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Abstract

Although the number and availability of electronic information sources are in-
creasing, current information technology requires manual manipulation and user-
speci�cation of all details. Once accessed, information must be �ltered in the context
of the user's task. Current systems lack the ability to get contextual information or
use it to automate �ltering. At Carnegie Mellon University, we have been engaged
in the RETSINA project, which aims to develop a reusable multiagent software in-
frastructure that allows heterogeneous agents on the Internet, possibly developed by
di�erent designers, to collaborate with each other to manage information in the con-
text of user-speci�ed tasks. In this chapter, we will provide a brief overview of the
whole system and then focus on its capability for in-context information management.

�This research has been supported in part by DARPA contract F30602-98-2-0138, and by ONR Grant
N00014-96-1222.
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1 Introduction

The Web is full of information resources. This abundance of information holds great poten-
tial for being brought to bear at the right time on decision making tasks. Current practice
in automated �nding and �ltering of information from the Web, however, is far from help-
ing accomplish this goal. The context of the task for which the information is needed
remains in the user's head; moreover, the user must spend much time manually searching
for relevant information. Task context is currently expressed only through keywords that
are manually submitted to search engines. Keywords are a very impoverished expression
of task context making it di�cult for the user to accurately express requirements for infor-
mation relevant to the task under consideration. Currently, there are no formal languages
that allow representation of task context to guide information retrieval. Search engines
don't adapt their search strategies according to di�erent users. Moreover, the problem is
exacerbated because the information sources have high \noise", i.e. most of the pages are
irrelevant to the interests of a particular user. Research on intelligent software agents is
under way to address these issues. Intelligent agents are programs that act on behalf of
their human users to perform laborious information-gathering tasks [31] and they are one
of the \hot" topics in Information Systems R&D at the moment. The last ten years have
seen a marked interest in agent-oriented technology, spanning applications as diverse as
information retrieval, user interface design and network management.

We have been developing the RETSINA multiagent infrastructure to aid users in de-
cision making and information management (information gathering, �ltering, integration)
tasks [31]. Users can delegate tasks to RETSINA agents who coordinate with each other
to ful�ll the delegated tasks. The RETSINA multiagent infrastructure provides a reusable
framework for structuring agents that operate in an open Information environment (e.g.
the Internet), where they form adaptive teams on demand in order to solve decision making
and information management tasks delegated by users. RETSINA agents provide capabil-
ities for in-context information gathering and �ltering at di�erent levels of automation and
sophistication.

The simplest model of task context for information retrieval is expressed by a set of
user-supplied keywords. In current practice, these keywords are supplied by the user to
search engines that return a set of documents that are indexed by the provided keywords.
Unfortunately, when this simple keyword-based context is used, current search engines
return far too many documents to be useful. Meta search engines (e.g. MetaCrawler) try
to improve the situation by taking the intersection of documents returned by each engine
using a given set of keywords. Document intersection increases search relevance somewhat
but does not solve the problem by any means. Besides these two very simple in-context
information retrieval strategies, RETSINA agents provide more sophisticated ways to de�ne
the task context for information retrieval. We brie
y mention these mechanisms in the rest
of this introduction and present them in more detail in the rest of this chapter.
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Instead of a user trying for each task to use ad hoc keywords for information retrieval,
a more robust sense of context can be established by automatically supplying re�nement
keywords that can constrain the search, thus hopefully increasing the relevance of the re-
turned information. RETSINA agents use two methods to automatically supply re�nement
keywords to establish such a context: using the trigger pair model and document similarity
assessment based on relevance feedback.

An even more reliable information context that RETSINA agents provide can be es-
tablished as an agent monitors user's actions and learns and tracks user interests as the
user executes manual information searches. Then the learned user pro�le can serve as the
information context. This type of context has the advantage that it has been learned from
repeated information search trials and by utilizing user feedback. It still su�ers from the
fact that the task for which the information gathering was being performed is still implicit
in the user's head.

RETSINA supports explicit task and goal representation and delegation to agents. A
user can specify goals to be solved for. Agents form teams on demand to cooperatively
form task-based plans to ful�ll the delegated goals. The planning takes place in an open
information environment where information sources, agents or communication links can
change, appear or disappear dynamically. Hence information access and monitoring is an
integral part of the planning process. Thus, the context of information gathering is the
current task that an agent is planning for on the user's behalf. We present the compu-
tational mechanisms that allow an agent or a set of agents to cooperatively plan to ful�ll
user-delegated goals and tasks. In addition, we provide tools that allow a user to specify
and delegate tasks to RETSINA agents. This is accomplished through two main tools, the
Task Editor and the Agent Editor. The Task Editor allows explicit representation of tasks
in hierarchical task networks. Task networks represent plan skeletons and are stored in an
Editor task library. Through interactions with the usser, task networks can be retrieved
and instantiated or combined with newly provided task fragments to represent new tasks.
Once the task networks for a new agent have been speci�ed, the Agent Editor instantiates
the new agent automatically.

Providing an explicit computational formalism to express task context is extremely
important since it (a) guides information searches so that only relevant task related infor-
mation is returned, and (b) saves the user great amounts of manual e�ort.

The paper is organized as follows. Section 2 presents an overview of the RETSINA
infrastructure. Section 2.1 presents the basic architecture of a RETSINA agent that,
as is discussed in subsequent sections, supports the explicit task context representation.
Section 3 presents the methods that an interface RETSINA agent uses for automatically
supplying keywords to re�ne user-supplied information management context. User interests
and information pro�le could be a more reliable context for information gathering and
�ltering. Implemented methods for learning and keeping track of multiple user interests
are presented in Section 4. Section 5 presents how RETSINA agents represent task context
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explicitly and how the context is utilized in collaborative information gathering tasks to
support user goals. Finally, 6 presents a summary of the chapter and future work.

2 Brief Overview of RETSINA

Our work on the computational framework of intelligent agents, has been motivated by a
number of considerations.

� Distributed information sources: Information sources available on-line are inherently
distributed.

� Sharability: Typically, user applications need to access several services or resources
in an asynchronous manner in support of a variety of tasks. It is desirable that the
architecture support sharability of agent capabilities and retrieved information.

� Complexity hiding: Often information retrieval in support of a task involves quite
complex coordination of many di�erent agents. To avoid overloading users with a
confusing array of di�erent agents and agent interfaces, it is necessary to develop
an architecture that hides the underlying distributed problem solving complexity.
Complexity hiding, while alleviating cognitive overload, should not come at the price
of making agents' expertise opaque. To alleviate the agent opacity problem, we have
committed to explicit knowledge representation of agent behaviors, and explanation
capabilities.

� Modularity and Reusability: One of the basic ideas behind our distributed agent-
based approach is that agents should be kept simple for ease of maintenance, initial-
ization and customization. Another facet of reusability is that it should be relatively
straightforward to incorporate access to pre-existing information services.

� Flexibility: Intelligent agents should be able to interact in new con�gurations \on-
demand", depending on the requirements of a particular decision making task. This
includes the capability to migrate to other platforms to take advantage of locally
accessible resources.

� Robustness: When information and control is distributed, the system should be able
to degrade gracefully even when some of the agents, the information sources or the
communication links are out of service temporarily.

Our framework explicitly admits the notion that agents are part of multi-agent systems.
This has the implication that agent coordination is not an afterthought but part of our
system and agent architectural commitments. Such multi-agent systems can compartmen-
talize specialized task knowledge, organize themselves to avoid processing bottlenecks, and
can be built expressly to deal with dynamic changes in the agent environment.
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Our distributed agent-based architecture has three types of agents (see Figure 1): in-
terface agents, task agents and information agents. This is a simpli�cation of the possible
types of agent categories both for purposes of exposition and purposes of determining in
a principled manner particular agent reusable behaviors that can serve as agent software
building blocks. These three broad agent categories share common architectural compo-
nents (section 2.1) but have di�erent sets of agent behaviors. The behaviors in each class
of agent are reusable.

Interface agents interact with the user receiving user speci�cations and delivering re-
sults. They acquire, model and utilize user preferences to guide system coordination in
support of the user's tasks. For example, an agent that �lters electronic mail according to
its user's preferences is an interface agent. The main functions of an interface agent include:
(1) collecting relevant information from the user to initiate a task, (2) presenting relevant in-
formation including results and explanations, (3) asking the user for additional information
during problem solving, and (4) asking for user con�rmation, when necessary. Interacting
only through a relevant interface agent for a task hides the underlying distributed informa-
tion gathering and problem solving complexity. For example, in our WARREN system[32]
for �nancial portfolio management, more than 10 agents are involved. However, the user
interacts directly only with the portfolio management interface agent.

USER 1 USER 2 USER h

query answer

Conflict
Resolution

Information Integration
Information
Request

Reply

Interface Agent 2 Interface Agent k

InfoAgent 1 InfoAgent n

Task Proposed Solution

Task

Interface Agent 1

Goals and Task
Specifications

Results

Info Source 1 Info Source kInfo Source 2

TaskAgent jTaskAgent 2TaskAgent 1

Advertisement
MiddleAgent 1

Service Request

Figure 1: Distributed System Architecture

Task agents support decision making by formulating problem solving plans and carrying
them out through querying and exchanging information with other software agents. Task
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agents have knowledge of the task domain, and which other task agents or information
agents are relevant to performing various parts of the task. In addition, task agents have
strategies for resolving con
icts and fusing information retrieved by information agents.
For example, an agent that makes stock buy or sell recommendations is a task agent.
A task agent (1) receives user delegated task speci�cations from an interface agent, (2)
interprets the speci�cations and extracts problem solving goals, (3) forms plans to satisfy
these goals, (4) identi�es information seeking subgoals that are present in its plans, (5)
decomposes the plans and coordinates with appropriate task agents or information agents
for plan execution, monitoring and results composition. This type of intelligent agent di�ers
from traditional AI systems since information-seeking and communication during problem
solving is an inherently built-in part of the system. This enables it to deal with open world
environments (new information from the environment is incorporated during the agent's
problem solving). Planning and execution are interleaved since retrieved information may
change the planner's view of the outside world or alter the planner's inner belief system.

The main function of an information agent is to process intelligently and e�ciently
information retrieval and information monitoring requests. These requests come externally
from other agents; the information used to ful�ll these requests comes from arbitrary ex-
ternal information sources. Typically, a single information agent will serve the information
needs of many humans or machine agents. An information agent is quite di�erent from a
typical WWW service that provides data to multiple users. Besides the obvious interface
di�erences, an information agent can reason about the way it will handle external requests
and the order in which it will carry them out.

In order to allow agents to �nd others in an open environment such as the Internet, we
have developed a set of agents, called middle agents. Middle agents receive advertisements
of agent capabilities and store these advertisements in an internal data base. When an agent
(a requester or consumer agent) would like to �nd a service provider agent that possesses
certain desired capabilities, it sends a request to a middle agent. The middle agent matches
the request to its data base of received advertisements to determine whether an agent whose
capabilities math the request is known. We have identi�ed di�erent types of middle agents
(e.g. matchmakers, brokers) and have reported experimental results that show di�erent
performance tradeo�s of these agents [22]. In addition, we have developed the language
LARKS (Language for Advertisement and Request for Knowledge Sharing)[30].

The presence of the middle agents in the RETSINA framework allows adaptive agent
organization. The high level goals and tasks imparted by the user form the context within
which agents can adaptively (with the help of middle agents) form teams/coalitions so
that this collaboration will ful�ll the goals and tasks. This adaptive collaboration is also
supported by the internal architecture of RETSINA agents (see section ~refsec:agent-arch).
Overall system robustness is also facilitated through the use of middle agents. Agents can
have replicated capabilities. For example in the Warren �nancial portfolio management
application[32], there are di�erent information agents that can �nd stock quotes from the
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Web (e.g. Security APL, Gault). If a particular service provider disappears, a requester
agent can �nd another one with same/similar capabilities by interrogating appropriate
middle agents.

When an agent is created, it advertises itself to some entity such as a matchmaker or
broker [26, 25, 28, 23]. This advertisement, expressed in terms of an agent's information
base schema (section 5.4), speci�es the information services that the agent is making avail-
able, the associated ontology(ies) and any associated query limitations. This advertisement
acts as a commitment by the agent to respond to appropriate requests in the future. In
general, the process of matchmaking allows one agent with some objective to learn the
name of another agent that could take on that objective. In addition, an agent has a
shutdown and an initialization process. At startup, the agent executes the initialization
process which bootstraps the agent by giving it initial goals, i.e. to poll for messages from
other agents and to advertise itself with a matchmaker or broker. The shutdown process
is executed when the agent either chooses to terminate or receives an error signal. The
shutdown process sends messages from the terminating agent to any current customers and
the matchmaker or broker informing them of service interruption.

The agents in our system communicate using KQML [25]. Our focus on long-term be-
haviors, such as periodic queries and database monitoring, has required us to extend the
language with performative parameters to allow the speci�cation of deadlines, task fre-
quencies, and other temporal behavioral constraints. Coordination of information agents
is accomplished by placing them in an organizational context that provides implicit com-
mitments: each agent takes on an organizational role that speci�es certain long-term com-
mitments to certain classes of actions. Thus, these simpler agents can work e�ectively with
one another as well as with more complex agents, such as task agents, that reason about
commitments explicitly to produce coordinated behavior [24].

2.1 Overview of Single Agent Architecture

Currently the RETSINA framework provides an abstract basic agent architecture consisting
of and integrating reusable modules, as depicted in Figure 2.1, and a concrete implemen-
tation of each module. Each agent consists of multithreaded Java code, and each module
of an agent operates asynchronously. This enables the agent to be responsive to changing
requirements and events. Each RETSINA agent consists of the following reusable modules:

� communication and coordination module that accepts and interprets messages from
other agents, and sends replies.

� planner module that produces a plan that satis�es the agent's goals and tasks.

� scheduler module that schedules plan actions.

� execution monitoring module that initiates and monitors action execution.
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The modules use well de�ned interfaces to interact with data structures that are used
for keeping process information and for control purposes. In addition, each agent has the
following knowledge components:

� a set of domain independent and domain dependent plan fragments (Task Schemas)
indexed by goals. These plan fragments are retrieved and incrementally instantiated
according to the current input parameters.

� Belief Database that contains facts, constraints and other knowledge re
ecting the
agent's current model of the environment and the state of execution.

� Schedule that depicts the sequence of actions that have been scheduled for execution.

We have provided an implementation of each of these modules and the associated data
structures. Since we characterize agents from the structural point of view we are not
committed to particular implementations of the planner, scheduler or any other module.
The interfaces between the modules and the control 
ow paths are well de�ned. Di�erent
modules for planning or scheduling, for example can be \plugged-in" as long as they provide
speci�c interface functionality. For a more extensive description of the agent architecture,
see [31]. Depending on the agent type, there could be additional modules present. For
example, information agents contain in addition, a local information database.

3 Automated Information Context Re�nement by an

Interface Agent

Single keywords are usually ambiguous, or too general. Moreover, they can occur in vast
quantities of documents, thus making the search return hundreds of hits, most of which are
irrelevant to the intended user query. The single keywords are not a very useful context
for information retrieval. Giving additional keywords can re�ne the context and constrain
the search providing considerable improvement in the retrieval results. Good re�nement
words must have meanings that help disambiguate or make more speci�c the original search
word. For example, the word \stock" has more than 10 de�nition in the WordNet1 including
\the capital raised by a corporation through the issue of shares entitling holders to partial
ownership", \gun-stock", \inventory", \stock certi�cate", etc. Providing the re�nement
words that correspond to each one of those meanings, would help a search engine, for
example, to prune out documents where the word is used with any of its other meanings.
There are three ways to expand the query: manual query expansion, semi-manual query
expansion, and automatic query expansion [12]. No matter which method is used, the key
point is to get the best re�nement words. In manual query expansion, although the user

1http://www.cogsci.princeton.edu/~wn/
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knows the intended meaning of the keyword she is using, she may not be able to provide the
best re�nement words. \Best" here means re�nement words that most frequently co-occur
with the word in its intended meaning in large number of documents. In other words, one of
the characteristics of good re�nement words is that they be domain speci�c. In this section
we present methods for automatically �nding appropriate keywords to constrain and re�ne
search for relevant documents. These methods are: (a) using trigger pairs for automated
keyword expansion, and (b) relevance feedback. The methods have been implemented in
WebMate2, an interface agent in the RETSINA system.

WebMate is composed of a stand-alone proxy that can monitor a user's actions to pro-
vide information for learning and search re�nement, and an applet controller that interacts
with a user. The stand-alone proxy is an HTTP proxy that sits between a user's web
browser and the World-Wide Web. All HTTP transactions pass through WebMate which
can monitor a user's browsing and searching activities and learn from them. The applet
controller is the interface between the user and the stand-alone proxy. Through it, the user
can express his interests when he browses and provide relevance feedback when he searches.
In addition, through the applet controller, the user receives intelligent help from WebMate.

3.1 Automatic Keyword Re�nement

WebMate uses the Trigger Pairs model to automatically generate re�nement words. The
Trigger Pairs Model [13, 14] is as follows:. If a word S is signi�cantly correlated with
another word T, then (S, T) is considered a \trigger pair", with S being the trigger and T
the triggered word. When S occurs in the document, it triggers T, causing its probability
estimate to change. That is, when we see the word S appearing at some point in a text,
we expect the word T to appear somewhere after S with some con�dence3. The mutual
information (MI) that considers the word order is a measure of the correlation and used to
extract trigger pairs from large corpus. The mutual information is given by the following
formula:

MI(s; t) = P(s; t) log
P(s; t)

P(s)P(t)

By experimenting with language corpora of varying domain speci�city, we found that
trigger pairs are domain speci�c. For example, the triggers to \Stock" in news and media
domain (Broadcast News Corpus, 140M words) are fcompany, bond, buy, business, bank,
dow, earning, composite, cent, analyst, big, chrysler, investor, cash, average, economy,
close, capital, chip, ...g. However, in business and Economic (Wall Street Journal Corpus,

2Work on WebMate is joint with Liren Chen.
3In the Trigger Pairs Model, (S; T ) is di�erent from (T; S), so the Trigger Pairs Model is di�erent

from the method of using co-occurrence of two words that is generally used in other keywords expansion
experiments[12]
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1M words) the triggers are fshare, investor, index, exchange, price, dow, market, buy,
point, jone, trade, trader, average, cent, industrial, gain, shareholder, company, board, ...g

The trigger pair method can provide several candidate re�nement keywords. An addi-
tional question is, how many and which ones to use under any given circumstances. For a
search with only one keyword, the top several triggers to the keyword are used to expand
the search. But for a search with more than 2 keywords, the choice becomes more com-
plicated. Let us assume that the keywords are K1;K2; : : : ;Km, and the expected number
of re�nement words is N. We use an algorithm that involves �nding the trigger pairs of all
keywords with the highest mutual information and take subsets of their intersections. The
detailed algorithm is reported in [21].

Besides allowing automated selection of re�nement keywords to constrain search, this
method also provides disambiguation information for ambiguous query words. We present
in some deail a typical example of how our re�nementmethod indeed helps improve retrieval
results. Suppose the user is interested in documents where the word \stock" appears in its
�nancial meaning. Inputting simply the keyword \stock" to Lycos and Altavista returns
the following results.

From Lycos:

1) YOSEMITE STOCK PHOTOS, ROCK CLIMBING, Daniela Masetti PHOTOS

2) YOSEMITE STOCK PHOTOS, ROCK CLIMBING PHOTOS

3) YOSEMITE STOCK PHOTOS, FISHING PHOTO

*4) Stock information Java Applet

5) STOCK GRAPHICS & PHOTOS

*6) American Stock Transfer & Trust Home Page

*7) STOCK CHARTS

*8) GROWTH STOCK ADVISOR FULL DISCLAIMER

*9) Stock information Java Applet

10) Ocean Stock

Only 5 hits are relevant to the �nancial meaning of \stock" in the top 10.
From Altavista:

1. E. coli Genetic Stock Center

2. Michael Paras Photography: Photographs, Photography, stock photos,stock photo

*3. iGOLF Features - Stocks & Industry - Stock Report: Tuesday,September 5, 1995

4. Cedar Stock Resort Trinity Center Marina

*5. Stock 4 Art: HOME PAGE!

6. NET INFO - Luc Sala - Myster - stock footage
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*7. The O�cial Vancouver Stock Exchange

*8. Stock Club

*9. NIAGARA MOHAWK DECLARES PREFERRED STOCK DIVIDEND

*10. The Italian Stock Exchange

There are 6 hits that are relevant to the �nancial meaning of the \stock" in the top 10.
At this point, although the user may not be satis�ed with the returned search results, it is
di�cult for him/her to �gure out what words should be used to re�ne the search. So the
trigger pairs can be used to expand the current search. The triggers to \stock" are fshare,
investor, index, exchange, price, dow, market, buy, point, jone, trade, trader, average, cent,
industrial, gain, shareholder, company, board, . . . g. If we use the �rst word \share" in the
ranked triggers list to expand the keyword \stock" and send fstock shareg to the above
two search engines, all the top 10 hits returned are relevant to the �nancial meaning of
\stock". We can see that these results are better than before. We can also re�ne the search
\stock share" if the results are still not satisfactory. The intersection of the triggers sets of
\stock" and \share" can be used for such search re�nement.

3.2 Relevance Feedback

One of the most important ways in which current information retrieval technology supports
re�ning searches is relevance feedback. Relevance feedback is a process where users identify
relevant documents in an initial list of retrieved documents, and the system then creates a
new query based on those sample relevant documents [14]. The idea is that since the newly
formed query is based on documents that are similar to the desired relevant documents,
the returned documents will indeed be similar. The central problems in relevance feedback
are selecting \features" (words, phrases) from relevant documents and calculating weights
for these features in the context of a new query [8].

Given a relevant page, WebMate �rst looks for the keywords (assume Ki is one of
the keywords) and context of the keywords. The context is composed of the words that
come before or after the given keyword. For example, the 5-context of the keyword Ki

is : : :W
�5W�4W�3W�2W�1KiW1W2W3W4W5 : : :. For each keyword K(i), the system then

extracts the chunks of 5 words W
�5W�4W�3W�2W�1 before Ki and the chunks of 5 words

W1W2W3W4W5 after Ki until all the keywords in the query are processed. Then, a bag of
chunks are collected and passed to the processes of deleting the stop words and calculating
the frequency. After that, the top several frequent words are used to expand the current
search keywords.

For example, the following text is part of the overview of our Intelligent Agents project
at CMU4. Suppose a user gives this text as a relevance feedback to the search keywords
\intelligent agent".

4The URL of our project is: http//www.cs.cmu.edu/~softagents.
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Intelligent Software Agents

The voluminous and readily available information on the Internet has given rise to
exploration of Intelligent Agent technology for accessing, �ltering, evaluating and
integrating information.

In contrast to most current research that has investigated single-agent approaches, we
are developing a collection of multiple agents that team up on demand|depending
on the user, task, and situation|to access, �lter and integrate information in support
of user tasks. We are investigating techniques for developing distributed adaptive col-
lections of information agents that coordinate to retrieve, �lter and fuse information
relevant to the user, task and situation, as well as anticipate user's information needs.

Approach is based on:

adaptable user and task models


exible organizational structuring

a reusable agent architecture

Underlying Technology

Our intra-agent architecture and inter-agent organization is based on the RETSINA
multiagent reusable infrastructure that we are developing.

Using our method, the re�nement words extracted from the text are fsoftware, struc-
ture, reusable, architecture, technology, organizational, network, schedule, research, riseg.
Most of the re�nement words re
ect the characteristic of the project well. But, if instead
of using the context method, we considered the whole content of the page when calculat-
ing the frequency, then the expanding words would be fsoftware, information, task, area,
application, technology, user, current, develop, underlyingg. Obviously, the context of the
search keywords can re
ect the relevance better than the whole content of the web page.
Subsequently, we used the top 5 words fsoftware structure reusable architecture technol-
ogyg to expand the search \intelligent agent". Of the top 10 results returned by Lycos, 7
were relevant to the query.

4 Learning of Information Retrieval Context

The automatically learned and continuously updated user pro�le can possibly serve as a
more reliable indicator of information retrieval context than user-supplied keywords. There
are several machine learning approaches that can be used to learn a user pro�le, such as
Bayesian classi�er, Nearest Neighbor, PEBLS, Decision Trees, TF-IDF, Neural Nets [4, 5].
In order for a particular technique to be e�ective, it should match the characteristics of the
task and the user.

The �ltering task for our agent involves judging whether an article is relevant or irrele-
vant to the user based on the user pro�le, in an environment where the prior probability of
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encountering a relevant document is very low compared to the probability of encountering
an irrelevant document. In such an environment, it would be very frustrating and time con-
suming for a user to interact with an agent that starts with no knowledge but must obtain
a set of positive and negative examples from user feedback. When a user browses, he does
not want to evaluate all web pages that might contain potentially interesting information.
To reduce user evaluation burden, WebMate collects only examples that are interesting
to the user (only positive training examples). This kind of interaction presents potential
problems since the documents that a user might label as \I like It" might fall into many
distinct domains (e.g �shing, computer science, soccer). Those subclasses correspond to
the di�erent interests a user has. There have been two methods to address the problem of
multiple user interests. The �rst is to keep a single user pro�le where the keywords might
come from di�erent domains but are \averaged'. This method has the disadvantage that
averaging the vectors from the di�erent documents might decrease too much the weights
of words that are important for only a few of the interest categories. The second method
is to ask the user to explicitly provide labels for the sub-categories of interest. Instead,
WebMate learns the categories automatically.

WebMate utilizes the TF-IDF method [7] with multiple vectors representation. We
have developed an algorithm for multi TF-IDF vector learning that we summarize here.
For more details, see [21]. Let N be the assumed number of user interests. For each of
the �rst N documents that the user marks \I like it", extract the TF-IDF vector and
place it in a di�erent \interest pro�le bucket". For each subsequent document, calculate
the cosine similarity between every two TF-IDF vectors (including the vectors already
in the pro�le and the new vector) so that the old vectors and the new vector can be
placed in the appropriate \interests pro�le bucket". This algorithm is run whenever a user
marks a document as \I like it". Thus, the user pro�le is incrementally, unobtrusively and
continuously updated.

After a pro�le has been learned, it can be used for document �ltering and anticipating
user information requests. In particular, we have used the continuously updated user
pro�le to compile a personal newspaper [9, 10, 11] and conducted informal experiments
to determine the e�ectiveness of the method. In our experiments, the system monitors 14
news sites that contain articles about high technology including LAN time news5, Media
Central 6, PC magazine online 7, etc. Experimental results show that the average accuracy
(relevance rate) that the recommended news is relevant to our interests is between 50%
and 60% in the top 10 news articles . Generally the system will spide more than 500 pieces
of news each day. In the whole recommended news, the average accuracy is about 30%.
But if the news are randomly chosen from 500 pieces of news in which we assume there
are 100 interesting news to us (this is based on our observation that for a typical news site

5http://www.lantimes.com/
6http://www.mediacentral.com/Magazines/MediaDaily/Archive
7http://www8.zdnet.com/pcmag/
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such as LinkExchange, there are about 10 out of 50 pieces of news that are interesting to
us in any given day), the default accuracy in the whole news is about 20%. So a 50% to
60% accuracy, achieved by WebMate, represents a two to three-fold accuracy increase.

5 Explicit Context Representation in Task Schemas

If agents have an explicit representation of the user's task that they can computationally
reason about, then they could use this task representation as the information gathering
and �ltering context. Making use of this context would support the user's decision making
more e�ectively. One wasy to explicitly specify the task context is to simply give an agent
a set of goals it should ful�ll. This assumes that the agent has the capability of producing
plans to satisfy the goals. In addition, simply specifying high level goals might result in
ambiguity and misunderstandings.

A more detailed speci�cation includes, in addition to goals, a set of skeletal plan frag-
ments that can be composed and instantiated to ful�ll the given goals. In RETSINA, a task
and its subtasks along with other useful computational parameters are represented using
the formalism of Hierarchical Task Networks (HTNs)[33]. An HTN has nodes that denote
abstract tasks, links between parent and children nodes that denote subtask relationships,
and links between sibling nodes that denote precedence orderings. Leaf nodes represent
actions that can be scheduled and executed. A task is reduced by instantiating a set of
subtasks. Planning using a HTN formalism takes as input the agent's current set of goals,
the current set of task structures, and a library of task reduction schemas. A task reduction
schema presents a way of carrying out a task by specifying a set of sub-tasks/actions. In
addition, Task Reduction schemas specify preconditions and postconditions for task reduc-
tions, and di�erent types of constraints (state, temporal and resource constraints). These
prescribe task interdependencies and dictate static control 
ow. In addition to these static
relations, there are also runtime relations describing the information 
ow between subtasks.
That is, the reduction may specify that the result of one sub-task (e.g. deciding the name
of an agent) be provided as an input to another sub-task (e.g. sending a message). Run-
time information 
ow is expressed by provisions whose variables are bound during runtime
re
ecting information coming in from the environment (e.g. sensors) or supplied by other
agents.

Actions may require that certain information be provided before they can be executed,
and may also produce information upon execution. Action execution produces an outcome
to indicate di�erent results of action execution (e.g. completion, di�erent types of failures)
and a result that expresses particular information about a returned outcome. The outcome
is one of a �nite set of prede�ned symbols. The results can be any arbitrary piece of
information returned by the code object that implements the action. An example will
make clear the intended di�erence between outcomes and results. Consider the action of
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retrieving a web page. The outcomes of such an action might be OK or ERROR, depending
on whether the action succeeds on fetching the page or not. If the outcome is OK, the result
of the action would be the web page itself. If the outcome is an ERROR, the result might be
some description of the error. Such outcomes of one subtask reduction can be propagated
at runtime to match provisions of another subtask. For example, the act of sending a
KQML messages requires the name of the recipient and the content of the message, while
the act of deciding to whom to send some message would produce the name of an agent. If
the value(s) of the outcome(s) matches the value(s) of the provision, and if all the required
inputs have been supplied, then the action is enabled and can be scheduled for execution.
Final action selection, sequencing, and timing are left up to the agent's local scheduler.

These mechanisms support the representation and e�cient execution of plans with peri-
odic actions, externally triggered actions and loops [33]. Task schemas and alternative task
reductions are blueprints for representing agent requirements, speci�cation information and
processing structure. This representation enables an agent to understand its requirements
and reason about how its behavior can satisfy the requirements.

A task typically has alternative task reductions, that is alternative execution paths that
can satisfy it depending on the parameters of the current situation. Thus, even simple tasks
such as answering a query may result in very di�erent sequences of actions (asking a middle
agent, using an already known agent, using a cached previous answer).

5.1 Agent Advertisement Behavior

An agent behavior is a particular approach to accomplishing a goal. Behavior instances
are represented by a task instance, a set of sub-tasks or primitive action instances, and
the information-
ow relationships between them. An agent's task reduction schemas are
retrieved and incrementally instantiated by its planner module to provide task structures
that are subsequently scheduled and executed. The execution of the resulting task struc-
tures composes the agent's behaviors. Thus, the speci�cation of a particular set of task
reduction schemas de�nes a class of behaviors which will be shared by all agents which
have those schemas in their libraries. For example, since the behavior of advertising its
capabilities is shared by all RETSINA agents, each agent contains the same task structures
and standard reductions for this behavior, shown in Figure 3.

The three actions \Make Advertisement", \Get Matchmaker Name", and the topmost
instance of \SendKQML" are involved in sending the advertising message. Both \Get
Matchmaker Name" and this instance of \SendKQML" are periodic. All three tasks have
an initial deadline of \as soon as possible". \Make Advertisement" constructs the KQML
advertisement message content (using the agent's local infobase schema plus execution in-
formation gathered and persistently stored from previous invocations) and provides it to
SendKQML. In our current implementation, the typical �rst reduction for \Get Match-
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Figure 3: The standard task reduction for the \advertise" task.

maker Name" is to use a prede�ned name. 8 The matchmaker name is supplied as the
RECEIVER of the KQML message, and the REPLY-WITH �eld is supplied by the plan-
ner at task-reduction time. If no matchmaker currently exists or some other network error
occurs, the SendKQML signals a \DOWN" outcome, which provides a new signal to Get
Matchmaker name, and the two tasks are rescheduled (they are periodic) and rerun.

The two action instances \Make Un-Advertisement" and the second, lower right Send-
KQML instance comprise the shutdown actions for this task. A task is shutdown whenever:

1. The planner removes the current reduction (because, for instance, it has failed). This
would not typically happen for advertisement, but does for other tasks.

2. The agent itself intentionally (via a \Termination" action) or unintentionally (unre-
coverable error/signal) goes o�-line.

Shutdown actions are placed on both the regular and a special shutdown scheduling queue.
Both actions are non-periodic and have a deadline of \only execute if there's nothing better
to do". Actions on the shutdown queue are architecturally guaranteed to execute at least
once, so in particular, the \Make Un-Advertisement" action will either execute during

8In our system, the matchmaker is the only agent with a known name. The default matchmaker name
can be changed by a Unix environment variable, thus our group can have agents working in multiple logical
agent namespaces even though they share a small set of physical processors.
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normal processing when the agent would otherwise be idle, or during shutdown if the
agent never had any spare time. The SendKQML that actually passes the advertisement
retraction on to the matchmaker has two extra enablement conditions: �rst, that the
initial advertisement actually completed without error, and second that the task is being
shutdown. This basic advertising behavior is shared (reused) for all information agents
(simple and multi-source).

5.2 Forms of Task Delegation

To facilitate the interactive speci�cation of task structures and task reductions by human
agent designers, we have implemented the Task Editor and the Agent Editor. The Task
Editor provides a library of task schemas and task reduction schemas that are indexed
by the goals they accomplish and can be automatically retrieved. A user may specify
new schemas, and/or new reductions needed to de�ne the behaviors of a new agent. The
Task Editor possesses a Graphical User Interface that shows graphically the tasks and
task reductions. In addition, it has facilities for checking the consistency of speci�cations.
When a user is �nished with specifying the tasks and reductions for a new agent, the
Agent Editor is invoked. The Agent Editor automatically composes the speci�ed task and
reductions and instantiates the new agent. We are currently designing tools to increase the
user-friendliness of the Task Editor so that it can be used as a task delegation mechanism
by end users.

A task/sub-task schema includes notation as to whether the agent itself is capable
of reducing the task schema and executing the leaf actions, or the agent must delegate
this to another agent9 that has the requisite capabilities. If, during planning, an agent
�nds out that it should delegate particular task reductions or actions to other agents,
it automatically generates a message to be routed to the appropriate middle agent 10

requesting agents that have the capability required by the current (sub)-task reduction. In
this way, task delegation among agents is dynamic, and takes into account the openness
of the environment. Alternatively, for reasons of e�ciency, an agent may have cached the
names and locations of agents with whom it has collaborated in the past. In this case, the
agent does not need to send requests to middle agents.

Since arrival of goals, planning and execution are on-going and interleaved, the planning
process modi�es the current set of task structures|by removing tasks, further reducing
existing tasks, or instantiating new tasks|to account for any changes to the agent's goals.
The 
exible representation and incremental instantiation of task schemas and task re-
duction schemas and the presence of middle agents act synergistically to allow adaptive
interleaving of information management (e.g. information gathering, �ltering and integra-
tion) and execution in the context of the tasks that are being planned for. For example, at

9This operationalizes the intent-to and intent-that predicates of [27].
10In the current implementation of RETSINA, such middle agents are matchmakers.
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any time, any agent in the system might be unavailable or might go o�-line. The agent's
task reductions and execution monitoring ability handle these situations so that such fail-
ures are dealt with smoothly. If alternate agents are available, they will be contacted and
the subproblem restarted. If no alternate agent is available, the agent will replan. Such
replanning may result in choosing alternative task reductions that mey require a di�erent
set of service provider agents.

In the next section, we take a more detailed look at how information agents are speci�ed
and how they operate.

5.3 Functional Overview of Information Agents

Typically, a single information agent will serve the information needs of many other agents
(humans or intelligent software agents). An information agent can reason about the way
it will handle external requests and adapt to di�erent environmental events. Moreover,
information agents not only perform information gathering in response to queries but also
can carry out long-term interactions that involve monitoring the Infosphere for particular
conditions, as well as information updating. The RETSINA agents communicate through
message passing using the KQML [25] communication language.

In particular, we will focus on the behaviors of basic information agents that encapsulate
a single (or very closely coupled) information source; we will also brie
y discuss how these
can be extended into a class of multi-source information agents. Each class of information
agents has a �xed set of behaviors. When a new information agent is created/instantiated
the programmer does not choose or program behaviors, instead he/she speci�es a domain-
level data model and a domain-speci�c access method. This greatly simpli�es the process
of creating new information agents and facilitates agent interactions.

The dominant domain level behaviors of an information agent are: retrieving informa-
tion from external information sources in response to one shot queries (e.g. \retrieve the
current price of IBM stock"); requests for periodic information (e.g. \give me the price
of IBM every 30 minutes"); monitoring external information sources for the occurrence
of given information patterns, called change-monitoring requests, (e.g. \notify me when
IBM's price increases by 10% over $80"). Information originates from external sources. Be-
cause an information agent does not have control over these external information sources,
it must extract, possibly integrate, and store relevant pieces of information in a database
local to the agent. The agent's information processing mechanisms then process the in-
formation in the local database to service information requests received from other agents
or human users. Other simple behaviors that are used by all information agents include
advertising their capabilities, managing and rebuilding the local database when necessary,
and checking for KQML messages from other agents.

An information agent has three conceptual functional parts: the agent's current activ-
ity information, the agent's local infobase, and the problem-solving library that includes
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site-speci�c external interface code. The current activity information supports agent com-
munication and planning. It keeps track of which customer has registered for which kind
of information service, and with what reply deadline. It supports scheduling of the tasks
necessary to ful�ll an information request and monitoring of the execution of a current
action. The information agent's knowledge about its current activities and responsibilities
is also important because it is crucial to the agent's ability to re
ect, introspect and adapt
its behavior (e.g., by self-cloning or politely refusing requests [29].

Since information agents share the basic agent architecture of a RETSINA agent, they
too have a library of task schemas and task reduction schemas. These task structures
allow information agents to plan about how to execute information requests. The agent's
problem-solving part contains the planner's task reduction library and some site-speci�c
interface code. Task reductions, indexed by the goals they achieve, are retrieved from the
library and instantiated. The primitive actions in the instantiated reductions are then
scheduled and executed. The way that an information agent accesses external information
sources and creates local infobase records from them in response to a requesting agent(s)
query(ies) is called the external interface and is the only non-reusable portion of an informa-
tion agent's knowledge structures. However, the bulk of an information agent's knowledge
about possible problem-solving activities|behaviors|is reusable, i.e. domain indepen-
dent and �xed for the particular class of information agent. This includes the behaviors of
advertising, listening for messages, and accepting, recording, running, and responding to
queries.

5.4 Local Information Agent Infobase

In an information agent, retrieval of external data is separate from query processing. This
allows for a domain-independent speci�cation of an information agent in terms of the
abstract schema of its local infobase, The information agent's local infobase contains records
that have been retrieved from external information sources in relation to one or more
queries. This local infobase is important because it allows the information agent to become
more than just a fancy wrapper. The agent's local infobase is de�ned in terms of an
ontology, a set of attributes, a language, and a schema. The infobase ontology links concept-
names to their data types and domain-speci�c meaning (and must match on any incoming
KQML message). Infobase attributes are meta-information stored about a �eld in a record.
By default, information agents will keep track of two attributes: timestamp and previous
value. The timestamp indicates when the �eld value in the record was last updated.
Note that when a local agent infobase is formed from information gathered from multiple
external information sources, the timestamps on every �eld in a record may be di�erent.
The previous value is the value the �eld had before the last infobase update. The database
query language speci�es a pre-determined format for the KQML :content slot. The
\simple-query" query language is a set of predicate clauses on �eld values and attributes,
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joined with an implicit \AND".
The local infobase is constructed from a data de�nition language description. This de-

scription also serves as a way to describe the services a particular information agent o�ers to
other agents. Since agent advertisement is done through the local infobase schema, the in-
fobase allows all information agents to present an internally consistent, domain-independent
interface to other agents that speci�es the capabilities of the agent, or alternatively, the
services provided by the agent. In addition, the local infobase allows an information agent
to potentially tie together multiple external information sources, and also provides three
performance enhancements. First, multiple related queries can be grouped to limit access
to the external information source and free up processing bandwidth. Second, the local
infobase acts to bu�er the requesting agents from unexpected problems with the external
information sources. Third, the local infobase provides attribute enhancements, such as
storing historical data for each record �eld. This type of caching is not without tradeo�s;
it uses more memory, and one must be careful to not introduce inconsistencies between the
external source and the cache. A recent discussion of some of these tradeo�s in the context
of higher-level multi-source information agent caching can be found in [20].

5.5 Examples of Information Queries

An information agent's external goals, i.e. answering a one-shot query, setting up periodic
queries and monitoring information changes are communicated to it in KQML messages
originating from other agents. The query is expressed in the :content slot of the message.
The communication module receives and parses messages, extracts the information goals
and passes them to its planner module. Since an information agent does not have control
over an external information source, it executes the query on the cached information in its
local infobase. An example of a one-shot query, \give me the most recent GH record" is:

(query security-apl :CLAUSES (eq $symbol "GH") :OUTPUT :ALL)

An example of a monitoring query, \tell me whenever Oracle reaches a new 52-week
high price" is:

(query security-apl

:CLAUSES

(eq $symbol "ORCL")

(> $52-week-high (previous-value $52-week-high))

:OUTPUT :ALL)

For a di�erent information domain, such as news articles, a new ontology must be
speci�ed, but the local infobase speci�cation and the underlying infobase manipulation
functions are reusable. As an example of a new infobase speci�cation, we present the Dow
Jones news feed that provides unstructured text information.
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(DATABASE dow-jones-news

:ONTOLOGY news

:ATTRIBUTES nil

:QUERY-LANGUAGE simple-query

:SCHEMA

(newsgroups :SELECTABLE :RANGE "dow-jones.*")

(message-id :PKEY)

(subject)

(date :RANGE (> (- *today* 5days)))

(body))

Below, we give an example of a monitoring query KQML message (including sender and
receiver agents) for every article on IBM earnings from the dow jones news.

(monitor

:SENDER barney

:RECEIVER news-agent

:LANGUAGE simple-query

:ONTOLOGY news

:REPLY-WITH ibm-query-2

:NOTIFICATION-DEADLINE (30 minutes)

:CONTENT (query news

:CLAUSES

(=~ $newsgroups "dow-jones.indust.earnings-projections")

(=~ subject "IBM")

:OUTPUT :ALL))

Creating an instance of a totally new information agent for an information source in any
domain requires only that the agent be provided with a infobase schema de�nition as de-
scribed above, and a site-speci�c function for querying new external information source(s).
Everything else is shared and reused between information agent instances (and thus im-
provements and new functionality are shared as well).

6 Summary and Future Research

As the Web is used my increasing numbers of users for di�erent tasks, there is a need for
information query management (e.g. retrieval, �ltering, integration) to take into consider-
ation the user's current task. Such in-context information retrieval can increase relevance
of retrieved information. Currently, the task is in the user's head, therefore information
management is through user searching and browsing. Search engines have notoriously low
accuracy in �nding directly relevant task information. We have presented di�erent tech-
niques implemented in the RETSINA multiagent infrastructure for in-context information
retrieval. Task context can be implicitly de�ned through a list of keywords directly supplied
by the user, or augmented automatically through provision of re�nement keywords by an
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agent. A more robust form of information retrieval and �ltering context consists of the user
interests that can be automatically learned and tracked over time. Explicitly representing
task context in computational forms and allowing agents to reason about it, originate and
delegate information requests to others is the most advanced way of taking task context
into consideration. In RETSINA, the representational vehicle is task structures in Hierar-
chical Task Networks. We have presented how the task structures can be used to represent
task context and agent behaviors, and how information retrieval and �ltering requests are
accomplished though adaptive collaboration of agents. In future work we plan to rigorously
evaluate these di�erent techniques.
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