
Strategies for Querying Information Agents

PRASAD CHALASANI , SOMESH JHA, ONN SHEHORY and KATIA SYCARA

Robotics Institute, Carnegie Mellon University, Pittsburgh PA15213-3890, USA

Abstract. In a simple cooperative MAS model where a collection of “querying
agents” can send queries to a collection of “information agents”, we formalize
the problem of designing strategies so that the expected completion time of the
queries is minimized, when every querying agent uses the same strategy. We de-
vise a provably optimal strategy for the static case with no query arrivals, and
show via simulations that the same strategy performs well when queries arrive
with a certain probability. We also consider issues such as whether or not the ex-
pected completion time can be reduced by sending multiple copies of queries, or
by aborting copies of answered queries.

1 Introduction

As the internet grows relentlessly, and multi-agent systems (MAS) proliferate, it be-
comes increasingly important to design algorithms for agents to use limited resources
(such as time, memory, bandwidth, etc) efficiently. A badly designed scheme can eas-
ily lead to congestion and poor response times. A first step toward the design of good
strategies is to consider simple models of agent interactions. Even though these mod-
els may be abstract, they can help identify important issues that will arise in realistic
models. Morever, strategies devised under simple models can perform well in realistic
settings.

With this viewpoint, in this paper we introduce a simple MAS model where there is
a collection ofquerying agents(QA) and a collection ofinformation agents(IA). The
querying agents receive queries(from humans or other agents), which they must send
to IAs to obtain an answer. We want to design a strategy for a QA to send queries to IAs
so that the expected completion time of the queries is minimized. To see what kinds of
issues arise in designing such strategies, suppose the loads of the IAs were observable,
and that all IAs are capable of answering any query. Should the QA send its query to the
least-loaded information agent? If this were theonlyQA in the system, this is obviously
a good strategy. However in an MAS there are a large number of QAs, possibly much
larger than the number of IAs. IfeveryQA uses the above strategy, then it is no longer
clear that this is the best one. For instance if the loads of the information agents are
roughly the same, this would be a bad strategy, since the least-loaded information agent
would tend to receive a disproportionately large number of queries, and all these queries
would take longer to complete, on the average. However if one IA has a much lower
load than every other IA, this could be a good strategy.

In this paper we examine the following type of question:

If every QA were to use thesamequerying strategy, which strategy minimizes
the expected completion time of the queries?

Since every QA uses the same strategy, we refer to it as asymmetricstrategy. A natural
symmetric strategy is the followingrandomizedone: every query agent sends its query
to an information agent chosen uniformly at random. This would be a good strategy if
the information agents are more or less equally loaded, but what if they aren’t? In this
paper we examine this problem and design an optimal randomized symmetric strategy
for this case of arbitrary loads, and assuming a static situation where each QA has one
query and no new queries arrive. Our strategy has the appealing feature that IAs with
higher load are less likely to receive queries. We also show by simulations that even in
a dynamic model with new query arrivals, ours is a good strategy to follow.

Another important issue we examine is:

If QAs send multiple copies of their queries to different IAs, does this reduce
the expected completion time? Is there an optimal number of copies to send?

There is a tradeoff here between two opposing effects on the query completion time.
The first is theload effect: multiple copies increase the load on the IAs, and everyindi-
vidualquery copy takes longer on average to be answered. The second is themultiplicity
effect:since each query has multiple copies at different IAs, it has a greater chance of
being answered sooner. It seems intuitive that as more copies are sent, the benefit of
multiplicity will be outweighed by the load effect. In this paper we show simulations
that show the optimal number of query copies to send, for specific situations.

1.1 Related work

Problems related to ours have been studied extensively in the area ofstochastic schedul-
ing of parallel systems (for a good introduction, see [2, 5, 6] and the references therein).
In all such work, the goal has been to design acentralizedscheduling algorithm so that
job completion times are reduced. By contrast in our MAS model, we emphatically
want to designdecentralizedalgorithms that different querying agents can use, with as
little communication as possible betweeneach other. Decentralized algorithms are easy
to implement, more robust in the face of failures, and scale up better than centralized
ones. Such algorithms are therefore likely to play an important role in a MAS con-
text. Despite this important difference, some of the techniques in stochastic scheduling
research are useful for our purposes. For instance, we have used the concepts ofma-
jorizationandSchur convexity[1, 3, 9] to design our optimal randomized algorithm in
Section 4.

Several researchers in MAS have approached the problem of designing decentral-
ized strategies from aneconomicsviewpoint. For instance, Huberman and Lukose [11]
have observed that since most people who access the internet are not charged in propor-
tion to their use, this has lead to the well-knowntragedy of the commons[8], which is
a special kind ofsocial dilemma: each individual tends to greedily consume bandwith,
leading to a degradation of performance for everyone. This conflict between an indi-
vidual’s myopic strategy and global performance is similar to the one discussed above
in the introduction: when every QA sends a query to the least-loaded IA, everyone’s
performance suffers. Researchers taking the economic viewpoint have proposed that
pricing internet access can lead to a resolution of this dilemma [12, 14, 17, 18]. Some

researchers [10, 15, 19, 20] are pursuing the design of decentralized strategies using
models based onmarket equilibrium[7]. In this paper we are formulating the decen-
tralized strategy-design problem purely from a performance viewpoint: if each agent
uses a strategy that leads to degraded performance for every agent, then that strategy is
perhaps not an optimal one.

Querying strategies forindividual agentshave been considered by, among others,
Chalasani et. al. [4] Etzioni et. al. [16], and Lukose and Huberman [13]. These authors
have not considered the effect of several agents using the same strategies.

1.2 Organization of the paper

In Section 2 we introduce the basic model assumed throughout the paper. In Section
3 we consider the case where the IAs initially have zero load. For this case we show
a lower bound on the expected completion time ofanystrategy. We also design a ran-
domized algorithm that comes close to the lower bound. In Section 4 we consider the
case where IAs have arbitrary initial loads and design an optimal symmetric random-
ized querying strategy. We also show via simulations (subsection 4.1) that this strategy
performs better than two other natural ones. Section 5 examines the effect of sending
multiple query-copies to different IAs. We show analytical results for some cases, and
simulations for others. Section 6 concludes with a discussion of future work.

2 The model

We assume there arem querying agents(QA) A1; A2; : : : ; Am, andn information
agents(IA) I1; I2; : : : ; In. Initially, each IAIi has aload `i, that is, it has̀ i queries
pending, and, without loss of generality,

`1 � `2 � : : : � `n:

Time is measured incycles, and the initial cycle represents time 0. In general, the QAs
receive queries that they need to send to IAs for an answer. Every IA is capable of
answering every query. In thestatic version of the model, each QA has just one query
at time 0. In thedynamic version, queries arrive at each QA in each cycle with a certain
arrival probability �. Each QA can send up tok copies(or instances) of the query to
different IAs. The query is said to becompletedas soon as any copy of the query is
answered by an IA. Queries never fail, i.e., when an IA chooses to answer a certain
query, it successfully does so. Each query takes exactly one cycle to answer. Each IA
uses the followingrandomized schedulingpolicy: Among the queries that are pending,
it picks one uniformly at random and answers it, and deletes it from its pending list.
Note that under this policy, if the number of pending queries at an IA is large, then
everyquery at this IA experiences a longerexpectedcompletion time. When a QA’s
query has been answered, the QA may choose toabort all (unanswered) copies of its
query. We ignore all communication costs and assume that queries and answers are sent
instantaneously.

Our goal is to design a goodsymmetric strategy for the QAs to send queries (with
possibly multiple copies) to the IAs. By a symmetric strategy we mean that every QA

uses exactly the same strategy. In addition to being easy to analyze, such strategies are
also easy to implement in a cooperative multi-agent system (MAS) setting. In this paper
we will only consider the design of strategies for the static model, and experimentally
study the behavior of the dynamic model wheneach QA uses this static strategy in each
cycle.

Consider then the static model, where each QA has just one query at time 0, that it
wants to obtain an answer for. For brevity we refer to QAAi’s query simply as “query
i”. For any (possibly randomized) symmetric strategy, we define the following random
variables. We letXij be the random variable defined as

Xij =

(
1 if a copy of queryi is sent to IAIj ;

0 otherwise.

If Ai sends a total ofk copies of its query, then clearly

nX
j=1

Xij = k:

Yij is the time at which a copy of queryi is answered by IAIj , if it received such a
copy, and is1 otherwise. Thecompletion time of queryi is the random variableZi
defined as

Zi = minfXi1Yi1; Xi2Yi2; : : : ; XinYing:

In case onlyk = 1 copy of query isi is sent, toIj , then of courseZi = Yij.

3 Single query-copy, unloaded case

We consider first the simplest case of the static model where the initial loads`i of the
IAs are all 0, and each QA sends exactlyonecopy of its query to some information
agent (sok = 1). What symmetric strategy should the QAs use in order to minimize the
expected completion time of their query? We first show a lower bound on the expected
completion time, foranystrategy (symmetric or not).

Lemma 1. For the static model where each QA sends exactly one copy of its query to
an IA, regardless of the strategy used, there is some query whose expected completion
time is at least �

b
m

n
c + 1

��
1�

n

2m
b
m

n
c
�
:

If m is a multiple ofn, this simplifies to

1

2

�
1 +

m

n

�
:

Proof: Following the notation introduced above, we writeZi for the completion time
of the query sent byAi. Consider thesumof the completion times of them queriesZ =
Z1+Z2+ : : :+Zm . This sum depends on the actual allocation of them queries among
then IAs. What is the smallest possible value of this sum? ClearlyZ is minimized
if, for as many cycles as possible,everyIA is busy answering some query. Ifm is an

integer multiple ofn, this is easily achieved by allocating exactlym=n of the queries to
each IA. In general, the minimumZ is achieved by allocatingbm=nc queries to each
IA, and allocating each of the remainingm�nbm=nc queries to distinct IAs. With this
allocation, in cycles1 to bm=nc, n different queries are answered in each cycle, and in
last cycle numberbm=nc + 1, the remainingm� nbm=nc queries are answered. Thus
for any querying strategy

mX
i=1

Zi �

bm
n
cX

i=1

(ni) +
�
m � nb

m

n
c
��

b
m

n
c+ 1

�

=
n

2
b
m

n
c
�
b
m

n
c + 1

�
+
�
m� nb

m

n
c
��

b
m

n
c + 1

�
=
�
b
m

n
c + 1

��
m�

n

2
b
m

n
c
�
:

By linearity of expectations,
Pm

i=1 EZi is also lower bounded by the last expression
above. By the pigeonhole principle, this implies there is somei such thatEZi is at least
1=m times that expression, which is the desired lower bound.

A simple and natural strategy that comes to mind is the following randomized one:
Each QA sends its query to an IA chosenuniformly at random.It is clear that every
query has the same expected completion time, and we show that this comes very close
to the above lower bound.

Lemma 2. If each QA sends its query to a uniformly randomly chosen IA, the expected
completion time for each query is

1 + (m� 1)=(2n):

Proof: Since every query has the same expected completion time, without loss of gen-
erality we can focus onA1’s query. We letV be the random variable denoting the index
of the information agent to whichA1 sends its query. The completion timeZ1 of A1’s
query atIV depends on the number ofotherqueriesIV receives, which we denote by
NV . In particular, the query could be answered at times1; 2; : : : ; NV + 1, each being
equally likely. Therefore the conditional expectation ofZ1 givenV is

E(Z1jV) =
1

NV + 1

NV +1X
i=1

i = (NV + 2)=2 = 1 + NV =2;

Note that, regardless of the value of the indexV , ENV = (m � 1)=n since each of
them � 1 other QAs independently sends a query toIV with probability1=n. So the
expectation ofZ1 is

E(Z1) = E[E(Z1jV)]

= 1 +
1

2
E(NV)

= 1 + (m � 1)=(2n):

Example.Suppose there arem = 17 QAs andn = 4 IAs. With the above uniform-
random strategy, the expected completion time of any query is, from Lemma 2,

1 + (m� 1)=2n = 1 + 16=8 = 3:

The lower bound on the expected completion time is, from Lemma 1,

(1 + 4)(1� 4� 4=34) = 2:64;

so our strategy comes close to the theoretical lower bound. In fact we conjecture that
there is nosymmetricstrategy that can do better than the above uniform-random strat-
egy.

4 Single query-copy, pre-loaded case

We continue to assume each QA sends a single copy of its query to some IA, but drop
the assumption that the current loads`i of the IAs are 0. For this case we design an
optimal randomized symmetric querying strategy that has an intuitive feature: IAs with
a larger load are less likely to receive a query. Specifically, we want to design the fol-
lowing type of strategy for the QAs: The QA sends its query to anIi with probability
pi. Our goal is to specify thepi values in such a way that the expected completion time
of any query is minimized.

We first derive an expression for the expected completion time of a query, in terms
of the probabilitiespi. Since every query will have the same expected completion time,
it suffices to consider the completion time of QAA1’s query. However, unlike the un-
loaded situation, the expected completion of this querydoesdepend on which IA it is
sent to. As before we let the random variableV denote the IA index to whichA1’s query
is sent, so thatV takes values inf1; 2; : : : ; ng. We also letNV denote the number of
otherqueries, i.e., fromA2; : : : ; Am, that land atIV . Given thatA1’s query lands at
IV , the completion time ofA1’s query is one of1; 2; : : : ; `V + NV + 1, each being
equally likely, and the expected completion time is

E(Z1jV) =
1

1 + `V + NV

`V +NV +1X
j=1

= 1 + (`V +NV)=2;

Therefore the expected completion time ofA1’s query is

E(Z1) = E[E(Z1jV)] (1)

= 1 +
1

2
E (`V +NV)

= 1 +
1

2

nX
i=1

pi`i + E(NV)

!

= 1 +
1

2

nX
i=1

pi`i + E[E(NV jV)]

!

= 1 +
1

2

nX
i=1

pi`i + E[(m � 1)pV]

!

= 1 +
1

2

nX
i=1

pi`i +
nX
i=1

p2i (m � 1)

!

= 1 +
1

2

nX
i=1

pi[`i + (m � 1)pi]

!
: (2)

From this expression it follows that:

Lemma 3. The optimal choice of probabilitiespi satisfies

p1 � p2 � : : : � pn; (3)

and in particular there is somek such thatpi > 0 for all i � k andpi = 0 for all i > k.

Proof: The proof is by contradiction. Supposep1; : : : ; pn is an optimal assignment
of probabilities. Ifpi < pi+1 for somei < n, we can interchangepi andpi+1 in the
expression (2) and the expectation would decrease (since`i � `i+1), which contradicts
our assumption that the probabilities were optimal.

How do we find the numberk of positive probabilities in the optimal assignment?
This turns out to be a non-trivial problem. We have the following result, whose proof
appears in the appendix. First we introduce the symbols

L(k) =
kX

i=1

`k;

A(k) = (L(k)=2 +m� 1) =k: (4)

Theorem 4. The number of positive probabilities in the optimal assignment is the small-
est value ofk < n for whichA(k) � `k+1=2 if such ak exists, and equalsn otherwise.
For thisk, the optimal probabilitiespi are such that for alli � k,

`i=2 + (m � 1)pi = A(k);

so that

pi =
1

(m � 1)
(A(k)� `i=2) : (5)

Note that the optimal probabilities have a nice intuitive feature:IAs with larger
loads have a lower probability of receiving a query.

Example. We illustrate the computations of this section with a simple example.
Suppose there arem = 20 QAs, andn = 9 IAs, with initial loads`i as follows:

f`1; `2; : : : ; `9g = f1; 3; 4; 7; 11; 12; 16; 24; 32g:

The values ofA(k); k = 1; 2; : : : ; 9 are, from (4),

f19:5; 10:5;7:67;6:63; 6:4;6:33;6:57; 7:25; 8:22g;

and we see that the smallestk for which Ak � `k+1=2 is k = 6. Therefore in the
optimal solution, probabilitiesp1 throughp6 are positive, and̀i=2+(m�1)pi has has
the same value fori = 1; 2; : : : ; 6. The corresponding optimal probabilities are, from
(5),

fp1; p2; : : : ; p6g = f0:307; 0:254;0:228;0:149;0:0438; 0:0175g;

and the expected completion timeE(Z1) is 5.096 cycles. By contrast, if we had used
the uniform-random strategy of the previous section (allpi = 1=n), the expected com-
pletion time would be8:167.

4.1 Simulation in the dynamic model

So far we have worked in the static model, i.e., each QA has just one query that needs
to be answered. Now we consider the dynamic model, where ineach cycle, at each QA,
a new query arrives with probability�. To be realistic we also assume a boundM on
thebuffer at each QA, that is, each QA may have no more thanM unanswered queries
at any time.

For this model we consider what happens if each QA follows a specific static strat-
egy in each cycle. In particular we consider the following three strategies:

– OPT: Each QA sends its query according the optimal static strategy of section 4,
with the loads̀ i equal to the current loads of the IAs. Note that we

– MIN: Each QA sends its query to theleast-loadedIA.
– UNIF: Each QA sends its query to an IA chosen uniformly at random.

Note that the first two strategies assume that the IA loads can be observed by the QAs,
whereas the UNIF strategy does not require this capability. Figure 1 is a plot showing
how these strategies compare with each other. We find that for the most part, our strategy
OPT dominates the others.

5 Multiple query copies, unloaded case

Returning to the static model, let us examine strategies where each QA sendsk copies
of its query to a set ofk distinct IAs, where thek-subset is chosen uniformly at random
over all possiblek-subsets. Note that since we are only considering symmetric strate-
gies, the parameterk is the same for all QAs. The analytic computation of the expected
query completion time in this case is somewhat complicated, and we will only consider

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Query Arrival Probability

Avg Query Delay

m = 30 Query Agents
n = 8 Info Agents
Query Agent Queue = 2 queries

OPT

UNIF

MIN

Fig. 1.Expected completion time of a query in the dynamic model under three different strategies,
as a function of the query arrival probability �. The model hasm = 30 Query Agents,n = 8
Information Agents, and the buffer at each QA is limited to 2 unanswered queries. The average
completion time is computed over all queries that have completed by 5000 runs.

the special casek = n, i.e., an instance ofeachquery is sent toeveryIA. For otherk,
we will only present simulation results.

For k = n, we consider two cases. First we will consider the case wherecopies of
answered queries are not aborted.We show the following:

Theorem 5. In the static model, if each of them QAs sends a copy of its query to each
of then IAs, and copies of answered queries are not aborted, the expected completion
time of any query approaches (for largem andn)

1� e�n

1� e�n=m
:

Proof: As before we focus on query 1 (i.e. QAA1’s query) and consider its completion
time. We letYi denote the time at which the copy of query 1 sent to IAIi is answered.
Then clearly the completion time of query 1 is

Z1 = minfY1; Y2; : : : ; Yng:

Therefore the expected completion time of query 1 is

E(Z1) =
mX
i=1

P (Z1 � i)

=
mX
i=1

P (Y1 � i; Y2 � i; : : : ; Yn � i);

and since the random variablesYi are independent, this is

=
mX
i=1

P (Y1 � i)n

=
mX
i=1

�
1�

i� 1

m

�
(6)

=
mX
i=1

"�
1�

i� 1

m

�m=(i�1)
#(i�1)n=m

'
mX
i=1

e�(i�1)n=m (for largem;n)

=
1� e�n

1� e�n=m
: (7)

Now let us consider the case whereall copies of answered queries are aborted.
This case is more complicated to analyze because we have to carefully keep track of
how manydistinctqueries are answered in each cycle. We assume asynchronousmode
of operation, i.e., in each cycle,first each IA answers a randomly chosen query from
its pending list, andthenall copies of answered queries are removed from the lists. We
then have the following result, whose proof is in the appendix.

Theorem 6. In the static model, if each of them QAs sends a copy of its query to each
of then IAs, and copies of answered queries are aborted, the expected completion time
Em of any query is given by the recursion:Ej = 1 for j = 1, and forj > 1,

Ej = 1� (1� 1=k)n +

minfj�1;ngX
i=1

iX
r=0

(�1)r
�
j � 1

i

��
i

r

��
i � r

j

�n

(Ej�i + 1):

Simulations.In Fig. 2 we show how the average query delay changes as the number
of query-copiesk is increased. Interestingly, for many cases it is found that the query
first decreases ask is increased, and then increases, indicating that there is a certain
optimum numberk of query-copies. As noted in the introduction, there are two oppos-
ing effects on the expected query completion time: the multiplicity effect, and the load
effect. Clearly the initial decrease in expected completion time can be explained by the
fact that the multiplicity effect dominates, and the subsequent increase occurs because
the load effect starts to dominate.

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 2 3 4 5 6 7

Number of Instances/Query

Avg Query Delay

m = 5 Query Agents

n = 10 Info Agents

Fig. 2.Expected completion time of a query, as a function of the numberk of copies of the query
that are sent. The plot is based on a simulation of the static model withm = 5 Query Agents,
n = 10 Information Agents, and the average completion is computed over 5000 runs.

6 Conclusion

In this paper we introduced a simple cooperative MAS model where there is a collec-
tion of information agents (IA) and a collection of querying agents (QA) that can send
queries to the IAs. We designed a provably optimal randomized symmetric strategy for
the static case where each QA has one query and each IA has an arbitrary initial load.
We considered the issue of when it helps to send multiple query copies to different
IAs. This paper only represents an initial step in a potentially fruitful and important
research area, namely the design of decentralized algorithms for multi-agent systems.
In the future we plan to study the use of economics-based approaches and also explore
connections with the area of stochastic scheduling.

References

1. A.W.Marshall and I.Olkin.Inequalities: theory of majorization and itsapplications. Aca-
demic Press, 1979.

2. F. Baccelli, Z. Liu, and D. Towsley. Extremal scheduling of parallel processing systems with
and without real-time constraints.Journal of the ACM, 40:1209–1237, 1993.

3. E. Beckenbach.Inequalities. Springer-Verlag, 1965.
4. P. Chalasani, S. Jha, O. Shehory, and K. Sycara. Query restart strategies for web agents. In

Autonomous Agents, 1997. Submitted.
5. C. Chang and D. Yao. Rearrangement, majorization and stochastic scheduling. Technical

Report IBM RC 16250 (#72136), IBM, Nov 1990.
6. E. Coffman and Z. Liu. On the optimal stochastic scheduling of out-forests.Operations

Research, 40:S67–S75, 1992.
7. D. Duffie. Security Markets: Stochastic Models. Academic Press, 1988.
8. G. Hardin. The tragey of the commons.Science, 162:1243–1248, 1968.
9. G. Hardy, J. Littlewood, and G. Polya.Inequalities. Cambridge University Press, 1934.

10. B. Huberman, R. Lukose, and T. Hogg. An economics approach to hard computational
problems.Science, 275:51–54, 1997.

11. B. A. Huberman and R. M. Lukose. Social dilemmas and internet congestion.Science,
277:535–537, July 25 1997.

12. J.K.MacKie-Mason and H. R. Varian. Some economics of the internet. InProc. 10th Michi-
gan Public Utility Conf., 1993.

13. R. Lukose and B. Huberman. A methodology for managing risk in electronic transactions
over the internet. In3rd Int. conf. computational economics, 1997.

14. J. MacKie-Mason and H. Varian. Pricing the internet. In B. Kahin and J. Keller, editors,
Public access to the internet. MIT Press, 1995.

15. T. Mullen and M. Wellman. A simple computational market for network information ser-
vices. InProc. first Int. Conf. on Multiagent Systems (ICMAS), 1995.

16. O.Etzioni, S. Hanks, T. Jiang, R. Kark, O. Madani, and O. Waarts. Efficient information
gathering on the internet. InProc. Foundations of Comp. Sc., 1996.

17. D. Stahl, A. Gupta, and A. Whinston. Pricing of services in the internet. Technical report,
University of Texas at Austin, 1995.

18. H. Varian. Economic mechanism design for computerized agents. InUSENIX Workshop on
Electronic Conference, New York, July 1995.

19. M. Wellman. A market-oriented programming environment and its application to distributed
multicommodity flow problems.J. Artificial Intelligence, 1:1–23, 1993.

20. M. Wellman. The economic approach to artificial intelligence. ACM Computing Surveys
Symp. on Artif. Intell., 27(3), 1995.

A Proof of Theorem 4

Let us first introduce the variables

ei = `i=2 + (m� 1)pi; i = 1; 2; : : : ; n;

and rewrite the expression (2) forE(Z1) as

E(Z1) =
1

m� 1

nX
i=1

(ei + `i=2)(ei � `i=2)

=
1

m� 1

nX
i=1

(e2i � `2i =4): (8)

Since thepi are probabilities that add up to 1, we must have

`i=2 � ei � `i=2 + (m� 1); i = 1; 2; : : : ; n (9)
nX

i=1

ei = L(n)=2 +m� 1 (10)

Thus our original problem of choosing the optimal probabilities can be recast as one choosing
thefeig so that the expectation (8) is minimized subject to the constraints (9) and (10). Suppose
there are two distinct indicesi; j such that (a)pi andpj > 0 are strictly positive in the optimal
solution, and (b)ei < ej. Clearly this meansei andej lie strictly within the range defined by (9).
Therefore there is some sufficiently small� > 0 such that if we increaseei by � and decreaseej
by �, we still satisfy the constraints (9) and (10). However the value ofe2i + e2j is smaller, since,
in general for any positivex; y,

Whenx+ y is fixed,x2 + y2 is smaller whenx andy are “closer” to each other, i.e.,
whenjx� yj is smaller.

(This type of argument is a special case of amajorizationargument forSchur-convexfunctions
(see, for example [1, 9]).) This means the expectation (8) is smaller, a contradiction. Therefore
we conclude that for all positivepi in the optimal solution, the value ofei must be the same. A
similar argument shows that ifi < j andpi = 0 in the optimal solution, thenpj = 0 as well.
Therefore ifk is the number of positive probabilities in the optimal solution, foreachi � k the
value ofei is the same, and fori > k, ei = `i=2. Since

Pk

i=1
ei = L(k)=2 +m� 1; it follows

that fori � k, ei = A(k).
Supposek is the number of positive probabilities in the optimal solution. Clearly ifA(k) >

`k+1=2, this meansek > ek+1 = `k+1=2. As before this means we can decreaseek by a small
� > 0 and increaseek+1 by � and reduce the sume2k + e2k+1 while still satisfying the constraints
(9) and (10). This is a contradiction, soAk � `k+1=2. Now we claim that if

Aj � `j+1=2

for somej, then this continues to hold for all largerj. To see this, note that

A(j + 1) =
L(j + 1)

2(j + 1)
+

m� 1

j + 1

=
1

j + 1
(j (L(j)=(2j) + (m� 1)=j) + `j+1=2)

=
1

j + 1
(jA(j) + `j+1=2)

�
1

j + 1
(j`j+1=2 + `j+1=2)

= `j+1=2

� `j+2=2:

Therefore the numberk of positive probabilities in the optimal solution is thesmallestk < n
such thatA(k) � `k+1=2 is such ak exists, or equalsn otherwise.

B Proof of Theorem 6

Again we fix our attention on the completion time of query 1. LetEj denote the expected com-
pletion time of query 1 when there arej distinct queries remaining. Initially, we of course have
j = m. Clearly if j = 1 we haveE1 = 1. Forj > 1, we have the following mutually exclusive
and exhaustive events: EventA0: Query 1 is answered in the current cycle, in which case the
expected time is 1,a and the probability of eventA is one minus the probability thatnone of the
IAs answer query 1, i.e.,

P(A) = 1� (1� 1=k)n :

The remaining events areAi for i = 1; 2;minfj � 1; ng; whereAi is the event that exactlyi
distinct queries are answered in the current cycle, all different from query 1. If eventEi occurs,
all copies of thei answered queries will be removed, so we are left withj � i distinct queries.
Thus the expectation given that eventAi occurs is(1 +Ej�i). So we can write, forj > 1,

Ej = P(A0) +

minfj�1;ngX
i=1

P(Ai)(1 +Ej�i):

We only need to show how to compute the probabilitiesP(Ai). We can write this as

P(Ai) = (Number of ways of choosingi special queries out ofj � 1)

� P(each IA picks only among thei special queries)

� P(each of thei special queries is picked by some IA); (11)

which is

P(Ai) =

�
j � 1

i

��
i

j

�n

Pi;

wherePi is the last probability in (11). We compute this probability by considering the comple-
mentary event: the event that at least one of thei special queries isnot picked by any IA. For
r � i the probability that a particularr-subset of thei special queries are not picked by any IA is
(1� r=i)n. By inclusion-exclusion, we then have

Pi =

iX
r=0

(�1)r
�
i

r

�
(1� r=i)n :

Thus finally the recursive formula for our expectationEj is: if j = 1 thenEj = 1, and if
j > 1,

Ej = 1� (1� 1=k)n +

minfj�1;ngX
i=1

�
j � 1

i

��
i

j

�n

Pi(1 + Ej�i);

which simplifies to

Ej = 1 � (1 � 1=k)n +

minfj�1;ngX
i=1

iX
r=0

(�1)r
�
j � 1

i

��
i

r

��
i� r

j

�n

(Ej�i + 1):

This article was processed using the LATEX macro package with LLNCS style

