
initWithContentsOfFile:
initWithPropertyList:
initWithName:

Getting the filename path
Getting a property list representation

modelAsPropertyList
Getting the name name
Using entities addEntity:

removeEntityNamed:
entityNamed:
entities

Checking references referencesToProperty:
Getting an object's entity entityForObject:
Adding model information incorporateModel:
Setting the adaptor bundle setAdaptorName:

adaptorName
Setting the connection dictionary

setConnectionDictionary:
connectionDictionary

Setting the user dictionary setUserDictionary:
userDictionary



(NSString *)adaptorName

Returns the name of the adaptor for the model. This name can be used with EOAdaptor's adaptorWithName: class
method to create an adaptor.

(BOOL)addEntity:(EOEntity *)anEntity

Adds anEntity to the model. Returns YES if successful, NO if an entity with the same name already exists in the model.

removeEntityNamed:

(NSDictionary *)connectionDictionary

Returns a dictionary containing information used to connect to the database server. The connection dictionary is a
convenient place to specify default login information for applications using the model. See the EOAdaptor class
specification for more information.

(NSArray *)entities

Returns an array containing the EOModel's entities.

(EOEntity *)entityForObject:anEO

Returns the entity associated with anEO, whether anEO is an instance of an enterprise object class, an instance of
EOGenericRecord, or a fault object (see the EOFault class specification for information on faults). Returns nil if anEO
has no associated entity.

(EOEntity *)entityNamed:(NSString *)name

Returns the entity named name, or nil if no such entity exists.

(BOOL)incorporateModel:(EOModel *)aModel

Copies the contents of aModel into the receiver. Returns YES if successful, NO if any identically named elements of the
two models differ, or if the two models use different adaptors. Doesn't affect the connection dictionary of the receiver.

You can use this method to merge subsets of a larger model as they're loaded from individual resources, such as nib files.

setConnectionDictionary:



initWithContentsOfFile:(NSString *)path

Initializes a newly allocated EOModel by reading the contents of the file named path as a property list representation with
initWithPropertyList:. path must contain the full name of the model file, including the .eomodel extension.

path

initWithName:(NSString *)name

Initializes a newly allocated EOModel with name as its name. The EOModel needs to have entities with attributes before
it's usable. This is the designated initializer for the EOModel class. Returns self.

initWithPropertyList:aPropertyList

Initializes a newly allocated EOModel from aPropertyList, which is a property list representation created by sending
modelAsPropertyList to an existing model. Property list representations are used to save models to and load them from
files. initWithContentsOfFile: is roughly equivalent to this code excerpt:

modelAsPropertyList

Returns a string object encoding the EOModel as an ASCII property list. This representation can be saved to a file and
later reloaded using initWithContentsOfFile:. The following code excerpt saves an EOModel to a file named People.
eomodel:

initWithPropertyList:

(NSString *)name

Returns the model's name.

(NSString *)path

Returns the full path of the model file used to create the EOModel (including the .eomodel extension), or nil if the model
wasn't initialized from a file.

(NSArray *)referencesToProperty:aProperty

Returns an array of all properties in the model that reference aProperty: derived attributes, relationships that reference
aProperty, and so on. aProperty itself may be either an EOAttribute or an EORelationship.



(void)removeEntityNamed:(NSString *)name

Removes the EOEntity named name from the model. Raises NSInvalidArgumentException is there is no such entity.

addEntity:

(void)setAdaptorName:(NSString *)adaptorName

Sets the name of the model's adaptor to adaptorName.

(void)setConnectionDictionary:(NSDictionary *)aDictionary

Sets the dictionary containing information used to connect to the database to aDictionary. Note that if the adaptor has
already been initialized with the model, this method does not propagate the connectionary down to the adaptor. See the
EOAdaptor class specification for more information on working with setConnectionDictionary:.

(void)setUserDictionary:(NSDictionary *)aDictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. This dictionary must be a
property list (that is, it must contain only NSString, NSData, NSArray, and NSDictionary objects).

(NSDictionary *)userDictionary

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs. This dictionary
is a property list (that is, it contains only NSString, NSData, NSArray, and NSDictionary objects).


