


initWithName:

Setting the name setName:
name
+ isValidName:
Using joins addJoin:
removeloin:
joins
Getting attributes joined on sourceAttributes
destinationAttributes

Getting the definition componentRel ationships
setDefinition:
definition

Getting the entities joined setEntity:
entity
destinationEntity

Checking type isCompound
isFlattened

Setting to-many setToMany:
iIsToMany

Checking references referencesProperty:

Setting the user dictionary setUserDictionary:
userDictionary

(BOOL )addJoin:(EOQJoin *)aJoin



(NSString *)definition

Returns the data path of aflattened relationship for example &oDepartment. toFacility®. If the relat
returns nil.

(NSArray *)destinationAttributes

Returns the destination EOALttributes of a simple (nonflattened) relationship. These correspond on:
attributes returned by sourceAttributes. Returns nil if the relationship is flattened.

joins

(EOEntity *)destinationEntity

Returns the relationship's destination entity, which is determined by the destination entity of itsjo
relationship, and by whatever ends the data path for a flattened relationship. For example, if aflatt
definition is@oDepartment. toFacility® the destination entity isthe

entity

(EOEntity *)entity
Returns the relationship's source entity.
destinationEntity, addRelationship: (EOEntity)

InitWithName: (NSString * )name

Initializes a newly allocated EORelationship with name asits name. The EORelationship needsto
adefinition beforeit's usable. Thisisthe designated initializer for the EORelationship class. Retur

(BOOL )isCompound

Returns Y ESif the relationship has more than onejoin (that is, if it joins more than one pair of attr
only onejoin or is aflattened relationship. See @Creating a Simple Relationship® in the class descr
on compound relationships.

(BOOL )isFlattened

Returns YESif the relationship traverses more than two entities, NO otherwise. See @Creating a Fl
in the class description for an example of aflattened relationship.



(NSArray *)joins
Returns all joins used by the relationship, or nil if the relationship is flattened.
sourceAttributes, destinationAttributes

(NSString *)name
Returns the relationship's name.

(BOOL )referencesProperty:aProperty

Returns YES if aProperty is an EORelationship in the relationship's data path or is an EOALttribute
relationship's joins, NO otherwise. See the class description for information of how relationshipsr

referencesProperty: (EOEnNtity)

(void)removedoin:(EOJoin *)aloin
Deletes aJoin from the relationship. Does nothing if the relationship is flattened.

(void)setDefinition:(NSString * )definition

Changes the relationship to a flattened relationship by releasing all of its joins and setting definitio
example @oDepartment. toFacility®. If the relationship doesn't have an entity, this method does no
Flattened Relationship® in the class description for more information on flattened relationships.

setEntity:

(void)setEntity:(EOEntity *)anEntity

Sets the entity of the relationship to anEntity. Y ou only need to use this method when creating afl:
EOEntity's addRelationship: to associate an existing relationship with an entity.

setDefinition:

(BOOL)setName:(NSString *)name

Sets the relationship's name to name. Returns Y ES if successful, NO if nameis already in use by &
relationship of the same entity.



Sets the dictionary of auxiliary data, which your application can use for whatever it needs. aDictiol
list (that is, it must contain only NSString, NSData, NSArray, and NSDictionary objects).

(NSArray *)sourceAttributes

Returns the source EOALttributes of a simple (nonflattened) relationship. These correspond one-to-
returned by destinationAttributes. Returns nil if the relationship is flattened.

joins

(NSDictionary *)userDictionary

Returns adictionary of user data. Y our application can use this data for whatever it needs. This dic
list (that is, it contains only NSString, NSData, NSArray, and NSDictionary objects).



