
Machine Learning, 22(1/2/3):95-121, 1996.

On the Worst-case Analysis of Temporal-difference
Learning Algorithms

ROBERT E� SCHAPIRE schapire@research.att.com

AT&T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974

MANFRED K� WARMUTH manfred@cse.ucsc.edu
Computer and Information Sciences, University of California, Santa Cruz, CA 95064

Editor: Leslie Pack Kaelbling

Abstract. We study the behavior of a family of learning algorithms based on Sutton’s method of temporal
differences. In our on-line learning framework, learning takes place in a sequence of trials, and the goal of
the learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the
future. In this setting, we are able to prove general upper bounds on the performance of a slightly modified
version of Sutton’s so-called TD��� algorithm. These bounds are stated in terms of the performance of the best
linear predictor on the given training sequence, and are proved without making any statistical assumptions of any
kind about the process producing the learner’s observed training sequence. We also prove lower bounds on the
performance of any algorithm for this learning problem, and give a similar analysis of the closely related problem
of learning to predict in a model in which the learner must produce predictions for a whole batch of observations
before receiving reinforcement.

Keywords: machine learning, temporal-difference learning, on-line learning, worst-case analysis

1. Introduction

As an example, consider the problem of estimating the present value of a company. At the
end of each quartert, a company returns a profitrt. In terms of its future profits, what is
the company worth today? One possible answer is simply the sum total of all future profitsP�

k�� rt�k, but this is clearly an unsatisfactory measure of present worth since a dollar
earned today is certainly worth more than a dollar earned ten years from now. Indeed,
taking into account inflation and the exponential growth rate of money that is invested, it
can be argued that future profits drop in value exponentially with time.

For this reason, it is common to discount profitsrt�k earnedk time steps in the future by
�k, where� � � is a parameter that estimates the rate at which future profits diminish in
value. This leads to a definition of the present value of the company as the discounted sum

yt ��
�X
k��

�krt�k� (1)

Suppose now that we want to predict or estimate the present valueyt as defined in Eq. (1).
Obviously, if we know all the future profitsrt� rt��� � � �, then we can computeyt directly,
but it would be absurd to assume that the future is known in the present.



2 R� E� SCHAPIRE AND M� K� WARMUTH

Instead, we consider the problem of estimatingyt based on current observations that can
be made about the world and the company. We summarize these observations abstractly by
a vectorxt � RN . This vector might include, for instance, the company’s profits in recent
quarters, current sales figures, the state of the economy as measured by gross national
product, etc.

Thus, at the beginning of each quartert, the vectorxt is observed and an estimate�yt � R
is formulated of the company’s present valueyt. At the end of the quarter, the company
returns profitrt. The goal is to make the estimates�yt as close as possible toyt.

We study this prediction problem more abstractly as follows: At each point in timet �
�� �� � � �, a learning agent makes an observation about the current state of its environment,
which is summarized by a real vectorxt � RN . After having made this observation, the
learning agent receives some kind of feedback from its environment, which is summarized
by a real numberrt. The goal of the learning agent is to learn to predict the discounted
sumyt given in Eq. (1) where� � ��� �� is some fixed constant called thediscount rate
parameter.

At each time stept, after receiving the instance vectorxt and prior to receiving the
reinforcement signalrt, we ask that the learning algorithm make a prediction�yt of the value
of yt. We measure the performance of the learning algorithm in terms of the discrepancy
between�yt andyt. There are many ways of measuring this discrepancy; in this paper, we
use the quadratic loss function. That is, we define theloss of the learning algorithm at time
t to be	�yt � yt��, and the loss for an entire sequence of predictions is just the sum of the
losses at each trial. Thus, the goal of the learning algorithm is to minimize its loss over a
sequence of observation/feedback trials.

We study the worst-case behavior of a family of learning algorithms based on Sutton’s
(1988)method of temporal differences . Specifically, we analyze a slightly modified version
of Sutton’s so-called TD	�� algorithm in a worst-case framework that makes no statistical
assumptions of any kind. All previous analyses of TD	�� have relied heavily on stochastic
assumptions about the nature of the environment that is generating the data observed by
the learner (Dayan, 1992; Dayan & Sejnowski, 1994; Jaakkola, Jordan & Singh, 1993;
Sutton, 1988; Watkins, 1989). For instance, the learner’s environment is often modeled by
a Markov process. We apply some of our results to Markov processes later in the paper.

The primary contribution of our paper is to introduce a method of worst-case analysis
to the area of temporal-difference learning. We present upper bounds on the loss incurred
by our temporal-difference learning algorithm (denoted by TD�	��) which hold even when
the sequence of observationsxt and reinforcement signalsrt is arbitrary.

To make our bounds meaningful in such an adversarial setting, we compare the perfor-
mance of the learning algorithm to the loss that would be incurred by the best prediction
function among a family of prediction functions; in this paper, this class will always be the
set of linear prediction functions. More precisely, for any vectoru � RN , let

L�	u� S� ��
�X

t��

	u � xt � yt�
�



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 3

denote the loss of vectoru on the first� trials of training sequenceS. That is,L�	u� S�
is the loss that would be incurred by a prediction function that predictsu � x t on each
observation vectorxt.

We compare the performance of our learning algorithms to the performance of the best
vectoru (of bounded norm) that minimizes the loss on the given sequence. For example,
we prove below that, for any training sequenceS, the loss on the first� trials of TD�	�� is
at most�

min
jjujj�U

L��u�S��K

�
L�	u� S� 
 �

p
KUX�c� 
 jjujj�X�

�c��

�
(2)

wherec� � 	� 
 ���	� � ��. (Here,U , X� andK are parameters that are used to
“tune” the algorithm’s “learning rate:” specifically, it is assumed thatjjxtjj � X�, and
thatminfL�	u� S� � jjujj � Ug � K. Various methods are known for guessing these
parameters when they are unknown; see, for instance, Cesa-Bianchi, Long and Warmuth’s
paper (1993).) Thus, TD�	�� will perform reasonably well, provided that there exists some
linear predictoru that gives a good fit to the training sequence.

To better understand bounds such as those given in Eq. (2), it is often helpful to consider
the average per-trial loss that is guaranteed by the bound. Suppose for the moment, as is
likely to be the case in practice, thatU ,X� and� are fixed, and thatK grows linearly with
the number of trials�, so thatK � O	��. Then Eq. (2) implies that the average per-trial
loss of TD�	�� (i.e., the total cumulative loss of TD�	�� divided by the number of trials�)
is at most

min
jjujj�U

L��u�S��K

�
L�	u� S�

�

 O

�
�p
�

��
�

In other words, as the number of trials� becomes large, the average per-trial loss of
TD�	�� rapidly approaches the average loss of the best vectoru. Furthermore, the rate of
convergence is given explicitly asO	��

p
��.

Note that the above result, like all the others presented in this paper, provides a charac-
terization of the learner’s performance after only afinite number of time steps. In contrast,
most previous work on TD	�� has focused on its asymptotic performance. Moreover, pre-
vious researchers have focused on the convergence of the learner’s hypothesis to a “true”
or “optimal” model of the world. We, on the other hand, take the view that the learner’s
one and only goal is to make good predictions, and we therefore measure the learner’s
performance entirely by the quality of its predictions.

The upper bound given in Eq. (2) on the performance of TD�	�� is derived from a more
general result we prove on the worst-case performance of TD�	�� for general�. Our
bounds for the special case when� � � or � � � can be stated in closed form. The proof
techniques used in this paper are similar but more general than those used by Cesa-Bianchi,
Long and Warmuth (1993) in their analysis of the Widrow-Hoff algorithm (corresponding
to the case that� � �).



4 R� E� SCHAPIRE AND M� K� WARMUTH

Note thatminfL�	u� S� � u � RNg is the best an arbitrary linear model can do that
knows ally� � � �y� ahead of time. If the on-line learner were givenyt at the end of trialt
(i.e., if � � �), then the Widrow-Hoff algorithm would achieve a worst case bound of

min
jjujj�U

L��u�S��K

�
L�	u� S� 
 �

p
KUX� 
 jjujj�X�

�
�

(matching the bound in Eq. (2) with� set to�). However, in our model, the learner is given
only the reinforcementsrt, even though its goal is to accurately estimate the infinite sum
yt given in Eq. (1). Intuitively, as� gets larger, this task becomes more difficult since the
learner must make predictions about events farther and farther into the future. All of our
worst-case loss bounds depend explicitly on� and, not surprisingly, these bounds typically
tend to infinity or become vacuous as� approaches�. Thus, our bounds quantify the price
one has to pay for giving the learner successively less information.

In addition to these upper bounds, we prove a general lower bound on the loss ofany
algorithm for this prediction problem. Such a lower bound may be helpful in determining
what kind of worst-case bounds can feasibly be proved. None of our upper bounds match
the lower bound; it is an open question whether this remaining gap can be closed (this is
possible in certain special cases, such as when� � �).

Finally, we consider a slightly different, but closely related learning model in which the
learner is given a whole batch of instances at once and the task is to give a prediction for all
instances before an outcome is received for each instance in the batch. The loss in a trialt
is jj�yt� ytjj�, where�yt is the vector of predictions andyt the vector of outcomes. Again,
the goal is to minimize the additional total loss summed over all trials in excess of the total
loss of the best linear predictor (of bounded norm).

In this batch model all instances count equally and the exact outcome for each instance
is received at the end of each batch. A special case of this model is when the algorithm has
to make predictions on a whole batch of instances before receiving thesame outcome for
all of them (a case studied by Sutton (1988)).

We again prove worst-case bounds for this model (extending Cesa-Bianchi, Long and
Warmuth’s (1993) previous analysis for the noise-free case). We also prove matching lower
bounds for this very general model, thus proving that our upper bounds are the optimal
worst-case bounds.

The paper is outlined as follows. Section 2 describes the on-line model for temporal
difference learning. Section 3 gives Sutton’s original temporal difference learning algorithm
TD	�� and introduces our new algorithm TD�	��. Section 4 contains the worst-case loss
bounds for the new algorithm, followed by Section 5 containing a lower bound for the
on-line model. In Section 6, we illustrate our results with an application of TD�	�� to
obtain a kind of convergence result in a Markov-process setting. We present our results for
the batch model in Section 7. Finally, we discuss the merits of the method of worst-case
analysis in Section 8.



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 5

2. The prediction model

In this section, we describe our on-line learning model. Throughout the paper,N denotes
the dimension of the learning problem. Eachtrial t 	t � �� �� � � �� proceeds as follows:

1. The learner receives instance vectorxt � RN .

2. The learner is required to compute a prediction�yt � R.

3. The learner receives areinforcement signal rt � R.

The goal of the learner is to predict not merely the next reinforcement signal, but rather a
discounted sum of all of the reinforcements that will be received in the future. Specifically,
the learner is trying to make its prediction�yt as close as possible to

yt ��
�X
k��

�krt�k

where� � ��� �� is a fixed parameter of the problem. (We will always assume that this
infinite sum converges absolutely for allt.)

Note that if we multiplyyt by the constant� � �, we obtain a weighted average of all
the futurert’s; that is,	� � ��yt is a weighted average ofrt� rt��� � � �. Thus it might be
more natural to use the variablesy�t � yt	� � ��. (For instance, if allrt equalr, then the
modified variablesy�t all equalr as well.) However, for the sake of notational simplicity,
we use the variablesyt instead (as was done by Sutton (1988) and others).

The infinite sequence of pairs of instancesxt and reinforcement signalsrt is called a
training sequence (usually denoted byS). The loss of the learner at trialt is 	yt � �yt��,
and the total loss of an algorithmA on the first� trials is

L�	A� S� ��
�X

t��

	yt � �yt�
��

Similarly, the total loss of a weight vectoru � RN on the first� trials is defined to be

L�	u� S� ��
�X

t��

	yt � u � xt���

The purpose of this paper is to exhibit algorithms whose loss is guaranteed to be “not
too much worse” than the loss of thebest weight vector for the entire sequence. Thus, we
would like to show that if there exists a weight vectoru that fits the training sequence well,
then the learner’s predictions will also be reasonably good.



6 R� E� SCHAPIRE AND M� K� WARMUTH

3. Temporal-difference algorithms

We focus now on a family of learning algorithms that are only a slight modification of those
considered by Sutton (1988). Each of these algorithms is parameterized by a real number
� � ��� ��. For any sequenceS andt � �� �� � � �, let

X�
t ��

tX
k��

	���t�kxk (3)

be a weighted sum of all previously observed instancesxk. The parameter� controls how
strong an influence past instances have. For instance, when� � �, X�

t � xt so only the
most recent instance is considered.

The learning algorithmTD	�� works by maintaining a weight vectorwt � RN . The
initial weight vectorw� may be arbitrary, although in the simplest casew� � �. The
weight vectorwt is then updated to the new weight vectorwt�� using the following update
rule:

wt�� �� wt 
 �t	rt 
 ��yt�� � �yt�X
�
t � (4)

As suggested by Sutton (1988), the weight vectors are updated usingX�
t rather thanxt,

allowing instances prior toxt to have a diminishing influence on the update.
The constant�t appearing in Eq. (4) is called thelearning rate on trialt. We will discuss

later how to set the learning rates using prior knowledge about the training sequence.
In Sutton’s original presentation ofTD	��, and in most of the subsequent work on the

algorithm, the prediction at each step is simply�yt � wt �xt. We, however, have found that
a variant on this prediction rule leads to a simpler analysis, and, moreover, we were unable
to obtain worst-case loss bounds for the original algorithm TD	�� as strong as the bounds
we prove for the new algorithm.

Our variant of TD	�� uses the same update (4) for the weight vector as the original
algorithm, but predicts as follows:

�yt �� wt � xt 

t��X
k��

	���t�k	wt � xk � �yk�

� wt �X�
t �

t��X
k��

	���t�k�yk� (5)

This new algorithm, which we call TD�	��, is summarized in Fig. 1.
The rule (4) for updatingwt�� haswt�� implicit in �yt��, so at first it seems impossible

to do this update rule.� However, by multiplying Eq. (4) byX�
t��, one can first solve for

�yt�� and then computewt��. Specifically, this gives a solution for�yt�� of

	wt 
 �t	rt � �yt�X�
t � �X�

t�� �
Pt

k��	���
t���k�yk

�� �t�X�
t �X�

t��

�
	wt 
 �t	rt � �yt�X�

t � �X�
t�� � 	���wt �X�

t

�� �t�X�
t �X�

t��



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 7

Algorithm TD�	��
Parameters: discount rate� � ��� ��

� � ��� ��

start vectorw� � RN
method of computing learning rate�t

Given: training sequencex�� r��x�� r�� � � �
Predict: �y�� �y�� � � �
Procedure:

getx�
X�

� � x�

�y� � w� �X�
�

for t � �� �� � � �

predict�yt 	� �yt � wt �X�
t �

Pt��
k��	���

t�k�yk ��
getrt
getxt��
X�
t�� � xt�� 
 	���X�

t

compute�t

�yt�� �
wt � xt�� 
 �t	rt � �yt�X�

t �X�
t��

�� �t�X�
t �X�

t��

wt�� � wt 
 �t	rt 
 ��yt�� � �yt�X�
t

end

Figure 1. Pseudocode for TD����.

�
wt � xt�� 
 �t	rt � �yt�X�

t �X�
t��

�� �t�X
�
t �X�

t��

where, in the first equality, we assume inductively that Eq. (5) holds at trialt. Thus, we
can solve successfully for�yt�� provided that��tX�

t �X�
t�� �� �, as will be the case for all

the values of�t we consider. Also, note that�yt�� is computed after the instancext�� is
received but before the reinforcementrt�� is available (see Fig. 1 for details).

Note that for the prediction�yt � wt � xt of TD	��,

rwt
	yt � �yt�

� � ���t	yt � �yt�xt

� ���t	rt 
 ��yt�� � �yt�xt�

(Sinceyt � rt 
 �yt�� is not available to the learner, it is approximated byrt 
 ��yt��.)
Thus with the prediction rule of TD	�� the update rule (4)is not gradient descent for
all choices of�. In contrast, with the new prediction rule (5) of TD�	��, the update
rule (4) used by both algorithmsis gradient descent,� since if�yt is set according to the new



8 R� E� SCHAPIRE AND M� K� WARMUTH

prediction rule then

rwt
	yt � �yt�

� � ���t	yt � �yt�X
�
t

� ���t	rt 
 ��yt�� � �yt�X
�
t �

We can also motivate the term�Pt��
k��	���

t�k�yk in the prediction rule of TD�	�� given
in Eq. (5): In this paper, we are comparing the total loss of the algorithm with the total
loss of the best linear predictor, so both algorithms TD	�� and TD�	�� try to match the
yt’s with an on-line linear model. In particular, ifyt � w � xt (that is, theyt’s are a linear
function of thext’s) and the initial weight vector is the “correct” weight vectorw, then the
algorithms should always predict correctly (so that�yt � yt) and the weight vectorwt of the
algorithms should remain unchanged. It is easy to prove by induction that both algorithms
have this property.

Thus, in sum, the prediction rule�yt � wt �X�
t 
 ct is motivated by gradient descent,

wherect is any term that does not depend on the weight vectorwt. The exact value forct
is derived using the fact that, in the case described above, we want�yt � yt for all t.

4. Upper bounds for TD�	��

In proving our upper bounds, we begin with a very general lemma concerning the perfor-
mance of TD�	��. We then apply the lemma to derive an analysis of some special cases of
interest.

Lemma � Let � � ��� ��, � � ��� ��, and let S be an arbitrary training sequence such that
jjX�

t jj � X� for all trials t. Let u be any weight vector, and let � 	 �.
If we execute TD�	�� on S with initial vector w� and learning rates �t � � where

� � �X�
�� � �, then

L�	TD�	��� S� � inf

�
bL�	u� S� 
 jju�w�jj�

Cb

� b 	 �� Cb 	 �

�

where Cb equals

�� � ��X�
�	� 
 ���� ��

b

�
� 


�
� � ��

�� ��

��
�

��
�				� � ��

b

				
��

� � ��

�� ��

�
�� � �

�				
�
� � ��

b

�
	� � ��� � ��X�

��

				
�
�

Proof: For � � t � �, we letet � yt � �yt, andeu�t � yt � u � xt. We further define
e��� � �. Note that the loss of the algorithm at trialt is et� and the loss ofu is eu�t�.
Since, fort � �,

rt 
 ��yt�� � �yt � rt 
 ��yt�� � 	rt 
 �yt��� 
 yt � �yt

� et � �et���



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 9

we can write Eq. (4), the update of our algorithm, conveniently as

wt�� � wt 
 �	et � �et���X
�
t � (6)

To simplify the proof, we also define

w��� � w� 
 �e�X
�
�

so that Eq. (6) holds for allt � �. (In fact, this definition ofw��� differs from the vector
that would actually be computed by TD�	��. This is not a problem, however, since we are
here only interested in the behavior of the algorithm on the first� trials which are unaffected
by this change.)

We use the functionprogrt to measure how much “closer” the algorithm gets tou during
trial t as measured by the distance functionjj � jj�:

progrt � jju�wtjj� � jju�wt��jj��
Let �wt � wt�� �wt for t � �. We have that

jj�wtjj� � ��	et � �et���
�jjX�

t jj�
� ��X�

�	et � �et���
�

and that

�wt � 	wt � u� � �	et � �et���	wt �X�
t � u �X�

t �

� �	et � �et���
tX

k��

	���t�k	�yk � u � xk�

� �	et � �et���
tX

k��

	���t�k	eu�k � ek�

where the second equality follows from Eqs. (3) and (5), and the last equality from the fact
that

�yk � u � xk � �yk � yk 
 yk � u � xk
� eu�k � ek�

Since�progrt � ��wt � 	wt � u� 
 jj�wtjj�, we have that

�jjw� � ujj� � jjw��� � ujj� � jjw� � ujj�

� �
�X

t��

progrt

� ��
�X

t��



	et � �et���

tX
k��

	���t�k	eu�k � ek�

�


��X�
�

�X
t��

	et � �et���
�
� (7)



10 R� E� SCHAPIRE AND M� K� WARMUTH

This can be written more concisely using matrix notation as follows: LetZk be the�	 �
matrix whose entry	i� j� is defined to be� if j � i
 k and� otherwise. (For instance,Z�
is the identity matrix.) LetD � Z� � �Z�, and let

V �
���X
t��

	���tZt�

Finally, lete (respectively,eu) be the length� vector whosetth element iset (respectively,
eu�t). Then the last expression in Eq. (7) is equal to

��X�
�eTDTDe
 ��eTDTVT 	eu � e�� (8)

This can be seen by noting that, by a straightforward computation, thetth element ofDe
is et � �et��, and thetth element ofVT 	eu � e� is

tX
k��

	���t�k	eu�k � ek��

We also used the identity	De�T � eTDT .
Using the fact that�pTq � jjpjj� 
 jjqjj� for any pair of vectorsp�q � R�, we can

upper bound Eq. (8), for anyb 	 �, by

��X�
�eTDTDe� ��eTDTVTe


��

b
eTDTVTVDe
 beu

Teu (9)

(where we usep � 	��
p
b� VDe andq �

p
b eu). Defining

M � ��X�
�DTD� �	VD
DTVT � 


��

b
DTVTVD�

and noting thateTDTVTe � eTVDe, we can write Eq. (9) simply as

eTMe
 beu
Teu�

Note thatM is symmetric. It is known that in this case

max
e ���

eTMe

eTe
� 
	M� (10)

where
	M� is the largest eigenvalue ofM. (See, for instance, Horn and Johnson (1985)
for background on matrix theory.) Thus, for all vectorse, eTMe � 
	M�eT e. It follows
from Eq. (7) that

�jjw� � ujj� � b

�X
t��

eu�t
� 
 
	M�

�X
t��

et
�

so



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 11

�
	M�
�X

t��

et
� � jjw� � ujj�
 b

�X
t��

eu�t
��

In the appendix, we complete the proof by arguing that
	M� � �Cb.

Having proved Lemma 1 in gory generality, we are now ready to apply it to some special
cases to obtain bounds that are far more palatable. We begin by considering the case that
� � �. Note that TD	�� and TD�	�� are identical.

Theorem � Let � � � � �, and let S be any sequence of instances/reinforcements.
Assume that we know a bound X� for which jjxtjj � X�.

If TD�	�� uses any start vector w� and learning rates �t � � � ��	X�
� 
 ��, we have

for all � 	 � and for all u � RN :

L�	TD�	��� S� � 	� 
X�
��	L�	u� S� 
 jjw� � ujj��

�� ��
� (11)

Assume further that we know boundsK andU such that for some uwe haveL�	u� S� � K
and jjw� � ujj � U . Then for the learning rate

�t � � �
U

X�

p
K 
X�

�U

we have that

L�	TD�	��� S� �L�	u� S� 
 �UX�

p
K 
X�

�jjw� � ujj�
�� ��

� (12)

Proof: When� � �, Cb simplifies to

�� � ��
�
X�

� 

�

b

�
	� 
 ���� ��

				� � ��
�
X�

� 

�

b

�				 �
To minimize the loss bound given in Lemma 1, we need to maximizeCb with respect to�.
It can be shown that, in this case,Cb is maximized, for fixedb, when

� �
�

X�
� 
 ��b

� (13)

The first bound (Eq. (11)) is then obtained by choosingb � �.
If boundsK andU are known as stated in the theorem, an optimal choice forb can be

derived by plugging the choice for� given in Eq. (13) into the bound in Lemma 1, and
replacingL�	u� S� byK andjju�w�jj� byU �. This gives

	bK 
 U��	X�
� 
 ��b�

�� ��



12 R� E� SCHAPIRE AND M� K� WARMUTH

which is minimized whenb � U�	X�

p
K�. Plugging this choice ofb into the bound of

Lemma 1 (and setting� as in Eq. (13)) gives the bound�
UL�	u� S��X�

p
K 
 jju�w�jj�

��
X�

� 
X�

p
K�U

�
�� ��

�
L�	u� S� 
 L�	u� S�X�U�

p
K 
 jju�w�jj�X�

p
K�U 
 jju�w�jj�X�

�

�� ��

� L�	u� S� 
 �X�U
p
K 
 jju�w�jj�X�

�

�� ��
�

Next, we consider the case that� � �.

Theorem � Let � � � � �, � 	 � and letS be any sequence of instances/reinforcements.
Assume that we know a boundX� for which jjX�

t jj � X�, and that we know boundsK and
U such that for some u we have L�	u� S� � K and jjw� � ujj � U . Then if TD�	�� uses
any start vector w� and learning rates

�t � � �
U

UX�
�	� 
 ��� 
X�	� 
 ��

p
K
�

then

L�	TD�	��� S� � L�	u� S� 
 �
p
K	� 
 ��UX� 
 	� 
 ���jjw� � ujj�X�

��

Proof: When� � �,

Cb � �� � ��X�
�	� 
 ��� � ��

b
�

This is maximized, with respect to�, when

� �
�

X�
�	� 
 ��� 
 ��b

�

Proceeding as in Theorem 1, we see that the best choice forb is

b �
U

	� 
 ��X�

p
K
�

Plugging into the bound in Lemma 1 completes the theorem.

The bound in Eq. (2) is obtained from Theorem 2 by settingw� � �, and noting that

jjX�
t jj �

tX
k��

�t�kjjxkjj � maxfjjxkjj � � � k � tg
�� �

(14)



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 13

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

a
0 0.2 0.4 0.6 0.8 1

40

60

80

100

120

b

0 0.2 0.4 0.6 0.8 1

350

400

450

500

550

600

650

c

0 0.2 0.4 0.6 0.8 1

3500

4000

4500

5000

5500

6000

6500

d

Figure 2. The loss bound given in Lemma 1 as a function of� when� is chosen so as to minimize the bound.

by the triangle inequality; thus,X� can be replaced byX��	�� ��. Note that the bounds
in Eqs. (2) and (12) are incomparable in the sense that, depending on the values of the
quantities involved, either bound can be better than the other. This suggests that TD�	��
may or may not be better than TD�	�� depending on the particular problem at hand; the
bounds we have derived quantify those situations in which each will perform better than
the other.

Ultimately, we hope to extend our analysis to facilitate the optimal choice of� 	 � and
� � ��� ��. In the meantime, we can numerically find the choices of� and� that minimize
the worst-case bound given in Lemma 1. Fig. 2 shows graphs of the worst-case bound given
in Lemma 1 as a function of� when� is chosen so as to minimize our worst-case bound
and for fixed settings of the other parameters. More specifically, in all the graphs we have
assumedjjw��ujj � �, andjjxtjj � � (which implies thatjjX�

t jj � ��	�����). We have
also fixed� � ��
. Figs. 2a, b, c and d assume thatL�	u� S� equals�, ��, ��� and����,
respectively, and each curve shows the upper bound onL�	TD�	��� S� given in Lemma 1.
The straight solid line in each figure shows the lower bound obtained in Section 5. In each



14 R� E� SCHAPIRE AND M� K� WARMUTH

figure thex-axis crosses they-axis at the value ofL�	u� S�. Note that the gap between
the lower bound andL�	u� S� grows as�	

p
L�	u� S�� when all other variables are kept

constant. (This is not visible from the figures because the scaling of the figures varies.)
The figures were produced using Mathematica.

As the figures clearly indicate, the higher the lossL�	u� S�, the higher should be our
choice for�. It is interesting that in some intermediate cases, an intermediate value for�
in 	�� �� is the best choice.

5. A lower bound

We next prove a lower bound on the performance ofany learning algorithm in the model
that we have been considering.

Theorem � Let � � ��� ��, X� 	 �, K 
 �, U 
 � and � a positive integer. For every
algorithmA, there exists a sequence S such that the following hold:

1. jjxtjj � X�,

2. K � minfL�	u� S� � jjujj � Ug, and

3. L�	A� S� 
 	
p
K 
 UX�

p
����

where �� ��
P���

k�� �
�k.

Proof: The main idea of the proof is to construct a training sequence in which the learning
algorithmA receives essentially no information until trial�, at which time the adversary
can force the learner to incur significant loss relative to the best linear predictor.

Without loss of generality, we prove the result in the one-dimensional case	 (i.e.,N � �),
so we write the instancext simply asxt. The sequenceS is defined as follows: We let
xt � ���tX� for t � �, andxt � � for t 	 � (thus satisfying part 1). The reinforcement
given isrt � � if t �� �, andr� � sz wherez � UX� 


p
K��� ands � f���
�g is

chosen adversarially afterA has made predictions�y�� � � � � �y� on the first� trials. Then

yt �
�X
k��

�krt�k �

�
���tsz if t � �
� otherwise.

To see that part 2 holds, letu � u be any vector (scalar, really, sinceN � �) with
juj � U . Then

L�	u� S� �
�X

t��

	uxt � yt�
�

�
�X

t��

�����t�	uX� � sz��

� 	uX� � sz�����



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 15

Since juj � U , it can be seen that this is minimized whenu � sU , in which case
L�	u� S� � K by z’s definition.

Finally, consider the loss ofA on this sequence:

L�	A� S� �
�X

t��

	�yt � yt�
� �

�X
t��

	�yt � s���tz���

For any real numbersp andq, we have	p� q�� 
 	p
 q�� � �	p� 
 q�� 
 �q�. Thus, if
s � f���
�g is chosen uniformly at random, thenA’s expected loss will be

�

�

�
�X

t��

	�yt � ���tz�� 

�X

t��

	�yt 
 ���tz��

�



�X

t��

	���tz�� � z��� � 	
p
K 
 UX�

p
���

��

It follows that for the choice ofs � f���
�g that maximizesA’s loss, we will have that
L�	A� S� 
 	

p
K 
 UX�

p
���

� as claimed.

When K � �, Theorem 3 gives a lower bound ofU�X�
���� which approaches

U�X�
��	� � ��� as � becomes large. This lower bound matches the second bound of

Theorem 1 in the corresponding case. Thus, in the “noise-free” case that there exists a
vectoru that perfectly matches the data (i.e.,minfL�	u� S� � jjujj � Ug � �), this shows
that TD�	�� is “optimal” in the sense that its worst-case performance is best possible.

6. An application to Markov processes

For the purposes of illustration, we show in this section how our results can be applied in the
Markov-process setting more commonly used for studying temporal-difference algorithms.
Specifically, we prove a kind of convergence theorem for TD�	��.

We consider Markov processes consisting of a finite set of states denoted�� �� � � � � N . An
agent moves about the Markov process in the usual manner: An initial statei� is chosen
stochastically. Then, at each time stept, the agent moves stochastically from stateit to
stateit�� whereit�� may depend only on the preceding stateit. Upon exiting stateit, the
agent receives a probabilistic rewardrt which also may depend only onit.

Formally, the Markov process is defined by a transition matrixQ � ��� ��N�N and an
initial state distribution matrixp� � ��� ��N . The entries of each column ofQ sum to�,
as do the entries ofp�. The interpretation here is that the initial statei� is distributed
according top�, and, if the agent is in stateit at timet, then the next stateit�� is distributed
according to theitth column ofQ. Thus, stateit has distributionpt � Qt��p�.

The rewardrt received at timet depends only on the current stateit so formally we
can writert � r	
t� it� where
�� 
�� � � � are independent identically distributed random
variables from some event space�, andr � �	 f�� � � � � Ng � R is some fixed function.



16 R� E� SCHAPIRE AND M� K� WARMUTH

LetVi denote the expected discounted reward for a random walk produced by the Markov
process that begins in statei. That is, we define thevalue function

Vi �� E



�X
k��

�kr��k j i� � i

�

where, as usual,� � ��� �� is a fixed parameter. Our goal is to estimateVi, a problem often
referred to as value-function approximation.

At each time stept, the learner computes an estimate�V t
i of the value function. Thus,

learning proceeds as follows. At timet � �� �� � � �� �:

1. The learner formulates an estimated value function�V t
i .

2. The current stateit is observed.

3. The current rewardrt is observed.

4. The learner moves to the next stateit��.

The statesit and rewardsrt are random variables defined by the stochastic process described
above. All expectations in this section are with respect to this random process.

Theorem 4, the main result of this section, gives a bound for TD�	�� on the average
expected squared distance of�V t

i to the correct valuesVi. Specifically, we show that

�

�

�X
t��

E
h
	 �V t

it
� Vit�

�
i
� O

�
�p
�

�

for some setting of the learning rate, and given certain benign assumptions about the

distribution of rewards. Note thatE
h
	 �V t

it
� Vit�

�
i

is the expected squared distance between

thetth estimate�V t
i and the true value functionVi where the expectation is with respect to

the stochastic choice of thetth stateit. Thus, the states more likely to be visited at step
t receive the greatest weight under this expectation. Theorem 4 states that the average of
these expectations (over the first� time steps) rapidly drops to zero.

We apply TD�	�� to this problem in the most natural manner. We define the observation
vector xt � RN to have a� in componentit, and � in all other components. (The
generalization to other state representations is straightforward.) We then execute TD�	��
using the sequencex�� r��x�� r�� � � � �x�� r� where these are random variables defined by
the Markov process.

The estimated value function�V t
i is computed as follows: Recall that TD�	��, at each

time stept, generates an estimate�yt of the discounted sumyt �
P�

k�� �
krt�k. Note that

if we are in statei at timet, then the expected value ofyt is exactlyVi, i.e.,

E �yt j it � i� � Vi�

So it makes sense to use the estimate�yt in computing thetth value-function approxima-
tion �V t

i .



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 17

A minor difficulty arises from the fact that�yt is computedafter xt is observed (and
therefore afterit is observed), but�V t

i must be computed for all statesi before it is
observed. However, if we fix the history prior to trialt, then�yt is a function only ofxt,
which in turn is determined byit. Therefore, for each statei, we can precompute what the
value of�yt will be if it turns out to bei. We then define�V t

i to be this value. Note that, with
this definition, the estimate�yt computed by TD�	�� onceit is observed is equal to�V t

it
.

We now state and prove our convergence theorem. For this result, we assume a finite
upper bound both on the value function and on the variance of the sum of discounted
rewards.

Theorem � Suppose the Markov process is such that, for all i, jVij � V and

E

�

� �X

k��

�kr��k � Vi

��

j i� � i

�
� � R (15)

for finite and known V and R.
Suppose that TD�	�� is executed as described above withw� � � and learning rate

�t � � �
V
p
N

J� 
 J
p
R�

where J � V
p
N 	� 
 ���	� � ��. Then

�

�

�X
t��

E
h
	 �V t

it
� Vit�

�
i
� �J

r
R

�


J�

�
�

Proof: From Eq. (14),jjX�
t jj � ��	�� �� so we chooseX� � ��	�� ��. Letu be such

thatui � Vi. Thenjjujj � U whereU � V
p
N . Finally, letK � R�. Our choice for� is

identical to that in Theorem 2 where the appropriate substitutions have been made.
Note that

E
�
	yt � Vit�

�
�
�

NX
i��

Pr �it � i� � E
�

� �X

k��

�krt�k � Vi

��

j it � i

�
� � R

by the assumption in Eq. (15). Thus, becauseu � xt � Vit ,

E
�
L�	u� S�

�
�

�X
t��

E
�
	u � xt � yt�

�
�
�

�X
t��

E
�
	Vit � yt�

�
� � R� � K�

Taking expectations of both sides of the bound in Lemma 1, we have that

E
�
L�	TD�	��� S�

� � bE
�
L�	u� S�

�

 jju�w�jj�

Cb



18 R� E� SCHAPIRE AND M� K� WARMUTH

for anyb 	 � for whichCb 	 �. Therefore, by a proof identical to the proof of Theorem 2
(except that we assume only thatL�	u� S� is bounded byK in expectation), we have

E
�
L�	TD�	��� S�

� � E
�
L�	u� S�

�

 �

p
K	� 
 ��UX� 
 	� 
 ���jjujj�X�

��(16)

Sinceu � xt � Vit , �yt � �V t
it

, andE �yt j it� � Vit , it can be verified that

E
�
	yt � �yt�

� � 	yt � u � xt��
�
� E

h
	Vit � �V t

it
��
i
�

The theorem now follows by averaging over all time stepst and combining with Eq. (16).

Unfortunately, we do not know how to prove a convergence result similar to Theorem 4
for TD�	�� for general�. This is because this proof technique requires a worst-case bound
in which the termL�	u� S� appears with a coefficient of�.

Of course, Theorem 4 represents a considerable weakening of the worst-case results
presented in Section 4. These worst-case bounds are stronger because (1) they are in terms
of the actual discounted sum of rewards rather than its expectation, and (2) they do not
depend on any statistical assumptions. Indeed, the generality of the results in Section 4
allows us to say something meaningful about the behavior of TD�	�� for many similar but
more difficult situations such as when

� there are a very large or even an infinite number of states (a state can be any vector
inRN ).

� some states are ambiguously represented so that two or more states are represented by
the same vector.

� the underlying transition probabilities are allowed to change with time.

� each transition is chosen entirely or in part by an adversary (as might be the case in a
game-playing scenario).

7. Algorithm for the batch model

In the usual supervised learning setting, the on-line learning proceeds as follows: In each
trial t 
 � the learner receives an instancext � RN . Then, after producing a prediction�yt
it gets a reinforcementyt and incurs loss	�yt � yt�

�.
A classical algorithm for this problem is the Widrow-Hoff algorithm. It keeps a linear

hypothesis represented by the vectorwt and predicts with�yt � wt �xt. The weight vector
is updated using gradient descent:

wt�� �� wt � ��t	wt � xt � yt�xt�

Note that�	wt � xt � yt�xt is the gradient of the loss	wt � xt � yt�� with respect towt.
There is a straightforward generalization of the above scenario when more than one

instance is received in each trialt. In this generalization, the learner does the following in
each trial:



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 19

1. receives a real-valued matrixMt with N columns;

2. computes a prediction�yt;

3. gets reinforcementyt; bothyt and�yt are real column vectors whose dimension is
equal to the number of rows ofMt;

4. incurs lossjj�yt � ytjj�.
The rows of the matrixMt can be viewed as a batch of instances received at trialt. The
algorithm has to predict on all instances received in trialt before it gets the reinforcement
vectoryt which contains one reinforcement per row. For each instance, the algorithm
is charged for the usual square loss, and the loss in trialt is summed over all instances
received in that trial.

The algorithm we study, called WHM, is a direct generalization of the Widrow-Hoff
algorithm and was previously analyzed in the noise-free case by Cesa-Bianchi, Long and
Warmuth (1993), The learner maintains a weight vectorwt � RN and, on each trialt,
computes its prediction as

�yt ��Mtwt�

After receiving reinforcementyt, the weight vector is updated using the rule

wt�� �� wt � ��tM
T
t 	Mtwt � yt��

Note that the Widrow-Hoff algorithm is a special case of WHM in which each ma-
trix Mt contains exactly one row. Also, the update is standard gradient descent in that
�MT

t 	Mtwt � yt� is the gradient of the lossjjMtwt � ytjj� with respect towt.
To model a particular reinforcement learning problem, we have the freedom to make up

the matricesMt and reinforcementsyt to suit our purpose. For example, Sutton (1988)
and others have considered a model in which the learner takes a random walk on a Markov
chain until it reaches a terminal state, whereupon it receives some feedback, and starts over
with a new walk. The learner’s goal is to predict the final outcome of each walk. This
problem is really a special case of our model in which we letMt contain the instances of a
run and setyt � 	zt� � � � � zt�T , wherezt is the reinforcement received for thetth run. (In
this case, Sutton shows that the Widrow-Hoff algorithm is actually equivalent to a version
of TD	�� in which updates are not made to the weight vectorwt until the final outcome is
received.)

An example is a pair	Mt�yt�, and, as before, we useS to denote a sequence of examples.
We writeL�	A� S� to denote the total loss of algorithmA on sequenceS:

L�	A� S� ��
�X

t��

	�yt � yt���

where�yt is the prediction ofA in the tth trial, and� is the total length of the sequence.
Similarly, the total loss of a weight vectoru � RN is defined as



20 R� E� SCHAPIRE AND M� K� WARMUTH

L�	u� S� ��
�X

t��

	Mtu� yt���

The proof of the following lemma and theorem are a straightforward generalization of
the worst-case analysis of the Widrow-Hoff algorithm given by Cesa-Bianchi, Long and
Warmuth (1993). In the proof, we define,jjMjj, the norm of any matrixM, as

jjMjj � max
jjxjj��

jjMxjj�

For comparison to the results in the first part of this paper, it is useful to note thatjjMjj �
X
p
m wherem is the number of rows ofM, andX is an upper bound on the norm of each

row ofM.
For any vectorx, we writex� to denotexTx.

Lemma � Let 	M�y� be an arbitrary example such that jjMjj �M . Let s and u be any
weight vectors. Let b 	 �, and let the learning rate be

� �
�

�	jjMjj�
 ��b�
�

Then

jjMs� yjj� � 	M�b
 ��jjMu� yjj� 
 	M� 
 ��b�	jju� sjj�� jju�wjj���
(17)

where w � s � ��MT 	Ms � y� denotes the weight vector of the algorithm WHM after
updating its weight vector s.

Proof: Let e �� y �Ms andeu �� y �Mu. Then inequality (17) holds if

f �� jju�wjj� � jju� sjj� 
 ��e� � beu
� � ��

Sincew � s
 ��MTe, f can be rewritten as

f � ���	u� s�TMT e
 ���jjMTejj� 
 ��e� � beu
�

� ���	e� eu�T e
 ���jjMTejj� 
 ��e� � beu
�

� ���e� 
 ��eu
Te
 ���jjMTejj� � beu

��

Since�euTe � b
��eu

� 
 ��
b
e� and sincejjMTejj � jjMjjjjejj, we can upper boundf by

e�	��� 
 ���	jjMjj�
 ��b�� � ��

Theorem � Let S be any sequence of examples and let M be the largest norm jjMtjj.
If the matrix algorithm WHM uses any start vector s and learning rates



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 21

�t � � �
�

�	jjMtjj�
M��
�

then we have for any vector u the bound

L�	WHM� S� � �	L�	u� S� 
M�jjs� ujj��� (18)

Assume further that we know boundsK andU such that for some uwe haveL�	u� S� � K
and jjs� ujj � U . Then for the learning rates

�t � � �
U

�	jjMtjj�U 
M
p
K�

we have

L�	WHM� S� � L�	u� S� 
 �MU
p
K 
M�jjs� ujj�� (19)

Proof: Assume that

�t � � �
�

�	jjMjj�
 ��b�

for someb 	 � to be chosen later. By summing the inequality of Lemma 2 over all runs of
S we get

L�	WHM� S� � 	bM� 
 ��L�	u� S� 
 	M� 
 ��b�	jju� sjj� � jju�w�jj���
wherew� is the weight vector after the last reinforcement ofS is processed. Since
jju�w�jj� 
 �, we have

L�	WHM� S� � 	bM� 
 ��L�	u� S� 
 	M� 
 ��b�jju� sjj��
Now settingb � ��M � gives the choice of� in the first part of the theorem and so yields

the bound in Eq. (18).
Assuming further thatL�	u� S� � K andjjs� ujj � U , we get

L�	WHM� S� � L�	u� S� 
M�jjs� ujj�
 bKM� 
 U��b� (20)

The part of the right hand side that depends onb is bKM � 
 U��b which is minimized
whenb � U�	M

p
K�. Using this value ofb in Eq. (20) gives the desired choice of� and

the bound in Eq. (19).

In the special case thatK � �, setting�t � ��	�jjMtjj�� gives a bound of

L�	WHM� S� � L�	u� S� 
M�jjs� ujj��
Note that to prove this,b � 
 is used. The bound forK � � was previously proved by
Cesa-Bianchi, Long and Warmuth (1993). An alternate proof of the above theorem via
a reduction from the corresponding theorem for the original Widrow-Hoff algorithm was
recently provided by Kivinen and Warmuth (1994).

The following lower bound shows that the bounds of the above theorem are best possible.



22 R� E� SCHAPIRE AND M� K� WARMUTH

Theorem � Let N�m 
 �, K�U 
 � and M 	 �. For every prediction algorithm A
there exists a sequence S consisting of a single example 	M�y� such that the following
hold:

1. M is an m 	N matrix and jjMjj � M ;

2. K � minfL�	u� S� � jjujj � Ug; and

3. L�	A� S� 
 K 
 �UM
p
K 
 U�M�.

Proof: As in the proof of Theorem 3, we prove the result in the case thatN � �, without
loss of generality. Thus,M is actually a column vector inRm.

Let each component ofM be equal toM�
p
m so thatjjMjj �M . Let each component of

y be equal tosz wherez � 	MU 

p
K��

p
m ands � f���
�g is chosen adversarially

afterA has made its prediction�y � 	�y�� � � � � �ym�T .
To see that part 2 holds, letu � u be a vector (scalar, really). Then

L�	u� S� � jjMu� yjj� � m	Mu�
p
m� sz��

which is minimized whenu � sU for juj � U . In this case,L�	u� S� � K.
Finally, by choosings adversarially to maximize algorithmA’s loss, we have

L�	A� S� � max
s�f�����g

mX
i��

	�yi � sz��


 �

�

mX
i��

�
	�yi � z�� 
 	�yi 
 z��

�



mX
i��

z� � K 
 �MU
p
K 
M�U��

8. Discussion

The primary contribution of this paper is the analysis of some simple temporal-difference
algorithms using a worst-case approach. This method of analysis differs dramatically from
the statistical approach that has been used in the past for such problems, and our approach
has some important advantages.

First, the results that are obtained using the worst-case approach are quite robust. Ob-
viously, any analysis of any learning algorithm is valid only when the assumed conditions
actually hold in the real world. By making the most minimal of assumptions — and, in
particular, by making no assumptions at all about the stochastic nature of the world — we
hope to be able to provide analyses that are as robust and broadly applicable as possible.



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 23

Statistical methods for analyzing on-line learning algorithms are only necessary when
worst-case bounds cannot be obtained. In this paper, we demonstrated that temporal-
difference learning algorithms with simple linear models are highly amenable to worst-
case analysis. Although one might expect such a pessimistic approach to give rather weak
results, we have found, somewhat surprisingly, that very strong bounds can often be proved
even in the worst case.

Worst-case bounds for on-line linear learning algorithms can be very tight even on
artificial data (Kivinen & Warmuth, 1994). Good experimental performance of a particular
algorithmmight be seen as weak evidence for showingthat the algorithm is good since every
algorithm performs well on some data, particularly when the data is artificial. However, if
we have a worst-case bound for a particular algorithm, then we can use experimental data
to show how much worse the competitors can perform relative to the worst-case bound of
the algorithm in question.

Another strength of the worst-case approach is its emphasis on the actual performance
of the learning algorithm on the actually observed data. Breaking with more traditional
approaches, we do not analyze how well the learning algorithm performs in expectation,
or how well it performs asymptotically as the amount of training data becomes infinite, or
how well the algorithm estimates the underlying parameters of some assumed stochastic
model. Rather, we focus on the quality of the learner’s predictions as measured against the
finite sequence of data that it actually observes.

Finally, our method of analysis seems to be more fine-grained than previous approaches.
As a result, the worst-case approach may help to resolve a number of open issues in
temporal-difference learning, such as the following:

� Which learning rules are best for which problems? We use the total worst-case loss as
our criterion. Minimizing this criterion led us to discover the modified learning rule
TD�	��. Unlike the original TD	��, this rule has a gradient descent interpretation for
general�. Our method can also be used to derive worst-case bounds for the original
rule, but we were unable to obtain bounds for TD	�� stronger than those given for
TD�	��. It will be curious to see how the two rules compare experimentally.

Also, the results in Section 4 provide explicit worst-case bounds on the performance
of TD�	�� and TD�	��. These bounds show that one of the two algorithms may or
may not be better than the other depending on the values of the parametersX�,K, etc.
Thus, using a priori knowledge we may have about a particular learning problem, we
can use these bounds to guide us in deciding which algorithm to use.

� How should a learning algorithm’s parameters be tuned? For instance, we have shown
how the learning rate� should be chosen for TD�	�� and TD�	�� using knowledge
which may be available about a particular problem. For the choice of�, Sutton showed
experimentally that, in some cases, the learner’s hypothesis got closest to the target
when� is chosen in	�� �� and that there is clearly one optimal choice. So far, our
worst-case bounds for TD�	�� are not in closed form when� � 	�� ��, but, numerically,
we have found that our results are entirely consistent with Sutton’s in this regard.

� How does the performance of a learning algorithm depend on various parameters of
the problem? For instance, our bounds show explicitly how the performance of TD�	��



24 R� E� SCHAPIRE AND M� K� WARMUTH

degrades as� approaches�. Furthermore, the lower bounds that can sometimes be
proved (such as in Section 5) help us to understand what performance is best possible
as a function of these parameters.

Open problems. There remain many open research problems in this area. The first
of these is to reduce the bound given in Lemma 1 to closed form to facilitate the optimal
choice of� � ��� ��. However, as clearly indicated by Fig. 2, even when� and� are chosen
so as to minimize this bound, there remains a significant gap between the upper bounds
proved in Section 4 and the lower bound proved in Section 5. This may be a weakness
of our analysis, or this may be an indication that an algorithm better than either TD	�� or
TD�	�� is waiting to be discovered.

So far, we have only been able to obtain results when the comparison class consists of
linear predictors defined by a weight vectoru which make predictions of the formu � xt.
It is an open problem to prove worst-case loss bounds with respect to other comparison
classes.

As described in Section 3, TD�	�� can be motivated using gradient descent. Rules
of this kind can alternatively be derived within a framework described by Kivinen and
Warmuth (1994). Moreover, by modifying one of the parameters of their framework, they
show that update rules having a qualitatively different flavor can be derived that use the
approximation of the gradientrwt

	yt � �yt�� in the exponent of a multiplicative update.
(Note that the TD	�� update is additive.) In particular, they analyze such an algorithm,
which they call EG, for the same problem that we are considering in the special case that
� � �. Although the bounds they obtain are generally incomparable with the bounds
derived for gradient-descent algorithms, these new algorithms have great advantages in
some very important cases. It is straightforward to generalize their update rule for� 	 �,
but the analysis of the resulting update rule is an open problem (although we have made
some preliminary progress in this direction).

Lastly, Sutton’s TD	��algorithm can be viewed as a special case of Watkin’s “Q-learning”
algorithm (1989). This algorithm is meant to handle a setting in which the learner has a
set of actions to choose from, and attempts to choose its actions so as to maximize its total
payoff. A very interesting open problem is the extension of the worst-case approach to
such a setting in which the learner has partial control over its environment and over the
feedback that it receives.

Acknowledgments

We are very grateful to Rich Sutton for his continued feedback and guidance. Thanks also
to Satinder Singh for thought-provoking discussions, and to the anonymous referees for
their careful reading and feedback.

Manfred Warmuth acknowledges the support of NSF grant IRI-9123692 and AT&T Bell
Laboratories. This research was primarily conducted while visiting AT&T Bell Laborato-
ries.



WORST�CASE ANALYSIS OF TD LEARNING ALGORITHMS 25

Appendix

In this technical appendix, we complete the proof of Lemma 1 by bounding
	M�, the
largest eigenvalue of the matrixM.

Let I be the� 	 � identity matrix, and, fori� j 
 �, define

Si � Zi 
 Z
T
i �

Ri � ZTi Zi�

Pij � ZTi Zj 
 Z
T
j Zi�

SinceZi is the zero matrix fori 
 �, we can rewriteV more conveniently as

V �
X
i	�

	���iZi�

By direct but tedious computations, we have that

DTD � I � �S� 
 ��R��

and

VD � I


�
�� �

�

�X
i	�

	���iZi

sinceZiZ� � Zi�� for i 
 �. Also,

DTVTVD � I


�
�� �

�

��
�

X
i	�

	����iRi 

X
j�i	�

	���i�jPij

�
�




�
�� �

�

�X
i	�

	���iSi�

Thus,M can be written as:�
��X�

� � �� 

��

b

�
I


�
���X�

�� 


�
� � ��

b

�
�	� � ��

�
S� 
 ��X�

���R�




�
�� �

�

��
��

b
� �

�X
i	�

	���iSi



��

b

�
�� �

�

��
�

X
i	�

	����iRi 

X
j�i	�

	���i�jPij

�
� �

It is known that
	A
B� � 
	A� 
 
	B� for real, symmetric matricesA andB. Further,
it can be shown (for instance, using Eq. (10)) that


	I� � ��


	Ri� � ��


	�Si� � ��


	Pij� � ��



26 R� E� SCHAPIRE AND M� K� WARMUTH

Applying these bounds gives that


	M� � ��X�
� � �� 


��

b

 �

				
�
� � ��

b

�
�	� � ��� ��X�

��

				
 ��X�
���

��
�
�� �

�

�				��b � �

				X
i	�

	���i



��

b

�
�� �

�

��
�

X
i	�

	����i 
 �
X
j�i	�

	���i�j

�
�

� �Cb�

Notes

1. In this paper we only use one vector norm, theL �-norm: jjujj �

qP
N

i��
u�
i
�

2. In some versions of TD���, this difficulty is overcome by replacing�y t�� � wt�� � xt�� in the update
rule (4) by the approximationwt � xt�� .

3. The factor of two in front of�t can be absorbed into�t.

4. If N � �, we can reduce to the one-dimensional case by zeroing all but one of the components ofx t.

References

Nicol�o Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-case quadratic loss bounds for a
generalization of the Widrow-Hoff rule. InProceedingsof the Sixth Annual ACM Conferenceon Computational
Learning Theory, pages 429–438, July 1993.

Peter Dayan. The convergence ofTD��� for general�. Machine Learning, 8(3/4):341–362, May 1992.
Peter Dayan and TerrenceJ. Sejnowski.TD���convergeswith probability 1.MachineLearning, 14(3):295–301,

1994.
Roger A. Horn and Charles R. Johnson.Matrix Analysis. Cambridge University Press, 1985.
Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative dynamic

programming algorithms. Technical Report 9307, MIT Computational Cognitive Science, July 1993.
Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated gradient updates for learning linear

functions. Technical Report UCSC-CRL-94-16, University of California Santa Cruz, Computer Research
Laboratory, 1994.

Richard S. Sutton. Learning to predict by the methods of temporal differences.MachineLearning, 3:9–44, 1988.
C. J. C. H. Watkins.Learning from delayed rewards. PhD thesis, University of Cambridge, England, 1989.


