
Generalization in �2

Jianguo Lu �, Masateru Harao y, Masami Hagiya z

Keywords: higher order logic, uni�cation, anti-uni�cation, generalization.

1 Introduction

The meaning of the word generalization is so general that we can �nd its occurrences in almost every area of
study. In computer science, especially in the area of arti�cial intelligence, generalization serves as a foundation
of inductive inference, and �nds its applications in diverse areas such as inductive logic programming [9],
theorem proving [10], program derivation [4][5]. In the strict sense, generalization is a dual problem of �rst
order uni�cation and is often called (ordinary) anti-uni�cation. More speci�cally, it can be formulated as: given
two terms t and s, �nd a term r and substitutions �1 and �2, such that r�1 = t and r�2 = s. Ordinary anti-
uni�cation was well understood as early as in 1970 [11]. Due to the fact that it is inadequate in many problems,
there are extensions of ordinary anti-uni�cation from various aspects.

One direction of extending the anti-uni�cation problem is to take into consideration of some kinds of back-
ground information as in [9]. Another direction of extension is to promote the order of the underlying lan-
guage. The problem with higher order generalization is that without some restrictions, the generalization is
not well-de�ned. For example, the common generalizations of Aa and Bb without restriction would be: fx; fa,
fb; fab; fA; fB, ..., f(Aa;Bb), f(g(A;B), g(a; b)),,where f and g are variables. Actually, there are in�nite
number of generalizations. Obviously, some restrictions must be imposed on higher order generalization.

This paper is devoted to the study of higher order generalization. More speci�cally, we study the conditions
under which the least higher order generalization exist and unique. The most closely related works are [10] [3].

[10] studied generalization in a restricted form of calculus of constructions [2], where terms are higher-order
patterns, i.e., free variables can only apply to distinct bound variables. One problem of the generalization in
higher-order patterns is the over generalization. For example, the least generalization of Aa and Ba would be a
single variable x instead of fa or fx, where we suppose A, B, a are constants, and f , x are variables. Another
problem of higher-order pattern is that it is inadequate to express some problems. In particular, it can not
represent recursion in its terms.

This motivated the study of generalization in M� [3]. In M�, free variables can apply to object term, which
can contain constants and free variables in addition to bound variables. In this sense, M� extends L�. On the
other hand, it also added some restrictions. One restriction is that M� is situated in a simply typed � calculus
instead of calculus of constructions. Another restriction is M� does not have type variables, hence it can only
generalize two terms of the same type. The result is not satisfactory in that the least general generalization is
unique up to substitution. That means any two terms beginning with functional variables are considered equal.

Unlike the other approaches, which mainly put restrictions on the situated language, we mainly restrict the
notion of the ordering between terms. Our discussion is situated in a restricted form of the language �2[1].
The reason to choose �2 is that it is a simple calculus which allows type variables. It can be used to formalise
various concepts in programming languages, such as type de�nition, abstract data types, and polymorphism.
The restriction we added is that abstractions should not occur inside arguments. In the restricted language �2,
we propose the following:

� an ordering between terms, called application ordering(denoted as �), which is similar to, but not the
same as the substitution (instantiation) ordering [11][10].

�Address: Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213, USA. Email:

jglu@cs.cmu.edu.
yAddress: Department of Arti�cial Intelligence, Kyushu Institute of Technology, Iizuka 820,Fukuoka, Japan. Email:

harao@dumbo.ai.kyutech.ac.jp.
zAddress: Department of Information Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113, JAPAN. Email: hagiya@is.s.u-tokyo.ac.jp.

1

� A kind of restriction on orderings, called subterm restriction (the corresponding ordering is denoted as
�S), which is implicit in �rst order languages, but usually not assumed in higher order languages.

� An extension to the ordering, called variable freezing (the corresponding ordering is denoted as �SF),
which makes the ordering more useful while keeping the matching and generalization problems decidable.

� A generalization method based on the afore-mentioned ordering.

Based on the �SF ordering, we have the following results similar to the �rst order anti-uni�cation:

� For any two terms t and s, t �SF s is decidable.

� The least general generalization exists.

� The least general generalization is unique up to renaming.

The syntax of the restricted �2 can be de�ned as follows[1]. Here for the purpose of convenience, we use
[x : �] instead of �x : �. Also, we use the same notation [V] to denote �V (and 8V), since we can distinguish
among �;� and 8 from the context.

We call a term t is valid (under �) if there is a type � such that � ` t : �. We use Typ(t) to denote the type of
t. Atoms are either constants or variables. By closed termswe mean the terms that do not contain occurrences of
free variables. In the following discussion, if not speci�ed otherwise, we assume all terms are closed, and in long
�� normal form. Given � � [x1 : �1][x2 : �2]:::[xn : �n] and term t, [�]t denotes [x1 : �1][x2 : �2]:::[xn : �n]t.
When type information is not important, [x : �]t is abbreviated as [x]t.

Following [10], we have a similar notion of renaming. Given natural numbers n and p, a partial permutation
� from n into p is an injective mapping from f1; 2; :::; ng into f1; 2; :::; pg. A renaming of a term [x1 : �1][x2 :
�2]:::[xp : �p]t is a valid and closed term [x�(1) : ��(1)][x�(2) : ��(2)]:::[x�(n) : ��(n)]t. Intuitively, renaming is to
permute and to drop some of the abstractions when allowed. For example, [x3; x1 :
]Ax1x3 is a renaming of
[x1; x2; x3 :
]Ax1x3.

2 Application orderings

2.1 Application ordering (�)

De�nition 1 (�) Given two terms t and s. t is more general than s (denoted as t � s) if there exists a
sequence of terms and types r1; r2; :::; rk, such that tr1r2:::rk is valid, and tr1r2:::rk = s. Here k is a natural
number.

To distinguish � with the usual instantiation ordering(denote it as �), we call � the application ordering.
Compared with the instantiation ordering, the application ordering does not lose generality in the sense that
for every two terms t and s in �2, if t � s, and t1 and s1 are the closed form of t and s, then t1 �F s1, where
�F is de�ned in section 3.3.

Example 1 The following are some examples of the application ordering.
[�][f : �! �! �][x; y : �]fxy
� [f :
 !
 !
][x; y :
]fxy
� [x; y :
]Axy
� [y :
]Aay
� Aab.

� is re
exive and transitive:

Proposition 1 For any terms t; t1; t2; t3, t � t. If t1 � t2, t2 � t3, then t1 � t3.

2

2.2 Application ordering with subterm restriction (�S)

Because � is too general to be of practical use, we restrict the relation to �S , called subterm restriction. First
of all, we de�ne the notion of subterms.

De�nition 2 (subterm) The set of subterms of term t (denoted as subterm(t)) is de�ned as decm(norm(t))[
fTyp(r0)jr0 2 decm(norm(t))g.
Here norm(t) is to get the �� normal form for the term t. decm(r) is to decompose terms recursively into a set
of its components, which is de�ned as:

1. decm(c) = fcg (constants remain the same);

2. decm(z) = fg; (variables are �ltered out);

3. decm(ts) = decm(t) [decm(s) [ftsg, if there is no variable in ts;
= decm(t) [decm(s), otherwise;

4. decm([d]t) = decm(t).

Example 2 Assume A :
 !
 !
;B :
 !
,
subterm([x :
]Axa) = f[x; y :
]Axy; a;
;
 !
 !
g
subterm([f :
 !
][x :
]f(Bx)) = f[x :
]Bx;
 !
g.

As we can see, the subterms do not contain free variables. Actually, there is no bound variables except
the term having its � normal form (the [x; y :
]Axy in the above example). Here we exclude the identity

and projection functions as subterms. This is essential to guarantee there exists least generalization in the
application ordering. The intuitive behind this is that when we match two higher order terms, in general there
are imitation rule and projection rule [6]. Here only imitation rule is used. We regard it is projection rule
that brings about the unpleasant results and the complexities in higher order generalizations.

De�nition 3 (�S) Given two terms t and s. t is more general than s by subterms (denoted as t �S s), if
there exists a sequence of r1; r2; :::; rk, such that tr1r2:::rk = s. Here ri 2 subterm(s); i 2 f1; 2; :::; kg, and k is
a natural number.

An examples of the rwlation is [f][x]fx �S Aa. Due to the �niteness of subset(s), the ordering �S becomes
much easier to manage than �:

Proposition 2 For any terms t1; t2; t3, there exists a procedure to decide if t1 �S t2. If t1 �S t2, t2 �S t3,
then t1 �S t3.

2.3 Application ordering with subterm restriction and variable freezing extension
(�SF)

The ordering �S is restrictive in that [x][y]Axy 6�S [x]Axa. To solve this problem, we have:

De�nition 4 (�F) t is a generalization of s by variable freezing, denoted as t �F s, if either t � s, or for an
arbitrary type constant or term constant c such that sc is valid, t �F sc.

Intuitively, here we �rst freeze some variables in s as a constant, then try to do generalization. The word
freeze comes from [7], which has the notion that when unifying two free variables, we can regard one of them
as a constant.

The ordering �F is too general to be managed, so we have the following restricted form:

De�nition 5 (�SF) t �SF s, if either t �S s, or For an arbitrary type constant or term constant c such that
sc is valid, and t �SF sc.

Now we have [x][y]Axy �SF [x]Axa. The notion of �SF not only mimics, but also extends the usual
meaning of instantiation ordering. For example, we have [x; y]Axy �SF [x]Axx, which can not be obtained in
the instantiation ordering. Another example is:

[�][x : �]x �SF [�][f : �! �][x : �]fx
�S [f :
 !
][x :
]fx
�S [x :
]Ax
�S Aa;

3

Proposition 3 For any terms t and s, t �SF s i� there exists a sequence (possibly an empty sequence) of
new, distinct constants c1; c2; :::; ck, such that sc1c2:::ck is of atomic type, and t �S sc1c2:::ck. There exists a
procedure to decide if t �SF s.

Proposition 4 Suppose t1 � [�]hs1s2:::sm, t2 � [�0]h0s01s
0

2:::s
0

n, and t1 �SF t2, then

1. m � n,

2. [�]sk �SF [�0]s0k+n�m, for k 2 f1; 2; :::;mg,

3. If h is a constant, then h0 must be a constant, and h = h0;m = n.

Proposition 5 For any terms t; t1; t2; t3,

1. t �SF t.

2. If t1 �SF t2, t2 �SF t3, then t1 �SF t3.

De�nition 6 (�=) t �= s is de�ned as t �SF s and s �SF t.

Example 3 [x; y]Axy �= [y; x]Axy �= [z; x; y]Axy.

Proposition 6 t �= s i� t is a renaming of s.

3 Generalization

If t �SF s1 and t �SF s2, then t is called a common generalization of s1 and s2. If t is a common generalization
of s1 and s2, and for any common generalization t1 of s1 and s2, t1 �SF t, then t is called the least general
generalization (LGG). This section only concerned with �SF , hence in the following discussion the subscript
SF is omitted.

The following algorithmGen(t; s; fg) computes the least general generalization of t and s. Recall we assume
t and s are closed terms. At the beginning of the procedure we suppose all the bound variables in t and s

are distinct. Here an auxiliary (the third) global variable C is needed to record the previous correspondence
between terms in the course of generalization, so that we can avoid to introduce unnecessary new variables. C
is a bijection between pairs of terms(and types) and a set of variables. Initially, C is an empty set. Following
the usual practice, it is su�cient to consider only long ��-normal forms. Not losing generality, suppose t and s

are of the following forms:

t � [�]h(t1; t2; :::; tk);
s � [�0]h0(r1; :::; ri; s1; s2; :::; sk); where h and h0 are atoms. Suppose
[�;�0;�1]t01 = Gen([�]t1; [�0]s1; C),
[�;�0;�2]t02 = Gen([�;�1]t2; [�0;�1]s2; C),
...
[�;�0;�k]t0k = Gen([�;�k�1]tk; [�0;�k�1]sk; C),
Typ(h) = �1; �2; :::; �k ! �k+1;

T yp(h0(r1; :::; ri)) = �1; �2; :::; �k! �k+1.
Gen(t; s; C):
Case 1: h = h0 : Gen(t; s; C) = [�;�0;�k]h(t

0

1; t
0

2; :::; t
0

k);
Case 2: h 6= h0:

Case 2.1: 9x:((h; h0(r1; :::; ri)); x) 2 C:
Gen(t; s; C) = [�;�0;�k]x(t

0

1; t
0

2; :::; t
0

k)
Case 2.2: :9x:((h; h0(r1; :::; ri)); x) 2 C,

Case 2.2.1: Typ(h) = Typ(h0(r1; :::; ri)):
Gen(t; s; C) = [�;�0;�k][x : �1; �2; :::; �k! �k+1]x(t01; t

0

2; :::; t
0

k)
C := f((h; h0(r1; :::; ri)); x)g [C;

Case 2.2.2: Typ(h) 6= Typ(h0(r1; :::; ri)):
Not losing generality, suppose �j 6= �j ; j 2 f1; 2; :::; k; k+ 1g.

Case 2.2.2.1: 9�j:((�j; �j); �j) 2 C:

4

Gen(t; s; C) = [�;�0;�k][x : �1; :::; �j; :::! �k+1]x(t
0

1; t
0

2; :::; t
0

k);
C := f((h; h0(r1; :::; ri)); x)g [C;

Case 2.2.2.2: :9�:((�j; �j); �j) 2 C:
Gen(t; s; C) = [�;�0;�k][�j][x : �1; :::; �j; :::! �k+1]x(t

0

1; t
0

2; :::; t
0

k);
C := f((h; h0(r1; :::; ri)); x)g [C;
C := f((�j; �j); �j)g [C.

In the following, let t t s � Gen(t; s; fg).

Example 4 Some examples of least general generalization.
[x :
]x tAa = [x :
][�][y : �]y �= [�][y : �]y, if Aa is not of type
;
[x :
]x tAa = [x :
][y :
]y �= [x :
]x, if Aa is of type
;
[x]Axxt [x]Aax �= [x; y]Axy;
Aa tBb �= [f][x]fx, if A and B is of the same type;
Aa tBb �= [�][f : �!
][x : �]fx, if A :
1 !
 and B :
2 !
;

Example 5 Here is an example of generalizing segments of programs. For clarity the segments are written in
usual notation. Let

t � [x]map1(cons(a; x)) = cons(succ(a);map1(x)),
s � [x]map2(cons(a; x)) = cons(sqr(a);map2(x)).

Suppose the types are
map1 : List(Nat)! Nat; succ : Nat! Nat,
map2 : List(Nat)! Nat; sqr : Nat! Nat.

Then
t t s �= [f : List(Nat) ! Nat; g : Nat! Nat)][x]f(cons(a; x)) = cons(g(a); f(x))).

The termination of the algorithm is obvious, since we recursively decompose the terms to be generalized,
and the size of the terms strictly decreases in each step. What we need to prove is the uniqueness of the
generalization. The following can be proved by induction on the de�nition of terms:

Proposition 7 1. (consistency) t t s � t, t t s � s:

2. (termination) For any two term t and s, Gen(t; s; fg) terminates.

3. (absorption) If t � s, then t t s �= t.

4. (idempotency) t t t �= t.

5. (commutativity) t t s �= s t t.

6. (associativity) (t t s) t r �= t t (s t r).

7. If t �= s, then t t r �= s t r.

8. (monotonicity) If t � s, then for any term r, t t r � s t r.

9. If t �= s, then t t s �= t �= s.

Based on the above propositions, we can have

Theorem 1 tts is the least general generalization of t and s, i.e., for any term r, if r � t; r � s, then r � tts
.

4 Discussions

With the subterm restriction and the freezing extension, we de�ned the ordering �SF . As we have shown,
this ordering and the corresponding generalization have nice properties almost the same as the �rst order
anti-uni�cation. Especially, the least general generalization exists and is unique.

To have a comparison with other kinds of generalizations, we have the following diagram:

5

-�

6

6

6

6

6
-

��
��
��
��
�1

��
��
��
��
�1

��
��
��
��
�1

��
��
��
��
�1

-

6 6

�

-

�1S �1

�1SF �1F

�S �H

�L� �M�

�SF �F

Here each vertex represents a kind of ordering. For example, �H means the usual instantiate ordering in
a higher order language, say �P2 [1]. �1 the usual instantiation ordering in �rst order language, �M� the
ordering in M�, �L� the ordering in L� (i.e., in higher order patterns), etc.. The arrow means implication.
For example, if t �S s, then t �SF s, and t �H s. It can be seen that the relations �SF and �H (also �L� and
�M�) are not comparable. By de�nition, �1S (the ordering �1 with the subterm restriction) is the same as
�1. That explains why we have good results in �SF .

Our work di�ers from the others in the following aspects. Firstly, we de�ned a new ordering �SF . In terms
of this ordering, we obtain a much more speci�c generalization in general. For example, the terms Aab and
Bab would be generalized as a single variable x in [10], or as fts in [3], where t and s are arbitrary terms.
In contrast, we will have [f]fab as its least general generalization. Secondly, our approach can produce a
meaningful generalization of terms of di�erent types and terms of di�erent arities, instead a single variable x.
And �nally, our method is useful in applications, such as in analogical reasoning and inductive inference [5][8].

References

[1] H. Barendregt, Introduction to generalized type systems, Journal of functional programming, Vol. 1, N0. 2, 1991.
124-154.

[2] Coquand, T., Huet, G., The calculus of constructions, Information and Computation, Vol.76, No.3/4(1988), 95-120.

[3] C.Feng, S.Muggleton, Towards inductive generalization in higher order logic, In D.Sleeman et al(eds.), Proceedings
of the Ninth International Workshop on Machine Learning, San Mateo, California, 1992. Morgan Kaufman.

[4] M. Hagiya, Generalization from partial parametrization in higher order type theory, Theoretical Computer Science,
Vol.63(1989), pp.113-139.

[5] R.Hasker, The replay of program derivations, Ph.D. thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, 1995.

[6] G.P.Huet, A uni�cation algorithm for typed lambda calculus, Theoretical Computer Science, 1 (1975), 27-57.

[7] G.Huet, Bernard Lang, Proving and applying program transformations expressed with second order patterns, Acta
Informatica 11, 31-55(1978)

[8] Jianguo Lu, Jiafu Xu, Analogical Program Derivation based on Type Theory, Theoretical Computer Science,
Vol.113, North Holland 1993, pp.259-272.

[9] Stephen Muggleton, Inductive logic programming, New generation computing, 8(4):295-318, 1991

[10] Frank Pfenning, Uni�cation and anti-uni�cation in the calculus of constructions, Proceedings of the 6th symposium
on logic in computer science, 1991. pp.74-85.

[11] John C. Reynolds, Transformational systems and the algebraic structure of atomic formulas, Machine Intelligence

5, Edinburgh University Press 1970, 135-151.

6

