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Theoretical Views of Boosting
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Abstract. Boosting is a general method for improving the accuracy of
any given learning algorithm. Focusing primarily on the AdaBoost algo-
rithm, we briefly survey theoretical work on boosting including analyses
of AdaBoost’s training error and generalization error, connections be-
tween boosting and game theory, methods of estimating probabilities
using boosting, and extensions of AdaBoost for multiclass classification
problems. We also briefly mention some empirical work.

Background

Boosting is a general method which attempts to “boost” the accuracy of any
given learning algorithm. Kearns and Valiant [21,22] were the first to pose the
question of whether a “weak” learning algorithm which performs just slightly
better than random guessing in Valiant’s PAC model [34] can be “boosted”
into an arbitrarily accurate “strong” learning algorithm. Schapire [28] came up
with the first provable polynomial-time boosting algorithm in 1989. A year later,
Freund [13] developed a much more efficient boosting algorithm which, although
optimalin a certain sense, nevertheless suffered from certain practical drawbacks.
The first experiments with these early boosting algorithms were carried out by
Drucker, Schapire and Simard [12] on an OCR task.

AdaBoost

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [16], solved
many of the practical difficulties of the earlier boosting algorithms, and is the
focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [31]. The algorithm takes as input
a training set (x1,¥1), ..., (¥m, ym) where each z; belongs to some domain or
instance space X, and each label y; 1s in some label set Y. For most of this
paper, we assume Y = {—1,+1}; later, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a
series of rounds ¢ = 1,...,7. One of the main ideas of the algorithm is to
maintain a distribution or set of weights over the training set. The weight of
this distribution on training example ¢ on round ¢ is denoted Dy (7). Initially, all
weights are set equally, but on each round, the weights of incorrectly classified



Given: (z1,¥1), ..., (®m, Ym) where z; € X, y, € Y = {—1,+1}
Initialize Dy (¢) = 1/m.
Fort=1,...,T:

— Train weak learner using distribution D;.
Get weak hypothesis i, : X — R.
— Choose a; € R.

— Update:
Dy(e —apYihe (25
Digi(i) = £(7) exp(—argihe (@)
Zt
where Z; is a normalization factor (chosen so that D1y will be a distribu-
tion).

Output the final hypothesis:

H(x) = sign (Z atht(x)) .

Fig. 1. The boosting algorithm AdaBoost.

examples are increased so that the weak learner is forced to focus on the hard
examples in the training set.

The weak learner’s job is to find a weak hypothesis hy : X — IR appropriate
for the distribution D;. In the simplest case, the range of each h; is binary, i.e.,
restricted to {—1,4+1}; the weak learner’s job then is to minimize the error

& = Priyup, [he(®:) # us) -

Once the weak hypothesis h; has been received, AdaBoost chooses a param-
eter oy € R which intuitively measures the importance that it assigns to h;. In
the figure, we have deliberately left the choice of «; unspecified. For binary Ay,

we typically set
1-— [
at:%ln< - ) (1)

More on choosing ay follows below. The distribution D; 1s then updated using
the rule shown in the figure. The final hypothesis H is a weighted majority vote
of the T" weak hypotheses where ay is the weight assigned to h;.

Analyzing the training error

The most basic theoretical property of AdaBoost concerns its ability to reduce
the training error. Specifically, Schapire and Singer [31], in generalizing a theorem
of Freund and Schapire [16], show that the training error of the final hypothesis



1s bounded as follows:
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where f(z) = >, azhe(x) so that H(z) = sign(f(«)). The inequality follows
from the fact that e=¥f(#0) > 1 if y; # H(x;). The equality can be proved
straightforwardly by unraveling the recursive definition of D;.

Eq. (2) suggests that the training error can be reduced most rapidly (in a
greedy way) by choosing a; and h; on each round to minimize

7y = Z Dy (i) exp(—azyihe (23)).

In the case of binary hypotheses, this leads to the choice of oy given in Eq. (1)
and gives a bound on the training error of

[1[2veali-«) = Hm < exp (—2;%2)

t

where ¢¢ = 1/2 — 4;. This bound was first proved by Freund and Schapire [16].
Thus, if each weak hypothesis is slightly better than random so that 7; 1s bounded
away from zero, then the training error drops exponentially fast. This bound,
combined with the bounds on generalization error given below prove that Ada-
Boost is indeed a boosting algorithm in the sense that i1t can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak
edge for any distribution) into a strong learning algorithm (which can generate
a hypothesis with an arbitrarily low error rate, given sufficient data).

Eq. (2) points to the fact that, at heart, AdaBoost is a procedure for finding
a linear combination f of weak hypotheses which attempts to minimize

> exp(—yif(xi)) = Y exp (_yi Zatht(l‘i)) : (3)

2 2
Essentially, on each round, AdaBoost chooses h; (by calling the weak learner)
and then sets a; to add one more term to the acculating weighted sum of weak
hypotheses in such a way that the sum of exponentials above will be maximally
reduced. In other words, AdaBoost is doing a kind of steepest descent search to
minimize Eq. (3) where the search is constrained at each step to follow coordinate
directions (where we identify coordinates with the weights assigned to weak
hypotheses).

Schapire and Singer [31] discuss the choice of «; and h; in the case that h;
is real-valued (rather than binary). In this case, h:(z) can be interpreted as a
“confidence-rated prediction” in which the sign of h:(z) is the predicted label,
while the magnitude |h:(x)| gives a measure of confidence.



Generalization error

Freund and Schapire [16] showed how to bound the generalization error of the
final hypothesis in terms of its training error, the size m of the sample, the
VC-dimension d of the weak hypothesis space and the number of rounds 7" of
boosting. Specifically, they used techniques from Baum and Haussler [3] to show
that the generalization error, with high probability, is at most

Pr[H<x>¢y]+O( %d)

where Pr [] denotes empirical probability on the training sample. This bound
suggests that boosting will overfit if run for too many rounds, i.e., as T" becomes
large. In fact, this sometimes does happen. However, in early experiments, several
authors [7, 11, 26] observed empirically that boosting often does not overfit, even
when run for thousands of rounds. Moreover, it was observed that AdaBoost
would sometimes continue to drive down the generalization error long after the
training error had reached zero, clearly contradicting the spirit of the bound
above. For instance, the left side of Fig. 2 shows the training and test curves of
running boosting on top of Quinlan’s C4.5 decision-tree learning algorithm [27]
on the “letter” dataset.

In response to these empirical findings, Schapire et al. [30], following the
work of Bartlett [1], gave an alternative analysis in terms of the margins of the
training examples. The margin of example (z, y) is defined to be

yzatht(l‘)
Sl

It is a number in [—1, +1] which is positive if and only if H correctly classifies
the example. Moreover, as before, the magnitude of the margin can be inter-
preted as a measure of confidence in the prediction. Schapire et al. proved that
larger margins on the training set translate into a superior upper bound on the
generalization error. Specifically, the generalization error is at most

Pr [marginf(x, y) < 9] +0 (\/ %)

for any € > 0 with high probability. Note that this bound is entirely independent
of T'; the number of rounds of boosting. In addition, Schapire et al. proved that
boosting is particularly aggressive at reducing the margin (in a quantifiable
sense) since it concentrates on the examples with the smallest margins (whether
positive or negative). Boosting’s effect on the margins can be seen empirically,
for instance, on the right side of Fig. 2 which shows the cumulative distribution
of margins of the training examples on the “letter” dataset. In this case, even
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Fig. 2. Error curves and the margin distribution graph for boosting C4.5 on the letter
dataset as reported by Schapire et al. [30]. Left: the training and test error curves
(lower and upper curves, respectively) of the combined classifier as a function of the
number of rounds of boosting. The horizontal lines indicate the test error rate of the
base classifier as well as the test error of the final combined classifier. Right: The
cumulative distribution of margins of the training examples after 5, 100 and 1000
iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

after the training error reaches zero, boosting continues to increase the margins
of the training examples effecting a corresponding drop in the test error.

Attempts (not always successful) to use the insights gleaned from the theory
of margins have been made by several authors [5,19,24]. In addition, the margin
theory points to a strong connection between boosting and the support-vector
machines of Vapnik and others [4,8,35] which explicitly attempt to maximize
the minimum margin.

A connection to game theory

The behavior of AdaBoost can also be understood in a game-theoretic setting as
explored by Freund and Schapire [15,17] (see also Grove and Schuurmans [19]
and Breiman [6]). In classical game theory, it is possible to put any two-person,
zero-sum game in the form of a matrix M. To play the game, one player chooses
a row i and the other player chooses a column j. The loss to the row player
(which is the same as the payoff to the column player) is M;;. More generally,
the two sides may play randomly, choosing distributions P and Q over rows or
columns, respectively. The expected loss then is PTMQ.

Boosting can be viewed as repeated play of a particular game matrix. Assume
that the weak hypotheses are binary, and let % = {hy,...h,} be the entire weak
hypothesis space (which we assume for now to be finite). For a fixed training set
(1,91), -+, (@m, Ym), the game matrix M has m rows and n columns where

Mij _ { 11f h](l‘l) =Y

0 otherwise.



The row player now is the boosting algorithm, and the column player is the
weak learner. The boosting algorithm’s choice of a distribution 1), over training
examples becomes a distribution P over rows of M, while the weak learner’s
choice of a weak hypothesis h; becomes the choice of a column j of M.

As an example of the connection between boosting and game theory, consider
von Neumann’s famous minmax theorem which states that

maxminPTMQ = minmax PTMQ
Q P P Q

for any matrix M. When applied to the matrix just defined and reinterpreted
in the boosting setting, this can be shown to have the following meaning: If,
for any distribution over examples, there exists a weak hypothesis with error
at most 1/2 — ~, then there exists a convex combination of weak hypotheses
with a margin of at least 29 on all training examples. AdaBoost seeks to find
such a final hypothesis with high margin on all examples by combining many
weak hypotheses; so in a sense, the minmax theorem tells us that AdaBoost
at least has the potential for success since, given a “good” weak learner, there
must exist a good combination of weak hypotheses. Going much further, Ada-
Boost can be shown to be a special case of a more general algorithm for playing
repeated games, or for approximately solving matrix games. This shows that,
asymptotically, the distribution over training examples as well as the weights
over weak hypotheses in the final hypothesis have game-theoretic intepretations
as approximate minmax or maxmin strategies.

Estimating probabilities

Classification generally 1s the problem of predicting the label y of an example z
with the intention of minimizing the probability of an incorrect prediction. How-
ever, 1t is often useful to estimate the probability of a particular label. Recently,
Friedman, Hastie and Tibshirani [18] suggested a method for using the output of
AdaBoost to make reasonable estimates of such probabilities. Specifically, they
suggest using a logistic function, and estimating

(@)

Pr; [y:+1|$]:76f(x)+e—f(x) (4)

where, as usual, f(x) is the weighted average of weak hypotheses produced by
AdaBoost. The rationale for this choice is the close connection between the log
loss (negative log likelihood) of such a model, namely,

Z In (1 + e_zy’f(x’)) (5)

and the function which, we have already noted, AdaBoost attempts to minimize:

Ze‘y’f(x’). (6)
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Specifically, it can be verified that Eq. (5) is upper bounded by Eq. (6). In
addition, if we add the constant 1 — In2 to Eq. (5) (which does not affect its
minimization), then it can be verified that the resulting function and the one in
Eq. (6) have identical Taylor expansions around zero up to second order; thus,
their behavior near zero is very similar. Finally, it can be shown that, for any
distribution over pairs (#,y), the expectations

E {ln (1 + e_zyf(x))}

and

E {e—yf (x)}
are minimized by the same function f, namely,

fl@)=3zIn (H) '

Thus, for all these reasons, minimizing Eq. (6), as is done by AdaBoost, can
be viewed as a method of approximately minimizing the negative log likelihood
given in Eq. (5). Therefore, we may expect Eq. (4) to give a reasonable proba-
bility estimate.

Friedman, Hastie and Tibshirani also make other connnections between Ada-
Boost, logistic regression and additive models.

Multiclass classification

There are several methods of extending AdaBoost to the multiclass case. The
most straightforward generalization [16], called AdaBoost. M1, is adequate when
the weak learner is strong enough to achieve reasonably high accuracy, even
on the hard distributions created by AdaBoost. However, this method fails if
the weak learner cannot achieve at least 50% accuracy when run on these hard
distributions.

For the latter case, several more sophisticated methods have been developed.
These generally work by reducing the multiclass problem to a larger binary
problem. Schapire and Singer’s [31] algorithm AdaBoost.MH works by creating a
set of binary problems, for each example x and each possible label y, of the form:
“For example z, 1s the correct label y or is 1t one of the other labels?” Freund
and Schapire’s [16] algorithm AdaBoost.M2 (which is a special case of Schapire
and Singer’s [31] AdaBoost.MR algorithm) instead creates binary problems, for
each example x with correct label y and each incorrect label y' of the form: “For
example z, is the correct label y or y'?”

These methods require additional effort in the design of the weak learn-
ing algorithm. A different technique [29], which incorporates Dietterich and
Bakiri’s [10] method of error-correcting output codes, achieves similar provable
bounds to those of AdaBoost.MH and AdaBoost.M2, but can be used with
any weak learner which can handle simple, binary labeled data. Schapire and
Singer [31] give yet another method of combining boosting with error-correcting
output codes.
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Fig.3. Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of
27 benchmark problems as reported by Freund and Schapire [14]. Each point in each
scatterplot shows the test error rate of the two competing algorithms on a single bench-
mark. The y-coordinate of each point gives the test error rate (in percent) of C4.5 on
the given benchmark, and the z-coordinate gives the error rate of boosting stumps (left
plot) or boosting C4.5 (right plot). All error rates have been averaged over multiple
runs.

Experiments and applications

AdaBoost has been tested empirically by many researchers, including [2,9, 11,
20,23,26,33]. For instance, Freund and Schapire [14] tested AdaBoost on a set
of UCT benchmark datasets [25] using C4.5 [27] as a weak learning algorithm, as
well as an algorithm which finds the best “decision stump” or single-test decision
tree. Some of the results of these experiments are shown in Fig. 3. As can be
seen from this figure, even boosting the weak decision stumps can usually give
as good results as C4.5, while boosting C4.5 generally gives the decision-tree
algorithm a significant improvement in performance.

In another set of experiments, Schapire and Singer [32] used boosting for
text categorization tasks. For this work, weak hypotheses were used which test
on the presence or absence of a word or phrase. Some results of these experiments
comparing AdaBoost to four other methods are shown in Fig. 4. In nearly all
of these experiments and for all of the performance measures tested, boosting
performed as well or significantly better than the other methods tested.
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