
Curses-based classes
The CursesWindow class is a repackaging of standard curses library features into a class. It relies on
curses.h.

The supplied curses.h is a fairly conservative declaration of curses library features, and does not include
features like ``screen'' or X-window support. It is, for the most part, an adaptation, rather than an improvement
of C-based curses.h files. The only substantive changes are the declarations of many functions as inline
functions rather than macros, which was done solely to allow overloading.

The CursesWindow class encapsulates curses window functions within a class. Only those functions that
control windows are included: Terminal control functions and macros like cbreak are not part of the class.    All
CursesWindows member functions have names identical to the corresponding curses library functions, except
that the ``w'' prefix is generally dropped. Descriptions of these functions may be found in your local curses
library documentation.

A CursesWindow may be declared via

CursesWindow w(WINDOW* win) attaches w to the existing WINDOW* win. This is constructor is normally
used only in the following special case.

CursesWindow w(stdscr) attaches w to the default curses library standard screen window.

CursesWindow w(int lines, int cols, int begin_y, int begin_x) attaches to an allocated curses window with
the indicated size and screen position.

CursesWindow sub(CursesWindow& w,int l,int c,int by,int bx,char ar='a') attaches to a subwindow of w
created via the curses `subwin' command. If ar is sent as `r', the origin
(by, bx) is relative to the parent window, else it is absolute.

The class maintains a static counter that is used in order to automatically call the curses library initscr and
endscr functions at the proper times. These need not, and should not be called ``manually''.

CursesWindows maintain a tree of their subwindows. Upon destruction of a CursesWindow, all of their
subwindows are also invalidated if they had not previously been destroyed.

It is possible to traverse trees of subwindows via the following member functions

CursesWindow* w.parent() returns a pointer to the parent of the subwindow, or 0 if there is none.

CursesWindow* w.child() returns the first child subwindow of the window, or 0 if there is none.

CursesWindow* w.sibling() returns the next sibling of the subwindow, or 0 if there is none.

For example, to call some function visit for all subwindows of a window, you could write

void traverse(CursesWindow& w)
{
 visit(w);
 if (w.child() != 0) traverse(*w.child);
 if (w.sibling() != 0) traverse(*w.sibling);
}

