
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

WMInspector

Inherits From: Object

Declared In: apps/Workspace.h

Class Description
The WMInspector class defines the link between the Workspace Manager application and the module that's loaded
into the application.    When you build a new inspector for the Workspace Manager, you must create a subclass of
WMInspector.    The inspector you define must load its interface (that is, the nib file containing the interface) in its
new method.    It must also override the inherited revert: method to load information about the selection into its
display.

Your inspector can query the Workspace Manager for information on the selection in the File Viewer by sending
itself selectionCount and selectionPathInto:separator: messages.    It can send itself okButton, revertButton,
and window messages to gain access to those features of the Inspector panel.

Although the Contents inspector's principal role is to let the user view the contents of a File€Viewer entry, it can
also let the user edit the displayed data.    It's best not to overuse this€capability, however, since the Contents
inspector wasn't designed to substitute for normal applications.

An inspector that permits editing should send itself a touch: message when the user begins modifying the data.   
This message enables the inspector's OK and Revert buttons and displays a broken ªXº in the panel's close box.   
(See textDidChange: for an alternate way to achieve this result.)    The inspector should implement the ok:
method to commit the modifications the user has made.

Instance Variables
id window;
id okButton;
id revertButton;
id dirNameField;
id dirTitleField;
id fileNameField;
id fileIconButton;

window The Inspector window.

okButton The Inspector's OK button.

revertButton The Inspector's Revert button.

dirNameField The TextField that holds the current directory.

dirTitleField The TextField that titles dirNameField.

fileNameField The TextField that displays the file name.

fileIconButton The Button that displays the file's icon.

Method Types

Accessing the inspector object +€new

Accessing panel controls -€okButton
-€revertButton
-€window

Accessing Workspace selection
-€selectionCount
-€selectionPathsInto:separator:

Managing changes -€ok:
-€revert:
-€textDidChange:
-€touch:

Class Methods
new

+€new

Creates a new WMInspector if none exists, or returns the existing one.    When the object is created, it must load
the nib file that contains the inspector's display.

The Workspace Manager sends a new message whenever it needs to access the inspector object.    Thus, your
subclass of WMInspector should ensure that no more than one instance of its class is created:

static id ribInspector = nil;

+ new
{
 if (ribInspector == nil) {
 char path[MAXPATHLEN+1];
 NXBundle *bundle = [NXBundle bundleForClass:self];

 self = ribInspector = [super new];
 if ([bundle getPath:path
 forResource:"RIBInspector"
 ofType:"nib"]) {
 [NXApp loadNibFile:path owner:ribInspector];
 } else {
 fprintf (stderr, "Couldn't load RIBInspector.nib\n");
 ribInspector = nil;
 }
 }
 return ribInspector;
}

Instance Methods
ok:

-€ok:sender

Implement in your subclass to commit the changes that the user has made to the selected item.    The OK button in
the Inspector panel sends an ok: message when the user clicks it.

This method is optional, but if you implement it, you must send the same message to super as part of your
implementation:

ok:sender
{
 /* your code to commit changes */
 [super ok:sender];
 return self;

}

This message to super replaces the broken ªXº in the panel's close box with the standard ªXº, indicating that the
changes have been saved.

See also:    -€revert:, -€touch:

okButton
-€okButton

Returns the id of the Inspector's OK button.    This can be useful if you want to alter its title, for example.

See also:    -€revertButton:

revert:
-€revert:sender

Implement in your subclass to load data into the inspector's display.    The Workspace Manager sends this message
to the inspector object whenever the inspector's display might need to be updated; for example, when the Inspector
panel is opened or when the selection changes in the File Viewer.

Your subclass must implement this method, and it must send the same message to super as part of its
implementation:

revert:sender
{
 /* your code to show contents of selected item(s) */
 [super revert:sender];
 return self;
}

This message to super replaces the broken ªXº in the panel's close box with the standard ªXº, indicating that the
changes have been discarded.

See also:    -€ok:, -€touch:

revertButton
-€revertButton

Returns the id of the Inspector's Revert button.    This can be useful if you want to alter its title, for example.

See also:    -€okButton:

selectionCount
-€(unsigned)selectionCount

Returns the number of items selected in the File Viewer.    You can use this information to determine whether your
inspector should be displayed.    For example, most inspectors can give information on only one file at a time, so
within their revert: methods, they would have this test:

if ([self selectionCount] != 1) {
 return nil;
} else {
 /* get the path and display the file's contents */
}

See also:    -€selectionPathsInto:separator:

selectionPathsInto:separator:

-€selectionPathsInto:(char *)pathString separator:(char)character

Returns the paths of the files selected in the File Viewer.    The paths are place in the string pathString; each path is
separated from the previous one by character.      For example, if character is `:', pathString could contain
ª/me/test1:/me/test2:/me/test3º.

If your inspector acts on only one file at a time (see selectionCount), the file's path can be identified using this
message:

char fullPath[MAXPATHLEN+1];
[self selectionPathsInto:fullPath separator:'\0'];

See also:    -€selectionCount

textDidChange:
-€textDidChange:sender

Sends the WMInspector a touch: message on behalf of some Text object in the Inspector panel.

By making your inspector object the delegate of any Text object in your inspector's display, the Inspector panel
will be updated appropriately as the user alters the panel's contents.

See also:    -€touch:

touch:
-€touch:sender

Changes the image in the Inspector panel's close box to a broken ªXº to indicate that the contents has been edited.
Also, enables the OK and Revert buttons.

See also:    -€textDidChange:

window
-€window

Returns the id of the window that contains the user interface for the inspector.

