
The new input/output classes
The iostream classes implement most of the features of AT&T version 2.0 iostream library classes, and most of
the features of the ANSI X3J16 library draft (which is based on the AT&T design).    The iostream classes
replace all of the old stream classes in previous versions of libg++.    It is not totally compatible, so you will
probably need to change your code in places.

The streambuf layer
The lower level abstraction is the streambuf layer.    A streambuf (or one of the classes derived from it)
implements a character source and/or sink, usually with buffering.

Classes derived from streambuf include:

· A filebuf is used for reading and writing from files.

· A strstreambuf can read and write from a string in main memory.    The string buffer will be re-allocated as
needed it, unless it is ``frozen''.

· An indirectbuf just forwards all read/write requests to some other buffer.

· A procbuf can read from or write to a Unix process.

· A parsebuf has some useful features for scanning text:    It keeps track of line and column numbers, and it
guarantees to remember at least the current line (with the linefeeds at either end), so you can arbitrarily
backup within that time.    WARNING:    The interface is likely to change.

· An edit_streambuf reads and writes into a region of an edit_buffer called an edit_string.    Emacs-like
marks are supported, and sub-strings are first-class functions.    WARNING: The interface is almost certain to
change.

The istream and ostream classes
The stream layer provides an efficient, easy-to-use, and type-secure interface between C++ and an underlying
streambuf.

Most C++ textbooks will at least give an overview of the stream classes.    Some libg++ specifics:

istream::get(char* s, int maxlength, char terminator='\n') Behaves as described by Stroustrup. It reads at
most maxlength characters into s, stopping when the terminator is read,
and pushing the terminator back into the input stream.

istream::getline(char* s, int maxlength, char terminator = '\n') Behaves like get, except that the
terminator is read (and not pushed back), though it does not become
part of the string.

istream::gets(char** ss, char terminator = '\n') Reads in a line (as in get) of unknown length, and places it
in a free-store allocated spot and attaches it to ss. The programmer
must take responsibility for deleting *ss when it is no longer needed.

ostream::form(const char* format...) Outputs printf-formated data.

The SFile class

SFile (short for structure file) is provided both as a demonstration of how to build derived classes from
iostream, and as a useful class for processing files containing fixed-record-length binary data.    They are
created with constructors with one additional argument declaring the size (in bytes, i.e., sizeof units) of the
records.    get will input one record, put will output one, and the [] operator, as in f[i], will position to the i'th
record. If the file is being used mainly for random access, it is often a good idea to eliminate internal buffering
via setbuf or raw. Here is an example:

class record
{
 friend class SFile;
 char c; int i; double d; // or anything at all
};

void demo()
{
 record r;
 SFile recfile("mydatafile", sizeof(record), ios::in|ios::out);
 recfile.raw();
 for (int i = 0; i < 10; ++i) // ... write some out
 {
 r = something();
 recfile.put(&r); // use '&r' for proper coercion
 }
 for (i = 9; i >= 0; --i) // now use them in reverse order
 {
 recfile[i].get(&r);
 do_something_with(r);
 }
}

The PlotFile Class

Class PlotFile is a simple derived class of ofstream that may be used to produce files in Unix plot format.   
Public functions have names corresponding to those in the plot(5) manual entry.

C standard I/O
There is a complete implementation of the ANSI C stdio library that is built on top of the iostream facilities.   
Specifically, the type FILE is the same as the streambuf class.    Also, the standard files are identical to the
standard streams: stdin == cin.rdbuf().    This means that you don't have to synchronize C++ output with C
output.    It also means that C programs can use some of the specialized sub-classes of streambuf.

The stdio library (libstdio++) is not normally installed, because of some difficulties when used with the C
libraries version of stdio.    The stdio library provides binary compatibility with traditional implementation.   
Unfortunately, it takes a fair amount of care to avoid duplicate definitions when linking with both libstdio++ and
the C library.

