
Journal of Computer and System Sciences, 52(2):201-213, April, 1996.

Learning Sparse Multivariate Polynomials over a Field with

Queries and Counterexamples

Robert E� Schapire

AT�T Bell Laboratories
Murray Hill� NJ �����

schapire�research�att�com

Linda M� Sellie�

University of Chicago
Chicago� IL 	�	
�

sellie�research�att�com

Abstract� We consider the problem of learning a polynomial over an arbitrary �eld F
de�ned on a set of boolean variables� We present the �rst provably e�ective algorithm
for exactly identifying such polynomials using membership and equivalence queries�
Our algorithm runs in time polynomial in n� the number of variables� and t� the
number of nonzero terms appearing in the polynomial� The algorithm makes at most
nt
 � equivalence queries� and at most �nt
 ���t�

t��� membership queries� Our
algorithm is equally e�ective for learning a generalized type of polynomial de�ned
on certain kinds of semilattices� We also present an extension of our algorithm for
learning multilinear polynomials when the domain of each variable is the entire �eld F �

� Introduction

We consider the problem of learning a polynomial f over an arbitrary �eld F de�ned
on a set of boolean variables� Thus� we are interested in the learnability of multivariate
polynomials over a �eld F when the domain of each variable xi has been restricted
to the values � and � �the additive and multiplicative identity elements of F �� This
problem models a learning situation in which examples are most naturally described
by vectors of boolean attributes� but in which the behavior of the function to be
learned is most easily described by a polynomial in the boolean values�

We consider the learnability of such polynomials in a model introduced by An�
gluin ��� in which the learning algorithm has two forms of access to the unknown
target polynomial� The �rst of these is a so�called membership oracle which evalu�
ates the target polynomial f on any variable�setting a of the learner�s choosing and
returns the result f�a�� The second form of access is a so�called equivalence oracle

which accepts as input a hypothesis polynomial h conjectured by the learner to be
equivalent to the target polynomial� If h and f are functionally equivalent� then the
equivalence oracle replies �equivalent� �in which case we say that the target has
been exactly identi�ed�� otherwise� the equivalence oracle provides a counterexample�

�Currently visiting AT�T Bell Laboratories�

a setting a of the variables on which the hypothesis and target polynomials evaluate
to di�erent values� i�e�� for which h�a� �� f�a��

The main result of this paper is a provably correct algorithm for exactly identifying
polynomials on a set of boolean variables over an arbitrary �eld F using equivalence
and membership queries� Our algorithm runs in time polynomial in n� the total
number of variables� and t� the number of nonzero coe�cients of terms in f �called
the sparcity of f�� The algorithm makes no more than nt
� equivalence queries and
roughly nt��� membership queries� This is the �rst provably e�cient algorithm for
this problem�

As an added feature� our algorithm uses only equivalence queries that are �proper�
in the sense that each conjectured hypothesis is itself a t�sparse polynomial�

By applying a technique of Angluin ���� our result can be extended to Valiant�s
so�called probably approximately correct �PAC� learning model ����� Speci�cally� An�
gluin shows that an equivalence oracle can always be replaced by a source of random
examples� in which case the learning algorithm will successfully �nd a hypothesis that
is a good approximation of the target polynomial with respect to the distribution on
the random examples� Thus� our result implies that polynomials on the boolean
domain over any �eld F can be learned in the PAC model with membership queries�

Of particular interest is the case in which F is taken to be GF���� the �nite
�eld of integers modulo two� Such polynomials can be viewed equivalently as depth�
two boolean formulas consisting of the xor of several monotone monomials �i�e��
conjunctions of unnegated variables��

The class of polynomials on the boolean domain includes a wide variety of func�
tions� For instance� we show that logarithmic�depth decision trees can be computed
by such polynomials�

One natural extension of our problem is to allow the domain of each variable to
be the entire �eld F � rather than the restricted domain f�� �g� We show that our
algorithm can be used as a subroutine to learn a polynomial f � F n � F � provided
that f is multilinear �so that each variable has degree at most ��� It is an open
problem whether non�multilinear polynomials are generally learnable in this model�
for an arbitrary �eld F �

The proof of the correctness of our algorithm relies on certain lattice�theoretic
properties of the boolean domain f�� �gn� suggesting a natural extension of the domain
of the target function� Speci�cally� we prove that our algorithm can learn a function
f � X � F where F is a �eld and X is a meet�semilattice with no in�nite chains�
and where f is represented by a generalized type of �polynomial� on X�

Previous work� The problem of learning or inferring a polynomial from exam�
ples has an extensive history� For certain �large� �elds� such as R� e�cient algorithms
are known for identifying a polynomial from sample points of the learner�s choosing�
However� these algorithms typically require that it be possible to assign each variable
many di�erent values �hence the need for the �eld to be �large��� Thus� such algo�
rithms are essentially useless if the domain of the function is the boolean domain since
in this case each variable can only be assigned one of two values� Indeed� for small
�elds such as GF���� most of the previous work has demonstrated that polynomials
are hard to learn in various models� except in special cases�

�

In the PAC model �in the absence of membership and equivalence queries�� Blum
and Singh ��� and Fischer and Simon ���� show that it is computationally hard to
learn t�sparse polynomials over GF��� for any �xed t � � �assuming RP �� NP� and
also assuming that the hypothesis must be expressed as a t�sparse polynomial�� Their
result also implies that it is hard to learn t�sparse GF����polynomials using a �proper�
equivalence oracle� Their proofs can be extended to show that t�sparse polynomials
over any �eld F cannot be learned in either of these learning models� for any �xed
t � �� even if the domain is limited to f�� �gn�

On the other hand� Blum and Singh show that t�sparse GF����polynomials can
be e�ciently approximated in the PAC model using a DNF�representation in time
poly�nt�� Also� Fischer and Simon give an e�cient algorithm for the special case in
which each term of the target polynomial has size at most k� where k is a constant�
�Although proved for GF���� this algorithm generalizes easily to any �eld F �� Their
algorithm uses linear�algebraic techniques to learn such polynomials in time poly�nk��
either in the PAC model� or using equivalence queries only�

As mentioned above� much previous work has also focused on the problem of
�interpolating� a polynomial� i�e�� on the problem of exactly identifying a polyno�
mial using membership queries only� As noted above� most of this work has dealt
with large �elds� such as the real numbers� For instance� Zippel ���� �
�� Ben�Or
and Tiwari �
�� and Mansour ���� give e�cient algorithms for interpolating sparse
multivariate polynomials over such �elds�

Grigoriev� Karpinski and Singers ��
� and Clausen et al� ��� consider the problem
of interpolating a sparse polynomial over various �nite �elds �see also the related work
of Dress and Grabmeier ��� and D�ur and Grabmeier ������ However� for small �elds
�such as GF�p�� where p is a small prime�� their algorithms are e�cient only if queries
can be made over a larger extension �eld� For the �eld GF���� when no such extension
is made� Clausen et al� show that t�sparse� n�variable polynomials can be e�ciently
interpolated using poly�nlog t� queries� and that the number of queries required is
essentially optimal� These bounds are also proved by Roth and Benedek ����� and
are re�ned by Hellerstein and Warmuth ���� who show that poly�nlog k� queries su�ce
where k is the maximum number of terms in which any variable appears�

The lower bound results mentioned above can easily be extended to show that
interpolation of a t�sparse polynomial over any �eld F requires at least n��log t� boolean
membership queries� Thus� for our problem� in which the goal is inference of an F �
valued function on the boolean domain� membership queries alone cannot su�ce for
polynomial�time identi�cation�

Thus� in sum� the previous research has demonstrated that it is hard or impossible
to learn a sparse polynomial over any �eld on a set of boolean variables in polynomial
time using membership queries only� random examples only� or proper equivalence
queries only� In contrast� our result demonstrates the tractability of the learning
problem if both membership queries and equivalence queries �or random examples�
are available to the learner�

In Section �� we describe our representation of polynomials� and their general�
ization to arbitrary semilattices� Our learning algorithm is described in Section
�
Although the algorithm is appealingly simple� its analysis is quite involved and relies

on certain combinatorial facts proved in Section �� We apply these combinatorial
results to give a full analysis of the algorithm in Section �� and present extensions
and applications of the main algorithm in Section 	�

� Polynomials and Semilattices

Let f be a multivariate polynomial over a �eld F de�ned on n boolean variables�
Then f is a function mapping the boolean domain f�� �gn into the �eld F � where �
and � are the additive and multiplicative identity elements of F � The sparcity of f is
the number of nonzero coe�cients appearing in f � if f has sparcity at most t� then f
is said to be t�sparse�

Since x� � x for x � f�� �g� we can assume without loss of generality that f
is multilinear� i�e�� that no variable has exponent greater than one in f � It then
becomes natural to associate with each monomial the characteristic vector of indices
of variables that appear in that monomial� For instance� if n � � then the monomial
x�x�x� is associated with the vector ������ Conversely� every vector a � f�� �gn is
associated with a monomial which we denote by xa �for example� the monomial x�x�
could also be written x�������

Using this notation� every t�sparse polynomial can be written in the form

f�x� �
tX

i	�

cix
ti ���

for some ci � F and ti � f�� �gn�
Our algorithm depends crucially on the lattice properties of the boolean domain

f�� �gn� To make this dependence explicit� we will prove our results using an extended
notion of �polynomial� for more general domains� Speci�cally� we will show that such
polynomials can be learned if the domain is a meet�semilattice with no in�nite chains
�de�ned below��

Let X be a set partially ordered by �� We say that an element c � X is the meet

of a and b if for all d � X� d � c if and only if d � a and d � b� Thus� the meet
of a and b� written a � b� can be viewed as the greatest lower bound of a and b�
If the meet exists for every pair of elements a and b in X� then X is said to be a
meet�semilattice �henceforth called simply a semilattice��

On the boolean domain f�� �gn� it is natural to de�ne a partial order in which
a � b if and only if ai � bi for i � �� � � � � n �and where we de�ne the usual ordering
on f�� �g with � � ��� With respect to this ordering� f�� �gn is clearly a semilattice�
The meet a�b is the vector c where ci � aibi for each i� �For instance� ����������� �
������� Note also that the monomial xa is satis�ed by b �i�e�� is equal to �� if and
only if a � b�

For a semilatticeX� and for any point a � X� we de�ne a function �a � X � f�� �g
by the rule

�a�b� �

�
� if a � b

� otherwise�

�

Analogous to the case where X is the boolean domain� we de�ne a polynomial over

F on semilattice X to be a function f � X � F of the form

f�x� �
tX

i	�

ci�ti�x� ���

where ci � F and ti � X� As noted above� for the boolean domain� xa � �a�x� for
any a � f�� �gn� thus� the de�nitions given in equations ��� and ��� are equivalent
for this domain� Also� consistent with our earlier notion of sparcity� we say that a
polynomial of the form given in equation ��� is t�sparse� and� if each ci is nonzero�
that the polynomial has sparcity t�

For a function f � we will use the notation �f�a� to denote the coe�cient �possibly
zero� of �a�x�� Thus�

f�x� �
X
a�X

�f �a��a�x�� �
�

�If f is a polynomial� then it has a �nite number of nonzero coe�cients� so this sum
will be well de�ned even if X is in�nite�� Equivalently� by the de�nition of �a�

f�x� �
X
a�X

a�x

�f �a��

As an aside� we note that if X is �nite� then every function f � X � F can
be written uniquely in the form of equation �
�� This is because the collection of
functions f�a � a � Xg forms a linearly independent basis for the jXj�dimensional
space of all functions mapping X into F �

If X has any minimal element� then this element must be unique� and it must
be smaller than every other element of X� Such an element� if it exists� is called a
bottom element� and it is denoted ��

Two elements a�b � X are comparable if a � b or b � a� A subset C � X is a
chain if every pair of elements in C are comparable� The length of such a chain is
jCj 	 �� Thus� a length�n chain can be viewed as a sequence a� � a� �

 � an�

If � exists� then the height of a point a � X� denoted jjajj� is de�ned to be the
length of the longest chain starting at � and ending at a� The height of X is then
the maximum height of any element in X� or equivalently� is the length of the longest
chain in X� Thus� semilattice X has �nite height if it contains no in�nite chains�

On the boolean domain f�� �gn� the bottom element is �� the vector whose every
component is �� The height of any vector a is equal to the number of ��s in the vector
a� and the height of the entire domain is n�

� The Algorithm

This section describes our algorithm for learning polynomials with queries� In later
sections� we will show that this algorithm can infer any polynomial over a �eld F

�

on a �nite�height semilattice X in time polynomial in the sparcity t of the target
polynomial f � and in the height n of the semilattice X�

We assume throughout that there exist e�cient procedures for computing a � b�
jjajj� and for deciding if a � b for any a�b � X� Such procedures clearly exist if
X � f�� �gn�

We begin by observing that it is easy to �nd a hypothesis that is consistent with
a given set of labeled examples� Speci�cally� let S � X be a �nite set of examples
labeled by f � We de�ne a new polynomial h in terms of its coe�cients as follows�
For a � S� we de�ne �h�a�� the coe�cient in h of �a�x�� using the inductive rule�

�h�a� � f�a�	 X
a��S

a��a

�h�a��� ���

If a �� S� then �h�a� is de�ned to be �� Algorithmically� it is clear that all of the
coe�cients �h�a� can be computed by visiting all of the elements in S from the smallest
to the largest� that is� we visit the elements in such an order that no element a is
visited until every element smaller than a has been visited�

The resulting polynomial

h�x� �
X
a�X

�h�a��a�x� �
X
a�X

a�x

�h�a� ���

is called the manifest hypothesis of S with respect to f � and it is denoted hypf �S��
When f is clear from context we write simply hyp�S��

As mentioned above� hyp�S� is consistent with f on S �although nothing is guar�
anteed about its behavior on X 	 S��

Lemma � Let f � X � F � where X is a semilattice and F is a �eld� Let S be a

�nite subset of X� Then the polynomial h � hypf �S� is consistent with f on S� that
is� f�a� � h�a� for all a � S�

Proof� Note that� by construction of h� for every a � S�

f�a� �
X
a��S

a��a

�h�a�� �
X
a��X

a��a

�h�a��

since �h�a� � � for a �� S� On the other hand� by equation ���� the right hand side of
this equation is exactly equal to h�a��

If h � hypf �S�� then let

termsf�S� � fa � X � �h�a� �� �g�
That is� termsf �S� is the set of elements associated with the nonzero coe�cients of
hyp�S�� Clearly� terms�S� � S� and jterms�S�j is exactly the sparcity of hyp�S�� �As
with hyp�S�� we drop the subscript of termsf�S� when f is clear from context��

	

LearnPoly

Given� access to oracles Equiv and Member for target polynomial f
Output� a hypothesis equivalent to f

� S � ��
� loop

 c� Equiv�hyp�S��

� if c � �equivalent� then halt and output hyp�S�

� repeat

	 AddElement�c�

� c� EasyCounterexample��

� until �c � �stable��

� end

Figure �� An algorithm for learning polynomials over F �

Although the hypothesis hyp�S� is consistent with a given sample S� its sparcity
may be quite large relative to the target function f � For example� suppose that f
is the constant function �� X � f�� �gn and S � fa � X � jjajj � n��g� i�e�� S is
the set of all examples with exactly n�� ��s� Then terms�S� � S� so the hypothesis

hyp�S� has sparcity
�

n
n��

�
� ���n�� even though the target function f has only a single

nonzero term�
Because hyp�S� may be so much larger than the target function� by Occam�s

Razor� we would not intuitively expect hyp�S� to generalize well as a hypothesis
for classifying elements outside of S� We show below how to �nd a much smaller
consistent hypothesis� Speci�cally� we show how to construct hypotheses which are
no larger than the target function� a technique which will help us in bounding the
number of queries made by our algorithm�

The main idea of this technique for simplifying the hypothesis is to add examples
to the set S� and to then recompute the manifest hypothesis� Note that adding an
example c to the set S will change the manifest hypothesis if and only if c is a
counterexample �that is� hyp�S� �� hyp�S
 fcg� if and only if f�c� �� hyp�S��c���

Let t be the sparcity of f � A key fact� which we prove in a later section� states
that if jterms�S�j � t then there must exist a pair a�b � terms�S� for which a�b is a
counterexample for hyp�S�� Thus� if jterms�S�j � t then we can �nd a counterexample
to hyp�S� by asking membership queries for the elements a�b where a�b � terms�S��
We call such a counterexample an easily observable counterexample since it can be
easily detected using membership queries�

If hyp�S� has no easily observable counterexamples� then we say that S is stable
with respect to the target function f � Thus� S is stable if for every pair a�b �
terms�S�� f�a � b� � h�a � b� where h � hyp�S�� Stability is a key notion in the
development that follows�

By repeatedly adding easily observable counterexamples to S� we can eventually
stabilize S �since there are only a �nite number of elements that can ever be added��
Unfortunately� if we add the counterexamples in an arbitrary order� we could poten�

�

EasyCounterexample

Return� an easily observable counterexample� or the ag �stable� if none exists
� T � �
� while terms�S� �� T

 a� any minimum height element in terms�S�	 T

� for b � T

� query and record Member�a � b�
	 if a � b is a counterexample for hyp�S� then

� return a � b
� else

� S � S
 fa � bg
�� end

�� T � T
 fag
�� end

�
 return �stable�

Figure �� The subroutine EasyCounterexample�

tially add an exponential number of new elements before stabilizing� However� we
show later in the paper that if we add the counterexamples in a somewhat greedy
fashion� with bias toward the choice of small counterexamples� then we are guaranteed
to stabilize after adding at most a polynomial number of elements to S� �Intuitively�
we want to choose small counterexamples since these are likely to be �closer� to a
true term of the target formula��

A high�level description of our algorithm is given in Figure �� In the �gure� Equiv
is an equivalence oracle which takes as input a conjectured hypothesis polynomial�
and returns either the ag �equivalent� if the hypothesis is equal to the target� or
a counterexample for the hypothesis �i�e�� an element on which the hypothesis and
target functions disagree�� We will also be using a membership oracleMember which
takes as input an element a � X and returns the value of the target on a�

Our algorithm maintains a set of examples S which is stable prior to each equiv�
alence query� After each counterexample c is received from the equivalence oracle�
we use c to modify S �line 	�� and then restabilize S by repeatedly �nding easily
observable counterexamples �line �� and using them to again modify S�

The subroutine for �nding easily observable counterexamples is called Easy�

Counterexample and is described in Figure �� The idea of the subroutine is
simple� we test pairs a�b � terms�S� until we �nd one for which a�b is a counterex�
ample� The subroutine tests pairs in a straightforward greedy fashion so as to �nd the
counterexample a � b for which max�jjajj� jjbjj� is minimized� �We will see later why
it is important to add the non�counterexamples to S at line ��� If no counterexample
is found� then S must be stable� and the subroutine returns a ag indicating this fact�

Finally� we describe AddElement� the subroutine that modi�es S using a coun�
terexample c� this subroutine is shown in Figure
� Before adding c to S� the subrou�

�

AddElement

Input� a counterexample c for hyp�S�
� �� jjcjj�
� repeat

 for a � terms�S� � jjajj � �

� query and record Member�a � c�
� if a � c is a counterexample for hyp�S� then

	 c� a � c
� exit �for� loop

� end

� �� min�� 	 �� jjcjj��
�� until � � �

�� S � S
 fcg
 fa � c � a � terms�S�� jjajj � jjcjjg�

Figure
� The subroutine AddElement�

tine �rst determines if there is another element a � terms�S� for which a� c is also a
counterexample� If such an a can be found� then we replace c with the smaller coun�
terexample a � c� We will see later why this greedy approach is helpful for analyzing
the performance of the algorithm�

Note that by adding a new counterexample to S� we may radically change the
structure and size �i�e�� sparcity� of hyp�S�� Thus� it is not immediately clear that
this technique will allow us to make substantial progress towards stabilization of S�
The proof that S can be stabilized quickly is given in the following sections and is
based on certain combinatorial properties of stable sets�

� Properties of Stable Sets

In this section� we prove various properties of stable sets that will enable us to prove
bounds on the number of queries made by our algorithm� In addition to the notion of
stability described in the last section� we will also be interested in a slightly stronger
notion� We say that a �nite set S � X is properly stable with respect to a function f
if a�b � S for all a�b � termsf �S�� Lemma � implies that S is stable if it is properly
stable�

We begin with a proof that the sparcity of the manifest hypothesis of a stable
set cannot exceed the sparcity t of the target polynomial� This fact� which may
be of independent combinatorial interest� will be used repeatedly in the analysis of
our algorithm� For instance� because S is stable prior to each equivalence query�
this implies that the equivalence queries used by our algorithm are �proper� in the
sense that the conjectured hypotheses always belong to the target class of t�sparse
polynomials�

�

Theorem � Let f be a t�sparse polynomial over a �eld F on a semilattice X� Let S
be a �nite subset of X that is stable with respect to f � Then jtermsf �S�j � t�

We present two very di�erent proofs of this theorem� one below and the other in
the appendix�

Before presenting the �rst proof� we state two algebraic lemmas� Although these
lemmas are standard� we include brief proofs for completeness�

We say that an element s � F is a square in F if there exists an element r � F
for which r� � s�

Lemma � Let F be a �eld� and let A � F be a �nite set of elements of F � Then

there exists a �eld E of which F is a sub�eld� and in which each element of A is a

square�

Proof� It su�ces to prove the lemma in the case that A is a singleton since the
general result then follows by induction on jAj� If A is the singleton fsg �where�
without loss of generality� s is not already a square in F � then the result follows�
for instance� from Theorem ��
�� of Herstein ��	� in which E is taken to be the �eld
F �x���x� 	 s�� The result can also be proved more directly by formally creating a
new element r not already in F � and by de�ning a new �eld E � fa
 br � a� b � Fg
in which r� � s by de�nition �similar to the manner in which the imaginary number
i �

p	� is adjoined to R to obtain the complex �eld C �� It can be veri�ed that E is
indeed a �eld that satis�es the required properties�

We de�ne addition between two vectors a�b � F t in the usual way� Thus� a
 b

is that vector c � F t for which ci � ai
 bi for i � �� � � � � t� Similarly� a
b �
Pt

i	� aibi
is the standard inner product of a and b�

Lemma � Let A � F t be a set of vectors over a �eld F such that� for all a�b � A�

�� a
 a �� �� and

�� if a �� b then a
 b � ��

Then jAj � t�

Proof� We claim that the elements of A are linearly independent� For if
P

a�A �aa �
� for some coe�cients �a � F � then for any b � A�

� � b
 � � b

�X
a�A

�aa

�
�
X
a�A

�a�b
 a� � �b�b
 b�

by property �� This implies �b � � by property ��
Since A is a linearly independent subset of a t�dimensional vector space� it follows

immediately that jAj � t�
Proof of Theorem �� Let f be the polynomial

f�x� �
tX

i	�

ci�ti�x�

��

where each ci � F and ti � X� Let h � hypf �S��
We assume that S is properly stable� We make this assumption without loss of

generality since adding non�counterexamples to S does not a�ect its manifest hypoth�
esis�

By Lemma
� the �eld F can be extended to another �eld E in which each of the
coe�cients ci is a square� We de�ne a function 	 � X � Et by the rule�

	 �a� � �
p
c��t��a�� � � � �

p
ct�tt�a��

where
p
ci is some element whose square equals ci� Informally� 	 �a� encodes the terms

of f that are satis�ed by a� if ti � a �so that the corresponding term is satis�ed��
then the ith component of 	 �a� is

p
ci� otherwise� this component is �� Note that the

value f�a� can be recovered from 	 �a� simply by taking its inner product with itself
since

	 �a�
 	 �a� �
tX

i	�

ci�ti�a� � f�a�� �	�

More generally�

	 �a�
 	 �b� �
tX

i	�

ci�ti�a � b� � f�a � b� ���

since �t�a�
 �t�b� � �t�a � b� for any t� by de�nition of the meet operator�
Finally� we de�ne the function
 � S � Et� This function is de�ned recursively

for a � S by the rule�

�a� � 	 �a�	 X
a��terms�S�

a��a

�a��� ���

Notice that
�s de�nition mimics the de�nition of the coe�cients �h�a� of hyp�S� given
in equation ���� Here� 	 �a� has taken the role of f�a�� and
�a� has taken the role
of �h�a�� In fact� just as we saw that 	 �a�
 	 �a� � f�a�� so it will also turn out to
be the case that
�a�

�a� � �h�a� for all a � S� Moreover� if a and b are distinct
elements in terms�S�� we will see that their images under
 are perpendicular� i�e��

�a�

�b� � �� These properties� which we prove in the next lemma� will allow us
to apply Lemma � to complete the proof of the theorem�

Lemma � For all a�b � terms�S�� the following hold�

��
�a�

�a� �� ��

�� If a �� b then
�a�

�b� � ��

Proof� We argue �rst that� for a�b � S� if a � b then

�a�
 	 �b� � �h�a�� ���

For �xed b� this follows by an induction argument on S in which we prove the property
for all of the elements of S in any order that is compatible with �� In other words�

��

when proving that the property holds for some element a � S� we assume inductively
that it holds for all a� � a�

Suppose a � b� Then� taking the inner product of 	 �b� with both sides of
equation ���� we obtain

�a�
 	 �b� � 	 �a�
 	 �b�	 X
a��terms�S�

a��a

�a��
 	 �b��

If a� is as in the sum above� then
�a��
 	 �b� � �h�a�� by inductive hypothesis� Also�
by equation ���� we have that 	 �a�
 	 �b� � f�a� since a � b� Thus�

�a�
 	 �b� � f�a� 	 X
a��terms�S�

a��a

�h�a��

and the claim follows by de�nition of �h�a��
To complete the lemma� we show that the following claims hold for all pairs

�a�b� � S��

�� if a � b then
�a�

�a� � �h�a��

�� if b � a and b � terms�S� then
�a�

�b� � � �and symmetrically if a � b��

� if a �� b� b �� a and a�b � terms�S� then
�a�

�b� � ��

These statements clearly imply the lemma� If a � terms�S�� then� by claim ��
�a�

�a� � �h�a� �� �� and if a and b are distinct elements of terms�S�� then
�a�

�b� � �
by claims � and
�

The proof of these claims is by induction on S� using any order compatible with
the partial order �� where it is understood that �a��b�� � �a�b� if and only if a� � a

and b� � b�
Let �a�b� � S�� We assume inductively that the three claims hold for all pairs

�a��b�� � �a�b��
Proof of claim �� Suppose a � b� By taking inner product of
�a� with both sides

of equation ���� we see that

�a�

�a� �
�a�
 	 �a�	 X
a��terms�S�

a��a

�a�

�a���

Note that� if a� is as in the sum above� then
�a�

�a�� � � by claim � since
�a�a�� � �a�a�� Thus�

�a�

�a� �
�a�
 	 �a� � �h�a�

by equation ����

��

Proof of claim �� Suppose b � a and b � terms�S�� Similar to the proof above�
we take the inner product of
�b� with both sides of equation ��� to obtain

�b�

�a� �
�b�
 	 �a�	 X
a��terms�S�

a��a

�b�

�a���

As before� if b �� a� then
�b�

�a�� � � by claims � and
 �since �a��b� � �a�b���
Thus�

�b�

�a� �
�b�
 	 �a�	
�b�

�b� � �

since
�b�
 	 �a� �
�b�

�b� � �h�b� by equation ��� and claim ��
Proof of claim 	� Suppose a �� b� b �� a and a�b � terms�S�� By de�nition of

�a�� we have
	 �a� �
�a�

X
a��terms�S�

a��a

�a��

and similarly for 	 �b�� Thus�

	 �a�
 	 �b� �
�a�

�b�
 X
a��terms�S�

a��a

�a��

�b�

X

b��terms�S�

b��b

�a�

�b��

X

a��b��terms�S�

a��a�b��b

�a��

�b���

If a��b� are as above� then
�a��

�b� � � by claims � and
 since �a��b� � �a�b�
and since a� �� b �otherwise� b � a�� Similarly�
�a�

�b�� � �� and
�a��

�b�� � �
whenever a� �� b�� Thus�

	 �a�
 	 �b� �
�a�

�b�
 X
c�terms�S�

c�a�b

�c�

�c��

That is�

�a�

�b� � 	 �a�
 	 �b�	 X
c�terms�S�

c�a�b

�c�

�c�

� 	 �a�
 	 �b�	
�a � b�

�a � b�	 X
c�terms�S�

c�a�b

�c�

�c�

� f�a � b�	 �h�a � b�	 X
c�terms�S�

c�a�b

�h�c� � ��

�

The �rst equality can be seen as follows� if a � b � terms�S�� then the equality is
trivial� Otherwise� since S is properly stable� a � b � S 	 terms�S� so� by claim ��

�a � b�

�a � b� � �h�a � b� � � �since �a � b�a � b� � �a�b��� and the equality
again is trivial� The second equality follows from equation ��� and claim �� and the
�nal equality follows from the de�nition of �h�a � b��

This completes the induction and the proof of the lemma�
Lemma � clearly implies that
 is injective on the restricted domain terms�S��

and moreover� that the set

�terms�S�� � f
�a� � a � terms�S�g

satis�es the hypotheses of Lemma �� Thus� jterms�S�j � j
�terms�S��j � t�
The next theorem will be helpful in proving that our algorithm is guaranteed to

make progress on each iteration� Informally� it states that if S is properly stable� then
adding elements to S can only increase the sparcity of its manifest hypothesis� Note
that this property does not hold in general for unstable sets� or even for sets that
are stable but not properly stable� �To see that Theorem 	 fails for sets that are not
properly stable sets� let X � f�� �g�� F � GF���� and f�x� � x�
x�
x�
x�� Then
the set S � f����� ����� ����g is stable �but not properly stable�� and terms�S� � S�
however� if S � � S
 f����g� then terms�S�� � f����g��

Theorem 	 Let f � X � F where F is a �eld and X is a semilattice� Let S � X
be �nite and properly stable with respect to f � Let S� � X be a �nite superset of S�
Then jtermsf�S�j � jtermsf �S��j�

Proof� Let h � hypf �S
��� Then� by Lemma �� h is consistent with f on S � S ��

Thus� hypf�S� � hyph�S� and S is properly stable with respect to h� Therefore� by
Theorem �� jtermsf�S�j � jtermsh�S�j is at most the sparcity of h� which is exactly
jtermsf�S��j�

� Analysis and Correctness

Using the theorems proved in the last section� we are now ready to fully analyze our
algorithm�

For a set S � X and integer r� we denote by S�r the set of elements in S of height
at most r� S�r � fa � S � jjajj � rg�

We begin by proving the essential properties of subroutineEasyCounterexample�

Lemma
 Let Si and Sf be the initial and �nal values of program variable S on a

call to EasyCounterexample� and let c be the value returned by the subroutine�

Then the following hold�

�� If Si is stable then c � �stable� and Sf is properly stable�

�� If Si is not stable� then c is a counterexample for hyp�Sf� and Sf
�jjcjj is properly

stable�

��

	� The number of membership queries made during the execution of EasyCounter�

example is at most
�
t
�
�

�
�

Proof�

Part �� If Si is stable� then EasyCounterexample tests every pair a�b �
terms�Si� and discovers that for none of these is a � b a counterexample� Thus� for
each such pair is a � b added to S� It follows that EasyCounterexample returns
the ag �stable�� and moreover that Sf is properly stable�

Part �� If Si is not stable� then for some pair a�b � terms�Si�� a � b is a
counterexample so the subroutine returns a counterexample c rather than the ag
�stable�� Suppose that a� b and T are as in the subroutine at the point at
which c � a � b is returned� To see that Sf

�jjcjj is properly stable� consider a pair
a��b� � terms�Sf

�jjcjj� � terms�Sf�� Since c is a counterexample� c �� a �by Lemma ��
so max�jja�jj� jjb�jj� � jjcjj � jjajj� Thus� a��b� � T because of the greedy order in
which elements are tested and added to T � Since EasyCounterexample did not
halt when a��b� were tested� a� � b� cannot be a counterexample� Thus� a� � b� was
added to Sf at line �� and therefore� a��b� � Sf

�jjcjj� Hence� Sf
�jjcjj is properly stable�

To prove the bound given in part
 on the number of membership queries� it
su�ces to show that jT j � t at all times� If Si is stable� then T � terms�Si� so�
by Theorem �� jT j � jterms�Si�j � t� If Si is not stable� then T � terms�Sf

�jjcjj�
and by part � of this Lemma� Sf

�jjcjj is stable� thus� again applying Theorem ��
jT j � jterms�Sf

�jjcjj�j � t�
Next� we prove some of the basic properties of AddElement�

Lemma � Let Si and Sf be the initial and �nal values of program variable S on a call

to AddElement from LearnPoly� let ci and cf be similarly de�ned for c� Then

the following hold�

�� ci is a counterexample for hyp�Si�� and the set Si
�jjcijj is properly stable�

�� the set Sf
�jjcf jj is properly stable�

	� at most t membership queries are made during the entire execution of the sub�

routine�

Proof� When AddElement was called from LearnPoly� it was passed a parame�
ter ci that was obtained either from Equiv or from EasyCounterexample� In the
latter case� part � of the lemma follows immediately from part � of Lemma �� In the
former case� the result follows from the assumed properties of the equivalence oracle�
and from the fact that S is properly stable prior to each call to Equiv �by part � of
Lemma ���

For part �� consider the behavior of the algorithm after the program variable c has
been set to cf� this setting either holds initially �if ci � cf�� or occurs at some later
point after executing line 	� In either case� on the next iteration of the outer loop
�lines �!���� � � jjcfjj� and� on each succeeding execution of the loop� � is decremented
�since c never changes again�� Thus� for each a � terms�Si� with jjajj � jjcfjj� a � cf

��

is at some point tested and found not to be a counterexample� Using part � of this
lemma� and since jjcfjj � jjcijj� it follows that �Si
 fcfg��jjcf jj is stable� and therefore
that Sf

�jjcf jj is properly stable�
Part
 follows immediately from Theorem � since Si

�jjcijj is stable and since each
element of terms�Si

�jjcijj� is tested at most once� �Note that � decreases on each
iteration of the outer loop since if a�c is a counterexample as at line 	 then a�c �� Si

so jja � cjj � jjajj � ���
Next� we use the preceding results to show that the subroutine AddElement is

called at most nt
� times� where n is the height of X �i�e�� the number of variables if
X is the boolean lattice�� This fact will allow us immediately to bound the number of
equivalence queries made� and will be helpful for bounding the number of membership
queries�

Lemma � Given access to a target t�sparse polynomial f on a height�n semilattice�

algorithm LearnPoly halts after executing subroutine AddElement at most nt
�
times�

Proof� We prove this lemma by showing that whenever we add a counterexample c
to S at line �� of AddElementwe increase the number of hypothesis terms of height
at or below jjcjj �i�e�� the set terms�S�jjcjj� strictly increases in size��

More formally� let U � f�� � � � � ng � f�� � � � � tg
 f��� ��g� We describe below a
procedure for �marking� elements of U � Initially� all elements of U are unmarked�
We show that exactly one element is marked on each execution of AddElement� and
we also show that no element is ever marked twice� Thus� AddElement is executed
at most jU j � nt
 � times�

Speci�cally� immediately followingAddElement�s execution� we �mark� element
p�c� S� � �jjcjj� jterms�S�jjcjj�j� where c and S are as given in the subroutine� �This
marking is not actually performed by the algorithm " we use it merely as an aid in
proving the theorem��

First� we show that p�c� S� is actually an element of U � By part � of Lemma �� the
set S�jjcjj is properly stable� Thus� by Theorem �� jjterms�S�jjcjj�jj � t� So if jjcjj � �
then p�c� S� is indeed an element of U �i�e�� � � jjcjj � n and � � jjterms�S�jjcjj�jj �
t�� If jjcjj � � then c � � and terms�S�jjcjj� � fcg so p�c� S� � ��� ���

It remains to show that no element of U is marked twice� Suppose to the contrary
that the same element is marked following two separate calls to AddElement� once
when c � c� and S � S�� and again later when c � c� and S � S�� That is�
p�c�� S�� � p�c�� S��� Let r � jjc�jj � jjc�jj�

Note that c� � terms�S�� since c� was the last counterexample added to S� and by
the way we compute hyp�S��� Note also that S�

�r � S�
�r 	fc�g since the algorithm

never deletes elements from S�
Thus� by Theorem 	�

jterms�S�
�r�j � jterms�S�

�r 	 fc�g�j�
Since c� is not less than any element in S�

�r� it follows from the manner in which
the manifest hypothesis is computed that terms�S�

�r 	 fc�g� � terms�S�
�r�	 fc�g�

�	

Thus� since c� � terms�S���

jterms�S�
�r�j � jterms�S�

�r�	 fc�gj � jterms�S�
�r�j 	 � � jterms�S�

�r�j�

This contradicts that p�c�� S�� � p�c�� S���
Finally� we are ready to prove Theorem ��� the main result of this paper�

Theorem �� Given access to equivalence and membership queries for a target t�
sparse polynomial f over a �eld F on a height�n semilattice X� the algorithm LearnPoly

halts and outputs a hypothesis equivalent to f in polynomial time after making at most

nt
 � equivalence queries and �nt
 ���t�

t��� membership queries�

Proof� As is typically the case for equivalence�query algorithms� the procedure is
automatically correct �in the sense that it outputs a hypothesis equivalent to the
target� if it can be shown to halt after a bounded number of queries�

Since AddElement is executed at least once following each unsuccessful equiv�
alence query� by Lemma �� the number of equivalence queries is at most nt
 ��
Also� EasyCounterexample is executed exactly once following each execution of
AddElement� Thus� combining Lemmas �� � and �� we see that the number of
membership queries is at most �nt
 ���t

�
t
�
�

�
� � �nt
 ���t�

t���� Finally� it is

straightforward to verify using the lemmas developed above that the algorithm runs
in polynomial time�

Setting X � f�� �gn we obtain the following immediate theorem�

Theorem �� Given access to equivalence and membership queries for a target t�
sparse polynomial f on n boolean variables over a �eld F � the algorithm LearnPoly

halts and outputs a hypothesis equivalent to f in polynomial time after making at most

nt
 � equivalence queries and �nt
 ���t�

t��� membership queries�

� Applications and Extensions

In this section� we describe a number of applications and extensions of our main
result�

Multilinear polynomials� We begin by showing that our algorithm can be used
as a subroutine for learning multilinear polynomials when the domain of each variable
is the entire �eld F � rather than f�� �g�

To prove this� it su�ces to show that any counterexample in F n can be used to
derive another counterexample in f�� �gn�

Let f be the target multilinear polynomial� and let h be a hypothesis� Let d �
f 	 h� Suppose c is a counterexample to h and that there exists some i for which
ci �� f�� �g� We partially evaluate d by �xing all the variables xj to be cj for j �� i� We
thus obtain the univariate polynomial d��xi� � axi
 b for some a� b � F � Clearly� if
d���� � d���� � � then a � b � � contradicting that d��ci� �� �� Therefore� there exists
y � f�� �g such that d��y� �� �� Thus the vector c� obtained from c by replacing ci with
y is a counterexample to h� and such a c� can be found with at most two membership

��

queries� Repeating this process at most n times we produce a counterexample in
f�� �gn�

Thus we have proved the following theorem�

Theorem �� Given access to equivalence and membership queries for a target t�
sparse� n�variable multilinear polynomial f � F n � F over a �eld F � there exists an

algorithm that halts and outputs a hypothesis equivalent to f in polynomial time�

In
nitely many attributes� Our main algorithm was shown to be e�ective for
learning polynomials de�ned on any semilattice of �nite height� The prime example
of such a domain is of course the boolean lattice f�� �gn� Here is another example�
Let A be an in�nite set� and let A � fB � A � jBj � ng be the collection of all
subsets of A of cardinality at most n� Let the collection A be partially ordered by
inclusion �i�e�� B � C if and only if B � C�� Then A is a semilattice of height n� so
our algorithm can be applied to e�ciently learn a polynomial de�ned on it�

In fact� if we regard the set A as a collection of �attributes�� then it becomes
clear that a polynomial on this semilattice is just an ordinary polynomial de�ned
over an in�nite collection of variables �corresponding to the attributes in A�� and a
sample point �i�e�� an element of A� consists of a set of at most n attributes that
hold for that example� In other words� the problem of learning a polynomial on
this semilattice is exactly the problem of learning an ordinary polynomial in Blum�s
�in�nite attribute� model ���� and so we obtain as a corollary to our main result that
polynomials can be exactly identi�ed in the in�nite attribute model with membership
and equivalence queries� Thus� although Blum gives a general technique for converting
a ��nite attribute� algorithm into one in the in�nite attribute model� we obtain this
result for polynomials by the direct argument given above�

Semilattices with in
nite chains� Recall that our proof of the correctness
and e�ciency of our algorithm required that the target polynomial be de�ned on a
semilattice of �nite height� The �nite�height requirement is� in general� necessary
in order to achieve exact identi�cation� For instance� the real interval ��� �� forms a
semilattice under the usual ordering� but no element of this set �except �� has �nite
height� It is not hard to see that an adversarial oracle for equivalence and membership
queries can force the learning algorithm to make an in�nite number of queries� even
if the target polynomial f is known to consist of a single term with coe�cient � �so
that� for some a � ��� ��� f�x� is � if x � a and � otherwise��

However� if our goal is simply to approximate the target polynomial� then we
can� in many situations� modify our algorithm to handle polynomials de�ned on a
semilatticeX that is not necessarily of �nite height� More speci�cally� let f � X � F
be the target polynomial of sparcity t� and let S � X be a �nite sample labeled by
f � We claim that� given access to a membership oracle for f � our algorithm can be
used to e�ciently construct a hypothesis polynomial h of sparcity at most t that is
consistent with f on S� The running time of the procedure is polynomial in t and jSj
�and any other parameters that may be relevant to the particular problem at hand��

To see that this is so� let X � be the subsemilattice of X obtained by closing the
set S under the meet operation� that is� X � consists of all elements of X which are

��

the meet of a subset of the elements of S� It is not hard to show then that X � is
a �nite semilattice of height at most jSj� Further� the target polynomial f can be
replaced by a polynomial f � � X � � F whose terms are all in X � and that equals f
on all elements of X �� �Speci�cally� f � can be derived from f by replacing each term
�t by �t� where t� is the meet of the set fa � X � � t � ag�� For our simulation� we
regard f � as the target polynomial� X � as the target semilattice� and we simulate the
equivalence oracle by responding to each equivalence query with any element of S
on which f �or� equivalently� f �� disagrees with the conjectured hypothesis �or with
the �equivalent� ag if no such element exists�� By the arguments above� and by
Theorem ��� this simulation will produce a hypothesis of sparcity at most t that is
consistent with f on S in time polynomial in t and jSj�

In many situations� such an algorithm for e�ciently �nding a �small� hypothesis
consistent with a given sample is su�cient to guarantee e�cient PAC�learnability�
For example� if X � R

m is partially ordered by domination �so that a � b if and
only if ai � bi for i � �� � � � �m�� and if F is� say� R or GF���� then a uniform
convergence argument� such as those given by Blumer et al� �	� and Haussler �����
implies that a �small� hypothesis consistent with a randomly chosen sample will�
with high probability� be a good approximation of the target function� Thus� by
the arguments above� such polynomials can be e�ciently PAC�learned from random
examples given access to a membership oracle�

Functions representable by sparse polynomials� Finally� returning to the
boolean lattice� we make some remarks on the sorts of functions that can be repre�
sented by sparse polynomials�

As noted brie y in Section �� every function g � f�� �g� � F can be represented by
a ���sparse polynomial� Call such a function ��arbitrary� Then clearly any ��arbitrary
function can be learned by our algorithm in time polynomial in ��� More generally�
we can replace each variable of g with a monomial xa for arbitrary a � f�� �gn� The
resulting function g�xa�� � � � �xa��� when �multiplied out�� can be represented by a ���
sparse polynomial over x�� � � � � xn� Generalizing further� we see that the ��arbitrary
functions can be added together to obtain a function of the form

tX
i	�

gi�x
ai�� � � � �xai��

which can be represented by a t���sparse polynomial on n boolean variables� Thus�
such functions can be learned in time polynomial in n� t and ���

As a speci�c example of this technique� we can show that logarithmic�depth de�
cision trees can be learned in polynomial time� For each leaf i� let pi�x� be the value
of the leaf node if it is reached on input x� and � otherwise� The function computed
by the decision tree is then

Pt
i	� pi�x� where t is the number of leaves in the tree�

Since pi�x� can be viewed as an ��arbitrary function on the � variables occurring along
the path to leaf i� this shows that the computed function can be represented by a
t���sparse polynomial� Thus� the decision tree can be exactly identi�ed in polynomial
time if its depth � is logarithmic�

The same result holds if each node�s decision function is replaced by an arbitrary
�monotone� monomial� rather than a single variable� Thus� we have shown that

��

logarithmic�depth decision trees in which each node is decided by a monomial can be
exactly identi�ed using equivalence and membership queries� Although it was known
that this was possible for �ordinary� logarithmic�depth decision trees by the results of
Kushilevitz and Mansour ���� and Bshouty ���� it appears that this result could not
have been derived using previous methods for the case in which each decision node is
a monomial�

� Conclusions and Open Problems

We have shown that sparse polynomials over a �eld F de�ned on several boolean
variables can be exactly identi�ed using membership and equivalence queries� We
have argued that this result depends largely on the lattice structure of the boolean
domain� and that the result holds for a more generalized notion of polynomial de�ned
on an arbitrary semilattice with no in�nite chains� Among our extensions is a proof
that our algorithm can be used to e�ciently learn multilinear polynomials when the
domain of each variable is all of F �

There are many open problems and possible directions for future research� For
starters� we would like to know if our algorithm can be made robust to handle noise
or errors in the data it is receiving� In this regard� we have some preliminary results
which indicate that the algorithm can be modi�ed to handle a small but signi�cant
level of random misclassi�cation noise� �See also the related work of Ar et al� ��� and
Gemmell and Sudan ������

Our algorithm is only able to learn functions that can be represented exactly by
sparse polynomials� The algorithm would be much more practical if we could extend
it to handle functions that can only be approximated by a sparse polynomial� This is
an important open problem�

It would also be quite interesting to extend our algorithm to learn polynomials
in which each �term� is a conjunction of literals� some of which are negated� For
instance� for GF���� this is the problem of learning a boolean formula that consists
of an xor of several monomials� each of which is a conjunction of negated or un�
negated variables �rather than exclusively unnegated variables as was considered in
this paper��

A similar problem is that of learning arbitrary polynomials �not necessarily mul�
tilinear� on the unrestricted domain F n� In this regard� we have some preliminary
results indicating that this is possible when each term of the target polynomial in�
cludes a limited number of variables of degree greater than one�

References

��� Dana Angluin� Learning regular sets from queries and counterexamples� Infor�
mation and Computation� �����!��	� November �����

��

��� Sigal Ar� Richard J� Lipton� Ronitt Rubinfeld� and Madhu Sudan� Reconstruct�
ing algebraic functions from mixed data� In 		rd Annual Symposium on Foun�

dations of Computer Science� pages ��
!���� October �����

�
� Michael Ben�Or and Prasoon Tiwari� A deterministic algorithm for sparse multi�
variate polynomial interpolation� In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing� pages
��!
��� May �����

��� Avrim Blum� Learning boolean functions in an in�nite attribute space� Machine

Learning� �����
�
!
�	� �����

��� Avrim Blum and Mona Singh� Learning functions of k terms� In Proceedings of

the Third Annual Workshop on Computational Learning Theory� pages ���!��
�
August �����

�	� Anselm Blumer� Andrzej Ehrenfeucht� David Haussler� and Manfred K� War�
muth� Learnability and the Vapnik�Chervonenkis dimension� Journal of the

Association for Computing Machinery�
	�������!�	�� October �����

��� Nader H� Bshouty� Exact learning via the monotone theory� In 	
th Annual

Symposium on Foundations of Computer Science� November ���
�

��� Michael Clausen� Andreas Dress� Johannes Grabmeier� and Marek Karpinski�
On zero�testing and interpolation of k�sparse multivariate polynomials over �nite
�elds� Theoretical Computer Science� ������!�	�� �����

��� Andreas Dress and Johannes Grabmeier� The interpolation problem for k�sparse
polynomials and character sums� Advances in Applied Mathematics� �����!���
�����

���� A� D�ur and J� Grabmeier� Applying coding theory to sparse interpolation� SIAM
Journal on Computing� ������	��!���� August ���
�

���� Paul Fischer and Hans Ulrich Simon� On learning ring�sum�expansions� SIAM

Journal on Computing� ���������!���� February �����

���� Peter Gemmell and Madhu Sudan� Highly resilient correctors for polynomials�
Information Processing Letters� �
�����	�!���� September �����

��
� Dima Yu� Grigoriev� Marek Karpinski� and Michael F� Singers� Fast parallel al�
gorithms for sparse multivariate polynomial interpolation over �nite �elds� SIAM
Journal on Computing� ���	������!��	
� December �����

���� David Haussler� Decision theoretic generalizations of the PAC model for neural
net and other learning applications� Information and Computation� ���������!
���� �����

���� Lisa Hellerstein and Manfred Warmuth� Interpolating GF��� polynomials� Un�
published manuscript�

��

��	� I� N� Herstein� Topics in Algebra� Wiley� second edition� �����

���� Eyal Kushilevitz and Yishay Mansour� Learning decision trees using the Fourier
spectrum� SIAM Journal on Computing� ���	���

�!�
��� ���
�

���� Yishay Mansour� Randomized interpolation and approximation of sparse poly�
nomials� In Automata� Languages and Programming� ��th International Collo�

quium� pages �	�!���� July �����

���� Ron M� Roth and Gyora M� Benedek� Interpolation and approximation of sparse
multivariate polynomials over GF���� SIAM Journal on Computing� ���������!

��� April �����

���� L� G� Valiant� A theory of the learnable� Communications of the ACM�
���������
�!����� November �����

���� Herbert S� Wilf� Hadamard determinants� M�obius functions� and the chromatic
number of a graph� Bulletin of the American Mathematical Society� �������	�!
�	�� September ��	��

���� Richard Zippel� Probabilistic algorithms for sparse polynomials� In Symbolic and

Algebraic Computation� pages ��	!��	� Springer�Verlag� June �����

��
� Richard Zippel� Interpolating polynomials from their values� Journal of Symbolic

Computation� ��
��!��
� �����

Appendix

In this appendix� we present an alternative proof of Theorem � based on the compu�
tation of the rank of certain matrices� Recall that the rank of a matrix A is equal to
the maximum number of linearly independent columns of the matrix A�
Alternative Proof of Theorem �� It su�ces to prove the theorem in the case that
X is �nite� For if X is in�nite� then we can replace X by X �� the �nite subsemilattice
that is generated by closing the �nite set

S
 fa � �f�a� �� �g

under the meet operation� Clearly� if Theorem � holds for X �� then it holds for X as
well� Thus� we assume henceforth without loss of generality that X is �nite�

The high level idea of this proof is to construct two matrices G and #G for which
we can argue that�

�� rank�G� � t� the sparcity of f �

�� rank� #G� � jterms�S�j� the sparcity of hyp�S�� and

� rank� #G� � rank�G��

��

Obviously� these three facts together su�ce to prove the theorem� The method of
constructing these matrices is inspired by a technique used by Wilf �����

Let the r � jXj elements of X be indexed a�� � � � �ar in a manner consistent with
the partial ordering �� i�e�� in such a way that if i � j then ai �� aj � We can then
represent the partial order � by an r � r matrix Z � �zij� where

zij �

�
� if ai � aj
� otherwise�

Then Z is upper triangular �i�e�� zij � � if i � j� and all diagonal entries zii are equal
to �� Thus� Z has determinant �� and so it is nonsingular�

Next� let D � �dij� be the r � r diagonal matrix whose diagonal elements are
given by the coe�cients of f � That is�

dij �

�
�f�ai� if i � j
� otherwise�

Note that the rank of D is equal to the number of non�zero diagonal entries� which
is exactly t� the sparcity of f �

To complete the construction of G� we �nally let G � �gij� � ZTDZ� Since Z is
nonsingular�

rank�G� � rank�D� � t� ����

Also� we can explicitly compute each entry of G as follows�

gij �
X
k��

zkidk�z�j �
X
k

zkizkj �f �ak��

Note that

zkizkj �

�
� if ak � ai � aj
� otherwise�

Thus�
gij �

X
a�X

a�ai�aj

�f �a� � f�ai � aj��

We use a similar construction for the matrix #G� First� let

T � fi � ai � terms�S�g � ft�� � � � � tsg
where t� �

 � ts� and s � jterms�S�j� Let #Z � �#zij� be the T � T submatrix

of Z �i�e�� #zij � ztitj�� Then the same argument used above shows that #Z is also
nonsingular�

Next� we de�ne #D � � #dij� to be the s�s diagonal matrix whose diagonal elements
are the coe�cients of h � hyp�S�� That is�

#dij �

�
�h�ati� if i � j
� otherwise�

�

Since each diagonal element is non�zero� #D has full rank s�
Finally� we let #G � �#gij� � #ZT #D #Z� As before� because #Z is nonsingular�

rank� #G� � rank� #D� � s � jterms�S�j� ����

Moreover� we can compute the entries of #G explicitly as before to obtain�

#gij �
X

a�terms�S�

a�ati
�atj

�h�a� � h�ati � atj� � f�ati � atj �

where the last equality follows from our assumption of stability�
Thus� the matrix #G is exactly the T � T submatrix of G� which implies that

rank� #G� � rank�G�� ����

The theorem follows immediately from Equations ����� ���� and �����

��

