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Abstract

Large scale open multi-agent systems where agents need services of

other agents but may not know their contact information require agent

location mechanisms. Solutions to this problem are usually based on

middle-ware such as matchmakers, brokers, yellow-pages agents and other

middle agents. The disadvantage of these is that they impose infrastruc-

ture, protocol and communication overheads, and they do not easily scale

up. We suggest a new approach to agent location, which does not re-

quire middle agents and protocols for using them. Our approach is simple

and scales up with no infrastructure or protocol overheads, thus may be

very useful for large scale MAS. In this paper, we analytically study the

properties of our approach and discuss its advantages.

1 Introduction

Multi-agent systems (MAS) are taking an increasing role in the solution of highly
distributed computational problems in dynamic, open domains. We assume that
large-scale open MAS will be an inevitable part of this trend. The size of such
systems poses problems which do not exist, or may be neglected in small-scale
MAS. These usually stem from two major sources: (1) communication costs
which are commonly (at least) polynomial in the number of agents, resulting
in low performance; (2) task and resource allocation require a solution of an
optimization problem of exponential complexity.

Several approaches were suggested to address these problems. For instance,
the complexity of the task allocation problem in MAS is reduced via, e.g., coali-
tions of bounded size [7]. In other research, cooperation with reduced communi-
cation is suggested [2]. Communication reduction is also discussed in [8], where
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a mechanism for coordination in large-scale MAS with constant communication
complexity is presented. These (and other) suggested solutions to the problems
above refer, in many cases, to homogeneous agents. Yet, solutions that refer to
agents with heterogeneous capabilities assume that agents either know all other
agents they need to interact with (this is a closed MAS), or are provided with
some agent location mechanism to �nd agents they need but do not know about
in advance (e.g., middle agents [1], matchmaking [5], facilitation [3, 6]).

In agreement with previous research, we, too, perceive agent location mech-
anisms as necessary for open MAS. In such systems, agents with di�erent ex-
pertise may need other agents to provide them with services. However, they
may not know the contact information of the service providers. An agent lo-
cation mechanism provides the agents with this missing information. In small
MAS, it is sometimes possible for agents to maintain a list of all possible agents,
however in large scale open MAS this is infeasible. Middle agent mechanisms
for large scale open MAS are suggested in [4], where distributed matchmaking
is presented. This solution, however, introduces two types of overheads: (1)
each communication operation going out to another agent is preceded by com-
munication with a matchmaker, and may also �re a series of communication
operations between the distributed matchmakers; (2) there is a need for an ad-
ditional computational infrastructure, in terms of matchmaker agents as well as
protocols for other agents to use these matchmakers.

In this paper we suggest an agent location approach for large open MAS
with no need for middle agents, thus relaxing the second type of overhead. In
the following section we provide the details of our approach. In Section 2 we
present the problem, then we introduce our approach to its solution (in Section
3). Section 4 describes the model that we use for analysis of our approach. In
Section 5 we analyze the approach and compute and present its advantageous
properties. Finally, in section 6, we conclude and present open problems and
future directions.

2 The Problem

Assume an open MAS which includes heterogeneous agents, where availability
of the agents varies and new agents may be added dynamically. Heterogeneity
is expressed in terms of di�erent expertise and di�erent capacities. The agents
in the MAS need to perform tasks. Tasks may be given in advance, but may
also arrive dynamically. One of the characteristics of a task is the expertise
necessary for its performance. We assume that agents may cache some informa-
tion with regards to the attributes of other agents, their availability and their
location. Though, we assume that this local information (and in particular lo-
cation and availability) may be incorrect due to dynamics of the system and
the environment in which it is deployed. We also assume that, at least in some
cases, an agent receives tasks that it cannot perform (due to incompatible ex-
pertise or capacities), but it does want to perform them. This results in a need
to cooperate with other agents, and in particular it is necessary for an agent to
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either know or be able to �nd agents that have the right expertise for the tasks
it cannot perform.

Knowing other agents and being able to �nd them are supported in MAS in
two major ways:

� Agents maintain a list of all other agents. In close systems, where all
of the agents are known in advance, this is rather simple, although for
very large systems may be space expensive. In open system, where agents
may dynamically appear and disappear, a list of all agents cannot be
maintained. If all of the possible agents are known, it is possible to hold a
list of all possible agents, however if it is unknown which new agents may
appear, no complete list can be constructed.

� In open MAS, middle agents [1] are a common agent location mechanism.
These provide other agents with agent location services. An open MAS
may have a single middle agent or multiple ones. In the �rst case, the
location mechanism is centralized, thus may result in a need for a very
large space for storage as well as a single point of failure. In the second
case, there is a need to implement a mechanism for maintaining some level
of coherence between the multiple middle agents. Both cases require the
overhead of creating and maintaining middle agents, and some protocols
for the other agents for interaction with the middle agents.

In this paper, we stress that in large-scale open agent systems there is a
solution that eliminates the need for middle agents, thus prevents the need to
create and maintain them. In fact, we suggest that some of the middle agents'
activity can be avoided, incurring a very low cost to the rest of the agents, and
that distribution of the rest of the activity among the other agents is simple to
perform and yet, provides a good agent location mechanism.

3 The Approach

Our approach is rather simple: we require that each agent i hold a list Li
of other agents it knows. The list shall include information regarding names,
addresses, expertise and other relevant information about other agents. The list
may change dynamically, but it is not necessarily up to date or correct: it is an
incomplete, inaccurate view of i's of the rest of the agent community. In this
paper we assume that the frequency of change is slow enough and the reliability
of messages is high enough, so that the lists agents hold, although incomplete,
are mostly accurate and up to date, with a small fraction of erroneous entries.

Denote the number of agents in the system by n. In principle, Li may
include all n � 1 other agents, but this is too costly when n is very large. In
an open MAS, it may also be impossible for an agent to know all of the agents
all of the time. We suggest that agents hold Li such that jLij � n. When
an agent needs to locate another agent for which it does not have the location
information in its local list, it will consult (either some or all) agents on its
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list for such information. These, in turn, will perform the same procedure
recursively. Motivating the agents to cooperate on this agent location is not the
focus of the research presented here, but if necessary one can devise a protocol
to guarantee such cooperative behavior (e.g., via some payment schemes). A
unique request i.d. will prevent an agent from handling a request more than
once and from request cycles (since it will allow an agent to avoid a location
request that originated from itself). In the worst case, this search will cover
the whole agent community, i.e., n� 1 agents, with communication complexity
O(n) for the whole system (which implies an average O(1) per agent, however
the partition is usually not equal). The average case is much better, and by
adding some heuristics for descriminatively selecting agents on the contact list,
communication complexity ofO(1) can be achieved. However, we show that even
without such heuristics, an appropriate selection of the size of Li will result in
a very low exploration depth, implying a very low communication complexity.
To simplify things, we will show that a not too large contact lists Li will allow
agent location via very few communication operations, without any additional
mediation services.

4 The Model

To illustrate the connections among agents as re
ected by their contact lists we
represent the agent society as a directed graph. Each node i in the graph repre-
sents agent i and each edge (i; j) represents the fact that i holds in Li contact
information of j, or, in simple words|i knows j. For simplicity of representa-
tion and analysis we �rst refer to a planar, undirected graph with a rectangular
lattice pattern (see Figure 1). Such a graph represents an agent society where
each agent knows exactly its 4 close neighbours. Below, we analyze the proper-
ties of such a connection structure. From this analysis we later draw conclusions
with regards to more complex structures. One may assume that, if jLij = O(1),
the location of other agents, for large n, will be very costly (regarding commu-
nication) or even impossible (since there may be some disconnected cliques of
agents). We shall examine this assumption through our analysis.

Denote the number of nodes by n, the number of edges by e and the degree
of a node by d. The distance between two nodes is the number of edges in
the shortest path between them. In the planar, rectangular graph we study,
e = 2n and d = 4. We are interested in the average distance between nodes.
This distance will dictate the depth of the agent location search required by
our approach and, correspondingly, the number of communication operations
required. Without loss of generality, let us compute the average distance of
all nodes from a speci�c node A. A has 4 nearest neighbours at distance 1, 8
neighbours at distance 2 and, continuing in the same fashion, 4k neighbours at
distance k. Since we assume that n is very large, we are not interested in the
particular shape of the borders of the graph. For large n, the portion of nodes
which are close to the border is negligibly small (based on a ratio of perimeter
to area, which converges to zero). Therefore, omission of nodes near the borders
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Figure 1: A segment of a planar rectangular lattice structure connectivity graph.

of the graph will have little e�ect on distance analysis. Hence, to simplify this
analysis, we refer to a graph in which there are exactly 4k nodes at distance k
from a center node (intuitively, this means that there are no \holes" within and
no \rough" borders). Such a graph allows for a simple expression of the relation
between the number of nodes n and the maximal distance from the center node
(denote this distance by m), as follows:

n = 1 +
mX
i=1

4i = 2m(m + 1) (1)

which is a sum over the center node and all of its neighbours in all distances. The
average distance l from a center node, for any perfect planar lattice structure,
is given by

l =

Pm

i=1
li � ni

n� 1
(2)

where li is the ith distance and ni is the number of nodes at the ith distance.
In particular, for the rectangular planar lattice structure, where ni = 4i, and
by substitution of equation 1, we have

l =

Pm

i=1
i � 4i

2m(m + 1)
=

2m(m + 1)(2m + 1)

3 � 2m(m + 1)
=

2m+ 1

3
(3)

which means, using equation 1 again, that

l � p
n (4)

and this result holds for every perfect planar lattice structure as long as the
degree on each node is a constant. In a three-dimensional lattice this result
will change to l � 3

p
n, and this can be further generalized to a k-dimensional
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Figure 2: A connectivity graph segment with a single shortcut.
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lattice, where l � k
p
n. Note, however, that high dimensionality is undesirable

since it results in each node having a very large number of adjacent nodes (for
dimension k, this number will be 2k). When referring to an agent community,
this requires that every agent i holds a large list Li of known agents, which is
not always feasible.

The observation that the average distance from a center node is � p
n is

worrisome. It implies that the approach that we propose may incur a search
cost of �(

p
n), regardless of our choice of the (constant) size of adjacency lists

Li. This complexity is unacceptable for large n.
So far, we learned that our approach requires a search to a depth of the

average path length l and of breadth jLij. Our analysis shows that for perfect
lattice structure connectivity graphs, for large n, either the size of l is too large,
or jLij is too large. Hence, the proposed approach will fail due to the incurred
complexity. Given these limitations, we need to address the following questions:

� What structural organizations, if any, can result in l and jLij both small
enough to provide an acceptable search complexity for large n?

� Is any of these organizations applicable for MAS, and can result in a good
enough agent location mechanism?

5 A Simple Complexity Reduction

We show here that via a simple, almost negligibly small change in the organi-
zational structure of the society, a very signi�cant complexity reduction can be
achieved. While jLij is almost unchanged, l can be signi�cantly reduced.

Suppose we connect two arbitrary nodes, A and B in the graph by an edge
(A;B), as in Figure 2. How does such a connection a�ect the search complexity?
Since so far we had e = 2n and now we have e = 2n+1, one may assume that the
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improvement will be proportional to 1=n. Let us examine this more carefully.
In the worst case, A and B were neighbours, so we gain no improvement. The
best case seems to be the one where the distance between A and B is 2m, twice
the maximal distance from a center node. We analyze below this case, referring
to Figure 2 as an example.

Refer to the points A;B, and a third arbitrary point X which is, without
loss of generality, closer to A. Denote the distances between the points by
LAB ; LAX ; LBX , where the subscripts refer to the points, and undirectedness is
assumed. In our example (Figure 2), LAB = 8; LAX = 2; LBX = 6. By adding
a connecting edge between A and B, we get Lnew

AB
= 1 and, for (almost) any

point X which is closer to A than to B, Lnew
BX

= Lnew
AX

+ 1 > LBX .1 This means
that the average distance of (almost) half of the nodes in the graph has been
reduced via node A. For reasons of symmetry, the other (almost) halt of the
node will improve via B. Altogether, virtually all of the distances in the graph
have been reduced by adding a single new connection. This is an impressive
result, but it raises two questions:

1. How good is the single improvement? That is, what is the relative reduc-
tion in the average distance l?

2. If we add more connections, will they provide the same improvement? If
not, who much will they improve?

5.1 Analysis of the Single Improvement

Assume a node Y is a neighbour of A.

Proposition 1

1. Prior to adding new edges to the graph, LBY = LAB + �, where � 2
f�1;+1g.
2. The average distance of all 4 neighbours of A from B is, prior to changes,
LAB , where 0 < �� 1, and limn!1 � = 0.

Proof.

1. A neighbour of A is one edge away from A. This results in moving one edge
further from B or one edge closer to B (thus � 2 f�1;+1g).
2. In most cases, there are two neighbours closer to B and two further. For
these cases the average is exactly LAB . For nodes A located on a path which
is a straight line from B, there are three neighbours further and only one closer
to B, with an average of LAB + 1

2
. The number of such nodes in the graph is

inversely proportional to the number of nodes in the graph, i.e., it is O( 1
n
) (or

c

n
, c a constant), hence the average will be

(n � 1)LAB + c(LAB + 1

2
)

n
= LAB +

c� 1

n
LAB +

c

2n
(5)

1A small portion of the points will have Lnew
AX

+ 1 = LBX , but their relative number is
negligibly small.
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Denote c�1
n
LAB + c

2n
as �, we have

lim
n!1 � = lim

n!1

�
c� 1

n
LAB +

c

2n

�
= 0 (6)

2

After adding edge (A;B), all 4 neighbours of A's are at distance Lnew
BY

= 2 (one
edge to A, and one from A to B).

In a similar way we analyze the 8 secondary neighbours. Denote a secondary
neighbour of A's by Z. LBZ = LAB +��, where ��2 f�2;�1; 0;+1;+2g, and
the average LBZ prior to changes is LAB + �. After adding (A;B), Lnew

BZ
= 3.

Generalizing this, we can show that

Proposition 2

1. The number of neighbours at distance i from A is n(i) = 4i.
2. The average distance of A's neighbours at distance i from it, from B, is
LAB + � prior to changes and i + 1 after adding edge (A;B).

The proof is similar to the above and is not presented here. Improvement in
distance applies to all n(i) neighbours (only) up to a distance of bLAB

2
c�1 from

A, since the distance of some of the neighbours further away from A is smaller
than or equal to bLAB

2
c before adding (A;B).

Below, we sum up the improvement I1
d
in distance over all of the neighbours

at distance up to bLAB
2
c � 1 from A. Although this is only part of the improve-

ment, it represents about half of the nodes that experience an improvement,
and signi�cantly more than half of the cumulative improvement. Hence, this
sum is su�cient for analyzing the order of improvement and provides a worst
case bound on it. The sum is as follows:

I1d =

bLAB
2
c�1X

i=1

n(i) � (LAB � i) =

bLAB
2
c�1X

i=1

(4iLAB � 4i2) ' 1

3
L3AB (7)

So far (according to equation (5)), we know that I1
d
(1 stands for a single node)

is at least 1

3
L3
AB

(in fact, we know it is closer to 1

2
L3
AB

, but the proof is complex
and the di�erence does not a�ect our analysis). However, we do not know
what the ratio between this improvement and the overall sum of distances prior
to improvement is (denote this sum by D). We may compute D explicitly,
however via a much simpler analysis we can provide upper and lower bounds
which, although not tight bounds, are su�cient for our discussion.

Proposition 3

If the shape of our lattice-like graph were to be a circle of radius R, then the

average distance d within the graph will be at most
p
2R and at least

p
2

2
R.

Proof.

1. d �
p
2

2
R: the distances of nodes measured from the center node of the

graph are bound between maximal distance of
p
2R and minimal distance 0.
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The number of nodes increases linearly with the distance, so there are more
nodes located further than closer. Therefore the average must be greater than

(
p
2R+ 0)=2 =

p
2

2
R. 2

2. d � p
2R: for a node on the edge of the graph, the maximal distance is

2
p
2R and minimal distance is 0. Here, the distribution of node distances is

symmetric around the center value. The average is the center value, i.e.,
p
2R.

2

Previously, we denoted the maximal distance by 2m. In the circle shaped
graph, 2m = 2

p
2R. Within a circular lattice-like graph, the relation between

the number of nodes and the radius is given (roughly) by n = �R2. Since, as

we have shown above, the average distance is bound, that is,
p
2

2
R � d � p

2R

and lmax = 2
p
2R, we have 1

4
lmax � d � 1

2
lmax. Explicit computation can show

that d � 3

8
lmax. The number of distances between nodes is ndist � n

2

2
, and

therefore the sum of all distances is

D = ndist � d = 3

16
n2lmax =

3

16
n22

p
2

p
np
�

(8)

In our analysis LAB was selected to be m (which is lmax

2
). The improvement is

therefore (at least)

I1d =
1

3
L3AB =

1

3
m3 =

1

3
(
p
2R)3 =

2
p
2

3

�p
np
�

�3
(9)

The relative improvement is the ratio between the improvement and the original
sum of distances, which is

I1
d

D
=

2

p
2

3

�p
np
�

�3
3

16
n22

p
2
p
np
�

=
16

9�n
' 1:8

n
(10)

This provides a worst case bound on the improvement in the distance of a
single node. Intuitively, if a single node improves by order of 1

n
, the improvement

of the whole system, where there are n nodes, should be O(1). Below we compute
this improvement explicitly to examine this hypothesis.

An improvement in the distance between a node X in the neighbourhood of
A and B implies an improvement in the distance between X and nodes Y in the
neighbourhood of B. We formally express these improvements and then sum
them up. Denote the distance between X and B by �B. As shown above, for
X at distance i from A, �B = LAB � i. Denote the distance between X and a
neighbour Y of B which is at distance k from B by �kB. The distance between
X and Y is then �kB = �B � k = LAB � i � k. We sum over all relevant2

2Relevant nodes are nodes for which an improvements in guaranteed. Improvements are
not guaranteed for nodes too far from A and B, since the original distance between such X
and Y may be shorter than the distance that results from the addition of edge (A;B).
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nodes to arrive at the cumulative distance improvement Id

Id =

bLAB
2
c�1X

i=1

bLAB
2
c�i�1X

k=1

n(k)n(i)(LAB � i� k) (11)

Since n(k) = 4k and n(i) = 4i, we have

Id = 16

bLAB
2
c�1X

i=1

i

bLAB
2
c�i�1X

k=1

k(LAB � i� k) =
1

40
L5
AB

(12)

We transform this to terms of n:

Id =
1

40
L5AB =

1

40
m5 =

1

40
(
p
2R)5 =

1

40
4
p
2

�r
n

�

�5
=

p
2

10

n2:5

�2:5
(13)

Note that this sum is very conservative: to simplify the analysis, we excluded
from the sum half of the nodes to avoid the (fewer) nodes that exhibit no im-
provement. The value of Id we arrived at is roughly half of the actual cumulative
improvement. The relative cumulative distance improvement is given by:

Id
D

=

p
2

10

n
2:5

�2:5

3

16
n22

p
2
p
np
�

' 1

37
(14)

This result con�rms our hypothesis, according to which the improvement is
O(1). But its importance lies in the actual number: it means that (even with
our very conservative analysis) the cumulative relative improvement that results
from a single added edge is of 2:7%. The more realistic number is around 5%!

5.2 Improvement via Multiple Edges

At this point, we know that a single additional node provides a very signi�cant
improvement, however we need to now how well will additional edges contribute
to distance improvement. Following the guidelines of the analysis in the previ-
ous section we have analyzed the case of a second added edge. The result was
rather surprising: the improvement provided by a second added edge is numer-
ically similar to (though slightly smaller than) the improvement provided by
the �rst one. This implies that it is su�cient to add two edges to arrive at an
improvement of 10%. The analysis for the third edge provides a less impressive
result: it contribute only half of the previous contributions, i.e., � 2:5%. Via
informal deliberation one can show that the next additional forth to sixth edges
will contribute at most 2:5% each but probably slightly less that this. The sev-
enth added edge will contribute about half of the contribution of the sixth, and
this behavior can be projected to further added edges.

The results above mean that in order to arrive at a signi�cant relative dis-
tance improvement one needs to add dozens or hundreds of additional edges to
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the graph. Recalling that we refer to (and analyze) large n only, the number
of added edges is insigni�cant, since it will add very little to the degree of each
node. For example, if there are n = 10; 000 nodes then we initially have an
average distance

l =
3
p
2

4
p
�

p
n ' 60 (15)

By adding � 2000 edges to the graph the average distance between nodes is
reduced by about 90% to � 6. The average node degree changes by only 0.2.

5.3 Applicability

What are the implication of these results to our agent location approach? In
terms of communication complexity, the results above imply that a vast reduc-
tion in the average distance (and correspondingly in the depth of search and the
number of communication operations) can be achieved via a very small addition
to the connection lists Li. However, the analysis was performed for a lattice-like
rectangular graph. It is not di�cult to show that similar analyses will hold for
other lattice structures. The question is, how well will these results apply for
less structured organizations, more complex graphs? In this paper we do not
provide analysis of such cases. Yet, more complex graphs may be viewed as
graphs where multiple additional edges were added to a simple graph. If these
edges are added in a random manner, and their number is large enough, a short
average distance is guaranteed. Thus the class of complex, moderately to highly
connected graphs inherently exhibits short communication paths. Graphs which
are excluded from our analysis are those in which unconnected (or very loosely
connected) subgraphs exist.

It is important to note that, in practice, we do not suggest that edges be
added to graphs. In many cases the agent connection topology is rich and
complex enough in the �rst place. Thus, it may provide the low communica-
tion complexity of our location approach without applying changes. In simple
words|our agent location mechanism and its low complexity are applicable to
a large class of MAS with no need for changes in the agents' location lists.

6 Conclusion

We have shown that in a multi-agent system where agents cache a list of agents
they know, it is possible for agents to locate unknown agents (i.e., agents not
on their list) without using middle agents, and yet with a comparatively low
communication complexity. By this, one can avoid the overhead of implementing
middle agents and protocols for other agents to use the middle agents' services.
With a careful design and maintenance of the local lists Li of known agents,
the communication complexity of our approach is rather low. This makes our
approach feasible for implementation in large scale MAS. Our approach is very
simple and introduces very little protocol and mechanism overhead.
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There are several issues that still require investigation. Within the class
of lattice-like graphs, we need to study analytically the asymptotic behavior
of the average distance as a function of the number of added edges. We also
need to explicitly analyze the properties of less structured graphs. Based on
these results, it would be useful to come up with e�cient (and maybe optimal)
strategies for maintaining connection lists that guarantee low average distances
and low communication complexity for agent location in large MAS.
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