
The Annals of Statistics, 26(3):824-832, 1998.

Discussion of the paper “Arcing Classifiers” by Leo Breiman

Yoav Freund Robert E. Schapire
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932-0971 USA
fyoav, schapireg@research.att.com

September 19, 1997

We would like to thank Leo Breiman for his interest in our work on boosting, for his extensive
experiments with the AdaBoost algorithm (which he calls arc-fs) and for his very generous exposition
of our work to the statistics community. Breiman’s experiments and our intensive email communication
over the last two years have inspired us to think about boosting in new ways. These new ways of
thinking, in turn, led us to consider new ways for measuring the performance of the boosting algorithm
and for predicting its performance on out-of-sample instances.

It is exciting for us to have this communication channel with such a prominent practical statistician.
As computer scientists we try to derive our algorithms from theoretical frameworks. While these
frameworks cannot capture all of our prior beliefs about the nature of the real-world problems, they can
sometimes capture important aspects of the problem in new and useful ways. In our case, boosting was
originally derived as an answer to a theoretical question posed by Kearns and Valiant [7] within the
PAC framework, a model for the study of theoretical machine learning first proposed by Valiant [15].
We probably would have never thought about these algorithms had the theoretical question not been
posed. On the other hand, an experimental statistician such as Leo is usually more interested in the
actual behavior of algorithms on existing data-sets and pays a lot of attention to the actual values of
various variables during the run of the algorithm. Running AdaBoost on several synthetic and real-world
datasets, Breiman observed that the algorithm has surprisingly low generalization error, which, while
consistent with our theory at the time, was not predicted by it.1

It is this challenge from the experiments of Breiman reported here, as well as those of Drucker and
Cortes [3] and Quinlan [10], that prompted us to think harder about the problem and come up with a
new theoretical explanation of the surprising behavior, which we describe in our paper with Bartlett and
Lee [13]. This explanation suggests new measurable parameters, which can be tested in experiments,
and the adventure continues! Theory suggests new algorithms and experiments, while experiments give
rise to new observations which challenge the theory to come up with tighter bounds.2

Our communication with Leo has been challenging and exciting. We hope to see further communi-
cation developing between researchers in computational learning theory and statistics.

1 Boosting and bagging

Breiman’s paper is about improving the performance of alearning algorithm, sometimes also called a
prediction algorithm or classification method. Such an algorithm operates on a given set ofinstances

1Theories usually give only upper and lower bounds on the actual performance of algorithms. The gap between these
bounds is a reflection of the degree to which our theories fail to reflect the world and of our shortcomings in the mathematical
analysis.

2All the theoretical bounds to which we refer in this discussion arenon-asymptotic and can be used to generate specific
numerical bounds for finite sample sizes. However, these bounds are still numerically pretty loose.

1



(or cases) to produce a classification rule which we refer to as ahypothesis. The goal of a learning
algorithm is to find a hypothesis with lowgeneralization or prediction error, i.e., a low misclassification
rate on a separate test set.

Bagging and boosting are two general methods for improving the performance of a given learning
algorithm, which we call thebase learning algorithm. On a certain level, the algorithms are very
similar; they both work by feeding perturbed versions of the training set to the base learning algorithm
and combining the resulting rules by a majority vote.

While these similarities are apparent, there are some important differences between the two al-
gorithms. Probably the most important difference is that the perturbations introduced by bagging
arerandom andindependent while the perturbations introduced by boosting (on a given training set)
are chosendeterministically andserially, with thenth perturbationdepending strongly on all of the
previously generated rules.

In this paper, Breiman uses boosting-by-resampling, instead of boosting-by-reweighting and in
this way combines the two methods.3 However, in Section 8.2, Breiman reports results from using
the deterministic version of boosting and his results indicate that in the experiments reported here
randomization is not an important element. On the other hand, Breiman has informed us that there are
other, yet unpublished, experimental results regarding boosting of unpruned decision trees, in which
boosting-by-resampling seems to have an advantage over boosting-by-reweighting.

It seems to us that the difference between boosting-by-reweighting and bagging should not be over-
looked. Breiman analyzes both bagging and boosting in terms of the bias and variance decomposition
of the error. We argue that this analysis is not appropriate for boosting. We have proposed a different
analysis that seems to be appropriate for boosting but leaves out the effects of randomization. Giving
a good theory of these randomization effects and a characterization of the cases in which they are
advantageous is an interesting open problem.

The rest of this discussion is organized as follows. In Section 2, we give a historical perspective of
the development of boosting algorithms. In Section 3, we summarize our arguments against explaining
boosting using the bias-variance decomposition. In Section 4, we sketch our explanation for the small
generalization error of boosting (a full description of this analysis appears in our paper with Bartlett and
Lee [13]). We conclude by describing some practical and theoretical open questions.

2 Boosting in and out of the PAC framework

The differences between boosting and bagging reflect the very different frameworks in which the two
algorithms have been developed. Breiman [1, 2] developed bagging in the context of reducing the
variance of learning algorithms, while boosting was developed as an answer to a theoretical question
posed by Kearns and Valiant [7] within the PAC learning literature. Stated somewhat informally,
the question is: suppose we have a computationally efficient learning algorithm that can generate a
hypothesis which is slightly better than random guessing forany distribution over the inputs. Does
the existence of such a “weak” learning algorithm imply the existence of an efficient “strong” learning
algorithm that can generate arbitrarily accurate hypotheses?

The answer to this question, given first by Schapire [12], is “yes.” The proof is constructive,
i.e., it describes an efficient algorithm which transforms any efficient weak learning algorithm into an
efficient strong one. Later, Freund [5] described a simpler and considerably more efficient boosting
algorithm calledboost-by-majority. Our AdaBoost algorithm is the most recent of the proposed boosting

3In boosting-by-reweighting, we assume that the learning algorithm can work directly with a weighted training sample,
while in boosting-by-resampling, training samples are generated by picking examples at random according to the distribution
over the training set.

2



algorithms [6]. While nearly as efficient as boost-by-majority, AdaBoost has certain practical advantages
over the preceding boosting algorithms which we discuss below.

The goal of all boosting algorithms, starting with Schapire’s, has always been to generate a combined
hypothesis whosegeneralization error is small. One of themeans for achieving this reduction has been
to reduce the error of the combined hypothesis on the the training set. The expectation that reducing
the training error of the boosted hypothesis will also reduce the test error was justified by appealing to
uniform convergence theory [16] (VC theory) or to arguments that rely on sample compression [4]. As
a result of this analysis, the expectation was that there would be no point in running boosting beyond
the point at which the training error of the combined hypothesis is zero.

It is only with the experimental work of Drucker and Cortes [3], Quinlan [10] and the work of
Breiman reported here, that it was realized that it is sometimes worthwhile to run the boosting algorithm
beyond the point at which the error of the combined hypothesis is zero. The fact that doing so can cause
the test error to decrease even further was very surprising to us, and, indeed, completely contradicted
our intuitions about the relations between the training error and test error of learning algorithms.

The fact that these discoveries were made on the latest boosting algorithm “AdaBoost” rather than
previous boosting algorithms has possibly more to do with the fact that this algorithm is very efficient
in practice and less to do with its generalization properties. Indeed, both previous boosting algorithms
can be classified as “arcing” algorithms according to Breiman’s terminology. It would be interesting to
see whether these previous boosting algorithms also decrease the test error after a training error of zero
has been reached. In addition, boost-by-majority is quite different than AdaBoost in the way it treats
outliers, which suggests that it might be worth exploring experimentally.

The reason that AdaBoost is especially efficient in practice is that it isadaptive. Previous boosting
algorithms had to receive as input, in advance of observing the data, a parameter� � 0. This parameter
is the amount by which we believe that our classification method is better than random guessing. More
formally, in order for the proof on the prediction error of the combined rule to work, the hypotheses
generated by the weak learning algorithm have to all have error smaller than 1�2� �. In practice, it is
hard to know how to set� in advance. There are two aspects to this problem which we discuss in turn:

1. As Breiman remarks in the appendix, it might be the case that for some distributions over the inputs
there isno hypothesis whose error is smaller than 1�2. This reflects a limitation of the original
PAC framework, in which boosting was originally analyzed, in which the assumption of weak
learning is made uniformly with respect toall distributions. However, boosting algorithms can
be analyzed outside this framework, as was done for AdaBoost where the theoretical framework
of the analysis was expanded to better reflect the real-world problems. The cost of this expansion
is that in the more general framework we lose the clear and simple definition of a “weak learner.”
In other words, the degree to which a learning algorithm can be boosted is characterized only
as “an algorithm that gives small errors when run under AdaBoost.” This is a very unsatisfying
characterization because it involves both the base classification method and the boosting algorithm,
while we would like to have a characterization that involves only the classification method.4

2. It may be possible to use boost-by-majority in cases where the weak learning algorithm depends
on the input distribution. The fact that we need to know� in advance may not really be such a big
problem because we might be able to run the algorithm several times and perform a binary search
for the largest value of� that works. However, there is an importantcomputational efficiency
problem. The problem is that the number of iterations required by boost-by-majority grows like

4A somewhat different framework was used to give an extended analysis of boost-by-majority which, to some degree,
overcomes this difficulty [5, Section 4.1].

3



Kong & Dietterich [9] definitions Breiman definitions
stumps C4.5 stumps C4.5

name – boost bag – boost bag – boost bag – boost bag
waveform bias 26.0 3.8 22.8 1.5 0.5 1.4 19.2 2.6 15.7 0.9 0.3 1.4

var 5.6 2.8 4.1 14.9 3.7 5.2 12.5 4.0 11.2 15.5 3.9 5.2
error 44.7 19.6 39.9 29.4 17.2 19.7 44.7 19.6 39.9 29.4 17.2 19.7

twonorm bias 2.5 0.6 2.0 0.5 0.2 0.5 1.3 0.3 1.1 0.3 0.1 0.3
var 28.5 2.3 17.3 18.7 1.8 5.4 29.6 2.6 18.2 19.0 1.9 5.6
error 33.3 5.3 21.7 21.6 4.4 8.3 33.3 5.3 21.7 21.6 4.4 8.3

threenorm bias 24.5 6.3 21.6 4.7 2.9 5.0 14.2 4.1 13.8 2.6 1.9 3.1
var 6.9 5.1 4.8 16.7 5.2 6.8 17.2 7.3 12.6 18.8 6.3 8.6
error 41.9 22.0 36.9 31.9 18.6 22.3 41.9 22.0 36.9 31.9 18.6 22.3

ringnorm bias 46.9 4.1 46.9 2.0 0.7 1.7 32.3 2.7 37.6 1.1 0.4 1.1
var –7.9 6.6 –7.1 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error 40.6 12.2 41.4 19.0 4.5 9.5 40.6 12.2 41.4 19.0 4.5 9.5

Table 1: Bias-variance experiments using boosting and bagging on synthetic data. Columns labeled with a dash
indicate that the base learning algorithm was run just once.

1��2 so, for example, if� � 0�01 we need several tens of thousands of boosting iterations. This
problem was fixed by AdaBoost which can take advantage of the iterations in which the error of
the weak hypotheses is smaller than 1�2� � and gain a large computational efficiency from that.
While this last point might seem subtle, it is the main reason that AdaBoost is very efficient on
real-world problems and this is ultimately the reason that it has so far played the dominant role in
the application of boosting to real-world problems.

The development of boosting algorithms is a result of continuous interaction of practical and theoretical
considerations, which demonstrates the importance of the interaction between these two modes of
research. Breiman’s work and our response to it represent the most recent chapter of this interaction.

3 The bias/variance explanation

Breiman’s analysis of bagging and boosting is based on a decomposition of the expected error of the
combined classifier into a bias term and a variance term. There are several difficulties with the use of
this analysis for boosting (more details are given in our paper with Bartlett and Lee [13]):

1. The bias-variance decomposition originates in the analysis of quadratic regression. Its application
to classification problems is problematic, as reflected in the large number of suggested decom-
positions [8, 9, 14], in addition to the one given by Breiman in this paper. One unavoidable
problem is that voting over several independently generated rules can sometimes increase, rather
than decrease, the expected error.

2. Even in those cases where voting several independent classifiers is guaranteed to decrease the
expected error, it is not always the case that voting over several bagged classifiers will do the same.
The analysis of bootstrap estimation, which underlies bagging, has only asymptotic guarantees
that might not hold for real-world sample sizes.

3. We have performed an analysis of the behavior of bagging and boosting on top of both Quinlan’s
C4.5 decision-tree algorithm [11] and an algorithm which we call “stumps” which generates the
best rule which is a test on a single feature (i.e., a one-level decision tree or decision “stump.”)
We computed the bias and variance of these methods on some of the synthetic problems used by
Breiman. We used the definitions of bias and variance of both Kong and Dietterich [9] and of
Breiman. The results are summarized in Table 1. It seems clear that while bagging is mostly a

4



10 100 1000
0

5

10

15

20

-1 -0.5 0.5 1

0.5

1.0

Figure 1: Error curves and the cumulative margin distribution graph for boosting C4.5 on the “letters” dataset.

variance reducing procedure, boosting can reduce both variance and bias. This is evident mostly
in the experiments using stumps, which is a learning algorithm with very high bias. Moreover, in
the experiment on the “ringnorm” data using boosting on stumps actuallyincreases the variance,
while at the same time it decreases the bias sufficiently to reduce the final error. These experiments
demonstrate that variance-reduction cannot completely explain the performance of boosting.

4 The margins explanation

In our paper with Bartlett and Lee [13], we describe an alternative explanation for the fact that boosting
can often decrease the test error even after the training error is zero. Here is a sketch of the explanation.
Assume, for the sake of simplicity, that the problem is abinary classification problem and that the
two possible labels are�1 and�1. Denote the input byx, the prediction of thei’th rule by hi�x�
and the correct label byy � f�1��1g. Then the weighted vote rule generated by AdaBoost can be
written as sign�

P
n

i�1�ihi�x��, where
P

n

i�1 j�ij � 1. The vote is correct on the example�x� y� if
y
P

n

i�1�ihi�x� � 0. It is natural to think ofj
P

n

i�1�ihi�x�j as a measure of theconfidence of the
prediction. With this intuition in mind we definem�x� y�

�
� y
P

n

i�1�ihi�x� to be themargin of �x� y�.
A large positive margin indicates a confident correct prediction, a large negative margin indicates a
confident but incorrect prediction, and a small margin indicates unconfident predictions.

The claim of our explanation is that after boosting achieves zero training error, it goes on to generate
a combined hypothesis whose margin is large on all of the examples in the training set and that it is this
large margin that causes a decrease in the generalization error.

For example, in one experiment, we ran AdaBoost on top of C4.5 on the “letters” dataset, used also
by Breiman in his paper. On the left of Figure 1, we have shown the training and test error curves
(lower and upper curves, respectively) of the combined hypothesis as a function of the number of trees
combined. The test error of C4.5 on this dataset (run just once) is 13.8%. The test error of boosting
1000 trees is 3.1%. (Both of these error rates are indicated in the figure as horizontal grid lines.) After
just five trees have been combined, the training error of the combined hypothesis has already dropped
to zero, but the test error continues to drop from 8.4% on round 5 down to 3.1% on round 1000.

As indicated above, our explanation for this phenomenon is based on the distribution of the margins
of the training examples. We can visualize these margins by plotting their cumulative distribution (i.e.,
we can plot the fraction of examples whose margin is at mostx as a function ofx � ��1�1�). On the
right side of Figure 1, we show the cumulative margin distributions that correspond to the experiment
described above. The graphs show the margin distributions after 5, 100 and 1000 iterations, indicated

5



by short-dashed, long-dashed (mostly hidden) and solid curves, respectively.
Our main observation is that boosting tends to significantly increase the margins of the training

examples, even after the training error reaches zero. In this case, although the training error remains
unchanged (at zero) after round 5, the margin distribution changes quite significantly so that after 100
iterations all examples have a margin larger than 0.5. In comparison, on round 5, about 7.7% of the
examples have margin below 0�5.

We present both experimental and theoretical evidence for the margin-based explanation for the
effectiveness of boosting. Examining the margin distributions for a variety of problems and algorithms,
we demonstrate a connection between the generalization error and the distribution of margins on the
training set. We then back up these empirical observations with a theoretical explanation in two parts:
First, we prove that, for sufficiently large training sets, there is a bound on the generalization error which
is a function of the margin and which doesnot depend on the number of base hypotheses combined
into the boosted hypothesis. Second, we prove that if the training errors of the base hypotheses are
sufficiently small, then boosting is guaranteed to generate a combined hypothesis with large positive
margins on all of the examples.

5 Some open problems

Breiman’s work demonstrates the effectiveness of “perturb and combine” methods for reducing classi-
fication error. While a lot of understanding has been gained, many questions remain. Here are a few
questions that seem particularly interesting to us:

� What is the relation between the randomized effect of bagging and the deterministic effect of
boosting? Can the two effects be separated in experiments?

� Alternatively, is there a unified theory, based on provable theorems, which explains both boosting
and bagging in a single framework?

� Can we characterize the learning algorithms and/or the data generation processes which are most
likely to benefit from boosting or from bagging or from their combination.

� Is resampling the best way for randomly perturbing the training data? What about adding random
noise to the label or to the features? How can we analyze these effects?

� Quinlan [10] has reported that, in unusual cases, boosting can actuallyincrease the generalization
error of the base learning algorithm by a small amount. Can we characterize or predict when
boosting will fail in this manner?

� In Section 4, we discussed one explanation [13] for theoretically bounding the generalization
error of voting methods like bagging and boosting. Are there other more practical and accurate
methods for estimating the generalization error?

References

[1] Leo Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.
[2] Leo Breiman. The heuristics of instability in model selection.Annals of Statistics, 24:2350–2383,

1996.
[3] Harris Drucker and Corinna Cortes. Boosting decision trees. InAdvances in Neural Information

Processing Systems 8, pages 479–485, 1996.

6



[4] Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension.Machine Learning, 21(3):269–304, 1995.

[5] Yoav Freund. Boosting a weak learning algorithm by majority.Information and Computation,
121(2):256–285, 1995.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting.Journal of Computer and System Sciences, 55(1):119–139, August
1997.

[7] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formulae
and finite automata.Journal of the Association for Computing Machinery, 41(1):67–95, January
1994.

[8] Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one loss functions.
In Machine Learning: Proceedings of the Thirteenth International Conference, pages 275–283,
1996.

[9] Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding corrects bias and
variance. InProceedings of the Twelfth International Conference on Machine Learning, pages
313–321, 1995.

[10] J. R. Quinlan. Bagging, boosting, and C4.5. InProceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 725–730, 1996.

[11] J. Ross Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[12] Robert E. Schapire. The strength of weak learnability.Machine Learning, 5(2):197–227, 1990.
[13] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new

explanation for the effectiveness of voting methods. InMachine Learning: Proceedings of the
Fourteenth International Conference, 1997.

[14] Robert Tibshirani. Bias, variance and prediction error for classification rules. Technical report,
University of Toronto, November 1996.

[15] L. G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134–1142,
November 1984.

[16] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

7


