
Random Number Generators and related classes
The two classes RNG and Random are used together to generate a variety of random number distributions.    A
distinction must be made between random number generators, implemented by class RNG, and random
number distributions.    A random number generator produces a series of randomly ordered bits.    These bits can
be used directly, or cast to other representations, such as a floating point value.    A random number generator
should produce a uniform distribution.    A random number distribution, on the other hand, uses the randomly
generated bits of a generator to produce numbers from a distribution with specific properties.    Each instance of
Random uses an instance of class RNG to provide the raw, uniform distribution used to produce the specific
distribution.    Several instances of Random classes can share the same instance of RNG, or each instance can
use its own copy.

RNG
Random distributions are constructed from members of class RNG, the actual random number generators.   
The RNG class contains no data; it only serves to define the interface to random number generators.    The
RNG::asLong member returns an unsigned long (typically 32 bits) of random bits.    Applications that require a
number of random bits can use this directly.    More often, these random bits are transformed to a uniform
random number:

 //
 // Return random bits converted to either a float or a double
 //
 float asFloat();
 double asDouble();

using either asFloat or asDouble.    It is intended that asFloat and asDouble return differing precisions;
typically, asDouble will draw two random longwords and transform them into a legal double, while asFloat will

draw a single longword and transform it into a legal float.    These members are used by subclasses of the
Random class to implement a variety of random number distributions.

ACG
Class ACG is a variant of a Linear Congruential Generator (Algorithm M) described in Knuth, Art of Computer
Programming, Vol III.    This result is permuted with a Fibonacci Additive Congruential Generator to get good
independence between samples.    This is a very high quality random number generator, although it requires a
fair amount of memory for each instance of the generator.

The ACG::ACG constructor takes two parameters: the seed and the size.    The seed is any number to be used
as an initial seed. The performance of the generator depends on having a distribution of bits through the seed.   
If you choose a number in the range of 0 to 31, a seed with more bits is chosen. Other values are
deterministically modified to give a better distribution of bits.    This provides a good random number generator
while still allowing a sequence to be repeated given the same initial seed.

The size parameter determines the size of two tables used in the generator. The first table is used in the
Additive Generator; see the algorithm in Knuth for more information. In general, this table is size longwords
long. The default value, used in the algorithm in Knuth, gives a table of 220 bytes. The table size affects the
period of the generators; smaller values give shorter periods and larger tables give longer periods. The smallest
table size is 7 longwords, and the longest is 98 longwords. The size parameter also determines the size of the
table used for the Linear Congruential Generator. This value is chosen implicitly based on the size of the
Additive Congruential Generator table. It is two powers of two larger than the power of two that is larger than
size.    For example, if size is 7, the ACG table is 7 longwords and the LCG table is 128 longwords. Thus, the
default size (55) requires 55 + 256 longwords, or 1244 bytes. The largest table requires 2440 bytes and the
smallest table requires 100 bytes.    Applications that require a large number of generators or applications that
aren't so fussy about the quality of the generator may elect to use the MLCG generator.

MLCG
The MLCG class implements a Multiplicative Linear Congruential Generator. In particular, it is an
implementation of the double MLCG described in ``Efficient and Portable Combined Random Number
Generators'' by Pierre L'Ecuyer, appearing in Communications of the ACM, Vol. 31. No. 6. This generator has a
fairly long period, and has been statistically analyzed to show that it gives good inter-sample independence.

The MLCG::MLCG constructor has two parameters, both of which are seeds for the generator. As in the MLCG
generator, both seeds are modified to give a ``better'' distribution of seed digits. Thus, you can safely use values
such as `0' or `1' for the seeds. The MLCG generator used much less state than the ACG generator; only two
longwords (8 bytes) are needed for each generator.

Random
A random number generator may be declared by first declaring a RNG and then a Random. For example, ACG
gen(10, 20); NegativeExpntl rnd (1.0, &gen); declares an additive congruential generator with seed 10 and
table size 20, that is used to generate exponentially distributed values with mean of 1.0.

The virtual member Random::operator() is the common way of extracting a random number from a particular
distribution.    The base class, Random does not implement operator(). This is performed by each of the
subclasses. Thus, given the above declaration of rnd, new random values may be obtained via, for example,
double next_exp_rand = rnd(); Currently, the following subclasses are provided.

Binomial
The binomial distribution models successfully drawing items from a pool.    The first parameter to the constructor,
n, is the number of items in the pool, and the second parameter, u, is the probability of each item being
successfully drawn.    The member asDouble returns the number of samples drawn from the pool.    Although it
is not checked, it is assumed that n>0 and 0 <= u <= 1.    The remaining members allow you to read and set the
parameters.

Erlang
The Erlang class implements an Erlang distribution with mean mean and variance variance.

Geometric
The Geometric class implements a discrete geometric distribution.    The first parameter to the constructor,
mean, is the mean of the distribution.    Although it is not checked, it is assumed that 0 <= mean <= 1.
Geometric() returns the number of uniform random samples that were drawn before the sample was larger than
mean. This quantity is always greater than zero.

HyperGeometric
The HyperGeometric class implements the hypergeometric distribution.    The first parameter to the constructor,
mean, is the mean and the second, variance, is the variance.    The remaining members allow you to inspect

and change the mean and variance.

NegativeExpntl
The NegativeExpntl class implements the negative exponential distribution.    The first parameter to the
constructor is the mean.    The remaining members allow you to inspect and change the mean.

Normal
The Normal class implements the normal distribution.    The first parameter to the constructor, mean, is the
mean and the second, variance, is the variance.    The remaining members allow you to inspect and change the
mean and variance. The LogNormal class is a subclass of Normal.

LogNormal
The LogNormalclass implements the logarithmic normal distribution.    The first parameter to the constructor,
mean, is the mean and the second, variance, is the variance.    The remaining members allow you to inspect
and change the mean and variance.    The LogNormal class is a subclass of Normal.

Poisson

The Poisson class implements the poisson distribution. The first parameter to the constructor is the mean.   
The remaining members allow you to inspect and change the mean.

DiscreteUniform
The DiscreteUniform class implements a uniform random variable over the closed interval ranging from
[low..high].    The first parameter to the constructor is low, and the second is high, although the order of these
may be reversed.    The remaining members allow you to inspect and change low and high.

Uniform
The Uniform class implements a uniform random variable over the open interval ranging from [low..high].   
The first parameter to the constructor is low, and the second is high, although the order of these may be
reversed.    The remaining members allow you to inspect and change low and high.

Weibull
The Weibull class implements a weibull distribution with parameters alpha and beta.    The first parameter to
the class constructor is alpha, and the second parameter is beta.    The remaining members allow you to
inspect and change alpha and beta.

RandomInteger
The RandomInteger class is not a subclass of Random, but a stand-alone integer-oriented class that is
dependent on the RNG classes. RandomInteger returns random integers uniformly from the closed interval
[low..high].    The first parameter to the constructor is low, and the second is high, although both are optional.   
The last argument is always a generator. Additional members allow you to inspect and change low and high.   
Random integers are generated using asInt() or asLong().    Operator syntax (()) is also available as a
shorthand for asLong().    Because RandomInteger is often used in simulations for which uniform random
integers are desired over a variety of ranges, asLong() and asInt have high as an optional argument.    Using
this optional argument produces a single value from the new range, but does not change the default range.

