
getValueAt::withAttributes::usePositions::
drawFieldAt::inside:inView:withAttributes::

usePositions::
Batching format requests beginBatching:

resetBatching:
endBatching

Assigning a delegate setDelegate:
delegate

Assigning a data source setDataSource:
dataSource

beginBatching:(id <NXTableVectors>)attributes

Informs the NXFormatter that a formatting session is about to begin. You never invoke this method directly it's invoked
automatically by the NXTableView just before it sends the first in a series of drawFieldAt::... messages. A formatting
session is concluded by an endBatching message and is restarted by resetBatching:.



The default implementation of beginBatching: does nothing. You can reimplement this method in a subclass to perform
pre-formatting initialization to optimize a series of display operations. The return value is ignored. The attributes
argument is currently unused (it's always nil).

dataSource

Returns the NXFormatter's data source.

dataSource (NXTableView)

delegate

Returns the NXFormatter's delegate.

drawFieldAt:(unsigned int)rowIndex
:(unsigned int)columnIndex
inside:(NXRect *)frameRect
inView:aView
withAttributes:(id <NXTableVectors>)rowAttributes
:(id <NXTableVectors>)columnAttributes
usePositions:(BOOL)rowPosFlag
:(BOOL)columnPosFlag

Retrieves a value from the data source, formats it, and displays it in aView. NXFormatter's implementation does nothing
and returns self it's up to a subclass to implement this method in a meaningful way.

Typically, a subclass's implementation follows these steps:

endBatching

Notifies the NXFormatter that a formatting session is over. See the beginBatching: method for more information. The
return value is ignored.

resetBatching:

getValueAt:(unsigned int)rowIndex
:(unsigned int)columnIndex
withAttributes:(id <NXTableVectors>)rowAttributes
:(id <NXTableVectors>)columnAttributes
usePositions:(BOOL)rowPosFlag
:(BOOL)columnPosFlag

Retrieves a value from the data source, places it in the NXFormatter's value instance variable, and returns the value. You
never invoke this method from your application however, if you create a subclass of NXFormatter, it needs to invoke this
method from the implementation of drawFieldAt::..., as explained in the description of that method. A subclass of
NXFormatter doesn't normally need to override this method.



The ªuse positionº flags determine which retrieval methods of the data source are used. If both are NO, then getValueFor:
:into: is sent to the data source with the identifiers of rowAttributes and columnAttributes. If one of the flags is YES, then
getValueFor:at:into: is sent to the data source with the corresponding index argument and the identifier of its
complementary axis. For example, if rowPosFlag is YES, this message is generated:

identifier (NXTableVectors protocol)

resetBatching:(id <NXTableVectors>)attributes

Tells the NXFormatter to restart a formatting session. See the beginBatching: method for more information. The return
value is ignored.

endBatching

setDataSource:anObject

Sets the NXFormatter's data source to anObject. Returns self.

setDataSource: (NXTableView)

setDelegate:anObject

Sets the NXFormatter's delegate to anObject. Returns self.


