
Evolution of Goal-Directed Behavior from
Limited Information in a Complex Environment

Matthew R. Glickman
Computer Science Department
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213
glickman@cs.cmu.edu

Katia Sycara
The Robotics Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
katia@cs.cmu.edu

Abstract

In this paper, we apply an evolutionary al-
gorithm to learning behavior on a novel, in-
teresting task to explore the general issue
of learning e�ective behaviors in a complex
environment that provides only limited per-
ception and goal-feedback. Our speci�c ap-
proach evolves behavior in the form Arti-
�cial Neural Networks with recurrent con-
nections. We apply our approach to learn
e�ective behavior for a non-standard maze-
navigation problem that is characterized by
aspects of problems that are di�cult to ap-
proach via other methods. Di�cult aspects
of the speci�ed problem include the inability
to sense all task-relevant state at any given
time (the problem of \hidden state"), and
limited feedback with respect to success or
failure. We observe evolved networks to per-
form very well on the target problem. Fur-
ther �ndings include adaptation to noise in
action selection, performance proportional to
memory capacity, and improved performance
when network weights are transferred from
training on one maze to another.

1 Introduction

1.1 Evolving Behavior with Evolutionary
Algorithms

As we design agents to operate in increasingly chal-
lenging environments, it becomes increasingly impor-
tant to be able to learn speci�c behaviors rather than
directly specifying them. Given a complex environ-
ment and a desired task to be achieved within it, we
would like agents to be able to learn to perform the
task without requiring signi�cant pre-existing knowl-
edge of the structure of the environment or the me-
chanics of the task. Moreover, we cannot necessarily
depend on the agent having instantaneous access to all

task-relevant environmental information, nor can we
depend on the environment to provide regular, partic-
ularly helpful cues along the path to the goal.

One appealing feature of Evolutionary Algorithms
(EA's) for use in such problems is how little feedback{
just a rough estimate of the relative desirability of
solutions{is necessary to engage the process. Evolu-
tionary algorithms can thus be applied to problems
with a search space into which we have relatively lim-
ited insight, i.e. problems for which any pre-existing
domain knowledge o�ers few hints as to how a solution
may be constructed.

Moreover, it is interesting to note that �nding solu-
tions to just such tasks is exactly the problem at which
biological evolution has excelled. In nature, evolution
has yielded agents (organisms) that pursue stagger-
ingly complex strategies (an organism's behavior over
a lifetime) to maximize a very noisy and often ex-
tremely delayed-in-time form of feedback (individuals'
di�ering reproductive success).

We present here the results of several experiments ap-
plying an Evolutionary Algorithm (EA) to evolve e�ec-
tive behavior in the form of Arti�cial Neural Networks
(ANN's) with Recurrent connections (RANN's) for a
particular task in an environment such as has been
described, i.e. one which does not provide the ability
to sense all task-relevant state at any given time and
which provides only limited feedback with respect to
success or failure.

Contributing to the body of work in which RANN's
and/or behaviors for such environments have been
evolved, these experiments are distinguished by:

1. The use of a particularly simple method for
RANN evolution, thus providing fewer algorith-
mic features to which the observed performance
might possibly be ascribed.

2. A particularly interesting learning task (described
in section 2.1) exhibiting many of the features that
characterize di�cult problems, and which may
be seen as the composition of a large number of



sub-tasks which appear to be learned in a semi-
hierarchical manner.

3. Some intriguing results that include adaptation to
the level of noise in action selection and evidence
of inter-task transfer of search e�ort.

1.2 Value-Function Search vs. Direct
Policy-Space Search

On a general level, these experiments bear upon the
issues investigated in Reinforcement Learning (RL).
The RL framework addresses problems where there is
continual interaction between an agent and its environ-
ment whereby the environment presents information
as to its current state, and the agent makes a choice
of an action to perform. After each action, the agent
may receive some magnitude of reward. The goal in
such tasks is to �nd the action policy which an agent
can follow to maximize some function of all the reward
received.

The prevailing approach of RL algorithms is to search
�rst in the space of value functions{which map states
and actions to an estimated reward{and then use
the resulting function to derive the best possible pol-
icy. For a large set of RL problems there exists a
suite of very e�ective such algorithms along with well-
developed theory that provides for some speci�c the-
oretical guarantees ([Kaelbling et al., 1996] provides
a review). However, the situation is considerably less
clear where the state of the world relevant to the task
at hand is not always directly observable (problems
with \hidden state"). Some innovative algorithms
have been presented that have proven successful for
particular problems (e.g. [McCallum, 1996], [Littman
et al., 1995], [Lin and Mitchell, 1992]), but their range
of e�ectiveness remains to be explored.

In contrast to research usually classi�ed as RL, evolu-
tionary approaches typically take a more general, di-
rect approach. Instead of �rst �nding a value function,
EA's are generally used to search directly in the space
of action policies. While this approach may be seen as
failing to take advantage of the speci�c structure of RL
problems, it is not clear that learning a value function
�rst is always better than learning an action policy di-
rectly. The relative merits of searching with a value
function versus searching directly in policy space is
currently an interesting and important line of inquiry
the �eld of RL [Moriarty et al., 1997].

1.3 Evolution and the Representation of
Behavior

There exist many approaches to learning behaviors
using Evolutionary Algorithms. A principal di�er-
ence between these approaches is the speci�c rep-
resentation of behaviors. Wilson's work on \Ani-
mats" (a recent example is [Wilson, 1998]) employs

Classi�er Systems [Holland, 1975] to represent be-
havior. To deal speci�cally with problems of hidden
state, Teller [Teller, 1994] extended Genetic Program-
ming [Koza, 1992] with indexed memory and applied
this technique to solving a novel problem involving
moving boxes in a 2D world. Studies{such as the one
reported here{that evolve RANN's include [Angeline
et al., 1994] and [Je�erson et al., 1992].

ANN's are an interesting representation for behaviors
for a number of reasons, including their inherent paral-
lelism as well as their relative novelty as a substrate for
computation. Another interesting property of ANN's
in general is that their performance is often found to
\gracefully degrade" instead of failing catastrophically
as operational conditions stray from optimal. This
property is of particular interest for EA's as it poten-
tially enhances the smoothness of the adaptive land-
scape.

Recurrent connections provide the ability to retain
state over time (necessary to disambiguate hidden
state). At the same time, a cost of recurrency is that it
greatly complexi�es the relationship between the set of
connection weights in the network and the expressed
behavior. Moreover, because the feedback provided by
the environment in problems such as the one explored
here doesn't provide explicit target outputs, it's dif-
�cult to employ network training methods which are
based upon the backward propagation of error. Both
the increase in complexity due to recurrent connections
and the absence of explicit output targets contribute
to the attraction of using evolutionary methods.

Given the variety of possible representations and
search operators for evolving RANN's as well as their
potential importance the speci�c dynamics of search,
implementation choices are di�cult to make. In or-
der to minimize this di�culty, we've chosen to employ
a particularly simple approach (as described in sec-
tions 2.2 and 2.3).

In the next section, we describe the task, the layout
and evaluation of the RANN's, and the speci�c evolu-
tionary algorithm. Section 3 then presents the results
of several di�erent experiments. We conclude in sec-
tion 4 by reviewing implications of our observations.

2 Methodology

2.1 The Start-Anywhere Maze Task

The task explored here involves navigation in a given
maze (see �gure 1). In many maze problems studied
both in computer science and in animal behavior, the
agent starts at the designated start point with the goal
of �nding a path (or the most e�cient path) to the
designated goal point. In the task studied here, an
agent is rewarded according to how quickly it can �nd
its way to the designated goal when started from any



Figure 1: A typical 40x40 maze (the \goal" is in the
upper, left-hand corner)

Figure 2: Field-of-view of an agent in the maze (note
- orientation is signi�cant)

random point in the maze. Agents are thus trained to
solve not just one, but a composite of multiple, related
single-start-point tasks.

Signi�cantly compounding the di�culty of this task is
the fact that at any given time-step, the agent only
\sees" the eight squares immediately surrounding its
position (see �gure 2). When an agent is started froma
given point, it has no a priori knowledge of its location.
Because this immediate sensory information alone is
very unlikely to identify exactly where the agent is in
the maze, the agent must somehow acquire and retain
information over time in order to e�ectively choose
its actions. Given the clear lack of information at the
start, the agent must begin by basically exploring, and
progressively integrate observations to narrow in on a
strategy to quickly and reliably reach the goal.

An agent in the maze not only has a location, but an
orientation (i.e. at any given point in time, it is facing
up, down, left, or right), and chooses from one of three
possible actions: advance one step forward, or turn
either left or right and then advance one step. With
di�erent orientations, the same location can appear
up to four di�erent ways in the sensory �eld, a factor
which can further decrease the utility of immediate
sensory information alone for position determination.

Another di�cult aspect is that the agent only receives
a reward if and when it reaches the goal; if, during a
single trial, one agent manages to come within one step
of the goal without actually reaching it while another
never even gets close, the two receive equally poor
scores. Such delayed reward thus signi�cantly limits
the information available to the selection process for
di�erentiating between alternate behavioral policies.

2.2 The RANN's

Other studies evolving RANN's (e.g. [Angeline et al.,
1994]) have explored the intriguing potential of EA's
to search the space of network topologies concurrently
with that of connection weights. How to encode and
modify network topologies is an open question with a
great number of possible and proposed schemes. For
reasons of simplicity, we chose a di�erent approach:
Simply choose a single, very powerful topology, and
explore only in connection weight-space. This arrange-
ment yields a �xed, �nite-dimensional search space.

Individuals in the population (of size 100) are encoded
as vectors of real-values each corresponding to a con-
nection weight in a network of sigmoid units with a
�xed, recurrent topology (an Elman [Elman, 1990] net-
work), consisting of an input layer (9 inputs, 1 for each
of the pixel in the 3x3 visual �eld), fully connected
to a single hidden layer, which is fully connected to
both the single output unit and to itself (see �gure 3).
The recurrent connections in the hidden layer are ef-
fectively time-delayed by one time-step: All of the hid-
den units' outputs are determined in parallel, and thus



Hidden layer3x3 Input Field Output layer

Figure 3: An Elman Network, consisting of a single hidden layer that is completely connected to its inputs (the
3x3 visual �eld), the output layer (a single unit), and itself

they each see each others' output values from the pre-
vious time-step when calculating their current output
value. By granting each hidden unit access to the ac-
tivation levels of all the hidden units in the previous
time-step, recurrent connections provide the capacity
to retain state over time. What information is retained
and how it is encoded is left to be determined via evo-
lution.

If the value produced by the single output unit is below
a particular threshold, the agent turns left and tries to
advance one grid-unit, if above a di�erent threshold,
to the right and forward one unit, and if between these
two thresholds, straight ahead one unit. Unless other-
wise noted, results presented here are for agents with
a total of 12 hidden units, which yields a complete
weight vector of 277 weights in length (including bias
unit connections).

2.3 Evolution

An EA consists of two primary processes, selection and
variation, that are alternately performed on a popu-
lation of candidate solutions. To select the more �t
solutions, their quality must be somehow measured.
We accomplish this by dropping each member of the
population into the maze at each of a set of starting
points and is provided a �xed amount of time in which
to reach the goal. Each such \opportunity to reach
the goal" is known as a trial. For each generation,
each individual's �tness is calculated by summing up,
for each trial, the square of the number of time-steps
spent before reaching the goal. The set of starting
points is randomly resampled from a uniform distri-
bution over all starting points possible in the given
maze. For 25�25 mazes, we used trials of length 400,
and length 1000 for 40x40's. 10 starting points were

selected at random for each generation, and hence each
individual was scored on the basis of 10 trials.

The higher its score, the less e�ciently the given agent
has managed to arrive at the goal. We often thus refer
to �tness scores as error, which emphasizes that it is
a quality we seek to minimize.

The speci�c form of selection we've used is tourna-
ment selection. Given a population of size n and user-
de�ned parameter, k (n = 100 and k = 10 for our pur-
poses here), n \tournaments" are conducted whereby
k individuals are randomly chosen from the current
population and the one with the best �tness score, the
winner, is copied into the next population. In the man-
ner often favored by EA's such as Evolution Strategies
(ES [Schwefel, 1981]), and Evolutionary Programming
(EP [Fogel et al., 1966]) the variation process then sim-
ply mutates each new population member via the ad-
dition of Gaussian noise (sampled from a distribution
of a �xed width de�ned by the user{0:2 in this case)
to each weight. Again for simplicity, the EA used here
does not employ any form of crossover operator.

2.4 Experiments

Many properties{such as the mean shortest-path-
length to the goal over all potential starting points, the
total number of potential starting points, the distribu-
tion of visible states along possible paths, etc.{vary
from maze to maze of the same size. Consequently,
what constitutes a \good" score for an agent may vary
between mazes as well. To evade results biased for a
particular maze, we've run experiments over multiple,
di�ering mazes and summarized the results. However,
instead of conducting each and every run on a di�er-
ent maze, we selected a �xed set of randomly-chosen
mazes (at least �ve) and then conducted multiple runs



0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 200 400 600 800 1000

P
op

ul
at

io
n 

B
es

t S
um

 o
f S

qu
ar

ed
 E

rr
or

Generations

SSE

Figure 4: The sum of squared error of the population's
best network over time for a typical run for a 25x25
maze

on each maze in order to promote faster convergence
of performance measures.

Within each graph presented in this paper, the same
maze-sets were always used for each group of runs pre-
sented so as to provide a valid comparison. However,
although new maze-sets were not generated for every
new experiment, the size and composition of the maze-
sets may vary between graphs, so caution should be
employed in comparing performance between graphs.

3 Results

3.1 Performance

The �tness, or sum-of-squared error, of the best net-
work in the population over time for a typical run on
a 25x25 maze is shown in �gure 4. Note that scores
tend to be clustered around particular �tness \lev-
els". These levels correspond to the number of tri-
als during which agents completely failed to �nd the
goal, and thus incurred a score of 400 (the maximum
amount of time per trial) squared. For ten trials, then,
the maximal (worst) score for a given network is thus
4002 � 10 = 1:6� 106.

The variance in best performance from generation
to generation is not only due both to the nature of
stochastic search as well as to non-elitist selection (i.e.
that there is no mechanism for explicitly retaining in
the population the best network yet identi�ed). Vari-
ation in performance is also expected because di�er-
ent networks are tested from a di�erent set of start-
ing points each generation; although a given network
may have scored well on the 10 starting points from
which it was tested in one generation, the same net-
work may possibly be found to perform quite poorly
starting from the next 10 points randomly chosen for
the following generation.

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 1 2 3 4 5 6

M
ea

n 
B

es
t S

um
 o

f S
qu

ar
ed

 E
rr

or

’noisedata’

Tested without Action Noise Tested with Action Noise = 0.25

Trained without Action Noise

Trained with Action Noise = 0.25

Figure 6: Mean best error for networks trained and
tested with and without probabilistic action noise

3.2 Stages of Maze Learning

The initial networks (with randomly-selected, near
zero weights) are unlikely to arrive at the goal no mat-
ter which point they start from (other than the goal
itself). Occasional networks may simply move forward
as long as they can, and thus be capable of reaching
the goal when started from one of the few points di-
rectly adjacent.

Not surprisingly then, in general networks �rst master
starting points near to the goal, and then proceed to
master points that are increasingly farther away, as
depicted in �gure 5.

Note however that (1) starting points may be mastered
by the best network found at one point in time and
then prove di�cult for successive \best" networks, and
that (2) just because a point lies on the path from some
starting point to the goal for a given network does not
necessarily imply that it too is a starting point from
which the network can reach the goal. With respect to
the second point, consider for example the lower-right
starting point in the third stage of �gure 5. Tracing
any possible path from this point to the goal, we can
see that one or more points which don't serve as suc-
cessful starting points must be passed through along
the successful path.

3.3 Adaptation to the level of action noise

To test the robustness of learning when actions don't
always have the intended e�ect, networks were trained
in an environment where the action performed has a
non-zero probability of being an action di�erent from
the one the agent selected. Networks trained both
with and without action noise were then tested in en-
vironments both with and without action noise (see
�gure 6).



Figure 5: Progressive stages of \maze coverage" over time (running left to right) during training on a simple,
15x15 maze. Gray squares indicate points from which the best network yet found can �nd its way to the goal
(the upper-left corner) in the allotted time.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

P
er

ce
nt

ag
e 

of
 S

ta
rt

in
g 

P
oi

nt
s

Generations

Population-Best Networks

Figure 7: Mean percentage of starting points over time
from which the population best networks managed
reach the goal trained and tested with action noise
probability = 0:25 (trial length 800)

Somewhat predictably, we found that networks trained
without any action noise performed rather poorly in
noisy environments. On the other hand, networks
trained in the presence of action noise seem to adopt
strategies which are less e�cient overall, but signif-
icantly more robust to noise. We thought perhaps
that this had to do with networks \giving up" on
particularly hard starting points to arrive at simpler
but less-optimal stategies, but further experimentation
suggests that this is not in fact the case (see �gure 7).

3.4 Use of Memory

To determine how well the capacity of the networks'
recurrent links was being exploited, we conducted ex-
periments with two di�erent forms of \impaired" net-
works. The �rst form simply had no recurrent links,
providing it with no capacity to retain state over time
(and hence in all likelihood unable to represent any
policy that succeeds at reaching the goal from at or
near most of the possible starting points). The second

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 200 400 600 800 1000

M
ea

n 
P

op
ul

at
io

n 
B

es
t S

um
 o

f S
qu

ar
ed

 E
rr

or

Generations

No recurrent links
No crosslinks

Fully recurrent

Figure 8: Mean population-best sum-of-squared-error
for networks with di�ering numbers of recurrent links

form has no cross-links between di�erent hidden units,
the only remaining recurrent links being self-links from
hidden-units to themselves.

General performance over training of the two impaired
forms on 25x25 mazes in comparison to fully recurrent
networks is depicted in �gure 8. In general, expected
performance was found to decrease with the the num-
ber of recurrent links removed. This result indicates
that the evolved networks are quite naturally exploit-
ing the richer behavioral capacity a�orded them by
recurrency.

3.5 Inter-Task Transfer

An important goal of our research is to �nd methods
whereby an EA solving a series of related problems can
bene�t from the cumulative computational e�ort ex-
pended to �nd solutions more quickly and/or of higher
quality. Such a system can be said to \transfer" ac-
quired knowledge of the problem domain accumulated
during search from one or more tasks to the next.

Results from a quite direct form of inter-task transfer



0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 200 400 600 800 1000

M
ea

n 
P

op
ul

at
io

n 
B

es
t S

um
 o

f S
qu

ar
ed

 E
rr

or

Generations

No crosslinks, from scratch
Fully recurrent, from scratch

No crosslinks, transfer
Fully recurrent, transfer

Figure 9: Training performance over time for networks
with and without recurrent cross-links, started both
from scratch and from a previously trained network

are shown in �gure 9. The best score in the popula-
tion is plotted over time for evolving RANN's to navi-
gate 25x25 mazes averaged over several di�erent runs,
where networks are either fully recurrent, or without
recurrent cross-links (as described in section 3.4). The
initial runs were started with weight vectors initial-
ized to near-zero random values (referred to as \from
scratch"). In the second runs, the initial weight vec-
tors were instead all initialized by copying the weight
vector of one of the best networks resulting from the
initial runs. Networks trained to navigate one maze in
the initial runs were thus trained a second time on a
di�erent maze.

By using the best individual from the �rst runs, the
second runs start out more �t and then adapt more
quickly, and end up at a better �tness level than
the �rst runs. We can see that when the impaired
\no cross-links" networks are trained by transferring
a weight vector from one of the initial runs, their per-
formance improves signi�cantly faster than and actu-
ally achieves the same quality of �tness as the fully
recurrent networks when trained from scratch. The
fully recurrent networks, too, bene�t from this weight-
transfer, and end up with higher �tness scores than any
of the others.

We also have evidence of still more performance bene-
�ts, particularly with respect to speed, resulting from
a \third stage" transfer, i.e. seeding a set of third
runs with weight vectors from one of the best vectors
derived from the second set of runs (the �rst transfer
runs). Unfortunately, the network performance is good
enough on this task that it's di�cult to tell whether
this process actually could continue. We are currently
exploring both (1) tasks in which there is clear po-
tential for further performance improvements via re-
peated use of this transfer mechanism, as well as (2)
what it is about the previously trained weight-vectors

that provides the observed performance bene�ts.

4 Summary

The principal �nding of this paper is that the approach
to learning goal-directed behavior described above pro-
duces viable solutions to the given problem, which is
characterized by a number of features that mark par-
ticularly di�cult RL tasks, including signi�cant rele-
vant hidden state and delayed reward.

Success of this approach attests to a number of hy-
potheses. First is to the general viability of Evolution-
ary Algorithms when applied to di�cult RL tasks. On
the more speci�c topic of EA search operators, note
that in contrast to many other EA/RL applications,
the EA employed here relies solely on a Gaussian-based
mutation operator.

It is also interesting to observe that given the structure
of this particular task, learning seems to proceed in a
roughly \hierarchical" manner, in that smaller sub-
tasks (reaching the goal from relatively close starting
points) are generally learned as prerequisites to learn-
ing more complex sub-tasks (reaching the goal from
starting points that lie further out).

Another hypothesis{that evolution is an e�ective
search procedure for the weight space of RANN's{is
supported by virtue of the quality of solutions found
on this task. More speci�cally, evidence for the use of
memory capacity further demonstrates that ability of
an EA to e�ectively exploit the bene�ts of recurrent
links.

A related, supported conjecture is that RANN's pro-
vide an e�ective representation for action policies.
Moreover, RANN's can represent policies that are ef-
fective in the presence of action noise. At a more
general level, these experiments display a challenging
domain in which direct search in the space of action
policies produces e�ective solutions.

Finally, the performance bene�ts observed from the
inter-task transfer of previously trained weight-vectors
point toward a quite direct method to derive bene-
�t from previously expended computational e�ort for
solving related problems.

Our continuing work includes exploring the e�cacy
of evolving RANN's on both di�erent and larger-scale
problems, as well as comparison with other learning
methods that have been developed for dealing with
hidden state. A particular interest is the reason be-
hind and the potential for improved performance from
the inter-task transfer of connection weights: Is there
some kind of general maze-navigation ability that's be-
ing transferred, or are the results due to some kind of
lower-level phenomenon in weight space? We are ac-
tively investigating these issues.



Acknowledgements

The authors would like to thank James Thomas
for recurrent fruitful discussions, Karthik Balakrish-
nan for helpful comments and suggestions, and four
anonymous reviewers for their thoughtful feedback.
This research was partially supported by the Of-
�ce of Naval Research, Contract N00014-95-1-0591.
Matthew Glickmanwas partially supported by an NSF
Graduate Fellowship.

References

[Angeline et al., 1994] Peter J. Angeline, Gregory M.
Saunders, and Jordan B. Pollack. An evolution-
ary algorithm that constructs recurrent neural net-
works. IEEE Transactions on Neural Networks,
5(1):54{65, 1994. Special Issue on Evolutionary
Computation.

[Elman, 1990] J.L. Elman. Finding structure in time.
Cognitive Science, 14:179{211, 1990.

[Fogel et al., 1966] L.J. Fogel, A.J. Owens, and M.J.
Walsh. Arti�cial Intelligence through Simulated
Evolution. John Wiley & Sons, New York, 1966.

[Holland, 1975] John H. Holland. Evolution in Natu-
ral and Arti�cial Systems. University of Michigan
Press, Ann Arbor, 1975.

[Je�erson et al., 1992] D. Je�er-
son, R. Collins, C. Cooper, M. Dyer, M. Flowers,
R. Korf, C. Taylor, and A. Wang. Evolution as a
theme in arti�cial life: The genesys / tracker sys-
tem. In [Langton et al., 1991], pages 549{578, 1992.

[Kaelbling et al., 1996] L.P. Kaelbling, M.L. Littman,
and A.W. Moore. Reinforcement learning: A survey.
Journal of Arti�cial Intelligence Research, 4:237{
285, 1996.

[Koza, 1992] John R. Koza. Genetic Programming:
On the Programming of Computers by the Means
of Natural Selection. MIT Press, 1992.

[Langton et al., 1991] C.G. Langton, C. Taylor, J.D.
Farmer, and S. Rasmussen, editors. Arti�cial Life
II. Addison Wesley, 1991.

[Lin and Mitchell, 1992] Long-Ji Lin and Tom M.
Mitchell. Memory approaches to reinforcement
learning in non-markovian domains. Technical Re-
port CMU-CS-92-138, Computer Science Depart-
ment, Carnegie Mellon University, 1992.

[Littman et al., 1995] M. L. Littman, A. R. Cassan-
dra, and L. P. Kaebling. Learning policies for par-
tially observable environments: Scaling up. In The
Proceedings of the Twelfth International Machine
Learning Conference. Morgan Kau�man Publishers,
Inc., 1995.

[McCallum, 1996] A. K. McCallum. Reinforcement
Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, 1996.

[Moriarty et al., 1997] David Moriarty, Alan Schultz,
and John Grefenstette. Reinforcement learning
through evolutionary computation. Technical Re-
port AIC-97-015, NCRAI, 1997.

[Schwefel, 1981] H. P. Schwefel. Numerical Optimiza-
tion of Computer Models. Wiley, Chichester, 1981.

[Teller, 1994] Astro Teller. The evolution of mental
models. In K. Kinnear, editor, Advances in Genetic
Programming. MIT Press, 1994.

[Wilson, 1998] S.W. Wilson. Generalization in the xcs
classi�er system. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, San
Francisco, CA, 1998. Morgan Kaufmann.


