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Abstract. A framework for cooperative goal-satisfaction in large-scale Multi-
Agent Systems (MAS) is presented in this paper. This is performed by demon-
strating the applicability of a low complexityphysics-oriented approach to a
large-scale transportation problem. The framework is based on modeling cooper-
ative MAS by a physics-oriented model. According to the model, agent-systems
inherit physical properties, and therefore the evolution of the computational sys-
tems is similar to the evolution of physical systems. We provide a detailed al-
gorithm to be used by a single agent and implement this algorithm in our sim-
ulations. Via these we demonstrate effective task allocation and execution in an
open, dynamic MAS that consists of thousands of agents and tasks.

1 Introduction

Goal-satisfaction in MAS may require cooperation among the agents, but cooperative
goal-satisfaction may be beneficial even if the agents can perform goals by themselves.
Traditional task-allocation methods [14] require coordination via communication [3].
In very large agent-communities there usually cannot be direct, on-line connection be-
tween all of the agents, as such a connection is too costly. Therefore, when the number
of agents increases, the complexity of most of the cooperation methods becomes un-
bearable. To resolve the scale-up computational explosion of cooperation mechanisms
in large MAS we present a different approach.

We apply a model based on methods from classical mechanics [12] to model large-
scale agent-systems. The physics-oriented methods are used to construct a beneficial
cooperative goal-satisfaction algorithm to be used by the single agent within the system.
In spite of the myriad differences between particles and computational agents, we show
via simulations that, at least for the example problem that we have tested, using the
physics-oriented approach enables effective cooperation and goal-satisfaction in very
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large agent-systems. In current research we are investigating the applicability of our
model to other, non-physical domains.

Many problems arise in large scale MAS research. In this paper we concentrate on
investigating one facet – task allocation and execution within large-scale cooperative
MAS2. More specifically, we consider cases in which cooperative autonomous agents
allocate themselves to tasks. We describe a model that allows for the dynamic agent-task
allocation and is appropriate for large-scale MAS and test it. The latter is performed by
simulating a dynamic agent system that follows our suggested mechanisms and consists
of thousands of agents and tasks. To our best knowledge, up to date, this is the largest
simulation of a task allocation and execution in a dynamic, open MAS. The model
we present provides a solution to problems which were not addressed previously in
MAS, and may be the basis for future solutions for a larger class of problem domains.
We show here applicability to one domain and in research in progress we have shown
applicability to another, less physical problem domain. Yet, more research is necessary
to determine applicability to additional domains.

1.1 Assumptions, notations and concepts

We assume that the agents with which we deal have the ability to perceive the virtual3

displacement in the goal-space, and can perceive the properties of other adjacent agents
and goals. This may be done by sensors integrated into the agents. We also assume that
each agent knows about the types of resources that other agents may have, but may be
uncertain as to the particular resource-holdings of any other individual. These two as-
sumptions are necessary since the agents are expected to propagate from state to state
within the goal-space according to the properties of the surrounding agents, goals and
obstacles. In order to enable such propagation, some knowledge regarding neighbors is
necessary. We assume that each agent has a performance capability that can be mea-
sured using standard measurement units. The standard measurement will be used as a
quantitative way of measuring the agents’ success in fulfilling goals. In addition, we as-
sume that there is a scaling method which is used to represent the displacements of the
agents in the goal-space and to evaluate the mutual distances between goals and agents
within this space. This assumption is necessary since virtual distances (orphysical dis-
tances) are a significant factor in the model we present. We assume that goal-satisfaction
can be achieved progressively. That is, a goal may be partially satisfied at one instant,
and its remaining non-satisfied part may be complete at another point in time.

To present our model, we review concepts and notations from physics. The displace-
ment vector of a particlei is denoted byri. vi denotes the velocity, andai denotes the
acceleration. The kinetic energy of a particlei is represented byki, and the potential is
represented byV . The potential is a spatial function and therefore is sometimes called a

2 Cooperative MAS are frequently referred to as a Distributed Problem Solvers (DPS) [2] agent
systems. In DPS agent systems as in cooperative MAS, agents attempt to increase the common
outcome of the system.

3 Since the goal-space is not necessarily physical, we do not assume physical distances and
therefore call them virtual. In work in progress we show how such virtual distances can be
modeled and computed.



field of potential or a potential-well. Forces can be derived from the potential. Each par-
ticle i’s mass is denoted bymi, its displacement is denoted by the displacement vector
ri, its momentum bypi and the force that acts on it is denoted byFi.

1.2 Adapting physics to MAS

MAS Physics
identifying the environments locating particle models
where physics-oriented modelsand their properties
are appropriate; matching
particle properties to agents/goals
selecting the matter-states identifying states of matter and
that can be used to model the particle behavior within
automated-agents’ systems.
developing algorithms for using mathematical formulation to
agents’ goal-satisfaction; predict and describe the properties
adjusting to the physics systemand evolution of the selected
for validity of the algorithm particle model
analysis of the complexity theoretical and simulation-based
and properties of the analysis of physical particle
algorithm systems behavior

Table 1.Distributed AI and Physics for cooperative MAS

In the MAS that we consider, there is a large set of agents and a large set of goals
they need to satisfy. Each agent has capabilities and should move toward satisfying
goals. We use a physics model that consists of particles which represent the agents
and the goals, and to develop a distributed cooperative goal satisfaction mechanism.
We first step match between particles and their properties, agents and their capabilities,
and goals and their properties (see table 1). Next, we identify the state of matter for
modeling a community of agents and goals. The mathematical formulation that is used
by physicists either to describe or to predict the properties and evolution of particles
in these states of matter, serve as the basis for the development of algorithms for the
agents. However, several modifications of the physics model are necessary to provide
an efficient algorithm for automated agents.

In our model, agents and goals are modeled by dynamic particles and static par-
ticles, respectively. The match between particle properties and agent/goal properties
is described in table 2. We model goal-satisfaction by a collision of dynamic particles
with static particles. However, the properties of particle-collisions are different from the
properties of goal-satisfaction and several adjustments are needed in order to provide
the agents with efficient algorithms. These modifications are described in detail in this
paper.



Automated Agents Physics Model
community of agents satisfying goals non-ionic liquid system
agent dynamic particle
goal static particle
agent’s capabilities particle’s mass
agent’s (virtual) location in agents-goals spacelocation of particle
goal satisfaction static-dynamic collision
algorithm for goals allocation formal method for calculating

the evolution of displacement

Table 2.The match between the physics model components and the large-scale automated agents
environments

2 Modeling agents – a physics-oriented approach

Classical mechanics provides a formal method for calculating the evolution of the dis-
placement and the momentum of classical particles. For a particlei, the equations of
motion are:

Fi = mi�ri = miai and pi = mi _ri = mivi (1)

The motion of a particle depends on the field of potential in which it moves and the force
Fi = �mirriV (r). The model we present entails treating agents, goals and obstacles
as particles. That is, each agent will have its equations of motion and an initial state.
Note that an agent’s equations of motion do not necessarily entail real physical motion.
The potential field in which an agent acts represents the goals and the other agents in the
environment. Subject to the potential field, agents solve the equations of motion and,
according to the results, progress towards the solution of goals and either cooperate or
avoid conflicts with other agents. The cooperation and conflict-avoidance are emergent
properties of our physics-oriented model.

An appropriate physical system must consist of a potential that, when adapted to
the agent-model, will lead the agents to successful and beneficial goal-satisfaction. The
fluid model is most appropriate for our systems. As opposed to the solid state, a fluid
system can evolve from its initial state into new, different states. Preferable is a model
that does not require long range interactions (e.g., the non-ionic liquid model). In the
model suggested in [12] the typical potential of a particlei in a non-ionic liquid was
suggested (the Lennard-Jones potential). In the model developed for the specific trans-
portation application dealt with in this paper we experimented with several different
potential functions and finally concentrated on the following:

V (r)ij = 
(� ln rij + �r�2ij + �r�4ij ) (2)

whererij corresponds to the distance of particlei from particlej. This potential dimin-
ishes after a short distance, thus implying that the interaction between the particles in
the system is limited to short distances.



3 The physics-agent-system (PAS) model

The cooperative MAS system with which we deal is modeled by a set of particles and
a potential field. The agents in the system are modeled by dynamic particles and their
potential-wells. The goals and the obstacles are modeled by static particles which are
represented by fixed potential-wells. The superposition of the potential-wells of the
particles, either agents or goals and obstacles, constructs a potential field. The particles
move according to the field of potential and their own properties.

In the PAS model, the agent’s capability of satisfying goals is represented by the
mass of the particle that models it, and therefore by the potential-energyk = mv2=2,
which is a product of the mass, as well. Particles with a greater potential-energy model
agents that can satisfy larger or more difficult goals and sub-goals. This means that
a greater mass of a dynamic particle that models an agent (other properties remaining
constant, and thus causing a greater potential-energy), entails a larger capability of goal-
satisfaction by the agent. The mass of a fixed particle represents the size of the goal or
the obstacle. This means that in order to satisfy a greater goal, which is modeled by a
particle with a greater mass, more efforts are necessary on the part of the agents.

The displacement vector of a particleri models the displacement of the agent in the
goal-space. According to the virtual displacement of an agent, its distances from other
agents, goals and obstacles can be calculated. The potential is calculated according to
these distances. The momentum vectorpi of particlei represents its physical velocity
and is used for the calculation of the kinetic energy. In the PAS model, the velocity of a
dynamic particle represents the rate of movement towards the satisfaction of a goal or a
part of a goal.

3.1 Motion towards goal-satisfaction

In the physical world, the motion of particles is caused by the mutual attraction between
them. In the agents’ system, the agents calculate the attraction and move according to
the results of these calculations. The reaction of a particle to the field of potential will
yield a change in its coordinates and energies. In our model, each agent will calculate
the effect of the potential field on itself by solving a set of differential equations. Ac-
cording to the results of these calculations, it will move to a new state in the goal-domain
(section 3.3).

The steep decay of the potential function beyond a short distance from the center of
the potential-well results in derived weak forces and negligible interaction. Physicists
have shown that when the long-distance interactions are neglected, the results of sim-
ulations still agree with theoretical statistical-mechanics and thermodynamics [15, 11].
Therefore, it is common to cut off the range of interaction by cutting off the poten-
tial function after it diminishes to from1 to 10% of its maximal value. The radius of
interaction (and of the cut-off) is denoted byrI.

Agents will use numerical integration to solve the equations of motion that they
must solve, with respect to time. The integration must be iterated frequently and per-
formed with small time-stepsdt. We determine the size of the time differentialdt re-
lying on the experience gathered in physics simulations [11]: we demand that a typical
particle in the model will pass a distance ofr0 in � 10 time-stepsdt. This requirement



implies that the average velocityv of a particle (at its initial displacement) directly
affectsdt by the relationdt = r0=v.

3.2 Collision and goal-satisfaction

The dynamics of the physical system which models the computational system leads to
collisions between particles. Two types of collisions are possible: a collision between
two dynamic particles, which we denote by DDC, and a collision between dynamic
and static particles, denoted by SDC. In our model, the DDC represents the interaction
between two agents. In order to prevent situations where agents overlap, the particles
that model the agents have a mutual repulsion. The decision on which agents shall
perform a specific goal will emerge from the repulsion. Dynamic particles that model
agents shall have a potential that consists of a dominant repulsive component.

The SDC represents agent-goal interaction. In such interactions we would like the
static particle that models the goal to attract the dynamic particle that models the agent.
Adopting physical concepts, we use the notion of typical radius to specify the point
from which the particle starts the collision. A typical radius� of a particle is usually
taken to be the distance from its center to the point wherein the force is zero. An SDC
occurs when a dynamic particle is in the vicinity of a static particle. Vicinity here means
that the distance between them is a few typical radii (r0).

The goal-satisfaction is performed during the collision. An agent that reaches a
goal may either completely or partially satisfy it. In both cases, the model requires a
reduction in the magnitude of the goal. This implies that the mass of the modeling par-
ticle shall be reduced, but mass-reduction is not a physical property of such a collision.
Therefore, some modifications of the model shall be done, as long as they do not af-
fect the general evolution of the system. This will be possible if the model consists of
a scheme for a temporal partition of the evolution of the system. This means that the
evolution of the system will be partitioned into several time segments (different from
dt, much longer), and ineach temporal segment thephysical evolution of the system
will not depend on the other segments.

3.3 A protocol for the single agent

In order to cause evolution of the system towards goal-satisfaction, each agent uses the
information that it can gather by observation (e.g., via sensors) about its neighboring
agents and goals and regarding its previous state. According to this information, the
agent will construct the local field of potential and solve the equations of motion. The
results of the equations of motion will enable the agent to decide what its next step
towards goal-satisfaction will be. The exact detailed algorithm for the single agenti is
as follows:
Loop and perform the goal-reaching and goal-satisfaction processes until the resources
necessary for satisfying goals have been depleted or no goals within the interaction
rangerI have been observed for several time-segments.
Goal-reaching process

1. Advance the time countert by dt.



2. Locate all of the agents and goals within the rangerI , the predefined interaction
distance. Denote the distance to any neighboring entityj by rij.

3. Calculate the mutual potential (using equation 2) with respect to each of the agents
and goals within the range.

4. Sum over all of the pairwise potentialsV (rij) and calculate the gradient of the sum
to derive the forceFi.

5. UsingFi and the previous stateri(t�dt);pi(t�dt), solve the equations of motion
as described in section 2, in equation 1.

6. The results of the equations of motion will be a new pairri(t);pi(t). Move to the
new state that corresponds to the displacementri(t).

7. At each time-step, after moving to a new state, calculate the new kinetic energy and
potential according to the new coordinatesri(t);pi(t).

8. If your distance from the center of a particle that models a goal is greater thanr0,
return to step1. Otherwise, start the goal-satisfaction process.

The goal-satisfaction process
After reaching a goal, the agent must satisfy all or at least parts of it:

– Move into the potential-well that models the goal according to thephysical proper-
ties of the entities involved in the process and perform the goal.

– If ma, the mass of the particle that models the agent, is smaller thanmg , the mass
of the particle that models the goal, subtractma frommg . Else,mg = 0. In a case
of depleting resources,ma is reduced in a similar way. Return to step1.

The iterative method which we propose leads to a gradual reduction in the amount
and size of the goals to be satisfied, and will lead finally, to completion of the goals.

4 Simulation

To examine our model and show its applicability to real problems we have performed
a set of simulations. Via these we demonstrate effective task allocation and execution
in an open, dynamic MAS that consists of thousands of agents and tasks. The problem
domain for which the simulations where performed is as follows. We simulate freight
deliveries within a metropolitan. Such problems in real environments are commonly
solved by having one or a few dispatch centers to which delivery requests are addressed
and these each centrally plans and accordingly allocates delivery tasks to delivering
agents. This method may face bottlenecks and inefficiency when a large number of
agents and tasks is present. We demonstrate how the PAS model can overcome this
limitation.

We consider the road-network of a large metropolitan. A snapshot of a part of this
network is depicted in figure 1. In this figure squares represent messengers and circles
represent tasks. The city map is represented by a lattice-like graph. The boundaries of
the city are20; 000� 30; 000 meters. The lattice includes vertices located 200 meters
apart from each other. An edge may exist between each two neighboring vertices. Each
vertex represents a junction and each edge represents a road between two junctions. We
designate the map ”Full Lattice” when each vertex has edges enamating to all of its
neighboring vertices. A more realistic map would have some of the edges missing. To



obtain such a map we use some probability to determine the existence ofeach edge.
As a result disconnected sub-graphs (designated clusters) may occur. In such cases the
largest cluster will be selected to represent the city. We designate the map ”X% Lattice”
when lattice and cluster generation are performed taking the probability of including
an edge in the lattice to X%. Note that the structure of cities and roadways regulations
may prevent movement along the shortest path between two locations, as assumed by
the general algorithm. Thus, in the simulation, the distance between two locationsl1 and
l2 was calculated as the shortest way that one could drive froml1 to l2. Furthermore,
if the direction for movement4 v̂ calculated by the agent in the goal-reaching process
algorithm does not agree with a road direction̂road, then the road with the smallest
angel withv̂ is selected for movement. This selection is not different from a physical
behavior in environments with obstacles, and therefore justified.

The simulation consists of iterations in which new freights dynamically appear at
random locations on the map. The freights have an initial size which is set to 1 kg in
the homogeneous case and to a random value (out of a given range) in the heteroge-
neous cases. In addition, each freight has a random destination. Messengers (agents)
follow our algorithm to perform tasks of reaching freights and delivering them to their
destination.

Fig. 1. A fragment of city map

We have performed several different types of simulations. These varied over the
amount of tasks and agents involved, the homogeneity of agents and tasks, the reliability
of communication and the intensity of the lattice map.

Our simulations were initially performed such that agents and tasks are homoge-
neous in the sense that they have similar capabilities and capacities. We started with

4 The notation̂v refers to the direction of a vectorv.



Fig. 2.

these since they are simpler to handle and predict. However it was necessary to exam-
ine cases in which agents and tasks are not homogeneous, which are more realistic. In
the homogeneous case, masses of particle were set to1kg, whereas in the heterogeneous
case masses where set randomly out of a given distribution.We have also examined sev-
eral lattice maps, starting from a full lattice and moving to 90% and 80% lattice maps.
Since we have seen no significant difference in the performance between the different
maps, we concentrated on the 90% lattice map. To learn the effect of unreliable commu-
nication on the performance we have experimented a case in which messages are passed
with arrival probability which is smaller than 1. Additional parameters of the simula-
tions are as follows. During the simulation no new messengers appear. Parameter values
are
 = 1 � = 4000, � = �15E5, � = 5E11 (these are used in equation 2),R0 is 100
meters,RI is 2,000 meters. Note that these values where not arbitrarily chosen. Rather,
we have experimented with a variety of values to fine-tune the system until we arrived
at these coefficients. We sought timely task performance, and these coefficients yielded
the best results.

In the homogeneous case, we considered five settings of agent and task quantities.
In the 4 simulation settings in which the number of agents was 300, 400, 600 and 800
the initial number of tasks was 1200. In the case of 1200 agent the initial number of
tasks was 1500. In all 5 settings additional tasks where arriving at a rate of 600 tasks
per hour. The different quantities of agents in the first four settings allowed us to study
the effect of the number of messengers (hence the messengers/freights ratio as well) on
the system’s performance. The fifth setting was aimed mainly at studying the effects of
up-scaling.

The main results of the simulations are summarized in the graphs below.

– In figure 2 the ratio between the number of messengers in the system and the num-
ber of agents that are simultaneously involved in movement towards tasks is pre-
sented. The termMessenger quantityis the number of messengers which are cur-



rently moving towards freights. The other messengers are performing tasks. From
the graph one can observe that as the number of messengers involved increases,
so does linearly increases the number of those that simultaneously move towards
tasks. This result for itself does not seem of merit, however it results in reduction
in the time required for task execution (as can be seen in figure 4).

Fig. 3.

– The termFreight quantityin figure 3 is the number of freights currently waiting
for a messenger to deliver them. We observe that this number drops sharply as the
quantity of messengers goes up. The critical point where transition occurs is around
500 messengers. Given that 1200 tasks are present, this means that for significantly
lowering the number of freights which are simultaneously waiting to be delivered it
is enough to have a ratio of around 0.4 between messengers’ and tasks’ quantities in
the system. Increasing the ratio over 0.5 does not bring about a significant increase
in the performance (with respect to the numbers of freights waiting to be delivered).

– The termFulfilling messenger reaching timein figure 4 refers to the time5 it takes
a messenger, who successfully delivers a freight to its destination, to reach this
freight. One can observe that as the quantity of messengers increases (and so does
their density), the time which is required for a messenger to reach a freight in-
creases as well. This is a disadvantageous property, however it does not mean that
increasing the density is all bad. As we have seen before - it significantly reduces
the number of freights which simultaneously wait for being delivered. In addition,
as shown in figure 5, the average waiting time of the freights decreases as well.

– In figure 5 the freight average waiting time is presented. The termFulfilled freight
waiting timerefers to the time that a freight that was successfully delivered to its
destination has been waiting before being handled by a messenger. A sharp re-

5 Here and in the following graphs time is measured in seconds.



Fig. 4.

Fig. 5.

duction in the waiting time is observed. We observe phase transition around 500
messengers, similar to the phase transition in the case ofFreight quantity(figure
3). This further supports the observation that it is not worth while to increase the
agent/task ratio to above some ratio which is, in our simulation settings, around 0.4
to 0.5.

– Figure 6 presents the averageFreight fulfillment timewhich is the time between the
freight initiationand its arrival at its destination. Less steep than in previous graphs,
yet clear, is the improvement in the performance reached around 500 messengers.
It is important to notice that for 600 messengers and more the task execution time
is less then 1500 seconds. For a city of the size with which we deal (20 � 30 km)



Fig. 6.

Fig. 7.

with a speed limit of 50km/hr, this is a desirable fulfillment time.
– Figure 7 presents one of the results of a set of simulations of heterogeneous ensem-

bles of agents and tasks, where the probability of message reception varied between
50% and100%. That is, in this simulations an agent may not receive some of the
information regarding neighboring tasks and agents although this was transmitted.
The initial masses of tasks was set randomly between1kg and100kg, while the
masses of the agents was set randomly between80kg and180kg. If the capacity of
an agent was smaller than the size of the task, it delivers only part of the task at a
time. The number of agents in this set of simulations was 600 and the initial num-



ber of tasks was 1200. The other parameters were as in the previous simulations
reported above.
Our results indicate that the heterogeneity of the agents does not significantly change
the behavior of the system. From figure 7 we can conclude that the “Freight Fulfill-
ment Time” increases linearly when the probability of messages arrival decreases.
However, even with50% arrival of messages, the fulfillment time is better than in
the case of 400 messengers with100% arrival of messages (see figure 5). Similar
results were obtained with respect to the other parameters.

From the results presented above as well as myriad additional experiments (which
weren’t presented here for space reasons) we conclude the following:

– The PAS model can be applied for use in large scale agent systems to solve real
problems.

– An increase in the number of agents in the system does not increase the amount
of computations per agent. Thus, larger systems do not require more computation
time.

– An increase in the number of agents in the system, holding the number of tasks
constant, is beneficial only to some extent. Beyond some agents/tasks ratio, no sig-
nificant improvement in performance is observed. We believe this phenomenon
results from redundancy in densely populated agent systems.

– The results observed are similar for different densities of the lattice map used as
well as for low probabilities of unreliable communication channels. They become
better when the the distribution of tasks is not even, as typically happens in the
center of large metropolitans.

5 Related work

The issue of allocating agents to goals has widely been discussed among DAI re-
searchers. The Contract Net Protocol [14] uses negotiation based on task announce-
ments, bids and contracts for task allocation. While the CNP is based on the exchange
of information, the model we present minimizes the transmitted information and thus
enables large-scale systems to be efficient. A study of planning in large-scale agent-
systems has been presented in [17, 16]. In that research, the general-equilibrium ap-
proach from economics serves as the theoretical basis for the planning mechanism.
We also discuss large-scale systems and apply an analytical model for designing the
distributed planning mechanism, however we use a physics-oriented approach for co-
operative MAS, not for competitive agents.

A large body of DAI research studies coordination among agents for distributed
problem solving (for example, [2], PGP [5], GPGP [1], [6], [18]). In [4], Durfee and
Lesser study the Partial Global Planning (PGP) approach to coordination by imple-
menting it in the Distributed Vehicle Monitoring Testbed (DVMT). The DVMT is a
network of vehicle monitoring nodes. Each node has a planner that plans incrementally.
Nodes do not communicate their detailed actions, but do communicate according to a
meta-level organization. A PGPlanner modifies local plans as required due to incoming
messages. In its incremental planning and restricted communication the PGP model is



similar to our model. The DVMT task domain which was used as a testbed for both
PGP and GPGP includes monitoring traffic and directing it. This is performed by the
agents generating tentative maps for vehicle movements in their areas. Our transporta-
tion framework is different: we require that a transportation task be attached to agents
that plan for it and perform it. Therefore, our simulated transportation system is signif-
icantly different from DVMT.

The tileworld model [10] was used as a testbed for planning and task allocation and
execution in multi-agent systems. The utilization of physics methods allows for a model
that is significantly richer than the tileworld model. The tileworld model distinguishes
(at least) two different procedures – deliberation and path planning – which are usually
performed sequentially, whereas in the physics-based model an inherent property is in-
terleaving planning and execution. And, while the tileworld proves to work successfully
for systems of dozens of tasks and agents, (15 agents, 80 tasks in [6]), its computational
complexity6 will probably disable scaling up to thousands of tasks and agents. Such
system size is allowed by the physics based model, as our simulations prove.

Ephrati, Pollack and Ur [6] suggest the multi-agent filtering strategy as a means for
coordination among agents. They have conducted several experiments that show, that
for the tile-world, this strategy improves the performance of the agents. This coordina-
tion is achieved without explicit negotiation. In our work we do not suggest a strategy,
rather we suggest a method for modeling the goal-agent environment. Based upon this
model we suggest a detailed algorithm for the single agent for acting efficiently in the
environment.

Glance and Huberman [7] present a detailed physical formalism of the dynamics
of the collective action of a system of individuals. In our work the main issue is the
physical behavior of the single agent. Shoham and Tennenholtz [13] presented results
of simulations that were performed in order to perceive the emergence of conventions in
multi-agent systems. In our research, we discuss emergent cooperation and determine
the social laws to be such – –physical laws– – that they will cause the emergent cooper-
ation of the system when this cooperation is necessary. Mataric [9] proposes defining a
set of basic interactions that will allow the simplification of group behavior analysis. In
our work, we concentrate on the nature of the basic interactions and adopt the physical
interactions among particles to model the interactions among agents and goals.

6 Conclusion

The problem of the behavior of agents in very large agent-societies imposes difficulties
that are hard to solve even when the proposed solutions are of low-order polynomial
complexity. The approach which we present suggests a solution to some aspects of
this problem. We provide a method for task allocation which is applicable to several
classes of large-scale cooperative MAS. The physics-based approach we present results
in complexity which is, on the side of the single agent, very low and may even be
O(1). Such results are possible since we use a model whose behavior is already known.

6 As Kinny and Georgeff [8] explicitly say: “to reduce the complexity...we employed a simplified
Tileworld with no tiles.”



Therefore, we are not required to perform the numerous explicit calculations that would
have otherwise been necessary.

The model used and the algorithm that enables the single agent to act according to
the model result in agents allocating themselves to goals in order for these to be satis-
fied. The agent-goal matching is an emergent result of the physics-oriented behavior of
the agents. In cases where too many agents fit the requirements of the same goal, our
model will disenable some of them from reaching the goal, via mutual rejection. As we
have shown, our algorithm converges to a solution within reasonable time and leads to
agent-goal allocation and execution. Our method does not lead to the optimal alloca-
tion, but reaching an optimal allocation requires complete on-line information about all
of the agents and goals comprising the system and, for a large class of problems, an
exponential computation-time.

Our model can rely on theoretical and experimental results that are already known
from physics. Nevertheless we have performed simulations which support the theoreti-
cal observations. According to results from physics, we can predict the evolution of the
modeled agent-system, since it should evolve in the same manner as a corresponding
physical system. The local interactions, which enable one to derive the global behavior
of the system, assure a low computational complexity of the model. In very large-scale
agent-systems, this approach provides a model that allows for emergent cooperative
goal-satisfaction activity, as shown in our experiments.
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