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Abstract. In a simple cooperative MAS model where a collection of “querying
agents” can send queries to a collection of “information agents”, we formalize
the problem of designing strategies so that the expected completion time of the
queries is minimized, when every querying agent uses the same strategy. We de-
vise a provably optimal strategy for the static case with no query arrivals, and
show via simulations that the same strategy performs well when queries arrive
with a certain probability. We also consider issues such as whether or not the ex-
pected completion time can be reduced by sending multiple copies of queries, or
by aborting copies of answered queries.

1 Introduction

As the internet grows relentlessly, and multi-agent systems (MAS) proliferate, it be-
comes increasingly important to design algorithms for agents to use limited resources
(such as time, memory, bandwidth, etc) efficiently. A badly designed scheme can eas-
ily lead to congestion and poor response times. A first step toward the design of good
strategies is to consider simple models of agent interactions. Even though these mod-
els may be abstract, they can help identify important issues that will arise in realistic
models. Morever, strategies devised under simple models can perform well in realistic
settings.

With this viewpoint, in this paper we introduce a simple MAS model where there is
a collection ofquerying agent$QA) and a collection ofnformation agentglA). The
guerying agents receive queriggm humans or other agents), which they must send
to IAs to obtain an answer. We want to design a strategy for a QA to send queries to IAs
so that the expected completion time of the queries is minimized. To see what kinds of
issues arise in designing such strategies, suppose the loads of the IAs were observable,
and that all IAs are capable of answering any query. Should the QA send its query to the
least-loaded information agent? If this were timdy QA in the system, this is obviously
a good strategy. However in an MAS there are a large number of QAs, possibly much
larger than the number of 1As. dveryQA uses the above strategy, then it is no longer
clear that this is the best one. For instance if the loads of the information agents are
roughly the same, this would be a bad strategy, since the least-loaded information agent
would tend to receive a dispportionately large number of queries, and all these queries
would take longer to complete, on the average. However if one IA has a much lower
load than every other IA, this could be a good strategy.

In this paper we examine the following type of question:

If every QA were to use theamequerying strategy, which strategy minimizes
the expected completion time of the queries?



Since every QA uses the same strategy, we refer to isggmanetricstrategy. A natural
symmetric strategy is the followingndomizecdne: every query agent sends its query
to an information agent chosen uniformly at random. This would be a good strategy if
the information agents are more or less equally loaded, but what if they aren’t? In this
paper we examine this problem and design an optimal randomized symmetric strategy
for this case of arbitrary loads, and assuming a static situation where each QA has one
qguery and no new queries arrive. Our strategy has the appealing feature that 1As with
higher load are less likely to receive queries. We also show by simulations that even in
a dynamic model with new query arrivals, ours is a good strategy to follow.

Another important issue we examine is:

If QAs send multiple copies of their queries to different I1As, does this reduce
the expected completion time? Is there an optimal number of copies to send?

There is a tradeoff here between two opposing effects on the query completion time.
The first is thdoad effect multiple copies increase the load on the IAs, and ey
vidualquery copy takes longer on average to be answered. The seconchigltiicity
effect:since each query has ttiple copies at different I1As, it has a greater chance of
being answered sooner. It seems intuitive that as more copies are sent, the benefit of
multiplicity will be outweighed by the load effect. In this paper we show simulations
that show the optimal number of query copies to send, for specific situations.

1.1 Related work

Problems related to ours have been studied extensively in the ssgabéstic schedul-

ing of parallel systems (for a good introduction, see [2, 5, 6] and the references therein).
In all such work, the goal has been to desigreatralizedscheduling algorithm so that

job completion times are reduced. By contrast in our MAS model, we emphatically
want to desigrdecentralizedlgorithms that different querying agents can use, with as
little communication as possible betweeaich other. Decentralized algorithms are easy
to implement, more robust in the face of failures, and scale up better than centralized
ones. Such algorithms are therefore likely to play an important role in a MAS con-
text. Despite this important difference, some of the techniques in stochastic scheduling
research are useful for our purposes. For instance, we have used the coneepts of
jorizationandSchur convexityl, 3, 9] to design our optimal randomized algorithm in
Section 4.

Several researchers in MAS have approached the problem of designing decentral-
ized strategies from aeconomic¥iewpoint. For instance, Huberman and Lukose [11]
have observed that since most people who access the internet are not chargedtin pr
tion to their use, this has lead to the well-knotxagedy of the commori8], which is
a special kind okocial dilemmaeach individual tends to greedily consume bandwith,
leading to a degradation of performance for everyone. This conflict between an indi-
vidual's myopic strategy and global performance is similar to the one discussed above
in the introduction: when every QA sends a query to the least-loaded IA, everyone’s
performance suffers. Researchers taking the economic viewpoint have proposed that
pricing internet access can lead to a resolution of this dilemma [12, 14, 17, 18]. Some



researchers [10, 15, 19, 20] are pursuing the design of decentralized strategies using
models based omarket equilibriun{7]. In this paper we are formulating the decen-
tralized strategy-design problem purely from a performance viewpoint: if each agent
uses a strategy that leads to degraded performance for every agent, then that strategy is
perhaps not an optimal one.

Querying strategies fandividual agent$ave been considered by, among others,
Chalasani et. al. [4] Etzioni et. al. [16], and Lukose and Huberman [13]. These authors
have not considered the effect of several agents using the same strategies.

1.2 Organization of the paper

In Section 2 we introduce the basic model assumed throughout the paper. In Section
3 we consider the case where the 1As initially have zero load. For this case we show
a lower bound on the expected completion timeuny strategy. We also design a ran-
domized algorithm that comes close to the lower bound. In Section 4 we consider the
case where |As have arbitrary initial loads and design an optimal symmetric random-
ized querying strategy. We also show via simulations (subsection 4.1) that this strategy
performs better than two other natural ones. Section 5 examines the effect of sending
multiple query-copies to different IAs. We show analytical results for some cases, and
simulations for others. Section 6 concludes with a discussion of future work.

2 The mode

We assume there are querying agents(QA) A, As, ..., A, andn information
agents(lA) 11, I, ..., I,. Initially, each 1A/; has aoad ¢;, that is, it had; queries
pending, and, without loss of generality,

<< ... < by

Time is measured inycles and the initial cycle represents time 0. In general, the QAs
receive queries that they need to send to |As for an answer. Every IA is capable of
answering every query. In ttetatic version of the model, each QA has just one query
at time 0. In thelynamic version, queries arrive at each QA in each cycle with a certain
arrival probability «. Each QA can send up tocopies(or instances) of the query to
different IAs. The query is said to bmpletedas soon as any copy of the query is
answered by an IA. Queries never fall, i.e., when an IA chooses to answer a certain
query, it successfully does so. Each query takes exactly one cycle to answer. Each IA
uses the followingandomized schedulingpolicy: Among the queries that are pending,
it picks one uniformly at random and answers it, and deletes it from its pending list.
Note that under this policy, if the number of pending queries at an IA is large, then
everyquery at this IA experiences a longexpecteccompletion time. When a QAs
qguery has been answered, the QA may choostot all (unanswered) copies of its
guery. We ignore all communication costs and assume that queries and answers are sent
instantaneously.

Our goal is to design a go@ymmetric strategy for the QAs to send queries (with
possibly multiple copies) to the IAs. By a symmetric strategy we mean that every QA



uses exactly the same strategy. In addition to being easy to analyze, such strategies are
also easy to implement in a cooperative multi-agent system (MAS) setting. In this paper
we will only consider the design of strategies for the static model, and experimentally
study the behavior of the dynamic model wheath QA uses this static strategy in each
cycle.

Consider then the static model, where each QA has just one query at time 0, that it
wants to obtain an answer for. For brevity we refer to @fs query simply as “query
i". For any (possibly randomized) symmetric strategy, we define the following random
variables. We lef{;; be the random variable defined as

X 1 if a copy of query: is sent to 1A/},
Y 0  otherwise.

If A; sends a total of copies of its query, then clearly

ZH:XZ']' = k.
j=1

Y;; is the time at which a copy of quetyis answered by IA/;, if it received such a
copy, and isxo otherwise. Theeompletion time of query: is the random variablé&;
defined as

Zi = min{ X;1Yi1, Xi2Yie, ., XinYin )

In case onlyk = 1 copy of query ig is sent, ta/;, then of courseZ; = Y;;.

3 Single query-copy, unloaded case

We consider first the simplest case of the static model where the initial lpadshe

IAs are all 0, and each QA sends exaabhye copy of its query to some information
agent (sd: = 1). What symmetric strategy should the QAs use in order to minimize the
expected completion time of their query? We first show a lower bound on the expected
completion time, foanystrategy (symmetric or not).

Lemma l. For the static model where each QA sends exactly one copy of its query to
an |IA, regardless of the strategy used, there is some query whose expected completion

time is at least m n m
(15 1+1) (1= 551570)
If m is a multiple ofn, this simplifies to

1 m

“ (1 —) .

2 ( + n
Proof: Following the notation introduced above, we wrifefor the completion time
of the query sent byt;. Consider thasumof the completion times of the: queries” =
Zy+ 7o+ ...+ Zy . This sum depends on the actual allocation ofithgueries among

the n 1As. What is the smallest possible value of this sum? Cle&rlg minimized
if, for as many cycles as possibkverylA is busy answering some query.i#f is an



integer multiple ofr, this is easily achieved by allocating exactly n of the queries to
each IA. In general, the minimutf is achieved by allocatingyn/n| queries to each
IA, and allocating each of the remaining— n|m/n | queries to distinct I1As. With this
allocation, in cycled to |m/n ], n different queries are answered in each cycle, and in
last cycle numbefm/n| + 1, the remainingn — n|m/n| queries are answered. Thus
for any querying strategy
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By linearity of expectationsy ., EZ; is also lower bounded by the last expression
above. By the pigeonhole principle, this implies there is somech thaE Z; is at least
1/m times that expression, which is the desired lower bound. [ |

A simple and natural strategy that comes to mind is the following randomized one:
Each QA sends its query to an IA chosaniformly at randomlt is clear that every
guery has the same expected completion time, and we show that this comes very close
to the above lower bound.

Lemma2. If each QA sends its query to a uniformly randomly chosen IA, the expected
completion time for each query is

1+ (m—1)/(2n).

Proof: Since every query has the same expected completion time, without loss of gen-
erality we can focus orl;’s query. We let” be the random variable denoting the index

of the information agent to whicH, sends its query. The completion tig of A;’s

query atly depends on the number oftherqueries/y receives, which we denote by
Ny . In particular, the query could be answered at tirhgs ... , Ny + 1, each being
equally likely. Therefore the conditional expectationffgivenV is

N 1
1 v+

E(Z{|V) = 1= (Ny +2)/2=14 Ny /2,
(Z1]V) Nv-l-l; (Nv +2)/ v/

Note that, regardless of the value of the indéxENy = (m — 1)/n since each of
them — 1 other QAs independently sends a queryitowith probability1/». So the
expectation o/, is

E(Z1) = E[E(4|V) ]
=1+ %E(Nv)
=14 (m—1)/(2n).



Example.Suppose there are = 17 QAs andn = 4 IAs. With the above uniform-
random strategy, the expected completion time of any query is, from Lemma 2,

1+ (m—1)/2n=1+16/8 = 3.
The lower bound on the expected completion time is, from Lemma 1,
(14+4)(1 —4 x 4/34) = 2.64,

SO our strategy comes close to the theoretical lower bound. In fact we conjecture that
there is nassymmetricstrategy that can do better than the above uniform-random strat-

egy.

4 Single query-copy, pre-loaded case

We continue to assume each QA sends a single copy of its query to some IA, but drop
the assumption that the current loaiof the IAs are 0. For this case we design an
optimal randomized symmetric querying strategy that has an intuitive feature: 1As with
a larger load are less likely to receive a query. Specifically, we want to design the fol-
lowing type of strategy for the QAs: The QA sends its query td;awith probability

p;. Our goal is to specify thg; values in such a way that the expected completion time
of any query is minimized.

We first derive an expression for the expected completion time of a query, in terms
of the probabilitiew;. Since every query will have the same expected completion time,
it suffices to consider the completion time of QA’s query. However, unlike the un-
loaded situation, the expected completion of this qukrgsdepend on which IA it is
sent to. As before we let the random variabildenote the IA index to whicH;’s query
is sent, so that” takes values iq1,2,...,n}. We also letVy denote the number of
otherqueries, i.e., fromd,, ... A, that land at/y,. Given thatA;’s query lands at
Iy, the completion time ofd;’s query is one ofl,2,... ¢y + Ny + 1, each being
equally likely, and the expected completion time is

1 Ly +Ny+1

E(Z = =
(Z1]V) [y — ; L+ (v + Nv)/2,



Therefore the expected completion time4fs query is
E(Z1) = E[E(Z1]V)] 1)

1
:1—|—§E(€v+Nv)

“1s ) (ZM s E[E(va)

S (Zpﬁ + El(m — 1>pv])

=1+ % (ipi& + ip?(m - 1))

=14 % (épi[@ + (m — 1)pi]) . (2)

From this expression it follows that:

Lemma 3. The optimal choice of probabilities satisfies

pP1L>p2> ... > pa, 3)
and in particular there is some such thap; > 0 forall i < k andp; = 0 forall i > %.

Proof: The proof is by contradiction. Supposge, ... , p,, iS an optimal assignment
of probabilities. Ifp; < p;41 for somei < n, we can interchangg; andp;+1 in the
expression (2) and the expectation would decrease (§ince; 1), which contradicts
our assumption that the probabilities were optimal. ]

How do we find the numbek of positive probabilities in the optimal assignment?
This turns out to be a non-trivial problem. We have the following result, whose proof
appears in the appendix. First we introduce the symbols

L(k) = Zk:ﬁk,
A(k) = (L(k’)/Q_—I— m—1) /k. 4)

Theorem 4. The number of positive probabilitiesin the optimal assignment is the small-
est value ok < n forwhich A(k) < £,41/2 if such ak exists, and equals otherwise.
For thisk, the optimal probabilitiep; are such that for alt < %,

EZ/Q—I— (m — 1)])2' = A(k’),

so that

(A(k) = €:/2) . (5)



Note that the optimal probabilities have a nice intuitive featlbe: with larger
loads have a lower probability oéceiving a query.

Example. We illustrate the computations of this section with a simple example.
Suppose there are = 20 QAs, andn = 9 IAs, with initial loads?; as follows:

{00, 05, ... lo} ={1,3,4,7,11,12,16,24, 32}.
The values ofA(k), k = 1,2,...,9 are, from (4),
{19.5,10.5,7.67,6.63,6.4,6.33,6.57,7.25,8.22},

and we see that the smalldstffor which A, < ¢;41/2 is k = 6. Therefore in the
optimal solution, probabilities; throughps are positive, and; /2 + (m — 1)p; has has
the same value for = 1,2, ... , 6. The corresponding optimal probabilities are, from
5),

{p1,p2, ... ,ps} = {0.307,0.254,0.228,0.149,0.0438,0.0175},

and the expected completion tirk§.7; ) is 5.096 cycles. By contrast, if we had used
the uniform-random strategy of the previous sectiongal: 1/n), the expected com-
pletion time would bes.167.

4.1 Simulation in the dynamic model

So far we have worked in the static model, i.e., each QA has just one query that needs
to be answered. Now we consider the dynamic model, whezadh cycle, at each QA,
a new query arrives with probability. To be realistic we also assume a boukdon
thebuffer at each QA, thatis, each QA may have no more thaonanswered queries
at any time.

For this model we consider what happens if each QA follows a specific static strat-
egy in each cycle. In particular we consider the following three strategies:

— OPT: Each QA sends its query according the optimal static strategy of section 4,
with the load¥; equal to the current loads of the IAs. Note that we

— MIN: Each QA sends its query to theast-loadedA.

— UNIF: Each QA sends its query to an IA chosen uniformly at random.

Note that the first two strategies assume that the IA loads can be observed by the QAs,
whereas the UNIF strategy does not require this capability. Figure 1 is a plot showing
how these strategies compare with each other. We find that for the most part, our strategy
OPT dominates the others.

5 Multiple query copies, unloaded case

Returning to the static model, let us examine strategies where each QA/seopies

of its query to a set ok distinct IAs, where thé&-subset is chosen uniformly at random
over all possiblé:-subsets. Note that since we are only considering symmetric strate-
gies, the parametéris the same for all QAs. The analytic computation of the expected
guery completion time in this case is somewhat complicated, and we will only consider



7 Avg Query Delay

m = 30 Query Agents -
n = 8 Info Agents )
Query Agent Queue = 2 queries

IQuery Arrivlal Probabililty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1. Expected completion time of a query in the dynamic model under three different strategies,
as a function of the query arrival probdity «. The model hag: = 30 Query Agentsp = 8
Information Agents, and the buffer at each QA is limited to 2 unanswered queries. The average
completion time is computed over all queries that have completed by 5000 runs.

the special casgé = n, i.e., an instance afachquery is sent t@verylA. For otherk,
we will only present simulation results.

For k = n, we consider two cases. First we will consider the case wtagpees of
answered queries are not abortétfe show the following:

Theorem 5. In the static model, if each of the QAs sends a copy of its query to each
of then |As, and copies of answered queries are not aborted, the expected completion
time of any query approaches (for largeandn)

1—e™"
1 —e-nim’
Proof: As before we focus on query 1 (i.e. Q& 's query) and consider its completion

time. We letY; denote the time at which the copy of query 1 sent tajAs answered.
Then clearly the completion time of query 1 is

Z1 = HliH{Yl,Yz, N ,Yn}



Therefore the expected completion time of query 1 is

S
|

~ > " emli=bn/m - (for largem, n)

- @)
|

Now let us consider the case wheaak copies of answered queries are aborted.
This case is more complicated to analyze because we have to carefully keep track of
how manydistinctqueries are answered in each cycle. We assusyaehronousnode
of operation, i.e., in each cycléirst each IA answers a ndomly chosen query from
its pending list, andhenall copies of answered queries are removed from the lists. We
then have the following result, whose proof is in the appendix.

Theorem 6. In the static model, if each of the QAs sends a copy of its query to each
of then IAs, and copies of answered queries are aborted, the expected completion time
E,, of any query is given by the recursiofi; = 1 for j = 1, and forj > 1,

By =1 (1— 1k 4 mmgné(—l)r () (L) e

J

Simulations.In Fig. 2 we show how the average query delay changes as the number
of query-copies is increased. Interestingly, for many cases it is found that the query
first decreases asis increased, and then increases, indicating that there is a certain
optimum numbe¥ of query-copies. As noted in the introduction, there are two oppos-
ing effects on the expected query completion time: the multiplicity effect, and the load
effect. Clearly the initial decrease in expected completion time can be explained by the
fact that the multiplicity effect dominates, and the subsequent increase oenansse
the load effect starts to dominate.



12

1.18

1.16

114

112

11

1.08

1.06

Avg Query Delay

m =5 Query Agents
n =10 Info Agents

INumber of Instalinc&G/Query

1 2 3 4 5 6 7

Fig. 2. Expected completion time of a query, as a function of the nufmbécopies of the query
that are sent. The plot is based on a simulation of the static modekwith 5 Query Agents,
n = 10 Information Agents, and the average completion is computed over 5000 runs.

6 Conclusion

In this paper we introduced a simple cooperative MAS model where there is a collec-
tion of information agents (I1A) and a collection of querying agents (QA) that can send
queries to the IAs. We designed a provably optimal randomized symmetric strategy for
the static case where each QA has one query and each IA has an arbitialjoiad.

We considered the issue of when it helps to send multiple query copies to different
IAs. This paper only represents an initial step in a potentially fruitful and important
research area, namely the design of decentralized algorithms ftiragant systems.

In the future we plan to study the use of economics-based approaches and also explore
connections with the area of stochastic scheduling.
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A Proof of Theorem 4

Let us first introduce the variables
ei=Li/24+(m—1)p;, 1=1,2,...,n,
and rewrite the expression (2) fe{ 7, ) as

1

=5 D e+ /) (e = 4f2)

n

- 3 (e -2 a). ®)

m—1

E(Z:)

m

=1



Since thep; are probabilities that add up to 1, we must have

L2 <e; <24 (m—1), 1=1,2,...,n 9)
Ze,‘:L(n)/Z—l—m—l (10)

=1

Thus our original problem of choosing the optimal proititiées can be ecast as one choosing
the{e;} so that the expectation (8) is minimized subject to the constraints (9) and (10). Suppose
there are two distinct indicesy such that (ap; andp; > 0 are strictly positive in the optimal
solution, and (b}; < e;. Clearly this means; ande; lie strictly within the range defined by (9).
Therefore there is some sufficiently small- 0 such that if we increase by € and decreass;

by ¢, we still satisfy the constraints (9) and (10). However the valus of e;" is smaller, since,

in general for any positive, y,

Wheng + y is fixed,z? + »? is smaller when: andy are “closer” to each other, i.e.,
when|z — y| is smaller.

(This type of argument is a special case ohajorizationargument forSchur-convefunctions
(see, for example [1, 9]).) This means the expectation (8) is smaller, a contradiction. Therefore
we conclude that for all positive; in the optimal solution, the value ef must be the same. A
similar argument shows thatif< j andp; = 0 in the optimal solution, thep; = 0 as well.
Therefore ifk is the number of positive probabilities in the optimal solution,dach: < k the
value ofe; is the same, and far> k, e; = £;/2. SinceY r_, e; = L(k)/2 +m — 1, it follows
thatfori <k, e; = A(k).

Supposé is the number of positive probabilities in the optimal solution. Clearly(ik) >
£r4+1/2, this means, > exy1 = Lr4+1/2. As before this means we can decreasby a small
¢ > 0 and increases 1 by e and reduce the sunf + eiH while still satisfying the constraints
(9) and (10). This is a contradiction, go. < fx41/2. Now we claim that if

Aj <l /2
for somey, then this continues to hold for all larggrTo see this, note that

oy LG+ om—1
A(J+1)—2(;?T1)+ j+1
- J‘Jlr—l(j(L(j /(23) 4+ (m = 1)/5) + £;41/2)

= 7 (GAG) + 41 /2)

IA

1 .
m(]ﬁg+1/2+zj+1/2)
= lj11/2
< Liy2/2.

Therefore the numbér of positive probabilities in the optimal solution is teeallestt < n
suchthatd(k) < fx4+1/2 is such & exists, or equals otherwise. [ ]



B Proof of Theorem 6

Again we fix our attention on the completion time of query 1. Egtdenote the expected com-
pletion time of query 1 when there ajalistinct queries remaining. Initially, we of course have
7 = m.Clearly if ; = 1 we haveE; = 1. Forj > 1, we have the following mutually exclusive
and exhaustive events: EveAt: Query 1 is answered in the current cycle, in which case the
expected time is 1,a and the probability of evdnis one minus the probability thabne of the
IAs answer query 1, i.e.,

P(Ay=1-(1-1/k)".

The remaining events aré; for: = 1,2, min{j — 1, n}, whereA; is the event that exactly
distinct queries are answered in the current cycle, all different from query 1. If éestcurs,
all copies of the answered queries will be removed, so we are left with ¢ distinct queries.
Thus the expectation given that evehtoccursis(1 + E;_;). So we can write, foj > 1,

min{j—1,n}

By =P(A)+ Y PA)1+E, ).

=1
We only need to show how to compute the probabiliB¢d; ). We can write this as

P(A;) = (Number of ways of choosingspecial queries out gf — 1)
x P(each IA picks only among thiespecial queriels
x P(each of the special queries is picked by some)lA (11)

N RS AN A AN
= (7))

whereP; is the last probability in (11). We compute this probability by considering the comple-
mentary event: the event that at least one ofitepecial queries iaot picked by any IA. For

r < ¢ the probability that a particularsubset of the special queries are not picked by any IA is
(1 —r/t)™. By inclusion-exclusion, we then have

P = Z(—UTC) (1—r/i)".

r=0

which is

Thus finally the recursive formula for our expectatibpis: if 7 = 1 thenE; = 1, and if

i>1,
R NN
_ n J - t . .
BEy=1-(1-1/k)"+ Y ( . )(J) P14+ Ej—),

=1

which simplifies to

min{j—1,n} ¢ . . . n
1 n N 1 ] 1 —7r ‘
Ey=1—(1—-1/k)" + ;:1: ;:0:( 1) ( Z, )(0( - ) (Ej—i +1).
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