


openChannel
isOpen
closeChannel

Modifying rows insertRow:forEntity:
deleteRowsDescribedByQualifier:
updateRow:describedByQualifier:

Fetching rows+ dateForAttribute:year:month:day:hour:minute:
second:zone:

selectAttributes:describedByQualifier:fetchOrder:lock:
describeResults
fetchAttributes:withZone:
isFetchInProgress
cancelFetch
dictionaryWithObjects:forAttributes:zone:

Sending SQL to the server evaluateExpression:
Getting the adaptor context adaptorContext
Getting schema information describeModelWithTableNames:

describeTableNames
Debugging setDebugEnabled:

isDebugEnabled
Setting the channel's delegate setDelegate:

delegate

(EOAdaptorContext *)adaptorContext

Returns the EOAdaptorChannel's EOAdaptorContext.

adaptor (EOAdaptorContext)

(void)cancelFetch



Clears all result sets established by the last selectAttributes:describedByQualifier:fetchOrder:lock: message and
terminates the current fetch, so that isFetchInProgress returns NO.

(void)closeChannel

Closes the EOAdaptorChannel so that it can't perform operations with the server. Any fetch in progress is canceled. If the
channel's adaptor context has outstanding transactions, however, the result depends on the server: Some database servers
roll back all outstanding transactions but others do nothing.

openChannel, isOpen, transactionNestingLevel (EOAdaptorContext)

delegate

Returns the adaptor channel's delegate. A subclass of EOAdaptorChannel doesn't need to override this method.

(BOOL)deleteRowsDescribedByQualifier:(EOQualifier *)aQualifier

Deletes the rows described by aQualifier. The adaptor channel's context must have a transaction in effect for this method
to work. Returns YES on success, NO on failure. Some possible reasons for failure are:

·No row described by aQualifier exists (so no rows are actually deleted).
·The user logged in to the database doesn't have permission to delete.
·The adaptor channel is in an invalid state (for example, fetching).
·The adaptor context has no transaction in progress.

This method invokes the delegate methods adaptorChannel:willDeleteRowsDescribedByQualifier: and adaptorChannel:
didDeleteRowsDescribedByQualifier:.

(NSArray *)describeAttributesForEntity:(EOEntity *)anEntity

Returns the basic attributes for anEntity constructed from metadata in the database server. This method doesn't actually
assign the attributes to anEntityÐyour application must do that explicitly.

addEntity: (EOEntity), describeModelWithTableNames:, describeTableNames

(NSArray *)describeEntities

Returns an array of entities constructed from metadata in the database server for example, from the catalog or system
tables. These entities contain no attribute or relationship informationÐyour application must load that explicitly.

addEntity: (EOModel), describeAttributesForEntity:, describeRelationshipsForEntity:, describeModelWithTableNames:
, describeTableNames

(EOModel *)describeModelWithTableNames:(NSArray *)tableNames

Constructs a default model out of the database's meta data. It also puts the adaptor name and connection dictionary in
the new model. This method is typically used in conjunction with describeTableNames.

describeTableNames



(NSArray *)describeRelationshipsForEntity:(EOEntity *)anEntity

Returns the basic relationships for anEntity constructed from metadata in the database server (if such data is available).
This method doesn't actually assign the relationships to anEntityÐyour application must do that explicitly.

addRelationship: (EOEntity class), describeModelWithTableNames:, describeTableNames

(NSArray *)describeTableNames

Reads and returns an array of table names from the database. This method in conjunction with
describeModelWithTableNames: is used to build a default model.

describeModelWithTableNames:

(NSArray *)describeResults

Returns an array object of EOAttributes describing the properties available in the current result set, as determined by
selectAttributes:describedByQualifier:fetchOrder:lock: or a select statement evaluated by evaluateExpression:.

(NSMutableDictionary *)dictionaryWithObjects:(id *)objects forAttributes:(NSArray *)attributes zone:(NSZone *)
zone

This method is used by AdaptorChannel subclasses to create dictionaries that can be returned from fetchAttributes:
withZone:. Use of this method is optional it was added because it enables performance optimizations.

fetchAttributes:withZone:

(BOOL)evaluateExpression:(NSString *)anExpression

Sends anExpression to the database server for evaluation. Returns YES if no error occurs, NO if any error occurs. An
EOAdaptorChannel uses this method to perform all of its database operations.

Evaluation of an arbitrary expression may result in any number of changes in state on the server. Adaptors must at least
track whether the evaluation of an expression results in a select operation being performed, thereby putting the adaptor in
fetch mode. See the EODatabaseChannel class specification for special considerations in using this method with an
EODatabaseChannel's adaptor channel.

This method invokes the delegate methods adaptorChannel:willEvaluateExpression: and adaptorChannel:
didEvaluateExpression:.

isFetchInProgress

(NSMutableDictionary *)fetchAttributes:(NSArray *)attributes withZone:(NSZone *)zone

Fetches the next row from the result set of the last selectAttributes:describedByQualifier:fetchOrder:lock: or
evaluateExpression: message and returns values for the EOAttributes contained in attributes. When there are no more
rows in the current result set, this method returns nil, and if there are more results sets this method invokes the delegate
method adaptorChannelDidChangeResultSet:. When there are no more rows or result sets, this method returns nil, ends
the fetch, and sends adaptorDidFinishFetching: to the delegate. isFetchInProgress returns YES until the fetch is cancelled
or until this method exhausts all result sets and returns nil.

In addition to the delegate methods mentioned above, this method may also invoke the delegate methods adaptorChannel:
willFetchAttributes:withZone: and adaptorChannel:didFetchAttributes:withZone:.

cancelFetch



(BOOL)insertRow:(NSDictionary *)aRow forEntity:(EOEntity *)anEntity

Inserts the values of aRow into the table in the database that corresponds to anEntity. aRow is an NSDictionary whose
keys are attribute names and whose values are the values to insert. The adaptor channel's context must have a transaction
in effect for this method to work. Returns YES on success, NO on failure.

Some possible reasons for failure are:

·The user logged in to the database doesn't have permission to insert a new row.
·The adaptor channel is in an invalid state (for example, fetching).
·The adaptor context has no transaction in progress.
·The row fails to satisfy a constraint defined in the database server.

This method invokes the delegate methods adaptorChannel:willInsertRow:forEntity: and adaptorChannel:didInsertRow:
forEntity:.

deleteRowsDescribedByQualifier:, selectAttributes:describedByQualfier:fetchOrder:lock:

(BOOL)isDebugEnabled

Returns YES if the adaptor channel logs evaluated SQL and other useful information to the console (or to the standard
error stream), NO if not.

(BOOL)isFetchInProgress

Returns YES if the adaptor channel is fetching, NO otherwise. An adaptor channel is fetching if it's been sent a successful
selectAttributes:describedByQualifier:fetchOrder:lock: message, or if an expression sent through evaluateExpression:
resulted in a select operation being performed. An adaptor channel stops fetching when there are no more records to fetch
or when it's sent a cancelFetch message.

fetchAttributes:WithZone:

(BOOL)isOpen

Returns YES if the channel has been opened with openChannel, NO if not.

closeChannel

(BOOL)openChannel

Puts the channel and both its context and adaptor into a state where they are ready to perform database operations.
Returns YES on success, NO on failure or if the channel is already open.

closeChannel, isOpen, hasValidConnectionDictionary (EOAdaptor)

(BOOL)readTypeForAttribute:(EOAttribute *)anAttribute

Loads external type information from the database server into anAttribute. Returns YES on success, NO on failure.

Attributes read with the describeAttributesForEntity: methods already have their type information set you only need to
use this method to read type information for a manually created attribute, or for an attribute whose type in the database
may have changed.

(BOOL)readTypesForEntity:(EOEntity *)anEntity



Loads external type information from the database server into all nonflattened attributes (not relationships) of anEntity.
Returns YES on success, NO on failure.

Entities read with the describeEntities methods already have their type information set you only need to use this method
to read type information for a manually created entity, or for an entity whose attribute types in the database may have
changed.

describeAttributesForEntity:, isFlattened (EOAttribute)

(BOOL)selectAttributes:(NSArray *)attributes
describedByQualifier:(EOQualifier *)aQualifier
fetchOrder:(NSArray *)fetchOrder
lock:(BOOL)flag

Selects the EOAttributes in attributes for rows matching aQualifier. The selected rows compose one or more result sets,
each row of which will be returned by subsequent fetchAttributes:withZone: messages according to fetchOrder (an array
of EOAttributeOrdering objects). If fetchOrder is nil, rows aren't sorted as they're fetched. If flag is YES and the adaptor
supports locking, the rows are locked so that no other user can modify them. The adaptor channel's context must have a
transaction in effect for this method to work. Returns YES on success, NO on failure.

Some possible reasons for failure are:

·The adaptor channel is in an invalid state (for example, fetching).
·The adaptor context has no transaction in progress.
·Locking was requested but the adaptor doesn't support it.

This method invokes the delegate methods adaptorChannel:willSelectAttributes:describedByQualifier:fetchOrder:lock:
and adaptorChannel:didSelectAttributes:describedByQualifier:fetchOrder:lock:.

isFetchInProgress, cancelFetch

(void)setDebugEnabled:(BOOL)flag

Sets according to flag whether the adaptor channel logs evaluated SQL and other useful debugging information to the
console (or to the standard error stream). The information provided may vary from adaptor to adaptor and may change
from release to release.

(void)setDelegate:anObject

Sets the adaptor channel's delegate to anObject and retains it. A subclass of EOAdaptorChannel doesn't need to override
this method.

(BOOL)updateRow:(NSDictionary *)newValues describedByQualifier:(EOQualifier *)aQualifier

Updates the row described by aQualifier by changing its values to match those in newValues. newValues is an
NSDictionary whose keys are attribute names and whose values are the new values for those attributes (the dictionary
need only contain entries for the attributes being changed). The adaptor channel's context must have a transaction in
effect for this method to work. Returns YES on success, NO on failure. Some possible reasons for failure are:

·No row described by aQualifier exists.
·aQualifier describes more than one row.
·The user logged in to the database doesn't have permission to update.
·The adaptor channel is in an invalid state (for example, fetching).
·The adaptor context has no transaction in progress.
·The new values fail to satisfy a constraint defined in the database server.

This method invokes the delegate methods adaptorChannel:willUpdateRow:describedByQualifier: and adaptorChannel:
didUpdateRow:describedByQualifier:.

isFetchInProgress, beginTransaction (EOAdaptorContext)



(void)adaptorChannelDidChangeResultSet:channel

Invoked from fetchAttributes:withZone: to tell the delegate that fetching will start for the next result set when a select
operation resulted in multiple result sets. This method is invoked just before a fetchAttributes:withZone: returns nil when
there are still result sets left to fetch.

(void)adaptorChannel:channel didDeleteRowsDescribedByQualifier:(EOQualifier *)aQualifier

Invoked from deleteRowsDescribedByQualifier: to tell the delegate that some rows have been deleted. The delegate may
take whatever action it needs based on this information.

(void)adaptorChannel:channel didEvaluateExpression:(NSString *)anExpression

Invoked from evaluateExpression: to tell the delegate that a query language expression has been evaluated by the database
server. Note that nearly every method that communicates with a database does so by using evaluateExpression:. The
delegate may take whatever action it needs based on this information. Note that the adaptor channel can determine
whether anExpression resulted in a select operation being performed.

(NSMutableDictionary *)adaptorChannel:channel
didFetchAttributes:(NSMutableDictionary *)attributes
withZone:(NSZone *)zone

Invoked from fetchAttributes:withZone: to tell the delegate that a single row has been fetched. The delegate may return a
substitute dictionary that will be used instead of attributes, or return nil to cause fetchAttributes:withZone: to fail and
return nil. Returning nil doesn't cancel the fetch, however.

cancelFetch

(void)adaptorChannelDidFinishFetching:channel

Invoked from fetchAttributes:withZone: to tell the delegate that fetching is finished for the current select operation. This
method is invoked when a fetch ends in fetchAttributes:withZone: because there are no more result sets.

(void)adaptorChannel:channel
didInsertRow:(NSDictionary *)aRow
forEntity:(EOEntity *)anEntity

Invoked from insertRow:forEntity: to tell the delegate that a row has been inserted. The delegate may use this information
to update records, redisplay onscreen information, or take whatever other action it needs.

(void)adaptorChannel:channel
didSelectAttributes:(NSArray *)attributes
describedByQualifier:(EOQualifier *)aQualifier
fetchOrder:(NSArray *)fetchOrder
lock:(BOOL)flag

Invoked from selectAttributes:describedByQualifier:fetchOrder:lock: to tell the delegate that some rows have been
selected. The delegate may take whatever action it needs based on this information.



(void)adaptorChannel:channel
didUpdateRow:(NSDictionary *)newValues
describedByQualifier:(EOQualifier *)aQualifier

Invoked from updateRow:describedByQualifier: to tell the delegate that a row has been updated. newValues are the
values written to the row described by aQualifier. The delegate may take whatever action it needs based on this
information.

(EODelegateResponse)adaptorChannel:channel willDeleteRowsDescribedByQualifier:(EOQualifier *)aQualifier

Invoked from deleteRowsDescribedByQualifier: to tell the delegate that a row is being deleted. The delegate can modify
aQualifier to affect the result of the delete operation. See ªNotifying the Adaptor Channel's Delegateº in the class
description for an explanation of the possible return values.

(EODelegateResponse)adaptorChannel:channel willEvaluateExpression:(NSMutableString *)anExpression

Invoked from evaluateExpression: to tell the delegate that anExpression is about to be sent to the database server. Note
that nearly every method that communicates with a database does so by using evaluateExpression:. The delegate may
modify anExpression to affect the result. See ªNotifying the Adaptor Channel's Delegateº in the class description for an
explanation of the possible return values.

(NSMutableDictionary *)adaptorChannel:channel
willFetchAttributes:(NSArray *)attributes withZone:(NSZone *)zone

Invoked from fetchAttributes:withZone: to tell the delegate that a single row will be fetched. If the delegate returns a non-
nil value, that value will be treated as a dictionary resulting from a fetch operation the adaptor channel doesn't perform a
fetch, and fetchAttributes:withZone: returns YES. The delegate must ensure that the server skips the current row so that
the next fetch message doesn't simply get that same row.

If the delegate returns nil the adaptor channel performs the fetch itself.

(EODelegateResponse)adaptorChannel:channel
willInsertRow:(NSMutableDictionary *)aRow
forEntity:(EOEntity *)anEntity

Invoked from insertRow:forEntity: to tell the delegate that a row is being inserted. The delegate can change the values for
attribute names in aRow, or add or delete attribute-value pairs. See ªNotifying the Adaptor Channel's Delegateº in the
class description for an explanation of the possible return values.

(EODelegateResponse)adaptorChannel:channel
willSelectAttributes:(NSMutableArray *)attributes
describedByQualifier:(EOQualifier *)aQualifier
fetchOrder:(NSArray *)fetchOrder
lock:(BOOL)flag

Invoked from selectAttributes:describedByQualifier:fetchOrder:lock: to tell the delegate that a select operation is being
performed. The delegate can modify attributes to affect the select operation, but shouldn't modify aQualifier. See
ªNotifying the Adaptor Channel's Delegateº in the class description for an explanation of the possible return values.

(EODelegateResponse)adaptorChannel:channel
willUpdateRow:(NSMutableDictionary *)newValues



describedByQualifier:(EOQualifier *)aQualifier

Invoked from updateRow:describedByQualifier: to tell the delegate that the row described by aQualifier will be updated.
The delegate can change the values for particular attribute names in newValues, add or delete entire entries, and can
modify aQualifier to affect the update operation. See ªNotifying the Adaptor Channel's Delegateº in the class description
for an explanation of the possible return values.


