
The RETSINA MAS Infrastructure

Katia Sycara (katia@cs.cmu.edu), Massimo Paolucci

(paolucci@cs.cmu.edu), Martin van Velsen (vvelsen+@cs.cmu.edu)

and Joseph Giampapa (garof@cs.cmu.edu)
Carnegie Mellon University, Robotics Institute, 5000 Forbes Ave,Pittsburgh, PA

15232, USA

Abstract.

RETSINA is an implemented Multi-Agent System infrastructure that has been

developed for several years and applied in many domains ranging from �nancial port-

folio management to logistic planning. In this paper, we distill from our experience

in developing MASs to clearly de�ne a generic MAS infrastructure as the domain

independent and reusable substratum that supports the agents social interactions.

In addition, we show that the MAS infrastructure imposes requirements on an

individual agent if the agent is to be a member of a MAS and take advantage

of various components of the MAS infrastructure. Although agents are expected to

enter a MAS and seamlessly and e�ortlessly interact with the agents in the MAS

infrastructure, the current state of the art demands agents to be programmed with

the knowledge of what infrastructure they utilize, and what are various fall-back

and recovery mechanisms that the infrastructure provides. By providing an ab-

stract MAS infrastructure model and a concrete implemented instance of the model,

RETSINA, to contribute towards the development of principles and practice to make

the MAS infrastructure \invisible" and ubiquitous to the interacting agents1.

Keywords: MAS, Multi-Agent System, Infrastructure, Agent, Architecture

1. Introduction

Multi Agent Systems are becoming increasingly important: as a sci-

enti�c discipline, as a software engineering paradigm, and as a com-

mercially viable and innovative technology. Despite the considerable

research that has gone into the formation of theories, scienti�c princi-

ples and guidelines for MAS, there is relatively little experience with

the building, �elding and routine use of MASs. It is admittedly the case

that the development of a MAS is extremely challenging, both in the

laboratory but especially in the real world. However, MAS research will

not ful�ll its potential until we have a critical mass of �elded systems,

1 The authors would like to acknowledge the contribution of the many past and

present members of the Intelligent Agents Research Group at CMU. Without their

ideas, the devotion and their enthusiasm this research could not have been possible.

We are especially grateful to Hao Chi Wong for her help on the discussion of security

issues. This research has been sponsored in part by the OÆce of Naval Research

Grant N-00014-96-16-1-1222 and by DARPA grant F-30602-98-2-0138.

TechReport: CMU-RI-TR-01-05.

AAMAS.tex; 13/03/2001; 10:09; p.1

2 Sycara, Paolucci, van Velsen, Giampapa

components, and services. To achieve this goal, a stable, widely used,

widely accessible and extensible MAS infrastructure is crucial. Various

standards bodies (e.g. FIPA) are attempting to de�ne standards for

various aspects of MAS infrastructure, such as Agent Communications

Languages. In addition, industrial organizations (e.g. SUN) are devel-

oping and making accessible software that could constitute a part of

a MAS infrastructure, such as JINI for service discovery. Various labs

and companies are developing agent toolkits that could be reused for

building agents and multiagent systems (see section 5). However, there

is no coherent account of what constitutes a MAS infrastructure, what

functionality it supports, what characteristics it should have to enable

various value-added abilities, and what its possible relation with and

requirements it may impose on the design and structure of single agents.

This is what this paper is all about.

The Intelligent Agents Group at Carnegie Mellon University1 has

had a long history in researching various issues in MAS, such as MAS

stability (Thomas et al., 1998), MAS learning (Arai et al., 2000), MAS

coordination (Liu and Sycara, 1996). In addition, we have been building

and experimenting with MAS (Sycara et al., 1996; Decker et al., 1996;

Sycara and Zeng, 1994).

In this paper, we will distill our experience of recent years into an

account of what constitutes MAS infrastructure, and speci�cally, what

characteristics and abilities di�erent parameters within the infrastruc-

ture a�ord. Our de�nition and treatment of MAS infrastructure will not

be as encompassing as the one proposed in (Gasser, 2000). It will be

concerned mainly with technology development, applications and use,

rather than involving scienti�c and educational MAS activities2. This

account of the MAS infrastructure has resulted from our vision that the

computational world will soon be populated with multiagent societies

that are heterogeneous in agent structure, multiagent organization and

functionality. Our thinking on MAS infrastructure was guided by the

desire to enable the
exible design, building and operation of such

societies. One important element that our account articulates is the

relation between infrastructure for a single agent and the infrastructure

for the MAS in which the agent participates. We consider MAS infras-

tructure to be the domain independent and reusable substratum on

which MAS systems, services, components, live, communicate, interact

and interoperate, while the single agent infrastructure is the generic

1 More information on the activity of the Intelligent Agents Group can be found

at http://www.cs.cmu.edu/~softagents.
2 Of course having a technological infrastructure does positively impact those two

activities also.

AAMAS.tex; 13/03/2001; 10:09; p.2

The RETSINA MAS Infrastructure 3

parts of an agent that enable it to be part of a multiagent society, i.e

to be socially aware.

In developing our own multiagent infrastructure, RETSINA, we

made various design decisions that were motivated by our assumptions

of what is the best added value that future MAS could provide. In this

paper, we will describe the RETSINA infrastructure as an implemented

instantiation of the proposed abstract infrastructure model and point

out the particular design decisions and characteristics it embodies. The

RETSINA infrastructure has evolved over the years. We have used it to

implement a variety of applications in order to test the generic features

of the infrastructure to make sure of its generality. Each subsequent ap-

plication guided the re�nement of the infrastructure towards increased

generality and
exibility.

Since there is no standard MAS infrastructure in existence, we will

use characteristics derived from our abstract model of infrastructure 1

as dimensions along which to compare various MAS systems reported

in the literature (see section 5.)

The rest of the paper is organized as follows: in section 2 we clearly

de�ne what we mean by MAS infrastructure; in section 3 we discuss

the implementation of the RETSINA infrastructure; in section 4 we

brie
y present some applications that have been developed using the

RETSINA infrastructure; in section 5 we present related work and

�nally we conclude in section 6.

2. MAS Infrastructure

Agents in a MAS are expected to coordinate by exchanging services and

information, to be able to follow complex negotiation protocols, to agree

on commitments and to perform other socially complex operations. We

de�ne the infrastructure of a MAS as the set of services, conventions,

and knowledge that support such complex social interactions. Agents

need services to enable them to �nd each other in open environments, to

communicate, to warrant that the proper security constraints are sat-

is�ed. Conventions, such as Agent Communication Languages (ACLs),

and conversational policies are the basis for achieving interoperability

and agreement on what the agents are doing and what they are achiev-

ing; knowledge of how to use the infrastructure, ACL and protocols as

well as a common ontology is needed by the agents so that they can be

e�ective participants in the community.

Crucially, the above de�nition does not mention what the infrastruc-

ture should know about the internals of the agents in the system. We

claim that from the point of view of the MAS infrastructure, agents are

AAMAS.tex; 13/03/2001; 10:09; p.3

4 Sycara, Paolucci, van Velsen, Giampapa

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

MAS INFRASTRUCTURE

MULTIAGENT MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching

INDIVIDUAL AGENT INFRASTRUCTURE

PERFORMANCE SERVICES
MAS Monitoring Reputation Services

SECURITY
Certificate Authority Cryptographic Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
Performance Services Modules

MANAGEMENT SERVICES
Logging and Visualization Components

ACL INFRASTRUCTURE
ACL Parser Private Ontology Protocol Engine

COMMUNICATION MODULES
Discovery Component Message Tranfer Module

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

MAS INTEROPERATION
Translation Services Interoperation Services

INTEROPERATION
Interoperation Modules

OPERATING ENVIRONMENT
Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

CAPABILITY TO AGENT MAPPING
Middle Agents

CAPABILITY TO AGENT MAPPING
Middle Agents Components

NAME TO LOCATION MAPPING
ANS

NAME TO LOCATION MAPPING
ANS Component

Figure 1. MAS Infrastructure and Individual Agent Infrastructure that allows an

agent to be part of a MAS

\socially aware" programs3 that communicate, interact among them-

selves and with the infrastructure components, and whose behavior con-

forms to the rules of the MAS . An agent's problem solving capabilities,

however, are a black box to the infrastructure.

Figure 1 shows how the di�erent services provided by a MAS infras-

tructure are organized in an abstraction hierarchy, in which the higher

levels rely on the functionalities implemented by the lower levels4. The

infrastructure diagram has two parts: the MAS infrastructure, and the

single agent infrastructure that allows an agent to be part of a MAS.

3 We are NOT de�ning agents as socially aware programs, we say that they are

such from the point of view of the MAS infrastructure. Each agent taken individually

may have an architecture that satis�es di�erent principles (for instance, it could be

based on the BDI model), but in order to be part of the MAS, it should (explicitly

or implicitly) implement the modules that we describe here.
4 We do not claim that our list of components is complete; rather it emerges from

our experience in developing MAS applications.

AAMAS.tex; 13/03/2001; 10:09; p.4

The RETSINA MAS Infrastructure 5

The diagram also shows how the components of the infrastructure

are re
ected in the internal structure of an agent5. In the diagram,

the Problem Solving layer of an agent is absent precisely because the

infrastructure does not make any assumptions about it.

Our claim has profound consequences: �rst it de�nes MASs as inher-

ently heterogeneous, in the sense that any agent can enter the system

and interact with the other agents independently of its internal archi-

tecture and model of the world. Similarly, the MAS infrastructure is

mute on the points of particular coordination regimes. We claim that

the MAS infrastructure should be general enough to support various

coordination schemes such as team behavior (Tambe, 1997), negotiation

(Jennings et al., 1998; Sycara, 1990), Contract Nets (Smith, 1980) etc.

This is why there is no coordination layer in the �gure. In addition,

we feel that social norms (Castelfranchi, 1998) are not part of the

infrastructure but are particular to the design of a given MAS society.

In the following subsections, we provide a description of the infras-

tructure layers.

2.1. Operating Environment

At the bottom of the conceptual layering of the infrastructure, a MAS re-

lies on an Operating Environment, i.e: on physical computers, on their

operating system, on di�erent types and topologies of the networks

that connect di�erent agents and di�erent means of information trans-

port. Single agents also use this infrastructure without any additional

components or awareness. This is why the \operating environment"

layer runs across both the MAS infrastructure and the single agent

infrastructure portion of the �gure. This level of abstraction should

be totally transparent to the agents and the MAS, which should work

across di�erent platforms and networks.

2.2. Communication Infrastructure

A MAS is implemented on top of a Communication Infrastructure that

transfers messages between the agents as well as between the agents and

the MAS infrastructure. Current communication channels have various

modalities, such as wired, wireless, infrared etc. To ensure maximum

exibility in MAS communications, the communication channel should

support di�erent modalities of communication between agents, such

as synchronous or asynchronous communications, as well as be ab-

stracted from the actual transport layer and the ACL used (Shehory
5 We do not impose any implementation requirements on the modules of the

individual agent infrastructure, we only claim that explicitly, or implicitly in its

behaviors, the agent need those modules to interact with the MAS infrastructure.

AAMAS.tex; 13/03/2001; 10:09; p.5

6 Sycara, Paolucci, van Velsen, Giampapa

and Sycara, 2000). ACL independence does not mean that the ACL can

be under-speci�ed within a speci�c MAS , rather it means that the same

communication infrastructure can be reused by di�erent MAS that use

di�erent ACLs.

Independence from the transport layer guarantees that agents can

communicate whenever there is an open connection between them, in-

dependent from the way in which this connection is implemented and

from contingency situations that are not under the control of the agents.

For example an agent should be able to be connected to other agents

via a socket connection, or via infrared or with some sort of wireless

radio connection. No matter what media is used, if there is an open

connection between the agents, they should succeed in communicating.

Within an individual agent, communication infrastructure is needed,

i.e: an ACL-independent communication module that formulates an

agent's messages, taking into consideration particular communication

channel characteristics (e.g. wired, wireless).

Another important infrastructure service at this layer is the dis-

covery of infrastructure components. For example, when an agent �rst

comes up in an open environment, it may want to register itself with

agent name services (see the discussion on ANS in subsection 2.7).

Instead of having hardwired IP addresses for such services, the MAS in-

frastructure and the corresponding single agent infrastructure can fa-

cilitate the discovery of existing ANSs. UPnP and JINI are exam-

ples of such discovery protocols. (See also section 3 for description of

such infrastructure discovery protocols implemented in the RETSINA

infrastructure).

2.3. ACL Infrastructure

An essential part of creating a community of agents is the speci�cation

of a language that can be spoken and understood by all the agents

in that community. For this reason, the speci�cation of an ACL, pro-

tocols and conversational policies used by the agents is an essential

part of the speci�cation of the MAS and it constitutes a part of the

MAS infrastructure.

An ACL should specify the syntactic form of the messages exchanged.

In addition, it should specify the semantic interpretation of the mes-

sages, so that an agent understands what the messages that it receives

are all about. The interpretation of the messages relies on the speci-

�cation of a shared ontology in which the terms used are de�ned. In

turn, the ontology can be used to extract the meaning of the mes-

sages themselves. Conversational policies (Greaves et al., 1999a) and

protocols embody the roles and social context (Singh, 1998) of agent

AAMAS.tex; 13/03/2001; 10:09; p.6

The RETSINA MAS Infrastructure 7

communication. The social context constitutes the pragmatics against

which agent communications are interpreted and used.

Correspondingly, an individual agent's infrastructure should support

interpretation of a message by an agent, and facilities for allowing an

agent to send messages. In addition, the agent should know what to do

with the message it receives, i.e: how to parse the message, and how

to interpret it in the context of an on-going conversation. Therefore,

along with the ACL there should be a de�nition of a set of protocols

(Smith et al., 1998) and conversational policies (Greaves et al., 1999b)

that specify what an agent's role is and how a message �ts in the

general scheme of the messages exchanged by the agents. For instance,

a request for information should be followed by an answer or by a \sorry

message": an acknowledgment that the agent cannot provide an answer.

In addition, an agent's language infrastructure should support the un-

derstanding of some public ontology that expresses the conversational

content.

2.4. Multiagent Management Services

MAS infrastructures should also provide additional system operation

services which we labelled Multiagent Management Services in Figure

1. Such services provide facilities that support the work of a MAS over

time: they include Logging facilities that record the messaging activity

of agents in the MAS;Management Tools that monitor and visualize the

activity of the MAS; and Installation Services and Launching Services

that ease the burden of starting and con�guring the many agents that

comprise a MAS.

2.5. Performance Measurement

Because MASs are in general heterogeneous, the agents di�er in their

ability, eÆciency, reliability etc. The MAS should provide Performance

Measurement to monitor the performance of the agents. For example

Performance Measurement services could be used to optimize the dis-

tribution of tasks across agents. Such services could rank MAS services

in terms of performance, so that the more eÆcient would be more likely

to receive requests. Also, the reputation of agents might be monitored

(Zacharia et al., 1999). Any agent that provides false or unreliable

information would lose credibility within the MAS and it would not

be used by any agent that needs its service. In addition, failures could

be monitored and the information collected could be used for failure

tracking or facilitating failure recovery.

Although the performance measurement services for MAS could

operate without the individual agents being aware of them, there could

AAMAS.tex; 13/03/2001; 10:09; p.7

8 Sycara, Paolucci, van Velsen, Giampapa

be corresponding services within an individual agent that increase agent

e�ectiveness as a MAS participant. For example, an agent could be

self-aware, i.e monitor its own performance and try to optimize it. Or,

an agent could monitor its own failures and try to recover from them.

2.6. Security

Agents in an Open MAS , where agents can join and leave the society

dynamically and where agents have been designed by di�erent develop-

ment groups, meet as perfect strangers. Each agent knows very little or

nothing about the agents with whom it interacts. Therefore, security

services are needed to ensure that agents do not misbehave 6.

The security layer of the MAS infrastructure deals with these prob-

lems. It de�nes a set of trusted services, as for example certi�cate

authorities, that guarantee the identity of the agents, and a set of

protocols that are guaranteed to prevent voluntary and involuntary

losses of goods, services, or other values during the interaction.

Individual agent infrastructure should make sure that agents in the

system can interact with these Security services. Such an example

would be an agent interacting with the Certi�cate Authority to retrieve

the keys necessary to perform its transactions. Furthermore, agents

should know and be able to handle encryption and to follow the secure

protocols.

2.7. Mapping Names to Agent Locations

A MAS infrastructure includes facilities to �nd agents by some iden-

tifying feature, such as a name. MAS can be divided in two classes:

systems that abstract from the physical location of agents and systems

that do not. CGI-BIN scripts on the Web are an example of a MAS that

employ �xed locations. Each CGI-BIN script is addressed by the name

of the web server on which it is running and the exact location within

such a server. When the CGI-BIN script is moved to another location,

all the references to it should also be updated, but there is no provision

in the HTTP protocol or anywhere else that does it automatically.

Furthermore, while new CGI-BIN scripts are constantly added and

6 Most common security issues include communication security and infras-

tructure integrity. Communication security guarantees that a message cannot be

eavesdropped, authentication, so that the agents cannot spoof each other, and

non-repudiation i.e: disallow agents to deny having taken part in a transaction.

Infrastructure integrity guarantees that no agent can manipulate the information

stored in the infrastructure components such as the ANS and the Matchmaker. In

addition, Communication Integrity guarantees that the contents of a message cannot

be changed by an unauthorized agent.

AAMAS.tex; 13/03/2001; 10:09; p.8

The RETSINA MAS Infrastructure 9

removed from the web, any reference to them is hardwired either in a

HTML form or in other CGI-BIN scripts, since there is no mechanism

nor provision that allows web pages to recon�gure automatically to

make use of new services provided nor to detect when services that

they used to access are no longer available.

In the general case, agents can join and leave a MAS dynamically and

unpredictably. Agents that are not bound to a particular physical loca-

tion can appear anywhere on the net and still be part of the community

of agents. While this
exibility provides an essential advantage because

an agent developer does not need to care where an agent is located, it

requires services for mapping the agent name dynamically to the agent

location. In addition, such facility provides the basis for agent mobility.

No agent that is bound to a precise location can move and still be part

of the MAS . To abstract from the physical location of the agent, the

MAS infrastructure should maintain a registry to map the name of

the agent to a physical location so that it can eventually be reached.

Such a registry is represented in the Figure 1 as the ANS: Agent Name

Server. An ANS is like a DNS but with increased
exibility for real time

updates, discovery services (see Communication Infrastructure Layer

in Figure 1), automatically \pushing" agent name registration to other

ANSs etc. Systems that are based on the CORBA ORB (Corba, 2000),

such as the Sensible Agent Testbed (Barber et al., 2000), or on JINI

(Jini, 2000), such as the Grid (Coabs, 2000), or on the RETSINA ANS

infrastructure (see section 3.7) use an underlying infrastructure that

automatically abstracts from the physical location of the agents.

The ANS Component in the �gure is the corresponding individual

agent infrastructure that registers and unregisters with the ANS and

initiates lookup requests for a desired agent.

2.8. Mapping Capabilities to Agents

A general MAS should support an open rather than closed agent world.7

Open systems allow agents to enter, and exit, the system dynamically

and unpredictably, while closed systems employ a �xed set of agents

that are known a priori. Since in an open MAS the set of agents is not

known a priori, the infrastructure should provide ways for its agents

to locate each other based not only on name but on functionality or

capability. Locating agents by capability is solved by employing a set of

infrastructure agents called Middle Agents (Decker et al., 1997). Some

examples of middle agents reported in the literature include the OAA

7 In closed MAS each agent knows the name, location and capability of the others.

Thus agent interactions can be statically prede�ned. This makes agent design and

construction simple, but makes the MAS brittle and not extensible.

AAMAS.tex; 13/03/2001; 10:09; p.9

10 Sycara, Paolucci, van Velsen, Giampapa

Facilitator (Martin et al., 1999), the RETSINA Matchmaker (Sycara

et al., 1998) and the Infosleuth Broker (Perry et al., 1999). Middle

Agents maintain an up-to-date registry of agents that have made them-

selves known to the MAS community, along with the services that

each agent provides. This information is called the agent's capability

advertisement and is provided by the agent to a middle agent. When

an agent needs another that has some required capability, it sends a

middle agent a request specifying the desired capability. The middle

agent matches requests and advertisements. In general, there could be

a variety of middle agents that exhibit di�erent matching behaviors and

have di�erent performance characteristics. In prior research, we have

identi�ed 28 middle agent types and have experimented with di�erent

performance characteristics, such as load balancing, fault tolerance etc

(Decker et al., 1997; Wong and Sycara, 2000).

Whether the system allows Middle Agents or not a�ects the in-

frastructural requirements of a single agent. An agent must have the

ability to construct advertisements to make itself known to the agent

community and also construct requests to take advantage of services

provided by other agents. If an agent lacks these abilities, it would be

stand alone and isolated from the MAS activities.

2.9. Interoperation

It is clear that as the number of MAS created by di�erent groups

increases, there will be an increased need for MAS interoperation. The

development of sharable ontologies, conversational policies, ACLs and

translation services will go a long way towards allowing individual

agents to interoperate. However, additional infrastructure is needed

to take care of MAS architectural mismatches, for example between

a centrally controlled MAS that uses a Facilitator as middle agent

and a distributedly controlled MAS that uses a Matchmaker as mid-

dle agent. Each MAS may have its own architecture-speci�c features,

such as: agent registration, agent capability advertisement, agent com-

munication language, agent dialogue mediation, default agent query

preference, and agent content language. Since MAS are in general open,

there is the further requirement that interoperation must be done in

real-time so as to capture the dynamics of the agent world. If an

agent enters one MAS community, agents in the other MAS communi-

ties should have ways of �nding and transacting with this agent, if it

matches a required capability.

Currently, only a couple of research interoperation systems exist

(see section 3.9 and 5) between architecturally di�erent open MAS .

AAMAS.tex; 13/03/2001; 10:09; p.10

The RETSINA MAS Infrastructure 11

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

CAPABILITY TO AGENT MAPPING
Matchmaker

NAME TO LOCATION MAPPING
ANS

RETSINA MAS INFRASTRUCTURE

CAPABILITY TO AGENT MAPPING
Matchmaker Module

OPERATING ENVIRONMENT
Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

MAS MANAGEMENT SERVICES
Logger ActivityVisualizer Launcher

NAME TO LOCATION MAPPING
ANS Module

INDIVIDUAL AGENT INFRASTRUCTURE IN RETSINA

PERFORMANCE SERVICES
Failure Monitoring

SECURITY
Certificate Authority Cryptography Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
Self Monitoring Cloning

MANAGEMENT SERVICES
Logger Module

ACL INFRASTRUCTURE
ACL Parser Private Ontology Protocol Engine

COMMUNICATION MODULES
Discovery Module RETSINA Communicator

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

MAS INTEROPERATION
RETSINA-OAA Interoperator

Figure 2. The RETSINA MAS Infrastructure and Individual Agent Infrastructure

We believe this area will receive increased attention, as more MAS get

developed and deployed.

3. The RETSINA MAS Infrastructure

RETSINA is an open MAS infrastructure that supports communities

of heterogeneous agents. The RETSINA system has been implemented

on the idea that agents in the system should form a community of

peers that engage in peer to peer relations. Any coordination structure

in the community of agents should emerge from the relation between

the agents rather than being imposed by the infrastructure. Following

this premise, RETSINA does not employ any centralized control on

the MAS, rather it implements distributed infrastructural services that

facilitate the relations between the agents instead of managing them.

AAMAS.tex; 13/03/2001; 10:09; p.11

12 Sycara, Paolucci, van Velsen, Giampapa

The organization of the RETSINA MAS infrastructure is displayed

in Figure 2. It shows how the various components are organized on the

basis of the infrastructure model in Figure 1. In the rest of this section

we will describe these components.

3.1. Operating Environment

The RETSINA MAS is independent of the platform on which the

infrastructure components and the agents run, and it automatically

handles di�erent types of transport layer.

Applications of the RETSINA MAS are routinely distributed on

di�erent platforms ranging from di�erent versions of Windows, di�er-

ent versions of Linux, and Sun OS. Furthermore, they include agents

running on PalmPilots. The agents used have been implemented in

di�erent languages as Java, C, C++, Python, LISP, and Pearl. Com-

munication transport layers handled by RETSINA include TCP/IP,

wireless, SSL, infrared, and serial connection.

3.2. Communication Infrastructure

RETSINA is based on two types of communication channels: one pro-

vides message transfer for direct peer to peer communication between

the agents, the other is based on multicast used for a Discovery process

that lets the agents �nd infrastructure components.

Direct message transfer is supported in an individual agent by the

RETSINA communicator (Shehory and Sycara, 2000) that provides

an abstraction over the physical transmission layer abstracting over

the type of network used. The Communicator supports synchronous

as well as asynchronous communication, and it manages multithreaded

communication that allows the agent to maintain conversations with

multiple agents at the same time.

Discovery uses multicast to connect agents to the infrastructure com-

ponents. For example, an ANS announces its presence by multicasting.

An agent can also announce its presence by multicasting a request for

an ANS. If the agent �nds an ANS, it registers with it, or performs

a lookup request. To reduce the load on the multicast channel, no

negotiation happens directly on multicast; direct transactions between

the agents and the infrastructure are performed on a direct channel.

The use of Discovery allows
exible entrance of agents and infras-

tructure in the RETSINA MAS . An agent can enter the MAS when no

infrastructure is yet present, and wait until infrastructure components

enter the system. After these components multicast their presence, the

agent registers with them and from that moment on it is e�ectively a

reliable resource for the agent community.

AAMAS.tex; 13/03/2001; 10:09; p.12

The RETSINA MAS Infrastructure 13

Discovery is also very useful for agents running on mobile plat-

forms. While these agents might not be mobile themselves (Suri et al.,

2000; Funfrokcen, 1998), they may move around just because the plat-

form they are running on is moved. Using Discovery in the new place,

the agent can re-orient itself and �nd the local components of the

infrastructure.

3.3. ACL Infrastructure

The ACL used in the RETSINA MAS is KQML (Finin et al., 1995).

Messages exchanged by the agents have two components: one is the

speci�cation of the content of the message, the other is an envelope that

speci�es information such as sender, receiver, thread of conversation,

ontology and language used in the content part. The RETSINA infras-

tructure dictates the format of the envelope, because it is used to deliver

the message, but it does not make any assumption on the content of the

message itself. Any content would do as long as the agent that receives

the message can understand it.

The speci�cation of the language does not guarantee that the agents

understand each other. They also need to have a shared dictionary

which speci�es the meaning of the words that the agents use. For

this reason RETSINA provides an ontology based on diverse domain-

speci�c taxonomies of concepts derived from the Wordnet8 (Fellbaum,

1998).

The taxonomies are used to measure similarity between terms within

messages. For example, the ontology recognizes the similarity between

\location" and \city", because the �rst is a super-concept of the second.

The use of taxonomic similarity adds
exibility to the communication

process since agents are not forced to use exact terms in their messages.

Finally, the RETSINA MAS provides a protocol engine and a proto-

col language that allows agents to specify their roles and the messages to

be exchanged and expected in the context of a protocol. The protocols

employ social semantics (Singh, 1998). Currently, the implementation

of the protocols is in the form of �nite I/O automata.

8 The Wordnet taxonomy could not be used directly for a number of reasons:

it is too big; it does not allow the user to browse the concepts in the ontology;

furthermore, it is di�erentially sparse, which creates enormous problems for the

similarity measurement; �nally, we could encode the smaller taxonomies to allow

more eÆcient concepts retrieval and a more precise similarity measurement.

AAMAS.tex; 13/03/2001; 10:09; p.13

14 Sycara, Paolucci, van Velsen, Giampapa

3.4. MAS Management Services

The management of applications of a MAS proves to be a very complex

task that is becoming more and more diÆcult as the application size,

the number of agents and machines involved increases. Tools are needed

to help monitor the activity of the agents, to debug MAS applications

and to launch these applications. The RETSINA MAS includes three

management components: the Logger, ActivityVisualizer and Launcher

that form an initial set of tools that help with monitoring, debugging

and launching MAS applications.

The Logger records the activity of the agents. Speci�cally, the Logger

records agent entry to and exit from the system, and the exchange of

messages. In addition, the Logger records states and transitions within

the agents, as for instance whether an agent is active or waiting for a

query from other agents.

Since the Logger cannot spy on the agents, the agents need to im-

plement a Logger Module that relays to the Logger information about

their state and their communications.

The Logger is connected to the ActivityVisualizer that displays the

activity within the system. The ActivityVisualizer uses the information

provided by the Logger to display in real time which agents are in

the system, their state and indicate when they exchange messages.

Furthermore, the Logger and the ActivityVisualizer can be used in

play-back mode thus permitting the agent programmers to review and

analyze activity in the MAS.

An additional component of this MAS infrastructure layer is the

Launcher which automatically con�gures and starts both infrastructure

components and agents on di�erent machines, platforms and operating

systems from a single point of control, greatly reducing the work that

has to be done by hand to start and maintain a distributed application.

The launcher is of great value especially as di�erent agent versions get

developed and as agents may change resource requirements or as they

need to be moved and restarted on di�erent machines.

3.5. Performance Services

The current version of the RETSINA MAS does not include MAS per-

formance service or reputation service. We have however built per-

formance service monitors in simulation as well as distributed check-

pointing and roll-back upon agent failure. We have experimented with

di�erent monitoring services in the context of contract net family of

protocol (Smith, 1980).

Some agents implement a self monitoring mechanism (Shehory et al.,

1998) that predicts when the agent is going to be overwhelmed by

AAMAS.tex; 13/03/2001; 10:09; p.14

The RETSINA MAS Infrastructure 15

the load of tasks it performs and clones itself producing a brand new

agent with the same functionalities and delivering the same service as

the original agent. The set of tasks of the original agent is split and

re-distributed between the old agent and the clone, thus allowing for

increased system throughput.

3.6. Security

Since RETSINA is an open system, unknown and possibly untrust-

worthy agents can enter at any time. These agents can damage the

system in many ways: they can spy on other agents, steal goods or

information, and damage the content of the infrastructure components.

For instance, a malicious agent might prevent the MAS from working by

unregistering all the agents from an ANS. The security infrastructure

of the RETSINA MAS prevents such problems from happening.

In RETSINA, we guarantee three types of security: agent authen-

tication via a Certi�cate Authority, communication security, which

guarantees that the communication between agents cannot be eaves-

dropped, and integrity of the components that guarantees that no

component can be inappropriately manipulated. Communication secu-

rity is achieved by giving agents unique IDs, as private keys which are

veri�ed using public keys, and by layering SSL underneath the commu-

nication interface used by the agents. Integrity of the MAS components,

such as the ANS, is also guaranteed by relying on the unique IDs of

agents and by adding access control mechanisms.

The security components of the RETSINA infrastructure for the in-

dividual agent are the Security Module in the agent and the Certi�cate

Authority in the MAS infrastructure. The Security Module generates

the private and public keys of the agent and it requests certi�cation

of the public key from the Certi�cation Authority, which binds the

requester's ID to its public key (Wong and Sycara, 1999).

3.7. RETSINA ANS

An ANS provides a means of abstraction from the physical location of

agents by mapping an agent ID to its address in the system. The ANS

is then queried by agents when they need the address of other agents,

for instance when they need to send messages.

Since an ANS plays a crucial role in the system, it should not become

a single point of failure that would prevent the whole MAS from func-

tioning. This is done in two ways: �rst by limiting the role of the ANS

in the interaction between agents, and by using a system of multiple

and redundant ANSs.

AAMAS.tex; 13/03/2001; 10:09; p.15

16 Sycara, Paolucci, van Velsen, Giampapa

An ANS does not participate in the transaction between agents, it

only provides them with addresses that they can cache removing the

need for unnecessary lookups. In addition an ANS provides robustness

of agent communication in the event of an ANS failure, since the agents

can continue their transaction even when no ANS is available in the

system.

Furthermore, multiple ANSs can be present in the system at the

same time. ANS servers �nd each other through Discovery using mul-

ticast within a LAN. Since it is not feasible to use multicast outside a

LAN, RETSINA uses \reference ANSs" that are visible outside the lo-

cal subnetwork boundaries. Through reference ANSs the lookup search

for an agent can be spread to a much wider network and possibly the

whole Internet.

Within an individual agent, the ANS component enables the agent

to register and unregister with an ANS and request lookups of desired

agents.

3.8. Middle Agents

Agents enter a MAS to exchange services with other agents, but since

RETSINA is an open system, no agent can be sure of what services are

available in the MAS at any given time, and who provides them. It is

a task of the infrastructure to provide a registry of services available in

the system and to allow agents to search for them in this registry.

RETSINA solves the service location problem by using a set of

middle agents called Matchmakers distributed across the MAS (Jha

et al., 1998). Each Matchmaker records a mapping between agents in

the system and the services that they provide. A Matchmaker uses

two types of data: the advertisements of the services provided, and the

requests from agents that need a service, both of them expressed in the

LARKS (Sycara et al., 1998) language. The task of a Matchmaker is

to �nd which advertisements match the requests. To accomplish this

task a RETSINA Matchmaker uses the LARKS matching engine that

performs both syntactic and semantic analysis of the advertisements

and requests to �nd exact or partial matches.

The RETSINA Matchmakers di�er from other Middle Agents such

as the OAA Facilitator (Martin et al., 1999) and Infosleuth's Broker

(Perry et al., 1999) in that they do not stay in the middle of the

interaction between the providers and the requesters. A requester agent

gets from a Matchmaker the contact information of relevant providers

and asks them directly to perform a service. This crucial di�erence

makes the RETSINA Matchmakers less of a single point of failure, since

after a requester has been given a list of providers, it can continue its

AAMAS.tex; 13/03/2001; 10:09; p.16

The RETSINA MAS Infrastructure 17

Figure 3. The RETSINA-OAA

InterOperator mediates between the RETSINA MAS (on the left) and the OAA

MAS (on the right)

transactions directly even when no Matchmaker is present. In addition,

a requester can cache providers' contact information and reuse them

without resorting to a matchmaker every time.

A Matchmaker supports two types of protocols: \single shot" and

\monitor'. When an agent sends a single shot request to a Matchmaker,

it gets back the list of providers whose advertisements match the re-

quest. When an agent sends a monitor query, besides getting the list

of matching agents, it also receives noti�cation as soon as one of the

providers exits the system, or new providers enter. Agents use one or

the other protocol depending on whether they need just a snapshot of

the agent landscape or they need to be kept up-to-date on the changes

in the system.

3.9. RETSINA-OAA InterOperator

Imagine an OAA agent trying to enter the RETSINA MAS. Such an

agent would be totally lost and unable to interact with either the

agents or with the infrastructure components. It would not be able

to communicate with any agent because it would \speak" the Prolog-

AAMAS.tex; 13/03/2001; 10:09; p.17

18 Sycara, Paolucci, van Velsen, Giampapa

based OAA ICL, while every agent in the RETSINA system \speaks"

KQML. Furthermore, it would expect to deal with a Facilitator, but

may end up dealing with a Matchmaker instead, with the result that it

would not be able to ask for services nor to interpret what is returned

by the middle agent.

While many claims have been made about openness of MASs, the

current practice is that MAS developers make such strong assump-

tions on the agents they develop that natural interoperation across

MAS boundaries is virtually impossible9. To interoperate between OAA

and RETSINA, we implemented the RETSINA-OAA InterOperator

(Giampapa et al., 2000). The task of the InterOperator is to allow any

agent in the RETSINA system to access any service or information

provided by OAA agents, and for any agent in the OAA system to

access services or information provided by RETSINA agents.

The RETSINA-OAA InterOperator \bridges" the two worlds of

RETSINA and OAA by performing two types of tasks: �rst it makes

the two systems visible across MAS boundaries, second it allows agents

to exchange messages across MAS . The �rst task is accomplished by

collecting all the advertisements of RETSINA agents, translating and

registering them with the OAA Facilitator. Similarly, the advertise-

ments of OAA agents with the Facilitator are collected and advertised

with the RETSINA Matchmaker. Therefore, through the RETSINA-

OAA InterOperator, the two systems are able to \see" each other's

agents. The second task is accomplished by translating the queries of

the agents of one MAS to the agents of the other MAS, and then

translating the answers back.

Due to fundamental di�erences in the architectures and ACLs of the

RETSINA and OAA multi-agent system architectures, it is not possible

for all forms of agent-to-agent interaction of one MAS architecture to

be translated to the other. Nevertheless, the RETSINA-OAA InterOp-

erator does adequately allow for the necessary agent interactions to

occur across MAS boundaries.

4. Applications

The RETSINA MAS infrastructure has been used to develop many ap-

plications that range from �nancial portfolio management, E-commerce,

aircraft maintenance and military logistics. In the following we discuss

some of these applications.

9 Attempts at standardizations such as FIPA(FIPA, 2000) are likely to reduce

the problem, but not solve it. Di�erences will remain in the Ontologies used, the

interaction protocols and the MAS architecture.

AAMAS.tex; 13/03/2001; 10:09; p.18

The RETSINA MAS Infrastructure 19

4.1. Warren: Financial Portfolio Management

TheWARREN system (Decker et al., 1996) is an application of RETSINA

to the problem of information gathering and �nancial portfolio man-

agement. Warren is composed of three types of agents: interface agents

that display the portfolios to the users, task agents that assist the user

in the management of her portfolio, and information agents that are

used to gather relevant information about stocks in the portfolio (for

example, stock prices, news and company �nancial reports.) Through

the interface agent, the user can buy stocks, sell stocks, monitor the

value of her own portfolio and monitor news about the stocks in the

portfolio. Two task agents assist the user, the Comptroller and the Risk

Critic. The Comptroller records the portfolio and could interact with

stock brokers10 to acquire stocks. The Risk Critic acts as a �nancial

advisor and signals to the user when the acquisition of new stocks in

the portfolio or the sale of some stocks modi�es the risk associated with

the portfolio. Information agents monitor the web to report the value

of stocks and their current risk pro�le for the risk critic. Furthermore,

some information agents monitor news casts to �nd news that can be

of interest for the user.

4.2. Coala: E-commerce Auctions

The Coala system (Tsvetovat et al., 2000) is an application of the

RETSINA infrastructure to E-commerce auctions. Coala manages col-

lective book purchasing by bundling large groups of buyers into coali-

tions.

The testbed system consists of a coalition server, an auctioneer

agent, a set of supplier agents, and a set of web-based interfaces, one

for each end user. The system is based on a pre-negotiation protocol

and a variation of sealed-bid reverse auction that allows suppliers to

disclose their discount policies to the buyer coalition leader.

The buyer coalition leader uses the WWW interface to initiate re-

verse auctions with supplier agents. The supplier agents, in turn, decide

on a step function for a volume discount schedule and make their bids

accordingly to projected sizes of coalitions. When the reverse auction

is complete, the coalition leader opens the coalition to new members,

which can join the group if they meet the entrance requirements. Af-

ter the group is formed, the coalition server proceeds to execute the

transaction.

10 Currently, Warren is not connected to a real Internet stock brokering system to

perform real stock trading.

AAMAS.tex; 13/03/2001; 10:09; p.19

20 Sycara, Paolucci, van Velsen, Giampapa

4.3. Aircraft Maintenance

Access to information is vital for mechanics doing maintenance on air-

craft. Maintenance must be completed under time constraints, and a

signi�cant portion of a mechanic's time is spent looking for appropri-

ate information from other mechanics or from paper documentation.

Reports must be read and written, information sources queried and

consulted, and information must be stored and organized. Not only

this takes considerable time, it also results in inconsistent updates, ad

hoc handwritten documentation, and lack of access to old but useful

information sources. In collaboration with the Robbins Air Force Base

in Georgia USA, where all F-15 aircrafts get serviced for maintenance

and repair, we have developed RETSINA agents that run on wearable

computers for mechanics' decision support during aircraft maintenance

(Shehory et al., 1999).

In our agent supported process, a mechanic carries a wearable com-

puter as he completes his maintenance tasks. When he encounters a

discrepancy in his inspection, the mechanic �lls out a form on his

wearable computer. The system analyzes the form and seeks out rel-

evant information from agents. The system then displays the repair

recommendations and �les the form for future use. The advantages

of wearable computers with agents include automatic location and re-

trieval of information relevant to repairs, utilization of historical repair

data, increased eÆciency of access to information from manuals, and

reduction in average time for repair. The overall result is timely, quality

maintenance.

4.4. Logistic Domains

RETSINA has been applied to logistic domains to support multiple

users in their collective decision process. In one of such domains, the

agents help three decision makers plan an hypothetical evacuation of

civilians out of Kuwait City. In this scenario, a US Transportation Of-

�cer, a military commander and the US Ambassador in Kuwait should

decide what is the safest route out of the city. They are distributed in

space: the Ambassador is in Kuwait City, the US transportation oÆcer

in some Air Force Base, and the military commander in a US base

near Kuwait. Each of them uses an interface agent, called Messenger,

to communicate with the others. Each Messenger eavesdrops the con-

versation of the humans to identify the needs of the decision makers

and it anticipates information that could help them in their decision

process. Each Messenger uses the MAS infrastructure to identify the

agents that monitor the information sources of interest to the decision

AAMAS.tex; 13/03/2001; 10:09; p.20

The RETSINA MAS Infrastructure 21

makers such as satellites, news feeds, weather reports and intelligence

reports.

This scenario was used to test and deploy the InterOperator (de-

scribed above in section 3.9) between the RETSINAMAS and the OAA

MAS. Agents in these two systems exchanged information regardless

of the MAS boundary. So for instance, agents on the RETSINA side

could gather information about
ights out of Kuwait City by querying

agents on the OAA side, while agents on the OAA side could gather

information about weather and satellite reports from agents in the

RETSINA side.

The role of agents in logistic domains is not restricted to information

gathering. Agents can also help the decision makers with negotiating

a shared plan freeing the decision makers from the burden of deal-

ing with all details of constructing a common plan of action. This

is done in another application of the RETSINA MAS, named Agent

Storm, in which three tank commanders form a team and navigate

across an area littered with mines and where enemies have been seen.

Each commander is assisted by a \Mission Agent" to do information

gathering, shared planning and monitoring the plan execution. The

Mission Agent of one commander negotiates with the Mission Agents

of the other commanders a shared plan that takes into account all the

information available and the problems that can be foreseen. When the

constructed plan is approved by the commanders, the agents monitor

the plan execution trying to prevent failures by negotiating changes in

the plan.

5. Related Work

In the previous sections we gave a functional de�nition of the infras-

tructure for MAS as a set of services, conventions and knowledge that

support the agents' social interaction. We then described RETSINA as

an example of implemented and fully functional MAS infrastructure. In

this section we will discuss how these functionalities are implemented

in di�erent MAS. As previously in the paper we refer to Figure 1 while

we analyze di�erent MAS layer by layer.

5.1. ACL Infrastructure

The de�nition of a communication language is an essential part of

creating a community of agents. Most implemented research MASs, for

example RETSINA, DECAF (Graham and Decker, 2000), Infosleuth

(Nodine et al., 1999), Jade (JADE, 2000) among others, use KQML

AAMAS.tex; 13/03/2001; 10:09; p.21

22 Sycara, Paolucci, van Velsen, Giampapa

(Finin et al., 1997) or FIPA ACL (FIPA, 2000) as agent communication

languages.

OAA agents instead exchange messages in the form of PROLOG

predicates. One key di�erence between the ACL used by OAA and

KQML or FIPA is that in the OAA ACL there are only two performa-

tives: \solve" that is used to query other agents, and \solved" that is

used to answer the query. But there is no way to express a performative

equivalent to assertions like the \tell" in KQML. As a consequence,

OAA agents are forced to maintain a precise history of the message

exchange and infer from it what kind of message they received and

what they should do with that message.

5.2. MAS Management Services

Starting many agents on multiple platforms at the same time is a very

time consuming process. In RETSINA we developed a launching and

management system for our agents. This system is in charge of starting

agents on di�erent machines in the local network. RETSINA also pro-

vides tools monitoring the activity within the MAS and management

facilities.

A similar system is used by ZEUS (Nwana et al., 1999) that imple-

ments a visual editing system that allows the programmer to construct

the MAS and to specify the interactions between the agents. The edit-

ing system can also be used for monitoring and management facilities.

OAA implements an application \called startit" that starts, manages

and shuts down the system.

5.3. Security

Security is a concern in MAS implementations because, as we discussed

above, agents can misbehave by cheating on other agents or by a�ecting

the integrity of the system. Yenta (Foner, 1996) as well as RETSINA

implements a security system to protect the integrity of its Match-

maker. Security is a major concern in the mobile agents community

(Greenberg et al., 1998) , since agents have access to a remote host

and their misbehavior might damage the host as well as the MAS

infrastructure the agent belongs to.

5.4. Mapping between Agents, Capabilities and Locations

RETSINA and DECAF implement Matchmakers and ANSs as lookup

services: the Matchmaker maps capabilities into agents, the ANS maps

agents to locations. OAA and InfoSleuth (Nodine et al., 1999) im-

plement brokers that map capabilities to agents. This mapping also

AAMAS.tex; 13/03/2001; 10:09; p.22

The RETSINA MAS Infrastructure 23

contains information on the location of the agents. The �rst di�erence

between RETSINA and DECAF on one hand and OAA and InfoSleuth

on the other is that the �rst two implement a distributed control in

which the matchmaker does not manage the interaction between the

agents, while both the OAA Facilitator and the InfoSleuth Broker do.

The distribution of services implemented by RETSINA and DECAF

increases the reliability of the system. Furthermore, advertisements in

RETSINA (Sycara et al., 1998) and DECAF represent the functional-

ities of an agent by specifying the types of inputs that it requires and

the types of outputs it generates. In contrast, the advertisement of an

OAA agent is just predicates representing a sample query: it does not

specify what information the agent requires to compute an answer or

what information it returns. Finally, the advertisement in InfoSleuth is

a classi�cation of the agent in an ontology: it speci�es what the agent

is about, instead of what the agent does.

6. Conclusions

MASs are more than just a set of agents gathered in the same system,

and more than an extension of single agents in some distributed fashion.

To work together, agents need a way to �nd each other, a common

communication language, a shared ontology to understand each other's

messages. The role of the MAS infrastructure is to provide location

services, ontologies, and language that allow agents to collaborate, ex-

change information and services. The result is that MASs emerge by

the aggregation of agents around an infrastructure which is the \glue"

that keeps the agents together, rather than being a by product of the

collaboration between agents.

The contributions of this paper are two fold. First, we provide a

model of what constitutes a MAS infrastructure as a set of services

and conventions that allow agents to interoperate. Our proposed model

of infrastructure also shows how the MAS infrastructure should be re-

ected within a single agent so that it can become part of the MAS. Sec-

ond, we present RETSINA as a fully implemented MAS infrastructure

that adheres to the proposed model.

References

Arai, S., K. Sycara, and T. R.Payne: 2000, `Multi-agent Reinforcement Learning for

Scheduling Multiple-Goals'. In: ICMAS2000.

AAMAS.tex; 13/03/2001; 10:09; p.23

24 Sycara, Paolucci, van Velsen, Giampapa

Barber, K. S., D. N. Lam, C. E. Martin, and R. M. McKay: 2000, `Sensible Agent

Testbed Infrastructure for Experimentation'. In: Agents 2000: Workshop on

Infrastructure for scalable MAS. Barcelona, Spain.

Castelfranchi, C.: 1998, `Modelling social action for AI agents.'. Applied Arti�cial

Intelligence 103, 157{182.

Coabs: 2000, `Grid Web Site'. http://coabs.globalinfotek.com/.

Corba: 2000, `Corba Web Site'. http://www.corba.org/.

Decker, K., K. Sycara, and M. Williamson: 1997, `Middle-Agents for the Internet'.

In: Proceedings of IJCAI97.

Decker, K., K. Sycara, and D. Zeng: 1996, `Designing a Multi-Agent Portfolio

Management System.'. In: AAAI-96 Workshop on Internet-Based Information

Systems. Portland, OR.

Fellbaum, C.: 1998, WordNet: An Electronic Lexical Database. MIT Press.

Finin, T., Y. Labrou, and J. May�eld: 1995, `KQML as an agent communication

language'. In: J. Bradshaw (ed.): Software Agents. MIT Press.

Finin, T., Y. Labrou, and J. May�eld: 1997, `KQML as an agent communication

language'. In: J. Bradshaw (ed.): Software Agents. MIT Press.

FIPA: 2000, `Foundation For Physical Agents'. http://www.�pa.org/.

Foner, L. N.: 1996, `A Security Architecture for Multi-Agent Matchmaking'. In:

ICMAS-96.

Funfrokcen, S.: 1998, `Transparent migration of Java-based mobile agents: Capturing

and reestablishing state of Java programs'. In: MA98. Berlin, Germany.

Gasser, L.: 2000, `MAS Infrastructure De�nitions, Needs, and Prospects'. In: Agents

2000 Workshop on Infrastructure for scalable MAS. Barcelona, Spain.

Giampapa, J. A., M. Paolucci, and K. Sycara: 2000, `Agent Interoperation Across

Multagent System Boundaries'. In: Proceedings of Agents 2000. ACM Press.

Graham, J. R. and K. S. Decker: 2000, `Towards a Distributed, Environment-

Centered Agent Framework'. In: N. Jennings and Y. Lesp�erance (eds.): Intelligent

Agents VI | Proceedings of the Sixth International Workshop on Agent Theories,

Architectures, and Languages (ATAL-99), Lecture Notes in Arti�cial Intelligence.

Springer-Verlag, Berlin.

Greaves, M., H. Holback, and J. Bradshaw: 1999a, `What Is a Conversation Policy?'.

In: Agents 99: Workshop on Specifying and Implementing Conversation Policies.

Greaves, M., H. Holmback, and J. M. Bradshaw: 1999b, `What is a conversation pol-

icy?'. In: In Agents99 Workshop on Specifying and Implementing Conversation

Policies.

Greenberg, M. S., J. C. Byington, and D. G. Harper: 1998, `Mobile Agents and

Security'. IEEE Communications.

JADE: 2000, `Programmer's Guide, June 5th, 2000'.

http://sharon.cselt.it/projects/jade/.

Jennings, N., K. Sycara, and M. Wooldridge: 1998, `A roadmap of agent research

and development.'. Journal of Autonomous Agents and Multi-Agent Systems

1(1), 275{306.

Jha, S., P. Chalasani, O. Shehory, and K. Sycara: 1998, `A formal treatment of

distributed matchmaking'. In: Agents 1998.

Jini, S.: 2000, `Jini Web Site'. http://www.sun.com/jini.

Liu, J.-S. and K. Sycara: 1996, `Multiagent Coordination in Tightly Coupled Task

Scheduling'. In: ICMAS-96.

Martin, D., A. Cheyer, and D. Moran: 1999, `The Open Agent Architecture:

A Framework for Building Distributed Software Systems.'. Applied Arti�cial

Intelligence 13(1-2), 92{128.

AAMAS.tex; 13/03/2001; 10:09; p.24

The RETSINA MAS Infrastructure 25

Nodine, M., W. B. amd, and A. Ngu: 1999, `Semantic Brokering over Dynamic

Heterogeneous Data Sources in InfoSleuth(tm)'. In: Proceedings of the 15th

International Conference on Data Engineering.

Nwana, H., D. Ndumu, L. Lee, and J. Collis: 1999, `ZEUS: A Tool-Kit for Building

Distributed Multi-Agent Systems'. Applied Arti�cal Intelligence Journal 13(1),

129{186.

Perry, B., M. Taylor, and A. Unruh: 1999, `Information Aggregation and Agent

Interaction Patterns in InfoSleuth'. In: cia99. ACM Press.

Shehory, O. and K. Sycara: 2000, `The Retsina Communicator'. In: Agents 2000.

ACM Press.

Shehory, O., K. Sycara, Chalasani, P., and S. Jha: 1998, `Increasing Resource Uti-

lization and Task Performance by Agent Cloning'. In: M. S. V. A. Rao and M.

Wooldridge (eds.): In Lecture Notes in AI: Intelligent Agents. Springer Verlag.

Shehory, O., K. Sycara, G. Sukthankar, and V. Mukherjee: 1999, `Agent aided

aircraft maintenance'. In: Agents-99.

Singh, M. P.: 1998, `Agent Communication Languages: Rethinking the Principles'.

IEEE-Computer 11.

Smith, I., P. Cohen, J. Bradshaw, M. Greaves, and H. Holmback: 1998, `Designing

Conversation Policies using Joint Intention Theory'. In: ICMAS98. IEEE Press.

Smith, R. G.: 1980, `The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver.'. IEEE Transactions on Computers

29(12), 1104{1113.

Suri, N., J. M. Bradshaw, P. T. G. Maggie R. Breedy, G. A. Hill, T. S. M. Renia Jef-

fers, B. R. Pouliot, and D. S. Smith: 2000, `NOMADS: toward a strong and safe

mobile agent system'. In: Agents 2000. ACM Press.

Sycara, K.: 1990, `Negotiation Planning: An AI Approach'. European Journal of

Operational Research 46, 216{234.

Sycara, K., K. Decker, A. Pannu, M. Williamson, and D. Zeng: 1996, `Distributed

Intelligent Agents'. IEEE Expert, Intelligent Systems and their Applications

11(6), 36{45.

Sycara, K., J. Lu, and M. Klusch: 1998, `Interoperability Among Heterogeneous

Software Agents on the Internet'. Technical Report CMU-RI-TR-98-22, School

of Computer Science, Carnegie Mellon University.

Sycara, K. and D. Zeng: 1994, `Towards an Intelligent Electronic Secretary.'. In:

CIKM-94.

Tambe, M.: 1997, `Towards Flexible Teamwork'. Journal of Arti�cal Intelligence

Research 7, 83{124.

Thomas, J. D., K. Sycara, and T. R.Payne: 1998, `Heterogeneity, Stability and

EÆciency in Distributed Systems'. In: ICMAS1998.

Tsvetovat, M., K. Sycara, Y. Chen, and J. Ying: 2000, `Customer Coalitions in

the Electronic Marketplace'. In: Proceedings of Workshop on Agent-Mediated

Electronic Commerce, Fourth International Conference on Autonomous Agents.

Wong, H. C. and K. Sycara: 1999, `Adding Security and Trust to Multi-Agent

Systems'. In: Agents '99 Workshop on Deception, Fraud and Trust in Agent

Societies. Portland, OR.

Wong, H.-C. and K. Sycara: 2000, `A Taxonomy of Middle-agents for the Internet'.

In: ICMAS'2000.

Zacharia, G., A. Moukas, and P. Maes: 1999, `Collaborative Reputation Mechanisms

in Online Marketplaces'. In: HICSS-32.

AAMAS.tex; 13/03/2001; 10:09; p.25

AAMAS.tex; 13/03/2001; 10:09; p.26

