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Abstract

This paper explores the increasing the heterogeneity of
an agent population to stabilize decentralized systems by
adding bias terms to each agent’s expected payoffs. Two
approaches are evaluated, corresponding to heterogeneous
preferences and heterogeneous transaction costs; empiri-
cally, the transaction cost case provides stability with near
optimal payoffs under certain conditions. Theoretically, in
the idealized case of an infinitenumber of agents, it is proven
that the system with added heterogeneous preferences has
a fixed point different from that of the unbiased system,
guaranteeing suboptimal performance, while the transac-
tion cost case is demonstrated to have a fixed point identical
to that of the unbiased system, and it is further shown to
be a contraction mapping, guaranteeing convergence. This
contraction mapping allows us to conceptualize the model
with heterogeneous transaction costs as a decentralized root
finding system.

Topic areas: decentralized systems, distributed search

1 Introduction

The growing interest in decentralized systems evinced
by the fields of Multiagent Systems (MAS) and Distributed
Artifical Intelligence (DAI) brings along with it a concern
for the stability of such systems. When agents lack explicit
coordination mechanisms, or act on incomplete or delayed
information, actions that may appear locally optimal may
create global instability at the system level. This can be
a particular problem in systems where agents allocate re-
sources among themselves with no central control. Prob-
lems with this characteristic include load balancing over
multiple processors, the allocation of internet traffic over
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multiple network routes, and market-like control systems
[2].

In such systems, when agents perceive that a resource
is underutilized, they try to increase their utilization of it.
But if all of the agents shift towards it, the other resources
become underutilized – the agents see this, and try to switch
back; this leads to unstable behavior. Such instabilities have
a negative effect on system performance. Instability creates
uncertainty, which further handicaps agent decision mak-
ing. Additionally, if transaction costs for switching between
resources are present in the system, the frequent switch-
ing between resources incurs unnecessary costs. Finally,
instability can prevent these systems from settling into an
equilibrium that provides the most efficient allocation of
resources.

The idea that agent heterogeneity is a key to stabilizing
these systems has been capturing increasing attention in re-
cent work. The intuitionis that since the instability is caused
by too many agents wanting to shift, a heterogeneous agent
population will increase the number of agents who don’t
want to shift, thus stabilizing the system. Kephart, Huber-
man & Hogg [5] noted the key to stability was increasing
the heterogeneity of agent responses. Arthur [1] investigated
similar issues in the context of the Santa Fe bar problem. He
allowed the agents to make decisions based on predictions
of the future state of the system; it turns out that for stability,
the accuracy of the predictionswere less important than their
heterogeneity. Schaerf et al [7] studied a distributed load
balancing system and discovered that communication be-
tween agents, by reducing heterogeneity, actually worsened
system performance.

We explore the effects of creating heterogeneous agents
by introducing bias terms to their perceptions of resource
payoffs. We examine the effect of such heterogeneity
both analytically and via simulations. We classify several
approaches to applying heterogeneity, demonstrating that
a transaction cost approach empirically provides stability
close to the point of maximum payoffs. Furthermore, we
analyze the application of heterogeneity and can prove, by
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means of a contraction mapping argument, guaranteed con-
vergence to the proper equilibriumunder certain conditions.
In addition, we show that in order to apply heterogeneity ef-
ficiently in real systems, one should carefully examine and
decide upon the amount of heterogeneity to be applied.

In section 2, we set up the basic model. Section 3 ex-
plains our two approaches to heterogeneity, conceptualized
as heterogeneous preferences and heterogeneous transac-
tion costs. The ability of these approaches to tame volatility
in empirical simulations is reported in section 4. Section
5 contains a theoretical analysis of both approaches, prov-
ing that in a system with an infinite number of agents, the
transaction cost approach is guaranteed to converge to the
true equilibrium of the system. Finally, section?? applies
these techniques to the problem of allocating tasks across
parallel processors to maximize throughput, and section 7
summarizes and discusses outstanding questions.

2 The Basic Model

For empirical modelling, we turned to a simplified ver-
sion of the computational ecosystem model pioneered by
Huberman, Hogg, and their colleagues at Xerox Parc [4, 5].
We created a simple model of resource utilization by agents.
Theagents want to maximize their payoffs, and decidewhich
resource to utilizeusing publicly available informationabout
each resource’s payoffs. The resources’ payoffs are decreas-
ing functions in the number of agents utilizing them, so the
more agents that utilize a resource the lower its payoffs.

In the specific model used in this section, there are two
resources, both with payoffs that are linear decreasing func-
tions of the number of agents utilizing them. Lettingp
denote the proportion of agents using resource one, the pay-
offs of resource one and resource two arer1 = 10� 5p,
r2 = 10� 10 � (1 � p) respectively. Figure 1 shows the
payoff for each resource plotted against p. When the pay-
offs from each resource is equal atp = 2=3, the system
is in equilibrium, since no agent has incentive to switch;
this point also provides maximum aggregate payoffs. How-
ever, this equilibrium is unstable; ifp is smaller than 2=3 by
just a little bit, then the payoffs for resource one are higher
than those of resource two, and every agent has incentive to
switch over to using resource one.

Following Kephart et al [5], our agents act myopically on
delayed information: they expect the next payoff to be the
same as the last payoff they’ve seen, but there is a lag time
before they can see the payoffs, and must form expectations
based on payoff informationa few turns old. In addition, not
every agent acts every turn; each has some fixed probability
of being able to act. A small Gaussian noise term is added
to all payoffs.

Figure 2 shows example dynamics for this model (50
agents, two resources, lag times uniformly distributed be-
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Figure 2. Standard Model Dynamics

tween one and five turns, each agent has a:3 chance of acting
per turn, noise term standard deviation of:05 – these values
are used for all simulations unless noted otherwise). The
pattern is obvious; p oscillates around the unstable equilib-
rium of p = 2=3. If p < 2=3, then every agent sees that
resource one pays more than resource two, and tries to shift.
This shift inevitably overshoots, and p rises to above 2/3,
leading to higher payoffs for resource two, which starts an-
other shift back towards resource two. Since the aggregate
payoffs are highest atp = 2=3, the normalized payoffs plot-
ted on the graph show that these system oscillations give rise
to sub-optimal aggregate payoffs.

3 Adding Heterogeneity

The basic problem this model presents is how to stabilize
the system, specifically, how to get the agents to distribute
themselves among resources such that none of them have
incentive to switch.

There are many possible approaches to this problem.
Game theory [3] offers up an easy answer: a symmet-
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ric mixed strategy where every agent chooses resource one
with probability 2/3, and resource two with probability 1/3.
However, this solution assumes that the agents know (or
can learn) the true equilibrium, and would incur horrendous
costs if there was a transaction cost to switch between re-
sources. Similarly, adding noise to the system stabilizes the
dynamics [5], at the cost of moving the system away from
the true equilibrium (however, as delays in the system in-
crease, this negative effect becomes less of an issue). One
might try to build agents that observe the system dynamics,
learn to predict the oscillations, and act in ways that sta-
bilize the system. Kephart [5] showed that allowing some
agents to predict the system did not necessarily improve the
dynamics; with small numbers of predicting agents, system
stability improved, but as the proportion of these predicting
agents grew, the system grew unstable again.

Using heterogeneity for stability has the advantage of
not imposing an additional computational burden on the
agents, and potentially stabilizing the system near the true
equilibrium. Hogg & Huberman [4] approach this problem
by increasing the heterogeneity of the system: by manipu-
lating payoffs, they effectively increase the heterogeneity in
agents’ lag times, which is enough to stabilize the system. In
addition, they briefly explore the idea of introducing classes
of agents that systematically err in estimating the payoffs
of resources; the resulting heterogeneity in decision making
calms the system. It is this approach that we investigate in
this paper.

Specifically, in this paper heterogeneity will mean mak-
ing the decision process of each agent slightly different from
that of every other agent’s. We will accomplish this by mod-
ifying each agent’s expected payoffs by bias terms that vary
between agents. These bias terms remain constant over
time. Intuitively, this works by increasing the diversity in
agent responses. In the standard model, as soon as p drops
below 2/3, every agent wants to switch to resource 1. With
heterogeneity, the perceived payoffs of some agents will be
distorted enough that some will still prefer to stay with re-
source two, hopefully dampening the oscillations enough
for the system to stabilize.

Instead of creating classes of agents, we opted for a ‘dis-
tributional’ approach, creating a positive bias term for each
agent/resource pair by drawing from uniformly distributed1,
interval.

We wanted to explore two issues: first, is there a right
amount of heterogeneity? Very small bias terms will not
have much of an effect; very large ones might dominate
the decisions of the agents enough to drive the system far
from optimality. Since we draw our bias terms from a

1We experimented with both using classes of agents and the ’distri-
butional’ approach used in this paper; the distributional approach proved
universally superior, but for concerns of brevity those results are not pre-
sented here.

uniformly distributed interval[0; 2n], wheren is the mean
of this distribution, thisn provides a good measure of the
amount of heterogeneity we add to the agents. The higher
n is, the higher the average bias term is, and the more
importance it plays in the agent’s actions.

We also wanted to examine exactly how these bias terms
should be applied. The obvious approach is to apply them
to every expected payoff an agent sees. Since these biases
are constant over time, this can be interpreted in economic
terms as heterogeneous preferences.

An alternate approach applies the bias terms only to those
resources an agent is not currently using – these biases,
when all positive, could then be interpreted as heterogeneous
transaction costs. Each agent factors in a small cost to switch
resources, and this cost is different for each agent/resource
pair.

To implement these approaches in our model, we cre-
ate a bias term for each agent/resource pair (or agent
class/resource pair). If we letri stand for the true payoffs
of resourcei, biasi;j represent the constant bias term for
each agent/resource pair, then using the heterogeneous pref-
erences approach, the perceived payoffsr0

i;j of each agent
(or agent class)j for resourcei is:

r0i;j = ri � biasi;j

And in the heterogeneous transaction cost approach:

r0i;j = ri � biasi;j agent j is not currently using resource i
r0i;j = ri agent j is currently using resource i

4 Empirical Results

We examined these issues by running simulations, us-
ing both the preference approach and the transaction cost
approach. We performed 20 trials, each time running our
model for 200 turns with levels of heterogeneity varying
from 0 to 5. The results are presented in figures 3,4,5.

Figure 3 addresses the issue of volatility, by plotting the
average standard deviation ofp over the 200 turns against
the level of heterogeneity. This is a good measure of the
volatility of the system; low standard deviation means thatp
is more or less motionless. In the transaction cost approach,
at a heterogeneity level of about:75 the volatility ofp drops
almost to zero; the system is stabilized. The preferences
approach is not quite as effective; there is a slower drop in
the volatility ofp that never goes below a standard deviation
of :02.

Figures 4,5 address the issue of optimality. Figure 4
plots the payoffs of the two approaches against the level of
heterogeneity. Figure 5 plots the mean ‘error’ ofp, that is
the average difference betweenp in the simulation and the
optimalp of 2=3. Since being close to the optimalpproduces
close to optimal payoffs, the two graphs show similar results.
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In the transaction cost approach, corresponding to the rapid
drop in volatility around heterogeneity level of:75 there is
a rapid rise in payoffs and a rapid decrease in error. But,
as the level of heterogeneity increases, the error rises and
payoffs decrease, indicating that the system has stabilized
away from the optimalp of 2=3. The preferences approach
shows a more gradual reduction of error, but also a more
gradual decay of performance as the heterogeneity level
rises.

In conclusion, there is a ‘sweet spot’ for levels of hetero-
geneity between:75 and 2:25 for which the transaction cost
approach is clearly superior to the preferences approach,
both in reduction of volatility and nearness to optimal pay-
offs. However, past the ’sweet spot’, although the trans-
action cost approach still controls volatility, the payoffs is
provides is inferior to those of the preferences approach.

We also tested these techniques on a ‘moving target’,
where the resource payoffs shifted over time. This would
require the ability to not only initially stabilize the system,
but to move with it as it shifted. To test this, we re-ran the
simulations, but every fifty turns we flipped the payoffs of
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Figure 6. Moving Equilibrium

the two resources, so that the system alternated between the
two equilibriap = 2=3 andp = 1=3. Figure 6, plots the
payoffs against level of bias for both cases.

The results here are similar to the static case; the same
sharp rise and decline in payoffs for the transaction cost in
approach, and the more gradual improvement and delay of
the preferences approach. Here, however, the preferences
approach provides comparable if not superior payoffs; it is
possible that the preferences approach ’moves’ better when
confronted with a new equilibrium since it has never fully
stabilized the system, balancing out the transaction costs
approach’s advantage in static situations.

5 A Theoretical Interlude

We would like to have a theory that explains the results
above. For purposes of tractability some simplifying as-
sumptions will be needed, but we hope that the conclusions
reached here will generalize to similar domains. We will
examine the model with no noise or delays, and we assume
the existence of an infinite number of agents – the law of
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large numbers will allow us to represent the heterogeneity
induced by the bias terms as a frequency distribution. We
can then treat the system as a ‘representative agent’ and
analyze the system’s behavior by looking at the difference
equation that describes the evolution ofp, the proportion of
agents using resource one, over time. Our general approach
will be to write down the difference equations that represent
the idealized system, look for a fixed point, and examine
convergence properties.

Here we leta stand for the proportion of agents that act
each turn,p(t) the proportion of agents at time t using re-
source one, andr1,r2 the payoffs of resources one and two,
respectively. Letf(p(t)) stand forr1(p(t))� r2(p(t)), the
payoffs from resource one minus the payoffs from resource
two. This represents a sort of ’net incentive’; whenf(p(t))
is positive, resource one pays more than resource two, and
all agents want to shift to resource one.

In our simplified model without heterogeneity, the equa-
tions describing the evolution ofp(t) are:

p(t + 1) =

(
p(t) + a � (1� p(t)) f(p(t)) > 0
p(t) f(p(t)) = 0
p(t)� a � p(t) f(p(t)) < 0

If f(p(t)) > 0, then every agent wants to use resource
one, and so of the agents using resource two,(1� p(t)), all
those that can act this turn move, shiftingp by a � (1�p(t)).
If f(p(t)) = 0, then no one wants to move, and the system
is stable. We will denote this fixed point of the underlying
systemp0. Since this is the point of maximum aggregate
payoffs, we would like the addition of heterogeneity to sta-
bilize as close to this point as possible.

5.1 Heterogeneous Preferences

Let us now add heterogeneous preferences by adding a
term drawn from a uniform distribution across the interval
[0; 2n] to each agent’s payoffs for each resource (here,n rep-
resents the ’level’ of heterogeneity as used in section 4, the
mean of the distributionfrom which the bias terms are gener-
ated). Sincef represents resource one’s payoffs subtracted
from resource two’s payoffs, this is identical to adding a
term drawn from uniform distribution over[�2n; 2n] to f .
Remember that agents switch from resource two to resource
one if they perceive(f(p(t))) < 0, and vice versa. The
key to understanding the effect of the bias terms is to un-
derstand for a given(f(p(t))), what proportion of agents
have bias terms strong enough to shift their behavior. Given
f(p(t)), letP (f(p(t))� bias > 0) represent the proportion
of agents for whomf(p(t)) plus bias terms is less than zero.
For example, if we let let 2n = 1, andf(p(t)) = :5, given
uniformly distributed bias,P (f(p(t)) � bias > 0) = :75
andP (f(p(t)) � bias < 0) = :25. These terms would
represent the proportion of agents switching from resource

two to one, and the proportion switching from one to two,
respectively. Adding these terms gives us the more compli-
cated single equation:

p(t+ 1) = p(t) + a � (1� p(t)) � P (f(p(t))� bias > 0)
�a � (p(t)) � P (f(p(t))� bias < 0)

SinceP (f(p(t)) � bias > 0) + P (f(p(t)) � bias <
0) = 1, this simplifies to

p(t+ 1) = p(t) + a � (1� p(t)) � P (f(p(t))� bias > 0)
�a � (p(t)) � (1� P (f(p(t))� bias > 0))

= p(t) + a � P (f(p(t))� bias > 0)
+a � p(t) � P (f(p(t))� bias > 0)
�a � p(t)) + a � p(t) � P (f(p(t))� bias > 0)

The twoa � p(t) � P (f(p(t)) � bias > 0) terms cancel,
leading to:

p(t+ 1) = p(t) + a � P (f(p(t))� bias > 0)� a � p(t)
= (1� a)p(t) + a � P (f(p(t))� bias > 0)

Assuming there is a fixed pointp00 such thatf(p00) 2
[�2n; 2n], to find it we need ap00 such that

p00 = (1� a)p00 + a � P (f(p00)� bias > 0)
a � p00 = a � P (f(p00)� bias > 0)
p00 = P (f(p00)� bias > 0)

Note that this fixed point is not the fixed point of the
unbiased system. At the unbiased system fixed pointp0 =
2=3, f(p0) = 0, and soP (f(p0) � bias > 0) = 1=2. Let
us examine theP (f(p(t))� bias > 0) term. Given that the
bias is drawn from a uniform distribution,

P(f(p(t)) =

(
1 f(p(t)) > 2n
1=2+ f(p(t))=(4 � n) f(p(t)) 2 [�2n;2n]
0 f(p(t)) < �2n

so, given thatf(p00) 2 [�2n; 2n],

p00 = 1=2+ f(p00)=4n

Intuitively, this makes sense. The fixed point is a mixture
of two terms. The first, 1=2, is the equilibriumthat would be
induced by the heterogeneous preferences 1=2 of the agents
would prefer each resource. The second depends on the
payoffs functions and represents the true underlying fixed
point. Note that this second term grows less important the
largern is; increasing the amount of heterogeneity pushes
us closer and closer to random chance.

We can examine this fixed point in the case where both
resources have linear payoffs (as in the simulations above)
of form a + bx; r1� r2 gives anf of the form(p(t)) =
c1+ d1 � (p(t))� (c2+ d2 � (1� p(t))) = (c1� c2+ d2)+
(d1� d2) � p(t)) = c+ d � p(t).
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p00 = 1=2+ (c+ d � p00)=(4n)
p00 � (1� d=(4n) = 1=2+ c=(4n)
p00 � ((4n� d)=4n) = (2 � n+ c)=(4n)
p00 = (2 � n+ c)=(4n� d)

In the payoffs used for the empirical simulations,c = 10
andd = �15, giving:

p00 = (n+ 10)=(4n+ 15)

Here we can see that ifn = 0, p00 = 2=3, but asn
growsp00 approaches(1=2) � n = 1=2. So, the stronger the
heterogeneous preferences, the farther away we stabilize
from the underlying equilibrium.

Note that the preceding analysis can only say something
about the system whenf(p(t)) 2 [�2n; 2n], wheren is
the level of heterogeneity explained above; iff(p(t)) never
goes into this range, then the heterogeneous preferences or
transaction costs are not large enough to affect the deci-
sions of any agents. In terms of the stability of the system,
understanding when the falls into this zone, allowing the
heterogeneity to have it’s stabilizing effect, is crucial to sta-
bility. Unfortunately, in the general case, the only rule of
thumb is that large values ofn create a zone big enough to
guarantee that the system will step into it.

5.2 Transaction costs

Addingnon-heterogeneous transaction costs ofn give us:

p(t + 1) =

(
p(t) + a � (1� p(t)) f(p(t)) > n
p(t) f(p(t)) 2 [�n;n]
p(t)� a � p(t) f(p(t)) < n

Here, if the payoff difference is smaller than the transac-
tion cost, no agents will switch and the system will freeze.
So, high transaction costs stabilize the system, but at a fixed
point potentially far away from the underlying equilibrium.

What happens if we make the transaction costs heteroge-
neous? The basic equations are:

p(t+ 1) =(
p(t) + a � (1� p(t)) � P (f(p(t))� bias > 0) f(p(t)) > 0
p(t) f(p(t)) = 0
p(t)� a � p(t) � P (f(p(t))� bias < 0) f(p(t)) < 0

Here, if f(p(t)) > 0, meaning that resource one pays
more than resource two, the same number of agents switch
from resource two to resource one as in the heterogeneous
preferences case. However, no agents switch from resource
one to resource two, since the transaction costs only makes
resource two’s payoffs look less favorable; they have no ef-
fect on resource one’s payoffs. This is the key difference
between the two approaches. Assuming a uniform distribu-
tion, we get

p(t+ 1) =8>>><
>>>:

p(t) + a � (1� p(t)) f(p(t))� n > 0
p(t) + a � (1� p(t)) � (f(p(t))=2n) f(p(t)) 2 (0;2n]
p(t) f(p(t)) = 0
p(t)� a � p(t) � (�f(p(t))=2n) f(p(t)) 2 [�2n;0)
p(t)� a � p(t) f(p(t)) + n < 0

Note that if there exists ap0 in the original system such
that f(p0) = 0, thisp0 is still a fixed point in the system
with added transaction costs. So a system heterogeneous
transaction costs has a fixed point that is identical to the
equilibrium of the underlying system. We’d like to show
that this system necessarily converges top0, which would
entail showing that

jp0 � p(t+ 1)j < k � jp0 � p(t)j

for somek < 1. We will examine this by cases. First,
assume thatp(t) < p0, which implies thatf(p(t)) > 0

jp0 � p(t+ 1)j = jp0 � (p(t) + a � (1� p(t)) � (f(p(t))=n))j
= j(p0 � p(t))� a � (1� p(t)) � (f(p(t))=2n)j

As above, assume the linear payoff case (the general case
will be dealt with later). We already know that there exists
a p0 where payoffs are equal, ie.r1 = r2 and by extension
f(p0) = 0. This implies thatp0 = �c=d.

jp0 � p(t+ 1)j = j(p0 � p(t))�
a � (1� p(t)) � (c+ d� (t))=2nj

Sincec+ d � p0 = 0, c = �d � p0.

jp0 � p(t+ 1)j = j(p0 � p(t))
�(a � (1� p(t)) � (�d � p0 + d � p(t))=2n)j

= j(p0 � p(t))
+a � (1� p(t)) � d(p0 � p(t))=2n)j

= j(p0 � p(t) � (1+ a � (1� p(t)) � d=2n)j
� jp0 � p(t)j � j1+ a � (1� p(t)) � d=2n)j
= jp0 � p(t)j � j(1+ (1� p(t)) � d � (a=2n)j

In the case above, wherea = :3 andd = �15, picking
n to be greater than 1:25 ensures thatd � (a=2n) > �2, and
j1+ (1� p(t)) � d � (a=2n)j < 1, thus guaranteeing that we
have a contraction mapping that converges top0.

The other case, wherep(t) > p0, which implies that
f(p(t)) < 0, follows as well:

jp0 � p(t+ 1)j = jp0 � (p(t)� a � p(t) � (�f(p(t))=2n))j
= j(p0 � p(t)) + a � p(t) � (f(p(t))=2n)j
= j(p0 � p(t))

+a � p(t) � (�d � p0 + d � p(t)=2n)j
= j(p0 � p(t))

�a � p(t) � d � (p0 � p(t))=2n))j
= j(p0 � p(t)) � (1� (a � p(t) � d � =2n))j
= j(p0 � p(t))j � j(1� (p(t) � d � (a=2n)))j
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The same choice forn will work here.
We can extend the result to situations wherer1 andr2,

and by extensionf , are not linear. We assume thatf is
continuous, and thatdf=dp is bounded above and below by
d0 and d00, the minimum and maximum derivatives, both
finite and both strictly negative.

Again, let us go by cases, and assume thatp(t) < p0. By
our assumptions onf ,

f(p) >= �d0 � (f(p0)� f(p(t)))
f(p) <= �d00 � (f(p0)� f(p(t)))

We can use this to bound thea � (1� p(t)) � f(p(t)) term.

a � (1� p(t)) � (f(p(t))=n) => a � (1� p(t))
� � d0 � (p0 � p(t))=2n)

a � (1� p(t)) � (f(p(t))=n) =< a � (1� p(t))
� � d00 � (p0 � p(t))=2n)

If we pick n large enough,(a � (1� p(t)) � �d00 � (p0 �
p(t))=2n) < p0 � p(t), so

jp0 � p(t+ 1)j >= j(p0 � p(t))
+a � (1� p(t)) � �d0 � (p0 � p(t))=2n)j

jp0 � p(t+ 1)j <= j(p0 � p(t))
+a � (1� p(t)) � �d00 � (p0 � p(t))=2n)j

jp0 � p(t+ 1)j >= j(p0 � p(t)) � (1� p(t)) � d0 � (a=2n)j
jp0 � p(t+ 1)j <= j(p0 � p(t)) � (1� p(t)) � d00 � (a=2n)j
jp0 � p(t+ 1)j >= j(p0 � p(t))j � j(1� p(t)) � d0 � (a=2n)j
jp0 � p(t+ 1)j <= j(p0 � p(t))j � j(1� p(t)) � d00 � (a=2n)j

Again, by pickingn large enough, we can easily establish
a minimum and a maximum contraction factor, guaranteeing
convergence.

So, in the case of an infinite number of agents and no
delays in information, we have shown that adding prop-
erly chosen uniformly distributedheterogeneous transaction
costs guarantees convergence to the equilibrium of the un-
derlying system, guaranteeing maximum payoffs.

It is important to take a step back to think of the impli-
cations of this. With guaranteed convergence to the point
wheref = 0, the system is functioning as a decentralized
root-finding algorithm. Root finding algorithms [6] are nu-
merical methods used to solve equations, usually by moving
all terms to one side and finding the point wheref(x) = 0.
One must usually make assumptions about the form off ,
namely that it is monotonic, and sometimes continuous. But
given these assumptions, root finding algorithms proceed by
‘bracketing’ the solution, and iteratively closing in on it by
moving closer to it on each step; if the sign off(x) changes,
then we have passed the root and must step backwards. The
system here converges slowly (many root finding algorithms
promise quadratic convergence), but conceptually it is very
similar. This opens the question as to whether we can take
more sophisticated root finding algorithms, and try to im-
plement them in a decentralized manner by playing with

the decision making processes of individual agents. For ex-
ample, bisection, which merely halves the distance to the
root each turn, could be implemented by merely halving the
number of agents that can act each turn.

So in theory, if we have a problem that can be represented
as solving an equation, we can set up a decentralized sys-
tem that solves the problem with no loss in accuracy and
guaranteed convergence.

5.3 Noise vs. Heterogeneity

There is nothing in the preceding analysis that distin-
guishes heterogeneous preferences and heterogeneous trans-
action costs from homogeneous preferences and transaction
costs with an appropriate amount of uniformly distributed
noise. The only difference is that in the heterogeneous case,
the bias terms are generated once and fixed permanently. In
the noise case, a new set of bias terms is generated each turn
– but, because of the law of large numbers, the proportion
of agents whose decisions are affected by the bias terms is
the same.

The difference comes in two areas. For real systems
with a finite number of agents, the exact terms produced
by adding noise will vary each turn, potentially causing in-
stability; in contrast, the heterogeneous bias terms do not
vary over time. The law of large numbers makes this issue
grow theoretically less important with the number of agents
in the system, although it is probably a concern in any real
world problem. Also, in applications where agents should
stay with the same resources over time – for example, when
there are real transaction costs – the noise case incurs subop-
timal performance. Although the noise case maintains the
equilibrium, it does so because the number of agents who
switch from resource one to resources two exactly balances
out those who switch the other way. In the heterogeneity
case, no agents switch – at equilibrium, their inherent biases
give them no incentive to switch, and no transaction costs
are observed.

6 Theory & Practice

How do the theoretical and empirical results mesh to-
gether? For both the heterogeneous preferences and trans-
action cost cases, low levels of heterogeneity had little ef-
fect on the system. This probably corresponds to a situation
wheref(p(t)) never entered the stabilizing[�2n; 2n] range.
As n, and thus the stabilizing interval, grows big enough,
the oscillations of the system dropped dramatically – in the
heterogeneous transaction cost case, converging to a fixed
point almost identical to that of the underlying system.

Asn rises, in both cases the systems fell away from opti-
mality; in the heterogeneous preferences case, this was be-
cause the system was stabilizing farther and farther away
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from the equilibrium, as predicted. The heterogeneous
transaction cost case is more mysterious – the theory pre-
dicts that the value of n should have no effect on the fixed
point of the biased system. This is probably an issue of gran-
ularity – since we don’t really have a continuum of agents,
there is some smallest transaction costc0; and the system can
potentially stabilize at any point such thatf(p(t)) < c0. As
n grows, thisc0 grows with it, thus allowing the system to
stabilize farther and farther away from the true equilibrium.
As the number of agents grows, thus better approximating a
continuum, hopefully this would be less of an issue.

For empirical success, it seems that the goal is to pick
ann big enough for the system to fall into the zone where
f(p(t)) 2 [�2 �n; 2 �n], but not so big that the system stabi-
lizes away from the underlying equilibrium. Fortunately, in
the heterogeneous transaction cost case, the range of useful
n is reasonable – anywhere in[:8; 1:85] gives near-optimal
results.

7 Conclusions & Future Work

This paper has explored the use of heterogeneity to stabi-
lize decentralized systems, both in terms of preferences over
resources, and transaction costs to switch between resources.
In was shown that although in both cases heterogeneity can
produce stability, in both practice and theory using hetero-
geneous transaction costs produces stability with less sub-
optimality than heterogeneous preferences. Given an con-
tinuum of agents, it was proved that biased transaction costs
guarantee convergence to the true underlying equilibrium of
the system, allowing us to conceptualize these systems as a
simple decentralized root finding algorithms.

This work leaves many unanswered questions. The use of
a uniform distribution to represent heterogeneity was mo-
tivated largely by concerns of ease of analysis; an explo-
ration of the effects of Gaussian or other distributions of
the exponential family might find them either theoretically
or practically superior. The conceptualization of this sort
of system as a decentralized root finder suggests tantaliz-
ing possibilities; could we design an algorithm to mimic
Newton’s method or even simulated annealing?

In economics terms, the knowledge that heterogeneous
transaction costs stabilize these systems so well has intrigu-
ing potential policy implications. The recent discussion of
using the Tobin tax [9, 8] (a small transaction cost on in-
ternational currency trades) to encourage stability in global
currency markets has raised the profile of transaction costs
as a policy method; the work here suggests that making
them heterogeneous may make them more effective at a
lower social cost, although issues of fairness would need to
be addressed.
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