
Copyright ã1997 by Apple Computer, Inc.    All Rights Reserved.

The OPENSTEP Text System

Note: This document hasn't been fully updated from the prerelease version. A number of minor changes have
occurred to the text system API that may render some explanations, illustrations, and code samples
inaccurrate. NeXT is working to update this document in a timely manner; a new version should be available
from our web site shortly.

The text-handling component of any application framework presents one of the greatest challenges to
framework designers. Even the most basic text-handling system must be relatively sophisticated, allowing for
text input, layout, display, editing, copying and pasting, and many other features. But these days developers
and users commonly expect even more than these basic features, requiring their simple editors to support
multiple fonts, various paragraph styles, embedded images, spell checking, and other features.

A framework that provides these more advanced text-handling features may be adequate for today's
programming needs but falls far short when measured against the requirements that are emerging from our
ever more interconnected computing world: support for the character sets of the world's living languages,
powerful layout capabilities to handle various text directionality and nonrectangular text containers, and
sophisticated typesetting capabilities including control of kerning and ligatures.

The OPENSTEP text-handling system is designed to provide all these capabilities without requiring you to
learn about or interact with more of the system than is required to meet the needs of your application. It does
this by providing a layering of classes, as described in the next section. The sections that follow the
architectural overview give you practical examples of how to work with the text-handling system.

Architectural Overview
You can think of the text-handling system as having three distinct layers of API. For most typical uses, the
general-purpose programmatic interface of the NSTextView class is all you need to learn. If you need more

flexible programmatic access to the text, you'll need to learn about the storage layer and the NSTextStorage
class. And, of course, to access all the available features, you can learn about and interact with any of the
classes that support the text-handling system. The following discussion presents these three layers.

The User-Interface Layer: The NSTextView Class

The vast majority of applications interact with the text-handling system through one class: NSTextView. An
NSTextView object provides a rich set of text-handling features and can:

· Display text in various fonts, colors, and paragraph styles
· Display images
· Read text and images from (and write them to) disk or the pasteboard
· Let users control text attributes such as font, super- and subscripting, kerning, and the use of ligatures
· Cooperate with other views to enable scrolling and display of the ruler
· Cooperate with the Font and Spell Check panels.
· Support various key bindings, such as those used in Emacs

The interface that this class declares (and inherits from its superclass NSText) lets you programmatically:

· Control the size of the area in which text is displayed
· Control the editability and selectability of the text
· Select and act on portions of the text

NSTextView objects are used throughout the OPENSTEP user interface to provide standard text input and
editing features.

An NSTextView object is a convenient package of the most generally useful text-handling features. If the
features of the NSTextView class satisfy your application's requirements, you can skip to the section below
titled ªWorking with the Text-Handling System: Basic Operationsº. However, if you need more programmatic
control over the characters and attributes that make up the text, you'll have to learn something about the
object that stores this data, NSTextStorage.

The Storage Layer: The NSTextStorage Class

An NSTextStorage object serves as the data repository for a group of text handling objects. The format for this
data is called an attributed string, which is an association of characters (in Unicode encoding) and the
attributes (such as font, color, paragraph style) that apply to them. Conceptually, each character in a text has
associated with it a dictionary of keys and values. A key names an attribute (say the font) and the associated
value specifies the characteristics of that attribute (such as Helvetica 12 point).

An NSTextView lets users affect character attributes through direct action: The user selects some text and
reduces the spacing between characters by choosing the Tighten menu command. NSTextStorage lets you
operate on the attributes of the text programmatically: Your code can run through the text loosening the
kerning for all characters of a certain font and size. To learn more about the NSTextStorage class, see ªUsing
NSTextStorageº below.

The Complete System

The roster of objects that make up the complete text-handling system is relatively long, so this section
concentrates on the major players and only mentions the minor ones in passing.

To control layout of text on the screen or printed page, you work with the objects that link the NSTextStorage
repository to the NSTextView that displays its contents. These objects are of the NSLayoutManager and
NSTextContainer classes.

An NSTextContainer object defines a region where text can be laid out. Typically, an NSTextContainer defines
a rectangular area, but by creating a subclass of NSTextContainer you can create other shapes: circles,
pentagons, or irregular shapes, for example. NSTextContainer isn't a user-interface object, so it can't display
anything or receive events from the keyboard or mouse. It simply describes an area that can be filled with
text. Nor does an NSTextContainer store textÐthat's the job of NSTextStorage.

An NSLayoutManager orchestrates the operation of the other text handling objects. It intercedes in operations
that convert the data in an NSTextStorage object to rendered text in an NSTextView's display. It also oversees
the layout of text within the areas defined by NSTextContainer objects. To better understand the function of an
NSLayoutManager object, you need to understand the difference between characters and glyphs.

Characters and Glyphs

Characters are conceptual entities that correspond to units of written language. Examples of characters
include the letters of the Roman alphabet, the Kanji ideographs used in Japanese, and symbols that indicate
mathematical operations. Characters are represented as numbers in a computer's memory or on disk, and a
character encoding defines the mapping between a numerical value and a specific character. For example,
the ASCII and Unicode character encodings both assign the value 97 (decimal) to the character `a'. The
OPENSTEP text-handling system uses the Unicode character encoding internally, although it can read and
write other encodings on disk.

You can think of a glyph as the rendered image of a character. The words of this sentence are made visible
through glyphs. A collection of glyphs that share certain graphic qualities is called a font.

The difference between a character and a glyph isn't immediately apparent in English since there's typically a
one-to-one mapping between the two. But, in some Indic languages, for example, a single character can map
to more than one glyph. And, in many languages, two or more characters may be needed to specify a single
glyph. To take a simple example, the glyph `ð' can be the result of two characters, one representing the base
character `o' and the other representing the diacritical mark `È'. A user of a word processor can strike the
arrow key one time to move the insertion point from one side of the `ð' glyph to the other; however, the current
position in the character stream must be incremented by two to account for the two characters that make up
the single glyph.

Thus, the text system must manage two related but different streams of data: the stream of characters (and
their attributes) and the stream of glyphs that are derived from these characters. The NSTextStorage object
stores the attributed characters, and the NSLayoutManager stores the derived glyphs. Finding the
correspondence between these two streams is another responsibility of the NSLayoutManager.

For a given glyph the NSLayoutManager can find the corresponding character or characters in the character
stream. Similarly, for a given character, the NSLayoutManager can locate the associated glyph or glyphs. For
example, when a user selects a range of text, the NSLayoutManager must determine which range of
characters corresponds to the selection.

When characters are deleted, some glyphs may have to be redrawn. For example, if the user deletes the
characters ªeeº from the word ªfeelº, the `f' and `l' can be represented by the `¯' ligature rather than the two
glyphs `f' and `l'. The NSLayoutManager has new glyphs generated as needed. Once the glyphs are

regenerated, the text must be laid out and displayed. Again, the NSLayoutManager is instrumental in this
step. Working with the NSTextContainer and other objects of the text system, the NSLayoutManager
determines where each glyph appears in the NSTextView. Finally, the NSTextView renders the text.

Since an NSLayoutManager is central to the operation of the text-handling system, it also serves as the
repository of information shared by various components of the system.

These are just some of the functions of an NSLayoutManager; others are discussed in later sections.

Common Configurations

The following diagrams give you an idea of how you can configure objects of these four
classesÐNSTextStorage, NSLayoutManager, NSTextContainer, and NSTextViewÐto accomplish different text-
handling goals.

To display a single flow of text, the objects are arranged like this:

FullSystem1.eps ¬

The NSTextView provides the view that displays the glyphs, and the NSTextContainer object defines an area
within that view where the glyphs are laid out. Typically in this configuration, the NSTextContainer's vertical
dimension is declared to be some extremely large value so that the container can accommodate any amount
of text, while the NSTextView is set to size itself around the text using the setVerticallyResizable: method
defined by NSText. If the NSTextView is embedded in an NSScrollView, the user can scroll to see any portion
of this text.

If the NSTextContainer's area is inset from the NSTextView's bounds, a margin appears around the text. The
NSLayoutManager object, and other objects not pictured here, work together to generate glyphs from the
NSTextStorage's data and lay them out within the area defined by the NSTextContainer.

This configuration is limited by having only one NSTextContainer-NSTextView pair. In such an arrangement,
the text flows uninterrupted within the area defined by the NSTextContainer. Page breaks, multi-column
layout, and more complex layouts can't be accommodated by this arrangement.

By using multiple NSTextContainer-NSTextView pairs, more complex layout arrangements are possible. For

example, to support page breaks, an application can configure the text-handling objects like this:

FullSystem2a.eps ¬

Each NSTextContainer-NSTextView pair corresponds to a page of the document. The gray rectangle in the
diagram above represents a custom view object that your application provides as a background for the
NSTextViews. This custom view can be embedded in an NSScrollView to allow the user to scroll through the
document's pages.

A multi-column document uses a similar configuration:

FullSystem2b.eps ¬

Instead of having one NSTextView-NSTextContainer pair correspond to a single page, there are now two
pairsÐone for each column on the page. Each NSTextContainer-NSTextView controls a portion of the
document. As the text is displayed, glyphs are first laid out in the top-left view. When there is no more room in
that view, the NSLayoutManager informs its delegate that it has finished filling the container. The delegate can
check whether there's more text that needs to be laid out and add another NSTextContainer and NSTextView.
The NSLayoutManager proceeds to lay out text in the next container, notifies the delegate when finished, and
so on. Again, a custom view (depicted as a gray rectangle) provides a canvas for these text columns.

Not only can you have multiple NSTextContainer-NSTextView pairs, you can also have multiple
NSLayoutManagers accessing the same NSTextStorage. The simplest arrangement looks like this:

FullSystem3.eps ¬

The effect of this arrangement is to give multiple views on the same text. If the user alters the text in the top
view, the change is immediately reflected in the bottom view (assuming the location of the change is within
the bottom view's bounds).

Finally, complex page layout requirements, such as permitting text to wrap around embedded graphics, can
be achieved by a configuration that uses a custom subclass of NSTextContainer. This subclass defines a
region that adapts its shape to accommodate the graphic image:

FullSystem4.eps ¬

Class Hierarchy of the Text-Handling System

You've seen the four principal classes in the text-handling system, but there are a number of auxiliary classes
and protocols that make up the system. The diagrams below give you a picture of the complete system.
Following the diagrams is a synopsis of the elements that haven't been introduced so far.

TextHierarchy.eps ¬

TextProtocols.eps ¬

· NSFileWrapper, NSTextAttachment, and NSTextAttachmentCell: <<forthcoming--see the class
specifications for information>>

· NSTextInput protocol, NSInputManager, and NSInputServer: <<forthcoming--see the class and protocol
specifications for information>>

· NSParagraphStyle, NSMutableParagraphStyle, and NSTextTab: <<forthcoming--see the class
specifications for information>>

Summary

The text-handling system's architecture is both modular and layered, to enhance its ease of use and flexibility.
Its modular design reflects the model-view-controller paradigm (originating with Smalltalk-80) where the data,
its visual representation, and the logic that links the two are represented by separate objects. In the case of
the text-handling system, NSTextStorage holds the model's data, NSTextContainer and NSTextView work
together to present the view, and NSLayoutManager intercedes as the controller to make sure that the data
and its representation on screen stay in agreement.

This factoring of responsibilities makes each component less dependent on the implementation of the others
and makes it easier to replace individual components with improved versions without having to redesign the
entire system. To illustrate the independence of the text-handling components, consider some of the
operations that are possible using different subsets of the text-handling system:

· Using only an NSTextStorage object, you can search text for specific characters, strings, paragraph styles,

and so on.

· Using only an NSTextStorage object you can programmatically operate on the text without incurring the
overhead of laying it out for display.

· Using all the components of the text system except for an NSTextView object you can calculate layout
information, determining where line breaks occur, the total number of pages, etc.

The layering of the text-handling system reduces the amount you have to learn to accomplish common text-
handling tasks. Many applications interact with this system solely through the API of the NSTextView class.

The following sections examine the text-handling system from a practical point of view, showing you how to
work with the system to achieve particular goals, starting with the most basic.

Working with the Text-Handling System:
Basic Operations

Creating an NSTextView Object

All applications use the text-handling system, if only to display the titles of windows and menu commands.
Most applications have far greater need of the system than that. This section describes the most direct ways
of assembling the network of objects that make up that system.

Interface Builder and the Text-Handling System

The easiest way to use the text-handling system is through the objects on Interface Builder's palettes. The
control objects (NSForm and NSTextField) provide objects that are preconfigured for specific uses:

Views.eps ¬

Using Interface Builder's Inspector panel, you can set many text-related attributes of these controls. For
example, you can specify whether the text in a text field is selectable, editable, scrollable, and so on. The
Inspector panel also lets you set the text alignment and background and foreground colors.

Interface Builder also provides a scrolling text view that supports the features of a basic text editor:

DataViews.eps ¬

The NSScrollView inspector in Interface Builder lets you specify, among other things, whether the contained
NSTextView allows multiple fonts and embedded graphics.

Much more of NSTextView's functionality is accessible through menu commands. Interface Builder's Palettes
window offers these ready-made menus that contain text-related commands:

Menus.eps ¬

By default, most of the commands in these menus operate on the first responder, that is, the view within the
key window that the user has selected for input. (See the NSResponder, NSView, and NSWindow class
specifications for more information on the first responder.) In practice, the first responder is the object that's
displaying the selection, say a drawing object in the case of a graphical selection or an NSTextView in the
case of a textual selection. By adding these menus to your application, you can offer the user access to many
powerful text-editing features.

NSTextViews cooperate with the Services facility through the Services menu, also available from Interface
Builder's Menus palette. By simply adding the Services menu item to your application's main menu, the
NSTextViews in your application can access services provided by other applications. For example, if the user
selects a word within an NSTextView and chooses the Define in Webster service, the NSTextView passes its
selected text to the Webster application for look up.

Interface Builder offers these direct ways of accessing the features of the text-handling system. You can also
configure your own menu items or other controls within Interface Builder to send messages to an NSTextView.
For example, you can make an NSTextView output its text for printing or faxing by sending it a print:
message. One way to do this is to drag a menu item from Interface Builder's Menu palette into your
application's main menu and hook it up to an NSTextView (either through the first responder or by direct
connection). By specifying that the item send a print: message to its target, the NSTextView's contents can
be printed or faxed when the application is run.

Creating an NSTextView Programmatically

At times, you may need to assemble the text-handling system programmatically. You can do this in either of
two ways: by creating an NSTextView object and letting it create its network of supporting objects or by
building the network of objects yourself. In most cases, you'll find it sufficient to create an NSTextView object
and let it create the underlying network of text-handling objects, as discussed in this section. If your
application has complex text-layout requirements, you'll have to create the network yourself; see ªAssembling
the Text System by Handº below for information.

You create an NSTextView object in the usual way: by sending the alloc and init... messages. Given an
NSWindow object represented by aWindow, you can create an NSTextView object in this way:

/* determine the size for the NSTextView */
NSRect contentRect =[[aWindow contentView] frame];

/* create the NSTextView and add it to the window */
NSTextView *theTextView = [[NSTextView alloc]
 initWithFrame:NSMakeRect(0, 0, contentRect.size.width,
 contentRect.size.height)];
[aWindow SetContentView:theTextView];
[aWindow makeKeyAndOrderFront:nil];
[aWindow makeFirstResponder:theTextView];

This code determines the size for the NSTextView's frame rectangle by asking aWindow for the size of its
content view. The NSTextView is then created and added as a subview of aWindow's content view. Finally,
the makeKeyAndOrderFront: and makeFirstResponder: messages display the window and cause
theTextView to prepare to accept keyboard input.

NSTextView's initWithFrame: method not only initializes the receiving NSTextView object, it causes the
object to create and interconnect the other components of the text-handling system. This is a convenience
that frees you from having to create and interconnect them yourself. Since the NSTextView created these
supporting objects, it's responsible for releasing them when they are no longer needed. When you're done
with the NSTextView, release it and it takes care of releasing the other objects of the text-handling system.
Note that this ownership policy is only in effect if you let NSTextView create the components of the text-
handling system. See ªAssembling the Text System by Handº for more information on object ownership when
you create the components yourself.

Text Input and Output

The text-handling system provides a convenient interface to the file system allowing you to read, display, and
write files in these formats:

Format Description
TableHeadRule.eps ¬
Plain Text Characters unaccompanied by attribute information.
TableRule.eps ¬

Rich Text Format (RTF) Character and attribute information expressed in the Rich Text FormatÒ(RTF). See the Rich Text
Format Specification by Microsoft Corporation for more information.

363996_TableRule.eps ¬
Rich Text Format Directory (RTFD) Character and attribute information expressed in the Rich Text Format but stored in a

directory along with the images and other attachments that are embedded in the text.
488333_TableRule.eps ¬

Reading Text from a File

To read text from a file, you have to first determine format of the text. To illustrate how this is done, consider
an object of the custom class Controller. A Controller object is responsible for opening and closing files. It
stores an NSTextView and declares a variable that records the format of the text that it reads in. Here's the
interface declaration:

#import <AppKit/AppKit.h>

typedef enum _dataFormat {
 Unknown = 0,
 PlainText = 1,
 RichText = 2,
 RTFD = 3,
} DataFormat;

@interface Controller : NSObject
{
 DataFormat theFormat;

 NSTextView *theTextView;
}

- (void)openFile:(id)sender;
- (void)saveFile:(id)sender;
@end

Now, the Controller object's openFile: method can be implemented like this:

- (void)openFile:(id)sender
{
 NSOpenPanel *panel = [NSOpenPanel openPanel];

 if ([panel runModal] == NSOKButton) {
 NSString *fileName = [panel filename];
 if ([[fileName pathExtension] isEqualToString:@"rtfd"]) {
 [theTextView readRTFDFromFile:fileName];
 theFormat = RTFD;
 } else if([[fileName pathExtension] isEqualToString:@"rtf"]) {
 NSData *rtfData = [NSData dataWithContentsOfFile:fileName];
 [theTextView replaceRange:(NSRange){0, [[theTextView text]
 length]} withRTF:rtfData];
 theFormat = RichText;
 } else {
 NSString *fileContents = [NSString
 stringWithContentsOfFile:fileName];
 [theTextView setText:fileContents range:(NSRange){0,
 [[theTextView text] length]}];
 theFormat = PlainText;
 }
 }
 return;
}

The openFile: method checks the file name returned by the Open panel for the extensions ªrtfdº or ªrtfº and
uses the appropriate means of loading data for each type. Files having any other extension are loaded as

plain text. Note that the Controller object records the format of the loaded data in its theFormat variable. This
information is used to determine how the file should be saved, as discussed in the next section.

Writing Text to a File

Depending on the format of an NSTextView's text, you use slightly different approaches to write the text to a
file. For plain text, you extract the contents of the NSTextView as an NSString object and use NSString's
writeToFile:atomically: method to write the data to disk. RTF text is treated similarly, except that the
contents is extracted as an NSData object. Easiest of all is RTFD data, which the NSTextView itself knows
how to write to a file:

- (void)saveFile:(id)sender
{
 NSSavePanel *panel = [NSSavePanel savePanel];

 switch (theFormat) {
 case PlainText:
 [panel setRequiredFileType:@""];
 if ([panel runModal] == NSOKButton) {
 [[theTextView text] writeToFile:[panel filename]
 atomically:YES];
 }
 break;
 case RichText:
 [panel setRequiredFileType:@"rtf"];
 if ([panel runModal] == NSOKButton) {
 [[theTextView RTFFromRange:NSMakeRange(0, [[theTextView text]
 length])] writeToFile:[panel filename] atomically:YES];
 }
 break;
 case RTFD:
 [panel setRequiredFileType:@"rtfd"];
 if ([panel runModal] == NSOKButton) {
 [theTextView writeRTFDToFile:[panel filename] atomically:YES];
 }
 break;

 default:
 NSLog(@"Couldn't save file (unknown data format).\n");
 break;
 }
 return;
}

Putting an NSTextView Object in an NSScrollView

A scrolling text view is commonly required in applications, and Interface Builder provides an NSTextView
configured just for this purpose. However, at times you may need to create a scrolling text view
programmatically, so it's important to understand how to proceed.

The process consists of three steps: setting up the NSScrollView, setting up the NSTextView, and assembling
the pieces.

Assuming an object has the variable theWindow that represents the window where the scrolling view is
displayed, you can set up the NSScrollView like this:

NSScrollView *scrollview = [[NSScrollView alloc]
 initWithFrame:[[theWindow contentView] bounds]];

NSSize contentSize = [scrollview contentSize];
[scrollview setBorderType:NSNoBorder];
[scrollview setHasVerticalScroller:YES];
[scrollview setHasHorizontalScroller:NO];
[scrollview setAutoresizingMask:NSViewWidthSizable |
 NSViewHeightSizable];

Note that we create an NSScrollView that completely covers the content area of the window it's displayed in.
We also specify a vertical scroll bar but no horizontal scroll bar, since this scrolling text view wraps text within
the horizontal extent of the NSTextView, but lets text flow beyond the vertical extent of the NSTextView.

Finally, we set how the NSScrollView reacts when the window it's displayed in changes size. By turning on the
NSViewWidthSizable and NSViewHeightSizable bits of its resizing mask, we ensure that the NSScrollView

grows and shrinks to match the window's dimensions.

The next step is to create and configure an NSTextView to fit in the NSScrollView:

theTextView = [[NSTextView alloc] initWithFrame:NSMakeRect(0, 0,
 [scrollview contentSize].width, [scrollview contentSize].height)];
[theTextView setMinSize:(NSSize){0.0, contentSize.height}];
[theTextView setMaxSize:(NSSize){1e7, 1e7}];
[theTextView setVerticallyResizable:YES];
[theTextView setHorizontallyResizable:NO];
[theTextView setAutoresizingMask:NSViewWidthSizable];

[[theTextView textContainer] setWidthTracksTextView:YES];

We specify that the NSTextView's width and height initially match those of the content area of the
NSScrollView. The setMinSize: message tells the NSTextView that it can get arbitrarily small in width, but no
smaller than its initial height. The setMaxSize: message allows the receiver to grow arbitrarily big in either
dimension. These limits are used by the NSLayoutManager when it resizes the NSTextView to fit the text laid
out.

The next three messages determine how the NSTextView's dimensions change in response to additions or
deletions of text and to changes in the scroll view's size. The NSTextView is set to grow vertically as text is
added but not horizontally. Its's resizing mask is set to allow it to change width in response to changes in its
superview's width. Since, except for the minimum and maximum values, the NSTextView's height is
determined by the amount of text it has in it, we don't let its height change with that of its superview.

The last message in this step is to the NSTextContainer, not the NSTextView. It tells the NSTextContainer to
resize its width according to the width of the NSTextView. Recall that the text-handling system lays out text
according to the dimensions stored in NSTextContainer objects. An NSTextView provides a place for the text
to be displayed, but its dimensions and those of its NSTextContainer can be quite different. The
setWidthTracksTextView:YES message ensures that as the NSTextView is resized, the dimensions stored
in its NSTextContainer are likewise resized, causing the text to be laid out within the new boundaries.

The last step is to assemble and display the pieces:

[scrollview setDocumentView:theTextView];
[[theWindow contentView] addSubview:scrollview];
[theWindow makeKeyAndOrderFront:nil];
[theWindow makeFirstResponder:theTextView];

Working with the Text-Handling System:
Intermediate Operations
The previous section discussed basic operations that can be implemented using the NSTextView and
NSTextContainer classes. This section explores those classes in greater depth and brings in the other major
classes of the text-handling system, showing you how to use them to accomplish various goals.

Changing Character Attributes

Interface Builder's Font and Text menus offer many standard commands for altering text attributes: Bold,
Superscript, Center, and so on. But how do you define and implement new commands?

Let's say that you want to define a command that emphasizes the selected text in some way. In the simplest
case, you can send a message to a NSTextView telling it to alter some of the attributes of the selected text.
For example, using Interface Builder, you can add a menu command that sends an emphasizeText:
message to a custom object. The custom object then sets the font of the selection. Assuming the custom
object has an instance variable (named theTextView) that identifies the NSTextView containing the selection,
you can implement the emphasizeText: method like this:

- (void)emphasizeText:(id)sender
{
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 [myTextView setFont:[NSFont fontWithName:@"Helvetica-Oblique"
 size:12.0] ofRange:changeCharRange];

 return;
}

The custom object gets the range of the selected text and then applies a new font to that range. NSTextView
provides other, similar, methods to set some common attributes (such as font, text color, and alignment).
These are ªcoverº methods that insulate the casual user from underlying NSTextStorage methods that
actually modify the attributed string. If you want to set attributes other than those accessible through the
NSTextView API, you have to interact more intimately with both the NSTextView and the NSTextStorage
object.

Fortunately, working with NSTextStorage is quite straightforward. For example, a reimplemented
emphasizeText: method that acts on the underlying NSTextStorage object looks like this:

- (void)emphasizeText:(id)sender
{
 NSTextStorage *theTextStore = [theTextView textStorage];
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if (changeCharRange.location == NSNotFound) return;

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];
 [theTextStore addAttribute:NSFontAttributeName
 value:[NSFont fontWithName:@"Helvetica-Oblique" size:12.0]
 range:changeCharRange];
 [theTextStore endEditing];
 [theTextView didChangeText];
 }

 return;
}

When invoked, this method asks the NSTextView for the NSTextStorage object containing the text. It then
determines the range of characters that should be changed, and proceeds to attempt the change. To do so it
invokes shouldChangeTextInRange:replacementString:, which gives the NSTextView's delegate a chance

to reject the change. If the change is approved, this method adds a single attribute to the range of characters
being changed, bracketing the change with beginEditing and endEditing messages that allow the
NSTextView to optimize multiple changes (though only one change is made here). Finally, this method
invokes didChangeText to send out the appropriate delegate message and notifications. As mentioned
before, NSTextView methods that change attributes do all this work for you; it's only when you modify the
NSTextStorage object directly that you have to perform this extra work.

Regarding the change itself: An NSTextStorage object stores text attributes in dictionaries (see the
NSDictionary class specification for more information). Each range of characters that share the same
attributes conceptually share a dictionary. Within the dictionary, attributes are identified by a key which has an
associated value. In the preceding implementation of emphasizeText:, the attribute we add to the selected
text is identified by the globally scoped key NSFontAttributeName whose value is set to the NSFont object
representing the Helvetica-Oblique type face.

Perhaps setting the font to an oblique angle doesn't provide enough emphasis, so you decide to additionally
have the text drawn in blue on a red background. You can accomplish this by sending two more
addAttributeValue:range: messages. However, since you plan to use this set of attributes repeatedly, a
better idea is to create a dictionary containing this set. This dictionary defines a style that you can use
repeatedly:

NSDictionary *emphasisAttributes = [NSDictionary
 dictionaryWithObjectsAndKeys:
 [NSColor blueColor],NSForegroundColorAttributeName,
 [NSColor redColor], NSBackgroundColorAttributeName,
 [NSFont fontWithName:@"Helvetica-Oblique" size:12.0],
 NSFontAttributeName, nil];

- (void)emphasizeText:(id)sender
{
 NSTextStorage *theTextStore = [theTextView textStorage];
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if (changeCharRange.location == NSNotFound) return;

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];
 [theTextStore addAttributes:emphasisAttributes
 range:changeCharRange];
 [theTextStore endEditing];
 [theTextView didChangeText];
 }
 return;

Note the use of the addAttributes:range: method. This method is similar to the addAttribute:range:
method, but applies a dictionary of attributes rather than a single attribute. With either method, an added
attribute replaces an existing one. For example, if the foreground color is set to green and you then invoke the
emphasizeText: method above, the new value of the foreground color is blue. Of course, this is the correct
behavior and is a result of storing attributes in a dictionary, where a given key can have only one value.

Assembling the Text System by Hand

You build the network of objects that make up the text-handling system from the bottom up, starting with the
NSTextStorage object. Here's the process:

1. Set up an NSTextStorage object.

You create an NSTextStorage object in the normal way, using the alloc and init... messages. In the
simplest case, where there's no initial contents for the NSTextStorage, the initialization looks like this

textStorage = [[NSTextStorage alloc] init];

If, on the other hand, you want to initialize an NSTextStorage object with rich text data from a file, the
initialization looks like this (assume fileName is defined):

NSAttributedString *attrString = [NSAttributedString
 attributedStringFromRTF:[NSData dataWithContentsOfFile:fileName]];

textStorage = [[NSTextStorage alloc]

 initWithAttributedString:attrString];

We've assumed that textStorage is an instance variable of the object that contains this method. When you
create the text-handling system by hand, you need to keep a reference only to the NSTextStorage object as
we've done here. The other objects of the system are owned either directly or indirectly by this
NSTextStorage object, as you'll see in the next steps.

2. Set up an NSLayoutManager object:

Next, create an NSLayoutManager object:

NSLayoutManager *layoutManager;

layoutManager = [[NSLayoutManager alloc] init];
[textStorage addLayoutManager:layoutManager];
[layoutManager release];

Note that layoutManager is released after being added to textStorage. This is because the
NSTextStorage object retains each NSLayoutManager that's added to itÐthat is, the NSTextStorage object
owns its NSLayoutManagers.

The NSLayoutManager needs a number of supporting objectsÐsuch as those that help it generate glyphs
or position text within a text containerÐfor its operation. It automatically creates these objects (or connects
to existing ones) upon initialization. You only need to connect the NSLayoutManager to the NSTextStorage
object and to the NSTextContainer object, as seen in the next step.

3. Set up an NSTextContainer object.

Next, create an NSTextContainer and initialize it with a size. Assume that theWindow is defined and
represents the window that displays the text view.

NSRect contentRect = [[theWindow contentView] frame];

container = [[NSTextContainer alloc]

 initWithContainerSize:NSMakeSize(contentRect.size.width, 1e7)];
[layoutManager addTextContainer:container];
[container release];

Once you've created the NSTextContainer, you add it to the list of containers that the NSLayoutManager
owns, and then you release it. The NSLayoutManager now owns the NSTextContainer and is responsible
for releasing it when it's no longer needed. If your application has multiple NSTextContainers, you can
create them and add them at this time.

4. Set up an NSTextView object.

Finally, create the NSTextView (or NSTextViews) that displays the text:

NSTextView *textView = [[NSTextView alloc]
 initWithFrame:NSMakeRect(0, 0, contentRect.size.width,
 contentRect.size.height) textContainer:container];

[[theWindow contentView] addSubview:textView];
[theWindow makeKeyAndOrderFront:nil];

[textView release];

Note that we use initWithFrame:textContainer: to initialize the NSTextView. This initialization method
does nothing more than what it says: initialize the receiver and set its text container. This is in contrast to
initWithFrame:, as discussed in ªCreating an NSTextView Programmaticallyº above, which not only
initializes the receiver, but creates and interconnects the network of objects that make up the text-handling
system. Once the NSTextView has been initialized, it's added to the window, which is then displayed.
Finally, you release the NSTextView.

Note that in creating the text-handling network by hand, we created four objects but then released three as
they were added to the network. We are left with a reference only to the NSTextStorage object.    The
NSTextView is retained by both its NSTextContainer and its superview, though; to fully destroy this group of
text objects you must send removeFromSuperview to the NSTextView object and then release the

NSTextStorage object.

An NSTextStorage object is conceptually the owner of any network of text-handling objects, no matter how
complex. When you release the NSTextStorage object, it releases its NSLayoutManagers, which release their
NSTextContainers, which in turn release their NSTextViews.

Ownership.eps ¬

However, recall that the text system implements a simplified ownership policy for those whose only interaction
with the system is through the NSTextView class. See ªCreating an NSTextView Programmaticallyº above for
more information.

The code in the four steps above overlooks an important issue: resizing. As the window is resized, does the
text rewrap within the new boundaries? What happens when there's more text than fits within the content view
of the NSWindow? For information on these subjects, see the ªControlling the Size of the NSTextViewº and
ªPutting an NSTextView Object in an NSScrollViewº sections.

