimination: The first generation has 1 attribute set having all
n attributes switched on. As long as the performance increases, a new
generation is created by selecting the best individual and making as
many copies as there are attributes used in this individual. In each of
this copy one of the used attributes is switched off.

5.6. FEATURE SELECTION AND GENERATION 69

5.6.4 GeneticAlgorithm
extends FeatureOperator (p. 65)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters
e population_size: the fixed number of individuals in one generation.

o mazimum_number_of_generations: performance independent stop crite-
rion (terminate after n generations).

o generations_without_improval: performance dependent stop criterion (ter-
minate after n generations without performance improvement).

o keep_best_individual: set to true for elitist selection (always keep the
best individual). The default value is false.

e p_initialize: initial probability € [0..1] for a single feature of a first gen-
eration individual to be switched on.

e p_mutation: mutation probability € [0,1]. The default value is 0.05.

e p_crossover: probability for a single feature to be selected for crossover
€ [0..1].

o crossover_type: can be one_point or uniform.

o remove_unused: Usually feature selection algorithms produce an exam-
ple set with irrelevant attributes switched off. If this parameter is set
to true (default), the unused attributes will be entirely removed.

Values

70 CHAPTER 5. OPERATOR REFERENCE

e generation: number of the the current generation (in case of multi-
generation feature transformation methods like EAs)

e best: the performance of the best individual over all generations

o performance: the performance of the best individual in the current gen-
eration

Description: If there are many attributes from which to select an optimal
subset the search space quickly grows too large to exhaustively evaluate all
attribute sets. A genetic algorithm can be used to represent attribute sets
as single individuals and evolve them in a probabilistic approach to create
good feature representations for the learning task at hand. In our case one
may consider the individuals as a vector of flags that are set to true if the
corresponding attribute is used and to false if it is unused.

A genetic algorithm operates in cycles, the so called generations. Each
generation contains a fixed number of individuals. The first generation is
initialised randomly. As long as no stopping criterion is complied with,
certain operations are performed on the current population:

Mutation: With a given probability, the selection flag of a feature is flipped.
This is done for all features of all individuals.

Crossover: With a given probability two individuals are selected and their
information is combined. This can be done in two ways: In case of the
so called “one-point-crossover”, both feature vectors are cut at a fixed,
randomly chosen split point; then the beginning of the first individual
is joined with the end of the second and vice versa. In case of the
so called “uniform-crossover”, for each of the features the respective
selection flags of both individuals are either swapped or not.

Evaluation: All individuals are evaluated by applying the inner operator
to them. From the performance vector a fitness is calculated.

Selection: Finally the best n individuals are selected. This is done using
the roulette wheel method. Imagine a roulette wheel with n partitions
of a size proportional to the fitness of the corresponding individual.
The ball is rolled n times selecting those n individuals in whose parti-
tion the ball stopped and copying them into the next generation.

5.6. FEATURE SELECTION AND GENERATION 71

5.6.5 GeneratingGeneticAlgorithm
extends GeneticAlgorithm (p. 69)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters
o population_size: the fixed number of individuals in one generation.

o mazimum_number_of_generations: performance independent stop crite-
rion (terminate after n generations).

o generations_without_improval: performance dependent stop criterion (ter-
minate after n generations without performance improvement).

o keep_best_individual: set to true for elitist selection (always keep the
best individual). The default value is false.

e p_initialize: initial probability € [0..1] for a single feature of a first gen-
eration individual to be switched on.

e p_mutation: mutation probability € [0,1]. The default value is 0.05.

e p_crossover: probability for a single feature to be selected for crossover
€ [0..1].

o crossover_type: can be one_point or uniform.

o remove_unused: Usually feature selection algorithms produce an exam-
ple set with irrelevant attributes switched off. If this parameter is set
to true (default), the unused attributes will be entirely removed.

e p_generate: the probability for a single individual to be selected for
generating new attributes.

72 CHAPTER 5. OPERATOR REFERENCE

o maz_number_of_new_attributes: upper bound for the number of newly
generated attributes for an individual in one generation.

o reciprocal_value: set to true in order to allow the generation of reciprocal
values.

o function_characteristica: set to true in order to allow generation of func-
tion characteristics (local maximum, two turning points). To be appli-
cable, a value series must be given that contains exactly one maximum
and two turning points.

o use_plus: set to true in order to allow the generation of the sum of two
attributes.

(e]

use_diff: set to true in order to allow the generation of the difference of
two attribute.

(e]

use_mult: set to true in order to allow the generation of the product of
two attributes.

o use_div: set to true in order to allow the generation of the quotient of
two attributes.

Description: This operator is an extension of the described GeneticAlgo-
rithm. In addition to the GA, this operator also generates new features in
the mutation step. With a given probability for each individual, up to a
given number of new features are appended to the feature vectors, e.g. by
multiplying two of the numeric features. Hence, the length of the individuals
(the length of the used/unused-vectors) can vary.

5.6. FEATURE SELECTION AND GENERATION 73

5.6.6 DirectedGeneratingGeneticAlgorithm
extends GeneratingGeneticAlgorithm (p. 71)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters
o population_size: the fixed number of individuals in one generation.

o mazimum_number_of_generations: performance independent stop crite-
rion (terminate after n generations).

o generations_without_improval: performance dependent stop criterion (ter-
minate after n generations without performance improvement).

o keep_best_individual: set to true for elitist selection (always keep the
best individual). The default value is false.

e p_initialize: initial probability € [0..1] for a single feature of a first gen-
eration individual to be switched on.

e p_mutation: mutation probability € [0,1]. The default value is 0.05.

e p_crossover: probability for a single feature to be selected for crossover
€ [0..1].

o crossover_type: can be one_point or uniform.

o remove_unused: Usually feature selection algorithms produce an exam-
ple set with irrelevant attributes switched off. If this parameter is set
to true (default), the unused attributes will be entirely removed.

e p_generate: the probability for a single individual to be selected for
generating new attributes.

74

CHAPTER 5. OPERATOR REFERENCE

maz_number_of new_attributes: upper bound for the number of newly
generated attributes for an individual in one generation.

reciprocal_value: set to true in order to allow the generation of reciprocal
values.

o function_characteristica: set to true in order to allow generation of func-

tion characteristics (local maximum, two turning points). To be appli-
cable, a value series must be given that contains exactly one maximum
and two turning points.

use_plus: set to true in order to allow the generation of the sum of two
attributes.

use_diff: set to true in order to allow the generation of the difference of
two attribute.

use_mult: set to true in order to allow the generation of the product of
two attributes.

use_div: set to true in order to allow the generation of the quotient of
two attributes.

type: type of problem. The type may be classification, regression or
auto (determines type automatically). Auto is the default value.

gain_ratio: a boolean parameter which specifies, if the gain ratio crite-
rion should be used. The default value is true.

epsilon: the range of variation of the attribute values which is used for
identifying the information gain for regression problems, the default
value is 0.1.

use_predicted_label: determines if the true value of the label or a pre-
dicted label should be used for regression information gain. The de-
fault value is false.

lower_mutation_bound: lower bound for the mutation probability distri-
bution which is generated from the information gain values.

upper_mutation_bound: lower bound for the mutation probability distri-
bution which is generated from the information gain values.

lower_generation_bound: lower bound for the generation probability dis-
tribution which is generated from the information gain values.

upper_generation_bound: lower bound for the generation probability dis-
tribution which is generated from the information gain values.

5.6. FEATURE SELECTION AND GENERATION 75

Description: By using a generating genetic algorithm, which generates
new attributes and does not only select them, it can happen that many
irrelevant attributes are generated. In addition, these individuals can be
randomly generated and deleted several times.

It is probably a good idea to make the generating genetic algorithm
smarter by using an information gain criterion to decide, which attribute
should be selected or should be used to generate another one. With the
new regression information gain criterion this is also possible for regression
problems.

The information gain value is computed for each attribute. Then the
more informative attributes will be preferably selected and used for gen-
erating new attributes. The underlying assumption is that it is better to
generate new attributes from the informative ones.

76 CHAPTER 5. OPERATOR REFERENCE

5.6.7 YAGGA
extends GeneticAlgorithm (p. 69)

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters
e population_size: the fixed number of individuals in one generation.

o mazimum_number_of_generations: performance independent stop crite-
rion (terminate after n generations).

o generations_without_improval: performance dependent stop criterion (ter-
minate after n generations without performance improvement).

o keep_best_individual: set to true for elitist selection (always keep the
best individual). The default value is false.

e p_initialize: initial probability € [0..1] for a single feature of a first gen-
eration individual to be switched on.

e p_mutation: mutation probability € [0,1]. The default value is 0.05.

e p_crossover: probability for a single feature to be selected for crossover
€ [0..1].

o crossover_type: can be one_point or uniform.

o remove_unused: Usually feature selection algorithms produce an exam-
ple set with irrelevant attributes switched off. If this parameter is set
to true (default), the unused attributes will be entirely removed.

e reciprocal_value: set to true in order to allow the generation of reciprocal
values.

5.6. FEATURE SELECTION AND GENERATION 7

e function_characteristica: set to true in order to allow generation of func-
tion characteristics (local maximum, two turning points). To be appli-
cable, a value series must be given that contains exactly one maximum
and two turning points.

e use_plus: set to true in order to allow the generation of the sum of two
attributes.

use_diff: set to true in order to allow the generation of the difference of
two attribute.

use_mult: set to true in order to allow the generation of the product of
two attributes.

e yse_div: set to true in order to allow the generation of the quotient of
two attributes.

Description: YAGGA is an acronym for Yet Another Generating Genetic
Algorithm. Its approach to generating new attributes differs from the origi-
nal one. The (generating) mutation can do one of the following things with
different probabilities:

e Probability p/4: add a newly generated attribute to the feature vector.

e Probability p/4: add a randomly chosen original attribute to the fea-
ture vector.

e Probability p/2: remove a randomly chosen attribute from the feature
vector.

Thus it is guaranteed that the length of the feature vector can both grow
and shrink. On average it will keep its original length, unless longer or
shorter individuals prove to have a better fitness. The used/unused-vector
is no longer used.

78 CHAPTER 5. OPERATOR REFERENCE

5.6.8 FeatureGeneration

Inner Operator(s)

1. Validation: This operator must evaluate an ExampleSet that it receives
as input and return a PerformanceVector. Usually this operator is a
ValidationChain (see p. 57).

Input

e ExampleSet: the input example set represented by the original feature
set

Output
e ExampleSet: the example set represented by an optimal feature set

e PerformanceVector: the performance of the inner operators on the ex-
ample set represented by the selected optimal feature set

Parameters

o filename: generate all attributes listed in this file. You can use a file
generated by a AttributeSetWriter (p. 41) for this purpose. See page
26 for details.

o reciprocal_value: generate all reciprocal values.

o function_characteristica: generate the function characteristics of all value
series (maximum and two turning points).

Description: This operator can be used for data preprocessing. It gener-
ates a new set of attributes from the original data. It can either generate
all possible attributes of a certain type or generate only attributes listed in
a file.

5.6. FEATURE SELECTION AND GENERATION 79

5.6.9 MissingValueReplenishment

Parameters

e All parameters in the group columns are interpreted as follows: The
key gives the number of the column, the value is one of “minimum”,
“maximum”, and “average”.

Example: <parameter group="columns" key="1" value="average'"/>
Input
e ExampleSet: the original data containing undefined attributes.
Output

e ExampleSet: the example set without undefined attributes.

Description: This operator replaces undefined attributes by the mini-
mum, maximum, or average of the column.

80

CHAPTER 5. OPERATOR REFERENCE

Chapter 6

Extending YALE

Although we think that the described operators satisfy a great amount of
usual data mining applications, it is quite simple to write your own opera-
tors. YALE delivers the mechanisms to manage your data and the provided
operators can easily be nested to create complex experiments, but there
are several learning methods not included and many other preprocessing
operators are imaginable.

This chapter describes how you can write a YALE operator. Since YALE is
entirely written in Java, every operator is written in Java too, and for nesting
your operator into others, you have to follow some simple specifications.

6.1 Operator skeleton

As we have mentioned above, your operator has to be be written in Java. At
least you should know the basic concepts of this language to understand what
we are doing here. All needed information of the YALE classes can be found
in the YALE API which should be available where you have downloaded
YALE.

Every operator inherits its properties from the abstract class

edu.udo.cs.yale.operator.Operator

If you want to use inner operators, which increases the complexity of your
operator, it has to extend

edu.udo.cs.yale.operator.OperatorChain

which itself extends Operator. But first look on the simple operator skeleton
diagrammed in figure 6.1. It shows the very basic concept of every operator
in YALE. The operator skeleton extends the class Operator as described
above.! The two fields INPUT_CLASSES and OUTPUT_CLASSES con-

tain all classes of I00bjects required as input by this operator and those

!Therefore the path to the yale.jar file, which you can find in the 1ib directory of
YALE, is needed to be in the java CLASSPATH environment variable.

81

82 CHAPTER 6. EXTENDING YALE

delivered by this operator. Classes which should act as in- or output of an
operator must extend edu.udo.cs.yale.operator.I00bject (see section
6.2.2).

package my.new.operators;
public class TestOperator extends Operator {

private static final Class[] INPUT_CLASSES = { };
private static final Class[] OUTPUT_CLASSES = { };

public void initApply() {}
public I0Object[] apply() throws OperatorException {
return new I00bject[0];

}

public Class[] getInputClasses() { return INPUT_CLASSES; }
public Class[] getOutputClasses() { return OUTPUT_CLASSES; }

Figure 6.1: Operator skeleton

The method initApply() can be used to initialize some variables or to
get parameters or everything else which should be done once the operator is
created. See section 6.2.1 for how to retrieve the parameters of an operator.
The method apply() is called by YALE every time the operator should
perform its action. Here you have to specify what the operator does on the
input objects and which result it should return.

Finally there are methods which return the fields specified above. These
two methods and the apply()-method are abstract in Operator and you
have to overwrite them in your own operator.

6.1.1 Writing simple operators

After these technical preliminary remarks we set an example which performs
a very elementary task: It should write all examples of an ExampleSet into
a file. First we consider that all we need as input for this operator is an
example set. Since we will not manipulate it, we deliver the same example
set as output. The fields for INPUT_CLASSES and OUPUT_CLASSES will
therefore only contain one class: edu.udo.cs.yale.example.ExampleSet.
If you use these fields, you can directly adopt the in- and output methods
of the skeleton. Let us presume that your own operators are in the package

6.2. USEFUL METHODS FOR OPERATOR DESIGN 83

my .new.operators. Now take a look at the operator in figure 6.2 and we
describe the steps of the methods.

The first line in initApply() sets the name of the file to write the
example set to. This method returns the value of the parameter “exam-
ple_set_file”, if it is declared in the operator section of the experiment config-
uration file. If this parameter is not given, the experiment ends immediately
with an error message. For this, you can use the LogService, which we will
discuss in section 6.2.4. The contents of this method will be performed once
when the operator is initialized. At that moment, the in- and output of the
operator will be checked to ensure that this operator can be used at this
point of the surrounding operator chain. If ExampleSet is not contained in
the output of the former operator, your operator can not work and YALE
will terminate at the beginning of the experiment.

Now we know how the operator is initialized and how it is guaranteed,
that you can nest it into an operator chain. But right now we have not
seen how the operator writes the examples of the input example set into the
specified file. This will be done in the apply () method. Later we will talk
about the details of the implementation, e.g. how you can iterate over the
examples of an example set. At this point we will only examine the general
structure of our operator.

Primarily we need the input example set. The first line in the apply
method delivers the first example set which is contained in the input of this
operator. Then a stream to the specified file is opened and an iterator over
the examples is created. With this ExampleReader you can pass through
the examples of an example set like the way you do with a List iterator.
For each example the values are written into the file and afterwards the
stream to the file is closed. Each operator can throw an OperatorException
to the calling operator, which would be done if any exception occured during
writing the file. The last thing to do is creating a new array of I00bjects
which contains no elements, since the input example set is only modified
and no additional output was produced. This empty array is returned by
the method.

6.2 Useful methods for operator design

We hope you have seen, how easy it is to extend YALE with self-written
operators. Even though the needed information is contained in the YALE
APIT documentation, we will discuss shortly the main functions you will use
when writing your own operator.

6.2.1 Getting parameters

You know how to write parameters in an experiment configuration file and
you have seen in the example of the ExampleSetWriter how we get a pa-

84

CHAPTER 6. EXTENDING YALE

package my.new.

import
import
import
import
import
import
import

de.yale.
de.yale.
de.yale.
java.i
java.
java.
java.

io.
io.
io.
.I0OException;

io

operators;

example.ExampleSet;
example .ExampleReader;
tools.LogService;
File;

FileWriter;
PrintWriter;

public class ExampleSetWriter extends Operator {

private static final Class[] INPUT_CLASSES =
{ ExampleSet.class };

private static final Class[] OUTPUT_CLASSES =
{ ExampleSet.class };

private String filename;

public void initApply() {
filename = getParameter("example_set_file");
if (filename == null)
LogService.logMessage ("ExampleSetWriter ’" + getName() +
"?: Specify example set file " +
"in config file",LogService.FATAL);
}
public I0Object[] apply() throws OperatorException {
ExampleSet eSet =
(ExampleSet)getInput (ExampleSet.class, false);
try {
PrintWriter out =
new PrintWriter(new FileWriter(new File(filename)));
ExampleReader reader = eSet.getExampleReader();
while (reader.hasNext()) {
out.println(reader.next());
}
out.close();
} catch (I0Exception e) {
throw new OperatorException("Couldn’t write to " +
"example set file", e);
}
return new I00bject[0];
}
public Class[] getInputClasses() { return INPUT_CLASSES; }
public Class[] getOutputClasses() { return OUTPUT_CLASSES; }

Figure 6.2: Implementation of an ExampleSetWriter operator

6.2. USEFUL METHODS FOR OPERATOR DESIGN

rameter just by calling a method

85

getParameter(...)

which is provided by the superclass Operator.

Generally all methods to

collect parameters from the experiment configuration file are inherited from
Operator and all global settings specified in one of the global settings files
(see section 2.3) can be gained by the method

getProperty(String name)

from the ParameterService?. Table 6.1 shows the methods of the class Oper-

ator in detail.

| Method

‘ Description

getParameter (String key)

Returns the parameter value of the
given key and null if it was not set.

getParameterAsString
(String key, String default)

Returns the parameter value of the
given key and the default value if it
was not set.

getParameterAsBoolean
(String key, boolean default)

Returns true if value is "true”, "yes”,

R y” , or ” On” .

getParameterAsDouble
(String key,
double lowerBound,
double upperBound,
double default)

Returns the value of the parameter
key. If the parameter is not set or not
a number, the method returns the
default value. The value is restricted

to the range specified by lowerBound
and upperBound.

getParameterAsInt
(String key, int lowerBound,
int upperBound, int default)

Returns the value of the parameter
key. If the parameter is not set or not
a number, the method returns the
default value. The value is restricted
to the range specified by lowerBound
and upperBound.

getParameterCategory
(String key,
String[] categories,
int default)

Returns the index of the parameter
key in the given categories. If the
parameter is not set or none of the

categories, the method returns the
default index.

getParameterGroup(String group)

Returns the parameters specified in
the given group as a List.

Table 6.1: Methods for obtaining parameters from Operator

2edu.udo.cs.yale.tools.ParameterService, the described method is static.

86 CHAPTER 6. EXTENDING YALE

6.2.2 Input and output

In our example we have only modified the example set by writing the ex-
amples into a file. Other operators can also consume their input and don’t
deliver it back at the end of the apply () method. A learning operator con-
sumes an example set to produce a model and so does a cross validation to
produce a performance value of the learning method.

Therefore two ways exist to get the input of an operator: One way is
to consume the input by using the operator and the other is to leave the
I00bject in the input for the next operator. In our example, we leave the
ExampleSet in the input because we only modify it like a filter. You can say
that the operator will not delete the example set from the input and hence
we use a getInput () method with a false boolean flag. The signature of
the method is

I00bject getInput(Class class, boolean deleteFromInput)

It returns the first IOObject of the desired class which is found in the input
of the operator and it deletes the object from the input of the next operator
if the boolean value is true.

Generally speaking, you use the method with a true flag if you want to
consume the input and with false if you want to leave it as input for the
next operator.

6.2.3 Iterating over an ExampleSet

YALE is about data mining and one of the most frequent applications of data
mining operators is to iterate over a set of examples. This can be done for
preprocessing purposes, for learning, for applying a model to predict labels
of examples, and for many other tasks. We have seen the mechanism in our
example and we will describe it shortly.

The way you iterate over an example set is very similar to the concept
of iterators, e.g. in terms of Lists. The methods which are provided have
the same signature as the methods of a Java Iterator. The first thing you
have to do is to create such an iterator, called ExampleReader. The following
code snippet will show you how:

ExampleReader reader = exampleSet.getExampleReader();
while (reader.hasNext()) {

Example example = reader.next();

//...do something with the example...
}

Figure 6.3: Creating and using an ExampleReader

6.2. USEFUL METHODS FOR OPERATOR DESIGN 87

Assume exampleSet is a set of examples which we get from the input
of the operator. First of all, a reader is created which can be used like
an iterator, traversing through the examples in a loop. The classes Exam-
pleSet, ExampleReader, and Example are provided within the YALE package
edu.udo.cs.yale.example. Please check the YALE API documentation to
see what you can do with an example.

6.2.4 Log messages

If you write your operator, you should make some logging messages so that
users understand what your operator is doing. It is especially reasonable
to log error messages as soon as possible. YALE provides some methods to
log the messages of an operator. We distinguish between log messages and
results. Of course you can write your results into the normal log file specified
in the experiment configuration file. But the intended way to announce
results of the experiment is to use a ResultWriter (see section 5.2.6) which
writes each currently available result residing in his input. For this purpose
two classes exist, a class LogService and a class ResultService. The latter
can be used by invoking the static method

logResult(String result)

or by simply using a ResultWriter as described above.

LogService? provides some useful methods to log all messages which are
described in table 6.2. All messages which have fatal log verbosity level (or
above) will terminate the program! Possible levels are MINIMUM, TASK,
STATUS, OPERATOR, WARNING, INIT, EXCEPTION, ERROR, FA-
TAL, and MAXIMUM.

‘ Method ‘ Description ‘
logMessage (String message, Writes the message into the log file, if
int verbosityLevel) the verbosity level is high enough.
logException(String message, Writes the message and the stacktrace
java.lang.Throwable exception) | of the exception into the log file.
logFatalException Writes the message and the stacktrace
(String message, of the exception into the log file and

java.lang.Throwable exception) terminates YALE.

Table 6.2: Methods for logging purposes

3LogService can be found at edu.udo.cs.yale.tools.LogService

88 CHAPTER 6. EXTENDING YALE

6.3 Building operator chains

Now you can extend YALE by writing operators which perform tasks on
a given input and deliver the input or additional output to a surrounding
operator. We have discussed the specifications to create the operator in
such a way that it can be nested into other operators. But what we have
not seen is the possibility to write your own operator chain, i.e. operators
which contain inner operators to which input will be given and whose output
is used by your operator. What makes an operator to an operator chain is
the possibility to contain other inner operators.

The way you create an operator chain is straightforward: First your
operator does not extend Operator directly any longer, but OperatorChain
instead. Now you can simply use inner operators via the method

getOperator(int index)

which delivers the inner operator with the given index. You can call the
apply () method of this operator, YALE takes care of the correct execution.

The second thing you have to do is to declare how many inner operators
your operator can cope with. Therefore every operator chain has to overwrite
two abstract methods from OperatorChain:

getMinInnerOps()
and
getMaxInnerOps()

which returns the minimum and maximum number of inner operators. If
these numbers are equal, your operator chain must include exactly this num-
ber of inner operators or YALE will terminate at the beginning of an exper-
iment.

6.3.1 Additional input

But what if you want to add additional I00bjects to the input of an inner
operator? A cross-validation operator for example, divides an example set
into subsets and adds certain subsets to the input of a learning operator
and others to the input of an operator chain which includes a model applier
and a performance evaluator. In this case your operator has to consume the
original I00bject and adds others to the input of the inner operators.

In section 6.2.2 we have seen how an operator can get the input and how
it is declared if the I00bject is consumed or not. If your operator should
add a certain I00bject to the input of an inner operator it simply has to
call the apply () method of the inner operator in a way like

apply (getInput () .append(new I00bject[] { additionallIO }))

6.4. ADDING YOUR OPERATOR 89

The method getInput () delivers the container of YALE which provides the
input and output objects of the operators*. To this container the append ()
method adds the additional I00bjects as an array.

You can call this method also, if you want to use the same I00bject as
input for an inner operator several times, e.g. in a loop, or if you want to
add more than one I00bject to the input of an inner operator.

6.3.2 Using output

Inner operators can produce output which your surrounding operator must
handle. The call of the apply () method of an inner operator delivers a
container like the one described above. You can get the I00bjects out of
this container in the same way like getting the I00bject of a certain class
by the operator. Figure 6.4 shows the methods to append additional input
for the inner operator and getting specified output from the result of the
apply () method. The example set is split before into training and test set.

[...]
Learner learner = getOperator(0);
I0OContainer container =
learner.apply(getInput() .append(new I00bject[] {trainingSetl}));

ModelApplier applier = getOperator(1);
applier.apply(getInput () .append(new I00Object[] {testSet}));
[...]

Figure 6.4: In- and output of an inner operator

Mostly you do not need to do anything about adding additional input
or getting the output and YALE will manage the in- and ouput for your
operator. Pay attention to the fact that you do not need to care about the
learned model: YALE copes with the learned model for your model applier.

6.4 Adding your operator

At this point you know all the tricks to write your own operator and the tool
kit which is provied by YALE for this purpose. The last thing you have to
do is to declare your operator to YALE. Every operator must comply with
the following terms:

1. The fully classified classname of your operator must be in your java
CLASSPATH variable.

‘edu.udo.cs. yale.operator.I0OContainer

90 CHAPTER 6. EXTENDING YALE

2. A short name for displaying you operator in a graphical user interface
must be specified and

3. A long and meaningful name to specify the operator in an experiment
configuration file is required.

To link these conditions to one another you have to specify them in a
operator description file which is located in the etc directory of the YALE
home directly(see section 2.2). In the file etc/operators.xml all operators
of YALE are specified with their fully specified classname and both a short
and a meaningful name. Every entry holds for one operator and they are
written like the ones in figure 6.5. As you can see, you simply add the entries
for your own operators at the end of this file.

6.4. ADDING YOUR OPERATOR

<operators>

<!-- YALE Operators -->

<operator
name="ExampleSetWriter"
short="MyESWriter"
path="de.yale.operator.ExampleSetWriter"/>

<operator
name="MySVMLearner"
short="mySVM"
path="de.yale.operator.learner.SVMLearner"/>

<operator
name="XValidation"
short="XVal"

path="de.yale.operator.XValidation"/>

[...]
<!-- Your Own Operators -—>
<operator

name="MyExampleSetWriter"
short="MyESWriter"
path="my.new.operators.ExampleSetWriter"/>

<operator
name="MyPreprocessing"
short="MyPreP"
path="my.new.operators.Preprocessing"/>
</operators>

Figure 6.5: Declaring operators to YALE

92

CHAPTER 6. EXTENDING YALE

Chapter 7

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG1),
Collaborative Research Center on Computational Intelligence (SFB 5312) at
University of Dortmund.

We would like to thank Stefan Haustein for providing his marvellous
XML parser kxml®, which we use for parsing almost all configuration files.

We are grateful to Stefan Riiping for providing his implementation of a
support vector machine*. We thank Thorsten Joachims not only for provid-
ing the SVMY9" 5 but also for giving useful advice. We highly appreciate
the operators written by Timm Euler and like to thank him for many good
questions and even better answers.

We thank the Weka® developers for providing an open source Java archive
with lots of machine learning operators.

We thank Martin Scholz for continuously encouraging us to implement
a fancy GUI, which is hopefully coming soon.

"ttp://www.dfg.de/

*http://sfbci.uni-dortmund.de/

3http://www.kxml.org/
*http://wuw-ai.informatik.uni-dortmund.de/SOFTWARE/MYSVM/
Shttp://svmlight. joachims.org/
6http://www.cs.waikato.ac.nz/ml/weka/

93

94

CHAPTER 7. ACKNOWLEDGEMENTS

Bibliography

[1]
2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

L. Breiman. Bagging predictors. Machine Learning, 13(2):30-37, 1996.

B. Efron and R. Tibshirani. An introduction to the bootstrap. Chapman
& Hall, New York, USA, 1993.

M. A. Hall. Correlation-based feature selection for machine learning.
Dissertation, Department of Computer Science, University of Waikato,
Hamilton, New Zealand, 1999.

T. Joachims. Making large-scale SVM learning practical. In
B. Schélkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, chapter 11. MIT Press, Cambridge,
MA, 1999.

K. Kira and L. Rendell. The feature selection problem: Traditional
methods and a new algorithm. In The Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 129-134. AAAT Press, 1992.

R. Kohavi and G. H. John. Wrappers for feature subset selection.
Artificial Intelligence Journal, Special Issue on Relevance, 97(1-2):273—
324, 1997.

Ron Kohavi, Dan Sommerfield, and James Dougherty. Data mining
using MLC++: A machine learning library in C++. In Tools with
Artificial Intelligence, pages 234-245, Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press. http://www.sgi.com/tech/mlc/.

John Ross Quinlan. C4.5: Programs for Machine Learning. Machine
Learning. Morgan Kaufmann, San Mateo, CA, USA, 1993.

O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske.
YALE: Yet Another Machine Learning Environment. In R. Klinkenberg,
S. Riiping, A. Fick, N. Henze, C. Herzog, R. Molitor, and O. Schroder,
editors, LLWA 01 - Tagungsband der GI-Workshop-Woche Lernen —
Lehren — Wissen — Adaptivitat, pages 84-92, Germany, October 2001.
Technical Report No. 763, Department of Computer Science, University
of Dortmund.

95

96

[10]

[11]

BIBLIOGRAPHY

Stefan Riiping. mySVM Manual. Universitit Dortmund, Lehrstuhl
Informatik VIII, 2000.
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

Robert E. Schapire. A brief introduction to boosting. In Proceedings of
the Sizteenth International Joint Conference on Artificial Intelligence,
pages 1401-1406, Stockholm, Sweden, 1999. Morgan Kaufmann.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, Chichester,
UK, 1998.

I. H. Witten and E. Frank. Data mining: Practical ma-

chine learning tools and techniques with Java implementa-
tions. Morgan Kaufmann, San Francisco, CA, USA, 2000.
http://www.cs.waikato.ac.nz/ml/weka/.

Index

analysis, 34

attribute set description file, 14,
25, 26, 31

attribute values file, 15

AttributeSetWriter, 41

backward elimination, 67
block type, 15
BruteForce, 66

C45Learner, 48
Clusterer, 54
ClusterWrapper, 55
configuration file, 14, 23
cross-validation, 13

DatabaseExampleSource, 40

datafile, 25

DecisionTreeApplier, 50

DecisionTreelLearner, 49

DirectedGeneratingGeneticAlgorithm,
73

Example, 87
example experiment
advanced, 29

simple, 21
ExampleReader, 87
ExampleSet, 87
ExampleSetWriter, 40
ExampleSource, 39
ExperimentLog, 42

feature generation, 11, 15
feature selection, 11, 29
feature selection wrapper, 13
FeatureGeneration, 78

97

FeatureOperator, 65
FeatureSelection, 67
FixedSplitValidationChain, 58
forward selection, 67

GeneratingGeneticAlgorithm, 71
GeneticAlgorithm, 69

homepage, 17

ID3Learner, 49
installation, 17
IOContainer, 89
IOObject, 86

label file, 15

Learner, 43

learning environment, 11
logging, 87

LogService, 87

machine learning, 11
messages, 87

meta knowledge, 15
MethodValidationChain, 61
MethodXValidation, 63
MissingValueReplenishment, 79
model file, 26, 31
ModelApplier, 43
ModelLoader, 41
MultiClassLearner, 51
MultiModelApplier, 52
multistrategy learning, 11

nestable, 13
NeuralNetApplier, 51
NeuralNetLearner, 50
nominal, 15

98
numerical, 15 XValidation, 60
Operator, 38, 81 YAGGA, 76
declaring, 89 YALE, 11
initialization, 82 data handling, 14
inner, 88 meta knowledge, 15
input, 86, 88 scalability, 15

output, 86, 89

performing action, 82

skeleton, 81
operator, 13

nestability, 13
operator chain, 13
OperatorChain, 38, 88

parameter, 85
ParameterOptimization, 64
ParameterService, 85
PerformanceEvaluator, 56

RandomSplitMethodValidationChain,
62

RandomSplitValidationChain, 59

representation problem, 11

results, 87

ResultService, 87

ResultWriter, 41, 87

RuleSetApplier, 48

scalability, 15
settings, 18
SVMApplier, 45
SVMLearner, 44
SVMLightApplier, 47
SVMLightLearner, 46

URL, 17

ValidationChain, 57
value type, 15

WekaApplier, 53
WekaClusterer, 54
Wekal earner, 53
wrappers, 13

INDEX

