
Intelligent Agents in Portfolio Management

Katia Sycara Keith Decker Dajun Zeng

October 22, 1996

Abstract

The voluminous and readily available information on the Internet has given rise
to exploration of Intelligent Agent technology for accessing, �ltering, evaluating and
integrating information. In contrast to most current research that has investigated
single-agent approaches, we are developing a collection of multiple agents that team
up on demand, depending on the user, the task and the situation, to access, �lter
and integrate information in support of user tasks. We are investigating techniques
for developing distributed adaptive collections of information agents that coordinate
to retrieve, �lter and fuse information relevant to the user, task and situation, as well
as anticipate user's information needs. Our approach is based on (1) case-based task
and situation models, (2) 
exible organizational structuring, and (3) reusable agent
architecture. We are currently implementing the system in the domain of �nancial
portfolio management.

1 Introduction

Due to advances in technology, diverse and voluminous information is becoming avail-
able to decision makers. This presents the potential for improved decision support, but
poses challenges in terms of building tools to support users in accessing, �ltering, eval-
uating and fusing information from heterogeneous information sources. Most reported
research on Intelligent Information Agents to date has dealt with a user interacting with
a single agent that has general knowledge and is capable of performing a variety of user
delegated information �nding tasks (e.g., [4]). For each information query, the agent
is responsible for accessing di�erent information sources and integrating the results.
We believe that, given the current computational state of the art, a centralized agent
approach has many limitations: (1) a single general agent would need an enormous
amount of knowledge to be able to deal e�ectively with user information requests that
cover a variety of tasks, (2) a centralized information agent constitutes a processing
bottleneck and a \single point of failure", (3) unless the agent has beyond the state of
the art learning capabilities, it would need considerable reprogramming to deal with
the appearance of new agents and information sources in the environment, (4) because
of the complexity of the information �nding and �ltering task, and the large amount of
information, the required processing would overwhelm a single agent. Because of these
reasons and because of the characteristics of the Internet environment, we employ a
distributed collaborative collection of agents for information gathering.

1



We are currently working on a system where each user is associated with a set of
agents which have access to the task and situation models and keep track of the cur-
rent state of the task, situation, environment and user information needs. Based on
this knowledge, the agents decide what information is needed and initiate collaborative
searches with other agents to get the information. During search, the agents communi-
cate with each other to request or provide information, �nd information sources, �lter
or integrate information, and negotiate to resolve con
icts in information and task
models. The returned information is communicated to display agent or agents that
possibly combine it with information from other sources (e.g. the user) and/or �lter it
for appropriate display to the user.

This paper focuses on the design of such a system of agents for the task environment
of �nancial portfolio management, and on the key issues that we will be addressing.
These issues include:

� Gathering and integrating diverse information sources with collaborat-

ing software agents. Because of the volume, complexity, and dynamic nature
of the information available to support a user's goals, it is impossible for a single
computational agent to �nd, access, and integrate all that information in a timely
manner.

� Case-Based User, Task and Situation Models. The utility of information
depends on the user, task and situational context. We propose to model user,
task, and situations in cases. Cases organize information gathering plan frag-
ments under currently valid user, task, and situation features; focus distributed
agent information searches; and guide information �ltering and integration. Case
updates resulting from agent information gathering activities re�ne these models
and re
ect the current situation.

� Adaptive integration of planning, coordination, scheduling, and execu-

tion. We will explore the construction of individual agents that have the ability
to be highly autonomous, quickly adapt to changes in the current environmental
situation, and yet still be socially situated, balancing predictability and respon-
siveness.

In our system, Case-based reasoning provides meta-level control and activation
of agents. Depending on the task, user and situation, case based retrieval selects
current planning goals, information needs and information gathering goals. Based on
the plans and information gathering goals, agent teams are activated \on demand"
to access, integrate and �lter information to ful�ll these goals. New information can
be incorporated in the case base and may give rise to new plans and information
gathering goals (and as a result activation of potentially di�erent agent teams). The
system has two types of agents, task agents and information agents. Task agents
have information about tasks and associated information gathering goals. Information
agents have models of information sources, information access strategies and associated
task agents to whom the information should be returned. The reported work is a
continuation of our previous work on multi agent information access, �ltering and
integration of everyday organizational tasks [17].

2



2 The Portfolio Management Domain

To evaluate our domain independent agent control, organization, coordination and
architectural schemes, we have chosen �nancial portfolio management as a task domain.
This is the task of providing an integrated �nancial picture for managing an investment
portfolio over time, using the information resources already available over the Internet.
This task environment has many interesting features, including:

� the enormous amount of continually changing, and generally unorganized, infor-
mation available

� the variety of kinds of information that can and should be brought to bear on
the task (market data, �nancial report data, technical models, analysts' reports,
breaking news, etc.)

� the many sources of uncertainty and dynamic change in the environment

� information timeliness and criticality features that present the agents with hard
and soft real-time deadlines for certain tasks

� resource and cost constraints|not all data are available for free

� relatively well-structured evaluation criteria and experimentally veri�able testbed
where decisions supported by the system can be evaluated using real world data
and feedback

The overall task in the portfolio management domain, as stated by modern portfolio
theory [9], is to provide the best possible rate of return for a speci�ed level of risk, or
conversely, to achieve a speci�ed rate of return with the lowest possible risk1. Risk
tolerance is one of the features that characterize the user of our system; other features
include the user's investment goals (long-term retirement savings? saving for a house?)
and the user's tax situation. In current practice, portfolio management is carried out by
investment houses that employ teams of specialists for �nding, �ltering and evaluating
relevant information. Current practice as well as software engineering considerations
motivate our multi agent system architecture.

Previous work in the portfolio management domain (see [19] for one collection) has
focused on the portfolio selection process (i.e., \stock picking") as opposed to port-
folio monitoring|the ongoing, continuous, daily provision of an up-to-date �nancial
picture of an existing portfolio. A multi-agent system approach is natural for port-
folio monitoring because the multiple threads of control are a natural match for the
distributed and ever-changing nature of the underlying sources of data and news that
a�ect higher-level decision-making processes. A multi-agent system can more easily
manage the detection and response to important time-critical information that could
appear suddenly at any of a large number of di�erent information sources. Finally,
a multi-agent system provides a natural mapping of multiple types of expertise to
be brought to bear during any portfolio management decision-making. Existing DAI
techniques for resolving con
icting opinions, negotiation, and argumentation can be
brought to bear on these problems [15, 16].

The overall portfolio management task has several component tasks. These include
eliciting (or learning) user pro�le information, collecting information on the user's

1Risk can be speci�ed via a statement such as \I wish to be 95% certain that I endure no more than a
10% loss in value over any one year."

3



initial portfolio position, and suggesting and monitoring a re-allocation to meet the
user's current pro�le and goals. As time passes, assets in the portfolio will no longer
meet the user's needs (and these needs may also be changing as well). Our initial
system focuses on this ongoing portfolio monitoring process.

The task of monitoring individual portfolio assets gives rise to a variety of concur-
rent goals, such as monitoring an asset currently being held (should we continue to
hold it? sell some or all of it?), or monitoring the buying or selling of an asset. Buying
and selling at this high level are not instantaneous transactions, but also require careful
planning and monitoring of plan execution. For example, let us assume that in the
process of monitoring the system comes to recommend that an asset be sold. The way
in which it is sold will be determined in part by the reason for the sale|perhaps the
asset is no longer performing as required for it's role in the portfolios asset allocation
mix. Perhaps it is performing too well, and there is a growing possibility that the asset
has reached a peak. In this second case it is often prudent not to sell one's entire
holdings all at once, but to sell in phases and place the appropriate standing orders to
protect the user from a sudden downturn (while avoiding worry over simple daily price

uctuations)2. Thus the goal of selling an asset is not one that requires only a simple
short sequence of actions, but one that requires careful planning and monitoring of
that plan as it is executed, over an extended period of time.

3 Case Based Situation and Task Models

A real-world information gathering and decision making/aiding system, such as a port-
folio management system, typically operates in a dynamically evolving environment,
where information gathering can be user-, task- and situation dependent. Good models
of the user, task, and situation help focus information gathering and �ltering activities
so that relevant information can be e�ciently found. On the other hand, due to the
unpredictability of the information and decision-making environment, new goals come
into the system in the midst of execution, actions may fail due to exogenous events
and need to be replanned, and there is incomplete information about the world.

We are proposing to model the information gathering task as a planning task where
planning and execution are interleaved and search is guided by user, task and situa-
tion models. We believe that cases that incorporate user, task and situation models
can e�ectively provide instantiations of the situation-dependent task structure and the
associated team of information gathering agents. The case base contains cases of suc-
cessful and unsuccessful information gathering episodes and information evaluation.
After each information gathering cycle the case base is updated. Thus, learning is
integrated with problem solving and is achieved automatically. This feature makes
Case-Based reasoning very preferable in application domains with open and dynami-
cally changing world model [18]. Case based reasoning o�ers three general advantages.
First, since it relies on reusing speci�c experiences rather than reasoning from a general
world model, it provides for more e�cient planning. Second, since it can start with few
cases in memory and incrementally acquire new cases based on a reasoner's interactions
with the world, it makes few assumptions about the completeness and correctness of
world knowledge. Third, previous past failures warn the planner about the possibility

2There are of course tax considerations on sales as well.

4



of failure in current circumstances and, hence help avoid future failures.
Each case will be automatically labeled with identifying information such as user's

name (a user could be a software agent), time of creation, time of modi�cation, etc. So,
a case will carry a complete audit trail of its origin and modi�cations. This information
is essential for careful analysis of all the planning knowledge that is exchanged during
system operation, and we will rely heavily on it during the initial stages of knowledge
acquisition and development. In addition, this information can be used to evaluate the
performance of the system under di�erent planning scenarios, since each item will be
clearly identi�ed.

The library of cases we propose can be viewed as a case-based scheme for meta con-
trol that o�ers agents access to task and situation speci�c information. The agents use
this information to focus search and �ltering. The asynchronous information gathering
activity of the agents results in new information about the world (new cases) that gets
incorporated into the case base. Case base updates result in formation of new memory
indices. These new indices, along with any new user inputs (e.g., information gather-
ing requests, change in context) activate a new set of cases that re
ect possibly new
information seeking goals, and new sets of agents. In this sense, the case base can be
viewed as (1) tracking the user's intentions and his/her evolving information needs, (2)
re
ecting changing situations, (3) recognizing new events, and (4) learning information
retrieval tactics/heuristics.

Figure 1 shows an active case base which receives as input noti�cation of events,
either directly from the user or from new information that becomes available (e.g.,
from other software agents). Updates of the case-base with the addition of new infor-
mation �nding episodes and new indices are also considered an event that results in
the activation of a new round of reasoning. In the following, we use an example to
illustrate the general Case-based agent invocation process. Given a situation, the case-
base calls a certain task assistant, say Analyst Tracking Agent, which the reasoning
process determines are relevant to meeting the information gathering goals (which in
turn might be information requests from Portfolio Manager Agent). Portfolio Manager
Agent call upon Earnings analysis Agent, News Classi�er, etc., to locate information
from the infosphere directly (in the case of News Classi�er) or indirectly (in the case
of Earning Analysis Agent). Note that there is no hierarchy of agents here: in a di�er-
ent situation Earning Analysis Agent might have been called directly by the case-base
reasoning process. After collaborating to �nd and �lter information, Analyst Tracking
Agent agent updates the case base with new information �nding episodes that include
a timestamp and the results of the search. If unexpected news (\unexpected" in terms
of the current situation) has been found during information retrieval (such as major
corporate merge news), the case-based process will interrupt the regular plan execution
and take other emergency actions. For example, the case-base process might invoke
the interface agent to notify the user right away.

From the perspectives of Case-Based reasoning, there are a number of important
research questions that we need to address. The most fundamental question is what
constitutes a case? A case in case memory describes a speci�c information scenario
including: (1) information needs and goals which might come directly from the user
or from other software agents, (2) global features which give an abstract character-
ization of the situation in which this information gathering operation takes place,
(3) features of local nature which describe in detail the information about informa-

5



tion sources, inter-agent interactions, etc., (4) information retrieval plan skeleton, (5)
feedbacks/evaluations with respect of acquired information and information retrieval
e�ectiveness/e�ciency, and (6) potential failures and re-trial, plan modi�cation infor-
mation.

At the most abstract level, we might index an asset monitoring task plan fragment
using several broad situation characteristics. These characteristics are represented
in the case base and used as indices for the retrieval of plan fragments, associated
information gathering goals and associated lists of agents to be activated. Depending
on the situation, at di�erent times, di�erent task and information plans could be active,
thus activating di�erent agent teams.

Goal-to-plan-for: We described some abstract monitoring goals above, such as mon-
itoring a held position, monitoring an acquisition, or monitoring the sale of all or
part of a position. This is a main index for plan fragment retrieval.

Asset type: U.S. stocks, U.S. government bonds, mutual funds, gold, etc. The high-
level, abstract plans used for monitoring these di�erent types of investments are
themselves quite di�erent.

Sector: With stocks, for example, this is the industry sector such as electronics or
health care3. While this will only have a minimal e�ect on the high level abstract
plan an agent uses, it will have a larger e�ect at more detailed levels. For example,
the types of information (and the evaluation processes) that are needed to evaluate
an investment in a �nancial institution such as a bank are very di�erent from those
need to evaluate the stock of a manufacturing company. It also o�ers an index for
learning sector-wide information such as economic forecasts and cross company
earnings reports e�ects (see Section 4.2).

Name: Again, the particular stock being monitored is an important index at the more
detailed levels of plan retrieval, and will be used for indexing task execution times,
storing historical data, and so on.

Ownership records: Information about how much was purchased, when, and at
what price. This information interacts with the user's investment goals and tax
situation to produce situation-speci�c buy/sell plans.

Tax status: Assets held in non-taxable trusts like an IRA require di�erent treatment
than those that are subject to taxes on realized capital gains.

Portfolio status: What else is in the portfolio? What is the current asset allocation,
and what role does this asset play?

User pro�le: What are the user's investment goals for this portfolio? Expectations
on return? Risk tolerance?

Other: Other information, such as brokerage commissions.

We are currently investigating other important issues such as e�cient case indexing
mechanism, case retrieval/matching approaches, and initial case collection4

3Actually, there are several well-de�ned hierarchical classi�cation systems used in the industry.
4To address the initial case collection issues, we envision that a limited number of standard �nance

information gathering and decision making procedures (default cases) can serve well for the initial case-base.
This is due to another nice property of Case-based reasoning: a partial case-base can be a starting point of
a case-based system which will gather cases through user interaction and problem solving incrementally.

6



4 Organizational Structure

We propose a general system organization in which agents are directly activated based
on the top-down elaboration of the current situation (as opposed to indirect activation
via manager or matchmaker agents, or self-directed activation). These agent activa-
tions, guided by case-based retrieval according to the current situation, dynamically
form an organizational structure that �ts in with the user's current pro�le, tasks, and
other situational features. This organization will change over time, but will also re-
main relatively static for extended periods (for example, while monitoring currently
held investments during stable market periods). Information that is important for
decision-making (and thus might cause an eventual change in organizational structur-
ing) is monitored at the lowest levels of the organization and passed upward when
necessary.

In this type of organization (see Figure 1), \task agents" or \task assistants"[17]
continually interleave planning, scheduling, coordination, and the execution of domain-
level problem-solving actions. Task agents interact with one another and with \in-
formation agents" or \information assistants" that encapsulate network information
sources. Task agents retrieve, coordinate, and schedule plans based on local knowl-
edge modulated by situational context. A task assistant decomposes an information
request into information seeking goals and subgoals and interacts with the information
assistants to gather the information. In this architecture, a task assistant does the
�nal �ltering and fusing of information before it passes it on to agents above it in
the organizational structure (requesting agents). This incremental information fusion
and con
ict resolution increases e�ciency and potential scalability (e.g., inconsisten-
cies detected at the information-assistant level may be resolved at that level and not
propagated to the task-assistant level) and robustness (e.g., whatever inconsistencies
were not detected during information assistant interaction can be detected at the task-
assistant level). In addition, a task assistant composes a new case that incorporates
its �ndings to be stored in the case memory.

In this architecture, information-assistants would have models of their associated
information sources, learn the reliability of those sources, as well as strategies for low-
level information fusion and multiple methods for responding to information requests.
As an example of the latter, a stock ticker monitoring agent might have several methods
available to it that trade o� time, cost, and quality:

� one or more sources of 15-minute delayed values (with varying reliabilities and
average response delays)

� one or more sources of real-time quotations that charge a fee (more reliable re-
sponse but still not guaranteed)

� the ability to guess a quote based on recent data and simple models (very fast
but of low quality).

On the other hand, task-speci�c assistants have a model of the task domain, executable
methods for performing the task, knowledge of an initial set of information-assistants
relevant to their task and strategies for learning models of pertinent information-
assistants.

Figure 1 shows a top-level portfolio manager agent which receives as input noti�ca-
tion of events, either directly from the user or from the case base, or from information

7



Analyst
Tracking Agent

Breaking
News Agent

Technical
Analysis Agent

Fundemental
Analysis Agent

Portfolio
Manager
Agent

Earnings
Analysis Agent

Ticker Tracker

Market Tracker

News Classifier

Historical
Stock Prices

Historical market
Information

Economic
Indicator Tracker

Infosphere

Task Agents Information Agents

Active Case Base
Agent Activation

Figure 1: A \direct invocation" agent organization for a portfolio management system.

that becomes available (e.g., from task and information agents). Given the current
situation, the portfolio manager agent:

� instantiates task plans and associated information gathering goals according to
the current situation

� coordinates those plans with other agents (this includes task assignment actions
that activate task assistants)

� schedules and monitors the execution of its local actions.

In Figure 1, the fundamental, technical, news, and outside-analyst task agents have
been activated in this manner. These agents are task assistants that can either locate
information via information assistants, or by calling upon other task agents. There is
not a strict hierarchy of agents|the same task and information agents may be called
upon by di�erent parts of the portfolio management organization. After collaborating
to �nd and �lter information, task agents update the case base with new information
�nding episodes that include a time stamp and the results of the search.

This architecture has potential advantages and drawbacks. The advantages include:

� There is a �nite number of task assistants that each agent communicates with.

� Because information processing is done by all the task agents at every level (rather
than by having one task agent receive all data from every information agent) we
avoid having a single computational bottleneck point.

� The task assistants are responsible for checking information quality, �ltering ir-
relevant information, recognizing important information, and integrating infor-
mation from heterogeneous information sources for their respective tasks.

8



� The task assistants are responsible for activating relevant information assistants
and coordinating the information �nding and �ltering activity for their task.

All the above characteristics, by imposing some structure through de�nition of task
assistants, contribute to overall system responsiveness. On the other hand, there are
potential drawbacks:

� The portfolio manager is a single point of failure. Such failures can be mitigated
by expending the resources to have, for example, a redundant portfolio manager
that takes over in case of failure.

� Each task assistant also constitutes a \single point of failure for that task". This
can be mitigated by having more than one task assistant (either clones of each
other or not). In the case where two di�erent assistants exist for the same task, the
task assistants must negotiate to resolve inconsistencies. We propose to explore
the use of negotiation strategies for resolving inconsistencies.

In the stock portfolio example, task assistants for areas such as earnings analysis
might be replicated and allowed to specialize on various industry groups (one agent
to handle banking industry earnings, one for manufacturing, etc.). Such agents might
begin as clones, but learn specialized case information. In the event of a failure, a
non specialist would still be able to retrieve useful plans for a task inside its area of
expertise, but outside of its specialty.

4.1 The Portfolio Monitoring Task

We can represent the plans that are retrieved using t�ms task structures [2, 1]. t�ms
task structures are based on abstraction hierarchies, where task plans are elaborated
via a \subtask" relationship into acyclic directed graphs that have actions, called ex-
ecutable methods, at their leaves. Such structures are compatible with most planning
representations, and provide the necessary information both for scheduling activities
that arise from multiple plans [6], and for coordinating the activities of multiple agents
[3]. As shown in Figure 2, a top level portfolio management agent interacts graphically
and textually with the user to acquire information about the user's pro�le and goals;
as mentioned earlier, we will assume in this paper that the system has gone through
an initial usage period and has reached a \steady state" of monitoring the current
portfolio.

Such a monitoring task includes gathering opinions from various task experts, inte-
grating this information, and then making or updating the recommendation (such as
buy, sell, or hold) for the asset under consideration. These tasks are persistent, in that
they are continuously present. An agent will be dealing with many such tasks simul-
taneously. Gathering opinions from the area experts (fundamental analysis, technical
analysis, news, and the opinions of other analysts|the published output of similar
human organizations) requires registering with them and then either waiting for new
opinions to be received or asking for them directly. An opinion consists of not just a
buy/sell/hold recommendation but a short list of positive and negative reasons for hold-
ing that opinion, and potentially both symbolic and numeric measures of uncertainty.
Information integration involves removing redundant information, resolving con
icts
(or declaring them unresolvable), and forming a coherent group opinion, that can then
be used for decision-making (in the light of the user's risk tolerance, investment goals,

9



monitor
and hold

stock

gather
opinions

integrate
information

make
recom-

mendation

remove
redundancy

T
min

abstract task with quality
accrual function min

subtask relationship

enables relationship

facilitates relationship

Fund. Op.
Update

Provide
fundemental

opinion
update

gather
opinions

integrate
information

make
recom-

mendation

— Management quality
— P/E Ratios
— Earnings Reports

Σ

Provide
immediate

opinion

max
(OR)

Portfolio Manager Agent

Fundemental
Analysis
Agent

Technical
Analysis
Agent

Breaking
News Agent

Analyst
Tracking

Agent

Other
Agents

Σ

resolve
conflicts

form
coherent
opinion

assess user
profile

information

assess
overall
goals

assess tax
situation

Figure 2: A task structure representing high-level portions of the monitor-stock-and-hold

task.

10



asset allocation, tax status, and so on). The con
ict resolution process may involve
negotiation between the agents involved.

4.2 An Example of Coordination: Earnings Report Inter-

pretation

One interesting subproblem in portfolio management is acquisition and interpretation
of earnings reports and earnings estimates. The earnings analysis task is a complex
one that includes estimating the impact of one company's earnings on other companies
in a sector, the information contained in one company's earning report that actually
releases information about all companies in a sector, timing in the release of earnings
reports (especially for smaller companies), and the di�erences in actual earnings versus
expectations. It is important to track revisions in earning estimates over time, as they
often give important clues as to future price moves.

Figure 3 shows a relationship between the abstract plans of the earnings analysis
agent and the human analyst opinion tracker agent. The earnings analysis agent ini-
tially needs to get data on a companies current and historical earnings patterns, and
then it needs to keep up to date on new earnings reports as they are released. Not
only does it need to track the new earnings of the company in question, but also the
earnings of other companies in an industry sector. For example, a change in the portion
of earnings attributed to sales is often applicable to all companies in a group, unlike
changes to costs (sales minus earnings) [7].

Provide
fund.

earnings
opinion

Provide
analyst recom-
mendations

Gather
news articles

classified
"anal. rept." Fill

out anal.
rept. form

based on news
article

update
analyst
opinion
database

get
current

earnings

get
historical
earnings

gather
new earnings

reports

gather new
 earnings

expectations

for
this

company

for
other

companies
in sector

for
this

company

for
other

companies
in sector

from
industry
analysts

T
min

abstract task with quality
accrual function min

subtask relationship

facilitates relationship

Earnings
Analysis
Agent

Analyst
Tracking

Agent

Figure 3: A task structure showing one coordination relationship between tasks in the domain

of the earnings report agent and the human analyst tracking agent.

The analyst tracking agent gathers, from news and other sources, existing and up-
dated analyst reports on a company, including revised earnings estimates (often part

11



of a larger report). This part of the data, if transmitted to the earnings analysis
agent, can somewhat speed up (i.e., facilitate) the process of gathering earnings ex-
pectations. We have demonstrated the use of general coordination mechanisms, called
the GPGP (Generalized Partial Global Planning) approach, that can easily coordinate
such task structure interactions [3]. In this instance, the soft-predecessor-coordination-
relationship mechanism will cause the analyst tracking agent to commit to the trans-
mission of a completed analyst report form to the earnings analysis agent, which can
then easily extract the portion dealing with the updated earnings estimate.

5 Agent Architecture

The portfolio manager and task assistant agents have an internal agent structure called
decaf (Distributed, Environment-Centered Agent Framework)|a general, reusable,
core agent control architecture. The term architecture here refers to the internal control
structure of a single agent, as opposed to the term organization that refers to the control
and communication structure of a group of agents.

The important features of the decaf architecture are:

� A set of clearly de�ned control modules (planning, coordination, scheduling,
decision-making, and monitoring) that work together to control an agent. The
implementations of these modules are not �xed, only their interfaces are. It is of-
ten helpful to imagine these modules as acting asynchronously (or multi-threaded)
even if they are not implemented in this manner. Each module has an essentially
null implementation, so agents don't have to be any bigger than they need to be.
The idea is that properly developed modules can be re-used and traded.

� A core task structure representation that is shared by all of these control modules.
This core structure can be annotated and expanded with all manner of details
that might be \understood" only by one or a few control modules, but there is a
core, shared representation.

Brie
y, the main control functions consist of a planner that creates or extends the
agent's view of the problem(s) it is trying to solve, called the task structure. The
coordinator notices certain features of that structure, and may annotate it, expand
it, communicate parts to other agents, or add scheduling constraints to it. The local
scheduler takes the rough plan and creates a low-level schedule or schedules that �x
the timing and ordering of actions. The decision-maker chooses a schedule|if there is
more than one|that best meets the agent's current needs or performance goals. The
execution monitor takes care of actually executing the next desired action (perhaps
including pre-emption of the action in true real-time execution).

Previous work has focussed on the design of the coordinator [3], the local
scheduler[6], and how they interact with the decision maker[5]. Details of the imple-
mentation of these components can be found in the cited papers. We intend to extend
this work to include more sophisticated execution monitoring, using such techniques
as the TCA (Task Control Architecture) approach [13].

12



6 Conclusions

We have presented the overall framework and design decisions made in our multi-agent
system for the management of �nancial portfolios through information access, �lter-
ing and integration. Within this framework we will explore research issues of agent
coordination and negotiation and case base structuring for user, task and situation
modeling. In addition, there are a number of learning-related research issues we want
to explore. How do we formulate the learning task in the context of multi agent inter-
actions where procedural and control knowledge must be learned? Concept learning
has been the focus of most machine learning research (e.g., [10]). Learning of control
knowledge has been explored using case-based reasoning (e.g., [8, 20, 11]), and rein-
forcement type learning techniques (e.g., [14, 12]). This research has been conducted
almost exclusively in a single agent setting. We want to explore strategies for multiple
agent learning of control knowledge during agent interactions. Within each formulation
of the learning task (e.g. as a case-based learning, or reinforcement learning), there
are additional more speci�c issues to be explored. For example, for multiple agent
case-based learning, new case indexing and retrieval algorithms might be necessary. In
addition, the number of training cases that must be incrementally acquired through
agent interactions for reliable learning is an open issue.

References

[1] Keith S. Decker. Environment Centered Analysis and Design of Coordination
Mechanisms. PhD thesis, University of Massachusetts, 1995.

[2] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex compu-
tational task environments. In Proceedings of the Eleventh National Conference
on Arti�cial Intelligence, pages 217{224, Washington, July 1993.

[3] Keith S. Decker and Victor R. Lesser. Designing a family of coordination al-
gorithms. In Proceedings of the First International Conference on Multi-Agent
Systems, pages 73{80, San Francisco, June 1995. AAAI Press. Longer version
available as UMass CS-TR 94{14.

[4] Oren Etzioni and Daniel Weld. A softbot-based interface to the internet. Com-
munications of the ACM, 37(7), July 1994.

[5] Alan Garvey, Keith Decker, and Victor Lesser. A negotiation-based interface
between a real-time scheduler and a decision-maker. In AAAI Workshop on Models
of Con
ict Management, Seattle, 1994. Also UMASS CS TR{94{08.

[6] Alan Garvey, Marty Humphrey, and Victor Lesser. Task interdependencies in
design-to-time real-time scheduling. In Proceedings of the Eleventh National Con-
ference on Arti�cial Intelligence, pages 580{585, Washington, July 1993.

[7] G. Joh and C. Lee. Stock price response to accounting information in oligopoly.
Journal of Business, 65(3):451{472, July 1992.

[8] Subbarao Kambhampati and James A. Hendler. A validation-structure-based
theory of plan modi�cation and reuse. Arti�cial Intelligence, 55(2-3):193{258,
1992.

13



[9] H. Markowitz. Portfolio selection: e�cient diversi�cation of investments. B.
Blackwell, Cambridge, MA, second edition edition, 1991.

[10] Ryszard Michalski and Gheorghe Tecuci. Machine Learning: A multistrategy Ap-
proach, volume IV. Morgan Kaufmann Publishers, 1994.

[11] Kazuo Miyashita and Katia Sycara. Cabins: A framework of knowledge acquisition
and iterative revision for schedule improvement and reactive repair. Arti�cial
Intelligence, 76(1{2), 1995.

[12] Andrew W. Moore. Prioritized sweeping: Reinforcement learning with less data
and less real time. Machine Learning, October 1993.

[13] R. Simmons. Structured control for autonomous robots. IEEE Trans. on Robotics
and Automation, 10(1), February 1994.

[14] R. S. Sutton. Learning to predict by the methods of temporal di�erences. Machine
Learning, 3:9{44, 1988.

[15] K. Sycara. Argumentation: Planning other agents' plans. In Proceedings of the
Eleventh International Joint Conference on Arti�cial Intelligence (IJCAI-89), De-
troit, Mich, 1989.

[16] K. Sycara. Multi-agent compromise via negotiation. In M. Huhns and L. Gasser,
editors, Distributed Arti�cial Intelligence, volume Volume 2. Pittman, 1989.

[17] Katia Sycara and Dajun Zeng. Task-based multi-agent coordination for infor-
mation gathering. In Craig Knoblock and Alon Levy, editors, Working Notes of
the AAAI Spring Symposium Series on Information Gathering from Distributed,
Heterogeneous Environments, Stanford, CA, March 1995. AAAI.

[18] Katia Sycara, Dajun Zeng, and Kazuo Miyashita. Using case-based reasoning to
acquire user scheduling preferences that change over time. In The Proceedings of
the Eleventh IEEE Conference on Arti�cial Intelligence Applications (CAIA '95),
Los Angeles, February 1995. IEEE.

[19] R. Trippi and E. Turban, editors. Investment management: decision support and
expert systems. Van Nostrand Reinhold, New York, 1990.

[20] Manuela M. Veloso. Learning by Analogical Reasoning in General Problem Solving.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1992.

14


