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Abstract� We introduce and study a general� abstract game played between two
players called the shepherd and the adversary� The game is played in a series of
rounds using a �nite set of �chips� which are moved about in IRn� On each round�
the shepherd assigns a desired direction of movement and an importance weight
to each of the chips� The adversary then moves the chips in any way that need
only be weakly correlated with the desired directions assigned by the shepherd� The
shepherd�s goal is to cause the chips to be moved to low�loss positions� where the
loss of each chip at its �nal position is measured by a given loss function�

We present a shepherd algorithm for this game and prove an upper bound on its
performance� We also prove a lower bound showing that the algorithm is essentially
optimal for a large number of chips� We discuss computational methods for e�ciently
implementing our algorithm�

We show that our general drifting�game algorithm subsumes some well studied
boosting and on�line learning algorithms whose analyses follow as easy corollaries of
our general result�

Keywords� boosting� on�line learning algorithms

�� Introduction

We introduce a general� abstract game played between two players
called the shepherd� and the adversary� The game is played in a series
of rounds using a �nite set of �chips� which are moved about in IRn�
On each round� the shepherd assigns a desired direction of movement
to each of the chips� as well as a nonnegative weight measuring the
relative importance that each chip be moved in the desired direction�
In response� the adversary moves each chip however it wishes� so long as
the relative movements of the chips projected in the directions chosen
by the shepherd are at least �� on average� Here� the average is taken
with respect to the importance weights that were selected by the shep�
herd� and � � 	 is a given parameter of the game� Since we think of �
as a small number� the adversary need move the chips in a fashion that
is only weakly correlated with the directions desired by the shepherd�
The adversary is also restricted to choose relative movements for the

� In an earlier version of this paper� the �shepherd� was called the �drifter��
a term that was found by some readers to be confusing� The name of the main
algorithm has also been changed from �Shepherd� to �OS��

c� 	
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chips from a given set B � IRn� The goal of the shepherd is to force the
chips to be moved to low�loss positions� where the loss of each chip at
its �nal position is measured by a given loss function L� A more formal
description of the game is given in Section 
�

We present in Section � a new algorithm called �OS� for playing this
game in the role of the shepherd� and we analyze the algorithm�s per�
formance for any parameterization of the game meeting certain natural
conditions� Under the same conditions� we also prove in Section 
 that
our algorithm is the best possible when the number of chips becomes
large�

As spelled out in Section �� the drifting game is closely related to
boosting� the problem of �nding a highly accurate classi�cation rule by
combining many weak classi�ers or hypotheses� The drifting game and
its analysis are generalizations of Freund�s ����
� �majority�vote game�
which was used to derive his boost�by�majority algorithm� This latter
algorithm is optimal in a certain sense for boosting binary problems us�
ing weak hypotheses which are restricted to making binary predictions�
However� the boost�by�majority algorithm has never been generalized
to multiclass problems� nor to a setting in which weak hypotheses may
�abstain� or give graded predictions between two classes� The gen�
eral drifting game that we study leads immediately to new boosting
algorithms for these settings� By our result on the optimality of the
OS algorithm� these new boosting algorithms are also best possible�
assuming as we do in this paper that the �nal hypothesis is restricted
in form to a simple majority vote� We do not know if the derived
algorithms are optimal without this restriction�

In Section �� we discuss computational methods for implementing
the OS algorithm�We give a useful theorem for handling games in which
the loss function enjoys certain monotonicity properties� We also give a
more general technique using linear programming for implementing OS
in many settings� including the drifting game that corresponds to mul�
ticlass boosting� In this latter case� the algorithm runs in polynomial
time when the number of classes is held constant�

In Section �� we discuss the analysis of several drifting games cor�
responding to previously studied learning problems� For the drifting
games corresponding to binary boosting with or without abstaining
weak hypotheses� we show how to implement the algorithm e�ciently�
We also show that there are parameterizations of the drifting game
under which OS is equivalent to a simpli�ed version of the AdaBoost
algorithm �Freund and Schapire� ����� Schapire and Singer� ������
as well as Cesa�Bianchi et al��s ������ BW algorithm and Littlestone
and Warmuth�s ������ weighted majority algorithm for combining the
advice of experts in an on�line learning setting� Analyses of these al�
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parameters� number of rounds T
dimension of space n
set B � IRn of permitted relative movements
norm lp where p � �
minimum average drift � � 	
loss function L � IRn � IR
number of chips m

for t � �� � � � � T �

� shepherd chooses weight vector wt
i � IRn for each chip i

� adversary chooses drift vector zti � B for each chip i so that

mX
i��

wt
i � z

t
i � �

mX
i��

jjwt
ijjp

the �nal loss su�ered by the shepherd is
�

m

mX
i��

L

�
TX
t��

zti

�

Figure �� The drifting game�

gorithms follow as easy corollaries of the analysis we give for general
drifting games�

�� Drifting games

We begin with a formal description of the drifting game� An outline of
the game is shown in Fig� �� There are two players in the game called
the shepherd and the adversary� The game is played in T rounds using
m chips� On each round� the shepherd speci�es a weight vector wt

i � IRn

for each chip i� The direction of this vector� vti � wt
i�jjw

t
ijjp� speci�es a

desired direction of drift� while the length of the vector jjwt
ijjp speci�es

the relative importance of moving the chip in the desired direction� In
response� the adversary chooses a drift vector zti for each chip i� The
adversary is constrained to choose each zti from a �xed set B � IRn�
Moreover� the zti�s must satisfyX

i

wt
i � z

t
i � �

X
i

jjwt
ijjp ���

or equivalently P
i jjw

t
ijjpv

t
i � z

t
iP

i jjw
t
ijjp

� � �
�
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where � � 	 is a �xed parameter of the game� �Here and throughout
the paper� when clear from context�

P
i denotes

Pm
i��� likewise� we

will shortly use the notation
P

t for
PT

t���� In words� vti � z
t
i is the

amount by which chip i has moved in the desired direction� Thus� the
left hand side of Eq� �
� represents a weighted average of the drifts of
the chips projected in the desired directions where chip i�s projected
drift is weighted by jjwt

i jjp�
P

i jjw
t
ijjp� We require that this average

projected drift be at least ��
The position of chip i at time t� denoted by sti� is simply the sum

of the drifts of that chip up to that point in time� Thus� s�i � � and
st��i � sti � zti� The �nal position of chip i at the end of the game is

sT��i �
At the end of T rounds� we measure the shepherd�s performance

using a function L of the �nal positions of the chips� this function is
called the loss function� Speci�cally� the shepherd�s goal is to minimize

�

m

X
i

L�sT��i ��

Summarizing� we see that a game is speci�ed by several parameters�
the number of rounds T � the dimension n of the space� a norm jj�jjp on
IRn� a set B � IRn� a minimum drift constant � � 	� a loss function L�
and the number of chips m�

Since the length of weight vectors w are measured using an lp�norm�
it is natural to measure drift vectors z using a dual lq�norm where
��p� ��q � �� When clear from context� we will generally drop p and
q subscripts and write simply jjwjj or jjzjj�

As an example of a drifting game� suppose that the game is played
on the real line and that the shepherd�s goal is to get as many chips
as possible into the interval �
� ��� Suppose further that the adversary
is constrained to move each chip left or right by one unit� and that�
on each round� �	� of the chips �as weighted by the shepherd�s cho�
sen distribution over chips� must be moved in the shepherd�s desired
direction� Then for this game� n � �� B � f�����g and � � 	��� Any
norm will do �since we are working in just one dimension�� and the loss
function is

L�s� �

�
	 if s � �
� ��
� otherwise�

We will return to this example later in the paper�
Drifting games bear a certain resemblence to the kind of games stud�

ied in Blackwell�s ���
�� celebrated approachability theory� However�
it is unclear what the exact relationship is between these two types of
games and whether one type is a special case of the other�
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�� Relation to boosting

In this section� we describe how the general game of drift relates directly
to boosting� In the simplest boosting model� there is a boosting algo�
rithm that has access to a weak learning algorithm that it calls in a se�
ries of rounds� There arem given labeled examples �x�� y��� � � � � �xm� ym�
where xi � X and yi � f�����g� On each round t� the booster chooses
a distribution Dt�i� over the examples� The weak learner then must
generate a weak hypothesis ht � X � f�����g whose error is at most
��
� � with respect to distribution Dt� That is�

Pri�Dt �yi �� ht�xi�� �
�
� � �� ���

Here� � � 	 is known a priori to both the booster and the weak learner�
After T rounds� the booster outputs a �nal hypothesis which we here
assume is a majority vote of the weak hypotheses�

H�x� � sign

�X
t

ht�x�

�
� ���

For our purposes� the goal of the booster is to minimize the fraction of
errors of the �nal hypothesis on the given set of examples��

�

m
jfi � yi �� H�xi�gj � �
�

We can recast boosting as just described as a special�case drifting
game� a similar game� called the �majority�vote game�� was studied
by Freund ����
� for this case� The chips are identi�ed with examples�
and the game is one�dimensional so that n � �� The drift of a chip zti is
�� if example i is correctly classi�ed by ht and �� otherwise� that is�
zti � yiht�xi� and B � f�����g� The weight wt

i is formally permitted
to be negative� something that does not make sense in the boosting
setting� however� for the optimal shepherd described in the next section�
this weight will always be nonnegative for this game �by Theorem ��� so
we henceforth assume that wt

i � 	� The distribution Dt�i� corresponds
to wt

i�
P

iw
t
i � Then the condition in Eq� ��� is equivalent to

X
i

�
wt
iP

i w
t
i

�
�� zti



��
� �

� � �

or X
i

wt
iz
t
i � 
�

X
i

wt
i � ���

� Of course� the real goal of a boosting algorithm is to �nd a hypothesis with
low generalization error� In this paper� we only focus on the simpli�ed problem of
minimizing error on the given training examples�
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This is the same as Eq� ��� if we let � � 
�� Finally� if we de�ne the
loss function to be

L�s� �

�
� if s � 	
	 if s � 	

���

then
�

m

X
i

L�sT��i � ���

is exactly equal to Eq� �
��
Our main result on playing drifting games yields in this case exactly

Freund�s boost�by�majority algorithm ����
�� There are numerous vari�
ants of this basic boosting setting to which Freund�s algorithm has
never been generalized and analyzed� For instance� we have so far
required weak hypotheses to output values in f�����g� It is natu�
ral to generalize this model to allow weak hypotheses to take values
in f��� 	���g so that the weak hypotheses may �abstain� on some
examples� or to take values in ������� so that a whole range of values
are possible� These correspond to simple modi�cations of the drifting
game described above in which we simply change B to f��� 	���g or
�������� As before� we require that Eq� ��� hold for all weak hypothe�
ses and we attempt to design a boosting algorithm which minimizes
Eq� ���� For both of these cases� we are able to derive analogs of the
boost�by�majority algorithm which we prove are optimal in a particular
sense�

Another direction for generalization is to the non�binary multiclass
case in which labels yi belong to a set Y � f�� � � � � ng� n � 
� Following
generalizations of the boosting algorithm AdaBoost to the multiclass
case �Freund and Schapire� ����� Schapire and Singer� ������ we allow
the booster to assign weights both to examples and labels� That is� on
each round� the booster devises a distribution Dt�i� �� over examples i
and labels � � Y � The weak learner then computes a weak hypothesis
ht � X 	Y � f�����g which must be correct on a non�trivial fraction
of the example�label pairs� That is� if we de�ne

�y��� �

�
�� if y � �
�� otherwise

then we require

Pr�i����Dt
�ht�xi� �� �� �yi���� �

�
� � �� ���

The �nal hypothesis� we assume� is again a plurality vote of the weak
hypotheses�

H�x� � argmax
y�Y

X
t

ht�x� y�� ��	�
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We can cast this multiclass boosting problem as a drifting game
as follows� We have n dimensions� one per class� It will be convenient
for the �rst dimension always to correspond to the correct label� with
the remaining n�� dimensions corresponding to incorrect labels� To do
this� let us de�ne a map 	� � IR

n � IRn which simply swaps coordinates
� and �� leaving the other coordinates untouched� The weight vectors
wt
i correspond to the distribution Dt� modulo swapping of coordinates�

a correction of sign and normalization�

Dt�i� �� �

���	yi�wt
i���

��P
i jjw

t
ijj

�

The norm used here to measure weight vectors is l��norm� Also� it will
follow from Theorem � that� for optimal play of this game� the �rst
coordinate of wt

i is always nonnegative and all other coordinates are
nonpositive� The drift vectors zti are derived as before from the weak
hypotheses�

zti � 	yi�hht�xi� ��� � � � � ht�xi� n�i��

It can be veri�ed that the condition in Eq� ��� is equivalent to Eq� ���
with � � 
�� For binary weak hypotheses� B � f�����gn�

The �nal hypothesis H makes a mistake on example �x� y� if and
only if X

t

ht�x� y� � max
�����y

X
t

ht�x� ���

Therefore� we can count the fraction of mistakes of the �nal hypothesis
in the drifting game context as

�

m

X
i

L�sT��i �

where

L�s� �

�
� if s� � maxfs�� � � � � sng
	 otherwise�

����

Thus� by giving an algorithm for the general drifting game� we also ob�
tain a generalization of the boost�by�majority algorithm for multiclass
problems� The algorithm can be implemented in this case in polynomial
time for a constant number of classes n� and the algorithm is provably
best possible in a particular sense�

We note also that a simpli�ed form of the AdaBoost algorithm �Fre�
und and Schapire� ����� Schapire and Singer� ����� can be derived as
an instance of the OS algorithm simply by changing the loss function
L in Eq� ��� to an exponential L�s� � exp��
s� for some 
 � 	� More
details on this game are given in Section ��
�
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Besides boosting problems� the drifting game also generalizes the
problem of learning on�line with a set of �experts� �Cesa�Bianchi et al��
����� Littlestone and Warmuth� ������ In particular� the BW algorithm
of Cesa�Bianchi et al� ������ and the weighted majority algorithm of
Littestone and Warmuth ������ can be derived as special cases of our
main algorithm for a particular natural parameterization of the drifting
game� Details are given in Section ����

�� The algorithm and its analysis

We next describe our algorithm for playing the general drifting game
of Section 
� Like Freund�s boost�by�majority algorithm ����
�� the
algorithm we present here uses a �potential function� which is central
both to the workings of the algorithm and its analysis� This function
can be thought of as a �guess� of the loss that we expect to su�er for
a chip at a particular position and at a particular point in time�

We denote the potential of a chip at position s on round t by �t�s��
The �nal potential is the actual loss so that �T � L� The potential
functions �t for earlier time steps are de�ned inductively�

�t���s� � min
w�IRn

sup
z�B

��t�s� z� �w � z� �jjwjjp�� ��
�

We will show later that� under natural conditions� the minimum above
actually exists� Moreover� the minimizing vector w is the one used by
the shepherd for the algorithm we now present� We call our shepherd
algorithm �OS� for �optimal shepherd�� The weight vector wt

i chosen
by OS for chip i is any vector w which minimizes

sup
z�B

��t�s
t
i � z� �w � z� �jjwjjp��

Returning to the example at the end of Section 
� Fig� 
 shows the
potential function �t and the weights that would be selected by OS as
a function of the position of each chip for various choices of t� For this
�gure� T � 
	�

We will need some natural assumptions to analyze this algorithm�
The �rst assumption states merely that the allowed drift vectors in B
are bounded� for convenience� we assume they have norm at most one�

ASSUMPTION �� supz�B jjzjjq � ��

We next assume that the loss function L is bounded�

ASSUMPTION 
� There exist �nite Lmin and Lmax such that Lmin �
L�s� � Lmax for all s � IRn�
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Figure �� Plots of the potential function �top curve in each �gure
 and the weights
selected by OS �bottom curves
 as a function of the position of a chip in the example
game at the end of Section 	 for various choices of t and with T � 	
� The vertical
dotted lines show the boundary of the goal interval �	� ��� Curves are only meaningful
at integer values�

In fact� this assumption need only hold for all s with jjsjjq � T since
positions outside this range are never reached� given Assumption ��

Finally� we assume that� for any direction v� it is possible to choose
a drift whose projection onto v is more than � by a constant amount�

ASSUMPTION �� There exists a number � � 	 such that for all w �
IRn there exists z � B with w � z � �� � ��jjwjj�
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LEMMA �� Given Assumptions �� � and �� for all t � 	� � � � � T �

�� the minimum in Eq� ���	 exists
 and

�� Lmin � �t�s� � Lmax for all s � IRn�
Proof� By backwards induction on t� The base cases are trivial� Let

us �x s and let F �z� � �t�s� z�� Let

H�w� � sup
z�B

�F �z� �w � z� �jjwjj��

Using Assumption �� for any w� w��

jH�w���H�w�j � sup
z�B

���F �z� �w � z� �jjwjj� � �F �z� �w� � z� �jjw�jj�
��

� sup
z�B

���w�w�� � z� ��jjw�jj � jjwjj�
��

� �� � ��jjw� �wjj�

Therefore� H is continuous� Moreover� for w � IRn� by Assumptions 

and � �as well as our inductive hypothesis��

H�w� � Lmin � �� � ��jjwjj � �jjwjj � Lmin � �jjwjj� ����

Since
H��� � Lmax� ����

it follows that H�w� � H��� if jjwjj � �Lmax � Lmin���� Thus� for
computing the minimum of H� we only need consider points in the
compact set �

w � jjwjj �
Lmax � Lmin

�

�
�

Since a continuous function over a compact set has a minimum� this
proves Part ��

Part 
 follows immediately from Eqs ���� and �����

We next prove an upper bound on the loss su�ered by a shepherd
employing the OS algorithm against any adversary� This is the main
result of this section� We will shortly see that this bound is essentially
best possible for any algorithm� It is important to note that these
theorems tell us much more than the almost obvious point that the
optimal thing to do is whatever is best in a minmax sense� These
theorems prove the nontrivial fact that �nearly� minmax behavior can
be obtained without the simultaneous consideration of all of the chips
at once� Rather� we can compute each weight vector wt

i merely as a
function of the position of chip i� without consideration of the positions
of any of the other chips�
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THEOREM 
� Under the condition of Assumptions �� � and �� the
�nal loss su�ered by the OS algorithm against any adversary is at most
�	��� where the functions �t are de�ned above�

Proof� Following Freund�s analysis ����
�� we show that the total
potential never increases� That is� we prove by induction thatX

i

�t�s
t��
i � �

X
i

�t���s
t
i�� ��
�

This implies� through repeated application of Eq� ��
�� that

�

m

X
i

L�sT��i � �
�

m

X
i

�T �s
T��
i � �

�

m

X
i

�	�s
�
i � � �	���

as claimed�
The de�nition of �t�� given in Eq� ��
� implies that for wt

i chosen
by the OS algorithm� and for all z � B and all s � IRn�

�t�s� z� �wt
i � z� �jjwt

ijj � �t���s��

Therefore� X
i

�t�s
t��
i � �

X
i

�t�s
t
i � zti�

�
X
i

��t���s
t
i��wt

i � z
t
i � �jjwt

i jj�

�
X
i

�t���s
t
i�

where the last inequality follows from Eq� ����

Returning again to the example at the end of Section 
� Fig� � shows
a plot of the bound �	�	� as a function of the total number of rounds
T � It is rather curious that the bound is not monotonic in T �even
discounting the jagged nature of the curve caused by the di�erence
between even and odd length games�� Apparently� for this game� having
more time to get the chips into the goal region can actually hurt the
shepherd�

�� A lower bound

In this section� we prove that the OS algorithm is essentially optimal
in the sense that� for any shepherd algorithm� there exists an adversary
capable of forcing a loss matching the upper bound of Theorem 
 in
the limit of a large number of chips� Speci�cally� we prove the following
theorem� the main result of this section�
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Figure 	� A plot of the loss bound ���

 as a function of the total number of rounds
T for the example game at the end of Section 	� The jagged nature of the curve is
due to the di�erence between a game with an odd or an even number of steps�

THEOREM �� Let A be any shepherd algorithm for playing a drifting
game satisfying Assumptions �� � and � where all parameters of the
game are �xed� except the number of chips m� Let �t be as de�ned
above� Then for any 
 � 	� there exists an adversary such that for m
su�ciently large� the loss su�ered by algorithm A is at least �	���� 
�

To prove the theorem� we will need two lemmas� The �rst gives
an abstract result on computing a minimax of the kind appearing in
Eq� ��
�� The second lemma uses the �rst to prove a characterization
of �t in a form amenable to use in the proof of Theorem ��

LEMMA �� Let S be any nonempty� bounded subset of IR�� Let C be
the convex hull of S� Then

inf
��IR

supfy � �x � �x� y� � Sg � supfy � �	� y� � Cg�

Proof� Let C be the closure of C� First� for any � � IR�

supfy � �x � �x� y� � Sg � supfy � �x � �x� y� � Cg

� supfy � �x � �x� y� � Cg� ����
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The �rst equality follows from the fact that� if �x� y� � C then

�x� y� �
NX
i��

pi�xi� yi�

for some positive integer N � pi � �	� ���
P

i pi � �� �xi� yi� � S� But then

y � �x �
NX
i��

pi�yi � �xi� � max
i
�yi � �xi��

The second equality in Eq� ���� follows simply because the supremum
of a continuous function on any set is equal to its supremum over the
closure of the set� For this same reason�

supfy � �	� y� � Cg � supfy � �	� y� � Cg� ����

Because C is closed� convex and bounded� and because the func�
tion y � �x is continuous� concave in �x� y� and convex in �� we can
reverse the order of the �inf sup� �see� for instance� Corollary �����
 of
Rockafellar ����	��� That is�

inf
��IR

sup
�x�y��C

�y � �x� � sup
�x�y��C

inf
��IR

�y � �x�� ����

Clearly� if x �� 	 then

inf
��IR

�y � �x� � �
�

Thus� the right hand side of Eq� ���� is equal to

supfy � �	� y� � Cg�

Combining with Eqs� ���� and ���� immediately gives the result�

LEMMA 
� Under the condition of Assumptions �� � and �� and for
�t as de�ned above�

�t���s� � inf
v�jjvjj��

sup
NX
j��

dj�t�s� zj�

where the supremum is taken over all positive integers N � all z�� � � � � zN �
B and all nonnegative d�� � � � � dN satisfying

P
j dj � � and

X
j

djv � zj � ��
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Proof� To simplify notation� let us �x t and s� Let F and H be as
de�ned in the proof of Lemma �� For jjvjj � �� let

G�v� � sup
NX
j��

djF �zj� ����

where again the supremum is taken over dj �s and zj �s as in the state�
ment of the lemma� Note that by Assumption �� this supremum cannot
be vacuous� Throughout this proof� we use v to denote a vector of norm
one� while w is a vector of unrestricted norm� Our goal is to show that

inf
v
G�v� � inf

w
H�w�� �
	�

Let us �x v momentarily� Let

S � f�v � z� �� F �z�� � z � Bg �

Then S is bounded by Assumptions �� 
 and � �and part 
 of Lemma ���
so we can apply Lemma � which gives

inf
��IR

sup
z�B

�F �z� � ��v � z� ��� � G�v�� �
��

Note that

inf
��	

H��v� � inf
��	

sup
z�B

�F �z� � �v � z� ���

� inf
��IR

sup
z�B

�F �z� � �v � z� ���

� inf
��IR

sup
z�B

�F �z� � �v � z� j�j�� � inf
��IR

H��v�

�where the second inequality uses � � j�j�� Combining with Eq� �
��
gives

inf
v

inf
��	

H��v� � inf
v
G�v� � inf

v
inf
��IR

H��v��

Since the left and right terms are both equal to infwH�w�� this implies
Eq� �
	� and completes the proof�

Proof of Theorem �� We will show that� for m su�ciently large� on
round t� the adversary can choose the zti�s so that

�

m

X
i

�t�s
t��
i � �

�

m

X
i

�t���s
t
i��




T
� �

�
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Repeatedly applying Eq� �

� implies that

�

m

X
i

L�sT��i � �
�

m

X
i

�T �s
T��
i � �

�

m

X
i

�	�s
�
i �� 
 � �	���� 


proving the theorem�
Fix t� We use a random construction to show that there exist zti�s

with the desired properties� For each weight vector wt
i chosen by the

shepherd� let di�� � � � � diN � �	� �� and zi�� � � � � ziN � B be such thatP
j dij � �� X

j

dijw
t
i � zij � �jjwt

i jj

and X
j

dij�t�s
t
i � zij� � �t���s

t
i��





T
�

Such dij �s and zij �s must exist by Lemma 
� Using Assumption �� let
zi	 be such that

wt
i � zi	 � �� � ��jjwt

ijj�

Finally� let Zi be a random variable that is zi	 with probability � and
zij with probability ��� ��dij �independent of the other Zi�s�� Here�

� �



�T �Lmax � Lmin�
�

Let vi � wt
i�jjw

t
ijj� and let ai � jjwt

ijj�
P

i jjw
t
ijj� By Assumption ��

jvi � Zij � �� Also�

E �vi � Zi� � ��� ��� � ��� � �� � � � ���

Thus� by Hoe�ding�s inequality �������

Pr

�X
i

aivi � Zi � �

�
� exp

�
�

����



P

i a
�
i

�
� e��

������ �
��

Let S � ���m�
P

i �t�s
t
i � Zi�� Then

E �S� �
�

m

X
i

�	
�t���s

t
i��





T



��� �� � ��t�s

t
i � zi	�

�

�
�

m

X
i

h
�t���s

t
i� � ���t�s

t
i � zi	�� �t���s

t
i��
i
�





T
��� ��

�
�

m

X
i

�t���s
t
i�� ��Lmax � Lmin��





T
� �
��
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By Hoe�ding�s inequality ������� since Lmin � �t�s
t
i �Zi� � Lmax�

Pr �S � E �S�� ��Lmax � Lmin�� � e���
�m� �

�

Now let m be so large that

e���
�m � e��

����� � ��

Then by Eqs� �
�� and �

�� there exists a choice of zti�s such thatX
i

wt
i � z

t
i �

X
i

aivi � z
t
i � �

and such that

�

m

X
i

�t�s
t��
i � �

�

m

X
i

�t�s
t
i � zti�

� E �S�� ��Lmax � Lmin�

�
�

m

X
i

�t���s
t
i��




T

by Eq� �
�� and our choice of ��

�� Computational methods

In this section� we discuss general computational methods for imple�
menting the OS algorithm�

���� Unate loss functions

We �rst note that� for loss functions L with certain monotonicity prop�
erties� the quadrant in which the minimizing weight vectors are to be
found can be determined a priori� This often simpli�es the search for
minima� To be more precise� for � � f�����gn and x�y � IRn� let us
write x �� y if �ixi � �iyi for all � � i � n� We say that a function
f � IRn � IR is unate with sign vector � � f�����gn if f�x� � f�y�
whenever x �� y�

LEMMA �� If the loss function L is unate with sign vector � � f�����gn�
then so is �t �as de�ned above	 for t � 	� � � � � T �

Proof� By backwards induction on t� The base case is immediate�
Let x �� y� Then for any z � B and w � IRn� x� z �� y � z� and so

�t�x� z� �w � z� �jjwjj � �t�y � z� �w � z� �jjwjj

p���
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by inductive hypothesis� Therefore� �t���x� � �t���y�� and so �t�� is
also unate�

For the main theorem of this subsection� we need one more assump�
tion�

ASSUMPTION �� If z � B and if z� is such that jz�ij � jzij for all i�
then z� � B�

THEOREM �� Under the condition of Assumptions �� �� � and 
� if
L is unate with sign vector � � f�����gn� then for any s � IRn� there
is a vector w which minimizes

sup
z�B

��t�s� z� �w � z� �jjwjj�

and for which w �� ��
Proof� Let F and H be as in the proof of Lemma �� By Lemma ��

F is unate� Let w � IRn have some coordinate i for which �iwi � 	 so
that w ��� �� Let w

� be such that

w�
j �

�
wj if j �� i

�wi if j � i�

We show that H�w�� � H�w�� Let z � B� If �izi � 	 then

F �z� �w � z� �jjwjj � F �z� �w� � z� �jjw�jj�

If �izi � 	 then let z� be de�ned analogously to w�� By Assumption ��
z� � B� Then z �� z

� and so F �z� � F �z��� Thus�

F �z�� �w � z� � �jjwjj � F �z� �w� � z� �jjw�jj�

Hence� H�w�� � H�w��
Applying this argument repeatedly� we can derive a vector w with

w �� � and such that H�w� � H�w�� This proves the theorem�

Note that the loss functions for all of the games in Section � are
unate �and also satisfy Assumptions ����� The same will be true of
all of the games discussed in Section �� Thus� for all of these games�
we can determine a priori the signs of each of the coordinates of the
minimizing vectors used by the OS algorithm�

p���
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��
� A general technique using linear programming

In many cases� we can use linear programming to implement OS� In
particular� let us assume that we measure weight vectors w using the
l� norm �i�e�� p � ��� Also� let us assume that jBj is �nite� Then given
�t and s� computing

�t���s� � min
w�IRn

max
z�B

��t�s� z� �w � z� �jjwjj�

can be rewritten as an optimization problem�

variables� w � IRn� b � IR
minimize� b
subject to� �z � B � �t�s� z� �w � z� �jjwjj � b�

The minimizing value b is the desired value of �t���s�� Note that� with
respect to the variables w and b� this problem is �almost� a linear
program� if not for the norm operator� However� when L is unate with
sign vector �� and when the other conditions of Theorem � hold� we
can restrict w so that w �� �� This allows us to write

jjwjj� � �
nX
i��

�iwi�

Adding w �� � as a constraint �or rather� a set of n constraints�� we
now have derived a linear program with n � � variables and jBj � n
constraints� This can be solved in polynomial time�

Thus� for instance� this technique can be applied to the multiclass
boosting problem discussed in Section �� In this case� B � f�����gn�
So� for any s� �t���s� can be computed from �t in time polynomial
in 
n which may be reasonable for small n� In addition� �t must be
computed at each reachable position s in an n�dimensional integer grid
of radius t� i�e�� for all s � f�t��t � �� � � � � t � �� tgn� This involves
computation of �t at �
t � ��n points� giving an overall running time
for the algorithm which is polynomial in �
T � ��n� Again� this may
be reasonable for very small n� It is an open problem to �nd a way to
implement the algorithm more e�ciently�

	� Deriving old and new algorithms

In this section� we show how a number of old and new boosting and
on�line learning algorithms can be derived and analyzed as instances of
the OS algorithm for appropriately chosen drifting games�
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���� Boost�by�majority and variants

We begin with the drifting game described in Section � corresponding
to binary boosting with B � f�����g� For this game�

�t���s� � min
w�	

maxf�t�s� ��� w � �w� �t�s� �� �w � �wg

where we know from Theorem � that only nonnegative values of w need
to be considered� It can be argued that the minimum must occur when

�t�s� ��� w � �w � �t�s� �� � w � �w�

i�e�� when

w �
�t�s� ��� �t�s� ��



� �
��

This gives

�t���s� �
� � �



�t�s� �� �

�� �



�t�s� ���

Solving gives

�t�s� � 
t�T
X

	�k��T�t�s���

�
T � t

k

�	
� � �

�� �


k

�where we follow the convention that
�n
k



� 	 if k � 	 or k � n��

Weighting examples using Eq� �
�� gives exactly Freund�s ����
� boost�
by�majority algorithm �the �boosting by resampling� version��

When B � f��� 	���g� a similar but more involved analysis gives

�t���s� �max

�
��� ���t�s� � ��t�s� ���

� � �



�t�s� �� �

�� �



�t�s� ��

�
�
��

and the corresponding choice of w is �t�s� � �t�s� �� or ��t�s� �� �
�t�s�����
� depending on whether the maximum in Eq� �
�� is realized
by the �rst or second quantity� We do not know how to solve the
recurrence in Eq� �
�� so that the bound �	��� given in Theorem 
 can
be put in explicit form� Nevertheless� this bound can easily be evaluated
numerically� and the algorithm can certainly be implemented e�ciently
in its present form�

We have thus far been unable to solve the recurrence for the case
that B � �������� even to a point at which the algorithm can be
implemented� However� this case can be approximated by the case in
which B � fi�N � i � �N� � � � � Ng for a moderate value of N � In
the latter case� the potential function and associated weights can be

p��
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Figure �� A comparison of the bound ����
 for the drifting games associated
with AdaBoost �Section ��	
 and boost�by�majority �Sections � and ���
� For Ad�
aBoost� � is set as in Eq� �	�
� For boost�by�majority� the bound is plotted when
B is f�����g� f��� 
���g and �������� �The latter case is approximated by
B � fi��

 � i � ��

� � � � � �

g�
 The bound is plotted as a function of the number
of rounds T � The drift parameter is �xed to � � 
�	� �The jagged nature of the
B � f�����g curve is due to the fact that games with an even number of rounds
� in which ties count as a loss for the shepherd so that L�

 � � � are harder than
games with an odd number of rounds�


computed numerically� For instance� linear programming can be used
as discussed in Section ��
� Alternatively� it can be shown that Lemma 

combined with Theorem � implies that

�t���s��maxfp�t�s� z�� � ��� p��t�s� z�� �

z�� z� � B� p � �	� ��� pz� � ��� p�z� � �g

which can be evaluated using a simple search over all pairs z�� z� �since
B is �nite��

Fig� � compares the bound �	��� for the drifting games associ�
ated with boost�by�majority and variants in which B is f�����g�
f��� 	���g and ������� �using the approximation that was just men�
tioned�� as well as AdaBoost �discussed in the next section�� These
bounds are plotted as a function of the number of rounds T �

p���
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��
� AdaBoost and variants

As mentioned in Section �� a simpli�ed� non�adaptive version of Ad�
aBoost can be derived as an instance of OS� To do this� we simply
replace the loss function �Eq� ���� in the binary boosting game of
Section � with an exponential loss function L�s� � e��s where 
 � 	 is
a parameter of the game� As a special case of the discussion below� it
will follow that

�t�s� � �T�te��s

where � is the constant

� �
�� �



e� �

� � �



e���

Also� the weight given to a chip at position s on round t is

�T�t
�
e� � e��




�
e��s

which is proportional to e��s �in other words� the weighting function
is e�ectively unchanged from round to round�� This weighting is the
same as the one used by a non�adaptive version of AdaBoost in which
all weak hypotheses are given equal weight� Since e��s is an upper
bound on the loss function of Eq� ���� Theorem 
 implies an upper
bound on the fraction of mistakes of the �nal hypothesis of

�	�	� � �T �

When


 � �
� ln

	
� � �

�� �



�
��

so that � is minimized� this gives an upper bound of

��� ���T�� � ��� ����T��

which is equivalent to a non�adaptive version of Freund and Schapire�s ������
analysis�

We next consider a more general drifting game in n dimensions
whose loss function is a sum of exponentials

L�s� �
kX

j��

bj exp��
juj � s� �
��

where the bj�s� 
j�s and uj �s are parameters with bj � 	� 
j � 	�
jjuj jj� � � and uj �� � for some sign vector �� For this game� B �

p���
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�������n and p � �� Many �non�adaptive� variants of AdaBoost corre�
spond to special cases of this game� For instance� AdaBoost�M
 �Freund
and Schapire� ������ a multiclass version of AdaBoost� essentially uses
the loss function

L�s� �
nX
j��

e�������s��sj�

where we follow the multiclass setup of Section � so that n is the
number of classes� and the �rst component in the drifting game is
identi�ed with the correct class� �As before� we only consider a non�
adaptive game in which 
 � 	 is a �xed� tunable parameter�� Likewise�
AdaBoost�MH �Schapire and Singer� ������ another multiclass version
of AdaBoost� uses the loss function

L�s� � e��s� �
nX

j��

e�sj �

Note that both loss functions upper bound the �true� loss for multiclass
boosting given in Eq� ����� Moreover� both functions clearly have the
form given in Eq� �
���

We claim that� for the general game with loss function as in Eq� �
���

�t�s� �
X
j

bj�
T�t
j exp��
juj � s� ��	�

where

�j �
�� �



e�j �

� � �



e��j �

Proof of Eq� ��	� is by backwards induction on t� For �xed t and s� let

w �
X
j

bj�
T�t
j

�
e�j � e��j




�
uj exp��
juj � s��

We will show that this is the minimizing weight vector that gets used
by OS for a chip at position s at time t� Let

b�j � bj�
T�t
j exp��
juj � s��

Note that

�t�s� z� �w � z �
X
j

b�j

�
exp��
juj � z� �

�
e�j � e��j




�
uj � z

�

�
X
j

b�j

�
e�j � e��j




�
����
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�

since

e��x �

�
e� � e��




�
�

�
e� � e��




�
x

for all 
 � IR and x � ������� by convexity of e��x� Also� by our
assumptions on bj � uj and 
j � we can compute

jjwjj� �
X
j

b�j

�
e�j � e��j




�
� ��
�

Thus� combining Eqs� ���� and ��
� gives

�t���s� � sup
z�B

��t�s� z� �w � z� �jjwjj��

�
X
j

b�j�j

�
X
j

bj�
T�t��
j exp��
juj � s��

This gives the needed upper bound on �t���s��
For the lower bound� using Theorem � �since L is unate with sign

vector ���� we have

�t���s�

� min
w���

max
z�f����g

��t�s� z� �w � z� �jjwjj��

� min
c�	

max

��
�
X
j

b�je
��j � c� �c�

X
j

b�je
�j � c� �c

��
�

where we have used uj � � � � and w � � � jjwjj� �since uj �� � and
w �� ��� We also have identi�ed c with jjwjj�� Solving the min max
expression gives the desired lower bound� This completes the proof of
Eq� ��	��

���� On�line learning algorithms

In this section� we show how Cesa�Bianchi et al��s ������ BW algorithm
for combining expert advice can be derived as an instance of OS� We will
also see how their algorithm can be generalized� and how Littlestone
and Warmuth�s ������ weighted majority algorithm can also be derived
and analyzed�

Suppose that we have access to m �experts�� On each round t� each
expert i provides a prediction �ti � f�����g� A �master� algorithm
combines their predictions into its own prediction �t � f�����g� An

p���
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outcome yt � f�����g is then observed� The master makes a mistake
if �t �� yt� and similarly for expert i if �ti �� yt� The goal of the master
is to minimize how many mistakes it makes relative to the best expert�

We will consider master algorithms which use a weighted majority
vote to form their predictions� that is�

�t � sign

�
mX
i��

wt
i�
t
i

�
�

The problem is to derive a good choice of weights wt
i � We also assume

that the master algorithm is conservative in the sense that rounds
on which the master�s predictions are correct are e�ectively ignored
�so that the weights wt

i only depend upon previous rounds on which
mistakes were made��

Let us suppose that there is one expert that makes at most k mis�
takes� We will �re�derive an algorithm �namely� BW� and a bound on
the number of mistakes made by the master� given this assumption�
Since we restrict our attention to conservative algorithms� we can as�
sume without loss of generality that a mistake occurs on every round
and simply proceed to bound the total number of rounds�

To set up the problem as a drifting game� we identify one chip with
each of the experts� The problem is one dimensional so n � �� The
weights wt

i selected by the master are the same as those chosen by the
shepherd� Since we assume that the master makes a mistake on each
round� we have for all t that

yt
X
i

wt
i�
t
i � 	� ����

Thus� if we de�ne the drift zti to be �yt�
t
i � thenX

i

wt
iz

t
i � 	�

Setting � � 	� we see that Eq� ���� is equivalent to Eq� ���� Also�
B � f�����g�

Let M t
i be the number of mistakes made by expert i on rounds

�� � � � � t� �� Then by de�nition of zti �

sti � 
M t
i � t� ��

Let the loss function L be

L�s� �

�
� if s � 
k � T
	 otherwise�

����
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Then L�sT��i � � � if and only if expert i makes a total of k or fewer
mistakes in T rounds� Thus� our assumption that the best expert makes
at most k mistakes implies that

� �
X
i

L�sT��i �� ��
�

On the other hand� Theorem 
 implies that

�

m

X
i

L�sT��i � � �	�	�� ����

By an analysis similar to the one given in Section ���� it can be seen
that

�t���s� �
�
� ��t�s� �� � �t�s� ��� �

Solving this recurrence gives

�t�s� � 
t�T
�

T � t

� k � t�s
�

�

where �
n

� k

�
�

kX
i�	

�
n

k

�
�

In particular�

�	�	� � 
�T
�

T

� k

�
� ����

Combining Eqs� ��
�� ���� and ���� gives

�

m
� 
�T

�
T

� k

�
� ����

In other words� the number of mistakes T of the master algorithm must
satisfy Eq� ���� and so must be at most

max

�
q � IN � q � lgm� lg

�
q

� k

��
�

the same bound given by Cesa�Bianchi et al� �������
The weighting function obtained is also equivalent to theirs since�

by a similar argument to that used in Section ���� OS gives

wt
i � �

���t�s
t
i � ��� �t�s

t
i � ���

� 
t�T��
�

T � t

k � t�s��
�

�

� 
t�T��
�

T � t

k �M t
i

�
�
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Note that this argument can be generalized to the case in which the
expert�s predictions are not restricted to f�����g but instead may be
all of �������� or a subset of this interval� such as f��� 	���g� The per�
formance of each expert then is measured on each round using absolute
loss �

� j�
t
i�ytj rather than whether or not it made a mistake� In this case�

as in the analogous extension of boost�by�majority given in Section ��
we only need to replace B by ������� or f��� 	���g� The resulting
bound on the number of mistakes of the master is then the largest T
for which ��m � �	�	� �note that �	�	� depends implicitly on T �� The
resulting master algorithm simply uses the weights computed by OS
for the appropriate drifting game� It is an open problem to determine
if this generalized algorithm enjoys strong optimality properties similar
to those of BW �Cesa�Bianchi et al�� ������

Littlestone and Warmuth�s ������ weighted majority algorithm can
also be derived as an instance of OS� To do this� we simply replace the
loss function L in the game above with

L�s� � exp��
�s� 
k � T ��

for some parameter 
 � 	� This loss function upper bounds the one in
Eq� ����� We assume that experts are permitted to output predictions
in ������� so that B � �������� From the results of Section ��
 applied
to this drifting game�

�t�s� � �T�t exp��
�s� 
k � T ��

where

� �
e� � e��



�

Therefore� because one expert su�ers loss at most k�

�

m
� �	�	� � �T e���k�T ��

Equivalently� the number of mistakes T is at most



k � lnm

ln
�

�
��e���

� �
exactly the bound given by Littlestone and Warmuth ������� The al�
gorithm is also the same as theirs since the weight given to an expert
�chip� at position sti at time t is

wt
i �

�
e� � e��




�
exp��
�sti � 
k � T �� � exp��

M t

i ��
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� Open problems

This paper represents the �rst work on general drifting games� As such�
there are many open problems�

We have presented closed�form solutions of the potential function
for just a few special cases� Are there other cases in which such closed�
form solutions are possible� In particular� can the boosting games of
Section � corresponding to B � f��� 	���g and B � ������� be put
into closed�form�

For games in which a closed form is not possible� is there nevertheless
a general method of characterizing the loss bound �	���� say� as the
number of rounds T gets large�

Side products of our work include new versions of boost�by�majority
for the multiclass case� as well as binary cases in which the weak hy�
potheses have range f��� 	���g or �������� However� the optimality
proof for the drifting game only carries over to the boosting setting if
the �nal hypothesis has the restricted forms given in Eqs� ��� and ��	��
Are the resulting boosting algorithms also optimal �for instance� in the
sense proved by Freund ����
� for boost�by�majority� without these
restrictions�

Likewise� can the extensions of the BW algorithm in Section ��� be
shown to be optimal� Can this algorithm be extended using drifting
games to the multiclass case� or to the case in which the master is
allowed to output predictions in ������� �su�ering absolute loss��

The OS algorithm is non�adaptive in the sense that � must be known
ahead of time� To what extent can OS be made adaptive� For instance�
can Freund�s ������ recent technique for making boost�by�majority
adaptive be carried over to the general drifting�game setting� Similarly�
what happens if the number of rounds T is not known in advance�

Finally� are there other interesting drifting games for entirely di�er�
ent learning problems such as regression or density estimation�
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