
keys
coerceValue:forKey:
fetchObjects
saveObjects
createObject
insertObject:
canDelete
deleteObject:
updateObject:

EOMasterDataSources dataSourceQualifiedByKey:
EOQualifiableDataSources qualifyWithRelationshipKey:ofObject:
EORollbackDataSources rollback

initWithDatabaseChannel:entityNamed:
initWithModelName:entityName:
initWithModelName:entityName:databaseName:

contextName:channelName:
Naming a database channel+ registerChannel:forRendezvousWithDatabaseName:

contextName:channelName:
Getting the database channel databaseChannel

+ databaseChannelWithDatabaseName:contextName:
channelName:

Releasing a database channel+ releaseObjectsWithDatabaseName:contextName:
channelName:

Getting the root entity entity



Setting automatic transaction control
setBeginsTransactionsAutomatically:
beginsTransactionsAutomatically

Setting the qualifier setQualifier:
qualifier
setAuxiliaryQualifier:
auxiliaryQualifier
qualifierForFetch:

Enabling fetching setFetchEnabled:
isFetchEnabled

Setting the fetch order setFetchOrder:
fetchOrder

(EOQualifier *)auxiliaryQualifier

Returns the auxiliary qualifier used with the primary qualifier when fetching objects. This qualifier usually adds
conditions to the primary qualifier and is useful for narrowing the scope of a data source without altering its primary
qualifier. This is especially useful for setting a qualifier on a qualified peer data source, since the master sets the peer's
primary qualifier to specify the relationship it fetches for.

auxiliaryQualifier, qualifierForFetch, qualifier (EOEntity)

(BOOL)beginsTransactionsAutomatically

Returns YES if the data source automatically starts a transaction if needed upon the first insert, delete, or update returns
NO if it doesn't. If this method returns NO you must control transactions explicitly through the data source's
EODatabaseContext. EODatabaseDataSources by default do begin transactions automatically.



(BOOL)canDelete

Returns NO if the data source's entity is read-only, YES otherwise.

isReadOnly (EOEntity)

coerceValue:aValue forKey:(NSString *)key

Returns aValue as an instance of the value class defined for the attribute named key of the receiver's entity. Returns nil if
aValue couldn't be coerced to the new type. Returns aValue passed in if the key does not correspond to an attribute.

For example, suppose the

entity, valueClassName (EOAttribute)

createObject

Returns a new enterprise object with no values set, allocated from the data source's zone and initialized as described
below, or nil if the receiver's EOEntity is read-only. The sender of this message is responsible for setting the enterprise
object's property values (especially its primary key) and for then inserting the newly created object into the data source.

If the new enterprise object responds to initWithPrimaryKey:entity: it's initialized with that method, with nil as the
primary key and with the data source's entity. If the enterprise object doesn't respond to initWithPrimaryKey:entity:, it's
initialized with init.

(EODatabaseChannel *)databaseChannel

Returns the EODatabaseChannel that the data source uses to communicate with the database server. You can use this
channel to control transactions if you've disabled automatic transactions with the setBeginsTransactionsAutomatically:
method, but should be careful about altering other state, as it can cause errors in the database data source.

(id <EOQualifiableDataSources>)dataSourceQualifiedByKey:(NSString *)relName

Returns an EODetailDatabaseDataSource object that provides objects for the destination of the relationship named
relName of the receiver's entity. Before using the detail data source you have to give it a master object with
qualifyWithRelationshipKey:ofObject:.

Returns nil if the entity has no relationship named relName or if that relationship has no destination entity.

entity

(BOOL)deleteObject:anEO

Sends deleteObject: to the receiver's database channel with anEO as the argument. Returns YES on success, NO on
failure.

canDelete (EODataSources protocol)

(EOEntity *)entity

Returns the entity that the EODatabaseDataSource fetches objects for. This is the entity of the EODatabaseDataSource's
qualifier.



qualifier

(NSArray *)fetchObjects

Returns the data source's objects, issuing a fetch to the underlying database to retrieve them. This set of objects includes
those that have been inserted but not saved. Returns nil if fetching is disabled or an error occurs.

isFetchEnabled, qualifierForFetch, fetchOrder

(NSArray *)fetchOrder

Returns the fetch order used when supplying objects. See the EOAttributeOrdering class specification for more
information.

initWithDatabaseChannel:(EODatabaseChannel *)aChannel
entityNamed:(NSString *)entityName

Initializes a newly allocated EODatabaseDataSource with aChannel as its communication channel to the database, and
with the entity in aChannel's model named entityName as its root entity. Doesn't use the rendezvous mechanism of
initWithModelName:entityName:databaseName:contextName:channelName:. This is the designated initializer for the
EODatabaseDataSource class. Returns self.

initWithModelName:(NSString *)modelName
entityName:(NSString *)entityName

Initializes a newly allocated EODatabaseDataSource with the model named modelName and with the entity named
entityName as its root entity. Invoking this method is equivalent to invoking initWithModelName:entityName:
databaseName:contextName:channelName: with the model's name, the entity's name, and with nil for all database
component rendezvous names. Returns self.

initWithModelName:(NSString *)modelName
entityName:(NSString *)entityName
databaseName:(NSString *)databaseName
contextName:(NSString *)contextName
channelName:(NSString *)channelName

Initializes a newly allocated EODatabaseDataSource with the model named modelName and with the entity named
entityName as its root entity. Returns self.

This method uses the last three name arguments to share database-level objects with other instances, as described in the
class description under ªRendezvous on Database-level objects.º

(BOOL)insertObject:anEO

Sends insertObject: to the receiver's database channel with anEO as the argument. anEO must have a unique, valid
primary key. Returns YES on success, NO on failure.



(BOOL)isFetchEnabled

Returns YES if fetchObjects is enabled, NO if it fetchObjects returns no objects instead of fetching (as, for example,
when a detail controller's master has no object selected).

(EOQualifier *)qualifier

Returns the primary qualifier used when fetching objects. This qualifier minimally specifies the EODatabaseDataSource's
entity, and may contain more restrictive information. It's set by the qualifyWithRelationshipKey:ofObject: method
declared in the EOQualifiableDataSources protocol.

auxiliaryQualifier, qualifierForFetch, qualifier (EOEntity)

(EOQualifier *)qualifierForFetch

Returns the qualifier used when fetching objects. This qualifier is the conjunction of the primary qualifier and the
auxiliary qualifier.

auxiliaryQualifier, qualifier, conjoinWithQualifier: (EOQualifier)

(void)qualifyWithRelationshipKey:(NSString *)relName
ofObject:anEO

Qualifies the receiver so that it supplies objects based on relName, which is the name of an EORelationship of the
EOEntity for anEO. This results in the receiver's entity and primary qualifier being changed.

If anEO is nil, the detail data source disables fetching by invoking setFetchEnabled: this is useful for temporarily ªturning
offº a qualified peer data source when no records are selected in its master.

(void)rollback

If the receiver automatically started the current transaction, sends rollbackTransaction to the database context of the
receiver's database channel. Doesn't affect the data source's enterprise objects. Returns YES on success, NO on failure.

(BOOL)saveObjects

If the receiver automatically started the current transaction, sends commitTransaction to the database context of the
receiver's database channel. Returns YES on success, NO on failure.

(void)setAuxiliaryQualifier:(EOQualifier *)aQualifier

Sets to aQualifier the auxiliary qualifier used with the primary qualifier when fetching objects. This qualifier usually adds
conditions to the primary qualifier and is useful for narrowing the scope of a data source without altering its primary
qualifier.

Raises NSInvalidArgumentException if aQualifier's entity isn't the same as the primary qualifier's.

auxiliaryQualifier, qualifierForFetch



(void)setBeginsTransactionsAutomatically:(BOOL)flag

Sets whether the data source automatically starts a transaction if needed upon the first insert, delete, or update, according
to flag. If you turn this behavior off then you must control transactions explicitly through the data source's
EODatabaseChannel. This behavior is enabled by default.

databaseChannel

(void)setFetchEnabled:(BOOL)flag

Enables fetching according to flag. If flag is NO, then fetchObjects returns no objects until fetching is enabled again.

(void)setFetchOrder:(NSArray *)fetchOrder

Sets to fetchOrder the fetch order used for retrieving objects from the database. See the EOAttributeOrdering class
specification for more information.

(void)setQualifier:(EOQualifier *)aQualifier

Sets to aQualifier the primary qualifier used with the auxiliary qualifier when fetching objects. This qualifier minimally
specifies the EODatabaseDataSource's entity, and may contain more restrictive information (though that's typically put in
the auxiliary qualifier). You must supply a valid qualifier to this method if aQualifier is nil, subsequent fetches will not
retrive objects from the database.

This method is invoked by qualifyWithRelationshipKey:ofObject: when an EODatabaseDataSource is set up as a
qualified peer.

setAuxiliaryQualifier:, qualifierForFetch, qualifier (EOEntity)

(BOOL)updateObject:anEO

Sends updateObject: to the receiver's database channel with anEO as the argument. Returns YES on success, NO on
failure.


