
The String class
The String class is designed to extend GNU C++ to support string processing capabilities similar to those in 
languages like Awk.    The class provides facilities that ought to be convenient and efficient enough to be useful 
replacements for char* based processing via the C string library (i.e., strcpy, strcmp, etc.) in many 
applications. Many details about String representations are described in the Representation section.

A separate SubString class supports substring extraction and modification operations. This is implemented in a 
way that user programs never directly construct or represent substrings, which are only used indirectly via 
String operations.

Another separate class, Regex is also used indirectly via String operations in support of regular expression 
searching, matching, and the like.    The Regex class is based entirely on the GNU Emacs regex functions.    
See ªSyntax of Regular Expressionsº in the GNU Emacs Manual for a full explanation of regular expression 
syntax.    (For implementation details, see the internal documentation in files regex.h and regex.c.)

Constructors
Strings are initialized and assigned as in the following examples:

String x;    String y = 0; String z = ""; Set x, y, and z to the nil string. Note that either 0 or "" may 
always be used to refer to the nil string.

String x = "Hello"; String y("Hello"); Set x and y to a copy of the string "Hello".

String x = 'A'; String y('A'); Set x and y to the string value "A"



String u = x; String v(x); Set u and v to the same string as String x

String u = x.at(1,4); String v(x.at(1,4)); Set u and v to the length 4 substring of x starting at position 
1(counting indexes from 0).

String x("abc", 2); Sets x to "ab", i.e., the first 2 characters of "abc".

String x = dec(20); Sets x to "20". As here, Strings may be initialized or assigned the results 
of any char* function.

There are no directly accessible forms for declaring SubString variables.

The declaration Regex r("[a-zA-Z_][a-zA-Z0-9_]*"); creates a compiled regular expression suitable for use in 
String operations described below. (In this case, one that matches any C++ identifier). The first argument may 
also be a String. Be careful in distinguishing the role of backslashes in quoted GNU C++ char* constants versus 
those in Regexes. For example, a Regex that matches either one or more tabs or all strings beginning with "ba" 
and ending with any number of occurrences of "na" could be declared as Regex r = "\\(\t+\\)\\|\\(ba\\(na\\)*\\)" 
Note that only one backslash is needed to signify the tab, but two are needed for the parenthesization and 
virgule, since the GNU C++ lexical analyzer decodes and strips backslashes before they are seen by Regex.

There are three additional optional arguments to the Regex constructor    that are less commonly useful:

fast (default 0) fast may be set to true (1) if the Regex should be "fast-compiled". This 
causes an additional compilation step that is generally worthwhile if the 
Regex will be used many times.

bufsize (default max(40, length of the string)) This is an estimate of the size of the internal 
compiled expression. Set it to a larger value if you know that the 
expression will require a lot of space. If you do not know,    do not worry: 
realloc is used if necessary.



transtable (default none == 0) The address of a byte translation table (a char[256]) that translates each 
character before matching.

As a convenience, several Regexes are predefined and usable in any program. Here are their declarations from 
String.h.

extern Regex RXwhite;      // = "[ \n\t]+"
extern Regex RXint;        // = "-?[0-9]+"
extern Regex RXdouble;     // = "-?\\(\\([0-9]+\\.[0-9]*\\)\\|
                           //    \\([0-9]+\\)\\|
                           //    \\(\\.[0-9]+\\)\\)
                           //    \\([eE][---+]?[0-9]+\\)?"
extern Regex RXalpha;      // = "[A-Za-z]+"
extern Regex RXlowercase;  // = "[a-z]+"
extern Regex RXuppercase;  // = "[A-Z]+"
extern Regex RXalphanum;   // = "[0-9A-Za-z]+"
extern Regex RXidentifier; // = "[A-Za-z_][A-Za-z0-9_]*"

Examples
Most String class capabilities are best shown via example.
The examples below use the following declarations.

    String x = "Hello";
    String y = "world";
    String n = "123";
    String z;
    char*  s = ",";
    String lft, mid, rgt;



    Regex  r = "e[a-z]*o";
    Regex  r2("/[a-z]*/");
    char   c;
    int    i, pos, len;
    double f;
    String words[10];
    words[0] = "a";
    words[1] = "b";
    words[2] = "c";

Comparing, Searching and Matching
The usual lexicographic relational operators (==, !=, <, <=, >, >=)    are defined. A functional form 
compare(String, String) is also provided, as is fcompare(String, String), which compares Strings without 
regard for upper vs. lower case.

All other matching and searching operations are based on some form of the (non-public) match and search 
functions.    match and search differ in that match attempts to match only at the given starting position, while 
search starts at the position, and then proceeds left or right looking for a match.    As seen in the following 
examples, the second optional startpos argument to functions using match and search specifies the starting 
position of the search: If non-negative, it results in a left-to-right search starting at position startpos, and if 
negative, a right-to-left search starting at position x.length() + startpos. In all cases, the index returned is that 
of the beginning of the match, or -1 if there is no match. 

Three String functions serve as front ends to search and match. index performs a search, returning the index, 
matches performs a match, returning nonzero (actually, the length of the match) on success, and contains is a 
boolean function performing either a search or match, depending on whether an index argument is provided:

x.index("lo") returns the zero-based index of the leftmost occurrence of substring "lo" 



(3, in this case).    The argument may be a String, SubString, char, char*, 
or Regex.

x.index("l", 2) returns the index of the first of the leftmost occurrence of "l" found 
starting the search at position x[2], or 2 in this case.

x.index("l", -1) returns the index of the rightmost occurrence of "l", or 3 here.

x.index("l", -3) returns the index of the rightmost occurrence of "l" found by starting the 
search at the 3rd to the last position of x, returning 2 in this case.

pos = r.search("leo", 3, len, 0) returns the index of r in the char* string of length 3, starting at position 
0, also placing the    length of the match in reference parameter len.

x.contains("He") returns nonzero if the String x contains the substring "He". The 
argument may be a String, SubString, char, char*, or Regex.

x.contains("el", 1) returns nonzero if x contains the substring "el" at position 1. As in this 
example, the second argument to contains, if present, means to match 
the substring only at that position, and not to search elsewhere in the 
string.

x.contains(RXwhite); returns nonzero if x contains any whitespace (space, tab, or newline). 
Recall that RXwhite is a global whitespace Regex.

x.matches("lo", 3) returns nonzero if x starting at position 3 exactly matches "lo", with no 
trailing characters (as it does in this example).

x.matches(r) returns nonzero if String x as a whole matches Regex r.



int f = x.freq("l") returns the number of distinct, nonoverlapping matches to the argument 
(2 in this case).

Substring extraction
Substrings may be extracted via the at, before, through, from, and after functions.    These behave as either 
lvalues or rvalues.

z = x.at(2, 3) sets String z to be equal to the length 3 substring of String x starting at 
zero-based position 2, setting z to "llo" in this case. A nil String is 
returned if the arguments don't make sense.

x.at(2, 2) = "r" Sets what was in positions 2 to 3 of x to "r", setting x to "Hero" in this 
case. As indicated here, SubString assignments may be of different 
lengths.

x.at("He") = "je"; x("He") is the substring of x that matches the first occurrence of it's 
argument. The substitution sets x to "jello". If "He" did not occur, the 
substring would be nil, and the assignment would have no effect.

x.at("l", -1) = "i"; replaces the rightmost occurrence of "l" with "i", setting x to "Helio".

z = x.at(r) sets String z to the first match in x of Regex r, or "ello" in this case. A nil 
String is returned if there is no match.

z = x.before("o") sets z to the part of x to the left of the first occurrence of "o", or "Hell" in 
this case. The argument may also be a String, SubString, or Regex.    (If 



there is no match, z is set to "".)

x.before("ll") = "Bri"; sets the part of x to the left of "ll" to "Bri", setting x to "Brillo".

z = x.before(2) sets z to the part of x to the left of x[2], or "He" in this case.

z = x.after("Hel") sets z to the part of x to the right of "Hel", or "lo" in this case.

z = x.through("el") sets z to the part of x up and including "el", or "Hel" in this case.

z = x.from("el") sets z to the part of x from "el" to the end, or "ello" in this case.

x.after("Hel") = "p"; sets x to "Help";

z = x.after(3) sets z to the part of x to the right of x[3] or "o" in this case.

z = "    ab c"; z = z.after(RXwhite)sets z to the part of its old string to the right of the first group of 
whitespace, setting z to "ab c"; Use gsub(below) to strip out multiple 
occurrences of whitespace or any pattern.

x[0] = 'J'; sets the first element of x to 'J'. x[i] returns a reference to the ith element 
of x, or triggers an error if i is out of range. 

common_prefix(x, "Help") returns the String containing the common prefix of the two Strings or 
"Hel" in this case.

common_suffix(x, "to") returns the String containing the common suffix of the two Strings or "o" 
in this case.



Concatenation
z = x + s + ' ' + y.at("w") + y.after("w") + "."; sets z to "Hello, world."

x += y; sets x to "Helloworld"

cat(x, y, z) A faster way to say z = x + y.

cat(z, y, x, x) Double concatenation; A faster way to say x = z + y + x.

y.prepend(x); A faster way to say y = x + y.

z = replicate(x, 3); sets z to "HelloHelloHello".

z = join(words, 3, "/") sets z to the concatenation of the first 3 Strings in String array words, 
each separated by "/", setting z to "a/b/c" in this case.    The last 
argument may be "" or 0, indicating no separation.

Other manipulations
z = "this string has five words"; i = split(z, words, 10, RXwhite); sets up to 10 elements of String 

array words to the parts of z separated by whitespace, and returns the 
number of parts actually encountered (5 in this case). Here, words[0] = 
"this", words[1] = "string", etc.    The last argument may be any of the 
usual. If there is no match, all of z ends up in words[0]. The words array 
is not dynamically created by split. 



int nmatches x.gsub("l","ll") substitutes all original occurrences of "l" with "ll", setting x to "Hellllo". 
The first argument may be any of the usual, including Regex.    If the 
second argument is "" or 0, all occurrences are deleted. gsub returns the 
number of matches that were replaced.

z = x + y;    z.del("loworl"); deletes the leftmost occurrence of "loworl" in z, setting z to "Held".

z = reverse(x) sets z to the reverse of x, or "olleH".

z = upcase(x) sets z to x, with all letters set to uppercase, setting z to "HELLO"

z = downcase(x) sets z to x, with all letters set to lowercase, setting z to "hello"

z = capitalize(x) sets z to x, with the first letter of each word set to uppercase, and all 
others to lowercase, setting z to "Hello"

x.reverse(), x.upcase(), x.downcase(), x.capitalize() in-place, self-modifying versions of the above.

Reading, Writing and Conversion
cout << x writes out x. 

cout << x.at(2, 3) writes out the substring "llo".

cin >> x reads a whitespace-bounded string into x.



x.length() returns the length of String x (5, in this case).

s = (const char*)x can be used to extract the char* char array. This coercion is useful for 
sending a String as an argument to any function expecting a const 
char* argument (like atoi, and File::open). This operator must be used 
with care, since the conversion returns a pointer to String internals 
without copying the characters: The resulting (char*) is only valid until 
the next String operation,    and you must not modify it.    (The conversion 
is defined to return a const value so that GNU C++ will produce warning 
and/or error messages if changes are attempted.)


