
initWithName:
Setting the name setName:

name
+ isValidName:

Getting the model model
Getting the qualifier qualifier
Accessing attributes addAttribute:



removeAttributeNamed:
attributeNamed:
attributes

Accessing relationships addRelationship:
removeRelationshipNamed:
relationshipNamed:
relationships

Checking property references referencesProperty:
Setting primary key attributes setPrimaryKeyAttributes:

primaryKeyAttributes
primaryKeyAttributeNames
isValidPrimaryKeyAttribute:

Getting primary keys primaryKeyForRow:
Setting class properties setClassProperties:

classProperties
classPropertyNames
isValidClassProperty:

Setting locking attributes setAttributesUsedForLocking:
attributesUsedForLocking
isValidAttributeUsedForLocking:

Setting the enterprise object class
setClassName:
className

Setting external information setExternalName:
externalName

Setting the external query setExternalQuery:
externalQuery

Setting read-only status setReadOnly:
isReadOnly

Setting the user dictionary setUserDictionary:
userDictionary

(BOOL)addAttribute:(EOAttribute *)anAttribute

Adds anAttribute to the entity and returns YES on success, NO if anAttribute's name is already in use by another attribute
or relationship. Sets anAttribute's entity to self.

removeAttributeNamed:, attributeNamed:, setEntity: (EOAttribute)



(BOOL)addRelationship:(EORelationship *)aRelationship

Adds aRelationship to the entity and returns YES on success, NO if aRelationship's name is already in use by another
attribute or relationship. Sets aRelationship's entity to self.

removeRelationshipNamed:, relationshipNamed:, setEntity: (EORelationship)

(EOAttribute *)attributeNamed:(NSString *)name

Returns the attribute named name, or nil if no such attribute exists.

attributes, relationshipNamed:

(NSArray *)attributes

Returns the entity's attributes, or nil if the entity has none.

(NSArray *)attributesUsedForLocking

Returns the attributes whose values are compared when a database-level object performs an update with locking (that is, if
the EOUpdateWithPessimisticLocking or EOUpdateWithOptimisticLocking update strategies are used). When the
database-level classes fetch an enterprise object, they cache these attributes' values in a snapshot. Later, when the
enterprise object is updated, the values of these attributes in the object are checked with those in the snapshotÐif they
differ, the update fails. See the EODatabaseContext class specification for more information.

(const char *)className

Returns the name of the enterprise object class associated with the entity. When a row is fetched for the entity by an
EODatabaseChannel, it's returned as an instance of this class. This class might not be present in the run-time system, and
in fact your application may have to load it on demand. If your application doesn't load a class, EOGenericRecord is
used.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

databaseChannel:failedToLookupClassNamed: (EODatabaseChannel, ªMethods Implemented by the Delegateº)

(NSArray *)classProperties

Returns the properties bound to the entity's enterprise object class. An entity may have many properties, but only the class
properties are actually passed to enterprise objects (and therefore made visible in your application).

classPropertyNames

(NSArray *)classPropertyNames

Returns the names of all the properties returned by classProperties.

(NSString *)externalName

Returns the name of the entity as understood by the database server.



(NSString *)externalQuery

Returns a SQL SELECT statement that an EOAdaptorChannel uses to select rows for the entity when a qualifier is empty,
or nil if the entity has no external query. An empty qualifier is one that specifies only the entity, and would thus fetch all
enterprise objects for that entity.

External queries are useful for hiding records or invoking database-specific features such as stored procedures when an
application attempts to select all records for an entity.

isEmpty (EOQualifier), selectAttributes:describedByQualifier:fetchOrder:lock: (EOAdaptorChannel)

initWithName:(NSString *)name

Initializes a newly allocated EOEntity with name as its internal name. To be usable the EOEntity must have a set of
attributes and belong to a model. This is the designated initializer for the EOEntity class. Returns self.

addAttribute:, addEntity: (EOModel)

(BOOL)isReadOnly

Returns YES if the entity can't be modified, NO if it can. If an entity can't be modified, then enterprise objects fetched for
that entity also can't be modified (inserted, deleted, or updated).

(BOOL)isValidAttributeUsedForLocking:(EOAttribute *)anAttribute

Returns NO if anAttribute isn't an EOAttribute, if the EOAttribute doesn't belong to the entity, or if anAttribute is
derived. Otherwise returns YES. An attribute that isn't valid for locking will cause setAttributesUsedForLocking: to fail.

(BOOL)isValidClassProperty:aProperty

Returns NO if either aProperty isn't an EOAttribute or EORelationship, or if aProperty doesn't belong to the entity.
Otherwise returns YES.

(BOOL)isValidPrimaryKeyAttribute:(EOAttribute *)anAttribute

Returns NO if anAttribute isn't an EOAttribute or if anAttribute isn't a simple attribute of the entity (that is, if it's derived
or flattened). Otherwise returns YES.

(EOModel *)model

Returns the model that contains the entity.

addEntity: (EOModel)

(NSString *)name

Returns the entity's name.

(NSArray *)primaryKeyAttributes



Returns the EOAttributes that make up the primary key for the entity.

primaryKeyAttributeNames

(NSArray *)primaryKeyAttributeNames

Returns the NSStrings naming the attributes that make up the primary key for the entity.

(NSDictionary *)primaryKeyForRow:(NSDictionary *)aRow

Returns the primary key for aRow, or nil if the primary key can't be computed. The primary key is an NSDictionary
whose keys are attribute names and whose values are values for those attributes (note that ªkeyº is used in two senses
here).

(EOQualifier *)qualifier

Returns a qualifier for the entity that can be used in EOAdaptorChannel's selectAttributes:describedByQualifier:
fetchOrder:lock: method or EODatabaseChannel's selectObjectsDescribedByQualifier:fetchOrder: method. Such a
qualifier will select all rows for the entity.

(BOOL)referencesProperty:aProperty

Returns YES if any of the entity's attributes or relationships reference aProperty, NO otherwise. A property can be
referenced by a flattened attribute or by a relationship. For example, suppose a model has an

removeAttributeNamed:, removeRelationshipNamed:

(EORelationship *)relationshipNamed:(NSString *)name

Returns the relationship named name, or nil if the entity has no such relationship.

relationships, attributeNamed:

(NSArray *)relationships

Returns the entity's relationships, or nil if the entity has none.

(void)removeAttributeNamed:(NSString *)name

Removes the attribute named name if it exists. You should always use referencesProperty: to check that an attribute isn't
referenced by another property before removing it.

(void)removeRelationshipNamed:(NSString *)name

Removes the relationship named name if it exists. You should always use referencesProperty: to check that a relationship
isn't referenced by another property before removing it.



(BOOL)setAttributesUsedForLocking:(NSArray *)attributes

Sets attributes as the attributes used when an EODatabaseChannel locks enterprise objects for updates. Returns YES on
success and NO if the entity responds NO to isValidAttributeUsedForLocking: for any of the objects in the array. See the
EODatabase, EODatabaseContext, and EODatabaseChannel class specifications for information on locking.

(void)setClassName:(const char *)name

Sets the name of the class associated with the entity to name. This class need not be present in the run-time system when
this message is sent. When an EODatabaseChannel fetches objects for the entity, they're created as instances of this class.
Your application may have to load the class on demand if it isn't present in the run-time system if it doesn't load the class,
EOGenericRecord will be used.

databaseChannel:failedToLookupClassNamed: (EODatabaseChannel, ªMethods Implemented by the Delegateº)

(BOOL)setClassProperties:(NSArray *)properties

Sets the entity's class properties to the EOAttributes and EORelationships in properties. Returns YES on success, NO if
the entity responds NO to isValidClassProperty: for any of the objects in the array.

(void)setExternalName:(NSString *)name

Sets the name of the entity used with the database server to name. For example, though your application may know the
entity as ªJobTitleº the database may require a form such as ªJOB_TTLº. An adaptor uses the external name to
communicate with the database your application should never need to use the external name.

(void)setExternalQuery:(NSString *)aQuery

Sets aQuery as the SQL SELECT statement that an EOAdaptorChannel uses to select rows for the entity when a qualifier
is unrestricted. An unrestricted qualifier is one that specifies only the entity, and would thus fetch all enterprise objects for
that entity.

External queries are useful for hiding records or invoking database-specific features such as stored procedures when an
application attempts to select all records for an entity.

An external query is sent unaltered to the database server, and so must contain the external (column) names instead of the
names of EOAttributes. However, to work properly with the adaptor the external query must use the columns in
alphabetical order by their corresponding EOAttributes' names.

isEmpty (EOQualifier), selectAttributes:describedByQualifier:fetchOrder:lock: (EOAdaptorChannel)

(BOOL)setName:(NSString *)name

Sets the entity's name to name and returns YES on success, NO if name is in use by another entity in the same EOModel.

(BOOL)setPrimaryKeyAttributes:(NSArray *)keys

Sets the primary key attributes to the attributes in keys. Returns YES on success, or NO if the entity responds NO to
isValidPrimaryKeyAttribute: for any of the objects in the array.



You should exercise care in choosing primary key attributes. Floating-point numbers, for example, can't be reliably
compared for equality, and are thus unsuitable for use in primary keys. Integer and string types are the safest choice for
primary keys.

(void)setReadOnly:(BOOL)flag

Sets according to flag whether the database rows for the entity can be modified by the database level objects.

(void)setUserDictionary:(NSDictionary *)aDictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. The dictionary must be a
property list (that is, it must contain only NSString, NSData, NSArray, and NSString objects).

(NSDictionary *)userDictionary

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs. This dictionary
is a property list (that is, it contains only NSString, NSData, NSArray, and NSString objects).


