User's Guide to the GNU C++ Library

last updated April 29, 1992 for version 2.0 by Doug Lea (dl@g.oswego.edu)
Copyright © 1988, 1991, 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the section entitled ~"GNU Library General Public License" is included exactly as in
the original, and provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions, except that the section entitled “"GNU Library General Public License" may be
included in a translation approved by the author instead of in the original English.

Note: The GNU C++ library is still in test release. You will be performing a valuable service if you report
any bugs you encounter.

Contributors to GNU C++ library

Aside from Michael Tiemann, who worked out the front end for GNU C++, and
Richard Stallman, who worked out the back end, the following people (not
including those who have made their contributions to GNU CC) should not go
unmentioned.

Doug Lea contributed most otherwise unattributed classes.

Per Bothner contributed the iostream 1/O classes.

Dirk Grunwald contributed the Random number generation classes, and PairingHeaps.

Kurt Baudendistel contributed Fixed precision reals.

Doug Schmidt contributed ordered hash tables, a perfect hash function generator, and several other utilities.
Marc Shapiro contributed the ideas and preliminary code for Plexes.

Eric Newton contributed the curses window classes.

Some of the I/O code is derived from BSD 4.4, and was developed by the University of California, Berkeley.

The code for converting accurately between floating point numbers and their string representations was
written by David M. Gay of AT&T.

Installing GNU C++ library

1.

Read through the README file and the Makefile. Make sure that all paths, system-dependent compile
switches, and program names are correct.

Check that files values.h, stdio.h, and math.h declare and define values appropriate for your system.

Type @make all®° to compile the library, test, and install. Current details about contents of the tests and
utilities are in the README file.

Trouble in Installation

Here are some of the things that have caused trouble for people installing
GNU C++ library.

1. Make sure that your GNU C++ version number is at least as high as your libg++ version number. For
example, libg++ 1.22.0 requires g++ 1.22.0 or later releases.

2. Double-check system constants in the header files mentioned above.

GNU C++ library aims, objectives, and limitations

The GNU C++ library, libg++ is an attempt to provide a variety of C++ programming tools and other support to
GNU C++ programmers.

Differences in distribution policy are only part of the difference between libg++.a and AT&T libC.a. libg++ is not
intended to be an exact clone of libC. For one, libg++ contains bits of code that depend on special features of
GNU g++ that are either different or lacking in the AT&T version, including slightly different inlining and
overloading strategies, dynamic local arrays, wrappers, etc. All of these differences are minor. For example,
while the AT&T and GNU stream classes are implemented in very different ways, the vast majority of C++
programs compile and run under either version with no visible difference. Additionally, all g++-specific constructs
are conditionally compiled; The library is designed to be compatible with any 2.0 C++ compiler.

libg++ has also contained workarounds for some limitations in g++: both g++ and libg++ are still undergoing
rapid development and testing---a task that is helped tremendously by the feedback of active users. This
manual is also still under development; it has some catching up to do to include all the facilities now in the
library.

libg++ is not the only freely available source of C++ class libraries. The most notable alternative sources are
Interviews and OOPS. (A g++-compatible version of OOPS is currently available on prep.ai.mit.edu. InterViews
has been available on the X-windows X11 tapes and also from interviews.stanford.edu.)

As every C++ programmer knows, the design (moreso than the implementation) of a C++ class library is

something of a challenge. Part of the reason is that C++ supports two, partially incompatible, styles of object-
oriented programmingbThe "forest" approach, involving a collection of free-standing classes that can be mixed
and matched, versus the completely hierarchical (smalltalk style) approach, in which all classes are derived
from a common ancestor. Of course, both styles have advantages and disadvantages. So far, libg++ has
adopted the "forest" approach. Keith Gorlen's OOPS library adopts the hierarchical approach, and may be an
attractive alternative for C++ programmers who prefer this style.

Currently (and/or in the near future) libg++ provides support for a few basic kinds of classes:

The first kind of support provides an interface between C++ programs and C libraries. This includes basic
header files (like stdio.h) as well as things like the File and stream classes. Other classes that interface to other
aspects of C libraries (like those that maintain environmental information) are in various stages of development;
all will undergo implementation modifications when the forthcoming GNU libc library is released.

The second kind of support contains general-purpose basic classes that transparently manage variable-sized
objects on the freestore. This includes Obstacks, multiple-precision Integers and Rationals, arbitrary length
Strings, BitSets, and BitStrings.

Third, several classes and utilities of common interest (e.g., Complex numbers) are provided.
Fourth, a set of pseudo-generic prototype files are available as a mechanism for generating common container

classes. These are described in more detail in the introduction to container prototypes. Currently, only a textual
substitution mechanism is available for generic class creation.

GNU C++ library stylistic conventions

C++ source files have file extension .cc. Both C-compatibility header files and class declaration files have
extension .h.

C++ class names begin with capital letters, except for istream and ostream, for AT&T C++ compatibility.
Multi-word class names capitalize each word, with no underscore separation.

Include files that define C++ classes begin with capital letters (as do the names of the classes themselves).
stream.h is uncapitalized for AT&T C++ compatibility.

Include files that supply function prototypes for other C functions (system calls and libraries) are all lower
case.

All include files define a preprocessor variable _X_h, where X is the name of the file, and conditionally
compile only if this has not been already defined. The #pragma once facility is also used to avoid re-
inclusion.

Structures and objects that must be publicly defined, but are not intended for public use have names
beginning with an underscore. (for example, the _Srep struct, which is used only by the String and SubString
classes.)

The underscore is used to separate components of long function names, e.g.,
set_File_exception_handler().

When a function could be usefully defined either as a member or a friend, it is generally a member if it
modifies and/or returns itself, else it is a friend. There are cases where naturalness of expression wins out
over this rule.

Class declaration files are formatted so that it is easy to quickly check them to determine function names,
parameters, and so on. Because of the different kinds of things that may appear in class declarations, there
is no perfect way to do this. Any suggestions on developing a common class declaration formatting style are
welcome.

All classes use the same simple error (exception) handling strategy. Almost every class has a member
function named error(char* msg) that invokes an associated error handler function via a pointer to that
function, so that the error handling function may be reset by programmers. By default nearly all call
*lib_error_handler, which prints the message and then aborts execution. This system is subject to change.
In general, errors are assumed to be non-recoverable: Library classes do not include code that allows
graceful continuation after exceptions.

Support for representation invariants

Most GNU C++ library classes possess a method named OK(), that is useful in helping to verify correct
performance of class operations.

The OK() operations checks the "representation invariant” of a class object. This is a test to check whether the
object is in a valid state. In effect, it is a (sometimes partial) verification of the library's promise that (1) class
operations always leave objects in valid states, and (2) the class protects itself so that client functions cannot
corrupt this state.

While no simple validation technique can assure that all operations perform correctly, calls to OK() can at least
verify that operations do not corrupt representations. For example for String a, b, c; ...a=b + ¢;, a call to
a.0K() will guarantee that a is a valid String, but does not guarantee that it contains the concatenation of b + c.
However, given that a is known to be valid, it is possible to further verify its properties, for example via a.after(b)
== ¢ && a.before(c) == b. In other words, OK() generally checks only those internal representation properties
that are otherwise inaccessible to users of the class. Other class operations are often useful for further
validation.

Failed calls to OK() call a class's error method if one exists, else directly call abort. Failure indicates an
implementation error that should be reported.

With only rare exceptions, the internal support functions for a class never themselves call OK() (although many
of the test files in the distribution call OK() extensively).

Verification of representational invariants can sometimes be very time consuming for complicated data
structures.

Introduction to container class prototypes

As a temporary mechanism enabling the support of generic classes, the GNU C++ Library distribution contains
a directory (g++-include) of files designed to serve as the basis for generating container classes of specified
elements. These files can be used to generate .h and .cc files in the current directory via a supplied shell script
program that performs simple textual substitution to create specific classes.

While these classes are generated independently, and thus share no code, it is possible to create versions that
do share code among subclasses. For example, using typedef void* ent, and then generating a entList class,
other derived classes could be created using the void* coercion method described in Stroustrup, pp204-210.

This very simple class-generation facility is useful enough to serve current purposes, but will be replaced with a
more coherent mechanism for handling C++ generics in a way that minimally disrupts current usage. Without
knowing exactly when or how parametric classes might be added to the C++ language, provision of this
simplest possible mechanism, textual substitution, appears to be the safest strategy, although it does require
certain redundancies and awkward constructions.

Specific classes may be generated via the genclass shell script program. This program has arguments
specifying the kinds of base types(s) to be used. Specifying base types requires two arguments. The first is the
name of the base type, which may be any named type, like int or String. Only named types are supported;
things like int* are not accepted. However, pointers like this may be used by supplying the appropriate typedefs
(e.g., editing the resulting files to include typedef int* intp;). The type name must be followed by one of the
words val or ref, to indicate whether the base elements should be passed to functions by-value or by-reference.

You can specify basic container classes using genclass base [val,ref] proto, where proto is the name of the
class being generated. Container classes like dictionaries and maps that require two types may be specified
via genclass -2 keytype [val, ref], basetype [val, ref] proto, where the key type is specified first and the
contents type second. The resulting classnames and filenames are generated by prepending the specified
type names to the prototype names, and separating the filename parts with dots. For example, genclass int
val List generates class intList residing in files int.List.h and int.List.cc. genclass -2 String ref int val
VHMap generates (the awkward, but unavoidable) class name StringintVHMap. Of course, programmers may
use typedef or simple editing to create more appropriate names. The existence of dot seperators in file names
allows the use of GNU make to help automate configuration and recompilation. An example Makefile exploiting

such capabilities may be found in the libg++/proto-kit directory.

The genclass utility operates via simple text substitution using sed. All occurrences of the pseudo-types <T>
and <C> (if there are two types) are replaced with the indicated type, and occurrences of <T&> and <C&> are
replaced by just the types, if val is specified, or types followed by “"&" if ref is specified.

Programmers will frequently need to edit the .h file in order to insert additional #include directives or other
modifications. A simple utility, prepend-header to prepend other .h files to generated files is provided in the
distribution.

One dubious virtue of the prototyping mechanism is that, because sources files, not archived library classes, are
generated, it is relatively simple for programmers to modify container classes in the common case where slight
variations of standard container classes are required.

It is often a good idea for programmers to archive (via ar) generated classes into .a files so that only those class
functions actually used in a given application will be loaded. The test subdirectory of the distribution shows an
example of this.

Because of #pragma interface directives, the .cc files should be compiled with -O or
-DUSE_LIBGXX_INLINES enabled.

Many container classes require specifications over and above the base class type. For example, classes that
maintain some kind of ordering of elements require specification of a comparison function upon which to base
the ordering. This is accomplished via a prototype file defs.hP that contains macros for these functions. While
these macros default to perform reasonable actions, they can and should be changed in particular cases. Most
prototypes require only one or a few of these. No harm is done if unused macros are defined to perform
nonsensical actions. The macros are:

DEFAULT_INITIAL_CAPACITY The initial capacity for containers (e.g., hash tables) that require an
initial capacity argument for constructors. Default: 100

<T>EQ(a, b) Returns true if a is considered equal to b for the purposes of locating,
etc., an element in a container. Default: (a == b)

<T>LE(a, b) Returns true if a is less than or equal to b. Default: (a <= b)

<T>CMP(a, b) Returns aninteger<Oifa<b,0ifa==b,or>0ifa>b. Default: (a <=
b)? (a==b)?0:-1:1

<T>HASH(a) Returns an unsigned integer representing the hash of a. Default:
extern unsigned int hash(<T&> a). (Note: several useful hash
functions are declared in builtin.h and defined in hash.cc.)

Nearly all prototypes container classes support container traversal via Pix pseudo indices, as described
elsewhere.

All object containers must perform either a X::X(X&) (or X::X() followed by X::operator =(X&)) to copy objects
into containers. (The latter form is used for containers built from C++ arrays, like VHSets). When containers
are destroyed, they invoke X::~X(). Any objects used in containers must have well behaved constructors and
destructors. If you want to create containers that merely reference (point to) objects that reside elsewhere, and
are not copied or destroyed inside the container, you must use containers of pointers, not containers of objects.

All prototypes are designed to generate homogenous container classes. There is no universally applicable
method in C++ to support heterogenous object collections with elements of various subclasses of some
specified base class. The only way to get heterogenous structures is to use collections of pointers-to-objects,
not collections of objects (which also requires you to take responsibility for managing storage for the objects
pointed to yourself).

For example, the following usage illustrates a commonly encountered danger in trying to use container classes
for heterogenous structures:

class Base { int x; ...}
class Derived : public Base { int vy; ... }

BaseVHSet s; // class BaseVHSet generated via something like
// 'genclass Base ref VHSet'

void £ ()

{

Base b;
s.add(b); // OK

Derived d;
s.add(d); // (CHOP!)
}

At the line flagged with 3(CHOP!)°, a Base::Base(Base&) is called inside Set::add(Base&)bnot
Derived::Derived(Derived&). Actually, in VHSet, a Base::operator =(Base&), is used instead to place the
element in an array slot, but with the same effect. So only the Base part is copied as a VHSet element (a so-
called chopped-copy). In this case, it has an x part, but no y part; and a Base, not Derived, vtable. Objects

formed via chopped copies are rarely sensible.
To avoid this, you must resort to pointers:

typedef Base* BasePtr;

BasePtrVHSet s; // class BaseVHSet generated via something like
// 'genclass BasePtr val VHSet'

void £ ()
{

Base* bp = new Base;
s.add (b) ;

Base* dp = new Derived;
s.add(d); // works fine.

// Don't forget to delete bp and dp sometime.
// The VHSet won't do this for you.

Example

The prototypes can be difficult to use on first attempt. Here is an example that may be helpful. The utilities in the
proto-kit simplify much of the actions described, but are not used here.

Suppose you create a class Person, and want to make an Map that links the social security numbers
associated with each person. You start off with a file Person.h

#include <String.h>

class Person

{
String nm;
String addr;

/]

public:
const Stringé& name() { return nm; }
const Stringé& address() { return addr; }
void print () { ... }
/...

}
And in file SSN.h,

typedef unsigned int SSN;

Your first decision is what storage/usage strategy to use. There are several reasonable alternatives here: You
might create an ~"object collection” of Persons, a "pointer collection” of pointers-to-Persons, or even a simple
String map, housing either copies of pointers to the names of Persons, since other fields are unused for
purposes of the Map. In an object collection, instances of class Person "live" inside the Map, while in a pointer
collection, the instances live elsewhere. Also, as above, if instances of subclasses of Person are to be used
inside the Map, you must use pointers. In a String Map, the same difference holds, but now only for the name
fields. Any of these choices might make sense in particular applications.

The second choice is the Map implementation strategy. Either a tree or a hash table might make sense.
Suppose you want an AVL tree Map. There are two things to now check. First, as an object collection, the
AVLMap requires that the elsement class contain an X(X&) constructor. In C++, if you don't specify such a
constructor, one is constructed for you, but it is a very good idea to always do this yourself, to avoid surprises. In
this example, you'd use something like

class Person
{ ...;
Person (const Personé& p) :nm(p.nm), addr(p.addr) {}

}s

Also, an AVLMap requires a comparison function for elements in order to maintain order. Rather than requiring
you to write a particular comparison function, a defs file is consulted to determine how to compare items. You
must create and edit such a file.

Before creating Person.defs.h, you must first make one additional decision. Should the Map member functions
like m.contains(p) take arguments (p) by reference (i.e., typed as int Map::contains(const Person& p) or by
value (i.e., typed as int Map::contains(const Person p)). Generally, for user-defined classes, you want to pass
by reference, and for builtins and pointers, to pass by value. SO you should pick by-reference.

You can now create Person.defs.h via genclass Person ref defs. This creates a simple skeleton that you
must edit. First, add #include "Person.h" to the top. Second, edit the <T>CMP(a,b) macro to compare on
name, via

fdefine <T>CMP(a, b) (compare(a.name(), b.name()))

which invokes the int compare(const String&, const String&) function from String.h. Of course, you could
define this in any other way as well. In fact, the default versions in the skeleton turn out to be OK (albeit
inefficient) in this particular example.

You may also want to create file SSN.defs.h. Here, choosing call-by-value makes sense, and since no other
capabilities (like comparison functions) of the SSNs are used (and the defaults are OK anyway), you'd type

genclass SSN val defs

and then edit to place #include "SSN.h" at the top.

Finally, you can generate the classes. First, generate the base class for Maps via

genclass -2 Person ref SSN val Map

This generates only the abstract class, not the implementation, in file Person.SSN.Map.h and
Person.SSN.Map.cc. To create the AVL implementation, type

genclass -2 Person ref SSN val AVLMap

This creates the class PersonSSNAVLMap, in Person.SSN.AVLMap.h and Person.SSN.AVLMap.cc.

To use the AVL implementation, compile the two generated .cc files, and specify #include
"Person.SSN.AVLMap.h" in the application program. All other files are included in the right ways automatically.

One last consideration, peculiar to Maps, is to pick a reasonable default contents when declaring an AVLMap.
Zero might be appropriate here, so you might declare a Map,

PersonSSNAVLMap m((SSN)O) ;

Suppose you wanted a VHMap instead of an AVLMap Besides generating different implementations, there are
two differences in how you should prepare the defs file. First, because a VHMap uses a C++ array internally,
and because C++ array slots are initialized differently than single elements, you must ensure that class Person
contains (1) a no-argument constructor, and (2) an assignment operator. You could arrange this via

class Person
{ ...z
Person () {}
void operator = (const Person& p) { nm = p.nm; addr = p.addr; }

}s

(The lack of action in the constructor is OK here because Strings possess usable no-argument constructors.)

You also need to edit Person.defs.h to indicate a usable hash function and default capacity, via something like

#include <builtin.h>
#define <T>HASH (x) (hashpjw (x.name () .chars()))
#define DEFAULT_INITIAL_CAPACITY 1000

Since the hashpjw function from builtin.h is appropriate here. Changing the default capacity to a value
expected to exceed the actual capacity helps to avoid hidden" inefficiencies when a new VHMap is created
without overriding the default, which is all too easy to do.

Otherwise, everything is the same as above, substituting VHMap for AVLMap.

Variable-Sized Object Representation

One of the first goals of the GNU C++ library is to enrich the kinds of basic classes that may be considered as
(nearly) built into" C++. A good deal of the inspiration for these efforts is derived from considering features of
other type-rich languages, particularly Common Lisp and Scheme. The general characteristics of most class
and friend operators and functions supported by these classes has been heavily influenced by such languages.

Four of these types, Strings, Integers, BitSets, and BitStrings (as well as associated and/or derived classes)
require representations suitable for managing variable-sized objects on the free-store. The basic technique used
for all of these is the same, although various details necessarily differ from class to class.

The general strategy for representing such objects is to create chunks of memory that include both header
information (e.g., the size of the object), as well as the variable-size data (an array of some sort) at the end of
the chunk. Generally the maximum size of an object is limited to something less than all of addressable
memory, as a safeguard. The minimum size is also limited so as not to waste allocations expanding very small
chunks. Internally, chunks are allocated in blocks well-tuned to the performance of the new operator.

Class elements themselves are merely pointers to these chunks. Most class operations are performed via inline
“translation” functions that perform the required operation on the corresponding representation. However,
constructors and assignments operate by copying entire representations, not just pointers.

No attempt is made to control temporary creation in expressions and functions involving these classes. Users
of previous versions of the classes will note the disappearance of both “"Tmp" classes and reference counting.
These were dropped because, while they did improve performance in some cases, they obscure class
mechanics, lead programmers into the false belief that they need not worry about such things, and occasionally
have paradoxical behavior.

These variable-sized object classes are integrated as well as possible into C++. Most such classes possess
converters that allow automatic coercion both from and to builtin basic types. (e.g., char* to and from String,
long int to and from Integer, etc.). There are pro's and con's to circular converters, since they can sometimes
lead to the conversion from a builtin type through to a class function and back to a builtin type without any

special attention on the part of the programmer, both for better and worse.

Most of these classes also provide special-case operators and functions mixing basic with class types, as a way
to avoid constructors in cases where the operations do not rely on anything special about the representations.
For example, there is a special case concatenation operator for a String concatenated with a char, since
building the result does not rely on anything about the String header. Again, there are arguments both for and
against this approach. Supporting these cases adds a non-trivial degree of (mainly inline) function proliferation,
but results in more efficient operations. Efficiency wins out over parsimony here, as part of the goal to produce
classes that provide sufficient functionality and efficiency so that programmers are not tempted to try to
manipulate or bypass the underlying representations.

Some guidelines for using expression-oriented classes

The fact that C++ allows operators to be overloaded for user-defined classes can make programming with
library classes like Integer, String, and so on very convenient. However, it is worth becoming familiar with some
of the inherent limitations and problems associated with such operators.

Many operators are constructive, i.e., create a new object based on some function of some arguments.
Sometimes the creation of such objects is wasteful. Most library classes supporting expressions contain
facilities that help you avoid such waste.

For example, for Integer a, b, c; ...; c =a + b + a;, the plus operator is called to sum a and b, creating a new
temporary object as its result. This temporary is then added with a, creating another temporary, which is finally
copied into ¢, and the temporaries are then deleted. In other words, this code might have an effect similar to
Integer a, b, c; ...; Integer t1(a); t1 += b; Integer t2(t1); t2 += a; c = t2;.

For small objects, simple operators, and/or non-time/space critical programs, creation of temporaries is not a big
problem. However, often, when fine-tuning a program, it may be a good idea to rewrite such code in a less
pleasant, but more efficient manner.

For builtin types like ints, and floats, C and C++ compilers already know how to optimize such expressions to

reduce the need for temporaries. Unfortunately, this is not true for C++ user defined types, for the simple (but
very annoying, in this context) reason that nothing at all is guaranteed about the semantics of overloaded
operators and their interrelations. For example, if the above expression just involved ints, not Integers, a
compiler might internally convert the statement into something like ¢ += a; ¢ += b; c+= a;, or perhaps
something even more clever. But since C++ does not know that Integer operator += has any relation to Integer
operator +, A C++ compiler cannot do this kind of expression optimization itself.

In many cases, you can avoid construction of temporaries simply by using the assignment versions of operators
whenever possible, since these versions create no temporaries. However, for maximum flexibility, most classes
provide a set of "embedded assembly code" procedures that you can use to fully control time, space, and
evaluation strategies. Most of these procedures are three-address" procedures that take two const source
arguments, and a destination argument. The procedures perform the appropriate actions, placing the results in
the destination (which is may involve overwriting old contents). These procedures are designed to be fast and
robust. In particular, aliasing is always handled correctly, so that, for example add(x, x, x); is perfectly OK. (The
names of these procedures are listed along with the classes.)

For example, suppose you had an Integer expressiona= (b -a) *-(d / c);
This would be compiled as if it were Integer tl=b-a; Integer t2=d/c; Integer t3=-t2; Integer t4=t1*t3; a=t4;
But, with some manual cleverness, you might yourself some up with sub(a, b, a); mul(a, d, a); div(a, c, a);

A related phenomenon occurs when creating your own constructive functions returning instances of such types.
Suppose you wanted to write function Integer f(const Integer& a) { Integer r = a; r += a; returnr; }

This function, when called (as in a = f(a);) demonstrates a similar kind of wasted copy. The returned value r
must be copied out of the function before it can be used by the caller. In GNU C++, there is an alternative via
the use of named return values. Named return values allow you to manipulate the returned object directly, rather
than requiring you to create a local inside a function and then copy it out as the returned value. In this example,
this can be done via Integer f(const Integer& a) return r(a) { r += a; return; }

A final guideline: The overloaded operators are very convenient, and much clearer to use than procedural code.
It is almost always a good idea to make it right, then make it fast, by translating expression code into procedural

code after it is known to be correct.

Pseudo-indexes

Many useful classes operate as containers of elements. Techniques for accessing these elements from a
container differ from class to class. In the GNU C++ library, access methods have been partially standardized
across different classes via the use of pseudo-indexes called Pixes. A Pix acts in some ways like an index,
and in some ways like a pointer. (Their underlying representations are just void* pointers). A Pix is a kind of
“key" that is translated into an element access by the class. In virtually all cases, Pixes are pointers to some
kind internal storage cells. The containers use these pointers to extract items.

Pixes support traversal and inspection of elements in a collection using analogs of array indexing. However,
they are pointer-like in that 0 is treated as an invalid Pix, and unsafe insofar as programmers can attempt to
access nonexistent elements via dangling or otherwise invalid Pixes without first checking for their validity.

In general it is a very bad idea to perform traversals in the the midst of destructive modifications to containers.

Typical applications might include code using the idiom

for (Pix i = a.first(); 1 !'= 0; a.next(i)) use(a(i)):

for some container a and function use.

Classes supporting the use of Pixes always contain the following methods, assuming a container a of element
types of Base.

Pix i = a.first() Sets i to index the first element of a or O if a is empty.
a.next(i) Advances i to the next element of a or O if there is no next element.

Base x = a(i); a(i) = x; a(i) returns a reference to the element indexed by i.

int present = a.owns(i) Returns true if Pix i is a valid Pix in a. This is often a relatively slow
operation, since the collection must usually traverse through elements to
see if any correspond to the Pix.
Some container classes also support backwards traversal via

Pix i = a.last() Sets i to the last element of a or O if a is empty.

a.prev(i) Sets i to the previous element in a, or O if there is none.

Collections supporting elements with an equality operation possess
Pix j = a.seek(x) Sets j to the index of the first occurrence of x, or O if x is not contained
in a.

Bag classes possess

Pix j = a.seek(x, Pix from =0) Sets j to the index of the next occurrence of x following i, or O if x is not
contained in a. If i == 0, the first occurrence is returned.

Set, Bag, and PQ classes possess

Pix j = a.add(x)

Pix j = a.enq(x) /* for priority queues */ Adds x to the collection, returning its Pix. The Pix of an item can
change in collections where further additions and deletions involve the
actual movement of elements (currently in OXPSet, OXPBag, XPPQ,
VOHSet), but in all other cases, an item's Pix may be considered a
permanent key to its location.

Header files for interfacing C++ to C

The following files are provided so that C++ programmers may invoke common C library and system calls. The

names and contents of these files are subject to change in order to be compatible with the forthcoming GNU C
library. Other files, not listed here, are simply C++-compatible interfaces to corresponding C library files.

values.h

std.h

string.h

osfcn.h

libc.h

math.h

stdio.h

A collection of constants defining the numbers of bits in builtintypes,
minimum and maximum values, and the like. Most names are the same
as those found in values.h found on Sun systems.

A collection of common system calls and libc.a functions. Only those
functions that can be declared without introducing new type definitions
(socket structures, for example) are provided. Common char* functions
(like strcemp) are among the declarations. All functions are declared
along with their library names, so that they may be safely overloaded.

This file merely includes <std.h>, where string function prototypes are
declared. This is a workaround for the fact that system string.h and
strings.h files often differ in contents.

This file merely includes <std.h>, where system function prototypes are
declared.

This file merely includes <std.h>, where C library function prototypes
are declared.

A collection of prototypes for functions usually found in libm.a, plus
some #defined constants that appear to be consistent with those
provided in the AT&T version. The value of HUGE should be checked
before using. Declarations of all common math functions are preceded
with overload declarations, since these are commonly overloaded.

Declaration of FILE (_iobuf), common macros (like getc), and function
prototypes for libc.a functions that operate on FILE*'s. The value
BUFSIZ and the declaration of _iobuf should be checked before using.

assert.h

generic.h

new.h

C++ versions of assert macros.

String concatenation macros useful in creating generic classes. They
are similar in function to the AT&T CC versions.

Declarations of the default global operator new, the two-argument
placement version, and associated error handlers.

Utility functions for built in types

Files builtin.h and corresponding .cc implementation files contain various convenient inline and non-inline utility
functions. These include useful enumeration types, such as TRUE, FALSE ,the type definition for pointers to
libg++ error handling functions, and the following functions.

long abs(long x);

double abs(double x);

void clearbit(long& x, long b);
void setbit(long& x, long b);
int testbit(long x, long b);

int even(long y);

int odd(long y);

int sign(long x);
int sign(double x);

inline versions of abs. Note that the standard libc.a version, int abs(int)
Is not declared as inline.

clears the b'th bit of x (inline).
sets the b'th bit of x (inline)
returns the b'th bit of x (inline).
returns true if x is even (inline).
returns true is x is odd (inline).

returns -1, O, or 1, indicating whether x is less than, equal to, or greater
than zero (inline).

long gcd(long x, long y); returns the greatest common divisor of x and y.

long Icm(long x, long y); returns the least common multiple of x and vy.

long Ig(long x); returns the floor of the base 2 log of x.

long pow(long X, long y);

double pow(double x, long y); returns x to the integer power y using via the iterative O(log y) ~"Russian

peasant” method.

long sqr(long x);
double sqgr(double x); returns x squared (inline).

long sqrt(long y); returns the floor of the square root of x.

unsigned int hashpjw(const char* s); a hash function for null-terminated char* strings using the
method described in Aho, Sethi, & Ullman, p 436.

unsigned int multiplicativehash(int x); a hash function for integers that returns the lower bits of
multiplying x by the golden ratio times pow(2, 32). See Knuth, Vol 3, p
508.

unsigned int foldhash(double x); a hash function for doubles that exclusive-or's the first and second
words of X, returning the result as an integer.

double start_timer(); Starts a process timer.

double return_elapsed_time(double last_time); Returns the process time since last_time. If last_time
== 0 returns the time since the last start_timer. Returns -1 if start_timer
was not first called.

File Maxima.h includes versions of MAX, MIN for builtin types.

File compare.h includes versions of compare(x, y) for builtin types. These return negative if the first argument
is less than the second, zero for equal, and positive for greater.

Library dynamic allocation primitives

Libg++ contains versions of malloc, free, realloc that were designed to be well-tuned to C++ applications. The
source file malloc.c contains some design and implementation details. Here are the major user-visible
differences from most system malloc routines:

1. These routines overwrite storage of freed space. This means that it is never permissible to use a delete'd
object in any way. Doing so will either result in trapped fatal errors or random aborts within malloc, free, or
realloc.

2. The routines tend to perform well when a large number of objects of the same size are allocated and freed.
You may find that it is not worth it to create your own special allocation schemes in such cases.

3. The library sets top-level operator new() to call malloc and operator delete() to call free. Of course, you
may override these definitions in C++ programs by creating your own operators that will take precedence
over the library versions. However, if you do so, be sure to define both operator new() and operator
delete().

4. These routines do not support the odd convention, maintained by some versions of malloc, that you may call
realloc with a pointer that has been free'd.

5. The routines automatically perform simple checks on free'd pointers that can often determine whether users
have accidentally written beyond the boundaries of allocated space, resulting in a fatal error.

6. The function malloc_usable_size(void* p) returns the number of bytes actually allocated for p. For a valid
pointer (i.e., one that has been malloc'd or realloc'd but not yet free'd) this will return a number greater than
or equal to the requested size, else it will normally return 0. Unfortunately, a non-zero return can not be an

absolutely perfect indication of lack of error. If a chunk has been free'd but then re-allocated for a different
purpose somewhere elsewhere, then malloc_usable_size will return non-zero. Despite this, the function can
be very valuable for performing run-time consistency checks.

7. malloc requires 8 bytes of overhead per allocated chunk, plus a mmaximum alignment adjustment of 8
bytes. The number of bytes of usable space is exactly as requested, rounded to the nearest 8 byte boundary.

8. The routines do not contain any synchronization support for multiprocessing. If you perform global allocation
on a shared memory multiprocessor, you should disable compilation and use of libg++ malloc in the
distribution Makefile and use your system version of malloc.

