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1 Introduction

The amount of services and deployed software
agents in the most famous o�spring of the Inter-
net, the World Wide Web, is exponentially increas-
ing. In addition, the Internet is an open environ-
ment, where information sources, communication
links and agents themselves may appear and disap-
pear unpredictably. Thus, an e�ective, automated
search and selection of relevant services or agents is
essential for human users and agents as well.
We distinguish three general agent categories in

the Cyberspace, service providers, service requester,
and middle agents. Service providers provide some
type of service, such as �nding information, or per-
forming some particular domain speci�c problem
solving. Requester agents need provider agents to
perform some service for them. Agents that help
locate others are called middle agents[2]. Match-

making is the process of �nding an appropriate
provider for a requester through a middle agent,
and has the following general form: (1) Provider
agents advertise their capabilities to middle agents,
(2) middle agents store these advertisements, (3) a
requester asks some middle agent whether it knows
of providers with desired capabilities, and (4) the
middle agent matches the request against the stored
advertisements and returns the result, a subset of
the stored advertisements.
While this process at �rst glance seems very sim-

ple, it is complicated by the fact that not only
local information sources but even providers and
requesters in the Cyberspace are usually heteroge-
neous and incapable of understanding each other.
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This gives rise to the need for a common language
for describing the capabilities and requests of soft-
ware agents in a convenient way. Besides, one has to
devise an e�cient mechanism to determine a struc-
tural and semantic match of descriptions in that
language. This means in particular to use methods
for reconciling potentially semantic heterogeneous
informations [14]. There is an obvious trade-o� be-
tween the quality and e�ciency of matchmaking on
the Internet.
In the following, we brie
y present the agent ca-

pability description language, Larks, and then dis-
cuss the matchmaking process using Larks. The
paper concludes with a brief comparison with re-
lated works. We have implemented Larks and
the associated powerful matchmaking process, and
are currently incorporating it within our RETSINA
multi-agent infrastructure framework [29].

2 The Agent Capability De-

scription Language Larks

There is an obvious need to describe agent capabil-
ities in a common language before any meaningful
service matchmaking or brokering among the agents
can take place. Some of the main desired features
of such a language are the following:

� Expressiveness The language should be ex-
pressive enough to represent not only data and
knowledge, but also the meaning of program
code. Agent capabilities should be described at
an abstract rather than implementation level.

� Inferences. Inferences on descriptions writ-
ten in this language should be supported. Au-



tomated reasoning and comparison on the de-
scriptions should be possible and e�cient.

� Ease of Use. Descriptions should not only be
easy to read and understand, but also easy to
write by the user. The language should support
the use of domain or common ontologies for
specifying agents capabilities.

Since none of the existing languages for program
description such as Z [21], knowledge representa-
tion, like KIF [13], or description formats, like
RDF [22], satis�es our requirements, we propose
an agent capability description language, called
Larks (Language for Advertisement and Request
for Knowledge Sharing), that enables for advertis-
ing, requesting and matching agent capabilities. A
speci�cation in Larks is a frame with the following
slot structure.

Context Context of speci�cation

Types Declaration of used
variable types

Input Declaration of
input variables

Output Declaration of
output variables

InConstraints Constraints on
input variables

OutConstraints Constraints on
output variables

ConcDescriptions Ontological descriptions
of used words

TextDescription Textual Description of
speci�cation

The frame slot types have the following meaning.

� Context: The context of the speci�cation in
the local domain of the agent.

� Types: Optional de�nition of the data types
used in the speci�cation.

� Input and Output: Input/output variable dec-
larations for the speci�cation. In addition
to the usual type declarations, there may
also be concept attachments to disambiguate
types of the same name. The concepts it-
self are de�ned in the concept description slot
ConcDescriptions.

� InConstraints and OutConstraints: Logical
constraints on input/output variables that ap-
pear in the input/output declaration part. The
constraints are described as Horn clauses 1.

1In future, we plan to allow for using ISO/IEC 13211-1
standard compliant Prolog programs to describe constraints
and functional capabilities.

� ConcDesriptions: Optional description of the
meaning of words used in the speci�cation.
The description relies on concepts in a given
local domain ontology. Attachement of a con-
cept C to a word w in any of the slots above is
done in the form: w*C. That means that the
concept C is the ontological description of the
word w. The concept C is included in the slot
ConcDescriptions if not already sent to the
matchmaker.

� TextDescription: Optional, textual descrip-
tion of the meaning of the speci�cation as a
request for or advertisement of agent capabil-
ities. In addition, the meaning of input and
output declaration, type and context part of
the speci�cation may be described by attach-
ing textual comments.

2.1 Using Local Domain Ontologies

As mentioned above Larks o�ers the option to use
application domain knowledge in any advertisement
or request. This is done by using a local ontology for
describing the meaning of a word in a Larks spec-
i�cation. An ontology may be de�ned for example
as a simple keyword hierarchy, a more sophisticated
summary schema, or meta-data dictionary as well
as a complex terminology written in a concept lan-
guage, the uni�ed modeling language UML, or the
knowledge interchange format KIF.
In our implementation of the matchmaking pro-

cess it is assumed that any local ontology is de-
�ned in the concept language Itl [28]. Concep-
tual knowledge about a given application domain,
or even common-sense, is de�ned by a set of con-
cepts and roles as terms in the given KL-ONE like
concept language; each term as a de�nition of some
concept C is a conjunction of logical constraints
which are necessary for any object to be an instance
of C. The set of terminological de�nitions forms a
terminology. Any canonical de�nition of concepts
relies in particular on a given basic vocabulary of
words (primitive components) which are not de�ned
in the terminology, i.e., their semantic is assumed
to be known across boundaries.
The main bene�ts of providing a local ontol-

ogy written in a concept language are twofold: (1)
the user can specify in more detail what's being
requested or advertised, and particularly (2) the
matchmaker agent is able to make automated in-
ferences on these additional semantic descriptions
while matching Larks speci�cations, thereby im-
proving the overall quality of the matching process.



The matchmaker determines the relationship
among two semantic descriptions written as con-
cepts in Itl by computing the respective concept
subsumption relation [27]: A concept C subsumes
another concept C0 if the extension of C0 is a sub-
set of that of C. This means, that the logical con-
straints de�ned in the term of the concept C0 logi-
cally imply those of the more general concept C2.
We assume that the subsumption relation among

two concepts may be identi�ed with a real world se-
mantic relation among them. Like in [25], we utilize
an injective, domain-independent mapping among
primitive components which occur in the concept
de�nitions based on given synonym relations3.
The matchmaker computes the subsumption rela-

tions among the concepts included in any advertise-
ment he receives from registered provider agents.
This yields a (set of) subsumption hierarchies of
available concepts from a variety of local domain
ontologies. An extension of the partial global on-
tology of the matchmaker with additional types of
relations is presented in section 3.5. Please note,
that this ontology is not necessarily the union of all
local domain ontologies of providers, and is dynam-
ically built by the matchmaker while processing ad-
vertisements from registered provider agents. Any
user or agent, requester or provider, may browse
through the matchmaker's ontology and use the in-
cluded concepts for describing the meaning of words
in a speci�cation of a request or advertisement in
Larks

4.

2.2 A Simple Example for Speci�ca-
tion

Every speci�cation in Larks can be interpreted
as an advertisement as well as a request; the
speci�cation's role depends on the agent's purpose
for sending it to a matchmaker agent, and it is in-
dicated in the wrapper language by an appropriate
performative (advertise or request). Every Larks

speci�cation must be wrapped by the sending
agent in an appropriate message that indicates if
the message content is to be treated as a request
or an advertisement. The following is a simple
example for a request and advertisement in Larks

2Using the well-known tradeo�, we compromise expres-
siveness of the NP-complete decidable Itl for tractability in
our subsumption algorithm, which is correct but incomplete.

3For a further discussion on possible loss of semantics due
to mapping among multiple di�erent ontologies we refer to
e.g. [26].

4This is similar to the common use of domain namespaces
in XML [32] for semantically tagging Web page contents.

in the air combat mission domain.

Example 2.1: A request and advertisement of
agent capabilities

We did apply the matchmaking process using Larks

in the application domain of air combat missions. As
an example for speci�cation consider the following
request and advertisement, 'ReqAirMissions' and
'AWAC-AirMissions', respectively. The request is to
�nd an agent which is capable to give information on
deployed air combat missions launched in a given time
interval. Some provider agent in this domain advertises
his capability to provide information about a special
kind of (AWAC) air combat missions. Both agents use
the same domain ontology written in Itl.

ReqAirMissions

Context Attack, Mission*AirMission
Types Date = (mm: Int, dd: Int, yy: Int),

DeployedMission =
ListOf(mType: String, mID:StringkInt)

Input sd: Date, ed: Date
Output missions: Mission
InConstraints sd <= ed.
OutConstraints deployed(mID), launchedAfter(mID,sd),

launchedBefore(mID,ed).
ConcDescriptions AirMission =

(and Mission (atleast 1 has-airplane)
(all has-airplane Airplane) (all has-MissionType
aset(AWAC,CAP,DCA,HVAA)))

TextDescription capable of providing information on
deployed air combat missions launched in a
given time interval

AWAC-AirMissions

Context Combat, Mission*AWAC-AirMission
Types Date = (mm: Int, dd: Int, yy: Int)

DeployedMission =
ListOf(mt: String, mid:StringkInt,
mStart: Date, mEnd: Date)

Input start: Date, end: Date
Output missions: DeployedMission;
InConstraints start <= end.

OutConstraints deployed(mID), mt = AWAC,
launchedAfter(mid,mStart),
launchedBefore(mID,mEnd).

ConcDescriptions AWAC-AirMission =
(and AirMission (atleast 1 has-airplane)
(atmost 1 has-airplane) (all has-airplane
aset(E-2)))

TextDescription capable of providing information on
deployed AWAC air combat missions launched
in some given time interval

�



3 The Matchmaking Process

Using Larks

For the matchmaking process we adopt several dif-
ferent methods from the area of information re-
trieval, AI and software engineering for computing
syntactical and semantic similarity among agent ca-
pability descriptions. These methods are particu-
larly e�cient in terms of performance as needed for
dynamical matchmaking in the Internet.
The matching engine of the matchmaker agent

contains �ve di�erent �lters: (1) Context matching,
(2) Pro�le comparison, (3) Similarity matching, (4)
Signature matching, and (5) Constraint matching.
The computational costs of these �lters are in in-
creasing order. Users may select any combination
of these �lters on demand. For example, when ef-
�ciency is the major concern, a user might select
only the context and pro�le �lters (similar to most
conventional SearchBots in the Internet). We will
now brie
y describe each �lter.

3.1 Context Filter

Any matching of two speci�cations has to be in an
appropriate context. In Larks to deal with re-
stricting the advertisement matching space to those
in the same domain as the request, each speci�ca-
tion supplies a list of keywords meant to describe
the semantic domain of the service. When compar-
ing two speci�cations it is assumed that their con-
text or domains are the same (or at least su�ciently
similar) as long as (1) the real-valued distances be-
tween the roots of considered words do not exceed a
given threshold, and (2) subsumption relations be-
tween the attached concepts of the pairs of most
similar words are the same, or the distance among
these concepts does not exceed a threshold.
Word distance is computed using the trigger-pair

model [23]. If two words are signi�cantly co-related,
then they are considered trigger-pairs, and the value
of the co-relation is domain speci�c. In the current
implementation we use the Wall Street Journal cor-
pus of one million word pairs to compute the word
distance. Computation of concept distance is dis-
cussed in section 3.5.
For example, both speci�cations 'ReqAirMis-

sions' and 'AWACS-AirMissions' (see example 2.1)
pass the context �lter as to be in a su�ciently
similar context. The most similar word pairs are
(Attack, Combat), (Mission,Mission), and the con-
cept AirMission subsumes the concept AWACS-
AirMission.

3.2 Pro�le Filter

Although context matching is most e�cient, it does
not consider the whole speci�cation itself. This is
done with a pro�le �lter that compares two Larks
speci�cations by using a variant of the known TF-
IDF (term frequency-inverse document frequency)
technique [24]. According to that, any speci�cation
is treated as a document. TF-IDF determines the
degree of similarity between two documents based
on frequency and relevance of words in a document
considering a �nite set of documents. (in our case
the advertisement database of the matchmaker).
If the computed similarity value exceeds a given
threshold both documents pass the pro�le �lter. For
example, the pro�les of both speci�cations in the
example 2.1 are similar with degree 0.65.

3.3 Similarity Filter

The pro�le �lter has two limitations. It does not
consider the structure of the description. That
means the �lter, for example, is not able to di�er-
entiate among input and output declarations of a
speci�cation. Besides, pro�le comparison does not
rely on the semantics of words themselves. Thus
the �lter is not able to recognize that the word pair
(Computer, Notebook), for example, should have a
closer distance than the pair (Computer, Book).

Computation of similarity relies on a combina-
tion of distance values as calculated for pairs of in-
put and output declarations, and input and output
constraints. Each of these distance values is com-
puted in terms of the distance between concepts
and words that occur in their respective speci�ca-
tion section. The values are computed at the time
of advertisement submittal and stored in the match-
maker database. The similarity among two speci�-
cations in Larks is computed as the average of the
sum of similarity computations among all pairs of
declarations and constraints. Both speci�cations in
example 2.1 pass the similarity �lter with a similar-
ity value of 0.83.

3.4 Signature and Constraint Filters

The similarity �lter takes into consideration the
semantics of individual words in the description.
However, it does not take the meaning of the logical
constraints in a Larks speci�cation into account.
This is done in our matchmaking process by the
signature and constraint �lters. The two �lters are
designed to work together to look for a so-called



semantic plug-in match known in the software en-
gineering area ([11, 33, 8]).

Signature matching checks if the signatures of in-
put and output declarations match. It is performed
by a set of subtype inference rules as well as concept
subsumption testing (see [28] for details). A soft-
ware component description D2 'semantically plug-
in matches' another component description D1 if
(1) their signatures match, (2) the set of input con-
straints of D1 logically implies that of D2, and (3)
set of output constraints ofD2 logically implies that
of D1. In our implmentation the logical implication
among constraints is computed using polynomial �-
subsumption checking for Horn clauses[18].
Plug-in matching of Larks speci�cations is valu-

able for selecting advertisements which are not as
constrained in the input parameters as the consid-
ered request, but will return equal or greater num-
ber of more speci�c output parameters. For ex-
ample, the advertisement 'AWAC-AirMission' plugs
into the request 'ReqAirMissions' in example 2.1.

3.5 Computation of Distances
Among Concepts

For matchmaking, the identi�cation of relations be-
tween concepts other than subsumption is very use-
ful because it promotes a deeper semantic under-
standing. Moreover, since we've restricted the ex-
pressiveness of the concept language Itl in order
to boost performance, we need some way to ex-
press additional associations between concepts. For
this purpose we use a weighted associative network
(AN), a semantic network with directed edges be-
tween concept nodes. The type of edge between two
concepts denotes their binary relation, and edges
are labeled with a numerical weight (interpreted as
a fuzzy number). The weight indicates the strength
of belief in that relation, since its real world seman-
tics may vary. The AN is the partial global ontology
of the matchmaker dynamically built

In our implementation an associative network is
created by the matchmaker by using the computed
concept subsumption hierarchy and additional as-
sociations extracted from the WordNet ontology[4].
We assume that the terminological subsumption re-
lation among two concepts in the partial global on-
tology of the matchmaker may be identi�ed with
a real world semantical relation among them. Dis-
tance between two concepts C;C0 in an AN is com-
puted as the strength of the shortest path between
C and C0 on the basis of triangular norms (see [15]
for details). For performance reasons the match-

maker does not deal with dynamically resolving am-
biguities due to potential genericity and polysemy
in the AN (see e.g. [3]).

4 Related Works

For dealing with semantic heterogeneity among dis-
tributed, autonomous information sources there ex-
ist solutions in the multidatabase and information
systems area for years. Many of them are based on
a database-style modeling of data, global schema,
and use of meta-information such as provided by
a common ontology or di�erent domain ontologies
for a content-based source selection [7, 1, 25, 6].
Others focus on information retrieval (IR) tech-
niques for best-match queries, and relevance as-
sessment. Alternative solutions towards an adap-
tive process for revealing semantic interdependen-
cies among heterogeneous data objects is proposed,
e.g., by SCOPES [20].
However, the main problem of dynamic match-

making in the Internet is to deal with the trade-
o� between performance and quality of matching.
Complex reasoning has to be restricted to allow
meaningful semantic matches of requests and ad-
vertisements in a reasonable time. Unlike other ap-
proaches to matchmaking or brokering in multia-
gent systems [1, 16, 19], the presented matchmak-
ing process using Larks o�ers a 
exible approach
to satisfy both requirements. It does not deal with a
global integration of heterogeneous source descrip-
tions in terms of database schemas, but with com-
paring descriptions of functional capabilities such
as constrained actions to provide services. For this
purpose it combines techniques from IR, software
engineering and description logics area in an ap-
propriate way to perform such �ltering e�ciently.
The matchmaker agent does not need to perform
any complex query activities such as, e.g., by bro-
ker agents in InfoSleuth[19] or the mediator agent
in SIMS[1]. In addition, we have developed proto-
cols for e�cient, distributed matchmaking among
multiple matchmaker agents [10].

5 Implementation

We did implement the language Larks and the
matchmaking process using Larks in Java. The
following �gure shows the user interface of the
matchmaker agent.
To help visualize the matchmaking process, we

devised a user interface that traces the path of the



advertisement result set for a request through the
matchmaker's �lters. The �lters can be con�gured
by selecting the checkboxes beneath the desired �l-
ters | disabled �lters are darkened and bypassed.
As the result set passes from one �lter to the next,
the �lter's outline highlights, the number above the
�lter increments as it considers an advertisement,
and the number above its output arrow increments
as advertisements successfully pass through the �l-
ter. Pushing the buttons above each inter-�lter ar-
row reveals the result advertisement set for the pre-
ceding �lter.

6 Conclusion

Service matchmaking among heterogeneous soft-
ware agents in the Internet is usually done dy-
namically and must be e�cient. There is an ob-
vious trade-o� between the quality and e�ciency of
matchmaking on the Internet. We have de�ned and
implemented a language called Larks for agent ad-
vertisements and requests, and a matchmaking pro-
cess that uses Larks. Larks judiciously balances
language expressiveness and e�ciency in matching.
The Larks matchmaking process performs both
syntactic and semantic matching, and in addition
allows the speci�cation of concepts (local ontolo-
gies) via ITL, a concept language.
The matching process uses �ve di�erent �l-

ters: context matching, pro�le comparison, simi-
larity matching, signature matching and constraint
matching. Di�erent degrees of partial matching can

result from utilizing di�erent combinations of these
�lters. The selection of �lters to apply is under the
control of the user (or the requester agent). We
did apply Larks and the matchmaking process in
several application domains for systems of informa-
tion agents such as the air combat mission domain.
Other application domains are currently under in-
vestigation.
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