initWithDatabase:
Getting the adaptor context adaptorContext
Getting the database object database
Finding open channels hasBusyChannels

Controlling transactions beginTransaction
commitTransaction
rollback Transaction

Notifying of other transactions transactionDidBegin
transactionDidCommit
transactionDidRol | back

Nesting transactions canNestTransactions
transactionNestingL evel

Setting the update strategy setUpdateStrategy:
updateStrategy
Uniquing/snapshotting keepsSnapshots
forgetObject:
objectForPrimaryK ey:entity:
recordObj ect:primaryK ey:snapshot:
snapshotForObject:



(BOOL)beginTransaction

Attemptsto begin a new transaction, nested within the current one if nested transactions are suppo
successful and NO if not (specifically, if nested transactions aren't supported).

transactionDidBegin, canNestTransactions, transactionNestingLevel, commitTransaction, rollb

(BOOL )canNestTransactions
Returns Y ES if the database server can nest transactions, NO otherwise.
transactionNestingL evel

(BOOL)commitTransaction
Attempts to commit the last transaction begun, returning YES if successful and NO if not.

When an EODatabaseContext commits the top-level transaction (so that the nesting level becomes
snapshots of any updated objects back into its EODatabase.

transactionDidCommit, rollbackTransaction, beginTransaction, transactionNestingL evel

(EODatabase * )database
Returns the EODatabase that the context works with.
initWithDatabase:

(void)forgetObject:anEO

Removes anEO from the EODatabaseContext's uniquing tables and destroys its snapshot with res
EODatabaseContext. Doesn't affect equivalent information kept by the EODatabase until the top-|
committed then, the EODatabaseContext sends the EODatabase a forgetObject: message for anEQ
NSInvalidArgumentException if anEO isnil or if there's no transaction in progress, and raises

N SInternall nconsistencyException if anEQO is afault (see the EOFault class specification for infort

forgetObject: (EODatabase)

(BOOL )hasBusyChannels
Returns YES if the receiver has any EODatabaseChannels with fetches in progress, NO otherwise.
isFetchlnProgress (EODatabaseChannel)



(BOOL )keepsSnapshots

Returns NO if the EODatabaseContext's locking strategy is EONoUpdate and the parent EODatak
snapshots returns Y ES otherwise. EODatabaseContexts nearly always keep local snapshots.

keepsSnapshots (EODatabase)

objectForPrimaryKey:(NSDictionary *)aKey entity:(EOEntity *)anEntity
Returns the unique enterprise object for akey and anEntity, or nil if one doesn't exist.
objectForPrimaryKey: (EODatabase)

(void)recordObject:anEO
primaryKey:(NSDictionary *)aKey
snapshot:(NSDictionary *)aSnapshot

Records anEO and aSnapshot under aKey with respect to the EODatabaseContext. Raises NSInval
under any of the following conditions:

‘No transaction isin progress.

‘When uniquing and either anEO or aKey isnil.
‘When uniquing and anEO is an EOFaullt.

‘When context keeps snapshots and aSnapshot is nil.

There may already be a unique instance recorded for anEQ's key, so you shouldn't expect that the
this method can be shared. To get the unique enterprise object created for anEO, use objectForPrin

Changes to an EODatabaseContext's snapshots are folded back into its parent EODatabase when t|
Is committed.

recordObject:primaryK ey:snapshot: (EODatabase), commitTransaction

(BOOL)rollbackTransaction
Attemptsto roll back the last nested transaction in progress, returning Y ES if successful and NO if
transactionDidRollback, commitTransaction, beginTransaction

(void)setUpdateStrategy:(EOU pdateStrategy)strategy

Set the update strategy used by the EODatabaseContext to strategy. See the class description for ir
strategies. Raises NSInvalidArgumentException if the context has any transactions in progress.

transactionNestingL evel

(NSDictionary *)snapshotForObject:anEO
Returns the snapshot associated with anEOQ, if there is one otherwise returns nil.



ViU LA T VY JUl Ul iy LT UGV GOL LUTILDAL A VLYITTT TAUNTOALLTUTNT TTTLOOL gL TV CAAITIVTG, My UdT Ty -\

evaluateExpression:).

(void)transactionDidCommit

Informs the EODatabaseContext and its EOA daptorContext that the server has committed a transa
the result of a stored procedure). This method allows the EODatabaseContext to maintain avalid s
server. Your application should invoke this method whenever it commits a transaction in the datab
other than by sending the database context a commitTransaction message (for example, by using E
evaluateExpression:).

When an EODatabaseContext commits the top-level transaction (so that the nesting level becomes
the context's snapshots are folded back into the context's EODatabase.

(void)transactionDidRollback

Informs the EODatabaseContext and its EOA daptorContext that the database has rolled back atra
as the result of a stored procedure). This method allows the EODatabaseContext to maintain a vali
the server. Y our application should invoke this method whenever it rolls back atransaction in the «
way other than by sending a rollbackTransaction message (for example, by using EOAdaptorChan
evaluateExpression:). It should also invoke this method when atransaction is rolled back by atrige
or by the server itself due to an error condition such as a deadl ock.

(unsigned int)transactionNestingL evel

Returns the number of transactionsin progress. If the EODatabaseContext's adaptor supports nests
number may be greater than 1.

canNestTransactions

(EOUpdateStrategy)updateStrategy

Return the update strategy used by the EODatabaseContext. The default strategy is EOUpdateWitt
See the class description for information on update strategies.



