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Abstract� Many algorithms for inferring a decision tree from data involve a two�phase process�
First� a very large decision tree is grown which typically ends up �over��tting� the data
 To reduce
over��tting� in the second phase� the tree is pruned using one of a number of available methods

The �nal tree is then output and used for classi�cation on test data

In this paper� we suggest an alternative approach to the pruning phase
 Using a given unpruned
decision tree� we present a new method of making predictions on test data� and we prove that our
algorithm�s performance will not be �much worse� �in a precise technical sense� than the predic�
tions made by the best reasonably small pruning of the given decision tree
 Thus� our procedure
is guaranteed to be competitive �in terms of the quality of its predictions� with any pruning al�
gorithm
 We prove that our procedure is very e�cient and highly robust

Our method can be viewed as a synthesis of two previously studied techniques
 First� we apply
Cesa�Bianchi et al
�s ��� results on predicting using �expert advice� �where we view each pruning
as an �expert�� to obtain an algorithm that has provably low prediction loss� but that is com�
putationally infeasible
 Next� we generalize and apply a method developed by Buntine ���� ���
and Willems� Shtarkov and Tjalkens ����� ���� to derive a very e�cient implementation of this
procedure


�� Introduction

Many algorithms for inferring a decision tree from data� such as C��� ����� involve a
two step process	 In the 
rst step� a very large decision tree is grown to match the
data� If the training data contains noise then this large tree typically �over�
ts

the data� giving quite poor performance on the test set� Therefore� in the second
phase� the tree is pruned using one of a number of available methods� The 
nal
tree is then output and used for classi
cation on test data�

In this paper� we suggest an alternative approach to the pruning phase� Using a
given unpruned decision tree T � we present a new method of making predictions on
test data� and we prove that our algorithm�s performance will not be �much worse

�in a precise technical sense� than the predictions made by the best reasonably small
pruning of the given decision tree� More precisely� we de
ne a value metric based
on the inaccuracy and size of the tree� Our algorithm�s performance is comparable
to the performance of the pruning with the highest value� Thus� our procedure is
guaranteed to be competitive �in terms of the quality of its predictions� with any
pruning algorithm�
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Formally� we study this problem in the on�line learning framework introduced
by Littlestone ��� and extended by Littlestone and Warmuth ���� and others� In
this model� at each time step t � �� � � � � T � the learner receives an instance xt and
must generate a prediction �yt � ��� ��� After an outcome yt � f�� �g is observed
�which can be thought of as the label or correct classi
cation of the instance xt��
the learner su�ers loss jyt � �ytj� Note that �yt can be interpreted as the bias of a
binary prediction which is � with probability �yt� and � with probability ���yt� Then
the loss jyt � �ytj is simply the probability of the learner making a mistake �i�e�� a
prediction di�ering from the outcome yt�� The tools developed for this framework
make it possible to prove very strong bounds on the performance of our algorithm�

The learner computes its predictions using predictions �tP that are generated in
a natural way by each pruning P of the given unpruned tree T � We 
rst show
how an algorithm developed and analyzed by Cesa�Bianchi et al� ��� can be applied
immediately to obtain a learning algorithm whose loss is bounded by a function
that� for any pruning P� is linear in the prediction loss of P and the size of P
�roughly� the number of nodes in the pruning�� Their algorithm is closely related
to work by Vovk ���� and Littlestone and Warmuth ����� Note that this is a �worst�
case
 analysis in the sense that it does not rely on statistical assumptions of any
kind regarding the source of the data that is being observed� Thus� the resulting
algorithm is very robust�

A naive implementation of this procedure would require computation time linear
in the number of prunings of T � obviously� this is infeasible� However� we show how
techniques used by Buntine ���� ��� and Willems� Shtarkov and Tjalkens ����� ���� can
be generalized and applied to our setting� yielding a very e�cient implementation
requiring computation time at each trial t that is linear in the length of the path
de
ned by the instance xt in the tree T �and therefore is bounded by the depth of
T ��

Various authors have presented techniques for averaging a family of decision
trees ���� ���� ����� In particular� using a Bayesian formulation� Buntine ���� ���
gave a method called Bayesian smoothing for averaging the class�probability pre�
dictions of all possible prunings of a given decision tree� Although our method is
very similar to Buntine�s� his is designed for use on a batch of examples� while ours
uses e�cient incremental updates of the data structure in an on�line setting�

Willems� Shtarkov and Tjalkens ����� ���� presented their technique in a much
narrower context in which the decision trees considered were assumed to have a
very particular form� and the goal was data compression rather than prediction�

A primary contribution of the current paper is the distillation of key elements of
these previously known methods� and synthesis with other learning�theory results
leading to broader learning applications�

In independent work� Oliver and Hand ���� have experimented with averaging
over di�erent prunings of decision trees� Their results show that in some cases
averaging outperforms the prunings generated by C���� Oliver and Hand weight
the prunings by their performance on the training set� while our methods provide
an e�cient way to update the weights as new data is seen� In addition to prunings
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of the full decision tree� Oliver and Hand also included subtrees resulting from those
splits that were considered but rejected when the decision tree was grown� This
can be modeled in our setting by storing multiple prediction rules �one for each
rejected split� at the nodes �see Section ���

According to Breiman et al� ���� pages ������ predicting with the leaves of a
decision tree will often have error at most twice that of the best pruning� They
argue why this is likely when the structure of the decision tree is created from a
training set independent of the test set �but drawn from the same distribution��
In contrast� our main result is a very robust worst�case guarantee	 the loss of our
algorithm will be within a small constant factor of the loss of the best pruning of
the decision tree on the test set� even if the training set �from which the decision
tree is grown� and the test set are produced by di�erent distributions� or the test
set is chosen by an adversary�

In summary� the main result of this paper is a highly e�cient and robust algorithm
which provably predicts nearly as well as the best pruning of a given decision tree�
We also describe how our method can be applied to the problem of predicting a
sequence of symbols using variable memory length prediction models� and mention
extensions to other loss functions�

�� Preliminaries

Let � be a 
nite alphabet of j�j symbols� A template tree T over � is a rooted�
j�j�ary tree where every internal node of T has one child for each symbol in ��
Thus we can �and will� identify each node in T with the path �sequence of symbols
in �� that leads from the root to that node�

We assume that there is a function which maps every instance x of the domain
X to a path through the template tree T starting at the root and ending at a leaf�
Typically� this path will be de
ned by a sequence of tests at the nodes of T � each
test resulting in the selection of one symbol in � which speci
es the next child to
visit� Although the template tree may be in
nite� we require that each of the paths
associated with an element of X be 
nite�

Figure � shows an example template tree over the alphabet � � fT� Fg� The
instance space X consists of all possible assignments to six boolean attributes�
b� through b�� Each internal node of T tests a single bit of the instance x �
�b�� b�� b�� b�� b�� b�� and branches left �T� if the bit is a one and branches right �F�
if the bit is a zero�

For simplicity� we assume that all instances x � X are represented in a canonical
form relative to the template tree� More speci
cally� we assume that each instance
x is represented by the string in �� de
ned by the path in T associated with the
instance� Such a representation allows us to ignore the underlying tests at the
nodes of T � We identify instances with their canonical representations� Thus each
instance x can be viewed as either an instance or a string in ���
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Figure 	
 An example template tree


For instance� in Figure �� the canonical representation of the instance ��� �� �� ��
�� �� is �FF
� and the canonical representation of the instance ��� �� �� �� �� �� is
�FTFFTT
� Note that in both cases b� is �� so b� is the second bit tested�

We use jxj to denote the number of symbols in the canonical representation of x�
thus� jxj is the length of the path induced by x in T � Also� since both instances and
nodes are identi
ed by strings in ��� it is clear that a node u is a pre
x of instance
x �written u � x� if and only if node u is on the path in T associated with x�

A pruning P of the tree T is a tree induced by replacing zero or more of the
internal nodes �and associated subtrees� of T by leaves� Thus prunings also have
the property that every node has either zero or j�j children� When an instance x is
evaluated in P� it follows the same path it would have followed in T � stopping when
a leaf of P is reached� The leaf that is so reached is denoted by leafP�x�� The set of
all leaves of P is written leaves�P�� and the set of all nodes �including both leaves
and internal nodes� is written nodes�P�� �Recall that both the leaves and internal
nodes of P are represented by strings in ���� The size of pruning P� written jPj�
is the number of internal nodes and leaves in P minus the number of leaves in P
that are also leaves of T � Not counting the leaves of T in the size of P allows us to
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 Two sample prunings of the template tree in Figure �


use the identity
P

P �
�jPj � � to simplify our later calculations� Figure � shows

two possible prunings of the template tree shown in Figure �� both having size ��

In order to use these prunings for classi
cation and prediction� we associate with
each leaf of a pruning P a prediction rule to be used on those instances reaching
that leaf in P� We assume that the predictions made by a leaf in P are �inherited

from the associated node in T � That is� we think of there being a dynamic �mini�
expert
 at each node of T � the prediction of a pruning P is then the same as the
prediction of the �mini�expert
 at the leaf of P reached by the instance� Thus�
if some node u is a pre
x of a particular instance and u is a leaf in two di�erent
prunings� then both prunings will generate the same prediction for the instance�

For example� in Figure �� we have indicated the predictions associated with the
leaves of the two prunings� These predictions are real numbers in ��� ��� whose
interpretation is discussed further below� Note that� since both prunings contain
the leaves FT and FF� both prunings give the same prediction whenever an instance
reaches one of these leaves�

Although most decision�tree algorithms come up with a 
xed prediction for each
leaf� we allow more general mini�experts� The predictions of the mini�experts can
be arbitrary functions of the current instance and�or previously seen instances�
Our main results �Theorems � and �� assume that each mini�expert�s prediction
can be computed in constant time and that all e�ects of a new instance on all of
the various mini�experts can be recorded in O�jxj� time�

The goal of our learning algorithm is to compete against the performance of
the best� reasonably small such pruning by combining the predictions of all of the
prunings� We study learning in the on�line prediction model used by Littlestone
and Warmuth ���� and others� In this model� learning takes place in a sequence
of trials t � �� � � � � T � At each time step t� an instance xt is observed� and each
pruning P generates a prediction �tP � ��� ��� The master algorithm combines these
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predictions to produce its own prediction �yt � ��� ��� Finally� feedback yt � f�� �g
is observed� For example� if the path for instance xt starts with TT then the
prunings in Figure � make the predictions ��� and ���� In the next section we
describe how the master algorithm produces its prediction �yt from these values and
the predictions of the other prunings�
As discussed above� the prediction �tP of the pruning P is given� intuitively� by a

mini�expert at the leaf reached by P� That is� we assume formally that each� node
u of T generates a prediction predt�u� � ��� �� for instance xt� and furthermore�
that

�tP � pred
t�leafP�x

t�� ���

for all P�
The loss of the master algorithm at time t is j�yt � ytj� We can interpret the

prediction �yt � ��� �� as the bias of a probabilistic prediction in f�� �g which is �
with probability �yt� and � with probability �� �yt� Then the loss su�ered j�yt�ytj is
exactly the expected probability of the probabilistically predicted bit di�ering from
the true outcome yt�
The cumulative loss of the master algorithm is the sum of the losses incurred at

all the trials	

LA �
TX
t��

j�yt � ytj

and� analogously� the cumulative loss of each pruning P is

LP �
TX
t��

j�tP � ytj�

�� An ine�cient master algorithm

In this section� we describe a master algorithm whose loss cannot be �much worse

than that of any �reasonably small
 pruning� For the moment� we assume that
computation time is not a consideration�
In this case� we can use the algorithm described by Cesa�Bianchi et al� ���� which

is an extension of Littlestone and Warmuth�s randomized weighted majority al�
gorithm ����� and is related to Vovk�s aggregating strategies ����� This algorithm
was called P ��� in Cesa�Bianchi et al��s notation� but we refer to it simply as the
�master algorithm�
 The algorithm maintains a weight wt

P � � for each pruning
P� Thus the master algorithm of this section keeps a single explicit weight for each
pruned tree� Initially�X

P

w�
P � �� ���
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where the sum is over all possible prunings of T �
The initial weights w�

P can be viewed as a �prior
 over the set of experts� Since
our bounds are strongest for those strategies receiving the greatest initial weight�
we want to choose initial weights that favor those strategies which we expect are
most likely to perform the best� A reasonable choice is

w�
P � �

�jPj ���

where jPj is the size measure de
ned in the previous section� This prior favors those
prunings which are small and thus unlikely to re�ect noise in the training set� �In
small prunings� each leaf�s prediction will tend to be based on more examples� see
the discussion of bias versus variance in Breiman et al� ���� pages ������� Although
the master algorithm can run with any prior on the prunings� this ��jPj prior
enables us to e�ciently implement the master algorithm as described in Section ��
At each time step� the learner computes its prediction as

�yt � F��r
t�

where � � ��� �� is a parameter of the algorithm� and rt is a weighted average� of
the predictions of the experts	

rt �

P
Pw

t
P�

t
PP

Pw
t
P

� ���

The function F� need only be bounded

�  
ln���� r��  r�

� ln� �
��� �

� F��r� �
� ln��� r  r��

� ln� �
��� �

�

for all � � r � �� Cesa�Bianchi et al� ��� give several suitable F� functions�
After feedback yt is received� the weights are updated by the rule

wt��
P � wt

P � U��j�
t
P � ytj� ���

where U� can be any function satisfying

�r � U��r� � �� ��� ��r

for r � ��� ���
Cesa�Bianchi et al� show that the master algorithm su�ers loss at most

inf
P

LP ln�����  ln���w�
P�

� ln�����  ���
�

Using the choice for w�
P given in equation ���� this bound shows that the loss of

the master algorithm is linear in LP and jPj� for every pruning P�
This bound is derived from the following two observations� First� any time the

master algorithm incurs some loss �� the sum of the updated weights is at most
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����� �
�� times the sum of the weights used to predict� Thus if the master algorithm�s

total loss is LA then the sum of the weights is reduced to �
���
� ��LA or less� Second�

if LP is the loss of some pruning P then the weight of P� and thus the sum of the
weights� is always at least wt

P���
LP � Solving these constraints on the sum of the

weights for LA yields the above bound� Cesa�Bianchi et al� also discuss in detail
how to choose the parameter ��

Since the preceding bound depends both on the pruning�s loss and its size� the
in
mum might not be achieved by the pruning with the smallest loss� especially
if this best pruning contains many nodes� However� the losses of the prunings are
likely to grow with the number of predictions made� while the sizes of the prunings
remain constant� In this case� the master algorithm�s predictions will converge to
those of the best pruning�

When only a few predictions are made� the loss of our algorithm is always less
than �a constant times� the loss plus the size of each pruning� Thus� if there is
some pruning P that is reasonably �small
 and whose loss LP is also reasonable
then the loss of the master algorithm will also be small�

�� An e�cient implementation

Unfortunately� the running time of this procedure is linear in the number of experts
�i�e�� prunings�� which in this case is enormous �possibly even in
nite�� Obviously�
we cannot e�ciently maintain all of the weights wt

P explicitly since there are far
too many prunings to consider� Instead� we use a more subtle data structure�
similar to the ones used by Buntine ���� ��� and Willems� Shtarkov and Tjalkens �����
����� that can be used to compute the prediction �yt of the master algorithm� The
size of this data structure is proportional to the number of nodes in T �or� more
accurately� to the number of nodes that have actually been visited�� Further� the
time needed to compute the prediction �yt from the �tP �s and to update the data
structure is proportional� at each time step t� to jxtj �recall that jxtj� in our canonical
representation� is the length of the path de
ned by xt in T ��

The basic idea is to maintain weights at the nodes that implicitly encode the
weights of the various prunings� In particular� the weight of pruning P is repre�
sented as ��jPj times the product of the weights stored at the leaves of P� Initially�
weight

��u� � � for each node u� and these values are only changed if u is a pre
x
of some instance xt� Thus even these node weights need only be stored explicitly
for those nodes of T that have actually been visited� This allows us to apply this
procedure e�ciently even if T is extremely large� or even in
nite �so long as every
instance x de
nes a 
nite path through the tree��

The 
rst main idea of this method is to show how to e�ciently compute sums of
the formX

P

��jPj
Y

s�leaves	P


g�s� ���
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 Subtrees and names of nodes


where the 
rst sum is over all prunings of T and g is any easily computed function
of the nodes� The second part of the method is to show that rt �equation ���� is
the ratio of two sums� both of which can be written in this form�
Fix a template tree T � For each node u in T � let Tu be the subtree of T rooted

at u� Note that each node in Tu is now associated with two strings	 s for the path
to the node in T � and s� for the path to the node in Tu �beginning at the root u of
the subtree�� Clearly� these are related by the identity s � us�� the concatenation
of u and s��
For example� consider the tree in Figure �� Node u is associated with the path

��� We use u to represent both the node in the tree and the string ���
� Node s is
associated with both the path ��� in the entire tree and the path s� � � in Tu� the
subtree rooted at u� Since ��� is the concatenation of �� and �� we have s � us��
This notational convenience allows us to easily express certain sums and products�
Let g 	 nodes�T �� R be any function� We de
ne the function g 	 nodes�T �� R

as follows	

g�u� �
X

P of Tu

��jPj
Y

s�leaves	P


g�us�

where we use the notation
P

P of Tu
to indicate summation over all prunings of Tu�

Note that the sum given in equation ��� is exactly equal to g���� where � denotes
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the empty string� Thus� the following lemma� which gives an e�cient method of
computing g� implies a method of computing sums of the form in equation ����
This lemma generalizes the proofs given for various special cases by Buntine ����
Lemma ����� and Willems� Shtarkov and Tjalkens ����� Appendices III and IV�

Lemma � Let g� g be as above� Then� for any node u of T �

�� if u is a leaf then g�u� � g�u��

�� if u is an internal node� then g�u� � �
�g�u�  

�
�

Q
a�� g�ua��

Proof� Case � follows immediately from the de
nition of g� keeping in mind that
jPj � � if P consists only of a leaf of T �
For case �� we can expand the sum recursively over the children of u� For sim�

plicity� suppose that � � f�� �g� the similar proof for general � is sketched below�
Note that any pruning P of the subtree Tu either contains only node u or can be
decomposed into two subtrees� P� and P�� rooted at the children u� and u� of u�
By de
nition of jPj� it can be shown that jPj � �  jP�j  jP�j� Thus� separating
out the case that P consists only of the node u� we can compute g�u� as

�
�g�u�  

X
P�

X
P�

��	��jP�j�jP�j

Y
s�

g�u�s��
Y
s�

g�u�s�� ���

� �
�g�u�  

�
�

�X
P�

��jP�j
Y
s�

g�u�s��

�
�

�X
P�

��jP�j
Y
s�

g�u�s��

�
���

� �
�g�u�  

�
�

Y
a��

g�ua�� ���

Here it is understood that� for a � f�� �g�
P

Pa
denotes summation over all prunings

Pa of Tua� and
Q

sa
denotes product over all leaves sa of Pa�

In the more general case that j�j � �� we repeat the sums and products in
equation ��� analogously for each a � �� and we use the more general identity
jPj � �  

P
a�� jPaj� Likewise� the factors in equation ��� are repeated for each

a � �� yielding equation ��� and completing the lemma�
Thus� computing from the bottom up� the function g can be computed in time

proportional to the number of nodes in T � We will see later that� for the functions
g of interest to us� a data structure can be used for even faster computation of g�
We now show how Lemma � can be used to compute the ratio rt of equation ���

e�ciently� This will allow us to e�ciently simulate the master algorithm of Cesa�
Bianchi et al� ����
For any node u� we de
ne the �weight
 of u at time step t� written weightt�u��

as u�s contribution on the 
rst t � � time steps to the weight decrease of any tree
P which contains u as a leaf� That is� we de
ne�

weight
t�u� �

Y
��t��t

u�xt
�

U��jpred
t��u�� yt

�

j�
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�recall that u � xt
�

means that u is a pre
x of xt
�

� and thus u is on the path
described by xt

�

�� Clearly� by equation ���� if u is a leaf of P � then

weight
t�u� �

Y
��t��t

leafP 	xt
�


�u

U��j�
t�

P � yt
�

j��

In other words� if u is a leaf in pruning P� then weightt�u� is the product of the
weight update factors applied to the weight associated with P at those time steps
when P predicts with the mini�expert at node u�
Recall that U��j�t

�

P � yt
�

j� is the master algorithm�s weight update function� For
any pruning P� we have by equations ��� and ��� that

wt
P � ��jPj

Y
��t��t

U��j�
t�

P � yt
�

j�

� ��jPj
Y

u�leaves	P


Y
��t��t

leafP	x
t
�


�u

U��j�
t�

P � yt
�

j�

� ��jPj
Y

u�leaves	P


weight
t�u��

Thus� the denominator of rt isX
P

wt
P �

X
P

��jPj
Y

u�leaves	P


weight
t�u��

which has the form given in equation ��� and can be computed as weightt���
using Lemma �� The quantity weightt�u� has an interpretation as the �weight of
the subtree rooted at u�
 In other words weightt�u� is the combined weight of all
prunings of the subtree rooted at u�
Initially� each node u has weight � so that weight��u� � �� It follows from

Lemma � by a trivial induction argument that weight��u�� the combined weight
of the entire tree� is equal to �� Thus� equation ��� is satis
ed�
For the numerator of rt� we de
ne

wpred
t�u� �

�
weight

t�u�predt�u� if u � xt

weight
t�u� otherwise�

Then we have� for any pruning P � that

wt
P�

t
P � ��jPj

�
� Y

u�leaves	P


weight
t�u�

�
A�tP

� ��jPj
Y

u�leaves	P


wpred
t�u� ����
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by equation ���� Thus�

X
P

wt
P�

t
P �

X
P

��jPj
Y

u�leaves	P


wpred
t�u� � wpred

t���

also has the form given in equation ���� As above� wpredt�u� has an interpretation
relating to the subtree rooted at u� The value wpredt�u� is the sum over all
prunings of the subtree rooted at u of the weight of the pruning times the prediction
of the pruning� Thus� wpredt�u� can be viewed as the �weighted prediction
 of
the prunings of the subtree rooted at u� The values wpredt�u� are �generally�
not normalized� as the total weights of the prunings decreases due to errors� so
will wpredt�u�� Note� however� that the quotient wpredt�u��weightt�u� is the
weighted average of the predictions made by the prunings of the subtree rooted at
u�
We have shown then that the numerator and denominator of rt �as expressed in

equation ���� can both be computed in time linear in the size of T � In fact� this
computation can be carried out at each time step t using time proportional to jxtj
when the quantities weightt�u� and weightt�u� are maintained at each node u�
The pseudo�code for the procedure is given in Figure ��
Initially weight��u� and weight

��u� are both equal to � for all nodes in T �
In general� after seeing xt we must produce rt � wpred

t����weightt��� used by
the master algorithm at time t� The denominator� weightt���� is immediately
accessible since the weightt�u� values are maintained at all of the nodes� To
compute wpredt���� we can apply Lemma � which suggests a recursive procedure
taking time linear in the number of nodes of T � Note� however� that if node u is
not a pre
x of xt then wpredt�u� � weight

t�u�� Furthermore� this equality also
holds for all of the descendants of any u which is not a pre
x of xt so wpredt�u� �
weight

t�u� for all u which are not pre
xes of xt� Thus wpredt�u� need only be
computed along the path of xt in T � allowing wpredt��� to be computed in time
linear in jxtj�
Once yt is observed� we need to update the values ofweightt�u� andweightt�u��

Again� the weightt�u� and weightt�u� values change only for those u which are
pre
xes of xt� Each new weight

t�u� value requires a single multiplication� and the
new weight

t�u� values can be computed �bottom�up
 in time proportional to jxtj�
To summarize� we have thus proved the following theorem� which is the main

result of this paper�

Theorem � Let T be a template tree� let �x�� y��� � � � � �xT � yT � be any sequence of
instance�feedback pairs� and let the predictions �tP associated with each pruning P
of T be of the form given in equation ��	� Then the loss of the master algorithm
given in Figure 
 is at most

LP ln�����  jPj ln���

� ln�����  ���
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Input� template tree T
access to predictions predt�u� of mini�experts
parameter � � ��� ��

Initialize weight��u� � weight
��u� � � for all nodes u in T

Do for t � �� �� � � �

� Prediction�

� Given xt � ��

� Compute weighted predictions wpredt�u� for each subtree using the rule	

wpred
t�u� �

���	
��

weight

t�u� if u �� xt �o� path�
weight

t�u�predt�u� if u � xt �path leaf�
�
�
weight

t�u�predt�u�  �
�

Q
a��wpred

t�ua�
otherwise �path internal node�

� Predict �yt � F��wpred
t����weightt����

� Update�

� Update the weight of each node� weightt	

weight
t���u� �

�
weight

t�u�U��jpredt�u� � ytj� if u � xt �on path�
weight

t�u� otherwise �o� path�

� Update the subtree weights weightt	

weight
t���u� �

���	
��

weight

t�u� if u �� xt �o� path�
weight

t���u� if u � xt �path leaf�
�
�weight

t���u�  �
�

Q
a��weight

t���ua�
otherwise �path internal node�

Figure �
 Pseudo�code for the master algorithm


for every pruning P� Furthermore� the running time of this algorithm� at every
time step t� is linear in jxtj�

Recall that weight��u� � weight
��u� � � for any node u� and that these values

are only changed if u is a pre
x of some instance xt� Thus these quantities need
only be stored explicitly for the nodes of T that have actually been visited� This
allows us to apply this procedure e�ciently even if T is extremely large� or even
in
nite �so long as every instance x de
nes a 
nite path through the tree��
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Finally� we remark that this O�jxtj� running time does not include the time re�
quired to update the mini�experts� predictions� However� if the template tree is
produced by a batch process so that each node�s predictions are 
xed in advance
then no updating is necessary� Furthermore� the predictions at a node will often
be an easily calculated function of the instances on which that node has previ�
ously predicted� Functions such as Laplace�s estimator � hits��

trials�� � are based on the
examples previously seen by that node and can be updated in constant time�

	� Multiple prediction rules at each node

In this section� we extend the preceding results to a more general setting in which
there is more than one �mini�expert
 or prediction rule associated with each node
of the template tree� Here� our goal is to select not only the best pruning but also
the best mini�expert at each leaf of this pruning�
For example� suppose we are given a template tree for routing instances but no

prediction rule at the nodes� In this case� we might associate with each node two
mini�experts corresponding to the deterministic boolean rules which always predict
� or always predict �� The goal then is to make predictions that are almost as
good as the best labeled pruning� i�e�� the best pruning whose leaves have each
been labeled with the best deterministic boolean prediction rule� As before� the
mini�experts need not make the same prediction every time� their predictions can
depend on the current instance and past history�
More formally� let n be the number of mini�experts associated with each node of

the template tree�� Our goal now is to compete against the predictions made by
each labeled pruning �P� I�� where P is a pruning and I 	 leaves�P� � f�� � � � � ng
assigns a mini�expert to each leaf of P� That is� P tells which pruning to use� and I
tells us which of the mini�experts to predict with for each leaf of P� The prediction
at time t of such a labeled pruning is denoted �tP�I�

At each time step t� each node u generates a prediction predt�u� i� � ��� �� for i �
�� � � � � n where i is the index of a mini�expert at node u� Analogous to Equation ����
we assume formally that

�tP�I � pred
t�leafP�x

t�� I�leafP�x
t���� ����

The cumulative loss of a labeled pruning is de
ned to be

LP�I �
TX
t��

j�tP�I � ytj�

Our goal is to come up with a master algorithm with cumulative loss close to that
of the best labeled pruning�
To do so� in the obvious manner� we can replace the weights wt

P used in Section �
by weights wt

P�I for every labeled pruning �P� I�� We choose the initial weights to
be
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w�
P�I � �

�jPj � n�jleaves	P
j�

As before� applying the results of Cesa�Bianchi et al� ��� immediately gives us a
bound on the loss of the resulting master algorithm� To implement this algorithm
e�ciently� we need to be able to compute

rt �

P
P�Iw

t
P�I�

t
P�IP

P�Iw
t
P�I

�

As before� we show how numerator and denominator can be written in the form
given in Equation ����
First� for any function h 	 nodes�T � � f�� � � � � ng � R� it can be veri
ed that

X
P�I

��jPj
Y

u�leaves	P


h�u� I�u�� �
X
P

��jPj
Y

u�leaves	P


nX
i��

h�u� i��

This can be seen by �multiplying out
 the product appearing on the right hand
side� Therefore� any expression of the formX

P�I

��jPj
Y

u�leaves	P


h�u� I�u�� ����

can be evaluated e�ciently by applying Lemma � with g�u� set to
Pn

i�� h�u� i�� To
compute rt then� it su�ces to write the denominator and numerator in the form
given in Equation �����
For the denominator� we de
ne

weight
t�u� i� �

Y
��t��t

u�xt
�

U��jpred
t��u� i�� yt

�

j��

Then

wt
P�I � ��jPjn�jleaves	P
j

Y
��t��t

U��j�
t�

P�I � yt
�

j�

� ��jPj
Y

u�leaves	P


�

n

Y
��t��t

leafP 	xt
�


�u

U��j�
t�

P�I � yt
�

j�

� ��jPj
Y

u�leaves	P


�

n
weight

t�u� I�u���

Thus�

X
P�I

wt
P�I �

X
P�I

��jPj
Y

u�leaves	P


�

n
weight

t�u� I�u��
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has the form given in Equation ����� Similarly� for the numerator� we de
ne

wpred
t�u� i� �

�
weight

t�u� i�predt�u� i� if u � xt

weight
t�u� i� otherwise�

Then it can be shown� as in Equation ����� that

X
P�I

wt
P�I�

t
P�I �

X
P�I

��jPj
Y

u�leaves	P


�

n
wpred

t�u� I�u��

which is of the desired form�
Unraveling these ideas� we obtain the algorithm shown in Figure �� The properties

of this algorithm are summarized by the following theorem	

Theorem � Let T be a template tree� let �x�� y��� � � � � �xT � yT � be any sequence
of instance�feedback pairs� and let the predictions �tP�I associated with each labeled
pruning �P� I� be of the form given in Equation ���	 where n is the number of mini�
experts associated with each node� Then the loss of the master algorithm given in
Figure � is at most

LP�I ln�����  jPj ln���  jleaves�P�j lnn

� ln�����  ���

for every labeled pruning �P� I�� Furthermore� the running time of this algorithm�
at every time step t� is linear in jxtjn�


� Other applications and extensions

In a real implementation of our algorithm� the weights stored at each node may
become extremely small� possibly causing a �oating�point under�ow� There is a
simple trick for avoiding this di�culty� based on the following observation	 Suppose
all of the weights weightt�u� of the nodes u along a given root�to�leaf path are
multiplied by some constant c� Then because each pruning contains exactly one
leaf that is a node from the given path� this e�ectively causes both wpredt��� and
weight

t��� to be multiplied by c� and therefore� the ratio of these values �which
is used to produce the algorithm�s predictions� is una�ected� Thus� if the weights
along a path in the tree seem too small� we can multiply all of these weights by a
constant to prevent �oating�point under�ow��

As a simple application of our result� we can use our method to predict a sequence
of symbols� say� the next letter in a passage of English text� We might restrict
our predictions to depend on the most recently observed sequence of characters�
For instance� on seeing �q�
 we might reliably predict that the next letter is �u�

Obviously� in other cases� a longer context is needed for reliable prediction� Thus�
we would like to use di�erent lengths for the di�erent contexts� By de
ning a
template tree in which the root node tests the last symbol� its children test the
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Input� template tree T
access to predictions predt�u� i� of mini�experts
parameter � � ��� ��

Initialize weight��u� i� � weight
��u� � � for all nodes u in T � and i � �� � � � � n�

Do for t � �� �� � � �

� Prediction�

� Given xt � ��

� Compute weighted predictions wpredt�u� for each subtree using the rule	

wpred
t�u� �

�����	
����


weight
t�u� if u �� xt �o� path�

�
n

Pn

i��weight
t�u� i�predt�u� i�

if u � xt �path leaf�
�
�n

Pn

i��weight
t�u� i�predt�u� i�  �

�

Q
a��wpred

t�ua�
otherwise �path internal node�

� Predict �yt � F��wpred
t����weightt����

� Update�

� Update weightt	

weight
t���u� i� �

�
weight

t�u� i�U��jpredt�u� i� � ytj� if u � xt �on path�
weight

t�u� i� otherwise �o� path�

� Update the subtree weights weightt	

weight
t���u� �

���	
��

weight

t�u� if u �� xt �o� path�
�
n

Pn

i��weight
t���u� i� if u � xt �path leaf�

�
�n

Pn

i��weight
t���u� i�  �

�

Q
a��weight

t���ua�
otherwise �path internal node�

Figure �
 Pseudo�code for the master algorithm with multiple mini�experts


symbol before last� and so on� we can use our method to make predictions that are
competitive with the best pruning� Such a pruning� in this case� is equivalent to
a rule for determining one of several variable�length contexts� which in turn can
be used to predict the next symbol� Learning results on such su�x trees were
presented by Ron� Singer and Tishby �����

Similar tree machines have been used to represent 
nite memory sources in the
information theory community� and they form the core of Rissanen�s Context algo�
rithm for universal data compression ���� �see also ����� ����� ������ In work more
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closely related to the results presented here� an e�cient algorithm for averaging over
prunings of such trees was presented by Willems� Shtarkov and Tjalkens ����� �����
However� these authors focus on predicting a distribution of symbols for coding
purposes� rather than simply predicting what the next symbol will be�
Our method is easily extended to other loss functions provided that there exists

a multiplicative weight�update algorithm of the appropriate form� For instance�
such algorithms are given by Vovk ����� Kivinen and Warmuth ���� and Freund and
Schapire ����
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Notes

�
 Actually� we only use the predictions of node u when u is a pre�x of xt


�
 Although the initial weights sum to �� this is generally not the case due to the update step of
Equation ���
 Therefore dividing by the sum of the weights is necessary to obtain the weighted
average of the experts� predictions


�
 The generalization to the case in which the number of mini�experts varies from node to node
is straightforward


�
 Note that this operation a�ects the data structure in other ways� for instance� all of the values
weight

t�u� for nodes u along the given path must be updated
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