
Designing a Multi-Agent Portfolio Management System

Keith Decker, Katia Sycara, and Dajun Zeng
The Robotics Institute, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
(decker,sycara,zeng+)@cs.cmu.edu

Abstract

The voluminous and readily available information on the In-
ternet has given rise to exploration of Intelligent Agent tech-
nology for accessing, filtering, evaluating and integrating in-
formation. In contrast to most current research that has in-
vestigated single-agent approaches, we are developing a collec-
tion of multiple agents that team up on demand, depending
on the user, the task and the situation, to access, filter and in-
tegrate information in support of user tasks. We are investigat-
ing techniques for developing distributed adaptive collections
of information agents that coordinate to retrieve, filter and fuse
information relevant to the user, task and situation, as well as
anticipate user’s information needs. Our approach is based on
(1) case-based task and situation models, (2) flexible organiza-
tional structuring, and (3) reusable agent architecture. We are
currently implementing the system in the domain of financial
portfolio management. While this paper focuses on the big
picture, the final section will describe the current implementa-
tion and point to our work on detailed technical solutions.

Introduction
Due to advances in technology, diverse and voluminous in-
formation is becoming available to decision makers. This
presents the potential for improved decision support, but
poses challenges in terms of building tools to support users
in accessing, filtering, evaluating and fusing information from
heterogeneous information sources(Kuokka & Harada 1995;
Arens et al. 1993; Collet, Huhns, & Shen 1991). Most re-
ported research on Intelligent Information Agents to date has
dealt with a user interacting with a single agent that has gen-
eral knowledge and is capable of performing a variety of user
delegated information finding tasks (e.g., (Etzioni & Weld
1994; Maes 1994)). For each information query, the agent is
responsible for accessing different information sources and in-
tegrating the results. We believe that, given the current com-
putational state of the art, a centralized agent approach has
many limitations: (1) a single general agent would need an
enormous amount of knowledge to be able to deal effectively
with user information requests that cover a variety of tasks, (2)
a centralized information agent constitutes a processing bot-
tleneck and a “single point of failure”, (3) unless the agent has

beyond the state of the art learning capabilities, it would need
considerable reprogramming to deal with the appearance of
new agents and information sources in the environment, (4)
because of the complexity of the information finding and fil-
tering task, and the large amount of information, the required
processing would overwhelm a single agent. Because of these
reasons and because of the characteristics of the Internet envi-
ronment, we employ a distributed collaborative collection of
agents for information gathering.

We are currently working on a system where each user is
associated with a set of agents which have access to the task
and situation models and keep track of the current state of
the task, situation, environment and user information needs.
Based on this knowledge, the agents decide what information
is needed and initiate collaborative searches with other agents
to get the information. During search, the agents communi-
cate with each other to request or provide information, find
information sources, filter or integrate information, and nego-
tiate to resolve conflicts in information and task models. The
returned information is communicated to display agent or
agents that possibly combine it with information from other
sources (e.g. the user) and/or filter it for appropriate display
to the user.

This paper focuses on the design of such a system of agents
for the task environment of financial portfolio management,
and on the key issues that we will be addressing. These is-
sues include: (1) gathering and integrating diverse informa-
tion sources with collaborating software agents, (2) case-based
user, task and situation models, (3) adaptive integration of
planning, coordination, scheduling, and execution. In our
system, case-based reasoning provides meta-level control and
activation of agents. Depending on the task, user and situa-
tion, case based retrieval selects current planning goals, infor-
mation needs and information gathering goals. Based on the
plans and information gathering goals, agent teams are acti-
vated “on demand” to access, integrate and filter information
to fulfill these goals. New information can be incorporated
in the case base and may give rise to new plans and infor-
mation gathering goals (and as a result activation of poten-
tially different agent teams). The system has three types of



agents, task agents, information agents, and interface agents.
Task agents have information about tasks and associated in-
formation gathering goals. Information agents have models of
information sources, information access strategies and associ-
ated task agents to whom the information should be returned.
Interface agents interact with the user receiving user specifica-
tions and delivering results. They acquire, model, and utilize
user preferences to guide system coordination in support of
the user’s tasks. This work is a continuation of our previous
work on multi agent information access, filtering and integra-
tion of everyday organizational tasks (Sycara & Zeng 1995).

Of the three types of agents, information agents are the
most well-defined. Each information agent—by definition—
shares a set of reusable behaviors that give it the ability to
process one-shot and periodic queries, monitor for certain
conditions, advertise it’s capabilities appropriately, and react
reasonably in the event of a local or external data source fail-
ure. If a domain content ontology has been fixed before-
hand, an information agent can be created quickly with lit-
tle programming—it requires a database definition, and some
code to access the external data source (i.e. web page, news-
group, or normal database) and create local database records.
Information agents are described in more detail in (Decker,
Williamson, & Sycara 1996).

The Portfolio Management Domain

To evaluate our domain independent agent control, organiza-
tion, coordination and architectural schemes, we have chosen
financial portfolio management as a task domain. This is the
task of providing an integrated financial picture for manag-
ing an investment portfolio over time, using the information
resources already available over the Internet. This task en-
vironment has many interesting features, including: (1) the
enormous amount of continually changing, and generally un-
organized, information available, (2) the variety of kinds of
information that can and should be brought to bear on the
task (market data, financial report data, technical models, an-
alysts’ reports, breaking news, etc.), (3) the many sources of
uncertainty and dynamic change in the environment.

The overall task in the portfolio management domain, as
stated by modern portfolio theory (Markowitz 1991), is to
provide the best possible rate of return for a specified level of
risk, or conversely, to achieve a specified rate of return with
the lowest possible risk Risk tolerance is one of the features
that characterize the user of our system; other features in-
clude the user’s investment goals (long-term retirement sav-
ings? saving for a house?) and the user’s tax situation. In
current practice, portfolio management is carried out by in-
vestment houses that employ teams of specialists for finding,
filtering and evaluating relevant information. Current prac-
tice as well as software engineering considerations motivate
our multi agent system architecture.

Previous work in the portfolio management domain (see

(Trippi & Turban 1990) for one collection) has focused on the
portfolio selection process (i.e., “stock picking”) as opposed to
portfolio monitoring—the ongoing, continuous, daily provi-
sion of an up-to-date financial picture of an existing portfo-
lio. A multi-agent system approach is natural for portfolio
monitoring because the multiple threads of control are a nat-
ural match for the distributed and ever-changing nature of
the underlying sources of data and news that affect higher-
level decision-making processes. A multi-agent system can
more easily manage the detection and response to important
time-critical information that could appear suddenly at any
of a large number of different information sources. Finally,
a multi-agent system provides a natural mapping of multiple
types of expertise to be brought to bear during any portfolio
management decision-making. Existing DAI techniques for
resolving conflicting opinions, negotiation, and argumenta-
tion can be brought to bear on these problems (Sycara 1989).

The overall portfolio management task has several compo-
nent tasks. These include eliciting (or learning) user profile
information, collecting information on the user’s initial port-
folio position, and suggesting and monitoring a re-allocation
to meet the user’s current profile and goals. As time passes, as-
sets in the portfolio will no longer meet the user’s needs (and
these needs may also be changing as well). Our initial system
focuses on this ongoing portfolio monitoring process.

The task of monitoring individual portfolio assets gives rise
to a variety of concurrent goals, such as monitoring an asset
currently being held (should we continue to hold it? sell some
or all of it?), or monitoring the buying or selling of an as-
set. Buying and selling at this high level are not instantaneous
transactions, but also require careful planning and monitor-
ing of plan execution. For example, let us assume that in the
process of monitoring the system comes to recommend that
an asset be sold. The way in which it is sold will be deter-
mined in part by the reason for the sale—perhaps the asset
is no longer performing as required for it’s role in the port-
folios asset allocation mix. Perhaps it is performing too well,
and there is a growing possibility that the asset has reached a
peak. In this second case it is often prudent not to sell one’s
entire holdings all at once, but to sell in phases and place the
appropriate standing orders to protect the user from a sud-
den downturn (while avoiding worry over simple daily price
fluctuations) Thus the goal of selling an asset is not one that
requires only a simple short sequence of actions, but one that
requires careful planning and monitoring of that plan as it is
executed, over an extended period of time.

Case Based Situation and Task Models

We are proposing to model the information gathering task
as a planning task where planning and execution are inter-
leaved and search is guided by user, task and situation models.
We believe that cases that incorporate user, task and situation
models can effectively provide instantiations of the situation-



dependent task structure and the associated team of informa-
tion gathering agents. The case base contains cases of suc-
cessful and unsuccessful information gathering episodes and
information evaluation. After each information gathering cy-
cle the case base is updated. Thus, learning is integrated
with problem solving and is achieved automatically. This
feature makes Case-Based reasoning very preferable in appli-
cation domains with open and dynamically changing world
model (Sycara, Zeng, & Miyashita 1995). Case based rea-
soning offers three general advantages. First, since it relies
on reusing specific experiences rather than reasoning from a
general world model, it provides for more efficient planning.
Second, since it can start with few cases in memory and incre-
mentally acquire new cases based on a reasoner’s interactions
with the world, it makes few assumptions about the complete-
ness and correctness of world knowledge. Third, previous past
failures warn the planner about the possibility of failure in
current circumstances and, hence help avoid future failures.

Each case will be automatically labeled with identifying in-
formation such as user’s name (a user could be a software
agent), time of creation, time of modification, etc. So, a case
will carry a complete audit trail of its origin and modifica-
tions. This information is essential for careful analysis of all
the planning knowledge that is exchanged during system op-
eration, and we will rely heavily on it during the initial stages
of knowledge acquisition and development. In addition, this
information can be used to evaluate the performance of the
system under different planning scenarios, since each item will
be clearly identified.

The library of cases we propose can be viewed as a case-
based scheme for meta control that offers agents access to task
and situation specific information. The agents use this in-
formation to focus search and filtering. The asynchronous
information gathering activity of the agents results in new in-
formation about the world (new cases) that gets incorporated
into the case base. Case base updates result in formation of
new memory indices. These new indices, along with any new
user inputs (e.g., information gathering requests, change in
context) activate a new set of cases that reflect possibly new in-
formation seeking goals, and new sets of agents. In this sense,
the case base can be viewed as (1) tracking the user’s intentions
and his/her evolving information needs, (2) reflecting chang-
ing situations, (3) recognizing new events, and (4) learning
information retrieval tactics/heuristics.

Figure 1 shows an active case base which receives as in-
put notification of events, either directly from the user or
from new information that becomes available (e.g., from other
software agents). Updates of the case-base with the addi-
tion of new information finding episodes and new indices
are also considered an event that results in the activation of
a new round of reasoning. In the following, we use an exam-
ple to illustrate the general Case-based agent invocation pro-
cess. Given a situation, the case-base calls a certain task assis-

tant, say Analyst Tracking Agent, which the reasoning process
determines is relevant to meeting the information gathering
goals (which in turn might be information requests from Port-
folio Manager Agent). Portfolio Manager Agent calls upon
Earnings analysis Agent, News Classifier, etc., to locate infor-
mation from the infosphere directly (in the case of News Clas-
sifier) or indirectly (in the case of Earning Analysis Agent).
Note that there is no hierarchy of agents here: in a different
situation Earning Analysis Agent might have been called di-
rectly by the case-base reasoning process. After collaborating
to find and filter information, Analyst Tracking Agent updates
the case base with new information finding episodes that in-
clude a timestamp and the results of the search. If unexpected
news (“unexpected” in terms of the current situation) has been
found during information retrieval (such as major corporate
merge news), the case-based process will interrupt the regular
plan execution and take other emergency actions. For exam-
ple, the case-base process might invoke the interface agent to
notify the user right away.

From the perspectives of Case-Based reasoning, there are a
number of important research questions that we need to ad-
dress. The most fundamental question is what constitutes a
case? A case in case memory describes a specific information
scenario including: (1) information needs and goals which
might come directly from the user or from other software
agents, (2) global features which give an abstract character-
ization of the situation in which this information gathering
operation takes place, (3) features of local nature which de-
scribe in detail the information about information sources,
inter-agent interactions, etc., (4) information retrieval plan
skeleton, (5) feedbacks/evaluations with respect to acquired
information and information retrieval effectiveness/efficiency,
and (6) potential failures and re-trial, plan modification infor-
mation. At the most abstract level, we might index an asset
monitoring task plan fragment using several broad situation
characteristics such as asset type, industrial sector, ownership
records, tax status, user profile, etc. These characteristics are
represented in the case base and used as indices for the re-
trieval of plan fragments, associated information gathering
goals and associated lists of agents to be activated. We are
currently investigating other important issues such as efficient
case indexing mechanism, case retrieval/matching approaches,
and initial case collection.

Organizational Structure

We propose a general system organization in which agents are
directly activated based on the top-down elaboration of the
current situation. These agent activations, guided by case-
based retrieval according to the current situation, dynamically
form an organizational structure that fits in with the user’s
current profile, tasks, and other situational features. This or-
ganization will change over time, but will also remain rela-
tively static for extended periods (for example, while moni-



toring currently held investments during stable market peri-
ods). Information that is important for decision-making (and
thus might cause an eventual change in organizational struc-
turing) is monitored at the lowest levels of the organization
and passed upward when necessary.

In this type of organization (see Figure 1), “task agents”
or “task assistants”(Sycara & Zeng 1995) continually inter-
leave planning, scheduling, coordination, and the execution
of domain-level problem-solving actions. Task agents interact
with one another and with “information agents” or “informa-
tion assistants” that encapsulate network information sources.
Task agents retrieve, coordinate, and schedule plans based on
local knowledge modulated by situational context. A task as-
sistant decomposes an information request into information
seeking goals and subgoals and interacts with the information
assistants to gather the information. In this architecture, a
task assistant does the final filtering and fusing of informa-
tion before it passes it on to agents above it in the organi-
zational structure (requesting agents). This incremental in-
formation fusion and conflict resolution increases efficiency
and potential scalability (e.g., inconsistencies detected at the
information-assistant level may be resolved at that level and
not propagated to the task-assistant level) and robustness (e.g.,
whatever inconsistencies were not detected during informa-
tion assistant interaction can be detected at the task-assistant
level). In addition, a task assistant composes a new case that
incorporates its findings to be stored in the case memory.

In this architecture, information-assistants would have
models of their associated information sources, learn the re-
liability of those sources, as well as strategies for low-level in-
formation fusion and multiple methods for responding to in-
formation requests. As an example of the latter, a stock ticker
monitoring agent might have several methods available to it
that trade off time, cost, and quality:

� one or more sources of 15-minute delayed values (with
varying reliabilities and average response delays)

� one or more sources of real-time quotations that charge a
fee (more reliable response but still not guaranteed)

� the ability to guess a quote based on recent data and simple
models (very fast but of low quality).

On the other hand, task-specific assistants have a model of
the task domain, executable methods for performing the task,
knowledge of an initial set of information-assistants relevant
to their task and strategies for learning models of pertinent
information-assistants.

Figure 1 shows a top-level portfolio manager agent which
receives as input notification of events, either directly from the
user or from the case base, or from information that becomes
available (e.g., from task and information agents). Given the
current situation, the portfolio manager agent:

� instantiates task plans and associated information gathering
goals according to the current situation

� coordinates those plans with other agents (this includes task
assignment actions that activate task assistants)

� schedules and monitors the execution of its local actions.

In Figure 1, the fundamental, technical, news, and outside-
analyst task agents have been activated in this manner. These
agents are task assistants that can either locate information via
information assistants, or by calling upon other task agents.
There is not a strict hierarchy of agents—the same task and
information agents may be called upon by different parts of
the portfolio management organization. After collaborating
to find and filter information, task agents update the case base
with new information finding episodes that include a time
stamp and the results of the search.

This architecture has potential advantages and drawbacks.
The advantages include:

� There is a finite number of task assistants that each agent
communicates with.

� Because information processing is done by all the task
agents at every level (rather than by having one task agent
receive all data from every information agent) we avoid hav-
ing a single computational bottleneck point.

� The task assistants are responsible for checking information
quality, filtering irrelevant information, recognizing impor-
tant information, and integrating information from hetero-
geneous information sources for their respective tasks.

� The task assistants are responsible for activating relevant
information assistants and coordinating the information
finding and filtering activity for their task.

All the above characteristics, by imposing some structure
through definition of task assistants, contribute to overall sys-
tem responsiveness. On the other hand, there are potential
drawbacks:

� The portfolio manager is a single point of failure. Such fail-
ures can be mitigated by expending the resources to have,
for example, a redundant portfolio manager that takes over
in case of failure.

� Each task assistant also constitutes a “single point of failure
for that task”. This can be mitigated by having more than
one task assistant (either clones of each other or not). In the
case where two different assistants exist for the same task,
the task assistants must negotiate to resolve inconsistencies.
We propose to explore the use of negotiation strategies for
resolving inconsistencies.



Analyst
Tracking Agent

Breaking
News Agent

Technical
Analysis Agent

Fundemental
Analysis Agent

Portfolio
Manager
Agent

Earnings
Analysis Agent

Ticker Tracker

Market Tracker

News Classifier

Historical
Stock Prices

Historical market
Information

Economic
Indicator Tracker

Infosphere

Task Agents Information Agents

Active Case Base
Agent Activation

Figure 1: A “direct invocation” agent organization for a portfolio management system.

In the stock portfolio example, task assistants for areas such
as earnings analysis might be replicated and allowed to special-
ize on various industry groups (one agent to handle banking
industry earnings, one for manufacturing, etc.). Such agents
might begin as clones, but learn specialized case information.
In the event of a failure, a non specialist would still be able to
retrieve useful plans for a task inside its area of expertise, but
outside of its specialty.

The Portfolio Monitoring Task
We can represent the plans that are retrieved using TÆMS task
structures (Decker 1995). TÆMS task structures are based on
abstraction hierarchies, where task plans are elaborated via a
“subtask” relationship into acyclic directed graphs that have
actions, called executable methods, at their leaves. Such struc-
tures are compatible with most planning representations, and
provide the necessary information both for scheduling activi-
ties that arise from multiple plans, and for coordinating the
activities of multiple agents. We have in fact constructed
a decision-theoretic hierarchical task network planner us-
ing extensions of this representation framework (Williamson,
Decker, & Sycara 1996). The extensions include the abil-
ity to represent and reason about periodic tasks. As shown
in Figure 2, a top level portfolio management agent interacts
graphically and textually with the user to acquire information
about the user’s profile and goals; as mentioned earlier, we
will assume in this paper that the system has gone through an

initial usage period and has reached a “steady state” of moni-
toring the current portfolio.

Such a monitoring task includes gathering opinions from
various task experts, integrating this information, and then
making or updating the recommendation (such as buy, sell,
or hold) for the asset under consideration. These tasks are
persistent, in that they are continuously present. An agent
will be dealing with many such tasks simultaneously. Gath-
ering opinions from the area experts (fundamental analysis,
technical analysis, news, and the opinions of other analysts—
the published output of similar human organizations) requires
registering with them and then either waiting for new opin-
ions to be received or asking for them directly. An opinion
consists of not just a buy/sell/hold recommendation but a
short list of positive and negative reasons for holding that
opinion, and potentially both symbolic and numeric mea-
sures of uncertainty. Information integration involves remov-
ing redundant information, resolving conflicts (or declaring
them unresolvable), and forming a coherent group opinion,
that can then be used for decision-making (in the light of the
user’s risk tolerance, investment goals, asset allocation, tax sta-
tus, and so on). The conflict resolution process may involve
negotiation between the agents involved.



monitor
and hold

stock

gather
opinions

integrate
information

make
recom-

mendation

remove
redundancy

T
min

abstract task with quality
accrual function min

subtask relationship

enables relationship

facilitates relationship

Fund. Op.
Update

Provide
fundemental

opinion
update

gather
opinions

integrate
information

make
recom-

mendation

— Management quality
— P/E Ratios
— Earnings Reports

Σ

Provide
immediate

opinion

max
(OR)

Portfolio Manager Agent

Fundemental
Analysis
Agent

Technical
Analysis
Agent

Breaking
News Agent

Analyst
Tracking

Agent

Other
Agents

Σ

resolve
conflicts

form
coherent
opinion

assess user
profile

information

assess
overall
goals

assess tax
situation

Figure 2: A task structure representing high-level portions of the monitor-stock-and-hold task.



An Example of Coordination: Earnings Report
Interpretation

One interesting subproblem in portfolio management is ac-
quisition and interpretation of earnings reports and earnings
estimates. The earnings analysis task is a complex one that in-
cludes estimating the impact of one company’s earnings on
other companies in a sector, the information contained in
one company’s earning report that actually releases informa-
tion about all companies in a sector, timing in the release of
earnings reports (especially for smaller companies), and the
differences in actual earnings versus expectations. It is impor-
tant to track revisions in earning estimates over time, as they
often give important clues as to future price moves.

Figure 3 shows a relationship between the abstract plans
of the earnings analysis agent and the human analyst opinion
tracker agent. The earnings analysis agent initially needs to
get data on a companies current and historical earnings pat-
terns, and then it needs to keep up to date on new earnings
reports as they are released. Not only does it need to track the
new earnings of the company in question, but also the earn-
ings of other companies in an industry sector. For example, a
change in the portion of earnings attributed to sales is often
applicable to all companies in a group, unlike changes to costs
(sales minus earnings) (Joh & Lee 1992).

The analyst tracking agent gathers, from news and other
sources, existing and updated analyst reports on a company,
including revised earnings estimates (often part of a larger
report). This part of the data, if transmitted to the earn-
ings analysis agent, can somewhat speed up (i.e., facilitate)
the process of gathering earnings expectations. We have
demonstrated the use of general coordination mechanisms,
called the GPGP (Generalized Partial Global Planning) ap-
proach, that can easily coordinate such task structure inter-
actions (Decker & Lesser 1995). In this instance, the soft-
predecessor-coordination-relationship mechanism will cause
the analyst tracking agent to commit to the transmission of a
completed analyst report form to the earnings analysis agent,
which can then easily extract the portion dealing with the up-
dated earnings estimate.

Agent Architecture
The portfolio manager and task assistant agents have an inter-
nal agent structure called DECAF (Distributed, Environment-
Centered Agent Framework)—a general, reusable, core agent
control architecture (Oates et al. 1995). The term architecture
here refers to the internal control structure of a single agent,
as opposed to the term organization that refers to the control
and communication structure of a group of agents.

The important features of the DECAF architecture are:

� A set of clearly defined control modules (planning, coordi-
nation, scheduling, decision-making, and monitoring) that
work together to control an agent.

� A core task structure representation that is shared by all of
these control modules. This core structure can be anno-
tated and expanded with all manner of details that might
be “understood” only by one or a few control modules, but
there is a core, shared representation.

Briefly, the main control functions consist of a planner that
creates or extends the agent’s view of the problem(s) it is try-
ing to solve, called the task structure. The coordinator notices
certain features of that structure, and may annotate it, expand
it, communicate parts to other agents, or add scheduling con-
straints to it. The local scheduler takes the rough plan and
creates a low-level schedule or schedules that fix the timing
and ordering of actions. The execution monitor takes care of
actually executing the next desired action (perhaps including
pre-emption of the action in true real-time execution).

Previous work has focussed on the design of the coordina-
tor and the local scheduler (Decker & Lesser 1995). Details
of the implementation of these components can be found in
the cited papers. We have extended this work to include more
sophisticated execution monitoring, using such techniques as
the TCA (Task Control Architecture) approach (Simmons
1994).

Current Status

We have already built a large part of the underlying basic or-
ganizations and achitecture as described here. Organization-
ally, our agents usually form dynamic unstructured teams us-
ing a central “matchmaker” that accepts advertisements from
new agents about thier capabilities, queries about who might
provide certain services, and unadvertisements when agents
leave the open system. Recently we have developed “broker-
ing” agents that act as central points of contact for certain
types of services (centralized markets). A hybrid organiza-
tional approach allows the use of both subforms, i.e., the use
of a matchmaker in order to find an appropriate broker. More
details can be found in (Decker, Williamson, & Sycara 1996).

Architecturally, we have developed several versions of the
basic agent internals described here. Currently, all of our agent
classes (information, task, and interface agnets) are based on
this shared architecture. Although the local scheduler is con-
siderably simpler than the one described in (Decker & Lesser
1995), the decision-theoretic hierarchical task network plan-
ner is more complex and capable (Williamson, Decker, &
Sycara 1996).

WARREN, our multi-agent portfolio management system,
currently consists of 6 information agents: two stock ticker
agents using different WWW sources, a news agent for Clar-
inet and Dow-Jones news articles, an agent that can extract
current and historical sales and earnings-per-share data from
the SEC Edgar electronic annual report database, another for
certain textual portions of annual reports, and of course the
matchmaker. Two task agents provide



Provide
fund.

earnings
opinion

Provide
analyst recom-
mendations

Gather
news articles

classified
"anal. rept." Fill

out anal.
rept. form

based on news
article

update
analyst
opinion
database

get
current

earnings

get
historical
earnings

gather
new earnings

reports

gather new
 earnings

expectations

for
this

company

for
other

companies
in sector

for
this

company

for
other

companies
in sector

from
industry
analysts

T
min

abstract task with quality
accrual function min

subtask relationship

facilitates relationship

Earnings
Analysis
Agent

Analyst
Tracking

Agent

Figure 3: A task structure showing one coordination relationship between tasks in the domain of the earnings report agent and the
human analyst tracking agent.

1. a simple graphical integration of stock prices and news sto-
ries about a single stock over time on a WWW page—the
body of the news stories can be accessed by hyperlinks, and
the information is stored persistantly so that that it survives
the task agent going off-line

2. a simple fundamental analysis of a stock with respect to its
historical sales and earnings data, along with an accompa-
nying graph.

Finally, a portfolio interface agent can be associated with each
user of the system. The Portfolio agent (via a WWW inter-
face) displays the standard information about a user’s portfo-
lio, allows the user to (simulate) buying and selling shares, and
displays recent pricing and news information. It also provides
access to the reports produced by the two task agents, either
continuously updated or on demand.

More information and demos can be found on the WWW
at http://www.cs.cmu.edu/˜softagents

/warren/warren.html .

Conclusions
We have presented the overall framework and design decisions
made in our multi-agent system for the management of finan-
cial portfolios through information access, filtering and inte-
gration. Within this framework we will explore research issues
of agent coordination and negotiation and case base structur-
ing for user, task and situation modeling. In addition, there
are a number of learning-related research issues we want to

explore. How do we formulate the learning task in the con-
text of multi agent interactions where procedural and con-
trol knowledge must be learned? Concept learning has been
the focus of most machine learning research (e.g., (Michalski
& Tecuci 1994)). Learning of control knowledge has been
explored using case-based reasoning (e.g., (Kambhampati &
Hendler 1992; Miyashita & Sycara 1995)), and reinforcement
type learning techniques (e.g., (Sutton 1988)). This research
has been conducted almost exclusively in a single agent set-
ting. We want to explore strategies for multiple agent learning
of control knowledge during agent interactions. Within each
formulation of the learning task (e.g. as a case-based learning,
or reinforcement learning), there are additional more specific
issues to be explored. For example, for multiple agent case-
based learning, new case indexing and retrieval algorithms
might be necessary. In addition, the number of training cases
that must be incrementally acquired through agent interac-
tions for reliable learning is an open issue.

Acknowledgments

This work has been supported in part by ARPA contract
F33615–93–1–1330, in part by ONR contract N00014–95–
1–1092, and in part by NSF contract IRI–9508191.

References

Arens, Y.; Chee, C. Y.; Hsu, C.-N.; and Knoblock, C. A.
1993. Retrieving and integrating data from multiple infor-



mation sources. International Journal of Intelligent and Coop-
erative Information Systems 2(2):127–58.

Collet, C.; Huhns, M.; and Shen, W. 1991. Resource inte-
gration using a large knowledge base in Carnot. Computer.

Decker, K. S., and Lesser, V. R. 1995. Designing a family
of coordination algorithms. In Proceedings of the First In-
ternational Conference on Multi-Agent Systems, 73–80. San
Francisco: AAAI Press. Longer version available as UMass
CS-TR 94–14.

Decker, K.; Williamson, M.; and Sycara, K. 1996. Intelli-
gent adaptive information agents. In Proceedings of the AAAI-
96 Workshop on Intelligent Adaptive Agents.

Decker, K. S. 1995. Environment Centered Analysis and De-
sign of Coordination Mechanisms. Ph.D. Dissertation, Uni-
versity of Massachusetts.

Etzioni, O., and Weld, D. 1994. A softbot-based interface
to the internet. Communications of the ACM 37(7).

Joh, G., and Lee, C. 1992. Stock price response to account-
ing information in oligopoly. Journal of Business 65(3):451–
472.

Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Arti-
ficial Intelligence 55(2-3):193–258.

Kuokka, D., and Harada, L. 1995. On using KQML
for matchmaking. In Proceedings of the First International
Conference on Multi-Agent Systems, 239–245. San Francisco:
AAAI Press.

Maes, P. 1994. Agents that reduce work and information
overload. Communications of the ACM 37(7).

Markowitz, H. 1991. Portfolio selection: efficient diversifica-
tion of investments. Cambridge, MA: B. Blackwell, second
edition edition.

Michalski, R., and Tecuci, G. 1994. Machine Learning:
A multistrategy Approach, volume IV. Morgan Kaufmann
Publishers.

Miyashita, K., and Sycara, K. 1995. Cabins: A framework
of knowledge acquisition and iterative revision for schedule
improvement and reactive repair. Artificial Intelligence 76(1–
2).

Oates, T.; Prasad, M. V. N.; Lesser, V. R.; and Decker, K. S.
1995. A distributed problem solving approach to coopera-
tive information gathering. In AAAI Spring Symposium on
Information Gathering in Distributed Environments.

Simmons, R. 1994. Structured control for autonomous
robots. IEEE Trans. on Robotics and Automation 10(1).

Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.

Sycara, K., and Zeng, D. 1995. Task-based multi-agent co-
ordination for information gathering. In Knoblock, C., and
Levy, A., eds., Working Notes of the AAAI Spring Symposium
Series on Information Gathering from Distributed, Heteroge-
neous Environments. Stanford, CA: AAAI.

Sycara, K.; Zeng, D.; and Miyashita, K. 1995. Using case-
based reasoning to acquire user scheduling preferences that
change over time. In The Proceedings of the Eleventh IEEE
Conference on Artificial Intelligence Applications (CAIA ’95).
Los Angeles: IEEE.

Sycara, K. 1989. Multi-agent compromise via negotiation.
In Huhns, M., and Gasser, L., eds., Distributed Artificial In-
telligence, volume Volume 2. Pittman.

Trippi, R., and Turban, E., eds. 1990. Investment manage-
ment: decision support and expert systems. New York: Van
Nostrand Reinhold.

Williamson, M.; Decker, K.; and Sycara, K. 1996. Unified
information and control flow in hierarchical task networks.
In Proceedings of the AAAI-96 workshop on Theories of Plan-
ning, Action, and Control.


