
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

10

MIDI Driver API

Library: libsys_s.a

Header File Directory: /NextDeveloper/Headers/mididriver

Introduction
This chapter describes NEXTSTEP's MIDI driver C functions and supporting header files for MIDI 
applications.    This introduction contains conceptual discussions of the MIDI interface and its 
implementation on NeXT computers. 

The sections ªWhat Is MIDI?º and ªConnecting MIDI Devicesº provide general information on MIDI 
on the NeXT.    The section ªMIDI Driver Overviewº outlines how to structure the MIDI support 
section of an application that uses the MIDI driver functions. 

What Is MIDI?
MIDI, the Musical Instrument Digital Interface, defines a software format and a hardware standard 
for exchanging information among electronic musical instruments (such as synthesizers, samplers, 
digital pianos, and guitar or wind controllers) as well as other devices (such as computers, 
sequencers, mixers, signal processors, and even stage lighting).    Originally designed to capture the 
performance gestures of a keyboard player, MIDI normally transmits keyboard-oriented 
information, such as which key the performer depressed and with what velocity, or which button or 
slider was adjusted on a synthesizer's control panel.    This sort of data is much more compact and 
more easily edited than the data in a digital audio recording of the same performance.    Unlike audio 
data, MIDI data can easily be used to control other instruments or to create a printed score (using a 
music notation application).

Connecting MIDI Devices
You can connect MIDI instruments to either of a NeXT computer's serial ports, using an external 
device known as a MIDI interface.    The instruments connect to the MIDI interface (or to each 
other) with standard MIDI cables, available at most music stores.    The MIDI interface adapts these 
cables' unidirectional 5-pin DIN connectors to the serial port's bidirectional mini-DIN connector.    
Any number of instruments can be connected to a serial port through the interface, and the two ports 
can be used simultaneously by a single application.    A single serial port can receive and transmit 
MIDI data at the same time.



The musical instrument must be set up correctly for MIDI communication to work as expected.    
Because MIDI is a unidirectional protocol, there's no means for an application to verify that the 
external device is receiving the MIDI data that the application sends.    Thus the user is responsible 
for ensuring that the configuration is correct.    For instructions on setting up the MIDI device, see 
the owner's manual for that device.

In particular, note that most MIDI commands are sent on specific ªchannels.º    Unlike the left and 
right channels of analog audio signals, MIDI channels don't use separate cables, but instead are 
encoded in the MIDI data itself.    The sixteen MIDI channels are used for sending separate streams 
of commands to different synthesizers on a single MIDI network, or to the distinct sound-generating 
units within a single multi-timbral synthesizer.    There's no MIDI command that asks a device to 
start using a certain MIDI channel.    Instead, the user must manually set the MIDI device to transmit 
and receive on the channels expected by the software.    A typical default is to transmit and receive 
on channel 1.

The NeXT MIDI Device Driver
The MIDI driver is a loadable Mach device driver that controls the flow of MIDI data to and from 
the serial ports.    The MIDI device driver API contains C functions for direct control of the MIDI 
driver, giving you control over the buffering and timing of MIDI data.    The functions also provide 
other featuresÐfor example, you can manage the size of the MIDI data queue, manipulate the 
driver's timer, and filter out a few more kinds of MIDI commandsÐbut you'll rarely need these 
features.

The rest of this document contains information that's useful for programming with the MIDI driver 
C functions.    The sample C programs in 
/NextDeveloper/Examples/SoundAndMusic/Drivers/MidiDriver illustrate some of the functions 
documented here.    Information can also be gleaned from the header files in 
NextDeveloper/Headers/mididriver.

The MIDI Data Format
If you use the MIDI driver functions, you'll be examining MIDI data as hexadecimal values, so 
you'll need to understand the MIDI data format.    Read this section for a synopsis of the data format, 
if you're not already familiar with the MIDI specification.

MIDI data consists of commands sent in an asynchronous serial stream at 31.25 kBaud.    The data is 
transmitted in ten-bit bytes, but the first and last bits of each byte are start and stop bits, added by 
the transmitting device and stripped off by the receiving device.    Thus, MIDI commands are 
considered to consist of eight-bit bytes.    A typical MIDI command contains:

· One Status byte (whose most significant bit is set to 1).    The Status byte defines a type of 
command, such as Note On or Pitch Bend.

· Zero, one, or two Data bytes (each having its most significant bit set to 0).    Data bytes contain 
values applied by the command, such as ªkey numberº and ªvelocity,º or ªamount of pitch bend.º 
The type of command, specified by the preceding Status byte, determines how many Data bytes 
are expected.

There are two exceptions to the above pattern:

· The Status byte may be omitted, in which case the type of command is given by the most recent 
Status byte.    This condition is called Running Status.

· The Status byte F0 (hexadecimal) is the special System Exclusive command, which is followed 
by a Data byte identifying a particular manufacturer, and any number of subsequent Data bytes 



whose meaning the manufacturer is free to determine.    Only that manufacturer's instruments are 
expected to respond to the System Exclusive command.

Status bytes with hexadecimal values from 80 to EF are ªchannel commands.º    These MIDI 
commands are sent on specific MIDI channels, as determined by the rightmost four bits of the Status 
byte.    Most MIDI devices can be configured to respond only to certain channels, making it possible 
for a single MIDI data stream to deliver different musical information to different devices 
simultaneously.

Note that although MIDI bytes are classified as Status bytes or Data bytes, the term ªMIDI dataº 
refers generically to everything in a stream of MIDI commands, both Status bytes and Data bytes.

The file mididriver/midi_spec.h includes a list of Status bytes and other standard MIDI definitions. 
You can obtain the complete MIDI specification from the International MIDI Association at 11857 
Hartsook St., North Hollywood, CA    91607, U.S.A.    For an introduction to the MIDI specification, 
including a summary of commands, see Gareth Loy's article ªMusicians Make a Standard:    The 
MIDI Phenomenonº in Computer Music Journal Vol. 9, No. 4 (Winter 1985).

MIDI Driver Overview
The MIDI driver is a loadable server residing within the Mach kernel.    (For more on loadable 
servers, see NEXTSTEP Operating System Software.)    For each serial port, the MIDI driver 
maintains an input queue (containing MIDI data received from external instruments) and an output 
queue (for data received from an application).    The MIDI driver C functions let you retrieve data 
from the input queue, place data in the output queue, and perform numerous other operations.

Instead of using a direct message-passing mechanism for forwarding received MIDI data, the driver 
uses a request/reply interface.    This means that data received from a serial port is queued within the 
driver until the application requests the data.    Then the driver asynchronously sends Mach messages 
containing all the MIDI data that it's received since the last time the application requested data.    The 
application must supply functions that perform the actual work of manipulating the incoming MIDI 
data in whatever manner is desired.    The reply handler acts as a dispatcher by examining each 
incoming Mach message and routing it in a suitable format to the appropriate one of these 
application-supplied functions.    When the application is ready for the next set of MIDI data, it must 
make another request for data from the driver.

Output is managed similarly.    In addition to the asynchronous messages that contain incoming 
MIDI data, the driver sends the application a message whenever the output queue has space 
available for more outgoing data.    The reply handler passes these notifications to another 
application-supplied function, which typically responds by sending more data to the driver.

A stream of MIDI bytes coming in real time from an external instrument doesn't necessarily contain 
any information about when each MIDI command was received.    However, to make musical sense 
of recorded MIDI data, timing information is essential.    Thus the driver always timestamps MIDI 
commands on input.    A timer service, included with the driver, serves this purpose.    It also 
schedules each outgoing MIDI command.    Additionally, an application can ask this timer service to 
notify it at a certain time, and the application can stop and restart the timerÐor even make it run 
backwards.    The MIDI library has a separate reply handler for messages from the timer service, 
analogous to the reply handler that manages MIDI input and output.


