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Abstract. This paper describes a prototype in which a conversational
case-based reasoner, NaCoDAE, was agenti�ed and inserted in the RET-

SINA multi-agent system. Its task was to determine agent roles within
a heterogeneous society of agents, where the agents may use capability-

based or team-oriented agent coordination strategies. There were three

reasons for assigning this task to NaCoDAE: (1) to relieve the agents of
the overhead of determining, for themselves, if they should be involved

in the task, or not; (2) to convert seemingly unrelated data into contex-

tually relevant knowledge | as a case-based reasoning system, NaCo-
DAE is particularly suited for applying apparently incoherent data to

a wide variety of domain-speci�c situations; and (3) as a conversational

CBR system, to both unobtrusively listen to human statements and to
proactively dialogue with other agents in a more goal-directed approach

to gathering relevant information. The cases maintained by NaCoDAE

have question and answer components, which were originally intended
to maintain the textual representations of questions and answers for hu-

mans. By associating agent capability descriptions and queries with the

case questions, NaCoDAE also assumed the team role of a capability-
based coordinator. By encoding fragments of HTN plan objectives in its

case actions, we were able to convert NaCoDAE into a conversational

case-based planner that served compositionally-generated HTN plan ob-
jectives, already populated with situation-relevant knowledge, for use by

the RETSINA team-oriented agents.1

1 The authors are grateful to the Naval Research Labs for providing the sources to Na-
CoDAE. Matthew W. Easterday made a signi�cant contribution to this project by

adapting NaCoDAE to operate in an agent context. Many thanks to Alex Rudnicky

for allowing us to agentify Sphinx and for providing us with technical support. On
a personal note, Joseph Giampapa would like to thank David Aha for his encour-

agement and helpful suggestions. This research was sponsored in part by the O�ce

of Naval Research Grant N-00014-96-16-1-1222 and by DARPA Grant F-30602-98-
2-0138.



1 Introduction

Complex tasks are often solved by teams because no one individual has the col-
lective expertise, information, or resources required for e�ective performance.
Team problem solving involves a multitude of activities such as gathering, inter-
preting and exchanging information, creating and identifying alternative courses
of action, choosing among alternatives by becoming aware of di�ering and often
con
icting preferences of action by team members, and ultimately implementing
a choice, determining how incremental progress will be measured, and monitoring
its evolution. There have been many attempts and views in the agent commu-
nity as to how intelligent software agents should organize themselves into teams.
The work of this paper was inspired by the joint intentions theory of Cohen
and Levesque [5, 14], the shared plans theory proposed by Barbara Grosz [12],
and Milind Tambe's research based on the TEAMCORE [19, 28] multi-agent
software system.

In the joint intentions theory, a team is composed of agents that jointly com-
mit to the achievement of a joint persistent goal, or JPG. Agents desiring to be
part of a team must communicate their intention to each other that they intend
to commit to that goal. A team is formed once every agent has committed to a
goal and has received a communication that all the other agents have committed
to it, as well. The team remains a team as long as: (a) no agent has a reason
to believe that the goal is unachievable; (b) no agent decides, on its own, to de-
commit from the team goal; (c) the goal is not yet achieved and all agents remain
convinced that it is still achievable; and (d) no agent perceives that another agent
has de-committed from the team goal. Team goals are formed by an individual
agent nominating a task as a proposed team goal, and communicating that in-
tention until consensus is formed that the nominee is worth pursuing as a team
goal. The joint intentions theory is signi�cant because it is a formal model of
what motivates agent communications about teamwork. Further, it has enjoyed
broad recognition within the agent community as making pertinent claims and
observations about team-oriented behaviors. But the theory does not address:
(1) the problems of how agents acquire a team goal; (2) how agents identify the
roles that contribute to the ful�llment of a team goal, and identify those roles for
themselves; (3) how agents relate the roles of their individual goals to the overall
goal of the team; and (4) how the agents know when to break commitments to
their individual goals while still maintaining the team goal.

The shared plan theory [12] emphasizes the need for a common high-level
team model that allows agents to understand all requirements for plans that
might achieve a team goal, even if the individuals may not know the speci�c
details of the plans or how the requirements will be met. This allows team
members to map their capabilities to a plan to achieve a team goal, assign roles to
themselves, and measure their progress at achieving their overall team objective.
Like joint intentions theory, shared plan theory is based on observations of human
forms of teamwork.

TEAMCORE is an agent architecture that implements many of the basic
principles of joint intention theory. TEAMCORE application scenarios are usu-



ally situated in the military and robotic soccer domains, where the team-oriented
agents are homogeneous and their roles typically represent either authority rela-
tions, such as military rank, or high-level capability descriptions, such as trans-
port or escort helicopters. But once individual TEAMCORE agents commit to
being part of a team, they cannot dynamically add or subtract members to or
from their team so as to adapt to a new situation, while executing their plan.

Within human-machine teams, intelligent software agents can play a variety
of roles that help reduce some of the overhead of teamwork, as well as help solve
team problems. By means of their autonomy, agents can: get information re-
quested by a human; self-activate and present unsolicited important information
to a human user; suggest solutions to a problem; actively monitor the environ-
ment and cache relevant information so as to provide quick updates to \situation
knowledge" if required; and recombine, as needed, with other agents to adapt to
the particular task requirements over time.

To coordinate agents into teams e�ectively in dynamic environments, our
research thrust has been in line with the following principles: (1) we make open
world assumptions about the nature of tasks and the strategies for solving them
| a multi-agent solution to a problem will most likely involve agents of di�erent
architectures and abilities, available at di�erent times; (2) we subscribe to the
belief that there are meta rules that describe the nature of teamwork, that are
independent of the speci�c task being performed [8,18, 21], and that it is possible
to reuse this knowledge in di�erent application domains; and (3) that individual
roles and objectives of agents within the team may need to change in order to
maintain and achieve the full team goal.

In this paper we describe a prototype, implemented in our RETSINA2 multi-
agent infrastructure, in which agents interact with each other via capability-
based [23] and team-oriented coordination. For the team-oriented agent coor-
dination to be e�ective, we propose a model of teamwork based on the joint
intentions theory for agent communications about their intended commitments,
combined with the shared plans strategy of expressing descriptions of roles and
context-speci�c requirements for those roles. We enhance this proposal by adding
our own characterizations of role and subgoal relations in software agent team-
work, and show how the software agents can acquire this information from their
operating environment during execution time. The acquisition and maintenance
of the contextual information that determines the plan requirements is performed
by NaCoDAE, a conversational case-based reasoner, which is used to composi-
tionally generate Hierarchical Task Network [HTN] plan [9, 16] objectives for
the RETSINA team agents. We show that the unobtrusive and invisible use
of NaCoDAE as the primary means by which human and agent information is
gathered and merged can eliminate any information overload that might result
from the conscious interactions of humans with their intelligent agents.

In the sections that follow, we present RETSINA, NaCoDAE, the interacting
NaCoDAE and RETSINA prototype, and a command and control scenario that
we used as a case study for NaCoDAE's e�ectiveness as an agenti�ed conversa-

2 Reusable Environment for Task-Structured Intelligent Network Agents



tional case-based planner. After a brief review of related work, we conclude with
some ideas for future work in this area.

2 The RETSINA Multi-Agent System

The RETSINA multi-agent system (MAS) is a collection of heterogeneous soft-
ware entities that collaborate with each other to either provide a result or service
to other software entities or to an end user. As a society, RETSINA agents can
be described in terms of the RETSINA Functional Architecture [27, 24], illus-
trated by Figure 1, which categorizes agents as belonging to any of four agent
types:

Fig. 1. The RETSINA Functional Architecture

Interface agents present agent results to the user, or solicit input from the user.
In addition, they could learn from user actions [4]. Interface agents typically
represent speci�c modes of input or output, such as a VoiceRecognition agent
or a SpeechGeneration agent, or can be associated with di�erent device types
such as PDA, Phone, or E-Mail agents. Interface agent behaviors can also
be associated with task agents.

Task agents encapsulate task-speci�c knowledge and use that knowledge as the
criterion for requesting or performing services for other agents or humans. In
this respect, they are the typical agent coordinators of a multi-agent system.

Middle agents [29, 10] provide infrastructure for other agents. A typical in-
stance of a middle agent is the Matchmaker [25, 26], or Yellow Pages agent.
Requesting agents submit a capability request to the Matchmaker, which
will then locate the appropriate service-providing agents based upon their
published capability descriptions, known as advertisements.



Information agents model the information world to the agent society, and can
monitor any data- or event-producing source for user-supplied conditions.
Information agents may be single source if they only model one information
source, or may be multi-source if one information agent represents multiple
information sources. Information agents can also update external data stores,
such as databases, if appropriate.

By classifying agents functionally, we believe that it is possible to uniformly
de�ne agent behaviors [6] that are consistent with their functional description.
For example, information agents implement four behaviors for interacting with
the data sources that they model: ask once, monitor actively, monitor passively,
and update. RETSINA agents typically use the capability-based coordination
[23] technique to task each other, which means that one agent will dynamically
discover and interact with other agents based on their capability descriptions.
RETSINA agents also support other forms of coordination techniques, such as
the team-oriented coordination that is described later in this paper.
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Fig. 2. Schematic diagram of the RETSINA Agent Architecture. The boxes represent

concurrent threads and the arrows represent control and data 
ow. The \external
entities" may be agent or non-agent software components.

The RETSINA Individual Agent Architecture [24, 3, 6] is illustrated by Figure
2. This agent architecture implements Hierarchical Task Network (HTN) Plan-
ning [9, 16] in three parallel execution threads. A fourth thread, the Communi-
cator [20], provides the means by which the agent communicates with the net-
worked world. The Communicator provides a level of abstraction that insulates
the planning component from issues of agent communication language (ACL),
communication session management, the location of agent services via discovery,
the logging and visualization of agent messages and state information, and the
communication transport being used (e.g. infrared, telephone, base band, etc.).
The HTN Planner thread receives HTN plan objectives from the Communica-
tor, extracts the information and instructions contained therein, and attempts
to apply the extracted data to all the plans in its plan library. Plan actions
are partially enabled as the data is applied to them, and once all actions of a
plan are completely enabled, they are scheduled by the Scheduler. The Scheduler
maintains the enabled actions in a priority queue, and works with the Execution



Monitor, which actually executes the enabled actions. The coordination among
the three planning modules is done in such a way that high-priority actions can
interrupt those being executed by the Execution Monitor, if those being executed
are of a lower priority.

Fig. 3. Case and question areas of the NaCoDAE GUI

3 Navy Conversational Decision Aiding Environment

NaCoDAE [2] is a conversational case-based reasoning (CCBR) system that helps
a user decide a course of action by engaging him in a dialogue in which he
must describe the problem or situation. A conversational session begins with the
user providing an initial partial description of the problem that he is trying to
solve. NaCoDAE responds by providing a ranked solution display, which lists
the solutions of stored cases whose problem descriptions best match the user's
problem descriptions, and a ranked question display, which lists the unaswered
questions in these cases. The user interacts with these displays, either re�ning
their problem description by answering select questions, or by directly selecting
a solution to apply. By presenting questions in a ranked list, NaCoDAE attempts
to help guide the user to a rapid description of the problem by asking what it
perceives to be the most relevant questions, given the information provided.

Figure 3 illustrates the way in which NaCoDAE presents its solutions to the
user. It displays the case as a bundle of actions to take, a textual description of
what the case means, a list of the questions, their responses, and the case that
resulted from their selection. To make case authoring easier, NaCoDAE also
contains a module named CLiRe [1]3, that re�nes case libraries so as to enforce
speci�c case authoring guidelines. CLiRe uses a machine learning technique to
re�ne case libraries.

3 Case Library Revisor



There were three features of NaCoDAE that made it suitable for team co-
ordination and interaction with RETSINA agents. First, NaCoDAE can work
with partial descriptions of the problem and use them for initiating a dialogue.
This could allow one to encode a general strategy of, \always knowing the strat-
egy for how to get more information, if nothing else is known" | a technique
inspired by one of Barbara Grosz's motivations for shared plans [12]. Second,
NaCoDAE can continually revise its list of most likely candidate cases, as data
is provided to the system by either an agent or the user. This feature lends itself
to a form of coherent, compositional and incremental construction of knowledge
structures, such as HTN plan objectives and representations of situational or
contextual knowledge. This knowledge can be accessed even if time and the lack
of speci�c information do not allow for a description to be completely speci�ed.
Third, the cases can be modi�ed to store any type of textual data, including
agent capabilities and queries.

4 The RETSINA Model of Teamwork

Teamwork must be motivated by an overall description of a goal that merits
solution by a team, and a description of a shared plan that can achieve the
goal. As permitted by the shared plan theory, the plans can be fully or partially
speci�ed. A team-oriented individual must possess three types of knowledge: his
capabilities, the team plan requirements, and social parameters for role assess-
ment, such as knowledge of his authority to address team plan requirements, and
knowledge of social structure, such as superior, peer, and subordinate relation-
ships. To be able to act on that knowledge, a team-oriented individual should
also know how to perform certain types of assessments, such as: how to match
his individual capabilities to plan requirements; how to evaluate if his authority
allows him to apply his capabilities to the plan requirements; how to assess the
impact of his and his teammates' roles on achieving the overall team goal, so
that he may o�er more appropriate role proposals when situations change; how
to monitor progress when executing a plan; and how to map social structure to

plan requirements, such as knowing to report to an immediate superior or that
only particular team members have the authority to assign certain tasks.

The acquisition of situation-speci�c knowledge serves to \update" an individ-
ual's beliefs about the three types of team knowledge, mentioned above. Individ-
uals should attempt to become aware of as much situation-speci�c knowledge as
is necessary, both in the stage of forming a team and committing to roles in the
team plan, and while executing the team plan. Some situation-speci�c knowl-
edge may �ll gaps in the partial shared plan and transform it into a full shared
plan. Other situation-speci�c knowledge may modify the individual's knowledge
of his capability, social status, or of his authority. Still, another form of situation-
speci�c knowledge is that which is communicated by teammates at consensually-
determined checkpoints so as to indicate individual progress in relation to the
overall team plan.



As requirements of the task change, subgoals are achieved, or as individuals
change their capabilities, individuals must communicate these changes to the
appropriate teammates. These communications have been found to be critical in
human high performance teams [8, 18, 21]. If an individual discovers that he is no
longer capable of performing a role, then he must communicate this knowledge
to his teammates and superiors (if appropriate) and break with his subgoal
commitment. Alternatively, the individual may opt to stay with the subgoal
commitment if it does not impede progress to achieving the overall team goal
and there is no reason or request to assume another role.

An individual determines candidate roles for himself by matching his indi-
vidual capabilities to the requirements of the overall team goal within the con-
straints of his authority and other social parameters.4 If there are no candidate
roles, then the individual has the following options: (1) to attempt to further
re�ne the requirements of the overall team plan; (2) to attempt to acquire those
capabilities that match the plan requirements; (3) to attempt to acquire the
authority for applying the capability to the plan requirements; and (4) if it is
not possible to either specify the requirements, acquire the capability or the au-
thority to generate a candidate role in the team plan, then the individual should
not commit to the team plan. If the individual were successful at generating
candidate roles, however, then the individual should select the candidate roles
that he feels comfortable with committing to | by whatever evaluation metric
at his disposition (e.g. most commitments, least commitments, those that are
the best for a certain metric, etc.) | and communicate them to his teammates.

An individual with candidate roles must communicate them to the other team
members as proposals for his role in the team plan. Similarly, the individual must
receive the proposals for roles of the other team members, and evaluate if all plan
requirements are covered by all the proposals that were generated or received by
the individual. If all role proposals cover all plan requirements without con
icts,
then the individual may commit to the team plan and to his roles. If there
are no role proposal con
icts but not all plan requirements are met, then the
individual must evaluate if the requirements must be met as a precondition to
executing the plan. If they are, then the individual should reconsider if he has
the capability for addressing the non-assigned plan requirement, since he might
have withheld proposing the role for cost reasons. If he does have the capability,
and the bene�t of achieving the team goal outweighs the cost of committing to
that role, then the individual should propose it. If he does not have a capability
to respond to the requirement, then he must wait until all other teammates have
attempted to bid on it. If the requirement is eventually covered, then the team
can commit to the shared plan. If the requirement is not covered, then the team
members cannot commit to the shared plan, but they may actively recruit new
team members that could cover the requirement.

4 Since individuals may be committed to roles for the entire duration of the full team

plan, or for less time, we often call roles, subgoals, as well, and use the two terms
interchangeably.



If there are any con
icts, then only those agents with con
icting role pro-
posals must renegotiate their role proposals in a generate-and-repropose cycle.
If the con
icting parties cannot resolve their di�erences, they should enlarge the
circle of participants to include non-con
icting individuals, in the hope that new
members of the con
ict resolution group may have capabilities that can permit
a reassigning of proposed roles so as to avoid the con
ict. Once con
icts have
been resolved by the con
icted individuals, the proposed roles must be recom-
municated to all team members to form a shared mental model of the team plan,
so that all members can commit to it.

5 The Interaction of NaCoDAE in RETSINA

We placed the agenti�ed version of NaCoDAE, now a RETSINA task agent,
in a group of other RETSINA agents that had to organize themselves so as to
perform a mission in theModSAF simulation environment [7]5. There were other
agents in that community, but the group that was relevant to the mission was
composed of:

Brie�ngAgent a task agent that, together with NaCoDAE, maintains the
domain-speci�c knowledge of the full and partial shared plans for the Mis-
sionAgents, and performs agent-to-agent conversations on behalf of NaCo-
DAE. It also assembles shared plans from the actions of NaCoDAE cases,
and �nds MissionAgents to execute these plans by querying the Matchmak-
ers with the platoon capability descriptions as preferences.

DemoDisplay an interface agent that monitors the MessageLogger so as to pro-
vide visualization of agent-to-agent communications for humans monitoring
the agent system.

Matchmakers there are two types of matchmakers, Gin [25] and LARKS [26],
that are capable of di�erent forms of semantic matching. A matchmaker
is a middle agent that enables agents to �nd each other based on their
capabilities.

MessageLogger an information agent to which agents send copies of the mes-

sages they send to other agents.
MineSweepingTeam a team of task agents that use their own team-oriented

coordination strategies to clear a path through a mine�eld as quickly as
possible. [22]

MissionAgents three team-oriented task agents that must plan their joint mis-
sion with each other. Each one monitors and commands a platoon on behalf
of the human platoon commanders, in the ModSAF simulation environment.

ModSAF Proxy a task agent that models ModSAF behaviors to the other
RETSINA agents, and allows those agents to interact with the ModSAF
environment.

MokSAF / PalmSAF three interface agents, installed on three di�erent portable
hardware platforms, such as pen tablets or PDAs, that present human users

5 ModSAF is an acronym for Modular Semi-Automated Forces.



with shared plan proposals for team coordination. The proposals show the
coordinated planned routes on a ModSAF map. They also solicit the com-
manders' approval or rejection of the proposed team plans. [17] PalmSAF is
a version of MokSAF for the PalmPilotTM.

NaCoDAE a task agent that, together with the Brie�ngAgent, maintains the
knowledge that a superior commanding o�cer is likely to impart and require
from the three platoon commanders. It merges information that is provided
by both humans and agents to compositionally generate HTN plan objectives
that the plan shared by the MissionAgents aims to ful�ll.

NarratorAgent a special type of task agent that, given the number of SpeechA-
gents in audible range of each other, assigns them di�erent voices, and paces
the tasking of SpeechAgents so that their speech does not interfere with each
other.

RoutePlanningAgents three task agents, one dedicated to each MissionA-
gent, that plots routes for the platoons given characteristics of the terrain,
the vehicle composition of the platoon, and constraints imposed by the mis-
sion and human commanders, such as the need for some routes to be mutually
reinforcing. [17]

SpeechAgents three speech generation interface agents that synthesize audible
speech from text provided by subscriber agents.

VisualReconnaissance an information agent that scans the ModSAF map
and noti�es its subscribers of the location of a Threat Platoon when it �nds
one.

VoiceAgent a voice recognition interface agent that is based on the Sphinx
[13] speech recognizer. The VoiceAgent provides a dictation service to any
agent that subscribes to it. The service provides the subscriber with a textual
representation of what it recognizes from the human user's speech.

WeatherAgents three information agents that permit requesting agents to
learn about the current weather conditions from the web sites of: USA Today,
CNN, and Intellicast.

Figure 4 illustrates the types of agent communications that involve the Brief-
ingAgent and NaCoDAE. The human �gures of the scenario are represented by

the irregular hexagonal shapes at the top of the diagram, and their communica-
tions by the dashed line, (1). As the Company Commander speaks, his speech is
translated into text by his VoiceAgent. The Brie�ngAgent receives those textual
translations, as represented by line (2), and attempts to match the text of the
Commander's speech with the textual answers to questions that were posed by
NaCoDAE.6 If there is a match, then the Brie�ngAgent will send that answer
to NaCoDAE, as shown by (3). If NaCoDAE can use that answer to complete
a case, then it will return a case to the Brie�ngAgent (3), otherwise return a
regenerated ranked list of questions and their associated answers (3). If NaCo-
DAE's questions contain agent queries, the Brie�ngAgent will directly query the
provider agent if it is known (5), or �rst ask either or both of the Matchmakers

6 The Brie�ngAgent uses a token subset matching algorithm to permit matches despite
variations in word order and phrase length.
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Fig. 4. Agent communications that involved the Brie�ngAgent and NaCoDAE

for the identity of a provider agent (4), and then contact it (5). Upon request of
the MissionAgents (6), or upon the completion of a case by NaCoDAE (3), the
Brie�ngAgent will assemble a shared plan from the case actions and send it to
the MissionAgents (6). During the execution of the scenario, the MissionAgents
may also provide the Brie�ngAgent with updates to their capabilities (6), which
the Brie�ngAgent can forward to NaCoDAE (3).

6 Description of the Scenario

In the scenario, our model of teamwork is implemented by the MissionAgents,
knowledge of the shared plans is maintained by NaCoDAE and the Brie�ngA-
gent, and the shared plans are represented by brie�ng cases that contain brief-

ing actions similar to the one in Figure 5. Information that should be part of the
brie�ng is stored in the case-base: map data, additional resources allocated to
the team such as mine sweepers and intelligence reports, warnings, information
on the adversary, and reminders for the type of information to monitor during
the execution of the plan. In the descriptions that follow, references to shared
plan content that is represented in Figure 5 will appear in a di�erent font.

The scenario begins with a Company Commander brie�ng three human pla-
toon leaders. As he speaks, the Brie�ngAgent eavesdrops on the Commander's
discourse via the VoiceAgent. When he describes the composition of the platoons,
the Brie�ngAgent matches that information to some of the anticipated answers
to questions that NaCoDAE had ranked as highly likely, and passes that infor-
mation to NaCoDAE, which then selects cases with descriptions of platoons hav-
ing the same composition. NaCoDAE sends a revised ranked question list to the
Brie�ngAgent:Will the platoons have scouts? Is this a nighttime mission? What



:plan-requirements (requirements :type (names ohio texas utah distribution)
:names (ohio texas utah) :ohio (maneuverability :rating 3-6)
:texas (maneuverability :rating 6-8) :utah (maneuverability :rating 3-6)
:distribution (description :quantity 1 :assigned negotiate) )

:team-capability (team :type (capability-1 capability-2 capability-3)
:capability-1 (description :maneuverability 5 :firepower 6  [...]

:warning () )"
)

TOOLBOOK END ACTION

Xcoords-Utah Ycoords-Utah width-Utah

BEGIN ACTION briefing_action
TEXT "(briefing_object :brief_type captains-orders
:goal (goal :type (1 2 primary-goal)
:1 (description :do move :what your-platoons :to horizontal_line_500)
:2 (description :do force :what Threat_Platoon :to (behind :landmark

horizontal_line_500) :mode if-found):primary-goal both)
:map-checkpoints
(map-checkpoints :type (Xcoords-Ohio Ycoords-Ohio width-Ohio
Xcoords-Texas Ycoords-Texas width-Texas

checkpoint-1 [...] checkpoint-11 map-reference)

TITLE "Briefing Object"

[...]

Fig. 5. Part of the Brie�ng Object, encoded as a NaCoDAE case action

will the weather conditions be? Are there any known anti-tank mines? etc. Since
the question about the weather also contains a query for agents, the Brie�ngA-
gent queries the Matchmakers for WeatherAgents, �nds some, and queries them
for the weather conditions, while the Commander continues with his description
of the mission. The WeatherAgents reply \rainy", and NaCoDAE immediately
re�nes its list of solution cases to those which include the action representing
the constraint, plan platoon routes to avoid soft soil areas.

At the conclusion of the Commander's brie�ng, the Brie�ngAgent �nds the
MissionAgents by querying the Matchmakers for agents with knowledge of team
coordination for the command of platoons in ModSAF. Upon receipt of a list of
four MissionAgents, the Brie�ngAgent selects three and then assigns one platoon
to each of them. All three MissionAgents receive the same description of the
task that requires teamwork in the form of an HTN plan objective, with the
brie�ng object as the data segment. The goals are: (a) to scout the terrain up to
landmark horizontal line 500; (b) to force Threat Platoon, if encountered,

behind the landmark; and (c) the team goals are conjunctive: :primary-goal
both.

A teammember's capabilities are those of the platoon that it represents. Since
the platoon's composition is provided by the Company Commander, the team
members initially learn of their capabilities via the brie�ng object, for example,
:team-capability-1 (description :maneuverability 5 :firepower 6 : : :).
During the execution of the mission, if any component of a MissionAgent's pla-
toon su�ers damage, or needs to share resources, then the MissionAgent will
perceive the change to its own capabilities and communicate that knowledge
to the other team members, and to the supervising commanding o�cer via the
Brie�ngAgent.

The plan requirements are represented in the brie�ng object as the three
corridors, ohio texas utah. There is also a distribution requirement that



one platoon should patrol one corridor, but leaves it up to the MissionAgents to
negotiate their assignment to a corridor. Each corridor has its own maneuver-

ability :rating requirement, which the MissionAgents match to their own
maneuverability :rating capabilities to generate candidate roles. The Mis-
sionAgents propose, two of them negotiate a con
ict, they seek and receive
approval from the human commanders, and commit to their plans and begin
executing the mission.

In the course of the mission, one of the platoon's advance scouts discovers
an anti-tank mine�eld in their path. The robotic mine sweeping team is already
committed to one of the other platoons, so the MissionAgent for this platoon
announces his desire for any unassigned mine sweeping groups, to the whole
team, while it continues to execute its role in the team plan. Shortly afterwards,
the lead tank of the platoon with the mine sweepers assigned to it falls into
an anti-tank trap and breaks a track. Its MissionAgent noti�es the Brie�ngA-
gent and the other MissionAgents about its change in capability, and that its
new subgoal is to wait for an Armored Repair Vehicle. Remembering the new
plan requirement of the �rst MissionAgent, the mine sweeping team asks both
MissionAgents (current and requesting) and the Brie�ngAgent, if they can be
assigned to the �rst platoon. Both of the MissionAgents, and the Brie�ngAgent
agree to the request, and the mine sweepers change platoons and roles.

7 Related Work

We demonstrate a proof of concept conversational case-based planning system
for the team coordination of independent, intelligent software agents. From a
literature review, the SiN [15] algorithm, which integrates a generative planner,
SHOP, with a conversational case retriever, NaCoDAE/HTN, appears to be very
similar to the overall MAS con�guration of NaCoDAE, the Brie�ngAgent, and
the MissionAgents in the context of a multi-agent system application. SHOP
provides generalized domain knowledge that can be applied to a variety of do-
main problems. NaCoDAE/HTN interacts with humans to gather information
speci�c to the domain problems. The SiN algorithm manages the matching of
NaCoDAE/HTN task decompositions to SHOP plans, and the alternation of
control between the two systems. The reason for integrating the two planning
systems is to signi�cantly reduce the plan space of the NaCoDAE/HTN planner,
if it were used in isolation, and to allow for more interactivity with humans, if
SHOP were used in isolation. Future work could investigate if the RETSINA
agent HTN plan space is comparable to the NaCoDAE/HTN plan space in iso-
lation, or to the plan space of the total SiN system.

A novel aspect of our work was to use the conversational model of NaCoDAE
as a way of merging the asynchronous human- and agent-provided information
into cases. To our knowledge, this is the �rst instance of a conversational CBR
system that conversed directly with software agents. New agent queries or inter-
actions were triggered by the regeneration of NaCoDAE's ranked list of questions
in response to new input, which in turn triggered more agent responses.



Although others have used speech recognition as front-ends to conversational
CBR systems [11], we did not direct any of NaCoDAE's responses back to the
human user, thus NaCoDAE did not dialogue directly with the human. Rather,
so as to not cognitively overload the user and to be as unobtrusive as possible, the
NaCoDAE GUI was not visible, and the CCBP system passively listened to the
textual transcription of human statements, attempting to extract information
from the human conversation by matching their statements with the answers
associated to the ranked list of questions.

8 Conclusions

The work that we have presented in this paper is signi�cant in four ways. First,
we have introduced a technique by which information technologies can be ele-
vated to a level of accessibility that is closer to humans. Namely, by deploying
NaCoDAE as a passive listener to human conversations, and by agentifying it
so that it can actively dialogue with intelligent software agents in order to �ll
the gaps of unspeci�ed knowledge, we showed that we can avoid overloading
the human with detailed questioning while still allowing him to specify rele-
vant information. Second, we have demonstrated the 
exibility of conversational
case-based reasoning at combining knowledge from many sources in a dynamic
and ever-changing situation into meaningful knowledge. We do this by mapping
information from human and disparate agent sources into case actions, which
can then be assembled into team plans and descriptions of the environment.
Also, by performing this mapping asynchronously and incrementally, NaCoDAE
has demonstrated that its conversational nature is well-suited for agent infor-
mation gathering domains. Third, from the perspective of team-oriented agent
research, we have provided principles for developing and supporting agent teams,
and tested them by applying these principles to a scenario that involved soft-
ware agent teams operating in a simulated environment. Through such tests,
we contribute to the understanding of agent roles and human-agent interactions
in teams composed of humans and intelligent software agents. Fourth, we have
provided an innovative technique to the agent community that illustrates how to
access multimodal information that includes structured data as well as speech,
text, and agent responses.

References

1. D. W. Aha and L. A. Breslow. Re�ning conversational case libraries. In Proceedings

of the Second International Conference on Case-Based Reasoning, 1997.
2. D. W. Aha, L. A. Breslow, and T. Maney. Supporting conversational case-based

reasoning in an integrated reasoning framework. Case-Based Reasoning Integra-

tions: Papers from the 1998 Workshop, 1998.
3. D. Brugali and K. Sycara. Agent technology: A new frontier for the development of

application frameworks? In Object-Oriented Application Frameworks. Wiley, 1998.
4. L. Chen and K. Sycara. Webmate: A personal agent for browsing and searching.

In Agents 1998, May 1998.



5. P. R. Cohen and H. J. Levesque. Teamwork. Noûs, 25(4):487{512, 1991.
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