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Abstract

We present a simple algorithm for playing a repeated game. We show that a player using this
algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any
fixed strategy. Our bounds are non-asymptotic and hold for any opponent. The algorithm, which uses
the multiplicative-weight methods of Littlestone and Warmuth, is analyzed using the Kullback-Liebler
divergence. This analysis yields a new, simple proof of the minmax theorem, as well as a provable method
of approximately solving a game. A variant of our game-playing algorithm is proved to be optimal in a
very strong sense.

1 Introduction

We study the problem of learning to play a repeated game. Let M be a matrix. On each of a series of
rounds, one player chooses a row i and the other chooses a column j. The selected entry M�i� j� is the
loss suffered by the row player. We study play of the game from the row player’s perspective, and therefore
leave the column player’s loss or utility unspecified.

A simple goal for the row player is to suffer loss which is no worse than the value of the game M (if
viewed as a zero-sum game). Such a goal may be appropriate when it is expected that the opposing column
player’s goal is to maximize the loss of the row player (so that the game is in fact zero-sum). In this case,
the row player can do no better than to play using a minmax mixed strategy which can be computed using
linear programming, provided that the entire matrixM is known ahead of time, and provided that the matrix
is not too large. This approach has a number of potential drawbacks. For instance,

� M may be unknown;

� M may be so large that computing a minmax strategy using linear programming is infeasible; or

� the column player may not be truly adversarial and may behave in a manner that admits loss signifi-
cantly smaller than the game value.

Overcoming these difficulties in the one-shot game is hopeless. In repeated play, however, one can hope
to learn to play well against the particular opponent that is being faced.

Algorithms of this type were first proposed by Hannan [20] and Blackwell [3], and later algorithms
were proposed by Foster and Vohra [14, 15, 13]. These algorithms have the property that the loss of the
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row player in repeated play is guaranteed to come close to the minimum loss achievable with respect to the
sequence of plays taken by the column player.

In this paper, we present a simple algorithm for solving this problem, and give a simple analysis of the
algorithm. The bounds we obtain are not asymptotic and hold for any finite number of rounds. The algorithm
and its analysis are based directly on the “on-line prediction” methods of Littlestone and Warmuth [25].

The analysis of this algorithm yields a new (as far as we know) and simple proof of von Neumann’s
minmax theorem, as well as a provable method of approximately solving a game. We also give more refined
variants of the algorithm for this purpose, and we show that one of these is optimal in a very strong sense.

The paper is organized as follows. In Section 2 we define the mathematical setup and notation. In
Section 3 we introduce the basic multiplicative weights algorithm whose average performance is guaranteed
to be almost as good as that of the best fixed mixed strategy. In Section 4 we outline the relationship between
our work and some of the extensive existing work on the use of multiplicative weights algorithms for on-line
prediction. In Section 5 we show how the algorithm can be used to give a simple proof of Von-Neumann’s
min-max theorem. In Section 6 we give a version of the algorithm whose distributions are guaranteed to
converge to an optimal mixed strategy. We note the possible application of this algorithm to solving linear
programming problems and reference other work that have used multiplicative weights to this end. Finally,
in Section 7 we show that the convergence rate of the second version of the algorithm is asymptotically
optimal.

2 Playing repeated games

We consider non-collaborative two-person games in normal form. The game is defined by a matrixM with
n rows and m columns. There are two players called the row player and column player. To play the game,
the row player chooses a row i, and, simultaneously, the column player chooses a column j. The selected
entryM�i� j� is the loss suffered by the row player. The column player’s loss or utility is unspecified.

For the sake of simplicity, throughout this paper, we assume that all the entries of the matrixM are in
the range �0� 1�. Simple scaling can be used to get similar results for general bounded ranges. Also, we
restrict ourselves to the case where the number of choices available to each player is finite. However, most
of the results translate with very mild additional assumptions to cases in which the number of choices is
infinite. For a discussion of infinite matrix games see, for instance, Chapter 2 in Ferguson [11].

Following standard terminology, we refer to the choice of a specific row or column as a pure strategy
and to a distribution over rows or columns as a mixed strategy. We use P to denote a mixed strategy of the
row player, and Q to denote a mixed strategy of the column player. We use P�i� to denote the probability
that P associates with the row i, and we writeM�P�Q� � PTMQ to denote the expected loss (of the row
player) when the two mixed strategies are used. In addition, we writeM�P� j� andM�i�Q� to denote the
expected loss when one side uses a pure strategy and the other a mixed strategy. Although these quantities
denote expected losses, we will usually refer to them simply as losses.

If we assume that the loss of the row player is the gain of the column player, we can think about the game
as a zero-sum game. Under such an interpretation we useP� andQ� to denote optimal mixed strategies for
M, and v �M�P��Q�� to denote the value of the game.

The main subject of this paper is an algorithm for adaptively selecting mixed strategies. The algorithm is
used to choose a mixed strategy for one of the players in the context of repeated play. We usually associate
the algorithm with the row player. To emphasize the roles of the two players in our context, we sometimes
refer to the row and column players as the learner and the environment, respectively. An instance of repeated
play is a sequence of rounds of interactions between the learner and the environment. The game matrixM
used in the interactions is fixed but is unknown to the learner. The learner only knows the number of choices
that it has, i.e., the number of rows. On round t � 1� � � � � T :

2



1. the learner chooses mixed strategy Pt;

2. the environment chooses mixed strategyQt (which may be chosen with knowledge of Pt)

3. the learner is permitted to observe the loss M�i�Qt� for each row i; this is the loss it would have
suffered had it played using pure strategy i;

4. the learner suffers lossM�Pt�Qt�.

The basic goal of the learner is to minimize its total loss
PT

t�1M�Pt�Qt�. If the environment is
maximally adversarial then a related goal is to approximate the optimal mixed row strategy P�. However,
in more benign environments, the goal may be to suffer the minimum loss possible, which may be much
better than the value of the game.

Finally, in what follows, we find it useful to measure the distance between two distributionsP1 and P2

using the Kullback-Leibler divergence, also called the relative entropy, which is defined to be

RE
�
P1 k P2

� �
�

nX
i�1

P1�i� ln
�
P1�i�

P2�i�

�
�

As is well known, the relative entropy is a measure of discrepancy between distributions in that it is non-
negative and is equal to zero if and only if P1 � P2. For real numbers p1� p2 � �0� 1�, we use the shorthand
RE

�
p1 k p2

�
to denote the relative entropy between Bernoulli distributions with parameters p1 and p2, i.e.,

RE
�
p1 k p2

� �
� p1 ln

�
p1

p2

�
� �1� p1� ln

�
1 � p1

1 � p2

�
�

3 The basic algorithm

We now describe our basic algorithm for repeated play, which we call MW for “multiplicative weights.”
This algorithm is a direct generalization of Littlestone and Warmuth’s “weighted majority algorithm” [25],
which was discovered independently by Fudenberg and Levine [17].

The learning algorithm MW starts with some initial mixed strategy P1 which it uses for the first round
of the game. After each round t, the learner computes a new mixed strategyPt�1 by a simple multiplicative
rule:

Pt�1�i� � Pt�i�
�M�i�Qt�

Zt

where Zt is a normalization factor:

Zt �
nX
i�1

Pt�i��
M�i�Qt� �

and � � �0� 1� is a parameter of the algorithm.
The main theorem concerning this algorithm is the following:

Theorem 1 For any matrix M with n rows and entries in �0� 1�, and for any sequence of mixed strategies
Q1� � � � �QT played by the environment, the sequence of mixed strategies P1� � � � �PT produced by algorithm
MW satisfies:

TX
t�1

M�Pt�Qt� � min
P

�
a�

TX
t�1

M�P�Qt� � c�RE
�
P k P1

��

where

a� �
ln�1���
1 � �

c� �
1

1 � �
�
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Our proof uses a kind of “amortized analysis” in which relative entropy is used as a “potential” function.
This method of analysis for on-line learning algorithms is due to Kivinen and Warmuth [23]. The heart of
the proof is in the following lemma, which bounds the change in potential before and after a single round.

Lemma 2 For any iteration t where MW is used with parameter �, and for any mixed strategy P̃,

RE
�

P̃ k Pt�1

�
� RE

�
P̃ k Pt

�
�
�

ln
1
�

�
M�P̃�Qt� � ln

�
1 � �1� ��M�Pt�Qt�

�
�

Proof: The proof of the lemma can be summarized by the following sequence of inequalities:

RE
�
P̃ k Pt�1

�
� RE

�
P̃ k Pt

�

�
nX
i�1

P̃�i� ln
P̃�i�

Pt�1�i�
�

nX
i�1

P̃�i� ln
P̃�i�

Pt�i�
(1)

�
nX
i�1

P̃�i� ln
Pt�i�

Pt�1�i�
(2)

�
nX
i�1

P̃�i� ln
Zt

�M�i�Qt�
(3)

�

�
ln

1
�

� nX
i�1

P̃�i�M�i�Qt� � lnZt (4)

�
�

ln
1
�

�
M�P̃�Qt� � ln

�
nX
i�1

Pt�i�
�
1 � �1 � ��M�i�Qt�

��
(5)

�

�
ln

1
�

�
M�P̃�Qt� � ln

�
1 � �1� ��M�Pt�Qt�

�
�

Line (1) follows from the definition of relative entropy. Line (3) follows from the update rule of MWand
line (4) follows by simple algebra. Finally, line (5) follows from the definition of Zt combined with the fact
that, by convexity, �x � 1 � �1 � ��x for � � 0 and x � �0� 1�.
Proof of Theorem 1: Let P̃ be any mixed row strategy. We first simplify the last term in the inequality of
Lemma 2 by using the fact that ln�1� x� � �x for any x � 1 which implies that

RE
�
P̃ k Pt�1

�
� RE

�
P̃ k Pt

�
�
�

ln
1
�

�
M�P̃�Qt�� �1� ��M�Pt�Qt�

Summing this inequality over t � 1� � � � � T we get

RE
�
P̃ k PT�1

�
� RE

�
P̃ k P1

�
�
�

ln
1
�

� TX
t�1

M�P̃�Qt�� �1� ��
TX
t�1

M�Pt�Qt��

Noting that RE
�
P̃ k PT�1

�
� 0, rearranging the inequality and noting that P̃was chosen arbitrarily gives

the statement of the theorem. .
In order to use MW, we need to choose the initial distribution P1 and the parameter �. We start with

the choice of P1. In general, the closer P1 is to a good mixed strategy P̃, the better the bound on the total
loss MW. However, even if we have no prior knowledge about the good mixed strategies, we can achieve
reasonable performance by using the uniform distribution over the rows as the initial strategy. This gives us
a performance bound that holds uniformly for all games with n rows:
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Corollary 3 If MW is used with P1 set to the uniform distribution then its total loss is bounded by

TX
t�1

M�Pt�Qt� � a� min
P

TX
t�1

M�P�Qt� � c� lnn

where a� and c� are as defined in Theorem 1.

Proof: If P1�i� � 1�n for all i then RE
�
P k P1

� � lnn for all P.
Next we discuss the choice of the parameter �. As � approaches 1, a� approaches 1 from above while

c� increases to infinity. On the other hand, if we fix � and let the number of rounds T increase, the second
term c� lnn becomes negligible (since it is fixed) relative to T . Thus, by choosing � as a function of T
which approaches 1 for T ��, the learner can ensure that its average per-trial loss will not be much worse
than the loss of the best strategy. This is formalized in the following corollary:

Corollary 4 Under the conditions of Theorem 1 and with � set to

1

1 �
q

2 lnn
T

�

the average per-trial loss suffered by the learner is

1
T

TX
t�1

M�Pt�Qt� � min
P

1
T

TX
t�1

M�P�Qt� � ∆T�n

where

∆T�n �

s
2 lnn
T

�
lnn
T

� O

	


s

lnn
T

�
A�

Proof: It can be shown that � ln� � �1 � �2���2�� for � � �0� 1�. Applying this approximation and the
given choice of � yields the result.

Since ∆T�n � 0 as T � �, we see that the amount by which the average per-trial loss of the learner
exceeds that of the best mixed strategy can be made arbitrarily small for large T .

Note that in the analysis we made no assumption about the strategy used by the environment. Theorem 1
guarantees that its cumulative loss is not much larger than that of any fixed mixed strategy. As shown
below, this implies that the loss cannot be much larger than the game value. However, if the environment is
non-adversarial, there might be a better row strategy, in which case the algorithm is guaranteed to be almost
as good as this better strategy.

Corollary 5 Under the conditions of Corollary 4,

1
T

TX
t�1

M�Pt�Qt� � v � ∆T�n

where v is the value of the game M.

Proof: Let P� be a minmax strategy forM so that for all column strategies Q, M�P��Q� � v. Then, by
Corollary 4,

1
T

TX
t�1

M�Pt�Qt� � 1
T

TX
t�1

M�P��Qt� � ∆T�n � v � ∆T�n�
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3.1 Convergence with probability one

Suppose that the mixed strategies that are generated by MW are used to select one of the rows at each
iteration. From Theorem 1 and Corollary 4 we know that the expected per-iteration loss of MW approaches
the optimal achievable value for any fixed strategy asT ��. However, we might want a stronger assurance
of the performance of MW; for example, we would like to know that the actual per-iteration loss is, with
high probability, close to the expected value. As the following lemma shows, the per-trial loss of any
algorithm for the repeated game is, with high probability, at most O�1�

p
T � away from the expected value.

The only required game property is that the game matrix elements are all in �0� 1�.

Lemma 6 Let the players of a matrix game use any pair of methods for choosing their mixed strategies
on iteration t based on past game events. Let Pt and Qt denote the mixed strategies used by the players
on iteration t and let M�it� jt� denote the actual game outcome on iteration t that is chosen at random
according to Pt and Qt. Then, for every � � 0,

Pr

�
1
T

�����
TX
t�1

�
M�it� jt�� M�Pt�Qt�

������ � �

�
� 2 exp

�
�1

2
T�2

�
�

where probability is taken with respect to the random choice of rows i1� � � � � iT and columns j1� � � � � jT .

Proof: The proof follows directly from a theorem proved by Hoeffding [22] about the convergence of a
sum of bounded-step martingales which is commonly called “Azuma’s lemma.” The sequence of random
variables Yt �M�it� jt��M�Pt�Qt� is a martingale difference sequence. As the entries ofM are bounded
in �0� 1� we have that jYtj � 1. Thus we can directly apply Azuma’s Lemma and get that, for any a � 0

Pr

������
TX
t�1

Yt

����� � a

�
� 2 exp



� a2

2T

�
�

Substituting a � �T we get the statement of the lemma.
If we want to have an algorithm whose performance will converge to the optimal performance we need

the value of � to approach 1 as the length of the sequence increases. One way of doing this, which we
describe here, is to have the row player divide the time sequence into “epochs.” In each epoch, the row
player restarts the algorithm MW (resetting all the row distribution to the uniform distribution) and uses a
different value of � which is tuned according to the length of the epoch. We show that such a procedure can
guarantee, almost surely, that the long term per-iteration loss is at most the expected loss of any fixed mixed
strategy.

We denote the length of the kth epoch by Tk and the value of � used for that epoch by �k. One choice
of epochs that gives convergence with probability one is the following:

Tk � k2� �k �
1

1 �
q

2 lnn
k2

� �6�

The convergence properties of this strategy are given in the following theorem:

Theorem 7 Suppose the repeated game is continued for an unbounded number of rounds. Let Pt be chosen
according to the method of epochs with the parameters described in Equation (6), and let it be chosen at
random according to Pt. Let the environment choose jt as an arbitrary stochastic function of past plays.
Then, for every � � 0, with probability one with respect to the randomization used by both players, the
following inequality holds for all but a finite number of values of T :

1
T

TX
t�1

M�it� jt� � min
P

1
T

TX
t�1

M�P� jt� � ��
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Proof: For each epoch k we select the accuracy parameter �k � 2
p

lnk�k. We denote the sequence of
iterations that constitute the k’th epoch by Sk. We call the kth epoch “good” if the average per trial loss for
that epoch is within �k from its expected value, i.e., ifX

t�Sk

M�it� jt� �
X
t�Sk

M�Pt� jt� � Tk�k � �7�

From Lemma 6 (where we define Qt to be the mixed strategy which gives probability one to jt), we get that
the probability that the kth epoch is bad is bounded by

2 exp
�
�1

2
Tk�

2
k

�
�

2
k2 �

The sum of this bound over all k from 1 to � is finite. Thus, by the Borel-Cantelli lemma, we know that
with probability one all but a finite number of epochs are good. Thus for the sake of computing the average
loss for T �� we can ignore the influence of the bad epochs.

We now use Corollary 4 to bound the expected total loss. We apply this corollary in the case thatQt is
again defined to be the mixed strategy which gives probability one to jt. We have from the corollary:X

t�Sk

M�Pt� jt� � min
P

X
t�Sk

M�P� jt� �
p

2Tk lnn � lnn � �8�

Combining Equations (7) and (8) we find that if the kth epoch is good then, for any distribution P̃ over
the actions of the algorithmX

t�Sk

M�it� jt� �
X
t�Sk

M�P̃� jt� �
p

2Tk lnn � lnn � Tk�k

�
X
t�Sk

M�P̃� jt� � k
p

2 lnn� lnn� 2k
p

lnk �

Thus the total loss over the first m epochs (ignoring the finite number of bad iterations whose influence is
negligible) is bounded by

X
t�S1�����Sm

M�it� jt� �
X

t�S1�����Sm

M�P̃� jt� �
mX
k�1

h
k
p

2 lnn � lnn � 2k
p

lnk
i

�
X

t�S1�����Sm

M�P̃� jt� �m2
p

lnm
hp

2 lnn � lnn � 2
i
�

As the total number of rounds in the first m epochs is
Pm

k�1 k
2 � O�m3� we find that, after dividing both

sides by the number of rounds, the error term decreases to zero.

4 Relation to on-line learning

One interesting use of game theory is in the context of predictive decision making (see, for instance,
Blackwell and Girshick [4] or Ferguson [11]). On-Line decision making can be viewed as a repeated game
between a decision maker and nature. The entry M�i� t� represents the loss of (or negative utility for) the
prediction algorithm if it chooses action i at time t. The goal of the algorithm is to adaptively generate
distributions over actions so that its expected cumulative loss will not be much worse than the cumulative
loss it would have incurred had it been able to choose a single fixed distribution with prior knowledge of the
whole sequence of columns.
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This is a non-standard framework for analyzing on-line decision algorithms in that one makes no
statistical assumptions regarding the relationship between actions and their losses. The only assumption
is that there exists some fixed mixed strategy (distribution over actions) whose expected performance is
nontrivial. This approach was previously described in one of our earlier papers [16]; the current paper
expands and refines the results given there.

The algorithm MW was originally suggested by Littlestone and Warmuth [25] and (in a somewhat more
sophisticated form) by Vovk [30] in the context of on-line prediction. The algorithm was also discovered
independently by Fudenberg and Levine [17]. Research on the use of the multiplicative weights algorithm
for on-line prediction is extensive and on-going, and it is out of the scope of this paper to give a complete
review of it. However, we try to sketch some of the main connections between the work described in this
paper and this expanding line of research.

The on-line prediction framework is a refinement of the decision theoretic framework described above.
Here the prediction algorithm generates distributions over predictions, nature chooses an outcome and the
loss incurred by the prediction algorithm is a known loss function which maps action/outcome pairs to real
values. This framework restricts the choices that can be made by nature because once the predictions have
been fixed, the only loss columns that are possible are those that correspond to possible outcomes. This is
the reason that for various loss functions one can prove better bounds than in the less structured context of
on-line decision making. The approach is closely related to work by Dawid [9], Foster [12] and Vovk [30].

One loss function that has received particular attention is the log loss function. Here the prediction is
assumed to be a distribution P over some domain X , the outcome is an element from the domain x � X ,
and the loss is � logP �x�. This loss has several important interpretations which connect it to likelihood
analysis and to coding theory. Note that as the probability of an element can be arbitrarily small, the loss can
be arbitrarily high. On-Line algorithms for making predictions in this case have been extensively studied in
information theory under the name universal compression of individual sequences [32, 28]. In particular, a
well-known result is that the multiplicative weights algorithm, with � set to 1�e is a near-optimal algorithm
in this context. It is also interesting to note that this version of the multiplicative weights algorithm is
equivalent to the Bayes prediction rule, where the generated distributions over the rows are equal to the
Bayesian posterior distributions. On the other hand, this equivalence holds only for the log-loss; for other
loss functions there is no simple relationship between the multiplicative weights algorithm and the Bayesian
algorithm.

Cover and Ordentlich [7, 6] and later Helmbold et al. [21] extended the log-loss analysis to the design
of algorithms for “universal portfolios.” There is an extensive literature on on-line prediction with other
specific loss functions. For example, for work on prediction loss, see Feder, Merhav and Gutman [10],
Cesa-Bianchi et al. [5] and for work on more general families of loss functions see Vovk [29] and Kivinen
and Warmuth [23].

Another extension of the on-line decision problem that is worth mentioning here is making decisions
when the feedback given is a single entry of the game matrix. In other words, we assume that after the row
player has chosen a distribution over the rows, a single row is chosen at random according to the distribution.
The row player suffers the loss associated with the selected row and the column chosen by its opponent, and
the game repeats. The goal of the row player is the same as before—to minimize its expected average loss
over a sequence of repeated games. Clearly, the goal is much harder here since only a single entry of the
matrix is revealed on each round. Auer et al. [2] study this model in detail and show that a variant of the
multiplicative weights algorithm converges to the performance of the best row distribution in repeated play.
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5 Proof of the minmax theorem

Corollary 5 shows that the loss of MW can never exceed the value of the gameM by more than ∆T�n. More
interestingly, Corollary 4 can be used to derive a very simple proof of von Neumann’s minmax theorem. To
prove this theorem, we need to show that

min
P

max
Q

M�P�Q� � max
Q

min
P

M�P�Q�� �9�

(Proving that minP maxQ M�P�Q�� maxQ minP M�P�Q� is relatively straightforward and so is omitted.)
Suppose that we run algorithm MW against a maximally adversarial environment which always chooses

strategies which maximize the learner’s loss. That is, on each round t, the environment chooses

Qt � arg max
Q

M�Pt�Q�� �10�

Let P � 1
T

PT
t�1Pt andQ � 1

T

PT
t�1Qt. Clearly, P and Q are probability distributions.

Then we have:

min
P

max
Q

PTMQ � max
Q

PTMQ

� max
Q

1
T

TX
t�1

Pt
TMQ by definition of P

� 1
T

TX
t�1

max
Q

Pt
TMQ

�
1
T

TX
t�1

Pt
TMQt by definition of Qt

� min
P

1
T

TX
t�1

PTMQt � ∆T�n by Corollary 4

� min
P

PTMQ � ∆T�n by definition of Q

� max
Q

min
P

PTMQ � ∆T�n�

Since ∆T�n can be made arbitrarily close to zero, this proves Eq. (9) and the minmax theorem.

6 Approximately solving a game

Aside from yielding a proof for a famous theorem that by now has many proofs, the preceding derivation
shows that algorithm MW can be used to find an approximate minmax or maxmin strategy. Finding these
“optimal” strategies is called solving the gameM.

We give three methods for solving a game using exponential weights. In Section 6.1 we show how one
can use the average of the generated row distributions over T iterations as an approximate solution for the
game. This method sets T and � as a function of the desired accuracy before starting the iterative process.

In Section 6.2 we show that if an upper bound u on the value of the game is known ahead of time then
one can use a variant of MW that generates a sequence of row distributions such that the expected loss of the
tth distribution approaches u. Finally, in Section 6.3 we describe a related adaptive method that generates a
sparse approximate solution for the column distribution. At the end of the paper, in Section 7, we show that
the convergence rate of the two last methods is asymptotically optimal.
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6.1 Using the average of the row distributions

Skipping the first inequality of the sequence of equalities and inequalities at the end of Section 5, we see
that

max
Q

M�P�Q� � max
Q

min
P

M�P�Q� � ∆T�n � v � ∆T�n�

Thus, the vector P is an approximate minmax strategy in the sense that for all column strategies Q,
M�P�Q� does not exceed the game value v by more than ∆T�n. Since ∆T�n can be made arbitrarily small,
this approximation can be made arbitrarily tight.

Similarly, ignoring the last inequality of this derivation, we have that

min
P

M�P�Q� � v � ∆T�n

so Q also is an approximate maxmin strategy. Furthermore, it can be shown that a column strategy Qt

satisfying Eq. (10) can always be chosen to be a pure strategy (i.e., a mixed strategy concentrated on a single
column of M). Therefore, the approximate maxmin strategy Q has the additional favorable property of
being sparse in the sense that at most T of its entries will be nonzero.

6.2 Using the final row distribution

In the analysis presented so far we have shown that the average of the strategies used by MW converges to
an optimal strategy. Now we show that if the row player knows an upper bound u on the value of the game
v then it can use a variant of MW to generate a sequence of mixed strategies that approach a strategy which
achieves loss u.1 To do that we have the algorithm select a different value of � for each round of the game.
If the expected loss on the tth iterationM�Pt�Qt� is less than u, then the row player does not change the
mixed strategy, because, in a sense, it is “good enough.” However, if M�Pt�Qt� � u then the row player
uses MW with parameter

�t �
u�1�M�Pt�Qt��

�1� u�M�Pt�Qt�
�

We call this algorithm vMW (the “v” stands for “variable”). For this algorithm, as the following theorem
shows, the distance between Pt and any mixed strategy that achieves u decreases by an amount that is a
function of the divergence betweenM�Pt�Qt� and u.

Theorem 8 Let P̃ be any mixed strategy for the rows such that maxQ M�P̃�Q� � u. Then on any iteration
of algorithm vMW in which M�Pt�Qt� � u the relative entropy between P̃ and Pt�1 satisfies

RE
�

P̃ k Pt�1

�
� RE

�
P̃ k Pt

�
� RE

�
u k M�Pt�Qt�

�
�

Proof: Note that when u �M�Pt�Qt� we get that �t � 1. Combining this observation with the definition
of P̃ and the statement of Lemma 2 we get that

RE
�
P̃ k Pt�1

�
� RE

�
P̃ k Pt

�
� M�P̃�Qt� ln�1��t� � ln

�
1 � �1� �t�M�Pt�Qt�

�
(11)

� u ln�1��t� � ln
�
1 � �1� �t�M�Pt�Qt�

�
�

1If no such upper bound is known, one can use the standard trick of solving the larger game matrix�
M �
� �MT

�
�

whose value is always zero.
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The choice of �t was chosen to minimize the last expression. Plugging the given choice of �t into this last
expression we get the statement of the theorem.

SupposeM�Pt�Qt� � u for all t. Then the main inequality of this theorem can be applied repeatedly
yielding the bound

RE
�
P̃ k PT�1

�
� RE

�
P̃ k P1

�
�

TX
t�1

RE
�
u k M�Pt�Qt�

�
�

Since relative entropy is nonnegative, and since the inequality holds for all T , we have

�X
t�1

RE
�
u k M�Pt�Qt�

� � RE
�
P̃ k P1

�
� �12�

Assuming that RE
�
P̃ k P1

�
is finite (as it will be, for example, if P1 is uniform), this inequality implies,

for instance, thatM�Pt�Qt� can exceed u � � at most finitely often for any � � 0. More specifically, we
can prove the following:

Corollary 9 Suppose that vMW is used to play a game M whose value is known to be at most u. Suppose
also that we choose P1 to be the uniform distribution. Then for any sequence of column strategies Q1�Q2� � � �,
the number of rounds on which the loss M�Pt�Qt� � u� � is at most

lnn
RE

�
u k u� �

� �
Proof: Since rounds on which M�Pt�Qt� � u are effectively ignored by vMW, we assume without loss
of generality thatM�Pt�Qt� � u for all rounds t. Let S � ft : M�Pt�Qt� � u � �g be the set of rounds
for which the loss is at least u� �, and let P� be a minmax strategy. By Eq. (12), we have thatX

t�S

RE
�
u k u� �

� �
X
t�S

RE
�
u k M�Pt�Qt�

�

�
�X
t�1

RE
�
u k M�Pt�Qt�

�
� RE

�
P� k P1

� � lnn�

Therefore,

jSj � lnn
RE

�
u k u � �

� �

In Section 7, we show that this dependence on n, u and � cannot be improved by any constant factor.

6.3 Convergence of a column distribution

When � is fixed, we showed in Section 6.1 that the average Q of theQt’s is an approximate solution of the
game, i.e., that there are no rows i for which M�i�Q� is less than v � ∆T�n. For the algorithm described
above in which �t varies, we can derive a more refined bound of this kind for a weighted mixture of the
Qt’s.

11



Theorem 10 Assume that on every iteration of algorithm vMW, we have that M�Pt�Qt� � u. Let

Q̂ �

PT
t�1 Qt ln�1��t�PT
t�1 ln�1��t�

�

Then X
i:M�i�Q̂��u

P1�i� � exp



�

TX
t�1

RE
�
u k M�Pt�Qt�

��
�

Proof: IfM�P̃� Q̂� � u, then, combining Eq. 11 for t � 1� � � � � T , we have

RE
�
P̃ k PT�1

�
� RE

�
P̃ k P1

�
�

TX
t�1

M�P̃�Qt� ln�1��t� �
TX
t�1

ln
�
1 � �1 � �t�M�Pt�Qt�

�

� M�P̃� Q̂�
TX
t�1

ln�1��t� �
TX
t�1

ln
�
1 � �1 � �t�M�Pt�Qt�

�

� u �
TX
t�1

ln�1��t� �
TX
t�1

ln
�
1 � �1� �t�M�Pt�Qt�

�

� �
TX
t�1

RE
�
u k M�Pt�Qt�

�

for our choice of �t. In particular, if i is a row for which M�i�Q̂� � u, then, setting P̃ to the associated
pure strategy, we get

ln
�
P1�i�

PT�1�i�

�
� �

TX
t�1

RE
�
u k M�Pt�Qt�

�
so

X
i:M�i�Q̂��u

P1�i� �
X

i:M�i�Q̂��u

PT�1�i� exp



�

TX
t�1

RE
�
u k M�Pt�Qt�

��

� exp



�

TX
t�1

RE
�
u k M�Pt�Qt�

��

since PT�1 is a distribution.
Thus, if M�Pt�Qt� is bounded away from u, the fraction of rows i (as measured by P1) for which

M�i� Q̂� � u drops to zero exponentially fast. This will be the case, for instance, if Eq. (10) holds and
u � v � � for some � � 0 where v is the value ofM.

Thus a single application of the exponential weights algorithm yields approximate solutions for both
the column and row players. The solution for the row player consists of the multiplicative weights, while
the solution for the column player consists of the distribution on the observed columns as described in
Theorem 10.

Given a game matrixM, we have a choice of whether to solveM or �MT. One natural choice would
be to choose the orientation which minimizes the number of rows. In a related paper [16], we studied
the relationship between solvingM or �MT using the multiplicative weights algorithm in the context of
machine learning. In that context, the solution for game matrix M is related to the on-line prediction
problem described in Section 4, while the “dual” solution for �MT corresponds to a method of learning
called “boosting.”

12



6.4 Application to linear programming

It is well known that any linear programming problem can be reduced to the problem of solving a game
(see, for instance, Owen [26, Theorem III.2.6]). Thus, the algorithms we have presented for approximately
solving a game can be applied more generally for approximate linear programming.

Similar and closely related methods of approximately solving linear programming problems have pre-
viously appeared, for instance, in the work of Young [31], Grigoriadis and Khachiyan [18, 19] and Plotkin,
Shmoys and Tardos [27].

Although, in principle, our algorithms are applicable to general linear programming problems, they are
best suited to problems of a particular form. Specifically, they may be most appropriate for the setting
we have described of approximately solving a game when an oracle is available for choosing columns of
the matrix on every round. When such an oracle is available, our algorithm can be applied even when the
number of columns of the matrix is very large or even infinite, a setting that is clearly infeasible for some
of the other, more traditional linear programming algorithms. Solving linear programming problems in the
presence of such an oracle was also studied by Young [31] and Plotkin, Shmoys and Tardos [27]. See also
our earlier paper [16] for detailed examples of problems arising naturally in the field of machine learning
with exactly these characteristics.

7 Optimality of the convergence rate

In Corollary 9, we showed that using the algorithm vMW starting from the uniform distribution over the rows
guarantees that the number of times thatM�Pt�Qt� can exceed u�� is bounded by �lnn��RE

�
u k u� �

�
where u is a known upper bound on the value of the gameM. In this section, we show that this dependence
of the rate of convergence on n, u and � is optimal in the sense that no adaptive game-playing algorithm can
beat this bound even by a constant factor. This result is formalized by Theorem 11 below.

A related lower bound result is proved by Klein and Young [24] in the context of approximately solving
linear programs.

Theorem 11 Let 0 � u � u � � � 1, and let n be a sufficiently large integer. Then for any adaptive
game-playing algorithm A, there exists a game matrix M of n rows and a sequence of column strategies
such that:

1. the value of game M is at most u; and

2. the loss M�Pt�Qt� suffered by A on each round t � 1� � � � � T is at least u� �, where

T �

�
lnn� 5 ln lnn

RE
�
u k u� �

�
�
� �1� o�1�� lnn

RE
�
u k u� �

� �
Proof: The proof uses a probabilistic argument to show that for any algorithm, there exists a matrix (and
sequence of column strategies) with the properties stated in the theorem. That is, for the purposes of the
proof, we imagine choosing the matrixM at random according to an appropriate distribution, and we show
that the stated properties hold with strictly positive probability, implying that there must exist at least one
matrix for which they hold.

Let r � u� �. The random matrixM has n rows and T columns, and is chosen by selecting each entry
M�i� j� independently to be 1 with probability r, and 0 with probability 1 � r. On round t, the row player
(algorithm A) chooses a row distributionPt, and, for the purposes of our construction, we assume that the
column player responds with column t. That is, the column strategy Qt chosen on round t is concentrated
on column t.
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Given this random construction, we need to show that properties 1 and 2 hold with positive probability
for n sufficiently large.

We begin with property 2. On round t, the row player chooses a distributionPt, and the column player
responds with column t. We require that the loss M�Pt� t� be at least r � u � �. Since the matrix M
is chosen at random, we need a lower bound on the probability that M�Pt� t� � r. Moreover, because
the row player has sole control over the choice of Pt, we need a lower bound on this probability which is
independent of Pt. To this end, we prove the following lemma:

Lemma 12 For every r � �0� 1�, there exists a number Br � 0 with the following property: Let n be any
positive integer, and let �1� � � � � �n be nonnegative numbers such that

Pn
i�1 �i � 1. Let X1� � � � � Xn be

independent Bernoulli random variables with Pr [Xi � 1] � r and Pr [Xi � 0] � 1 � r. Then

Pr

�
nX
i�1

�iXi � r

�
� Br � 0�

Proof: See appendix.
To apply the lemma, let �i � Pt�i� and let Xi �M�i� t�. Then the lemma implies that

Pr
�
M�Pt� t� � r

� � Br

where Br is a positive number which depends on r but which is independent of n and Pt. It follows that

Pr
�	t :M�Pt� t� � r

� � BT
r �

In other words, property 2 holds with probability at least BT
r .

We next show that property 1 fails to hold with probability strictly smaller thanBT
r so that both properties

must hold simultaneously with positive probability.
Define the weight of row i, denotedW �i�, to be the fraction of 1’s in the row: W �i� �

PT
j�1M�i� j��T .

We say that a row is light if W �i� � u � 1�T . Let P� be a row distribution which is uniform over the light
rows and zero on the heavy rows. We will show that, with high probability, maxjM�P�� j� � u, implying
an upper bound of u on the value of gameM.

Let 	 denote the probability that a given row i is light; this will be the same probability for all rows. Let
n� be the number of light rows.

We show first that n� � 	n�2 with high probability. The expected value of n� is 	n. Using a form of
Chernoff bounds proved by Angluin and Valiant [1], we have that

Pr
�
n� � 	n�2

� � exp��	n�8�� �13�

We next upper bound the probability thatM�P�� j� exceeds u for any column j. Conditional on i being
a light row, the probability thatM�i� j� � 1 is at most u�1�T . Moreover, if i1 and i2 are distinct rows, then
M�i1� j� andM�i2� j� are independent, even if we condition on both being light rows. Therefore, applying
Hoeffding’s inequality [22] to column j and the n� light rows, we have that, for all j,

Pr
�
M�P�� j� � u j n�� � e�2n��T 2

�

Thus,

Pr
�
max
j
M�P�� j� � u j n�

�
� Te�2n��T 2
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and so

Pr
�
max
j
M�P�� j� � u j n� � 	n�2

�
� Te��n�T

2
�

Combined with Eq. (13), this implies that

Pr
�
max
j
M�P�� j� � u

�
� e��n�2 � Te��n�T

2 � �T � 1�e��n�T
2

for T � 3.
Therefore, the probability that either of properties 1 or 2 fails to hold is at most

�T � 1�e��n�T
2
� 1 �BT

r �

If this quantity is strictly less than 1, then there must exist at least one matrixM for which both properties 1
and 2 hold. This will be the case if and only if

	 �
T 2

n

�
T ln�1�Br� � ln�T � 1�

�
� �14�

Therefore, to complete the proof, we need only prove Eq. (14) by lower bounding 	.
We have that

	 � Pr
�
W �i� � T � Tu� 1

�
� Pr

�
W �i� � T � bTu� 1c�

� 1
T � 1

exp
��T � RE

�bTu� 1c�T k u� �
��

� 1
T � 1

exp
��T � RE

�
u � 2�T k u� �

��
�

The second inequality follows from Cover and Thomas [8, Theorem 12.1.4].
By straightforward algebra,

T �RE
�
u � 2�T k u� �

�
� T � �RE

�
u k u� �

�� RE
�
u k u� 2�T

�
�

�2 ln
�

1� u� 2�T
1 � u� �

� u� �

u� 2�T

�
� T � RE

�
u k u� �

�
� C

for T sufficiently large, where C is the constant

C � 2 ln
�

1 � u�2
1 � u � �

� u� �

u�2

�
�

Thus,

	 � e�C

T � 1
exp

��T �RE
�
u k u � �

��
and therefore, Eq. (14) holds if

T � RE
�
u k u� �

�
� lnn� C � ln

�
T 2�T � 1��T ln�1�Br� � ln�T � 1��

�
�

By our choice of T , we have that the left hand side of this inequality is at most lnn� 5 ln lnn, and the right
hand side is lnn � �4 � o�1�� ln lnn. Therefore, the inequality holds for n sufficiently large.
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A Proof of Lemma 12

Let

Y �

Pn
i�1 �iXi � rqPn

i�1 �
2
i

�

Our goal is to derive a lower bound on Pr [Y � 0]. Let s � r�1� r�. It can be easily verified that EY � 0
and Var Y � s. In addition, by Hoeffding’s inequality [22], it can be shown that, for all � � 0,

Pr [Y � �] � e�2�2
�15�

and
Pr [Y � ��] � e�2�2

�

For x � R, letD�x� � Pr [Y � x]. Throughout this proof, we use
P

x to denote summation over a finite
set of x’s which includes all x for which D�x� � 0. Restricted summations (such as

P
x�0) are defined

analogously.
Let d � 0 be any number. We define the following quantities:

G �
X

0�x�d

D�x�

R � �
X

�d�x�0

xD�x�

E1 �
X
x�d

xD�x�

E2 �
X
x��d

x2D�x�

E3 �
X
x�d

x2D�x��

We prove the lemma by deriving a lower bound on G � Pr [Y � 0].
The expected value of Y is:

0 � EY �
X
x

xD�x�

�
X
x��d

xD�x� �
X

�d�x�0

xD�x� �
X

0�x�d

xD�x� �
X
x�d

xD�x�

� 0 �R� dG� E1�

Thus,
R � dG� E1� �16�

Next, we have that

s � Var Y �
X
x

x2D�x�

�
X
x��d

x2D�x� �
X

�d�x�0

x2D�x� �
X

0�x�d

x2D�x� �
X
x�d

x2D�x�

� E2 � dR� d2G�E3�
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Combined with Eq. (16), it follows that

s � 2d2G� dE1 � E2 �E3� �17�

We next upper bound E1, E2 and E3. This will allow us to immediately lower bound G using Eq. (17).
To bound E1, note that

dE1 � d
X
x�d

xD�x� �
X
x�d

x2D�x� � E3� �18�

To bound E3, let d � y0 � y1 � � � � � ym be a sequence of numbers such that if D�x� � 0 and x � d

then x � yi for some i. In other words, every x � d with positive probability is represented by some yi.
Let S�y� �

P
x�y D�x�. By Eq. (15), S�y� � e�2y2

for y � 0. We can compute E3 as follows:

E3 �
X
x�d

x2D�x� �
mX
i�0

y2
iD�yi�

� y2
0

mX
j�0

D�yj� �
m�1X
i�0

�
��y2

i�1 � y2
i �

mX
j�i�1

D�yj�

�
�

� y2
0S�y0� �

m�1X
i�0

�y2
i�1 � y2

i �S�yi�1�

� d2e�2d2
�

m�1X
i�0

�y2
i�1 � y2

i �e
�2y2

i�1 �

To bound the summation, note that

m�1X
i�0

�y2
i�1 � y2

i �e
�2y2

i�1 �
m�1X
i�0

Z yi�1

yi

2xe�2y2
i�1dx

�
m�1X
i�0

Z yi�1

yi

2xe�2x2
dx

�
Z ym

y0

2xe�2x2
dx

� 1
2�e

�2y2
0 � e�2y2

m� � 1
2e
�2d2

�

Thus, E3 � �d2 � 1�2�e�2d2
. A bound on E2 follows by symmetry.

Combining with Eqs. (17) and (18), we have

s � 2d2G� 3�d2 � 1�2�e�2d2

and so

Pr [Y � 0] � G � s� 3�d2 � 1�2�e�2d2

2d2 �

Since this holds for all d, we have that Pr [Y � 0] � Br where

Br � sup
d�0

s� 3�d2 � 1�2�e�2d2

2d2

and s � r�1� r�. This number is clearly positive since the numerator of the inside expression can be made
positive by choosing d sufficiently large. (For instance, it can be shown that this expression is positive when
we set d �

p
1�s.)
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