
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

MIDIAwaitReply(), MIDIHandleReply()

SUMMARY Handle replies from the MIDI driver to an application

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIAwaitReply(port_t reply_port, MIDIReplyFunctions *handlers, int 
timeout)

kern_return_t MIDIHandleReply(msg_header_t *msg, MIDIReplyFunctions *handlers)

DESCRIPTION MIDIAwaitReply() receives and handles a message from the MIDI driver.    reply_port 
is the port set used to receive messages.  handlers is a MIDIReplyFunctions structure containing 
pointers to functions for handling replies (see ªTypes and Constantsº for a description of the 
MIDIReplyFunctions structure).    timeout represents the amount of time, in milliseconds, the 
MIDIAwaitReply() function will wait before returning if no message is in the MIDI driver's queue. 
After receiving the message from the MIDI driver as specified, MIDIAwaitReply() calls 
MIDIHandleReply(). 

MIDIHandleReply() accepts a message received from the MIDI driver and passes it to the 
appropriate handling function.    msg is the Mach message received from the MIDI driver on the 
application's port set.    handlers is a MIDIReplyFunctions structure containing pointers to 
functions for handling replies. 

Before calling one of these functions, you register requests with the MIDI driver by calling one or 
more of the functions MIDIRequestData(), MIDIRequestAlarm(), MIDIRequestExceptions(), 
and MIDIRequestQueueNotification().    The handlers passed in the reply handling functions 
should include a function for handling each of the responses requested; the reply_port set passed to 
MIDIAwaitReply() should include a port for handling each of the request types. 

One common use of these functions is to receive MIDI data.    The application calls 
MIDIRequestData(), then repeatedly calls one of these reply handling functions in a loop.    To do 
so in an Application Kit application, you must run MIDIAwaitReply() in a separate Mach thread.    
Alternatively, you may register the port set with the DPSAddPort() function, use the Mach function 
msg_receive() to receive the response from the MIDI driver, then handle the message with 
MIDIHandleReply(). 

RETURN Both functions return KERN_SUCCESS if they successfully handle the reply.    If 
unsuccessful, they return an exception code indicating the reason they couldn't handle the reply. 

MIDIBecomeOwner(), MIDIReleaseOwnership()

SUMMARY Acquire and release ownership of the MIDI driver

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIBecomeOwner(port_t driverPort, port_t ownerPort)
kern_return_t MIDIReleaseOwnership(port_t driverPort, port_t ownerPort)

DESCRIPTION MIDIBecomeOwner() makes the sending process the owner of the MIDI driver.    
Before becoming owner of the MIDI driver, an application must look up driverPort with a call to the 
Mach netname_look_up() function.    It must also allocate, using the Mach port_allocate() 
function, an ownerPort to identify it to the MIDI driver in other function calls. 



MIDIReleaseOwnership() releases the MIDI driver port from the control of the sending 
application. 

RETURN Both functions return KERN_SUCCESS if they complete successfully, and    
MIDI_ERROR_BUSY if another process is using the driver.

MIDIClaimUnit(), MIDIReleaseUnit()

SUMMARY Claim and release ownership of serial ports for MIDI driver clients

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIClaimUnit(port_t driverPort, port_t ownerPort, short unit)
kern_return_t MIDIReleaseUnit(port_t driverPort, port_t ownerPort, short unit)

DESCRIPTION These functions control the access of a MIDI driver client application to the host 
computer's serial ports. 

MIDIClaimUnit() is used to acquire a serial port for MIDI communication.    It is called after the 
MIDI driver has been acquired by the application with the MIDIBecomeOwner() function.    
driverPort is the MIDI driver port.      ownerPort is the port allocated by the process to identify it to 
the MIDI driver in MIDI function calls, and first registered with the MIDI driver in 
MIDIBecomeOwner().    unit may be one of the symbolic constants MIDI_PORT_A_UNIT and 
MIDI_PORT_B_UNIT, defined in the header file mididriver/midi_driver.h. 

MIDIReleaseUnit() is used to release the serial port used in MIDI communication. 

RETURN MIDIClaimUnit() returns KERN_SUCCESS if it successfully acquires the serial port as 
requested.    MIDIReleaseUnit() returns KERN_SUCCESS if it successfully releases the serial port 
as requested.    Both return MIDI_ERROR_NOT_OWNER if the sending process hasn't acquired the 
MIDI driver and MIDI_ERROR_UNIT_UNAVAILABLE if the specified serial port is busy. 

MIDIClearQueue(), MIDIFlushQueue(), MIDIGetAvailableQueueSize()

SUMMARY Manage the MIDI driver queue

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIClearQueue(port_t driverPort, port_t ownerPort, short unit)
kern_return_t MIDIFlushQueue(port_t device_port, port_name_t ownerPort_port, short unit)
kern_return_t MIDIGetAvailableQueueSize(port_t driverPort, port_t ownerPort, short unit, int 

*theSize)

DESCRIPTION These functions allow an application to manage the queue in the MIDI driver.    
driverPort is the MIDI driver port. ownerPort is the port allocated by the process to identify it to the 
MIDI driver in MIDI function calls, and first registered with the MIDI driver in 
MIDIBecomeOwner(). 

MIDIClearQueue() empties the specified queue without sending any remaining data. 

MIDIFlushQueue() returns after sending the data remaining in the queue immediately, bypassing 
the normal time scheduling mechanism.

MIDIGetAvailableQueueSize() returns, by reference in theSize, the amount of space currently 



available in the queue. 

RETURN Each of these functions returns KERN_SUCCESS if the specified operation is performed 
successfully.    Otherwise, they return an error code indicating why the operation wasn't completed. 

MIDIFlushQueue()    ® See MIDIClearQueue()

MIDIGetAvailableQueueSize()    ® See MIDIClearQueue()

MIDIGetClockTime()    ® See MIDISetClockMode()

MIDIGetMTCTime()    ® See MIDISetClockMode()

MIDIHandleReply()    ® See MIDIAwaitReply()

MIDIReleaseOwnership() ® See MIDIBecomeOwner()

MIDIReleaseUnit()    ® See MIDIClaimUnit()

MIDIRequestAlarm(), MIDIRequestData(), MIDIRequestExceptions(), 
MIDIRequestQueueNotification()

SUMMARY Request notification from the MIDI driver

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIRequestData(port_t driverPort, port_t ownerPort, short unit, port_t 
replyPort)

kern_return_t MIDIRequestAlarm(port_t driverPort, port_t ownerPort, port_t replyPort, int time)
kern_return_t MIDIRequestExceptions(port_t driverPort, port_t ownerPort, port_t replyPort)
kern_return_t MIDIRequestQueueNotification(port_t driverPort, port_t ownerPort, short unit, 

port_t replyPort, int size)

DESCRIPTION These functions allow an application to request notification by the MIDI driver in case 
of specific events. 

The reply returned in response to these requests should be handled by an application's corresponding 
MIDIReplyFunction.    For example, the MIDI driver's response to MIDIRequestExceptions() 
should be handled by an application's MIDIExceptionReplyFunction.    MIDIReplyFunction types 
are declared in the header mididriver/midi_driver.h and described in the section ªTypes and 
Constants.º    After calling one of these functions, call MIDIAwaitReply() or MIDIHandleReply() 
to handle the response returned by the MIDI driver. 

driverPort is the MIDI driver port.    ownerPort is the port allocated by the process to identify it to 
the MIDI driver in MIDI function calls, and first registered with the MIDI driver in 
MIDIBecomeOwner().    unit is the serial port associated with the request.    replyPort is the port on 
which the response to the request is expected to be sent.    This port should be included in the port set 
passed to MIDIAwaitReply() or in the message header passed to MIDIHandleReply(). 

In MIDIRequestQueueNotification(), size is the queue size below which notification will be sent. 

RETURN These functions return KERN_SUCCESS if the specified request is registered with the MIDI 
driver.    Otherwise, they return an error code indicating why the operation wasn't completed. 

SEE ALSO MIDIAwaitReply()



MIDIRequestData()    ® See MIDIRequestAlarm()

MIDIRequestExceptions()    ® See MIDIRequestAlarm()

MIDIRequestQueueNotification()    ® See MIDIRequestAlarm()

MIDISendData()

SUMMARY Send data using the MIDI driver

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDISendData(port_t driverPort, port_t ownerPort, short unit, 
MIDIRawEvent *data, unsigned int count)

DESCRIPTION This function sends data, using the MIDI driver and specified serial port to other MIDI 
devices.    driverPort is the MIDI driver port.    ownerPort is the port allocated by the process to 
identify it to the MIDI driver in MIDI function calls, and first registered with the MIDI driver in 
MIDIBecomeOwner().    data is an array of MIDIRawEvent data.    count is the number of 
MIDIRawEvent structures in the array

RETURN This function returns KERN_SUCCESS if the data is successfully written to the serial port.    
Otherwise, returns an error code indicating why the operation wasn't completed. 

SEE ALSO MIDIRequestData()

MIDISetClockMode(), MIDISetClockQuantum(), MIDISetClockTime(), 
MIDIGetClockTime(), MIDIGetMTCTime()

SUMMARY Control the MIDI driver clock 

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDISetClockMode(port_t driverPort, port_t ownerPort, short synchUnit, int 
mode)

kern_return_t MIDISetClockQuantum(port_t driverPort, port_t ownerPort, int interval)
kern_return_t MIDISetClockTime(port_t driverPort, port_t ownerPort, int time)
kern_return_t MIDIGetClockTime(port_t driverPort, port_t ownerPort, int *time)
kern_return_t MIDIGetMTCTime(port_t driverPort, port_t ownerPort, short *format, short 

*hours, short *minutes, short *seconds, short *frames)

DESCRIPTION These functions let you set and test parameters for the MIDI driver clock.    driverPort 
is the MIDI driver port.    ownerPort is the port allocated by the process to identify it to the MIDI 
driver in MIDI function calls, and first registered with the MIDI driver in MIDIBecomeOwner().

MIDISetClockMode() sets the synchronization mode of the MIDI driver clock.    synchUnit 
represents the serial port on which the driver will listen for MIDI time code signals.    mode is one of 
the symbolic constants MIDI_CLOCK_MODE_INTERNAL or 
MIDI_CLOCK_MODE_MTC_SYNC.    MIDI_CLOCK_MODE_INTERNAL causes the clock to 
run on its own internal time, while MIDI_CLOCK_MODE_MTC_SYNC causes the clock to 
synchronize with the MIDI time code present on synchUnit. 



MIDISetClockQuantum() sets the interval between clock signals.  interval represents this quantum 
in microseconds.    The default setting is 1000 (1 millisecond). 

MIDISetClockTime() sets the current clock time.    time is an integer representing the time to which 
you want to set the MIDI driver clock. 

MIDIGetClockTime() returns by reference in time the current clock time. 

MIDIGetMTCTime() returns the MIDI time code time.    format represents the MIDI time code 
format of the current time.  hours, minutes, and seconds represent the chronological value of the 
current time.    frames represents the frame number of the current time. 

RETURN These functions return KERN_SUCCESS if the operation is performed successfully.    
Otherwise, they return an error code indicating why the operation wasn't completed. 

MIDIGetClockTime() returns, by reference in time, the current time. 

SEE ALSO MIDIRequestAlarm(), MIDIStartClock()

MIDISetClockQuantum() ® See MIDISetClockMode()

MIDISetClockTime()    ® See MIDISetClockMode()

MIDISetSystemIgnores()

SUMMARY Sets MIDI system codes the MIDI driver ignores

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDISetSystemIgnores(port_t driverPort, port_t ownerPort, short unit, 
unsigned int ignoreBits)

DESCRIPTION MIDISetSystemIgnores() sets MIDI system codes the MIDI driver ignores.    
driverPort is the MIDI driver port.    ownerPort is the port allocated by the process to identify it to 
the MIDI driver in MIDI function calls, and first registered with the MIDI driver in 
MIDIBecomeOwner().    unit may be one of the symbolic constants MIDI_PORT_A_UNIT or 
MIDI_PORT_B_UNIT (defined in the header file mididriver/midi_driver.h), representing the port 
on which MIDI system codes should be ignored.    ignoreBits may be one of the symbolic constants 
MIDI_IGNORE_CLOCK, MIDI_IGNORE_START, or MIDI_IGNORE_CONTINUE (defined in 
mididriver/midi_driver.h); you may logically OR these constants for multiple settings. 

RETURN This function returns KERN_SUCCESS if the operation is performed successfully.    
Otherwise, it returns an error code indicating why the operation wasn't completed. 

MIDIStartClock(), MIDIStopClock()

SUMMARY Start and stop the MIDI clock

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIStartClock(port_t driverPort, port_t ownerPort)
kern_return_t MIDIStopClock(port_t driverPort, port_t ownerPort)



DESCRIPTION MIDIStartClock() starts the clock using the current settings.    MIDIStopClock() 
stops the clock.    driverPort is the MIDI driver port.    ownerPort is the port allocated by the process 
to identify it to the MIDI driver in MIDI function calls, and first registered with the MIDI driver in 
MIDIBecomeOwner(). 

RETURN These functions return KERN_SUCCESS if the operation is performed successfully.    
Otherwise, they return an error code indicating why the operation wasn't completed. 

SEE ALSO MIDIRequestAlarm(), MIDISetClockMode

MIDIStopClock()    ® See MIDIStartClock()


