
A Planning Component for RETSINA Agents

M. Paolucci, D. Kalp, A. Pannu, O. Shehory, K. Sycara
The Robotics Institute

Carnegie Mellon University
5000 Forbes ave

Pittsburgh, PA 15213
fpaolucci,kalp,pannu,onn,katia g@cs.cmu.edu

Abstract. In the RETSINA multi-agent system,each agent is provided with an
internal planning component—the RETSINA planner. Each agent, using its in-
ternal planner, formulates detailed plans and executes them to achieve local and
global goals. Knowledge of the domain is distributed among the agents, therefore
each agent has only partial knowledge of the state of the world. Furthermore, the
domain changes dynamically, therefore the knowledge available might become
obsolete.
To deal with these issues, each agent’s planner allows it to interleave planning and
execution of information gathering actions, to overcome its partial knowledge of
the domain and acquire information needed to complete and execute its plans. In-
formation necessary for an agent’s local plan can be acquired through cooperation
by the local planner firing queries to other agents and monitoring for their results.
In addition, the local planner deals with the dynamism of the domain by monitor-
ing it to detect changes that can affect plan construction and execution. Teams of
agents, each of which incorporates a local RETSINA planner have been imple-
mented. These agents cooperate to solve problems in different domains that range
from portfolio management to command and control decision support systems1.

1 Introduction

We are developing the RETSINA2 Multi-Agent System (MAS) [15] in which multi-
ple agents receive goals from users and agents. Since RETSINA implementations are
deployed in real-world, distributed, open environments, the state of the world may dy-
namically change or might be only partially known to agents in the system. This may
result from either actual changes in the world or limited and incoherent knowledge of
agents as a result of their distribution across the network and limited resources and
expertise of each individual agent.

To satisfy their goals, the agents need to formulate detailed plans and execute these
plans. However agent autonomy, distribution and limited information usually prohibit
the creation of a global, comprehensive plan for the whole agent system. Therefore, as
we suggest,each agent must be provided with a planning component as part of its inter-
nal architecture. Yet local and distributed planning brings about other problems which

1 This research has been sponsored in part by the office of Naval Research grant N-00014-96-
16-1-1222 by DARPA grant F-30602-98-2-0138

2 REusable Task Structure based Intelligent Network Agents.

require resolution: an agent’s local plans, once found conflicting with other agents’ lo-
cal plans, must be revised and re-planned for. Moreover, in MAS, the computation of
an agent’s local plan partly relies on other agents performing parts of the plan. This
implies that agenti’s local planning (and execution) may require that agenti suspends
its planning while waiting for other agents to complete their plans and provide results
which are preconditions to the rest ofi’s plan. Agenti should resume planning once
these results arrive.

These unique requirements of planning within an open dynamic MAS (and in par-
ticular in RETSINA) pose difficulties in the use of existing planners. Although research
on planning has dealt with most of the problems listed above, no planner addresses
all the problems at once. Planners deal with partial knowledge by either planning for
contingencies (e.g., [12]) or gathering information during planning (e.g., [7, 6]). Other
planners deal with uncertainty in the domain by using probabilistic models [8] or by
reacting to the environment in which they operate [5]. Open, dynamic multi-agent sys-
tems require that both partial knowledge and dynamism be resolved simultaneously.

We have developed a new planner as part of the internal architecture of RETSINA
agents. This planner assumes that agents have only partial knowledge of the domain but
it allows agents to gather information either by direct inspection of the domain or by
querying other agents. In addition, the planner deals with dynamism in the domain by
monitoring changes in the environment and predicting their effect on the plan.

Agents in a multi-agent system can take advantage of the collaboration of other
agents in the system. Single agent planning techniques obviously cannot exploit these
opportunities. In our approach, multiple agents exploit the intrinsic parallelism in the
multi-agent system in two ways: (1) by having multiple agents working onaccomplish-
ing a common goal and locally planning for it; (2) by each local planner working on
other parts of its plan (or on other partial plans) while waiting for other agents to com-
pute requested information.

The RETSINA planner is a novel combination of existing planning methods. Agents
that incorporate it as part of their internal architecture can interleave planning, execu-
tion and replanning in a dynamically changing environment despite having only partial
knowledge of the domain. This functionality is supported by direct monitoring of the
environment and cooperation with other agents.

2 The RETSINA Architecture

RETSINA is an open multi-agent system that provides infrastructure for different types
of deliberative, goal directed agents. In this sense, the architecture of RETSINA agents
[15] exhibits some of the ideas of BDI agents [13, 10]. RETSINA agents are composed
of four autonomous functional modules: a communicator, a planner, a scheduler and
an execution monitor. The communicator module receives requests from users or other
agents in KQML format and transforms these requests into goals. It also sends out
requests and replies. The planner module transforms goals into plans that solve those
goals. Executable actions in the plans are scheduled for execution by the scheduler
module. Execution of the actions and monitoring of this execution is performed by the
execution monitor module. The four modules of a RETSINA agent are implemented

2

as autonomous threads of control to allow concurrent planning and actions’ scheduling
and execution. Furthermore, actions are also executed as separate threads and can run
concurrently. In general, concurrency between actions is not virtual. Rather, since some
actions require that the agent ask other agents for services, and since these agents are
running on remote hosts, actual parallelism is enabled.

The following data stores are part of the architecture of each individual RETSINA
agent and are used by the RETSINA planner. Their role in the overall architecture of
the agent is displayed in Figure 1.

Beliefs DB

Parameters

ScheduleTask DBPlanner Objective DB

Scheduler

Task Schema Task Reductionss

Planning

Execution
Monitor

Execution domain

Users and Agents

External world:

Objective

Task Schema

Control Link
Data Link

Legend:

Communicator

Action Executed

Enabled Action

Task-Action

Fig. 1. The RETSINA planning architecture.

– Theobjective-DBis a dynamic store that holds the objectives of the agent of which
it is a component. An objective-DB implements a queue with priorities, i.e., the
objective with the highest priority on the queue is handled first by the planner. New
objectives are inserted in the queue by the communicator and by the planner when
complex objectives are decomposed in simpler objectives.

– The task-DBis a dynamic data store that holds the plan. Tasks are added by the
planner when it recognizes that they contribute to the achievement of the objectives.
Tasks are removed by the scheduler when they are ready for execution.

– The task schema libraryis a static data store that holds tasks schemas. These are
used by the planner for task instantiation.

3

– Thetask reduction libraryis a static data store that holds reductions of tasks. These
are used by the planner for task decomposition.

– Thebeliefs-DBis a dynamic data store that maintains the agent’s knowledge of the
domain in which the plan will be executed. The planner uses the beliefs-DB during
planning as a source of facts that affect its planning decisions. Actions may affect
the beliefs-DB by changing facts in the domain.

3 The Planner Module

Outcome

Provision/outcome link

Reduction link

Hierarchical Task Network (HTN)

Provision, Parameter

Sub-task

Top-level Task

Action

To parent task

Fig. 2.A Hierarchical Task Network

The RETSINA Planner represents tasks using the Hierarchical Task Network (HTN)
formalism [4]. Figure 2 displays the structure of an HTN. It consists of nodes that
represent tasks and two types of edges.Reduction linksdescribe the de-composition
of a high-level tasks to subtasks (a tree structure). They are used to select the tasks
that belong to the decomposition of the parent task. The second type of edges are
provision/outcome linksthat represent value propagation between task-nodes. Provi-
sion/outcome links describe how the result of one task is propagated to other tasks.
For instance in Figure 3, the taskT represents the act of buying a product.T may de-
compose to finding the price (T1) and performing the transaction (T2). The reduction
requires thatT1 is executed first to propagate the price outcome toT2.

Formally, a problem for the RETSINA Planner is defined by a tuple< A; C;R;B;O; T >,
whereA andC are sets of tasks schemas;A describes actions (primitive tasks) that the
agent can perform directly, whileC describes complex tasks that are performed by the
composition of other primitive and complex tasks.R is the task reduction library. Each
reduction schema in the library provides details on how to reduce a complex task in
C. A reduction schema for a complex taskC 2 C specifies the list of tasks that re-
alizesC, and how their preconditions and effects are related toC’s preconditions and
effects. In general, the correspondence betweenR andC is not one to one: there may
be several reduction schemas for each complex task inC, where each reduction schema

4

Perform transaction

T1 T2

T

To parent task

Buy product X

Find price of X

Fig. 3. An example of task de-composition

corresponds to one implementation of this task.B is the agent’s beliefs-DB. It plays a
role similar to the initial state’s role in classical planning, though, when interleaving
planning and execution are present (as in our planning mechanism), actions that are in
execution stage may change facts in the beliefs-DB, thus affect the rest of the plan.O is
the objective-DB, which holds the unachieved objectives of the agent. The goal of the
planner is to remove all the objectives from this list.T is the task-DB which, by holding
the tasks already added to the plan, describes the plan constructed by the agent.

RETSINA-Planner (goal)
init-plans make initial plans.
partial-plans init-plan.
While partial-plans is not empty do:

choose a partial plan P from partial-plans
If (P has no flaws)

then return P
else do:

remove a flaw f from P’s objective-DB.
partial-plans refinements of f in P

return failure

Fig. 4. The Basic RETSINA Planning Algorithm

The detailed planning algorithm is described in Figure 4. It starts from an initial set
of plans (init-plans) that provide alternative hypothesis of solutions of the original goal.
Initial plans are constructed by matching tasks to the initial objectives. The planner
proceeds by selecting a partial planP and a flawf from P’s objective-DB, to generate a
new partial plan for each possible solution off. This process is repeated until the planner
generates a plan with an empty objective-DB. The planner fails if the list of partial plans
empties before a solution plan is found.

The resulting plan is a tree of partially ordered tasks, similar to the plans generated
by DPOCL [21]. The leaf nodes of the tree are actions inA, while the internal nodes are

5

complex tasks inC. At execution time, actions are scheduled for execution and even-
tually they are mapped to methods which in turn are executed by the agent’s execution
monitor. Complex tasks in the plan are used by the scheduler to synchronize the execu-
tion of primitive tasks as well as connection of the outcomes of computed tasks to the
preconditions of tasks that were not yet executed.

3.1 Flaw refinement

The flaw refinement algorithm is shown in Figure 5. The RETSINA Planner allows
three different types of flaws: task-reduction flaws, suspension flaws, and execution
flaws. Task-reduction flaws are associated with unreduced complex tasks in the task-
DB. They are used to signal which tasks in the current partial plan should be reduced.
Once a reduction flaw is selected, the planner applies all task reduction schemas in
R associated with the task, generating a new partial plan in correspondence toeach
application of a schema. As a result, all the subtasks listed in the reduction schema
are added to the partial-plan’s task-DBT . Task reduction triggers the evaluation of
constraints and estimators that are associated with the task being reduced, which in
turn could trigger the execution of actions that inspect the environment and provide
information that is not present inB.

refinements of f in P
if f is a reduction flaw then

t the task corresponding to f
evaluate estimators and constraints of t
for each reduction r of t do

new-plans apply r to P
if f is a suspension flaw then

add f to the flaws of P
new-plansadd P

if f is an execution flaw then
a the action corresponding to f
if a completed successfully

new-plansadd P
if a failed

new-plans nil
if a still running

add f to the flaws of P
new-plansadd P

Return new-plans

Fig. 5. The Refinement Algorithm

Execution flaws are used to monitor the execution of actions while planning. An ex-
ecution flaw is created and added to the objective-DBO whenever an action is created.

6

Execution flaws are removed fromO only when the corresponding action terminates.
Their solution depends on the termination of the action: if the action terminates suc-
cessfully, then the flaw is simply removed from the list of flaws and no action is taken;
otherwise, when the execution fails or times out, the partial plan also fails and the plan-
ner backtracks.

Suspension flaws are used to signal that the partial plan contains unreduced com-
plex tasks whose solution depends on data that is not currently available to the agent.
Suspension flaws are delayed and transformed into reduction flaws only after the occur-
rence of an unsuspending event, such as the successful completion of the execution of
an action. Unsuspending events provide the data that the planner was waiting for, and
they allow the completion of the reduction of the complex task.

4 Task and Plan Representation

A task is a tuple< N ;Par;Dpar;Pro;Out; C; E > whereN is a unique identifier of the
task;Par,Dpar andPro are different types of preconditions as discussed below,Out is
the set of outcomes of the task,C is a set of constraints that should hold either before,
after or during the execution of the task, andE is a set of estimators used by the planner
to predict the effects of the task on some variables. An example of task is shown in
Figure 6. In this example,N = Buy Product,Par = fBalanceg, Pro = fExpensesg,
Out = fPurchaseDoneg, C = fBalance > 0g, andE = fBalance = Balance �
Expensesg.

Buy Product

C: Balance>ProductPrice
E: Balance=Balance-Expenses

PurchaseDoneExpenses
Balance

Fig. 6. The Buy Product task has a provision and a parameter (on the left), an outcome (on the
right), and an estimator and a constraint (denoted E and C, at the bottom).

4.1 Estimators and Constraints

Estimators are used to evaluate the effect of a task on some variables. Estimators are
used to predict the value of variables after a task is performs. Constraints are used to
limit the values of variables to a specified range, when the plan would fail at execu-
tion time if such range is violated. For example, constraints and estimators are used to

7

evaluate the amount of resources needed to perform a task and to check whether these
resources are available to the agent.

4.2 Parameters and Dynamic Parameters

Parameters are global variables stored in the beliefs-DB. They represent conditions that
the planner expects to hold in the domain. Parameters are visible to all tasks. The value
of parameters is monitored by the planner who modifies its plan when the value of
a parameter changes. Since some conditions in the environment are modified by the
agent, we distinguish a special class of parameters that we call dynamic parameters.
Like parameters, dynamic parameters are visible to all tasks in the plan, however their
value can change depending on the tasks performed by the agent without triggering the
monitor.

There is an important distinction between parameters, dynamic parameters and pre-
condition satisfaction in classical planning. Causal links [9] describe both how a pre-
condition is achieved by the effect of a step in the plan, but they also describe a tem-
poral precedence relation between the two steps. The satisfaction of parameters and
dynamic parameters inherit the first aspect, but they do not express any temporal rela-
tion. The lack of a temporal dimension allows the representation of plans with concur-
rent actions that may consume the same resource. These plans cannot be represented
in classical planning. Consider the following 2 steps of a plan for vehicle movement:
RunAirConditioner and GoToX, both steps consume fuel. A representation in
causal-link planning adds a causal link between the steps, thus imposing an order be-
tween them. As a result, eitherRunAirConditioner is executed first, andGoToX
later, or, following the opposite order, the agent moves first in a hot environment and
only when it arrives it runs the air conditioner to cool down. The RETSINA planner can
generate a plan that overcomes this problem: it evaluates the estimators and constraints
associated with both steps to compute how much fuel is needed, and to make sure that
the agent has enough fuel to execute both actions. The temporal relation between the
steps does not matter: if there is not enough fuel to run both the airconditioner and move,
then the constraint on one of the actions will fail forcing the planner to backtrack.

4.3 Provisions and Outcomes

Parameters and dynamic parameters represent properties of the domain, however as
explained above they do not include a notion for precondition satisfaction. Therefore,
they do not offer a way to relate the preconditions of an action to the effects of another.
In the RETSINA action representation, provisions and outcomes are used to describe
the preconditions of a task and their effect.

Outcomes are conditions that are set by virtue of executing an action. As actions
and complex tasks have a different behavior at execution time, outcomes mirror this
difference: outcomes of an action are set by executing the method associated with the
action, whereas outcomes of complex tasks are set by outcome propagation from the
children to the parent task.

Provisions are local conditions of a task: they describe properties that should be
satisfied for the action to be executable. Provisions are instantiated in one of two ways:

8

(1) they are set by precondition satisfaction when they receive a value from the outcome
of a sibling task in the plan, or (2) they receive a value by inheritance from a provision
in the parent task.

The relation between provisions and outcomes introduces the temporal precedence
that is characteristic of precondition satisfaction in classical planning. Since outcomes
propagate their values to provisions, the action that produces the outcome should be
executed before the action that consumes the provision, thus the temporal precedence
relation.

Provisions generalize the notion of run-time variables in Sage [7] and other planners
[1, 6]. Run-time variables are assigned at execution time by running other actions in the
plan. Provisions can be set both at execution time playing the role of run-time variables,
or at planning time by inheritance from other provisions or parameters in the parent task.

4.4 Task Reduction Schemas

Task reduction schemas are used to describe how complex tasks are implemented by
composition of other tasks. A reduction schema is a tuple< Ntask; Tlist; Ilinks;Plinks;Olinks >.
Ntask is a unique identifier of the reduced taskt; Tlist is a set of primitive and complex
tasks that define a method to implementt. Ilinks contains inheritance links that connect
t’s provisions to the provisions of the children tasks inTlist. These links specify how
the values of the provisions of the parent taskt become values of the provisions of its
children tasks (the members ofTlist). Plinks specifies provision links between sibling
tasks in the decomposition. These links are similar to causal links in SNLP planning
[9, 18], in that they show how the effects of one task affect the preconditions of another
task. In addition, they are used to maintain a temporal order between tasks in the reduc-
tion.Olinks is the set of outcome propagation links that connect the outcomes of the
children tasks inTlist to the outcomes of the parent task. These links specify how the
outcomes of the parent taskt are affected by the outcomes of its children tasks.

5 Interleaving Planning and Information Gathering

The evaluation of estimators and constraints should be computed before the plan is
completed. However when an estimator needs the value of a provision� that is not
yet set, the agent can either use its own sensors to find this information or query other
agents for the missing information. In either case, the completion of the plan is deferred
until the value of� is provided. For example, the agent should estimate the fuel needed
to follow a route before moving. This estimation involves computing the length of the
path, the expected fuel rate consumption and the amount of fuel available. The agent
could use its own sensors as in reading the fuel gauge, and it can ask other agents what
type or terrain and fuel consumption is expected on the way to the destination. The plan
is not complete until both actions end and return their values.

The execution of information actions during planning is controlled by the suspen-
sion algorithm (Figure 7). Since estimators and constraints are evaluated in the task
reduction step, the planner records that the reduction of a taskt is suspended by adding
a new task-reduction flawf for t, marked as suspended. The flawf records thatt is not

9

reduced yet and the completion of the plan is deferred. Then, the planner looks for a
primitive taskt� in the plan, that if executed would set�. t� is found by tracking back-
ward inheritance links and provision links that end in�. The taskt� is then scheduled
for execution and a new execution flawe to monitor the outcome oft� is added to the
list of planP’s flaws.

suspension of t in P
f task-reduction flaw for t
add f to the flaws of P
set f as suspended
set unsuspension trigger to a provision �

Find task t� that sets �

Schedule t� for execution
e execution flaw for t�

add e to the flaws of P

Fig. 7. The Suspension Algorithm

As described above, the flawsf ande are not removed from the list of flaws untilt�
completes its execution. The completion oft� removes the suspension onf, which in
turns allowst’s estimators and constraints to be evaluated andt to be reducted.

The use of suspension and monitoring flaws to control action execution has impor-
tant consequences. First and foremost, it closely ties action execution and planning:
since a plan is not completed until all flaws are resolved. The use of suspension and
execution flaws guarantees that all scheduled actions are successfully executed before
the plan is considered a solution of the problem. In addition, if an executing action fails,
the failure will be detected as soon as the planner refines the corresponding execution
flaw. Furthermore, using flaws to suspend and monitor action execution allows the plan-
ner to work on other parts of the plan while it waits for the completion of information
gathering actions.

6 Example

In this example we show how the planner is used in RETSINA agents organized in a
multiagent system that supports joint mission planning3. In this scenario, three army
commanders discuss a rendezvous location for their platoons. Then,each commander
constructs its own plan, assisted by a planningAgent that constructs a route, taking into
account fuel limitations, ground and weather.

The system includes, among others, the following agents: the FuelExpertAgent that
computes how much fuel is needed to accomplish a mission; the weatherAgent that
provides weather forecasts, and a Matchmaker that matches service provider agents
with consumer agents.
3 For more information on the system see http://www.cs.cmu.edu/˜softagents/muri.html

10

Path
Initial position

Goal position

C: Fuel>0
E: Fuel=Fuel-Consumption

Goal position

Initial position

Re-locate

Move

positionPath
Consumption At Path end

Consumption
Fuel

Ask Fuel Consumption

position

Select Path

At goal

Path

Fig. 8. An example of a task reduction schema

Each commander asks its planningAgent to find a route to the rendezvous point.
PlanningAgents transform the request to an objective that is achieved using the reduc-
tion schema shown in Figure 8. Following the reduction schema, the plan adopted is
SelectPath, AskFuelConsumption, andMove. Since the three actions can be further
reduced, the planner adds three reduction objectives to the ObjectiveDB.

Following the reduction algorithm shown in Figure 5, reduction objectives trigger
the evaluation of the estimators associated with the action being reduced. The estimator
associated withMove depends on the value of the unknown provisionConsumption
that can be set only by executingAskFuelConsumption.

The execution of a step while planning is controlled by the suspension algorithm de-
scribed in Figure 7. The planner first suspends the reduction ofMoveuntil Consumption
is set; then it schedulesAskFuelConsumptionfor execution. SinceAskFuelConsump-
tion needs the value ofPath , SelectPathis also scheduled for execution.

Select Pathis executed directly by the agent, whileAskFuelConsumption is a
request from information to the FuelExpertAgent. From the point of view of the plan-
ningAgent, there is no difference between the two tasks: a request to another agent is
an action as any other.

The agent FuelExpertAgent computes the expected fuel consumption following de-
composition schema shown in Figure 9. The result is a plan that contains three actions:
SurveyTerrain, ForecastWeather, andComputeFuelUsage. During the execution of
the actionForecastWeatherthe FuelExpertAgent sends a query to the WeatherAgent
that computes a weather forecast. The results returned by the WeatherAgent are passed
back to the FuelExpertAgent that uses them to executeComputeFuelUsage4. Finally,
the FuelExpertAgent reports the result to the planningAgent.

The execution ofAskFuelConsumption sets the value ofConsumption , that
releases the suspension of the reduction of the actionMove which is finally reduced.

4 Weather information is needed because tanks have different fuel consumption rates when they
travel on different terrains, e.g. dry soil vs. wet soil

11

FuelConsumption

ForecastWeather

ComputeFuelUsageSurveyTerrain

Fig. 9. An example of a task reduction schema

One aspect is important to stress: the computation of the fuel consumption is trans-
parent to the planningAgent, which is unaware that the FuelExpertAgent needs addi-
tional information. Agents do not need to model how other agents solve problems or
what they require to solve a problem.

Above, we assumed that the planningAgent knows that the FuelExpertAgent is part
of the system. This assumption is too strong; RETSINA is an open system which agents
join and leave dynamically. Agents joining the system advertise and unadvertise with
middle agents[2]. The advertisement is a declaration of what tasks the agent can per-
form; whenever an agent wants to outsource parts of the computation it asks the Match-
maker, a type of middle agent, for contact information of agents that can perform the
task.

AskFuelConsumption

findFuelExpert AskAgent

Fig. 10.Retduction Schema for AskFuelConsumption

12

Figure 10 shows the decomposition of the actionAskFuelConsumption, it contains
two sub-actions:findFuelExpert that is a request to the Matchmaker for the address of
a fuel expert agent. The actionAskAgent is a request addressing the fuel expert agent
to provide the expected consumption. Since Matchmakers are agents, a request to a
Matchmaker is solved as described above and it does not require additional computa-
tional machinery.

7 Monitoring Conditions during Planning

The construction of a plan and the scheduling and execution of the plan’s actions take
time. During this time the environment may change, invalidating the plan. In the exam-
ple above, any change in the expected fuel consumption due to changes in the weather
or other conditions, may lead the platoon to run out of fuel before its destination is
reached.

RETSINA agents implement Rationale Based Monitors [17] to detect changes in
the environment that are relevant to the plan. Specifically, constraints are the only mean
for the planner to evaluate the validity of a plan: when a constraint fails, the plan is no
longer valid. RETSINA agents monitor the value of parameters and provisions that are
arguments of constraints in the plan; when one of the monitors detects a change, the
agent re-evaluates its constraints to verify whether the plan is still valid.

Agents decide which action to monitor at planning time. When constraints are added
to the plan, the agent looks for the actions that set the arguments of the constraint,
then it transforms these actions into monitors: requests of information are transformed
into requests to monitor, while sensing actions become monitoring actions. Monitors
are implemented as information periodic gathering actions that iterate until they are
stopped by the agent [20]. While virtually every AI planner uses exclusively “single
shot” actions that are removed from the plan as soon as completed, RETSINA’s periodic
actions, are not removed from the plan. Rather, at the end of their execution, they are
reinstantiated by the scheduler to run again. Monitors are stopped by the agent during
plan execution when they do not have any associated constraint.

The reaction to a change in the environment depends on the state of the plan. If the
domain change violates a constraint in a partial plan that has outstanding flaws, then the
partial plan is no longer expanded because it is not valid and the planner backtracks.
If, instead, the change violates a constraint in an action that is scheduled for execution,
then the agent abandons the plan and constructs a new plan to fulfill the goal. Finally,
violations of constraints of actions already under execution are not considered, the agent
waits for the success or failure of the action.

8 Related Work

The RETSINA planner has some similarities with Knoblock’sSage[7], mainly in the
concurrency of planning and information gathering and the close connection between
the planner and the execution monitor through monitoring flaws. Nevertheless, the two
planners differ in many important respects: whileSageis a partial order planner that

13

extends UCPOP [11], our planner is based on a HTN and plans by task reduction
rather than from first principles; in addition, we extend the functionalities of the planner
through the constant monitoring of the correctness of the information gathered and do
re-planning when needed.

Other planners relax STRIPS’ omniscience assumption by interleaving planning
and execution of information gathering actions, e.g.,XII[6]. Our approach is different
from theirs. First, as in the case ofSageabove, we use a different planning paradigm:
HTN instead of SNLP style partial order planning. In addition we cannot assume the
Local Close World Assumption because the information gathered might change while
planning. Moreover, our planner supports a coarse description of information sources
such as other agents. Specifically, the planner should know what they provide but not
what their requirements are, since each agent is able to scout for the information it
needs. This distinguishes the RETSINA planner from planners such asXII or Sage.

A completely different approach to planning and information gathering is followed
by contingency planners [12, 3]. While we execute information gathering actions dur-
ing planning, contingency planners plan for all possible outcomes of the information
actions, then select the proper branch at execution time when the information is avail-
able. The two types of planners can be used to solve different problems: contingency
planning is appropriate if information is very expensive or not available or unstable and
changing rapidly; gathering information during planning, as discussed in this paper, is
appropriate when the agent can gather reliable information while planning and monitor
it fairly cheaply.

The RETSINA contribution to Rationale Based Monitoring is twofold. RETSINA
describes how Rationale Based Monitors can be applied to HTN planning. In addition,
RETSINA expands the use of monitors to the scheduling phase when the plan is com-
pleted and under execution, whereas Rationale Based Monitors in [17] are used only
during planning time. On the other hand, RETSINA’s use of monitors is more restric-
tive than in [17], because RETSINA agents do not attempt to select the best plan from
a pool of alternative plans, given the modified environment.

The RETSINA planning process is a first step towards a distributed planning scheme
based on a peer to peer cooperation between agents. No hierarchy or control relation-
ships are present among the agents. They have each objectives to solve and they cooper-
ate with one another to achieve their goals. We call this type of cooperation capability-
based. From this prospective, our enterprise is very different from the planning architec-
ture proposed in [19], where the planning process is distributed among agents, however
they are centrally controlled.

9 Conclusion

Planning in a dynamic open MAS imposes a combination of problems that range from
partial domain information to dynamism of the environment. These problems areeach
resolved, separately, by existing planning approaches; but no solution prior to the RETSINA
planner addresses this combination as such. The RETSINA planner solves the problem
of partial domain knowledge by interleaving planning and execution of information
gathering actions; it handles dynamic changes in the domain by monitoring for changes

14

that may affect planning and execution; it supports cooperation by allowing query del-
egation to other agents; it enables re-planning when changes in the domain arise. These
properties are provided by the architecture described in this paper. This architecture is
implemented in RETSINA agents, which are deployed in several real-world environ-
ments [14, 16].

References

1. Jose’ A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and monitoring.
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages 83–88,
St. Paul, MI, 1988.

2. Keith Decker, Katia Sycara, and Mike Williamson. Middle-agents for the internet. InPro-
ceedings of the Sixteen International Joint Conference on Artificial Intelligence (IJCAI97),
1997.

3. Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with information gath-
ering. InProceedingsof the 2nd International Conference on Artificial Intelligence Planning
Systems, pages 31–36, 1994.

4. Kutluhan Erol, James Hendler, and Dana S. Nau. Htn planning: Complexity and expressiv-
ity. In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),
Seattle,1994.

5. R. James Firby. Tasks networks for controlling continuous processes: Issues in reactive
planning. InProceedings of the Second International Conference on Artificial Intelligence
Planning Systems (AIPS–94), 1994.

6. Keith Golden, Oren Etzioni, and Daniel Weld. Planning with execution and incomplete
information. Technical Report UW-CSE-96-01-09, Department of Computer Science and
Engeneering, University of Washington, 1996.

7. Craig A. Knoblock. Planning, executing, sensing and replanning for information gather-
ing. In Proceedings of the Fifthteen International Joint Conference on Artificial Intelligence
(IJCAI95), 1995.

8. Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An algorithm for probabilistic plan-
ning. Technical Report 93-06-03, University of Washington Department of Computer Sci-
ence and Engineering, 1993.

9. David McAllester and David Rosenblitt. Systematicnonlinear planning. InProceedings
of the Ninth National Conference on Artificial Intelligence, pages 634–639, Anaheim, CA,
1991.

10. Jörg P. Müller. The Design of Intelligent Agents. Springer, 1996.
11. J. Scott Penberthy and Daniel Weld. UCPOP: A sound, complete, partial order planner for

ADL. In Proceedings of the Third International Conference on Knowledge Representation
and Reasoning, pages 103–114, Cambridge, MA, 1992.

12. Mark Peot and David E. Smith. Conditional nonlinear planning. InProceedings of the First
International Conference on AI Planning Systems (AIPS-92), pages 189–197, College Park,
MD, 1992.

13. Anand S. Rao and Michael P. Georgeff. Modelling rational agents within a bdi-architecture.
In Proceedings of the Second International Conference on Principles of Knowledge Repre-
sentation and Reasoning, Cambridge, MA, 1991.

14. O. Shehory, K. Sycara, G. Sukthankar, and V. Mukherjee. Agent aided aircraft mainte-
nance. InProceeding of Agents-99, Seattle,1999.

15

15. Katia Sycara, Keith Decker, Anadeep Pannu, Mike Williamson, and Dajun Zeng. Distributed
intelligent agents.IEEE Expert, Intelligent Systems and their Applications, 11(6):36–45,
1996.

16. Katia P. Sycara, Keith Decker, and Dajung Zeng. Intelligent agents in portfolio management.
In Nicholas R. Jennings and Michael J. Wooldridge, editors,Agent Technology, pages 267–
283. Springer Verlag, 1998.

17. Manuela M. Veloso, Martha E. Pollack, and Michael T. Cox. A rationale-based monitoring
for planning in dynamic environments. InProceedings of the Fourth International Confer-
ence on Artificial Intelligence Planning Systems (AIPS–98), 1998.

18. Daniel S. Weld. An introduction to least commitment planning.AI Magazine, 15(4):27–61,
1994.

19. David E. Wilkins and Karen L. Mayers. A multiagent planning architecture. InProceedings
of the Fourth International Conference on Artificial Intelligence Planning Systems (AIPS–
98), 1998.

20. Mike Williamson, Keith Decker, and Katia Sycara. Executing decision-theoretic plans in
multi-agent evnironments. InPlan Execution Problems and Issues, 1996. Also appears as
AAAI Tech Report FS-96-01.

21. R. Michael Young, , Martha E. Pollack, and Johanna D. Moore. Decomposition and causal-
ity in partial-order planning. InProceedings of the 2nd International Conference on AI
Planning Systems, pages 188–193, Chicago, 1994.

This article was processed using the LATEX macro package with LLNCS style

16

