
 Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

7

PA-RISC Assembler Instructions

This chapter contains information specific to the assembler instruction set for the PA-RISC processor architecture.
Because NEXTSTEP's assembler instruction set for PA-RISC is almost identical to that for the assembler on
Hewlett Packard's HPUX, this chapter lists the differences and refers you to these Hewlett Packard publications:

· PA-RISC 1.1 Architecture and Instruction Set Reference Manual, Third Edition, HP Part Number 09740-90039.

· PA-RISC Procedure Calling Conventions Reference Manual, Second Edition, HP Part Number 09740-96015.

PA-RISC Assembler-Instruction Differences
The following sections describe the differences the developer in syntax and directives between NEXTSTEP's
assembly code for PA-RISC and HPUX assembler. This information is of use to those who write assembly code
for PA-RISC and to those who are porting existing assembly modules to NEXSTEP.

Syntatical Differences
· Registers:    Use the percentage sign (%) to denote a register.    Some examples of register designation are:

%r1, %sr1, %fp1, and %cr1.

· Effective Address: The effective address is usually specified as d(s,b) where the base register b and the
displacement d form the offset. The space identifier is s. If s is zero, you can specify d(b) in place of d(0, b).

· Labels:    The    NEXTSTEP assembler requires a colon after the label where it is declared while HPUX does
not. For example.

HPUX NEXTSTEP
 bl there, %r2 bl there, %r2
there there:
 nop nop

· Comments: To specify comments starting at the beginning of a line, use the hash mark character (#). To
specify comments in-line, use a semicolon (;). For example:

a comment from the beginning of the line
; this is a valid comment, too

€€€;and so is this
 nop ;and this is also a comment

· Instruction Separator: Use the at-sign (@) to separate multiple instructions on the same line (a feature
normally found in macros). For example:

nop @ nop

· Field Selectors: The NEXTSTEP assembler only supports the field selectors L` and R` (note that the quote
character is a back quote). Examples of their usage are:

ldil L`_printf, %r2
ble R`_printf(%sr0, %r2)

Differences in Directives
The table below lists the directives that have equivalent (or nearly equivalent) forms. Hewlett Packard directives
that are not on the list do not have NEXTSTEP equivalents; however, you can implement these as macros or

pseudo-ops.

HPUX NEXTSTEP

.ALIGN .align

.COMM .comm

.ENDM .endmacro

.EQU .set or name = expression

.EXPORT .globl

.MACRO .macro

.ORIGIN .org

.BLOCK .space

.BLOCKZ .space

.BYTE .byte

.DOUBLE .double

.FLOAT .single

.HALF .short

.STRING .ascii

.STRINGZ .asciiz

.WORD .long

In addition, the directives for changing spaces and subspaces to standard ones have    equivalents; these map
conceptually to Mach-O segments and sections.

HPUX NEXTSTEP

.CODE .text

.DATA .data

The HPUX assembler allows you to declare arbitrary spaces and subspaces. The NEXTSTEP assembler has a
predefined list of segments and sections with their own special directives. (See <x-ref> earlier in this manual for
more information.)

Pseudo-Ops

Simple HPUX pseudo-ops, such as COPY, exist as predefined macros in NEXTSTEP assembler code. More
complicated HPUX pseudo-ops, such as ENTER and LEAVE,    are implemented as macros.    To make use of

these macros, compile the assembly code with cc and not as so that you can take advantage of the C
preprocessor. The file /NextDeveloper/Headers/architecture/hppa/asm-help.h contains definitions of these
macros.

