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Theoretical Views of Boosting

Robert E� Schapire

AT�T Labs� Shannon Laboratory
��� Park Avenue� Room A���� Florham Park� NJ ���	�� USA

Abstract� Boosting is a general method for improving the accuracy of
any given learning algorithm
 Focusing primarily on the AdaBoost algo�
rithm� we brie�y survey theoretical work on boosting including analyses
of AdaBoost
s training error and generalization error� connections be�
tween boosting and game theory� methods of estimating probabilities
using boosting� and extensions of AdaBoost for multiclass classi�cation
problems
 We also brie�y mention some empirical work


Background

Boosting is a general method which attempts to �boost� the accuracy of any
given learning algorithm� Kearns and Valiant ���� ��� were the 	rst to pose the
question of whether a �weak� learning algorithm which performs just slightly
better than random guessing in Valiant
s PAC model ���� can be �boosted�
into an arbitrarily accurate �strong� learning algorithm� Schapire ��
� came up
with the 	rst provable polynomial�time boosting algorithm in ��
�� A year later�
Freund ���� developed a much more e�cient boosting algorithm which� although
optimal in a certain sense� nevertheless su�ered from certain practical drawbacks�
The 	rst experiments with these early boosting algorithms were carried out by
Drucker� Schapire and Simard ���� on an OCR task�

AdaBoost

The AdaBoost algorithm� introduced in ���� by Freund and Schapire ����� solved
many of the practical di�culties of the earlier boosting algorithms� and is the
focus of this paper� Pseudocode for AdaBoost is given in Fig� � in the slightly
generalized form given by Schapire and Singer ����� The algorithm takes as input
a training set �x�� y��� � � � � �xm� ym� where each xi belongs to some domain or
instance space X� and each label yi is in some label set Y � For most of this
paper� we assume Y � f�����g� later� we discuss extensions to the multiclass
case� AdaBoost calls a given weak or base learning algorithm repeatedly in a
series of rounds t � �� � � � � T � One of the main ideas of the algorithm is to
maintain a distribution or set of weights over the training set� The weight of
this distribution on training example i on round t is denoted Dt�i�� Initially� all
weights are set equally� but on each round� the weights of incorrectly classi	ed



Given� �x�� y��� � � � � �xm� ym� where xi � X� yi � Y � f�����g
Initialize D��i� � ��m�
For t � �� � � � � T �

� Train weak learner using distribution Dt�
� Get weak hypothesis ht � X � R�
� Choose �t � R�
� Update�

Dt���i� �
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where Zt is a normalization factor �chosen so that Dt�� will be a distribu�
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Fig� �� The boosting algorithm AdaBoost


examples are increased so that the weak learner is forced to focus on the hard
examples in the training set�

The weak learner
s job is to 	nd a weak hypothesis ht � X � R appropriate
for the distribution Dt� In the simplest case� the range of each ht is binary� i�e��
restricted to f�����g� the weak learner
s job then is to minimize the error

�t � Pri�Dt
�ht�xi� �� yi� �

Once the weak hypothesis ht has been received� AdaBoost chooses a param�
eter �t � Rwhich intuitively measures the importance that it assigns to ht� In
the 	gure� we have deliberately left the choice of �t unspeci	ed� For binary ht�
we typically set

�t �
�
� ln

�
�� �t
�t

�
� ���

More on choosing �t follows below� The distribution Dt is then updated using
the rule shown in the 	gure� The �nal hypothesis H is a weighted majority vote
of the T weak hypotheses where �t is the weight assigned to ht�

Analyzing the training error

The most basic theoretical property of AdaBoost concerns its ability to reduce
the training error� Speci	cally� Schapire and Singer ����� in generalizing a theorem
of Freund and Schapire ����� show that the training error of the 	nal hypothesis
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is bounded as follows�
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where f�x� �
P

t �tht�x� so that H�x� � sign�f�x��� The inequality follows
from the fact that e�yif�xi� � � if yi �� H�xi�� The equality can be proved
straightforwardly by unraveling the recursive de	nition of Dt�

Eq� ��� suggests that the training error can be reduced most rapidly �in a
greedy way� by choosing �t and ht on each round to minimize

Zt �
X
i

Dt�i� exp���tyiht�xi���

In the case of binary hypotheses� this leads to the choice of �t given in Eq� ���
and gives a bound on the training error of
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where �t � ���� �t� This bound was 	rst proved by Freund and Schapire �����
Thus� if each weak hypothesis is slightly better than random so that �t is bounded
away from zero� then the training error drops exponentially fast� This bound�
combined with the bounds on generalization error given below prove that Ada�
Boost is indeed a boosting algorithm in the sense that it can e�ciently convert
a weak learning algorithm �which can always generate a hypothesis with a weak
edge for any distribution� into a strong learning algorithm �which can generate
a hypothesis with an arbitrarily low error rate� given su�cient data��

Eq� ��� points to the fact that� at heart� AdaBoost is a procedure for 	nding
a linear combination f of weak hypotheses which attempts to minimize

X
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�
� ���

Essentially� on each round� AdaBoost chooses ht �by calling the weak learner�
and then sets �t to add one more term to the acculating weighted sum of weak
hypotheses in such a way that the sum of exponentials above will be maximally
reduced� In other words� AdaBoost is doing a kind of steepest descent search to
minimize Eq� ��� where the search is constrained at each step to follow coordinate
directions �where we identify coordinates with the weights assigned to weak
hypotheses��

Schapire and Singer ���� discuss the choice of �t and ht in the case that ht
is real�valued �rather than binary�� In this case� ht�x� can be interpreted as a
�con	dence�rated prediction� in which the sign of ht�x� is the predicted label�
while the magnitude jht�x�j gives a measure of con	dence�
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Generalization error

Freund and Schapire ���� showed how to bound the generalization error of the
	nal hypothesis in terms of its training error� the size m of the sample� the
VC�dimension d of the weak hypothesis space and the number of rounds T of
boosting� Speci	cally� they used techniques from Baum and Haussler ��� to show
that the generalization error� with high probability� is at most

�Pr �H�x� �� y� � �O

�r
Td

m

�

where �Pr ��� denotes empirical probability on the training sample� This bound
suggests that boosting will over	t if run for too many rounds� i�e�� as T becomes
large� In fact� this sometimes does happen� However� in early experiments� several
authors ��� ��� ��� observed empirically that boosting often does not over	t� even
when run for thousands of rounds� Moreover� it was observed that AdaBoost
would sometimes continue to drive down the generalization error long after the
training error had reached zero� clearly contradicting the spirit of the bound
above� For instance� the left side of Fig� � shows the training and test curves of
running boosting on top of Quinlan
s C��� decision�tree learning algorithm ����
on the �letter� dataset�

In response to these empirical 	ndings� Schapire et al� ����� following the
work of Bartlett ���� gave an alternative analysis in terms of the margins of the
training examples� The margin of example �x� y� is de	ned to be

y
X
t

�tht�x�

X
t

j�tj
�

It is a number in ������� which is positive if and only if H correctly classi	es
the example� Moreover� as before� the magnitude of the margin can be inter�
preted as a measure of con	dence in the prediction� Schapire et al� proved that
larger margins on the training set translate into a superior upper bound on the
generalization error� Speci	cally� the generalization error is at most

�Pr
�
marginf �x� y� � �

�
� �O

�r
d

m��

�

for any � � � with high probability� Note that this bound is entirely independent
of T � the number of rounds of boosting� In addition� Schapire et al� proved that
boosting is particularly aggressive at reducing the margin �in a quanti	able
sense� since it concentrates on the examples with the smallest margins �whether
positive or negative�� Boosting
s e�ect on the margins can be seen empirically�
for instance� on the right side of Fig� � which shows the cumulative distribution
of margins of the training examples on the �letter� dataset� In this case� even
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Fig� �� Error curves and the margin distribution graph for boosting C�
� on the letter
dataset as reported by Schapire et al
 �	��
 Left� the training and test error curves
�lower and upper curves� respectively� of the combined classi�er as a function of the
number of rounds of boosting
 The horizontal lines indicate the test error rate of the
base classi�er as well as the test error of the �nal combined classi�er
 Right� The
cumulative distribution of margins of the training examples after �� ��� and ����
iterations� indicated by short�dashed� long�dashed �mostly hidden� and solid curves�
respectively


after the training error reaches zero� boosting continues to increase the margins
of the training examples e�ecting a corresponding drop in the test error�

Attempts �not always successful� to use the insights gleaned from the theory
of margins have been made by several authors ������ ���� In addition� the margin
theory points to a strong connection between boosting and the support�vector
machines of Vapnik and others ��� 
� ��� which explicitly attempt to maximize
the minimum margin�

A connection to game theory

The behavior of AdaBoost can also be understood in a game�theoretic setting as
explored by Freund and Schapire ������� �see also Grove and Schuurmans ����
and Breiman ����� In classical game theory� it is possible to put any two�person�
zero�sum game in the form of a matrixM� To play the game� one player chooses
a row i and the other player chooses a column j� The loss to the row player
�which is the same as the payo� to the column player� is Mij � More generally�
the two sides may play randomly� choosing distributions P and Q over rows or
columns� respectively� The expected loss then is PTMQ�

Boosting can be viewed as repeated play of a particular gamematrix� Assume
that the weak hypotheses are binary� and let H � fh�� ���hng be the entire weak
hypothesis space �which we assume for now to be 	nite�� For a 	xed training set
�x�� y��� � � � � �xm� ym�� the game matrixM has m rows and n columns where

Mij �

�
� if hj�xi� � yi
� otherwise�
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The row player now is the boosting algorithm� and the column player is the
weak learner� The boosting algorithm
s choice of a distribution Dt over training
examples becomes a distribution P over rows of M� while the weak learner
s
choice of a weak hypothesis ht becomes the choice of a column j ofM�

As an example of the connection between boosting and game theory� consider
von Neumann
s famous minmax theorem which states that

max
Q

min
P
PTMQ � min

P
max
Q
PTMQ

for any matrix M� When applied to the matrix just de	ned and reinterpreted
in the boosting setting� this can be shown to have the following meaning� If�
for any distribution over examples� there exists a weak hypothesis with error
at most ��� � �� then there exists a convex combination of weak hypotheses
with a margin of at least �� on all training examples� AdaBoost seeks to 	nd
such a 	nal hypothesis with high margin on all examples by combining many
weak hypotheses� so in a sense� the minmax theorem tells us that AdaBoost
at least has the potential for success since� given a �good� weak learner� there
must exist a good combination of weak hypotheses� Going much further� Ada�
Boost can be shown to be a special case of a more general algorithm for playing
repeated games� or for approximately solving matrix games� This shows that�
asymptotically� the distribution over training examples as well as the weights
over weak hypotheses in the 	nal hypothesis have game�theoretic intepretations
as approximate minmax or maxmin strategies�

Estimating probabilities

Classi	cation generally is the problem of predicting the label y of an example x
with the intention of minimizing the probability of an incorrect prediction� How�
ever� it is often useful to estimate the probability of a particular label� Recently�
Friedman� Hastie and Tibshirani ��
� suggested a method for using the output of
AdaBoost to make reasonable estimates of such probabilities� Speci	cally� they
suggest using a logistic function� and estimating

Prf �y � �� j x� �
ef�x�

ef�x� � e�f�x�
���

where� as usual� f�x� is the weighted average of weak hypotheses produced by
AdaBoost� The rationale for this choice is the close connection between the log
loss �negative log likelihood� of such a model� namely�X

i

ln
�
� � e��yif�xi�

	
���

and the function which� we have already noted� AdaBoost attempts to minimize�X
i

e�yif�xi�� ���

�



Speci	cally� it can be veri	ed that Eq� ��� is upper bounded by Eq� ���� In
addition� if we add the constant � � ln � to Eq� ��� �which does not a�ect its
minimization�� then it can be veri	ed that the resulting function and the one in
Eq� ��� have identical Taylor expansions around zero up to second order� thus�
their behavior near zero is very similar� Finally� it can be shown that� for any
distribution over pairs �x� y�� the expectations

E
h
ln
�
� � e��yf�x�

	i
and

E
h
e�yf�x�

i
are minimized by the same function f � namely�

f�x� � �
� ln

�
Pr �y � �� j x�

Pr �y � �� j x�

�
�

Thus� for all these reasons� minimizing Eq� ���� as is done by AdaBoost� can
be viewed as a method of approximately minimizing the negative log likelihood
given in Eq� ���� Therefore� we may expect Eq� ��� to give a reasonable proba�
bility estimate�

Friedman� Hastie and Tibshirani also make other connnections between Ada�
Boost� logistic regression and additive models�

Multiclass classi�cation

There are several methods of extending AdaBoost to the multiclass case� The
most straightforward generalization ����� called AdaBoost�M�� is adequate when
the weak learner is strong enough to achieve reasonably high accuracy� even
on the hard distributions created by AdaBoost� However� this method fails if
the weak learner cannot achieve at least ��� accuracy when run on these hard
distributions�

For the latter case� several more sophisticated methods have been developed�
These generally work by reducing the multiclass problem to a larger binary
problem� Schapire and Singer
s ���� algorithmAdaBoost�MH works by creating a
set of binary problems� for each example x and each possible label y� of the form�
�For example x� is the correct label y or is it one of the other labels�� Freund
and Schapire
s ���� algorithm AdaBoost�M� �which is a special case of Schapire
and Singer
s ���� AdaBoost�MR algorithm� instead creates binary problems� for
each example x with correct label y and each incorrect label y� of the form� �For
example x� is the correct label y or y���

These methods require additional e�ort in the design of the weak learn�
ing algorithm� A di�erent technique ����� which incorporates Dietterich and
Bakiri
s ���� method of error�correcting output codes� achieves similar provable
bounds to those of AdaBoost�MH and AdaBoost�M�� but can be used with
any weak learner which can handle simple� binary labeled data� Schapire and
Singer ���� give yet another method of combining boosting with error�correcting
output codes�

�
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Fig� �� Comparison of C�
� versus boosting stumps and boosting C�
� on a set of
�� benchmark problems as reported by Freund and Schapire ����
 Each point in each
scatterplot shows the test error rate of the two competing algorithms on a single bench�
mark
 The y�coordinate of each point gives the test error rate �in percent� of C�
� on
the given benchmark� and the x�coordinate gives the error rate of boosting stumps �left
plot� or boosting C�
� �right plot�
 All error rates have been averaged over multiple
runs


Experiments and applications

AdaBoost has been tested empirically by many researchers� including ��� �� ���
������ ��� ���� For instance� Freund and Schapire ���� tested AdaBoost on a set
of UCI benchmark datasets ���� using C��� ���� as a weak learning algorithm� as
well as an algorithm which 	nds the best �decision stump� or single�test decision
tree� Some of the results of these experiments are shown in Fig� �� As can be
seen from this 	gure� even boosting the weak decision stumps can usually give
as good results as C���� while boosting C��� generally gives the decision�tree
algorithm a signi	cant improvement in performance�

In another set of experiments� Schapire and Singer ���� used boosting for
text categorization tasks� For this work� weak hypotheses were used which test
on the presence or absence of a word or phrase� Some results of these experiments
comparing AdaBoost to four other methods are shown in Fig� �� In nearly all
of these experiments and for all of the performance measures tested� boosting
performed as well or signi	cantly better than the other methods tested�
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