Multiagent Coordination
in Tightly Coupled Task Scheduling

Jyi-Shane Liu

Department of Computer Science
National Cheng Chi University
Taipei, TAIWAN
E-mail: jsliu@cs.nccu.edu.tw

Abstract
We consider an environment where agents' tasks are tightly
coupled and require real-time scheduling and execution. In
order to complete their tasks, agents need to coordinate
their actions both constantly and extensively. We present
an approach that consists of a standard operating procedure
and a look-ahead coordination. The standard operating
procedure regulates task coupling and minimizes
communication. The look-ahead coordination increases
agents' global visibility and provides indicative information
for decision adjustment. The goal of our approach is to
prune decision myopia while maintaining system
responsiveness in real-time, dynamic environments.
Experimental results in job shop scheduling problems show
that (1) the look-ahead coordination significantly enhances
the performance of the standard operating procedure in
solution quality, (2) the approach is capable of producing
solutions of very high quality in a real-time environment.

Introduction

Most research on multiagent systems has considered
loosely coupled agents (Huhri®©87) (Bond & Gasser
1988) (Gasser & bhns1989) that coordinate their actions
for mutual benefit. In most of these environments, agent
interaction occurs only when one agent has data, facts,
views, and solutions that are of interest to other agents
(Durfee & Lesser 1991), or when agents need to resolve
their conflicts (Sycara 1988) (Conry, Meyer, & Lesser
1988), etc. In other words, coordination activity, although
essential, does not constitute a substantial part of an
agent's effort to achieve its goal. In this paper, we consider
an environment where agents' tasks are tightly coupled in
the sense that (1) there are only enabling relationships
among subtasks and each task usually consists of more
than two subtasks, thus creating cascading effects; (2)
subtasks are distributed among agents and enabling
relationships among agents are of multi-directions, e.g.,
fortask, A~ B - C- D;fortask, B - D -~ C - A,

etc., where A, B, C, D are agents, andrepresents an
enabling relationship, thus creating complex cause-effect
relationships among agents; (3) the objective function is
related to task completion time only and can not be broken
down into “quality” function of subtasks, in other words,
agents have no local utility function to guide their
decisions. Therefore, agents need to coordinate their
actions constantly and extensively in order to both

Katia P. Sycara

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

E-mail: katia@cs.cmu.edu

complete their tasks and improve system performance. The
multiagent system also needs to operate in real time that
involves both scheduling and task execution. The

characteristics of the environment require substantial

coordination among agents, but exclude time-consuming,
elaborate coordination activities.

We present an approach that consists of two parts, e.g.,
a standard operating procedure and a look-ahead
coordination. The standard operating procedure, adopted
from a generic work-flow model, is predefined according
to agents' relationships. It regulates task coupling,
minimizes communication, and ensures smooth real-time
task execution without violating technological constraints
of a task. We developed a look-ahead coordination that
operates on top of the standard operating procedure and
enhances its performance by increasing agents' visibility.
The approach has three features. First, it is prearranged.
Agents abide by an operating procedure and adopt
predetermined cues/hints for adjusting their actions. This
allows agents to disentangle their task coupling and
coordinate their actions in real time. Second, it is self-
contained. Agents consult information from others to
decide their actions. Information is exchanged by message
sending. Agents do not perform query. Third, it is
responsive. Agents have a “perceive-and-act” type of
coordination behavior. This enables the integration of task
scheduling and execution in real-time multiagent systems.

The task model we consider can be formulated as
distributed constraint optimization (DCOP). A constraint
satisfaction problem (CSP) (Mackworth 1987) involves a
set of variables X = {x;, %,..., %X}, each having a
corresponding set afomain values V fvi, Vs,..., Vin},
and a set otonstraintsC = {c;, ¢, ..., G} specifying
which values of the variables are compatible with each
other. A solution to a CSP is an assignment of values (an
instantiation) to all variables, such that all constraints are
satisfied. Recent work in DAI has considered the
distributed CSPs (DCSPs) (Huhns & Bridgelari®91)
(Sycara et al. 1991) (Yokoo et al. 1992) (Liu & Sycara
1995a) in which variables of a CSP are distributed among
agents. Each agent has a subset of variables and
coordinates with other agents in instantiating its variables
so that a global solution can be found. DCOP is an
extension of DCSP in which a subset of the constraints are

relaxed to achieve optimization of a given objective

function (Liu & Sycara 1995h)

In our task model, each subtask is a variable that needs
to be instantiated with an execution start time. Variables
are distributed among a set of agents to be instantiated in
real time. The problem constraints include precedence
relations between subtasks and agents' processing capacity.
An objective function measures the quality of task
schedule produced by the agents. Since the problem is
solved in real time, the goal is not to find the optimal
solution but a solution as best as possible. (Yokoo et al.
1992) describes work on distributed constraint satisfaction
problems (DCSPs). The work focused on complete
algorithms for solving DCSPs and was not concerned with
solution optimization and time restriction. (Decker &
Lesser 1995) presented a family of coordination
algorithms for distributed real-time schedulers. They
considered a task environment where @ task
interrelationships can be explicity and quantitatively
represented as functions that describe the effect of agents'
decisions on performance. In our task model, such a
function is impossible to either define beforehand or
estimate on-line with any precision.

Our work can also be viewed as addressing the problem
of distributed agenda ordering, e.g., at any given time, an
agent might have multiple tasks waiting to be processed;
how does the agent coordinate with other agents to decide
its local agenda, when its decision affects other agents and,
ultimately, the performance of the group of agents? This is
one of the most commonly encountered problem in DAI
research and has been widely studied in many application
domains, such as Distributed Vehicle Monitoring Testbed
(DVMT) (Lesser & Corkill 1983). The abstract solution,
perhaps a direct result from human experiences, has been
using sophisticated local control coupled with exchange of
meta-level information (as in the work of Partial Global
Planning (PGP) (Durfee & Lesser 1991)). In our approach,
agents are coordinated by local prioritizing strategies and
non-local look-ahead information. The unique
contributions of our work are in presenting a specific
coordination solution to a tightly coupled task model and
in providing a clear description of local decision making
and meta-level information that is applicable in a
significant class of scheduling problems.

In this paper, we present initial experimental results to
test the utility of the approach and investigate its
performance factors. The study was conducted in the
domain of real-time job shop schedule optimization.
Experimental results show that the approach is capable of
producing solutions of very high quality in a real-time
environment. The performance factors include (1)
accuracy of agents' forecasts, (2) complexity of agents'
interaction, and (3) availability of indicative information.

Job Shop Schedule Optimization

A job shop is a manufacturing production environment
where a set ofn jobs (or tasksy = {J, ..., J} have to be
performed on a set afmachines (or resourceR¥ {Ry, ...,

R.}. Each job J; is composed of a set of sequential
operations (or subtaskepr, i = 1, ..., m, j =1, ..., m(),
m(i) < n, wherei is the index of the job, ands the index

of the step in the overall job. Each operatapr; has a
deterministicprocessing timg; and has been pre-assigned
a unique resource that may process the operation. Jobs can
have very different numbers of operations and sequences
of using resources. The job shop scheduling problem
involves synchronization of the completionrofjobsJ on

n resources (machine® and is one of the most difficult
NP-complete combinatorial optimization problems
(French 1982). The problem (hard) constraints of job shop
scheduling include (1)operation temporal precedence
constraints, i.e., an operation must be finished before the
next operation in the job can be started, rél¢ase date
constraints, i.e., the first operation of a jgbcan begin
only after the release daté of the job, and (3)yesource
capacity constraints, i.e., resources have only unit
processing capacity. A solution of the job shop scheduling
problem is a feasible schedule, which assigns a start time
st;and an end timet; to each operationpr; that satisfies

all problem constraints.

Given a job shop scheduling problem, the umber of
feasible solutions can be enormous. For example, for a
problem withm jobs ofn operations om resources, each
resource hasn! possible processing sequences, and the
total number of possible schedules im!){ since all
precedence constraints between operations can be satisfied
by right shifting operations toward the end of time.
Organizations are usually interested in optimizing a
schedule according to objective functions that reflect the
economic goals. In his paper, we consider a commonly
used objective function, called weighted tardiness, where
each jobJ is given a due datdd and a weightw; that
represents the importance of the job. Weighted tardiness
(WT) of a schedule is defined WT=73;-,™ w x max
[0, (C - dd)], wherew; is the weight of individual jold,
andC; is the completion time aof. The goal is to produce
a schedule with minimized weighted tardiness.

On-line job shop scheduling is a typical multiagent task
in a tightly coupled, real-time environment. \¥ssign
each resource to an agetiiat is responsible for making
decision and monitoring usage of the resource. Agents are
tightly coupled with each other because of the precedence
constraints between operations and the fact that they can
process only one operation at a time.

A Standard Operating Procedure
- Dispatch Scheduling

Since a job consists of a set of operations that has to be
performed in sequential order by different agents, it is

convenient to follow a work-flow model where a job
enters the shop, visits different agents to have its
corresponding operations performed, and then leaves the
shop. A job'souting is the sequential set of agents that the
job visits before its completion. Ttaarival time of a job

at an agent is the time at which the job leaves the previous
agent in its routing, and is equivalent to thady timeof

the operation to be performed by the agent.

Dispatch scheduling is a way of generating schedules by
either simulating or actualizing the process of jobs being
performed by the agents. Each agent has a buffer where
arriving jobs (or equivalently, the operations ready to be
processed) can wait until they are processed. Jobs are
released to the buffers of the first agents in their routings
after their release dates. After a job is being processed by
an agent, it travels to the buffer of the next agent in the
routing of the job. At any point in time, an agent is in one
of four states: (1) the agent is executing an operation, (2)
the agent has just finished executing an operation, and
there are operations ready for execution, (3) the agent is
not executing an operation, and there are operations that
have just become ready for execution, (4) the agent is not
executing an operation, and there is no operation ready for
execution. In both states (2) and (3), an agent selects an

operation from its buffer to execute

For implementation, it is convenient to view that each
operation has been pre-allocated to the buffer of its
designated agents. The first operation of a job is only
eligible to be selected for processing after the release date
of the job. An operation that is not the first operation of a
job is eligible to be selected only after its immediate
preceding operation has finished its processing. We give
an algorithmic description of dispatch scheduling as
follows:

T=-1;

For each ager#; ;

O = the set of unprocessed operations ;
O = the set of eligible operations ;
while (00“# 0)do
T=T+1;
For each agem; ;
if A is not executing an operation
O = updated fron®;" ;;
if (Ofz0)
opr = selected operation fro®°;
set start time obprto T ;
removeopr from Q" andQ%;
fi ;
fi ;

od.

Dispatch scheduling is simple, robust, and has been
used for years as a standard operating procedure in human
organizations and production/service facilities. Mostly, an
agent selects an operation based on a priority rule that

assigns priority indices to operations waiting to be
processed. For due-date-based objectives (e.g., weighted
tardiness), priority rules calculate priority index of an
operation using due date of the job in various ways, e.g.,
earliest due date, minimum slack time, etc.

From the point of view of multiagent systems, dispatch
scheduling is a robust coordination mechanism at the
procedurallevel. It ensures technological constraints are
satisfied, e.g., each task is completed properly by agents'
sequential execution of its constituted operations. Agents
communicate by reading/writing information associated
with operations, e.g., operation status, job due dates, etc.
The system can operate in dynamic, real-time
environments. However, system performance in terms of
solution quality suffers from agents' myopic decisions
based on only local and current conditions (characteristics
of operations currently competing for execution). Our
research hypothesis was that agent coordination that
broadens agents' views of problem solving conditions can
obtain higher quality solutions without sacrificing
computational efficiency.

A Look-ahead Coordination
- Coordinated Forecasts

We developed a look-ahead coordination mechanism,
called coordinated forecasts (COFCAST), that operates on
top of dispatch scheduling to improve its performance.
COFCAST increases agents' visibility by incorporating
useful indicative information (cues) based on global and
future conditions. At each decision point, agents make a
decision as well as survey local situations by predicting
their future decisions. These forecasts are coordinated
among agents and predefined indicative information is
extracted. Agents then utilize the indicative information
that embeds downstream and global conditions to make
better decisions.

In tardiness related objectives, the subject of
coordination is the operation sequencing of agents so as to
reduce the tardiness cost of the final schedule. We observe
that a job's tardiness cost depends on the end time of its
last operation only. In other words, no matter whether a
job’'s upstream operations are processed earlier or just in
time for the last operation to end at the same time, they
would have the same tardiness cost. While a job is being
processed by an agent, other jobs waiting to be processed
by the same agent are delayed because of agents' unit
capacity. Therefore, a good schedule is a schedule in
which jobs are processed only when necessary to ensure
the prompt completion of their last operations. This means
that if we can reduce unnecessary earliness of upstream
operations, the resulting schedule will have reduced
tardiness.

Based on this observation, we developed the innovative
notion of relaxed urgency(RU), where jobs' due dates

: due date
Job 1
— I |
E \)
competing ~ Prediction
' _/ \ due date

Job 2

H e
.

Figure 1: Example of Relaxed Urgency

used in priority rules are replaced bslaxed due dates
that are dynamically adjusted to take downstream and
global processing conditions into account. In particular, if
a job is predicted to be tardy in the downstream processing,
then the first unprocessed operation in the job is not
regarded as urgent as it was to meet the job's original due
date. Its urgency is relaxed accordingly by the tardiness of
the downstream operations. For example, in Figure 1, at
time t, the second operations &f andJ, are competing

for the same resource. Based on the prediction of both
jobs' downstream processing; should have a higher
priority to use the resource than Given the complex
interaction among agents' operation sequencing in a
general job shop, the approach hinges on the ability to
coordinate different forecasts from agents and extract
useful information for current decisions.

In COFCAST-RU, agents forecast their future
processing by assigningredicted start timesand
predicted end times$o a partial set of the unprocessed
operations. To coordinate agents' forecasts, we assign a
predicted ready timeto each operation, which is
dynamically adjusted during the scheduling process.
Initially, an operation's predicted ready time is set to its
earliest start timeesj; = rd; + S k=1 P, Wherepy is the
processing time of an operati@apr,. We consider two
actions of forecast coordination. First, an agent forecasts
future processing only on operations that are “in view”, i.e.,
its predicted ready time is less than or equal to the end
time of the selected operation. This reduces the likelihood
of making incorrect forecast by excluding operations that
are not ready for processing in near future. Second,
operations' predicted ready times are dynamically adjusted
according to the predicted start times of their upstream
operations. Specifically, if the predicted end time of an
operationopr; is later than the predicted start time of
oprij+1), then the predicted ready time @rj.1) is set to
the predicted end time obpr;. This adjustment of
predicted ready times accounts for agents' processing
interaction and increases forecast credihility

An agent's forecast is done after an operation has been
selected for processing. According to the priority rule, an

agent sequences the set of unprocessed operations that are

in view and assigns predicted start times and predicted end

times to the set of operations. Then, jobs' relaxed due
dates are adjusted by the agent according to the prediction
on the set of operations. For a jab with the first
unprocessed operatiaspr;, the relaxed due dateld’ is

set by, dd'= maxdd, max-j."" (petg + Trqu ™ pil
wherepet, is the predicted end time of an operatug,.

In other words, relaxed due datd'’ of a jobJ; is adjusted

by its downstream operation with ttgreatest predicted
tardiness. If none of the downstream operations is
predicted to be tardyld' is set by its original job due date
dd. Note that the notion of relaxed urgency is realized by
dynamically adjusting jobs' relaxed due dates according to
downstream processing forecasts.

In summary, at each point of scheduling an operation,
an agent performs four actions: (1) select an operation
based on a priority rule using relaxed due dates, and assign
its start time and end time, (2) based on a priority rule,
assign predicted start times and predicted end times of a
partial set of unprocessed operations that are in view, (3)
adjust jobs' relaxed due dates based on the prediction, and
(4) coordinate future forecasts by adjusting operations'
predicted ready times. We describe the algorithmic
procedure as follows, whenert; is the predicted ready
time of an operatiorps; is the predicted start timpey; is
the predicted end time, aedj; is the earliest start time.

(Initialization)
Fori=1,..,m,j
prtij = eSl];
while (an agenf becomes idle at timig);
(Schedule an operation)
O = the set of operations eligible for scheduling ;
opr; = selected operation fro®,°, using relaxed
due dates ;
St =1t
e =1+ pj;
(Forecast future processing)
O = the set of unprocessed operations ;
O/’ = the set of operations in view (updated from
o’);
(0 opryg O, prigg< ef;)
S = sequence dd,’ by priority rule;
assignpst,q andpet, for opryq in S according to the
sequence beginning ef;;
(Update relaxed due date)
Js = the set of jobs of operations$y;
For each jold, in Jg,
dd,’= max[dd,, max™® (pety+ ¥g=gir™®
Peg) I;
(Coordinate future forecast)
For each jol, in Js;
0pryq = the first operation remaining to be
processed ;
Forg =q + 1tom(p)
if (pstg has not been set);

1,....m

dd3 gg2 dd4 441

VoV (2%
0 5 8 12 16
Agent 2
8 16 23 31
4 8 13 16 19 23 Time Horizon
] Job1 B Job2 Bl Job3 Bl b4
Figure 2: Example of dispatch scheduling

continue on next job ids ; selected, instead abpry;. Similarly, oprs, is scheduled
fi ; beforeopry:. The total tardiness cost of the schedule is (33
it (PShy< Pebg-1); —-21) + (23— 17) + (16— 16) + (20- 20) =18, fromJ,,

PStg - Peh(g-1y J;, J, andJ,, respectively. The example shows that, with
fi ; the indicative information of relaxed due datésadjusts

od. its decisions to takeA,'s processing conditions into

An Example

We briefly illustrate the effect of coordinated forecasts
with a simple example schedule shown in Figure 2. The
problem has four jobs that need to be performed by three
agents. The schedule was generated by dispatch
scheduling with a simple due-date-based heuristic, e.g.,
minimum slack times; = dd; — 3" p;j — t. Due dates od;

(ddy), X (ddy), J(dds), andJ, (ddy), are 21, 17, 16, and 20,
respectively. At = 0, A; selectsopr,, because it has less
slack time §;;,= 20— (5 + 8 + 4)- 0 = 3) tharopr;; (S;1=

21 - (3 + 5 + 8)- 0 = 5). BothA, and A; scheduleoprs;

and opr,y, respectively, because they are the only ready
operations. At = 5, bothopry; andopr,, are ready fol;.
Sinces;;=21-(3+5+8)-5=0ands,, =17- (4 + 7)

- 5 = 1,A, selectsopr;;. The process continues until all
operations are performed by the agents. The total tardiness
cost of the schedule is (3121) + (23— 17) + (19— 16) +
(23-20) = 22, froml;, &, Jz, andJ, respectively.

Figure 3 shows a schedule generated by the COFCAST-
RU enhanced dispatch scheduling. We focus on the
forecast ofA; since it changes the schedule. Afbgrs; is
scheduledppr,,, opr,s, andopryz are all inA, ‘s view, e.g.,
prts; = est, = 5,prtys = eshz= 8, prtjz= esiz = 8,< ety
= 8. A, predicts its future processing sequencecgs,4,
0oprys, 0prig) based on minimum slack time. Therefore,
pst, = 8, pet,, = 16, psks =16, pebs = 23,psts = 23, and
pets = 31. With this forecast, updates relaxed due dates
of Js, Jp, andJy, e.g.,dd, '= max[20, 16 + 4] = 20dd, "=
max[17, 23] = 23, andld; '= max[21, 31] = 31. Att = 5,

A; calculates slack times ofr;; andopr,, using relaxed
due datesld," anddd,", and finds thas,, = 23— (4 + 7)—
5=7<g;=31-(3 +5+ 8)-5=10. Thereforeppr,, is

account. This look-ahead coordination improves quality of
the generated schedule.

Evaluation of the Approach

We hypothesized that in a tightly coupled, real-time
environment, system performance can be improved by
increasing agents' visibility on global conditions and
extracting useful cues for agents' decision adjustment.
Agents' predictions of future decisions are used and
written on a shared memory so that agents can obtain a
broader view of problem solving conditions. We
developed relaxed due date as an useful indication of
global conditions that is incorporated in agents' decision
rules. Analytically, we can identify a number of factors of
this look-ahead coordination: (1) the accuracy of the
decision rule used in agents' decision forecasts, (2) the
credibility of the relaxed due date information indicating
global conditions, which is affected by the complexity of
agents' interaction, (3) the availability of indicative
information for decision adjustment.

In job shop scheduling, a more accurate priority rule
produces better schedul@e first factor is related to the
accuracy of the priority rule used in dispatching an
operation since agents use the same priority rule to predict
future decisions. The second and the third factors are
related to the shop conditions. Most of the agents'
interaction conditions can be measured by the number of
bottleneck resources in the shop. The complexity of
agents' interaction increases as the number of bottleneck
resources increases. The other shop condition of concern
is the due date tightness of jobs. Since jobs' due dates are
relaxed only when their downstream operations are
predicted to be tardy, this indicative information is less

dd3

a2 ddg dl
v

Vv
Agent 1 opr22
0 5 9 13 16
Agent 2
8 16 23 33
Agent 3
4 13 16 20 25 Time Horizon
] Job1 I Job2 Bl Job3 Bl b4

Figure 3: Example of dispatch scheduling enhanced by look-ahead coordination

available in shops with loose due dates than in shops with
tight due dates.

We conducted an empirical study to test our hypothesis
and analysis of the approach. Our goals are to: (1)
compare the performance of COFCAST-RU enhanced
dispatch scheduling and regular dispatch scheduling, (2)
examine the effect of each of the three factors we
identified on system performance. The experiments were
conducted on a set of problems created in (Narayan et al.
1994) that consists of a total of 270 problems. Each
problem has 50 jobs of 10 different routes and 5 resources.
The jobs arrive dynamically with a Poisson distribution.
Each job has one to five operations, and is assigned a due
date and a weight that represents its importance. The
objective function is the weighted tardiness of the schedule.
We consider a set of priority rules - WCOVERT,
S/RPT+SPT, CR+SPT, ATC, that are commonly used in
Operations Research, and their more aggressive versions -
X-WCOVERT, X-SRPT/SPT, X-CR+SPT, X-ATC, that
strategically insert resource idle times that can be utilized
to process more important jobs. For detail of these priority
rules, please refer to (Morton & Pentico 1993).

For the purpose of experimentation, we implemented
the coordination technique based on a blackboard model,
e.g., agents communicate by reading/writing information
on a shared memory space. This implementation short-cut
does not affect our study of the performance of the look-
ahead coordination. Our coordination technique is realistic
for the following reasons: (1) a standard operating
procedure is perhaps one of the most feasible approach in
such a tightly coupled, real-time environment; (2) agents
exchange very simple messages (e.g., operation start times,
jobs’ relaxed due dates, etc.) and need no response from
other agents; (3) the look-ahead coordination adds only
little overhead to the standard operating procedure.

Experimental Results

We report our experimental results in performance indices.
The performance index (PI) of a methodn a problem is
calculated byPl, = 100%x (S, -) / (S — S), whereS,

is the score of methad S is the best score known, aBgl

is the score of a “strawman". We used the naive First
Come-First Serve (FCFS) rule as the ““strawman". Because
job shop schedule optimization is NP-complete and
because for many of these problems there is no optimum
known, we consider as the optimal values the results from
an extensive search technique, e.g., Tabu Search, reported
in (Narayan et al. 1994). The performance index can be
interpreted as the percentage of error of each method from
the estimated optimal.

rules dispatch| WEOFCAST imp.
X-WCOVERT 5.46 6.08 -11.4%
WCOVERT 6.69 6.85 -2.4%
S/RPT+SPT 7.20 6.40 +11.19
X-S/IRPT+SPT 6.02 5.04 +16.39
CR+SPT 5.65 4.65 +17.7%
X-CR+SPT 4.20 3.23 +23.1%
ATC 4.75 3.30 +30.5%
X-ATC 3.38 1.82 +46.2%

Table 1: Performance of COFCAST-RU on dispatch
scheduling

Table 1 reports the average performance on the problem
set by regular dispatch scheduling and COFCAST-RU
enhanced dispatch scheduling with each priority rule we
considered. COFCAST-RU improves system performance
with six out of eight priority rules. With X-ATC rule,
COFCAST-RU improved the scheduling quality of
dispatch scheduling by 46.2%, and obtained a
performance index of 1.82, e.g., 1.82% from the estimated
optimal. The results show that COFCAST-RU is able to
improve the performance of dispatch scheduling and is
quite effective with both ATC and X-ATC rules.

Computationally, dispatch scheduling is very fast. For scheduling at different levels of due date tightness. In
example, for a problem of 10 jobs and 5 machines, e.g., 50 problems with loose due dates, e.g., tardy=0.5,
operations, it took only 0.1 CPU seconds to generate a COFCAST-RU performed less well than regular dispatch
schedule. The look-ahead coordination is computationally scheduling with less accurate rules. However, COFCAST-
efficient. It requires only 1.6 times the computational cost RU's improvement percentage sharply increases when due
of regular dispatch scheduling in our experiment. dates become tighter. This is related to the fact that the
The results also reveal the effect of the accuracy of a availability of indicative information depends on due date
priority rule. In general, COFCAST-RU improves dispatch tightness. In COFCAST-RU, indicative information (e.g.,
scheduling better when the priority rule becomes more relaxed due date) is available only when jobs are predicted
accurate, e.g., from SRPT/SPT to CR+SPT, to ATC. to be tardy. Therefore, in problems with tighter due dates,
COFCAST-RU does not work well when COVERT ruleis COFCAST-RU performs considerably well in improving
used because its priority index function does not dispatch scheduling by using more indicative information.
differentiate jobs with large slack times, e.g., they are all In problems with loose due dates, occasional indicative
assigned an index of zero. Thispgoblematic for making information seems to mislead agents' decisions when the
forecast as it may lead to erroneanformation and bad decision rule is less accurate. Overall, the results show that
decision adjustment. In addition, for the same priority rule, the availability of indicative information has the most
the effect of COFCAST-RU was magnified by the significant effect on the look-ahead coordination.
aggressive version (X-) of the rule. Overall, the results

show that the success of the look-ahead coordination is .
proportional tothe accuracy of agents' decision rules. Priority COFCAST-RU Improvement
Rules Tardy=0.5 | Tardy=0.7 | Tardy=0.9
Priority COFCAST-RU Improvement S/IRPT+SPT -14.8% 12.6% 21.9%
Rules Bot.=1 Bot.=2 Bot.=5 X-SRPT+SPT -10.5% 18.3% 30.6%
S/RPT+SPT 17.1% 13.5% 3.4% CR+SPT -18.8% 17.8% 32.8%
X-SRPT+SPT 27.0% 17.0% 6.7% X-CR+SPT -20.2% 20.6% 48.7%
CR+SPT 27.9% 19.8% 6.9% ATC 1.3% 27.2% 38.1%
X-CR+SPT 37.9% 23.6% 10.5% X-ATC 11.4% 37.4% 61.2%
ATC 37.6% 32.1% 20.8% Table 3: Performance improvement of COFCAST-RU by
X-ATC 55.6% | 45.8% | 36.2% due date tightness

Table 2: Performance improvement of COFCAST-RU by Conclusions
numbers of bottleneck resources We have presented an approach for multiagent
Table 2 reports the performance of COFCAST-RU in coordination in tightly coupled, real-time environments.

terms of improvement percentage over regular dispatch The approach consists of a standard operating procedure
scheduling in problems with different number of and a look-ahead coordination. The main contribution of

bottleneck resources. COFCAST-RU's improvement the paper is the development of a computationally efficient
percentage monotonically drops as the number of coordination technique that can easily be integrated with a
bottleneck resources increases. The reason is that when Standard operating procedure (e.g., dispatch scheduling) to

there are more than one bottleneck resource, interaction IMProve system performance in tightly coupled, real-time
environments. We have applied the approach to job shop

scheduling, one of the most difficult NP-complete
dates) from different forecasts by selecting the one combinatorial optimization problems._ Experimental results
predicting the most tardiness, the credibility of this Show that the approach effectively enhances the
information is reduced as the number of bottleneck Performance of dispatch scheduling for optimizing
resources increases. Overall, the results show that the OPiective of weighted tardiness. We have also obtained
look-ahead coordination is affected by the complexity of ~Similar results for other objective functions, e.g.,
agents' interaction. However, the effects are less makespan. Our future work includes extension to agents in
charge of multiple resources and jobs with substitutable
resources.
The approach is also potentially useful for extending the

among resources becomes more complex.
While agents extract indicative information (relaxed due

substantial when more accurate decision rules are used.
Table 3 reports the performance of COFCAST-RU in
terms of improvement percentage over regular dispatch

contract net protocol (CNP) (Davis & Smith 1983). While
CNP has been extended to deal with a competitive setting
(Fischer et al. 1995) and varying levels of commitment by
bounded rational self-interested agents (Sandholm &
Lesser 1995), temporal planning (e.g., deadlines,
makespan) is very important in many real world problems
(e.g., project management). The approach provides a
coordinated temporal look-ahead capability that is
potentially useful for extending CNP in problems that
involve temporal objectives. In the envisioned CNP
extension, a manager agent provides additional
information, e.g., task deadlines and interdependency. A
contractor agent uses this information and an extension of
our coordination procedure to estimate its local schedule
and see whether it can perform the task within the
specified deadlines. This would be helpful for the
contractor agent in deciding whether to bid for the task.
This capability is particular useful when (1) tasks have
deadlines and interdependency, and (2) when a contractor
agent receives penalties for not performing a task by its
deadline. We are currently investigating this CNP
extension.

References

Bond, A. H., and Gasser, L. eds. 1988eadings in
Distributed Artificial Intelligence. San Mateo, Calif.
Morgan Kaufmann.

Conry, S. E.; Meyer, R. A.; and Lesser, V. R. 1988.
Multistage Negotiation in Distributed Planning. In
Readings in Distributed Atrtificial Intelligence&367-384.
San Mateo, Calif.: Morgan Kaufmann.

Davis, R., and Smith, R. G. 1983. Negotiation as a
Metaphor for Distributed Problem SolvindArtificial
Intelligence20:63-109.

Decker, K. S., and Lesser, V. R. 1995. Designing a Family
of Coordination Algorithms. In Proceedings of the First
International Conference on Multi-Agent Systems, 73-80.
San Francisco, Calif.

Durfee, E. H. , and Lesser, V. R. 1991. Partial Global
Planning: A Coordination Framework for Distributed
Hypothesis FormationlEEE Transactions on Systems,
Man, and Cybernetica1(5): 1167-1183.

Fischer, K.; Muller, J. P.; Pischel, M.; and Schier, D. 1995.
A Model for Cooperative Transportation Scheduling. In
Proceedings of the First International Conference on
Multiagent Systems, 109-116. San Francisco, Calif.
French, S. 1982.Sequencing and Scheduling: An
Introduction to the Mathematics of the Job Shéfiley.
Gasser, L., and Huhns, M. N. eds989. Distributed
Artificial Intelligence. Vol. 2. Los Altos, CA.: Morgan
Kaufmann Publishers.

Huhns, M. ed.1987 Distributed Artificial Intelligence.
Altos, Calif.: Morgan Kaufmann Publishers.

Huhns, M., and Bridgeland, DL991. Multiagent Truth
MaintenancelEEE Transactions on Systems, Man, and
Cybernetic1(6): 1437-1445.

Lesser, V., and Corkill, D. 1983. The Distributed Vehicle
Monitoring Testbed: A Tool for Investigating Distributed
Problem Solving Network#\| Magazine4(3): 15-33.

Liu, J., and Sycara, K. P. 1995a. Emergent Constraint
Satisfaction through Multiagent Coordinated Interaction.
In From Reaction to Cognitiorl07-121. Castelfranshi, C.,
and Muller, J. P. eds. Vol. 957 of Lecture Notes in
Artificial Intelligence.

Liu, J., and Sycara, K. P. 1995b. Exploiting Problem
Structure for Distributed Constraint Optimization. In
Proceedings of the First International Conference on
Multi-Agent Systems, 246-253. San Francisco, Calif.

Mackworth, A. K. 1987. Constraint Satisfaction.
Encyclopedia in Artificial Intelligence205-211.Shapiro,
S. C. ed. New York: Wiley.

Morton, T. E., and Pentico, D. W. 1993euristic
Scheduling Systems: With Applications to Production
Systems and Project Managemétw York: Wiley.

Narayan, V.; Morton, T. E.; and Ramnath, P. 1994. X-
Dispatch Methods for Weighted Tardiness Job Shops,
Technical Report, #1994-14, Graduate School of
Industrial Administration, Carnegie Mellon Univ.

Sanholm, T., and Lesser, V. 1995. Issues in Automated
Negotiation and Electronic Commerce: Extending the
Contract Net Framework. In Proceedings of the First
International Conference on Multi-Agent Systems, 328-
335. San Francisco, Calif.

Sycara, K. P. 1988. Resolving Goal Conflicts via
Negotiation. In Proceedings ARAAI-88, 245-250.

Sycara, K. P.; Roth, S.; Sadeh, N.; and Fox, M. 1991.
Distributed Constraint Heuristic ~ Search.|IEEE
Transactions on Systems, Man, and Cybern&ib&):
1446-1461.

Yokoo, M.; Durfee, E.; Tshida, T.; and Kuwabara, K.
1992. Distributed Constraint Satisfaction for Formalizing
Distributed Problem Solving. In Proceedings of thd' 12
IEEE International Conference on Distributed Computing
Systems, 614-621.

In

