
initWithDatabase:
Getting the adaptor context adaptorContext
Getting the database object database
Finding open channels hasBusyChannels
Controlling transactions beginTransaction

commitTransaction
rollbackTransaction

Notifying of other transactions transactionDidBegin
transactionDidCommit
transactionDidRollback

Nesting transactions canNestTransactions
transactionNestingLevel

Setting the update strategy setUpdateStrategy:
updateStrategy

Uniquing/snapshotting keepsSnapshots
forgetObject:
objectForPrimaryKey:entity:
recordObject:primaryKey:snapshot:
snapshotForObject:



(EOAdaptorContext *)adaptorContext

Returns the EOAdaptorContext used by the EODatabaseContext for communication with the database server. Your
application can interact directly with the EOAdaptorContext, but should change transaction state with the database
context so that it remains synchronized with the database and with the adaptor context. If you change the transaction state
with an adaptor context, you should use the transactionDidBegin, transactionDidCommit, and transactionDidRollback to
keep the database context apprised of the changes.

(BOOL)beginTransaction

Attempts to begin a new transaction, nested within the current one if nested transactions are supported. Returns YES if
successful and NO if not (specifically, if nested transactions aren't supported).

transactionDidBegin, canNestTransactions, transactionNestingLevel, commitTransaction, rollbackTransaction

(BOOL)canNestTransactions

Returns YES if the database server can nest transactions, NO otherwise.

transactionNestingLevel

(BOOL)commitTransaction

Attempts to commit the last transaction begun, returning YES if successful and NO if not.

When an EODatabaseContext commits the top-level transaction (so that the nesting level becomes 0), it folds the
snapshots of any updated objects back into its EODatabase.

transactionDidCommit, rollbackTransaction, beginTransaction, transactionNestingLevel

(EODatabase *)database

Returns the EODatabase that the context works with.

initWithDatabase:

(void)forgetObject:anEO

Removes anEO from the EODatabaseContext's uniquing tables and destroys its snapshot with respect to the
EODatabaseContext. Doesn't affect equivalent information kept by the EODatabase until the top-level transaction is
committed then, the EODatabaseContext sends the EODatabase a forgetObject: message for anEO. Raises
NSInvalidArgumentException if anEO is nil or if there's no transaction in progress, and raises
NSInternalInconsistencyException if anEO is a fault (see the EOFault class specification for information).

forgetObject: (EODatabase)

(BOOL)hasBusyChannels

Returns YES if the receiver has any EODatabaseChannels with fetches in progress, NO otherwise.

isFetchInProgress (EODatabaseChannel)



initWithDatabase:(EODatabase *)aDatabase

Initializes a newly allocated EODatabaseChannel with aDatabase as the EODatabase object it works with. The new
EODatabaseContext retains aDatabase. Returns self, or nil if no more contexts can be associated with aDatabase. This is
the designated initializer for the EODatabaseContext class.

database

(BOOL)keepsSnapshots

Returns NO if the EODatabaseContext's locking strategy is EONoUpdate and the parent EODatabase doesn't keep
snapshots returns YES otherwise. EODatabaseContexts nearly always keep local snapshots.

keepsSnapshots (EODatabase)

objectForPrimaryKey:(NSDictionary *)aKey entity:(EOEntity *)anEntity

Returns the unique enterprise object for aKey and anEntity, or nil if one doesn't exist.

objectForPrimaryKey: (EODatabase)

(void)recordObject:anEO
primaryKey:(NSDictionary *)aKey
snapshot:(NSDictionary *)aSnapshot

Records anEO and aSnapshot under aKey with respect to the EODatabaseContext. Raises NSInvalidArgumentException
under any of the following conditions:

·No transaction is in progress.
·When uniquing and either anEO or aKey is nil.
·When uniquing and anEO is an EOFault.
·When context keeps snapshots and aSnapshot is nil.

There may already be a unique instance recorded for anEO's key, so you shouldn't expect that the object you pass in to
this method can be shared. To get the unique enterprise object created for anEO, use objectForPrimaryKey:entity:.

Changes to an EODatabaseContext's snapshots are folded back into its parent EODatabase when the top-level transaction
is committed.

recordObject:primaryKey:snapshot: (EODatabase), commitTransaction

(BOOL)rollbackTransaction

Attempts to roll back the last nested transaction in progress, returning YES if successful and NO if not.

transactionDidRollback, commitTransaction, beginTransaction

(void)setUpdateStrategy:(EOUpdateStrategy)strategy

Set the update strategy used by the EODatabaseContext to strategy. See the class description for information on update
strategies. Raises NSInvalidArgumentException if the context has any transactions in progress.

transactionNestingLevel

(NSDictionary *)snapshotForObject:anEO

Returns the snapshot associated with anEO, if there is one otherwise returns nil.



snapshotForObject: (EODatabase)

(void)transactionDidBegin

Informs the EODatabaseContext and its EOAdaptorContext that the server has begun a transaction (for example, as the
result of a stored procedure). This method allows the EODatabaseContext to maintain a valid state with regard to the
server. Your application should invoke this method whenever it begins a transaction in the database server in any way
other than by sending the database context a beginTransaction message (for example, by using EOAdaptorChannel's
evaluateExpression:).

(void)transactionDidCommit

Informs the EODatabaseContext and its EOAdaptorContext that the server has committed a transaction (for example, as
the result of a stored procedure). This method allows the EODatabaseContext to maintain a valid state with regard to the
server. Your application should invoke this method whenever it commits a transaction in the database server in any way
other than by sending the database context a commitTransaction message (for example, by using EOAdaptorChannel's
evaluateExpression:).

When an EODatabaseContext commits the top-level transaction (so that the nesting level becomes 0), all changes made to
the context's snapshots are folded back into the context's EODatabase.

(void)transactionDidRollback

Informs the EODatabaseContext and its EOAdaptorContext that the database has rolled back a transaction (for example,
as the result of a stored procedure). This method allows the EODatabaseContext to maintain a valid state with regard to
the server. Your application should invoke this method whenever it rolls back a transaction in the database server in any
way other than by sending a rollbackTransaction message (for example, by using EOAdaptorChannel's
evaluateExpression:). It should also invoke this method when a transaction is rolled back by a trigger, a stored procedure,
or by the server itself due to an error condition such as a deadlock.

(unsigned int)transactionNestingLevel

Returns the number of transactions in progress. If the EODatabaseContext's adaptor supports nested transactions, this
number may be greater than 1.

canNestTransactions

(EOUpdateStrategy)updateStrategy

Return the update strategy used by the EODatabaseContext. The default strategy is EOUpdateWithOptimisticLocking.
See the class description for information on update strategies.


