
Agent Interoperation Across Multagent System Boundaries

Joseph A. Giampapa
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

garof@cs.cmu.edu

Massimo Paolucci
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

paolucci@cs.cmu.edu

Katia Sycara
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

katia@cs.cmu.edu

ABSTRACT
Recently the number of autonomous agents and multiagent
systems (MAS) that have been developed by di�erent de-
velopers has increased. Despite e�orts for the creation of
standards (eg. in communication languages, registration
protocols etc.), it is clear that at least in the near term het-
erogeneous agents and MASs will be prevalent. Therefore,
mechanisms that allow agents and/or MASs to interoper-
ate and transact are needed. In this paper we report on
a case study and lessons learned of an interoperator agent
we developed. We discuss requirements for interoperation
mechanisms, resulting challenges and our design decisions
and implementation of the RETSINA-OAA InterOperator1.

1. INTRODUCTION
One of the problems facing open, multiagent systems [MAS]
operating on the Internet is that as the number of MAS
architecture-speci�c agent communities increases, so too does
the di�culty of locating and collaborating with agents in
communities of di�erent MAS architectures. Each MAS has
its own architecture-speci�c features such as: agent regis-
tration, agent capability advertisements, strategy for �nd-
ing agents, agent communication language [ACL], agent di-
alogue mediation, default agent query preference, and agent
content language, to name a few. Since MASs are open,
that is, architectures that allow agents to dynamically enter
and exit agent communities without any restrictions on the
number or types of participants, there is the further con-
straint that whatever the solution, it must act in real-time

1The authors thank David Martin, Adam Cheyer and Didier
Guzzoni at SRI for their support and help. Marcus Huber
of OGI was instrumental in explaining the operation of the
OAA-KQML Bridge. In addition we are especially grateful
to Martin Van Velsen for his help with the graphical display
of the RETSINA and OAA systems and with the data col-
lection for the evaluation section. This research has been
sponsored in part by the O�ce of Naval Research Grant
N-00014-96-16-1-1222 by DARPA grant F-30602-98-2-0138.

so as to capture the dynamism of the agent world. If an
agent enters one agent community, for example, agents in
another community should know about that event, just as
they should know if it eventually leaves so that they will
not count on its services any more. All the above features
present many di�erent challenges with respect to agent and
MAS interoperations. Despite the many e�orts for stan-
dardizing various aspects of agent-based systems, we do not
believe that homogeneity can be achieved with respect to the
above MAS architecture-speci�c features. Therefore, inter-
operation mechanisms must be designed and implemented.

Solutions to MAS interoperability must be chosen carefully
so as to have little negative impact on the interoperated
systems. Not making the interoperator transparent, for ex-
ample, means that all agents of a community must be retro-
�tted with a new protocol for conversing with it, and this
negatively in
uences the overall e�ectiveness of the interop-
erator to support scalability.

In this paper, we describe the issues and design challenges
regarding the design and implementation of an interopera-
tor. We de�ne a multiagent system interoperator as an en-
tity that provides agents of one MAS architecture access to
the desired capabilities and services o�ered by another MAS
architecture. We describe a case study of interoperating be-
tween the RETSINA [7] capability-based MAS architecture
and SRI's Open Agent Architecture [OAA] [5], where the
di�erences between the two systems are described by the
above characterizations.

The RETSINA-OAA InterOperator acts as a connection be-
tween the RETSINA system and the OAA system. The task
of the InterOperator is to allow any agent in the RETSINA
system to access any service or information provided by
OAA agents, and for any agent in the OAA system to access
services or information provided by RETSINA agents.

Agents in a multiagent system should \speak the same lan-
guage" to understand each other. Agents in the OAA sys-
tem \speak" Prolog-based OAA ICL, while agents in the
RETSINA system use KQML [3]. As discussed at length be-
low, the di�erence between these two languages is not just a
matter of super�cial rewriting, rather they are characterized
by very di�erent syntactic and semantic structures. Because
the agents cannot understand each other's languages, they
cannot communicate without some sort of a translation sys-
tem.

The di�erence between the two systems is not only on the
language level, but at the architectural level, as well. OAA
is organized around an agent called the Facilitator, which
manages all the communications between agents, in such a



way that no two OAA agents directly communicate with
each other. On the other hand, the RETSINA system is
constructed on the principle that all agents in the MAS
community should communicate with each other. Agents
in the RETSINA system �nd each other through a Match-
maker agent, but, in contrast to the Facilitator, the Match-
maker does not manage the transaction between agents. The
Matchmaker allows agents to �nd each other and then al-
lows them to interact with each other directly. Because of
these di�erent communication protocols any agent that en-
ters the other system will address its messages to the wrong
receiver. For instance, upon entering the RETSINA system,
an OAA agent that needs stock quotes might send a re-
quest for a service to the Matchmaker expecting the Match-
maker to act like a Facilitator and to contact the provider.
The Matchmaker would return \Secapl", the name of one
of RETSINA's stock-reporting agents, as its return value.
The OAA agent, expecting the return value to its query,
might then interpret the Matchmaker's response as the ac-
tual value of a stock quote.
In conclusion, no agent that has been designed for one of the
two systems can correctly interact with any of the agents de-
signed for the other system due to di�erences in MAS agent
communication languages, architectures, and the protocols
of agent communication modes. The task of the RETSINA-
OAA InterOperator is to overcome these limitations.

The paper is organized in two parts. In the �rst part, we
describe the principles that guided the implementation of
the RETSINA-OAA InterOperator, how the characteristics
of the RETSINA and OAA MASs a�ected its design, and
how the design has been implemented. In the second part,
we describe the language di�erences between the two sys-
tems and how the RETSINA-OAA InterOperator translates
messages from one system to the other. We conclude with
an example of interoperation between the two systems and
an evaluation of its performance.

2. MULTIAGENT INTEROPERATION
The �ve principles that guided our design of the RETSINA-
OAA InterOperator are explained below.

1. MAS interoperators should maintain distinct MAS ar-
chitecture boundaries. There are inevitable architecture-
determined in
uences on the ways in which agents commu-
nicate with each other within the same agent community. If
an interoperator requires that agents of one system acquire
the ACL of the other architecture then the end result will be
a merged-architecture ACL. This ACL acquisition process is
an open problem to do automatically if the two systems must
be modi�ed by hand; it is an expensive process.

2. MAS interoperators should be scalable in order to pre-
serve the open systems architectures of both participating
MASs. One of the strengths of MASs is that they enable
the dynamic arrival and departure of agents at runtime so
as to promote continual system capability enhancement as
much as limit the rapidity of overall system degradation. If
MASs can only support a speci�c or �xed number of agents
with a limited variety of protocols, then the desired level
of dynamism of the combined agent architectures is not ob-
tained. In the worst case, it would be more cost-e�ective
to directly wrap a foreign agent in a native architecture's
communication wrapper.

3. MAS interoperators should present an increase in sav-
ings relative to the amount of e�ort that must be invested
in their development, so as to have increased functionality
for the agent system. As a way of developing a rough initial
metric, consider the cost of enhancing an agent community
by wrapping \foreign" agents in the ACL communications
API of the target MAS. The cost-to-increased-capability ra-
tio can be said to be 1 : 1 | add API:receive new agent.
Proceeding in this way, the cost of wrapping M agents in
one MAS's communications API, and the cost of wrapping
N agents in another MAS's communications API will be
M +N for the increased capabilities of M +N new agents
in the combined MAS systems. Now consider the amount
of e�ort to develop an interoperator for the two systems.
We could simplistically assume that this incurs a constant
cost, C: the costs of adding and maintaining two commu-
nications APIs, and the costs of translating advertisements,
queries and other infrastructure ACL content for each MAS.
If the sum M +N is more than C, then there is already an
advantage in the cost savings of adding new agents via MAS
interoperability than by agent wrapping.
4. MAS interoperators should cross register agent capabil-
ities from one MAS architecture community to another so
as to maintain maximum accessibility of both systems to
each other's capabilities. Furthermore, this cross registra-
tion should be performed in real time so as to maintain a
high �delity representation of agent community state.
5. MAS Interoperational Transparency. Agents should di-
alogue with each other across MAS boundaries without be-
ing aware that the interoperator is present. This eliminates
the need to develop additional agent-interoperator proto-
cols that could limit the applicability of an interoperator to
di�erent agent dialogue contexts. And without the cost of
retro-�tting existing agents with new protocols, there is the
added bene�t that MAS interoperability promotes the scal-
ability of agent systems: the more agents that are added to
a MAS, the lower the unit cost of bringing them into the
system and maintaining them.

3. DESIGN CONSIDERATIONS
The RETSINA-OAA InterOperator \bridges" the two worlds
of RETSINA and OAA by advertising RETSINA agents
with the OAA Facilitator, advertising OAA agents with the
RETSINA Matchmaker, and by enabling agents from both
RETSINA and OAA worlds to send messages to each other.
As noted earlier, there are some architecture-speci�c fea-
tures that are particular to each MAS and have some impact
on the design of an interoperator. We shall consider those
which applied in particular to our system.

3.1 MAS Community Membership
The need for MAS interoperability to maintain distinct MAS
boundaries, and to provide transparent interoperability be-
tween agents of di�erent systems, determined the fact that
the RETSINA-OAA InterOperator is designed to belong to
both systems. As a RETSINA agent, the RETSINA-OAA
InterOperator can interact with all the other RETSINA
agents in the system using the same communication pro-
tocols and KQML as communication language. Symmetri-
cally, as an OAA agent, the RETSINA-OAA InterOpera-
tor can communicate to the OAA Facilitator using Prolog
clauses.



3.2 Capability Advertising
Both RETSINA and OAA MASs are capability-based, that
is two agents communicate with each other based on the
ability of one agent to respond to the needs of the other.
But the two systems are very di�erent in the ways that they
allow their agents to identify each other. The RETSINA
MAS is matchmaker-based [1]: the RETSINA Matchmaker
responds to a request for agents possessing certain capabili-
ties by sending back a list of agent names and possibly also
rankings of how well those agents suit the requester's needs.
The requester is then free to contact any agent in that list
according to its own personal criteria, which may include
whether or not the provider agent is part of the same MAS.
This approach is robust in that the requester is independent
of the Matchmaker once it has the list of candidate agents to
contact. The OAA system, on the other hand, employs fa-
cilitated matching to both �nd provider agents and to also
coordinate agent communication within the OAA system.
This approach is optimized for re
ecting changes in the sta-
tus of agents in the community.
A way of ensuring the design principles of interoperator
transparency in a capability-based multiagent system is for
it to advertise the capabilities of the agents from the other
MAS. One bene�t is that agents of each system can con-
tinue to participate in the agent selection process the way
they normally do without following a new selection policy.
Another bene�t is that the InterOperator, itself, need not
support the capability matching strategies particular to each
system.
A question that is frequently raised when describing the
RETSINA-OAA InterOperator is whether or not the names
of the agents should be associated with their correspond-
ing advertisements in the other agent world, or if just the
name of the InterOperator should be associated with those
capabilities. We coined the term ProxyAgent to describe the
InterOperator if it supports distinct agent name identities in
the other MAS, and SuperAgent if the InterOperator repre-
sents all the capabilities of one MAS to the other as if they
were its own. It is possible for an interoperator to act as
both types | one for each MAS community.
The RETSINA-OAA InterOperator presents itself as a Su-
perAgent to both the RETSINA and OAA agent communi-
ties. The primary reason for this was the expediency of man-
aging a single communication thread for each agent commu-
nity rather than implement multithreaded communications,
as would be required for a ProxyAgent.

4. INTEROPERATOR ARCHITECTURE
The architecture of the RETSINA-OAA InterOperator is
illustrated by �gure 1. The InterOperator was constructed
on the concept of three levels of abstraction. Starting with
the bottom level, the layers are: the MAS-speci�c API layer,
the MAS-speci�c agent session layer, and the aptly named
interoperability layer.
The MAS-speci�c API layer is the software layer that is
o�ered by each multiagent system for the development of
agents in that particular architecture. It is represented here
as a foundational layer that is responsible for passing and re-
ceiving messages to and from the MAS-speci�c agent session
layer. The RETSINA system o�ers its Communicator, the
package that o�ers peer-to-peer agent communications in
KQML, ANS-based registry, log facility con�guration, and

Ads,
Queries

Matchmaker
Other Agents

M
A

S
-S

pe
ci

fic
 A

ge
nt

S
es

si
on

 L
ay

er
M

A
S

-S
pe

ci
fic

A
P

I L
ay

er
La

ye
r

In
te

ro
pe

ra
bi

lit
y

RETSINA-OAA InterOperator Architecture Diagram

Agent

Reply Query

Ads,
Queries

Facilitator

Ad Cross Registration
Advertisement Translation Query Translation

Reply Translation Specific Message Conversion
Protocol Conversion

RETSINA Agent Session Layer

RETSINA Communicator

OAA Agent Session Layer

OAA Agent Library

Persistent Query TableOAA RETSINA Query Table RETSINA OAA Query Table

Figure 1: RETSINA-OAA InterOperator Architecture Dia-
gram

KQML message and protocol construction and parsing util-
ities. The OAA system o�ers its Agent Library which con-
tains libraries for posting advertisements to the Facilitator,
sending Facilitator-mediate messages to other agents, post-
ing agent queries, methods for accessing Facilitator-speci�c
data structures, and utilities for composing and parsing OAA
ICL messages. There is no interface between the RETSINA
and OAA APIs at this level.

As represented in the diagram, agents establish communica-
tion connections with the InterOperator via this layer. On
the RETSINA side, the InterOperator maintains one unique
connection to which it listens for receiving advertisements,
queries and for sending the translated OAA agent replies
to RETSINA agent queries. If an OAA agent wishes to
query a RETSINA agent, then the InterOperator initiates
a connection and dialogues with the RETSINA agent on
behalf of the OAA agent. On the OAA side, the InterOp-
erator maintains only one connection with the Facilitator.
Through that connection it both transmits and receives ad-
vertisements, replies, and other messages, indi�erent of the
mode of agent communication that is being supported by
that connection.

The MAS-speci�c agent session layer is where agent com-
munication sessions are logically maintained and agent com-
munication protocols enforced. For example, if agents must
send acknowledgement messages to the InterOperator, this
is the level where the software \waits" for the reply and
executes contingency methods should the acknowledgement
not return. The speci�c protocols that are maintained for
the RETSINA side of the InterOperator are those for com-
municating with the Matchmaker, for replying to RETSINA
agent queries, and for initiating queries to RETSINA agents
on behalf of OAA agents. Similarly on the OAA side, the



protocols that are maintained there are speci�c for sending
and receiving advertisements, queries, and other message
types to and from the Facilitator. As for the API layer,
interoperability does not occur at this level, either. The
processes at this level communicate with the processes at
the levels above or below them.

The top level of the InterOperator architecture is the inter-
operability layer. This is the layer where advertisements,
messages, and query/response protocols are translated from
one architectural convention to the other. This layer con-
tains three data tables which are interesting for the needs
they ful�ll. These are the: 1. OAA-RETSINA Query Table
[ORQT], 2. RETSINA-OAA Query Table [ROQT], and the
3. Persistent Query Table [PQT].
The purposes of the �rst two tables, the OAA-RETSINA
Query Table and the RETSINA-OAAQuery Table, are sym-
metric. Both MASs require that when there is a reply to an
information agent query, that reply must contain the form of
the original query in addition to the response. There is also
the symmetry that both systems need to maintain a query
thread, so that multiple agents of one system can simulta-
neously query the same agent of the other MAS, or so that
one agent can launch multiple queries to the same agent of
the other architecture while waiting for its replies. The third
table, the Persistent Query Table, is a variant of the ROQT,
except that it uses a di�erent Facilitator data structure for
e�ecting it. All three tables allow an association between
a unique thread ID, the content of the original query, and
the persistency mode (that which determines over how much
time replies will be received) of the query.
The existence of these tables implies that the InterOperator
actively maintains the \state" of the transactions occurring
between the agents of the two interoperating systems. Main-
taining the state of the agent dialogues is less robust than if
the InterOperator did not maintain any state at all. Should
the InterOperator fail and then come back on-line it is a
non-trivial task to discover which queries have already ter-
minated and which ones are on-going. One way of overcom-
ing this is to pass the state information, such as message
thread and original query message format, as a tag-along
parameter to the server agent, as is already done for some
queries to the OAA Facilitator. But the drawback of this
approach is that the state information signi�cantly increases
the size of the query message, and message size has a direct
negative impact on network throughput.

5. MESSAGE TRANSLATION
The main function of the RETSINA-OAA InterOperator is
to support the transparent transmission of messages between
RETSINA and OAA agents. As part of this process the
RETSINA-OAA InterOperator needs to translate messages
between the KQML language used by RETSINA agents and
the Prolog style language used by OAA.
Agents in a Multiagent System should \speak the same
language" to be able to understand each other's messages.
Therefore, the speci�cation of the language used by the
agents is one of the parts of the de�nition of a MAS.
RETSINA uses KQML as its communication language. Fol-
lowing this format, each message has the form:

(performative :key1 value1 :key2 value2)

Performative is a prede�ned speech act like tell or ask-one
that speci�es the type of communicative action that the
agent performs. For example tell is used to transfer in-
formation, while ask-one is used to send a question with
the understanding that the other part will send an answer.
Key1 and key2 are indexes that distinguish between di�er-
ent values in the message without any prede�ned agreement
on their order. Finally, values are either atomic like a string
or an integer, or a more complicated form in KQML format.
OAA's messages have the format of logic predicates follow-
ing the Prolog format:

solvable(Goal, Parameters, Permissions)

The functor solvable of the predicate speci�es what action
should be performed as a consequence of the message. In
this sense, the solvables' role is equivalent to the performa-
tive in KQML. Speci�cally, solvable is used to advertise the
capabilities of the agent. The arguments of the predicate
are used to specify the content of the message. In this case
Goal reports what queries the agent should solve, while Pa-
rameters and Permissions specify additional constraints.
Prolog and KQML language formats are not simple syn-
tactic variations of each other. For example, mapping the
performative, the keys and values of the KQML form onto
the functor and the arguments of the predicate creates a
host of problems that are reviewed below.

Arguments vs Keys Arguments in Prolog predicates have
a well de�ned and �xed order. In the predicate solv-
able shown above, the goal should always be in �rst
position, parameters in second and permissions in the
third. KQML does not make such an assumption,
rather, values are associated with keys, and keys can
be in any place in the form. Thus, the two following
KQML forms are equivalent (perf :key1 value1 :key2
value2) and (perf :key2 value2 :key1 value1), while
perf(value1, value2) and perf(value2, value1) are not.
Any mapping of values in a KQML form into argu-
ments in a parameter need a speci�cation of the rela-
tion between keys and argument positions. This map-
ping information is provided neither by the KQML
form, nor by the Prolog predicate.

Message Interpretation OAA and RETSINA interpret
their messages in two radically di�erent ways: OAA
uses a predicative representation, while RETSINA uses
a functional representation. OAA agents exchange
Prolog predicates. Each agent tries to \prove" the
message that they receive, and by doing that they bind
additional variables. For example, if the OAA weather
agent receives a predicate like the following.

weather(newyork,Forecast)

It interprets newyork as a constant and Forecast as a
variable. The work of the agent is to �nd a value for
Forecast that validates the predicate. In this process,
the agent binds the variable Forecast to the weather
forecast of New York City. The weather agent re-
sponds to the requesting agent with the same predicate
with the bound variable Forecast.



RETSINA uses a functional representation, so the pred-
icate is translated in a representation similar to

weather(newyork)

Here weather is used as a function applied to the con-
stant newyork. The RETSINA weather agent com-
putes this function and it returns the weather forecast
that is then forwarded to the requesting agent.

The distinction between predicative use and functional
use of the message is not only an abstract distinc-
tion. For example the following two predicates p(a,Y)
and p(X,b) produce di�erent information and they are
mapped onto di�erent functions. The �rst one takes a
as input and produces a value for Y; while the second
given an input b produces a value for X. These two
predicates should be bound to two di�erent functions:
p1(a)!Y and p2(b)!X. To translate OAA messages
into RETSINA messages, the RETSINA-OAA Inter-
Operator needs to know how the OAA predicate is
used; speci�cally, it needs to know which arguments
should be speci�ed as inputs, and which arguments
will be set as outputs.

Di�erent Interpretation of Performatives As noted in
[5] there is no one to one correspondence between the
performatives used in KQML and the predicates used
in OAA. For example, OAA has performatives like
ask-N which is intended as asking for N possible so-
lutions of the the query. On the other hand KQML
has either ask-one or ask-all, ie it can ask only one
solution or all solutions.

Despite the radical di�erences between the languages used
by the two systems, a translation mechanism should be pro-
vided to allow agents in the two systems to communicate
with each other. The following sections describe how prob-
lems were overcome.
The translation process is divided in three parts. First the
RETSINA-OAA InterOperator needs to translate agent ad-
vertisements so that the services provided by agents enter-
ing the community can be shared across system boundaries.
Second, the interoperating agent should translate queries
across the systems. Third, the interoperator should trans-
late the answers to the queries.

5.1 Translation of Advertisements
OAA advertisement and RETSINA advertisements express
di�erent information; OAA speci�es the format of the queries
answered by the agent, but not what information the agent
needs to solve the query. Conversely, RETSINA speci�es
the information required by the agent, but not the format
of the query (with the only exception of the information
agents that have a standard query format.)
For example, the following predicate shows an advertisement
of the OAA weather agent in OAA format.

weather(Place, Forecast)

An advertisement in OAA is just an example of query to
which the agent replies. It does not specify what information
the agent needs to compute the reply.

The advertisement of a RETSINA agent that reports the
weather is displayed in �gure 2 below.

(advertisement
:name \handleSingleShotQuery"
:ontology \weather"
:inputVariables
:name \primary-keys"
:�elds (listof (�eld \city" \string"))
:attributes (listof )

:outputVariables
:name \output"
:�elds (listof

(�eld \time" \string")
(�eld \weather" \string")
(�eld \weather-url" \string")))

Figure 2: The advertisement for the RETSINA weather
agent

RETSINA advertisements are complex, but for the scope
of this paper the important �elds are ontology that speci-
�es the �eld of application of the agent, outputVariables
that speci�es what types of information the agent reports,
and inputVariables that speci�es what the agent needs as
inputs in order to compute the output.

The translation of OAA advertisements into RETSINA ad-
vertisements requires the speci�cation of which arguments
of the OAA advertisement are used as inputs and which
ones are used as outputs, and a mapping of arguments and
positions into keys. The translation process maps the func-
tor of the predicate in the ontology, the input variables into
the inputVariables and the union of input and output vari-
ables into the outputVariables. The rationale behind this
mapping is that the functor speci�es the objective of the
agent (what kind of information is produced by the agent),
similarly the ontology �eld in the RETSINA advertisement
speci�es the domain of the agent. The input arguments of
the OAA advertisement are mapped into the corresponding
input variables of the RETSINA advertisement. Finally, a
query to the agent results in the binding of all arguments
of the predicate, therefore all arguments are used as output
variables.

The mapping from RETSINA to OAA follows a similar
schema: ontology is mapped to the predicate, inputVari-
ables are mapped to input arguments and outputVariables
are mapped to output arguments. Input variables that ap-
pear also as outputs are used only once.

Still, the mapping presented so far is not su�cient to trans-
late OAA advertisements into RETSINA advertisements,
since RETSINA advertisements require the speci�cation of
the ontological type and the data type of the information
provided to the agent. For instance, the advertisement above
speci�es that the input to the RETSINA weather agent be
of ontological type city and data type string. The role of this
speci�cation is twofold: on one side any agent that requests
a service can make sure that the information provided to
the advertised agent is consistent with what that agent ex-
pects; in addition both the ontological type and the data
type are used by the Matchmaker to match requests and
advertisements.



Tomatch requests and advertisements, the RETSINAMatch-
maker compares the advertisement and the request and tries
to verify whether the input variables of the request match
the input variables of the advertisement, and the output
variables of the request match the output variables of the
advertisement. The match of variables is done in two steps:
�rst the Matchmaker does an exact match on the data types,
second the Matchmaker uses an ontology based on WordNet
[2] to match the ontological type of the request with the type
of the advertisement. For instance, by using the ontology
the Matchmaker recognizes that (city string) and (place

string) match, but it would fail to recognize a match be-
tween (city string) and (dog string) because city and
dog are ontologically distinct.
To summarize, the translation of advertisements between
OAA and RETSINA minimally requires the following infor-
mation:

� a description of which arguments in the OAA adver-
tisement are used as input, and which ones are outputs;

� a de�nition of ontological type and data type of the in-
formation provided to the agent and information out-
putted by the agent. Finally a translation of the ontol-
ogy in the RETSINA advertisement to match functors
in OAA advertisements;

� a translation of terms from one ontology to the other,
so that the Matchmaker recognizes that the OAA pred-
icate \�nd" in the context of searching 
ight informa-
tion, should be translated into the RETSINA \
ight";

� a description of how the arguments of OAA predicates
match the keys of RETSINA advertisements;

5.2 Translation of Queries and Answers
Advertisements are descriptions of the services provided by
the agent. Advertisements are used by the middle agents
to identify which agent provides a speci�ed service. Once
the provider is found, the requesting agent still needs to
query the provider to obtain a service. While the protocol
used by RETSINA agents di�ers from the protocol used by
OAA agents, the essence of the process remains the same.
One of the tasks of the RETSINA-OAA InterOperator is to
translate queries sent by RETSINA agents in a format that
can be understood by OAA agents.

(performative
:ontology some-ontology
:content (...))

Where the performative is either tell or ask-one. Tell is
used for commands to agents to perform some action, while
ask-one is used for requests to information agents.
The basic mapping follows the same rules used to translate
the advertisements: the ontology is mapped in the functor
of the corresponding OAA predicate and the content is used
to map to the arguments of the predicate. Since the format
of the content �eld depends on the type of agent queried,
each query requires a speci�c translation rule.
For example, in the RETSINA system, information agents
are constructed in an homogeneous way, furthermore they

(ask-one
:ontology weather
:content (objective :name \getInformation"

:parameters
(pval "primary-keys"

"(PittsburghPA)")))

respond to queries with the same format. An example of
these queries is the following:
The mapping for information agents requires the ontology
to be mapped on the functor of the predicate while the pa-
rameters are mapped on the variables. In addition, output
variables that are not speci�ed in the query should be added
to the predicate.
The :parameters �eld stores di�erent information depend-
ing on the query. For the weather agent it contains the name
of the city of the forecast; for the 
ight agent it contains a
speci�cally formatted list with the values of a the start and
end location of the 
ight and the leaving date and time.

6. AN EXAMPLE
The RETSINA-OAA InterOperator has been used as the
interoperator agent between the RETSINA and OAA sys-
tems in the context of a MAS that assists humans to plan
a NEO2 operation. Figure 3 shows the agents used in this
system. The RETSINA-OAA InterOperator is in the cen-
ter of the picture, on the left side there are the RETSINA
agents, while on the right are the OAA agents.
Upon joining the system, each agent advertises with their
middle agent, either the OAA Facilitator or the RETSINA
Matchmaker, depending on whether the agent belongs to
OAA or RETSINA. The RETSINA-OAA InterOperator mon-
itors the advertisements received by the middle agents, trans-
lates them and sends them as if it were own to the middle
agent of the other system. Through this mechanism, the
RETSINA Matchmaker receives the advertisements of all
the OAA agents, while the OAA Facilitator receives all the
advertisements of the RETSINA Matchmaker.
During the execution of the scenario, one of the human
users requests weather information. The interface agent of
the user sends a request to the Matchmaker that identi�es
two agents that report the weather: one is the RETSINA
weather agent, that gathers weather information by read-
ing the current page on the CNN web site, the other is the
RETSINA-OAA InterOperator that advertised the capabil-
ity of the OAA weather agent.
The interface agent of the user can query both agents to
gather weather information. Either the RETSINA weather
agent or the RETSINA-OAA InterOperator can be con-
tacted because they advertised similar services. Whereas
the RETSINA weather agent computes weather informa-
tion directly, the RETSINA-OAA InterOperator translates
the query to the OAA format and forwards the query to the
OAA Facilitator, which in turn contacts the OAA weather
agent to solve the query.
The results of the queries follows the opposite direction: the
OAA weather agent sends its reply to the Facilitator, which

2A NEO (Non-combatant Evacuation Operation) is exe-
cuted by the US State Department to evacuate civilians from
areas in which an unrest threatens their lives



Figure 3: The RETSINA-OAA InterOperator forwards the \oaaweather" agent's error reply to the \JFC Ops O�cer" agent,
which then submits the same request to the \WeatherCNNAgent"

in turns sends the result to the RETSINA-OAA InterOper-
ator. The data is then translated to the KQML format used
by RETSINA agents and is sent to the interface agent for
display to the user.
The two weather agents are interchangeable and they can
be used as alternatives for the same query. If one of the
two queries fails, for instance because one agent does not
have weather information for the city requested, the query
is automatically redirected to the other agent.

7. PRELIMINARY EVALUATION
To estimate the performance of the RETSINA-OAA Inter-
Operator we ran the NEO scenario, we computed the num-
ber of messages exchanged and we logged the time that took
the messages to be translated and transfered from one sys-
tem to the other.
The agents used in the experiment are displayed in �gure 3.
There were 15 RETSINA agents and 9 OAA agents. In the
scenario used for the experiment, the agents exchanged 162
messages, 50 of which where transmitted through the Inter-
operator. On average, message translation (i.e. the transla-

tion of queries, answers and RETSINA advertisements) took
approximately 0:25 seconds, which is a negligible time con-
sidering that many agents performed slow operations like
gathering information from web sites.
The only performance problem emerged with the translation
of the OAA advertisements. The RETSINA-OAA InterOp-
erator took 3 to 7 minutes to translate and advertise all the
OAA agents due to the complexity of the data structures
used by Prolog to represent those advertisements and due
to the size of those advertisements (approximately 14 KB).
This is only a one time problem, however, since it is un-
likely that all the agents advertise (or unadvertise) at the
same time during the execution of the scenario.

8. RELATED WORK
Interoperation across boundaries of multiagent systems is
likely to become an important issue as the �eld of het-
erogeneous MASs matures and more MASs, based on dif-
ferent principles and ideas, are implemented. Indeed, an-
other interoperator, called OAA-KQML-Bridge [4] was de-
veloped in parallel with ours. OAA-KQML-Bridge connects



the TEAMCORE agent [6], \TeamQuickSet", to the OGI 3

OAA agents. The OAA-KQML-Bridge implements a bidi-
rectional KQML-OAA message translator that mediates be-
tween TEAMCORE and the OGI OAA Facilitator.
While the OAA-KQML-Bridge is similar to the RETSINA-
OAA interoperator in the translation of OAA and KQML
messages, the two implementations of the interoperator are
nonetheless di�erent in three respects. First, due to the lack
of a TEAMCORE matchmaker, the OAA-KQML-Bridge
did not attempt the problem of representing advertisements
from one community to the other. Second, while in prin-
ciple the OAA-KQML-Bridge's design is generalizable to
handle the communications of agents in both communities,
it was implemented to handle only speci�c dialogues with
\TeamQuickSet". Finally, the OAA-KQML-Bridge main-
tained a connection state based on both the type of agent
message (i.e. query vs. reply) and on the content of the
agent message, to the extent that it would send a message
to \TeamQuickSet" when all the information it required was
ready. The RETSINA-OAA InterOperator, however, main-
tained connection state solely at the agent message level in
the interest of \MAS Interoperational Transparency" (see
principle #5, above).

9. CONCLUSIONS
In this paper, we presented an implemented agent that al-
lows interoperability across MAS. The need for agents that
facilitate the interoperation across MAS boundaries emerges
with the increase of the number of agent communities on the
Internet. The RETSINA-OAA InterOperator, presented in
this paper, facilitates the communication between two im-
plemented MAS: RETSINA and OAA. The RETSINA-OAA
InterOperator allows agents in the two systems to communi-
cate transparently, exchange services and be noti�ed of the
ever-changing availability of agents in each other's systems,
with a minimum of overhead.

10. REFERENCES

[1] K. Decker, K. Sycara, and M. Williamson. Middle-agents
for the internet. In Proceedings of IJCAI97, 1997.

[2] C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, 1998.

[3] T. Finin, Y. Labrou, and J. May�eld. Kqml as an agent
communication language. In J. Bradshaw, editor, Soft-
ware Agents. MIT Press, 1995.

[4] M. Huber. Personal Communications.

[5] D. Martin, A. Cheyer, and D. Moran. The open agent
architecture: A framework for building distributed soft-
ware systems. Applied Arti�cial Intelligence, 13(1-2):92{
128, 1999.

[6] D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cave-
don. Toward team-oriented programming. In N. Jen-
nings and Y. Lesp�erance, editors, Intelligent Agents VI
| Proceedings of the Sixth International Workshop on
Agent Theories, Architectures, and Languages (ATAL-
99), Lecture Notes in Arti�cial Intelligence. Springer-
Verlag, Berlin, 2000.

3Oregon Graduate Institute

[7] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Expert,
Intelligent Systems and their Applications, 11(6):36{45,
1996.


