
TextSizingExample
Description

This example demonstrates different ways of configuring the objects in the 
new text system that comes with OPENSTEP for Windows and Mach.    The 
app displays a window where different examples of NSTextViews with 
different sizing properties can be shown.    A pop-up button at the top of the 
window controls which example is visible.

In most of the examples, the same NSTextStorage is used and the example 
contains an NSLayoutManager that adds itself to the shared NSTextStorage 
and one or more pairs of NSTextContainer and NSTextView objects.    By 
default this NSTextStorage loads this ReadMe file, but you can load a new 
file or edit the text.

Implementation

The Controller class acts as the NSApplication delegate and provides a very 
simple swap-view type functionality.    The Controller also provides the shared 
NSTextStorage.    It has an array of Aspect objects that it lists in the pop-up 
and switches the main part of the window to show the chosen example.

Each example is controlled by a specific subclass of the Aspect object.    
Aspect itself provides the basic swapping support and a nib file that is 
sufficient for most of the examples.    The subclasses of Aspect contain 
almost all the code relevant to the example.    Each one implements the 
method -nibDidLoad.    This method creates and configures all the objects 



involved in the particular example.    In general, the code is more explicit than 
it needs to be.    Many features of the objects are explicitly set to their default 
values to make the examples as clear as possible.

This example defines a number to use to mean "really big".    It is called 
LargeNumberForText, and it was not arbitrarily chosen.    The actual value 
was chosen to be around the largest floating point value possible that can 
preserve at least pixel precision.    Because of the nature of floating point 
numbers, the bigger they get, the less precise they get.    It is not wise to use 
bigger dimensions for text system objects because, even if you ever fill all 
that space, by the time you get to the far reaches, the letters won't have the 
precision necessary to look and act correctly.    This limitation of floating point 
coordinates goes all the way down into postscript, and holds for any type 
postscript graphics.

Text Sizing Configuration

This document assumes at least a passing familiarity with the new text 
system.    Also, for lack of a better term, we will sometimes use the singular 
"text object" to refer to a fully functional stack of text objects including an 
NSTextStorage, NSLayoutManager, and one or more pairs of 
NSTextContainer and NSTextView objects.

Because there are so many different ways in which text is used in an 
application, the text system has quite a few options for configuring the sizing 
behavior of a particular text object.    This can be confusing to developers 
new to the system, but it also enables you to configure a text object for 
almost sizing needs once you understand the options.



Both the NSTextView and NSTextContainer classes have configurable sizing 
options.    In order to get exactly the behavior you desire, it is usually 
necessary to set up the options in both these objects.    A list of the API for 
these options follows.    Only the set methods are mentioned, but access 
methods exist for each setting as well.    Also included is some relevant API 
inherited by NSTextView from NSText and NSView.

NSTextContainer
-€(void)setContainerSize:(NSSize)aSize
-€(void)setWidthTracksTextView:(BOOL)flag
-€(void)setHeightTracksTextView:(BOOL)flag

NSTextView
-€(void)setFrame:(NSRect)frameRect
-€(void)setFrameOrigin:(NSPoint)newOrigin
-€(void)setFrameSize:(NSSize)newSize
-€(void)setConstrainedFrameSize:(NSSize)desiredSize
-€(void)setAutoresizesSubviews:(BOOL)flag
-€(void)setAutoresizingMask:(unsigned€int)mask
-€(void)setHorizontallyResizable:(BOOL)flag
-€(void)setVerticallyResizable:(BOOL)flag
-€(void)setMinSize:(NSSize)newMinSize
-€(void)setMaxSize:(NSSize)newMaxSize

The first concept to understand is that it is the size of the NSTextContainer, 
not the NSTextView which controls the area where the text will be laid out.    
The size of an NSTextContainer does not change because of the layout of 
the text, it determines the layout of the text.    Usually the size of a container 
does not change at all.    However the two methods 



-setWidthTracksTextView: and -setHeightTracksTextView: can be used to 
enable a special kind of dynamic sizing of the container.    You can set it to 
change its width or height as its NSTextView changes.

The NSTextView on the other hand changes size much more often.    An 
NSTextView will automatically size itself to match the usage of the container. 
The usage of a container is effectively how much of it is actually filled up with 
text (see the NSLayoutManager documentation for a discussion of text 
container usage).    NSTextView can have constraints placed upon it in to limit 
it size changing.    You can disable or enable the sizing to usage in a 
particular dimension using -setHorizontallyResizable:, and 
-setVerticallyResizable:.    Alternatively you can constrain the size with 
minimum and maximum boundaries using -setMinSize:, and -setMaxSize:. 
Note that disabling horizontal resizing effectively causes the widths of the min 
and max sizes to be ignored (and the same goes for vertical resizability and 
the min and max heights).

Warning: It is possible to set up an inconsistent state between an 
NSTextContainer and an NSTextView.    If you turn on both width 
tracking in the container and horizontal sizability in the text view at 
the same time, you can end up causing infinite loops in your 
application.    Consider the configuration: suppose the usage of 
the container changes and the text view's width changes in 
response.    Then the text container will notice this and change its 
width to match.    The change in the text container's size will cause 
the text to be relaid out to the new container width.    This may 
cause the container's usage to change again.    Again the text 
view will change its width, and the loop is complete.    Avoid this 
configuration and the analogous one with height tracking and 



vertical resizability.

Another thing to keep in mind is that only the automatic resizing of the text 
view to match the container usage is constrained by the min and max sizes 
and the sizability settings of the text view.    -setFrameSize: does not apply 
the constraints.    The constraints are applied only through the 
-setConstrainedFrameSize: method.    Among other things, this means that 
the NSView autosizing (springs and rods) feature does not respect the 
constraints.

The rest of this file discusses the implementation of each example.

VertScrollerAspect

This demonstrates the simple case of an NSScrollView with a vertical scroller 
containing an NSTextView that grows vertically to fit the text and wraps the 
text to its width, rewrapping if the width changes.    This example creates 
NSLayoutManager, NSTextContainer, and NSTextView objects and hooks the 
NSLayoutManager into the shared NSTextStorage for the app.

NSTextContainer
Size: (view width, LargeNumberForText)
Tracks width: YES
Tracks height: NO

NSTextView
Size: (content width of scroll view, container usage height)
Horizontally resizable: NO
Vertically resizable: YES



Min Size: (irrelevant, content height of scroll view)
Max Size: (irrelevant, LargeNumberForText)

Notice that the container tracking and the text view sizability along a single 
dimension are different.    This should always be the case (see the warning in 
the Text Sizing Configuration section above).

The container height does not change.    It is set to be really tall so that, 
effectively, we can just keep laying text out down the container and never run 
out of room.    The width, on the other hand, is set to change as the width of 
the text view changes.    The text view is never allowed to get smaller than 
the content rect of the scroll view (this is actually taken care of automatically 
for NSTextViews that are the documentView of a NSClipView), but it is 
allowed to get as tall as it wants.    It does not change its width in response to 
usage changes for its text container at all.

The autosizing flags of the text view are set so that it will resize its width with 
its superview.    This setup causes the text to be wrapped to the width of the 
text view, but to grow downward as needed.    If the user resizes the window 
wider, the text view will change width and the text will be rewrapped to the 
new width.    This is the classic Edit style of text setup.

BiScrollerAspect

This demonstrates non-wrapping text in an NSScrollView.    The scroll view 
allows scrolling in both directions now, and the text does not wrap at all 
except at hard line breaks.    This is the mode that people familiar with 
Windows code editors are probably used to.



NSTextContainer
Size: (LargeNumberForText, LargeNumberForText)
Tracks width: NO
Tracks height: NO

NSTextView
Size: (container usage width, container usage height)
Horizontally resizable: YES
Vertically resizable: YES
Min Size: (content width of scroll view, content height of scroll view)
Max Size: (LargeNumberForText, LargeNumberForText)

The container never changes size in this example.    It is huge in both 
dimensions to give us plenty of horizontal and vertical room.    The view will 
size itself to the container usage in both directions.    It will be as wide as the 
widest line and tall enough to display all the lines.    No autosizing is used for 
the text view since it should always stay sized to the container usage.

FixedSizeAspect and TwoColumnsAspect

In a way the FixedSizeAspect and the TwoColumnsAspect are both the 
simplest and most complex configurations.    They are simple in their sizing 
behavior.    Basically, they are fixed size.    They do not resize at all to their 
containers' usages, although they do have autosizing attributes for when the 
window resizes.    They are the most complex in that the situations in which 
these setups are useful are usually more advanced uses of the text system 
such as where the application is doing its own pagination.

These two Aspects are very similar.    They have almost identical 



configurations of their text views and containers.    The difference is that 
TwoColumnsAspect has two NSTextContainer/NSTextView pairs instead of 
just one.

NSTextContainer
Size: (view width, view height)
Tracks width: YES
Tracks height: YES

NSTextView
Size: determined by window size
Horizontally resizable: NO
Vertically resizable: NO
Min Size: irrelevant
Max Size: irrelevant

The size of the NSTextView and also the NSTextContainer is determined 
solely by the window size.    When the text view resizes, the container resizes 
to match it in both dimensions.    The text view never changes size in 
response to the container usage.    When the container(s) fills up, the rest of 
the text goes nowhere.

In the FixedColumnAspect example the single view autosizes in both 
directions to fill the available space in the window.    In the 
TwoColumnsAspect, both columns autoresize their height, but only the right 
column autosizes its width.

FieldAspect



This aspect is different from the others in that it does not use the shared 
NSTextStorage from the Controller.    Instead it demonstrates how to set up 
the text system to act in a field-like way with various different sizing 
behaviors.    It has six different text objects.    The first three are growing fields 
of various alignments and the second group of three are fixed size areas, but 
horizontally scrolling.

In the first three examples the NSTextViews resize, taking only as much 
space as necessary, but never more than they have available.    The centered 
and right aligned variants are handled specially so that as the views grow or 
shrink to fit the text, they are kept centered or right aligned within their boxes. 
The left aligned field requires no special concern for this.    The important 
thing to remember is that NSTextView may resize itself to fit its text, but it 
never moves itself.    For the centered and right aligned examples to work 
correctly, the views must move sometimes too, and we have to handle that 
ourselves.    These examples can display only as much text as will fit in the 
current width of the boxes that they are in.

In the second three examples, the NSTextViews still resize to fit their text, but 
they are kept at least as large as the width of the box they are in.    
Furthermore, the NSTextViews are in NSClipViews so that if they get wider 
than the box the user can scroll them like a scrolling NSTextField.    No 
special code is required for the various different alignments here.

This example illustrates another feature of the text system unrelated to 
resizing.    The NSTextViews in the FieldAspect are set to be field editors.    
This means that they will send textDidEndEditing: notifications when the user 
types tab, shift tab, or return while editing in one.    This is the full extent to 
which NSTextView participates in the nextKeyView mechanism (keyboard 



UI).    NSTextView does not automatcally select its next key view.    The most 
it does is send NSTextDidEndEditingNotifications in this way.    It is usually 
the delegate of an NSTextView that actually handles this notification and 
causes a new view to be made key, if appropriate.    NSTextField and 
NSMatrix, for example, use an NSTextView for editing editable text.    They 
handle these notifications to pass on the key view status to their own 
nextKeyView or previousKeyView (or in the case of NSMatrix, perhaps the 
next or previous cell).    The FieldAspect also handles these notifications.    It 
takes care of distinguishing why the editing ended and takes the appropriate 
action.    This is why you are able to tab through the fields in the aspect.


