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Abstract

Electronic commerce and the vast amounts of real-time informa-
tion available through means of EDI and the Internet are reshaping the
way enterprises conduct business. A new computational infrastruc-
ture and models are needed for a business to gain a competitive edge
through effective use of this information base. One of the key issues
in competing in the electronic marketplace is product/service differen-
tiation. Currently there are no computational models for multi-issue
decision making in electronic commerce.

We develop a model of inter-organizational electronic commerce
that explores various new choices and opportunities that the electronic
marketplace offers. The particular motivating applications of our work
are supply chain management. Two major performance measures of
supply chain activities are cost and leadtime. In our model, we explic-
itly address these two issues in a unified fashion for a variety of supply
chain activities, such as outsourcing, supplier selection, production ca-
pacity, transportation mode selection, and inventory positioning. We
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model different business entities as autonomous software agents inter-
connected via the Internet. The main research focus of our efforts is
how to coordinate software agents in supply chains dynamically and
flexibly such that goods and services can be delivered at the right time
in a cost-effective manner.

The supply chain structure is modeled by an AND/OR network.
We develop an efficient algorithm for software agents in supply chains
to evaluate the alternatives that offer different leadtime and cost pa-
rameters. We have coupled this model with operational level decision
making such as stochastic inventory management. Experimental re-
sults show that our model results in significant improvement in solu-
tion quality as compared to traditional models.

1 Introduction

Current networking technology and the ready availability of vast amounts
of real-time data and information on the Internet-based Infosphere bring to
business decision makers more abundant and accurate information. Many
online businesses specialize in delivering electronic catalog services and per-
forming other intermediary functions such as business/product yellowpage
and matchmaking. Emerging computing paradigms such as Internet-based
software agents are also making locating and accessing information increas-
ingly easier.

Electronic commerce is reshaping both consumer market and inter-organizational
business. How to compete in the electronic marketplace effectively poses sig-
nificant challenges to practitioners and researchers. In this paper, we focus
on inter-organizational electronic commerce in the context of supply chain
management. Researchers and practitioners have observed that the nature
of competition in electronic commerce does not resemble undifferentiated
Bertrand competition. This suggests that price alone is not the only decision
criterion. Other decision criteria related with product/service differentiation
need to be considered. Two of the prominent performance measures of a sup-
ply chain are cost and leadtime. By leadtime, we mean the amount of time
that elapses from the instant that an order (or service request) is placed until
it arrives. By cost, we mean the sum of the costs of all activities required
to satisfy the order (or deliver the service). Some examples of these supply
chain activities and decisions are:



e Supplier selection. Procurement management is playing an increas-
ingly important role nowadays with the globalization of manufacturing
and advances in network information infrastructure. There usually ex-
ists a rich set of suppliers offering raw materials of varying quality, cost,
and delivery leadtime. Decisions regarding supplier selection have to
be made after a careful evaluation of the impact of raw material cost
and delivery time responsiveness on the supply chain as a whole.

e bf Subcontracting. In manufacturing, managers face “make or buy”
decisions—the choice between making components/products in house
or subcontracting them to outside sources. When making in house
is not an option or is clearly suboptimal, management has to select
the appropriate subcontractors from a pool of potential subcontractors
that offer different levels of service under different prices. These deci-
sions are critical in today’s highly competitive and dynamic business
environment.

e Transportation mode selection. Typically, multiple transportation
modes are available to supply chain managers, offering a wide range of
cost/time options. Decisions regarding which mode is best suited for
the current order are dependent on how urgently the order needs to be
filled, how expensive these modes are, and where this transportation
activity is located in the supply chain network.

e Assembly/subassembly. Assembly/subassembly operations cannot
start until all the components/subcomponents/raw materials required
become available. Production managers need to make sure that all
these materials are accessible for use at the right place and the right
time.

e Production rate decision. Production rate decisions correspond
with the choice between using faster, more expensive, high-capacity
production facilities versus slower but cheaper facilities. To evaluate
the tradeoffs between these options is not trivial considering all the
upstream and downstream activities in the supply chain.

In this paper, we present a model of inter-organizational electronic com-
merce that explicitly addresses the time and cost issues in a unified fash-
ion. We model different business entities as autonomous software agents



interconnected via the Internet. These agents act on behalf of their hu-
man users/organizations in order to perform laborious information gathering
tasks, such as locating and accessing information from various on-line infor-
mation sources, filter away irrelevant or unwanted information, and provide
decision support. Section 1.1 discusses some of the related literature. Sec-
tion 2 presents a brief description of our supply chain model, called LCT
(Leadtime-Cost-Tradeoff). The LCT model needs to be integrated with other
operational level decision making models such as inventory management to
enable intelligent agents to make the full range of supply chain decisions.
Section 3 presents how to integrate LCT into the EOQ model where the de-
mand rate is assumed to be constant. We present in Section 4 our model and
analysis of stochastic inventory management given the leadtime/cost choices.
Experimental results show that our model results in significant improvement
in solution quality as compared to traditional models. Computing optimal
policies for the resulting model proves to be computationally difficult. Sec-
tion 5 presents a computational study of making inventory decisions that take
advantage of leadtime/cost options. We conclude the paper in Section 6 by
summarizing the results and pointing out other extensions to our agent-based
multi-issue supply chain model.

1.1 Related Literature

Effective use of the Internet by individual users, organizations, or decision
support machine systems has been hampered by some dominant character-
istics of the Infosphere. Information available from the net is unorganized,
multi-modal, and distributed on server sites all over the world. The avail-
ability, type and reliability of information services are constantly changing.
In addition, information is ambiguous and possibly erroneous due to the dy-
namic nature of the information sources and potential information updating
and maintenance problems. The notion of Intelligent Software Agents (e.g.,
[WJ95, SZ96]) has been proposed to address this challenge. In this paper,
we model a supply chain as a multi-agent system where different business
entities interact with one another through intelligent software agents that
act on their behalf. In general, multi-agent systems can compartmentalize
specialized task knowledge, organize themselves to avoid processing bottle-
necks, and can be built expressly to deal with dynamic changes in the agent
and information-source landscape. In addition, Multiple Intelligent Agents



are ideally suited to the predominant characteristics of the Infosphere (and in
particular supply chain management), such as the heterogeneity of the infor-
mation sources, the diversity of information gathering and decision support
tasks that the gathered information supports, and the presence of multiple
users/organizations with related information and decision aiding needs.

In order for autonomous software agents to make sensible decisions in
any nontrivial domain such as supply chain management, they need to have
access to domain-specific decision making models and related computational
mechanisms[LS97]. We briefly survey some of these models in literature that
are most relevant to multi-issue (time and cost) supply chain management.

The first models that consider the possibility of purchasing shorter lead-
times at a premium cost appeared in [Bul64] and [Fuk64], among others.
The main objective of these papers is to find the optimal ordering policy
that minimizes ordering, holding and penalty costs when subject to random
demand. Structural results regarding the optimal replenishment policy were
established when there are only two options and the leadtimes of the two
options differ by one time unit (in periodic review situations).

Kaplan in [Kap70] analyzed optimal policies for a dynamic inventory
problem when the leadtime is a discrete random variable with known dis-
tribution. Assuming that outstanding orders do not cross in time, Kaplan
derived the structure of optimal policies which is shown to be similar to those
obtained with deterministic leadtimes. Although [Kap70] is not concerned
with different leadtime options, it gives a good survey for the technical diffi-
culties that we also encountered.

Song and others in [Son94] studied the impact of stochastic leadtimes on
the optimal inventory decisions and the optimal cost in a base-stock inven-
tory model. The focus there is to evaluate the impact of the variability of
leadtimes but not to derive an inventory policy which makes use of the avail-
ability of multiple leadtime/cost options. In [LZ93] Lau and Zhao considered
the order splitting between two suppliers that offer different leadtime with
uncertainty. The authors assumed a constant splitting ratio among two sup-
pliers and developed computational methods to compute the optimal ratio,
ordering quantities and reordering point in a continuous review inventory
setting. Several papers (e.g., [BDR94]) deal with situations where leadtimes
is one of the decision variables. Their assumption is that by paying “leadtime
crashing cost” leadtime reduction can be achieved. The goal of these papers
is to find the single best leadtime option under single sourcing.



2 The LCT Supply Chain Model

We have developed a supply chain model, called LCT, based on an AND/OR
network representation[HZ97]. This model is capable of capturing a variety
of supply chain activities and decisions.

In LCT, a supply chain is modeled as a directed acyclic graph with paral-
lel arcs. The model follows an activity-on-arc representation where each arc
corresponds to a particular supply chain activity (production, transporta-
tion, subcontracting, etc.). Note that each activity/arc has two performance
measures: leadtime and cost. In this supply chain network, nodes represent
completion of activities and may be used to establish precedent constraints
among activities. The graph is directed towards one particular “root node”.
The root node corresponds to the retailer of the product that the supply chain
produces. End customers interact with the root node only. We define two
types of nodes that each specifies conditions for satisfying prior activities:
conjunction and disjunction nodes. Conjunction nodes or AND nodes are
nodes for which all the activities that correspond to the incoming arcs must
be accomplished before the outgoing activities can begin; whereas disjunc-
tion nodes or OR nodes requires that at least one of the incoming activities
must be finished before the outgoing activities can begin.

Based on LCT we have developed efficient computation methods to iden-
tify the entire efficient frontier between leadtime and cost in supply chains.
This efficient frontier at the “root node”, i.e., the retailer point, compactly
represents all the undominated, feasible combinations of supply chain activ-
ities. By a feasible combination of supply chain activities, we mean the set
of activities that guarantee the availability of goods or services at the root
node. We say a combination dominates the other when the former offers
cheaper cost and shorter leadtime than the latter. Given the efficient fron-
tier coupled with the market demand profile and pricing strategy at the root
node, management can converge on the optimal tradeoff point specifying a
particular supply chain configuration.

One of the limitations of LCT is that the model doesn’t explicitly consider
inventory. Without inventory, the solution concept based on the leadtime
cost efficient frontier applies to “one-shot” scenarios in which single period
demand is considered at the root node (e.g., make-to-order). If demand for
the end product is repetitive, holding inventory at one or more places in
the supply chain clearly has the potential of improving the performance of



the whole system. The rest of the paper focuses on integrating LCT with
inventory management—out first step to extend LCT to address multi-period
demand.

In this paper, we assume that inventory can be held only at the root
node'. In other words, we are concerned with integrating one stage inven-
tory management within the context of LCT. Since we only add the inventory
capacity at the root node, the entire efficient frontier between leadtime and
cost in the supply chain network remains the same. We are interested in ways
through which the end product retailer can take advantage of the availabil-
ity of multiple options with varying leadtime and cost parameters. Despite
the restrictive assumption made in this model as to the inventory location,
this model captures the fundamental characteristics of a variety of supply
chain management situations. For instance, the model is readily applicable
for retailers who may get goods/services from various manufacturers that
quote different unit price and delivery leadtime. In another example, a man-
ufacturing firm is structuring its international sourcing base. Suppose that
this firm adopts a make-to-stock policy. Our model can be applied to make
sourcing decisions based on the current inventory stock level.

3 LCT in Inventory Models with Constant
Demand Rates

In this section, we demonstrate how the LCT model can be integrated into
inventory models that assume constant demand rates.

Let [ denote the leadtime, U P(I) the cheapest unit ordering cost for goods
for which the order fulfillment takes at most [. The leadtime cost efficient
frontier computed in LCT takes the form of the function UP(l). When the
leadtime measure can be properly discretized (e.g., in units of days), UP(l)
is a step function:

UP()=¢; ifi<l<i+1 fori=0,1,...,M

where M is the maximum leadtime from all possible alternatives and ¢; is the
minimum unit ordering cost if the target leadtime is expected to be strictly

!The extension of LCT which allows inventory at arbitrary nodes in the supply chain
network is beyond the scope of this paper.



less than 74+ 1. Without loss of generality, we assume that c; is nonincreasing
with respect to 7.

Let SK(l) denote the setup cost associated with selecting the cheapest
supply chain configuration that achieves leadtime .

SK()=K; ifi<l<i+1 fori=0,1,....,M

The total ordering cost T'C(z, 1) for z units of product with the leadtime
requirement [ is given by

TC(x,)=K;+¢x ifi<l<i+1l fori=0,1,....,.M

We follow the standard assumptions of the EOQ inventory model: The
demand rate A is constant; no stockout or backlogging is allowed. Consider
the following situation which is a special case of our model. There is only one
alternative available that offers leadtime k&, setup cost K, and unit ordering
price ¢. The optimal ordering policy in this case is well known. It follows
the (@, R) policy, where @ is the standard EOQ quantity, R is the reorder
point which is equal to kA. (We assume k£ < @/ for simplicity.)

Let’s consider the general case where more than one alternatives are avail-
able. We only consider the cycle inventory which is the amount of inventory
physically on hand at any point in time. The optimal ordering policy involves
using the alternative with leadtime ¢* which is defined as follows:

ACp + /2K« Ah = min(Ae; + 1/2K;A\h)

This implies a single sourcing policy will be optimal. Search for ¢* can
be easily done by enumerating all available modes. It is clear that when
K; is nonincreasing with respect to ¢, the least expensive alternative that
also offers the longest leadtime is always the mode of choice. After the
alternative i* has been chosen, the classical (Q, R) policy can be used to
determine the order amount and reorder point. Obviously, other extensions
such as finite production capacity can be done in the same fashion without
causing additional technical problems.



4 LCT in Periodic Review Stochastic Inven-
tory Model

In the previous section, we show that integrating LCT with inventory models
with constant demand rates can be easily done. When we consider inven-
tory management with uncertain demand, however, the situation changes
dramatically. In this section, we first present a formal formulation of the
problem and then proves some formal properties. We demonstrate the tech-
nical difficulties of finding optimal policies and motivate our computational
work (presented in Section 5) in finding effective suboptimal policies.

We study an N-period stochastic inventory problem in which there are
m different ordering options. These options represent different leadtime and
cost tradeoffs which can be computed using the LCT model given the network
topology of a supply chain and time/cost information for the supply chain
activities. We ignore the setup cost in this study?.

We use the following notation in our study. Most of the notation follows
the standard one used in N-period single-stage stochastic inventory modeling:

N = the number of periods in the planning horizon
m = the number of delivery/production options. We assume that m < N.

A; = the leadtime associated with option ¢, + = 1,2,...,m. We assume
that these leadtimes are deterministic. Without loss of generality, we
assume that \; < A; when ¢ < j.

7 = the maximum leadtime from all possible options. 7 = A,

¢; = the unit ordering cost with option 7, + = 1,2,..., m. We assume that
¢i > ¢j when ¢ < j3.
t = the demand for the item during each period. We assume that the demand

is stationary.

e(xt) = the salvage value of having 2* = max(z,0) units of inventory on
hand at the end of the period N. We assume e(z") is convex.

2Tt is not entirely arbitrary since electronic commerce contributes to the setup cost
reduction.
3This is not a restriction. See the discussion in Section 4.3



« = the one-period discount factor
x; — the current stock level

Zo,x3,...,T, = the outstanding orders such that z, is due at the start of
the next period, z3 is to be delivered two periods hence, etc.

z; = the amount of goods to be ordered at the start of the present period
using option ¢, 2 = 1,2,...,m. These are the inventory decision vari-
ables.

L(z) = the expected operational costs during the period, exclusive of order-
ing costs, w.r.t. the stock on hand at the beginning of the period:

{ JEh(e =0 f(@)dt+ [ p(t— D) f()dt w0,
L(x)_{fo""p(t—x)f(t)dt ! z<o D

We assume that the holding cost h(-) and penalty cost p(-) are non-
decreasing and convex. The unfulfilled ordered are backlogged. Since
integration preserves the convexity, the convexity of L(x) is easily seen.

Cy(z1, 29, -, x;) = the minimum expected cost following an optimal policy,
given that only n future periods are to be taken into account, where
(1,2, ...,x,) represents all the information about the current stock

level as well as the amounts of goods whose orders have been submitted
and are to be delivered during the following 7 — 1 periods.

To simplify the notation, we also use the following vector-based represen-
tations:

: the row vector of (x1,2s,...,z,)

[

. the row vector of (z1, 22, ..., 2m)

22

The functional equation for C,(-) is easily seen to be

m
Cn(z1,29,...,2,) = min {Zcizi+L(x1+y0)+
zi>0for 1<i<m ;o]

(2)

00
—|—Oz/0 Cn_1($1 + Yo — t+ xo, To + Y1, Tr + yT—lvyT)f(t)dB}
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where, y; is defined as follows:

zy, ifi= A\,
%Z{JJ J (1)

otherwise

Under these assumptions, we can prove the convexity of the value func-
tion.

Theorem 1 C,(z) is convexr.

Proof. We prove Theorem 1 by induction. Given the cost structure of the
salvage value,

Co(z) =play) +e(ay) (5)

Co(z) is convex.
By induction on C), ;, we will prove that (), is also convex. We first
introduce some auxiliary vectors to simplify the notation. Define

g(iv Z, t) = Cn—l(A (6)

e R
S~—

where A is a 7 X (7 +m + 1) matrix. Each element of A, A;;, is given as
follows:

1 ifi=1landj=1,
—1 ifi=1land j=7+m+1,
Aij: 1 1f]:7,+1f0rallz€[1,7'—1], (7)
1 if\=iforallje[r+1,7+m],
0  otherwise
It can be easily verified that the functional equation (2) can be rewritten
as:

Colr) =minf3 ezt Ll tw) o [Totwznsar) @

Given that C,,_; is convex and that A is a full-rank linear transformation,
g(z, z,t) is convex due to [Roc70] Theorem 5.7 Part A.

11



Define ~
a(w.2) = | F(O)glz,z 1)t ()

We know that ¢(z, z) is convex since f(¢) > 0 due to [Ash72].

Since the operating cost L is convex, and ¢ is convex, we conclude that
the summation 7", ¢;z; + L(z + yo) + ¢(z,2) is convex. Due to [Roc70]
Theorem 5.7 Part B, we know that C,, is convex.

4.1 Optimal Inventory Control Policy

Karlin and Scarf in [AKS58] studied inventory models in the presence of
a time lag. Their models can be viewed as a special case of ours since
they assumed that there is only one leadtime option available. Based on
the convexity of the objective function, they proved that the optimal policy
follows an order-up-to policy. Simply put in our notation, if m = 1, 2] =
(S —(z1+ 224 ... +x),))", S being the order-up-to level to be determined.
Fukuda in [Fuk64] extended this result to deal with 2-mode cases. Again,
based on the convexity of the objective function, he proved that the optimal
control policy is very similar to an order-up-to policy except for an additional
stock level up to which it is desired to order using the quicker and more
expensive option. The intuition is that to use quicker option to handle large,
unexpected demand while the steady portion of the demand flow is handled
by the slower and less expensive option. In both cases, the optimal inventory
policies are not difficult to compute.

One might think that the similar intuition may be extended to the gen-
eral m option case by having m order-up-to levels for each leadtime op-
tion. Unfortunately, this is not the case. By solving a very simple 2-mode
(A1 = 0, A2 = 2) problem, we found that no simple order-up-to or order-up-
to like structures exists. The complexity of the problem is coming from the
fact that although the convexity of the objective function holds, the optimal
controls are functions of all the x; for ¢ = 1,2,... 7 rather than functions of

i1 Ti-

Using the value iteration approaches in dynamic programming, we can
compute the optimal control policies regardless of whether they follow the
order-up-to structure or not. However, these value iterations approaches are
almost impossible to scale up since the size of state space itself is exponential

12



with respect to the maximum leadtime. For practical purposes, we need to
find other more efficient algorithms.

The same technical difficulties have been identified in different inventory
management and dynamic programming settings. (e.g.,[Kap70]). In order
to get analytically appealing results, the standard way of avoiding these
difficulties in inventory management is to assume that at any certain moment,
there is only one outstanding order. This is clearly not our option, since what
we are interested is precisely using multiple options at the same time.

To address these computational issues, we have developed several sub-
optimal polices that are easy to compute. In Section 5, we reported these
policies and an experimental evaluation of their performances. To illustrate
the significance of making use of multiple leadtime options, in Section 4.2 we
use a numerical example to demonstrate that using multiple leadtime options
can result in significant improvement in solution quality. As a side result,
we establish in Section 4.3 a simple dominance relationship among leadtime
options that can be used to eliminate certain options from consideration
without compromising the solution quality. Admittedly, this dominance re-
lationship does not help in worse case scenarios where no leadtime options are
dominated by others. It could, however, save some computation by throwing
out the dominated options.

4.2 An Numerical Example: The Value of Having Mul-
tiple Leadtime Options

In this section, we use a numerical example to demonstrate that having
multiple leadtime options can result in significant improvement as compared
to having one (Karlin and Scarf’s model) or two leadtime options where the
leadtime difference is 1 time unit (Fukuda’s model).

Consider the following scenario. We assume that one period demand is
discretely distributed according to the following probability mass function:

d [0 1 2 3 4
p(d) [ 02 02 02 02 0.2

To construct a comparison baseline, we first start off with using one lead-
time option only. We are interested in minimizing the infinite horizon average

13



cost per stage since we want to explore the average performance of the sys-
tem in steady states. Suppose that the unit holding cost h = 1.00 and the
penalty cost p = 30.00. When there is only one leadtime option available,
say, one with the ordering cost ¢; = 15 and the delivery leadtime A\; = 0 (in-
stantaneous delivery), we know that the order-up-to policy is optimal. We
compute the optimal order-up-to levels and find that the average cost per
stage is 33.62. In effect, based on Karlin and Scarf’s theorem[AKS58], we can
computer the optimal order-up-to level and the average cost for any (one)
option with a positive delivery leadtime. Using 33.62 as the target cost, we
are interested in the ordering cost of other leadtime options that lead to the
same 33.62 average cost. The isocost curve is given in Figure 4.2. The z-axis
represents the delivery leadtime. The y-axis represents the ordering price
required to achieve the target cost.

Isocost Curve — Ave_Cost = 33.62
16 T T T T T

141

[N
N
T

Ordering_Cost
=
o
T

®
T

| | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Leadtime

Figure 1: An Isocost Curve

For simplicity, let us consider the first three points on this isocost curve.
If we can use only one option, we are indifferent among option 1 (leadtime 0;
ordering cost 15.00), option 2 (leadtime 1; ordering cost 13.01), or option 3
(leadtime 2; ordering cost 11.84). Suppose that now we have two options—
Option 1 and Option 2—available at the same time. How should we take
advantage of this additional choice? Recall that this is exactly what Fukuda’s
model addresses (see Section 4.1). We compute the optimal control and find
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the average cost decreases from 33.62 to 30.46. Using option 2 and option 3
results in a average cost of 30.55, computed similarly.

How about using these three options together? Since the size of the prob-
lem is very small, we can afford to enumerate all the states in the state space
and compute the optimal control for each state. We use a linear program
coded in AMPL to compute the minimal steady state average cost. The re-
sult is 27.18. Percentage wise, it represents a 19.16% decrease in operating
cost from 33.62 (using one option only), which is quite significant.

This example reinforces our intuitive notion that by dynamically com-
bining these multiple leadtime options contingent on the current inventory
position and outstanding orders, the system can achieve lower cost. Due to
the complex interactions between these leadtime options, we could not find an
analytically elegant solution. Nevertheless, this model presents an abstrac-
tion of realistic supply chain management scenarios and could potentially
offer significant benefits. This has motivated our work in developing compu-
tational methods to construct suboptimal yet effective policies, reported in
Section 5.

4.3 A Simple Dominance Relationship

As we discussed in Section 4.1, considering all leadtime options poses serious
computational challenges. In this section, we establish a simple dominance
relationship which, when applicable, helps reduce computational efforts by
excluding certain options—the dominated ones—without compromising the
solution quality.

The intuition behind this dominance relationship is quite obvious: for
any option i, if there is another option j that offers either quicker delivery
under same ordering cost, or offers lower price while ensuring same delivery,
or offers both lower price and quicker delivery, option ¢ will never be used in
the optimal controls and therefore can be ignored. In this case, we say ¢ is
dominated by j. The following lemma formalizes this notion.

Lemma 1 An option i with leadtime X\; and ordering cost ¢; is dominated
by another option j with leadtime \; and ordering cost c; when ¢; > ¢; and
Ai > Aj. There always exist an optimal control policy which does not use
option t.

15



The proof is straightforward. Consider the set of all the control policies
that use option 7, denoted by w;. For each control u; € w;, substitute option j
for option ¢ as follows: if \; = A;, simply use option j whenever 7 is used. If
Ai > Aj, use option j whenever ¢ is used but delay the orderings by A; — A;.
It is clear that the resulted control policy after substitution costs equal to or
less than the original control policy u; that uses option ¢. Since this is true
for any arbitrary u;, the lemma immediately follows.

5 Computing Inventory Policies with Multi-
ple Leadtime Options

For computational purposes, we assume that demand is a discrete random
variable. For problems that have small maximum leadtime from all options
(say, the maximum leadtime 7 < 4) and do not require fine-granularity de-
mand discretization, the optimal policy can be found either by policy iter-
ation through linear programming or value iteration through dynamic pro-
gramming [Ber95]. Both linear programming and dynamic programming re-
quire the explicit storage of the state space. Since the size of the state space
grows exponentially with the maximum leadtime, neither linear program-
ming nor dynamic programming can be used to solve large-sized problems
(say, with more than 5 options). To give an example how quickly the size
of the state space becomes unmanageable, consider the following scenario:
Suppose that we have 5 leadtime options whose delivery leadtimes are 1,
2, 3, 4, 5, respectively. Furthermore, suppose that one-period demand is
a discrete random variable that takes on values from zero up to 20. The
minimum number of the states required by value iteration using dynamic
programming is in the order of magnitude of 10"*. To maintain such a large
state space and compute optimal control for each and every state repeatedly
till the value function converges is not practical. Neither can policy iteration
handle computation of this size.

In this section, we propose three suboptimal control policies that are eas-
ier to compute than the optimal policies. The performance of these policies

4“We do not consider the complications at the boundaries of the state space when
we compute this minimum number of states required. In practice, larger state space is
necessary to ensure that value iteration returns reliable results.
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is evaluated via simulation.

5.1 The Dynamic Switching Policy

By the dynamic switching policy, we mean the policy that uses only one
leadtime option at each ordering point but does not require the same option
to be used at different ordering points. This type of policy has a nature
mapping in practice: “do not split orders between suppliers at each ordering
point; but switch among suppliers in different time periods if needed”. Using
our notation, this means:

m
Zzi:zj for some j: 1 <j7<m (10)
i=1
In order to search for the optimal policies within the set of dynamic
switching policies, we still need to explicitly represent the state space and
therefore we are limited to solving small-sized problem instances. However,
to compute the optimal controls (how much to order using which option) for
each state for the dynamic switching policy is much easier as compared to
finding the true optimal controls for each state in general due to the fact
that choices are much limited. In addition to its favorable computational
properties, we are interested in dynamic switching polices because of its
managerial implications.

5.2 The Echelon Order-up-to Policy

It is clear that we cannot afford to explicitly carry around the state space
in order to solve large-sized problems. One way of avoiding representing
the state space is to apply the idea of parameterize the control policies. We
consider a class of controls that can be characterized by a small number of pa-
rameters. Based on these parameters, we can easily deduce the corresponding
control for any given arbitrary state. For instance, consider an one-option
inventory model (See Section 4.1), an order-up-to policy is characterized by
one parameter order-up-to level S. Given any state z (the current inventory
position), the control (order amount) is (S — z)™. This way, the original
problem of finding optimal control policies is transformed into finding the
best parameters S* that minimizes the overall system cost. Note that in this
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case, we do not need to explicitly record and visit each state in the state
space.

Note that for our general m-option inventory problems, the order-up-
to policy or its variants have been proved nonoptimal. The simplicity of
the order-up-to policy and its wide acceptance in practice, however, have
rendered itself as a good candidate suboptimal policy in which we are in-
terested. In our study, we consider the following policy fashioned after the
order-up-to policy.

A i—1
Z=(Si =Y x; =Y z)" fori=1,....m (11)
=1 =1

We call this the “echelon order-up-to policy” due to the similarity between
this policy and the policies developed in multi-echelon inventory research
[CS60]. Intuitively, we can imagine that for each leadtime option, there
is an “order-up-to” level that guarantees that the sum of future arrivals
and committed orders using quicker options reaches a predetermined level.
The rationale behind this is similar to that behind Fukuda’s policy for two
adjacent (in terms of leadtimes) options. As long as we have enough inventory
on hand and on order, we use slow options. The costly quick options are used
to handle situations where shortage occurs.

5.3 The Separating Planes Policy

As we will report in Section 5.4, although the echelon order-up-to policy is
easy to compute and can be used to solve large-sized problems, the resulting
solution quality measured by the average per stage cost is not entirely satis-
factory. To achieve lower and closer-to-optimal costs, we develop the follow-
ing policy which can be viewed as a generalization of the echelon order-up-to
policy.

Z; = (ﬁz — Z Ofi]’l'j)+ for i = ]_, ., (]_2)
j=1

Recall that when we follow an echelon order-up-to policy, we weigh all
the z; and z; equally. We analyzed a number of the optimal policies (for
small-sized problems) produced by policy iteration or value iteration and
observed that equally weighing x; and z; clearly violates optimality. In
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the meantime, to a large extent, the points in the high-dimensional space
of (z1,%2,...,Tm,z;) for j = 1,2,...,m can be separated by hyperplanes.
These hyperplanes are not necessarily in parallel. This motivates the devel-
opment of the separating plane policy. This policy, like the echelon order-
up-to policy, does not require explicit representation of the state space and
therefore can be used in solving large-sized problem instances. The sepa-
rating plane policy involves more parameters than the echelon order-up-to
policy and therefore are more computationally intensive. Using the separat-
ing plane policy, however, results in lower average per state system cost, as
demonstrated in Section 5.4.

5.4 Experimental Comparisons

To evaluate the effectiveness of the proposed control policies, we performed
the following experiments. We generated 396 problem instances by varying
the number of leadtime options available, demand profiles and cost parame-
ters summarized below:

e Leadtime options: we considered the following groups of leadtime
options: two leadtime options with leadtimes 0 and 2; three leadtime
options with leadtimes 0, 1, and 2; three leadtime options with lead-
times 1, 2, and 3. Different combinations of the unit ordering costs
for these options are tested®. The cost values tested are shown in the
following table:

leadtime | ordering costs tested
0 10, 9, 8
1 8, 7,6
2 6, 5, 4
3 4, 3

e Demand distributions: we considered the following two groups of
discrete demand distributions. The first group includes discretized
truncated normals with negative mass moved to zero and upper-tail
mass moved to 10. The mean of these distributions was set to 5 and

5Not all combinations are tested.
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the following standard deviations were tested: .5, 1, 2, 5, 10. The sec-
ond group is consisted of 10 distributions with one period demand ¢
taking on values from 0 to 3. The tested probability mass functions are
given in the following table.

probability mass function
pt=0) pt=1) p(t=2) p(t=3)
110.25 0.25 0.25 0.25
2108 0.05 0.05 0.1
310.1 0.05 0.05 0.8
410.1 0.8 0.05 0.05
510.05 0.05 0.8 0.1
6|04 0.35 0.05 0.2

e Cost parameters: the holding cost per period is always set to 1. We
tested two values of the penalty cost per period: 15 and 30.

We developed the simulation testbed in the C programming language. All
experiments were performed on a Sun Ultra-1 machine. Table 1 represents
the summarized results. Results of the policies are stated as percentage excess
over the optimal cost which was obtained using value iterations. Table 2
records the average amount of time in CPU minutes that it took to compute
the policies for one problem instance. Little attempt was made to make the
coding efficient, so these time figures should be viewed with caution.

Leadtime Dynamic | Echelon Separating
Options Switching | Order-up-to | Plane

2 modes (0, 2) | 15.3 11.6 5.4

3 modes (0, 1, 2) | 16.2 12.2 6.2

3 modes (1, 2, 3) | 18.7 12.1 6.3

Table 1: Average Performance of Policies Considered (% Error)

From these experimental findings, we make the following observations:
the dynamic switching policy is easy to compute (for small-sized problems)
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Leadtime Optimal | Dynamic | Echelon Separating
Options Policy Switching | Order-up-to | Plane

2 modes (0, 2) 12.2 0.3 0.9 1.9

3 modes (0, 1,2) | 12.4 0.3 4.8 114

3 modes (1, 2, 3) | 200.0 3.2 4.9 12.8

Table 2: Average CPU time of Computing Policies Considered (in minutes)

but the solution quality measured by the average per stage cost is not sat-
isfactory (16.2% above the optimal cost on grand average). The echelon
order-up-to policy takes a moderate computational effort to compute and
yields reasonable results (11.9% above the optimal). The separating plane
policy takes relatively intensive computational efforts to compute but yields
very good results (5.8% above the optimal cost).

We have also conducted experiments for problem instances of larger size
(maximum leadtimes ranging from 4 to 6) using the echelon order-up-to and
the separating plane policies. For these problems, optimal policies are not
known since neither value iteration nor policy iteration can be applied be-
cause of the size of the problem. In addition, the dynamic switching policy
cannot be used due to the size of the state space. Initial experimental re-
sults suggest that the echelon order-up-to and the separating plane policies
are capable of handling large-sized problems and the separating place policy
outperforms the echelon order-up-to policy by roughly the same percentage
which we observed for the small-sized problems. Further investigation is
needed to determine how effective these policies are, possibly through estab-
lishing lower bounds on the average cost.

6 Concluding Remarks

Inter-organizational electronic commerce is reshaping the way enterprises
conduct business. In this paper, we present a model of supply chain that
explicitly addresses time and cost issues. We have coupled this model with
inventory management and performed a computational study to find effective
control policies. These models and computational mechanisms are essential
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for software agents to take advantage of abundant choices that come with
the increasingly accessible worldwide information infrastructure, and to gain
competitive edge in highly dynamic business environments.

We conclude this paper by presenting some of the extensions to our agent-
based supply chain model.

e Other performance measures of supply chains such as product quality,
service levels, etc., are not addressed in our current model. We plan to
enrich our model to address these additional measures.

e Our current model assumes that cost/leadtime information associated
with each supply chain activity is known and deterministic. In prac-
tice, more often than not uncertainty will arise, especially in leadtime.
Models that deal with the stochastic leadtime is highly desirable. We
have proved that finding stochastic leadtime/cost efficient frontier is
intractable if using the first order stochastic dominance alone. We are
currently working on identifying other stochastic dominance relation-
ships (possibly of the heuristic nature) that cut down computation.

e In this paper, we discussed how to integrate inventory decisions into
the LCT model. We assumed that inventory is held at the root of the
supply chain. We are currently working on integrating LCT with multi-
echelon production/inventory models. Current multi-echelon inventory
literature typically is not concerned with leadtime issues. To evaluate
the impact of leadtime options in a multi-echelon setting is significant.
The main research issues are: how to measure and evaluate the overall
performance of such a complex supply chain, how to make inventory
positioning decisions, how to compute efficiently multi-echelon inven-
tory policies with leadtime options, etc.
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