
Experience with Learning Agents which Manage Internet-Based
Information

Peter Edwards, David Bayer, Claire L. Green & Terry R. Payne �

Department of Computing Science
King's College, University of Aberdeen

Aberdeen, Scotland, AB9 2UE
fpedwards, dbayer, claire, terryg@csd.abdn.ac.uk

Abstract

To provide assistance with tasks such as retriev-
ing USENET news articles or identifying inter-
esting Web pages, an intelligent agent requires
information about a user's interests and needs.
Machine learning techniques are now being used
to acquire this information. A general architec-
ture is presented, and two approaches to learning
through observation are described. An instantia-
tion of the architecture is then evaluated.

Introduction

The recent, rapid growth of the Internet has led to
enormous amounts of on-line information. However, as
the volume of this information has increased, so have
the problems encountered by users in dealing with it.
Software agents have been proposed as a solution to
this problem. They may be characterised as systems
which aid and assist a user with a common task, em-
ploying some degree of learning or adaptation to im-
prove the quality of their assistance over time.
Agents have been described as:

\...computer programs which employ Arti�cial
Intelligence techniques to provide assistance to a
user dealing with a particular computer applica-
tion..." (Maes 1994)

Many systems have been developed to deal with �lter-
ing information, such as electronic mail or USENET
news articles (Sheth 1994; Payne, Edwards, & Green
1995). Other systems have been developed which
actively seek out information (Voorhees 1994; Bayer
1995), and the number of such systems being devel-
oped is increasing.
If an agent is to be of assistance, it requires knowl-

edge about the domain application and/or the user.

� Terry R. Payne and David Bayer acknowledge �nan-
cial support provided by the UK Engineering & Physical
Sciences Research Council (EPSRC).

Two approaches have traditionally been used to pro-
vide an agent with knowledge about its task domain.
The �rst and most common method is for users to pro-
vide their own rules, e.g. by using a scripting language.
Users of systems such as the Information Lens (Mal-
one et al. 1987) have to de�ne a set of rules to �lter
and sort incoming mail messages. Other systems rely
on user-de�ned scripts which contain short programs,
such as those employed by the Information Retrieval
Agent (IRA) (Voorhees 1994).

The second method makes use of traditional knowl-
edge engineering techniques to identify background
knowledge about the application and the user. This
technique has been applied to advisory agents, such
as UCEgo (Chin 1991), which provides advice on us-
ing the UNIX operating system. Whilst this shifts the
task of programming the agent from the user to the
Knowledge Engineer, the agent will not be customised
for a particular user. Thus, approaches such as this
cannot be used for personalised tasks, such as infor-
mation �ltering.

An alternative solution is to build a pro�le which
re
ects the user's preferences when using an applica-
tion, such as a World-Wide Web browser. A variety
of learning mechanisms have been employed within
agent systems to induce such pro�les. Genetic al-
gorithm approaches have been used for news �lter-
ing agents (Sheth 1994); symbolic rule induction al-
gorithms such as C4.5 (Quinlan 1993) and CN2 (Clark
& Niblett 1989), and instance-based approaches (Stan-
�ll & Waltz 1986; Kibler & Aha 1987) have been
used with mail and news �ltering tasks (Metral 1993;
Payne & Edwards 1995; Payne, Edwards, & Green
1995) and automated Web browsing (Bayer 1995;
Balabanovi�c & Yun 1995). Minimum Description
Length techniques have been explored in USENET
news �ltering (Lang 1995), and relational learning al-
gorithms such as FOIL (Quinlan 1990) have been ap-
plied to text categorisation (Cohen 1995). Unfor-
tunately, it is di�cult to assess the relative perfor-



Feature Extraction
Observation

Profile Generation

GUI

Feature ExtractionClassification

Prediction

Underlying
Application

Figure 1: A Learning Interface Agent Architecture.

mance of these techniques for agent systems, due to
the ad hoc nature of much of the evaluation per-
formed. This can perhaps be explained by the lack
of standard data sets within the UCI Machine Learn-
ing Data Repository (Murphy & Aha 1994). One
recent trend has been the development of agent sys-
tems to act as comparative testbeds for learning tech-
niques (Armstrong et al. 1995; Blum 1995; Lang 1995;
Payne & Edwards 1995).

Related Work

A number of systems have been developed which
combine machine learning techniques with infor-
mation �ltering techniques to create user pro�les.
Lira (Balabanovi�c & Yun 1995) employed a term-
frequency/inverse-document frequency (t�df) weight-
ing to extract a �xed number of terms from World-
Wide Web pages. These were then used to construct a
number of vectors which were used by a Web robot to
search and score matching pages. The highest scoring
pages were then presented to the user, who rated them
on an 11 point scale. This feedback was then used to
adjust the weights within the vectors.

Lang (1995) studied how well machine learning tech-
niques performed compared to traditional information
�ltering techniques within the news-�ltering system,
NewsWeeder. A vector of word frequencies was �rst
created from news articles, and then used to train a
learning algorithm based on the Minimum Descrip-
tion Length (MDL) principal. The performance of this
algorithm was then compared to an approach involv-

ing a t�df weighting. The vector of word frequencies
was weighted using this calculation. They were then
grouped by classi�cation, and the weights were aver-
aged to form a prototype vector. New vectors were
then compared to these prototype vectors using a co-
sine similarity measure. Results indicated that learn-
ing techniques can be used to identify news articles of
interest, and that they have a number of bene�ts over
the use of information retrieval techniques such as t�df
(see Lang (1995) for details).

A similar study has been carried out with World-
Wide Web documents. WebWatcher (Armstrong et
al. 1995) compared the use of a t�df based classi�er
with the linear threshold algorithm, Winnow (Little-
stone 1988) in searching for links to technical papers.
Each training instance was represented by a vector of
approximately 530 boolean features, taken from four
�elds. The �rst three �elds contained features from
the Web documents, the fourth contained words en-
tered by the user when de�ning the information search
goal. The vectors were used by di�erent classi�cation
techniques to predict which links a user should fol-
low to reach a technical paper. Four techniques were
compared: Winnow, t�df, a statistical based approach
(Wordstat), and a random prediction generator, used
to provide a baseline measure against which to com-
pare the other methods. Results showed that the three
learning methods could all be used to successfully learn
search control knowledge for the Web, by observing
searches performed by users.



A bit of text
<A HREF = "http://www.abdn.ac.uk/">
A link somewhere
<\A>
<H2> Another Heading </H2>
Text around link
<HREF = "http://www.csd.abdn.ac.uk/">
This is a link about LAW
</A>
even more text
</HTML>

<HTML>
<TITLE> Page about Agents </TITLE>
<H1> Interface Agents: A Heading </H1>

Title Text = {page about agents}
Heading Text = {another heading}
Surrounding Text = {text around link even more}
Link Text = {link about law}

Title Text = {page about agents}
Heading Text = {interface agents heading}

Link Text = {link somewhere}
Surrounding text = {bit text}

Link 2

Link 1

Features

Web Document

Figure 2: Extracting Features from a HTML Docu-
ment.

Agent Model

To explore the issues involved in employing learn-
ing mechanisms within existing software applications,
the agent architecture shown in Figure 1 was devel-
oped. Agents based on this general architecture have
been embedded within a number of applications includ-
ing a World-Wide Web browser and a USENET news
reader. The architecture can be divided into two broad
areas: the Pro�le Generation Phase and the Classi�ca-
tion/Prediction Phase. The Pro�le Generation phase
is responsible for inducing the user pro�le, and con-
sists of three stages: the Observation Stage, the Fea-
ture Extraction Stage and the Pro�le Generation Stage.
Actions performed by the user on a document (news
article, Web page, etc.) are recorded together with
the text of the document. Features are extracted from
these observations, and used to create a training in-
stance. The training instances are then used to induce
the user pro�le. As the application is used over time,

Link 1 Features
Title Text = {page about agents}

Link Text = {link somewhere}
Surrounding text = {bit text}
Heading Text = {interface agents heading}

�
�
�

�
�
�

page, heading, text, somewhere.

C4.5 Training Instances

about, heading, text, somewhere.
agents, heading, text, somewhere.

agents, interface, bit, link.
page, agents, bit, link.

agents, agents, bit, link.
about, agents, bit, link.

about, interface, bit, link.
page, interface, bit, link.

Figure 3: Generating Instances from Features Ex-
tracted from a HTML Document.

the set of observations grows in size. It is periodically
pruned to remove the oldest observations, so that the
pro�le induced re
ects the user's current interests.

The Classi�cation/Prediction phase is responsible
for determining the actions to be performed on new
documents. It consists of a Feature Extraction Stage,
a Classi�cation Stage and a Prediction Stage. Features
are extracted from each document, and the user pro�le
employed to generate a classi�cation (with an associ-
ated con�dence rating). The con�dence rating is used
by the Prediction Stage to determine whether a pre-
diction should be made. If the rating is lower than the
con�dence threshold, then no prediction will be made.
If, however, the con�dence rating is higher than this
threshold, the prediction will be passed on to the ap-
plication.

Feature Extraction Issues

Various methods can be used to extract features from
documents. By feature we mean a word or term, and
the �eld from which it was extracted within the doc-
ument, such as the Subject �eld in a USENET News
article, or the Title of a Web page (see Figure 2). All
terms in each �eld are rated using a measure of term



signi�cance1 and the N highest terms then extracted
from the document. Figure 2 illustrates how four fea-
tures are extracted to represent each link in a sample
HTML document.
The measure used to rank terms may consider each

document in isolation (e.g. measuring the frequency of
di�erent terms within the document), or consider the
document with respect to the whole collection of doc-
uments (corpus). For example, measures such as the
t�df weighting consider the frequency of terms across
all documents. Once features have been extracted from
a document, they need to be presented to the learn-
ing algorithm. One approach is to generate a vector
of features to represent the document. However, such
vectors can be large, as their size is dependent on the
number of di�erent features selected from the corpus.
Various approaches have been proposed to limit the
size of vectors produced. For example, WebWatcher
considers only a subset of features from the whole cor-
pus (Armstrong et al. 1995). We have investigated
two approaches which avoid the use of vectors.
The �rst approach relies on creating a number of

training instances for each observation (Figure 3).
Learning algorithms such as C4.5 (Quinlan 1993) and
CN2 (Clark & Niblett 1989) expect training instances
which contain a single value for each attribute. By cre-
ating groups of training instances in this way, data can
be generated for use by these algorithms.

�(D; x; y) =
AX

a=1

0
BBBB@

x:anX
xv=1

y:anX
yv=1

d(D; xv ; yv)w(D; xv)

x:an � y:an

1
CCCCA
(1)

d(D; xv ; yv) =
X
c2C

(�(D; c; xv)� �(D; c; yv))
2 (2)

w(D; xv) =

sX
c2C

�(D; c; xv)2 (3)

The second approach involved developing a learning
algorithm which can learn from features such as those
illustrated in Figure 2. Instance-Based algorithms de-
rive a classi�cation by comparing a new instance with
previously classi�ed instances. It is possible to modify
the comparison so that multiple values can be com-
pared for each attribute. The Value-Distance Met-
ric, used in the Memory-Based Reasoning Algorithm
(Stan�ll & Waltz 1986), provides a means of calculat-
ing a similarity measure (distance) between symbolic

1Commonly occurring words such as and, or, etc. are
removed before performing these calculations.

values. For this reason, it was modi�ed (see Equation
1) so that multiple distances could be calculated and
averaged when comparing attributes. This resulted in
the algorithm IBPL1 (Payne & Edwards 1995). A sim-
ilarity measure is calculated by determining the dis-
tance d(D; xv ; yv) between two values for attribute a
(Equation 2), and a weighting value w(D; xv) for value
xv (Equation 3). Table 1 lists the notation used.

Symbol Description
D Training set
C The set of all classes in D
a Attribute
A Number of attributes
x Unclassi�ed instance
y Instance in training set D
x:an Number of values in attribute a of x
y:an Number of values in attribute a of y
xv Value considered in instance x
yv Value considered in instance y
�(D; c; xv) Ratio of the number of times value xv

occurs in training instances of class c,
to the number of times xv occurs in
the training set.

�(D; c; yv) Ratio of the number of times value yv
occurs in training instances of class c,
to the number of times yv occurs in the
training set.

Table 1: Notation used in Equations 1, 2 & 3

Magi - Mail Agent Interface

Magi was the �rst system to explore the use of the
architecture shown in Figure 1, and was developed to
aid a user in sorting incoming electronic mail (Payne
& Edwards 1995). Xmail, a graphical user interface
for mail was modi�ed to record mail �ling and mail
deletion operations.
Two versions of Magi were constructed to explore

how pro�les could be induced from these observations.
The �rst generated groups of instances for each ob-
servation. These were then used by CN2 to induce
the pro�le. The second version used IBPL1. The per-
formance of both methods was compared. Coverage
(i.e. how many new messages could be classi�ed) and
accuracy (i.e. whether these classi�cations were cor-
rect) were recorded. A total of 408 mail messages were
used in the evaluation, sorted into 12 mail boxes. The
study found that the overall accuracy of predictions
made by IBPL1 was slightly lower (57%) than those
for CN2 (65%), although the results for individual mail
boxes varied. It should be noted that the rules gener-



ated by CN2 were biased towards features containing
fewer terms, as these appeared more frequently in the
training data. These results are described in detail in
(Payne & Edwards 1995).

IAN - Intelligent Assistant for News

IAN is a modi�ed version of the UNA system (Green
1995) which aids a user in identifying interesting
USENET news articles. As the user reads news in a
modi�ed version of the xrn news browser, they provide
a rating on a four point scale, in order to indicate their
level of interest in each article. When the user next
reads news, they can instruct the system to �lter out
any uninteresting articles. All remaining articles are
presented to the user for feedback.

The IAN test set contained 1200 news articles, split
evenly across 6 di�erent newsgroups (alt.lefthanders,
sci.stat.math, rec.food.cooking, rec.food.veg.cooking,
rec.humor, and alt.education.research). Two sets of
tests were carried out when evaluating the performance
of the system; one to identify whether a correct pre-
diction could be made for broad classi�cations, (i.e.
articles rated 1 or 2 were grouped as `uninteresting',
while articles rated 3 or 4 were grouped as `interest-
ing') and the other for narrow classi�cations (i.e. for
a correct classi�cation on the scale 1-4). Coverage and
accuracy were calculated for each test. Experimen-
tation showed that the accuracy of predictions using
C4.5 and IBPL1 were, on average, approximately the
same, with C4.5 generally performing better when pre-
dicting broad classi�cations (C4.5 63%, IBPL1 61%),
and IBPL1 generally performing better when predict-
ing narrow classi�cations (IBPL1 40%, C4.5 36%).

LAW : A Learning Apprentice for the

World Wide Web

LAW (Bayer 1995) is a system that helps a user �nd
new and interesting information on the World-Wide
Web. It provides assistance in two ways: by interac-
tively suggesting links to the user as they browse the
Web; and through the use of a separate Web robot
that autonomously searches for pages that might be of
interest.

LAW is based on the general agent architecture
shown in Figure 1. However, two di�erent pro�les are
generated: the link pro�le and page pro�le. The link
pro�le represents the type of links which the user typ-
ically explores as they browse the Web, and is used
to provide interactive assistance as the user views new
pages. The page pro�le describes the type of pages
which the user �nds interesting, and is used in con-
junction with the link pro�le to control the Web robot.

Interactive Assistance

LAW provides interactive assistance as the user
browses the Web, by highlighting the links which ap-
pear most interesting on each page visited. In this way,
the system immediately focuses the user's attention on
the salient parts of a page.
The Chimera Web browser has been modi�ed so that

pages can be analysed prior to being displayed. The
links within each document are extracted and classi-
�ed using the link pro�le. Those that are classi�ed as
interesting are highlighted by inserting an icon imme-
diately prior to the link in the document. Once these
modi�cations have been made, the page is displayed to
the user.

The Web Robot

The robot is a separate application that explores the
World-Wide Web using a best-�rst search through the
links it encounters (Figure 4).
The robot is given a number of starting points by

the user from which to begin exploring. It then enters
the following cycle: load a page, extract and analyse
the links within the page, analyse the overall content
of the page. The links extracted are classi�ed using the
link pro�le. Those that are classi�ed as interesting are
given a numerical rating which depends on how closely
they match the type of links which the user typically
explores. The rating measure used is the con�dence
value returned by the classi�cation engine. The rating
given to each link is used to order the search, with the
highest scoring links being explored �rst. Pages are
analysed in a similar manner, using the page pro�le.
Those classi�ed as interesting are given a rating, and
the highest rated pages are presented to the user.

Feature Extraction

The observations collected through the modi�ed Web
browser consist of HTML documents visited by the
user and actions performed on these documents. The
actions recorded are browser functions such as the user
saving the location of a page as a bookmark, or printing
a page. From this data a set of training instances must
be constructed for each of the pro�les.
To construct the set of instances needed for the link

pro�le, the terms associated with each link in each
document must be identi�ed. Four distinct groups of
terms can be extracted for each link: terms in the link
text, terms in the text surrounding the link, terms in
the heading nearest the link and terms in the title of
the document. This process is depicted in Figure 2.
Links explored by the user are used as training in-
stances. Each instance is given a classi�cation of either
interesting or not interesting. If a link led to a page



Classification
List of

Web pages
to visit

Page
Profile

Example
Page

Link
Profile

Classification Link
Examples

Web Robot

World-Wide
Web

List of
URL’s to

visit
Feature Extraction

Figure 4: The Role of the Link and Page Pro�les in Controlling the Web Robot.

that the user saved as a bookmark, printed, or visited
frequently then it is classi�ed as interesting, otherwise
as not interesting.

The training data required for the page pro�le is
constructed in a similar manner. An instance is cre-
ated for each unique document. Four �elds are used to
represent the contents of a page: terms in the title of
the document, terms in the headings within the docu-
ment, terms in the links, and terms in the remainder of
the document. An instance is classi�ed as interesting
if the page was visited frequently, saved as a bookmark
or printed.

Only terms considered signi�cant are extracted from
the raw data. Initially, HTML tags, such as < html >
and < p >, and low information content words, such
as the, and, etc. are removed. The remaining terms
are rated using a measure of term signi�cance. The
highest rated terms are used in the instances. A num-
ber of di�erent measures of term signi�cance have
been compared, including term frequency, term fre-
quency/inverse document frequency (t�df), and term
relevance (Salton & McGill 1983).

The term frequency measure (Equation 4) assumes
that the importance of a term is directly proportional
to the frequency with which it appears within a docu-
ment.

Weightik =
Freqik

NoWordsi
(4)

Freqik is the frequency of term k in document i and
NoWordsi is the number of terms in document i.
The t�df measure (Equation 5) assigns a greater sig-

ni�cance to terms that are good discriminators be-
tween documents in a collection. The measure com-
pares how frequently a term appears in a document
against the number of other documents which contain
that term. The weighting formula is as follows:

Weightik = Freqik � [log2 n� log
2
DocFreqk + 1] (5)

where n is the total number of documents in the collec-
tion and DocFreqk is the number of documents which
term k appears in.
The term relevance measure (Equation 6) gives pref-

erence to terms that di�erentiate between classes of
documents. The calculation gives preference to terms
that frequently occur in one class of documents and
infrequently in the rest.

TermRelevancekc =
rkc=(Rc � rkc)

skc=(Ic � skc)
(6)

TermRelevancekc is the signi�cance weight given to
a term k in a document belonging to class c. rkc is the
number of documents belonging to class c that contain
term k. Rc is the number of documents in class c.
skc is the number of documents not in class c that
also contain the term k. Ic is the total number of
documents not in class c.



The term relevance measure depends on knowledge
about the classi�cation of each document. In the
training data this is known, and appropriate signif-
icance values can be calculated. A problem arises
when feature extraction must be performed on new
documents, as the class of the document is unknown.
Consequently, it is necessary to use an alternative
weighting formula for these documents. As the term-
frequency weighting method requires no a-priori knowl-
edge about the class, it is used to calculate signi�cance
values for unclassi�ed documents.

Experimentation Methodology and

Results

LAW's performance was assessed using three di�er-
ent data sets which were constructed using the mod-
i�ed browser. Each set contained approximately 120
pages relating to one particular topic area: food, hu-
man rights and sport (see Table 2). The documents in
the food data set contained long lists of links. In con-
trast, the pages in the human rights data set usually
consisted of large amounts of text interspersed with oc-
casional links. The sport data set contained a mixture
of both types of document.

Pro�le Data Set Positive Negative Total

Instances Instances

Page Food 73 51 124
Human 62 55 117
Sport 66 59 125

Link Food 128 49 177
Human 48 54 102
Sport 176 122 298

Table 2: Numbers of Instances used to Evaluate Page
and Link Pro�les.

A number of experiments were performed with LAW
to evaluate the impact of the three di�erent weight-
ing formulae described above. Two alternative learn-
ing strategies were also considered. The �rst involved
the use of C4.5 to learn a pro�le from groups of in-
stances (see earlier discussion). The second approach
used IBPL1.
Each data set was divided into a training and a test

set. Features were extracted for the training set us-
ing one of the weighting formulae. The term-frequency
weighting method was used to extract features for the
test set. Each test was repeated 25 times, and average
accuracy and coverage values calculated. Accuracy re-
sults varied across the data sets. Table 3 lists the best
performance �gures obtained when training with 80%
of the data.

Best Performance Figures for IBPL1
Pro�le Data Accuracy Coverage Con�dence

Set % % Threshold

Page Food 75 79 2.5
Human 84 77 1.5
Sport 73 78 2.0

Link Food 83 83 2.0
Human 70 84 1.0
Sport 78 91 0.5

Best Performance Figures for C4.5
Pro�le Data Accuracy Coverage Con�dence

Set % % Threshold

Page Food 64 97 0.5
Human 71 96 0.5
Sport 63 99 0.5

Link Food 83 78 0.8
Human 68 76 0.6
Sport 77 90 0.6

Table 3: Best Performance Figures for each Data Set.

In general, no single weighting strategy produced
consistently better results than any other. Graphs 5
& 6 illustrate the performance of the three weighting
strategies when used to generate a page pro�le. The
accuracy of predictions made varies with the con�dence
threshold used. As the threshold increases, the num-
ber of predictions made (i.e. coverage) decreases, as
those with a low con�dence rating are rejected. This
results in an overall increase in accuracy. Graphs 7 &
8 illustrate this phenomenon for both IBPL1 and C4.5.

A con�dence threshold of zero was used to compare
the performance of C4.5 to that of IBPL1 for both
page and link pro�les. This resulted in both algorithms
achieving the same coverage (approximately 100%). In
general, IBPL1 performs as well as, or slightly better
than C4.5. Graphs 9 & 10 compare C4.5 and IBPL1
(using the term-relevance weighting method).

The performance of the Web robot was evaluated
by performing three test runs using each of the dif-
ferent data sets. A typical run lasted approximately
six hours, during which 700 documents were retrieved
from around 200 unique hosts. The pages suggested
by the robot were assessed using two criteria. Firstly,
whether they were in the correct topic area, i.e. in the
same domain as the data set. Secondly, if the pages
were of speci�c interest to the user2. The results ob-
tained for a single test run using the food data set
can be seen in Table 4. This table shows the number

2This was determined by one of the authors.



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

Training Data

Human Page Data - IBPL1

Term Frequency
Term Relevance

TFIDF

Figure 5: A Comparison of the Three Di�erent Weight-
ing Methods when used with IBPL1.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

Training Data

Human Page Data - C4.5

Term Frequency
Term Relevance

TFIDF

Figure 6: A Comparison of the Three Di�erent Weight-
ing Methods when used with C4.5.

of pages that would have been suggested if a partic-
ular con�dence threshold had been set. This clearly
demonstrates that the robot is able to discover interest-
ing pages. However, its performance declines rapidly
as its con�dence in the suggestions drops. Similar re-
sults were obtained for the tests on the other data sets.
Overall, the performance of the robot is directly related
to the quality of the page and link pro�les.

Discussion

A number of important conclusions have been drawn
from the experiments performed with LAW. The meth-
ods used to extract features appear not to have an ef-
fect on the accuracy of predictions. This may be due to
di�erent weighting measures being used in the Pro�le
Generation phase and Classi�cation/Prediction phase.

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

%

Confidence Level

Accuracy & Coverage of Predictions with IBPL1

Accuracy for Sport Page Data
Coverage for Sport Page Data

Figure 7: Coverage and Accuracy for IBPL1 as the
Con�dence Threshold Increases.

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%

Confidence Level

Accuracy & Coverage of Predictions with C4.5

Accuracy for Sport Page Data
Coverage for Sport Page Data

Figure 8: Coverage and Accuracy for C4.5 as the Con-
�dence Threshold Increases.

For this reason, alternative weighting measures need to
be investigated that do not require a-priori knowledge
of the class of the document. It would also be inter-
esting to examine techniques that are not based solely
on term frequency calculations. For example, methods
which identify word associations, extract sentences or
use a thesaurus to recognise related words.

The con�dence threshold provides a means of im-
proving the accuracy of predictions at the expense of
the coverage. This is signi�cant when con�guring the
di�erent systems. In LAW, it is more important to
suggest a small number of links that would be found
interesting, than to present a larger number of unin-
teresting links. For systems such as IAN, where ar-
ticles are presented to the user if a prediction cannot
be made, selecting the appropriate threshold value is



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

Training Data

Sport Link Data - Term Relevance

IBPL1
C4.5

Figure 9: A Comparison of C4.5 & IBPL1 - Learning
Link Pro�les.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

Training Data

Sport Page Data - Term Relevance

IBPL1
C4.5

Figure 10: A Comparison of C4.5 & IBPL1 - Learning
Page Pro�les.

more di�cult. If the threshold is lowered to increase
the coverage, then the accuracy of the predictions will
fall. Unless the agent is able to provide accurate and
consistent advice, the user will lose trust in the re-
sulting predictions. This accuracy/coverage tradeo� is
discussed further by Armstrong et al. (1995).

The IBPL1 algorithm uses a novel approach to over-
come the problem of learning with multi-valued at-
tributes. However, the results presented here indicate
that it o�ers no obvious advantages over the use of a
symbolic rule induction algorithm for learning concepts
for information management. Work is underway to im-
prove the accuracy of IBPL1 for such tasks, by investi-
gating di�erent feature weighting mechanisms, such as
those described in (Wettschereck, Aha, & Mohri 1995).

Con�dence Number of Percentage Percentage
Threshold Suggested in Correct Interesting

Pages Domain

1.97 10 90 60
0.79 30 63.33 40
0.71 50 52 36
0.45 100 41 21

Table 4: Summary of Results for a Single Test Run of
the Web Robot on the Food Data Set.

Conclusions

The work described in this paper has demonstrated
that the application of machine learning techniques
to existing information management tools can enhance
the capabilities of such software. Tools such as LAW
can achieve an accuracy of 68-83% when identifying
interesting links on a World-Wide Web page.
This work has highlighted a number of issues to con-

sider when embedding learning techniques within in-
formation management applications. Firstly the accu-
racy/coverage tradeo� is crucial, as an agent system
is more bene�cial to a user if its assistance is infre-
quent but correct, rather than frequent but inaccurate.
A second issue concerns which features to select for
the learning task. Whilst a number of techniques were
evaluated in LAW, no single method consistently out-
performed any other. Hence, other techniques should
be investigated, such as extracting n-grams or using
methods from natural language processing.
The IBPL1 algorithm has so far failed to o�er any

signi�cant advantages over other learning methods.
Work is needed to improve the algorithm's accuracy
over that achieved by other techniques.

Acknowledgements

We gratefully acknowledge the authors and maintain-
ers of xmail, xrn and Chimera for allowing us to use
their software. Thanks must also go to Nick Murray
for allowing us to run our CPU-intensive tests on the
network at the most inappropriate times.

References

Armstrong, R.; Freitag, D.; Joachims, T.; and
Mitchell, T. 1995. WebWatcher: A Learning Appren-
tice for the World Wide Web. In Working Notes of
the AAAI Spring Symposium Series on Information
Gathering from Distributed, Heterogeneous Environ-
ments. Menlo Park, CA:AAAI.

Balabanovi�c, M; Shoham, Y., and Yun, Y. 1995. An
Adaptive Agent for Automated Web Browsing. Jour-



nal of Image Representation and Visual Communica-
tion 6(4).

Bayer, D. 1995. A Learning Agent for Resource Dis-
covery on the World Wide Web. MSc Thesis, Depart-
ment of Computing Science, University of Aberdeen,
Scotland.

Blum, A. 1995. Empirical Support for Winnow and
Weighted-Majority Based Algorithms: Results on a
Calendar Scheduling Domain. In Proceedings of the
12th International Conference on Machine Learning,
64{72.

Chin, D. N. 1991. Intelligent Interfaces As Agents.
In Sullivan, J. W., and Tyler, S. W., eds., Intelligent
User Interfaces. New York, New York:ACM Press.
177{206.

Clark, P., and Niblett, T. 1989. The CN2 Induction
Algorithm. Machine Learning 3:261{283.

Cohen, W. 1995. Text Categorization and Relational
Learning. In The 12th International Conference on
Machine Learning, 124{132.

Green, C. 1995. USENET News Agent. BSc Final
Year Project Report, Department of Computing Sci-
ence, University of Aberdeen, Scotland.

Kibler, D., and Aha, D. 1987. Learning Representa-
tive Exemplars of Concepts: An Initial Case Study.
In Proceedings of the 4th International Workshop on
Machine Learning, 24{30.

Lang, K. 1995. NewsWeeder: Learning to Filter Net-
news. In Proceedings of the 12th International Ma-
chine Learning Conference (ML95), 331{339. San
Francisco, CA:Morgan Kaufmann.

Littlestone, N. 1988. Learning Quickly When Irrele-
vant Attributes Abound. Machine Learning 2(4):285{
318.

Maes, P. 1994. Agents that Reduce Work and In-
formation Overload. Communications of the ACM
37(7):30{40.

Malone, T.; Grant, K.; Turbak, F.; Brobst, S.; and
Cohen, M. 1987. Intelligent Information-Sharing Sys-
tems. Communications of the ACM 30(5):390{402.

Metral, M. 1993. Design of a Generic Learning In-
terface Agent. BSc Thesis, Department of Electrical
Engineering and Computer Science, MIT.

Murphy, P., and Aha, D. 1994. UCI Repos-
itory of Machine Learning Databases. De-
partment of Information and Computer Science,
University of California, Irvine, CA. [http://
www.ics.uci.edu/�mlearn/MLRepository.html].

Payne, T., and Edwards, P. 1995. Interface
Agents that Learn: An Investigation of Learning Is-
sues in a Mail Agent Interface. Technical Report
AUCS/TR9508, Department of Computing Science,
University of Aberdeen, Scotland. Submitted to Ap-
plied Arti�cial Intelligence.

Payne, T. R.; Edwards, P.; and Green, C. L. 1995.
Experience with Rule Induction and k-Nearest Neigh-
bour Methods for Interface Agents that Learn. In
ML95 Workshop on Agents that Learn from Other
Agents.

Quinlan, J. 1990. Learning Logical De�nitions from
Relations. Machine Learning 5:239{266.

Quinlan, J. 1993. C4.5 Programs for Machine Learn-
ing. San Mateo, CA:Morgan Kaufmann.

Salton, G., and McGill, M. 1983. Introduction to
Modern Information Retrieval. New York: McGraw-
Hill.

Sheth, B. 1994. A Learning Approach to Personal-
ized Information Filtering. Master's Thesis, Depart-
ment of Electrical Engineering and Computer Science,
MIT.

Stan�ll, C., and Waltz, D. 1986. Toward Memory-
Based Reasoning. Communications of the ACM
29(12):1213{1228.

Voorhees, E. 1994. Software Agents for Information
Retrieval. In Software Agents: Papers from the 1994
Spring Symposium, 126{129. Menlo Park, CA:AAAI
Press.

Wettschereck, D.; Aha, D.; and Mohri, T. 1995. A Re-
view and Comparative Evaluation of Feature Weight-
ing Methods for Lazy Learning Algorithms. Technical
Report AIC-95-012, NRL NCARAI.


