


initWithName:
Getting the entity setEntity:

entity
Setting the name setName:

name
+ isValidName:

Setting date information+ defaultCalendarFormat
setCalendarFormat:
calendarFormat
setClientTimeZone:
clientTimeZone
setServerTimeZone:
serverTimeZone

Setting external definitions setColumnName:



columnName
setDefinition:
definition
setExternalType:
externalType

Setting value type information setValueClassName:
valueClassName
setValueType:
valueType

Checking type information referencesProperty:
isDerived
isFlattened
setReadOnly:
isReadOnly

Setting SQL statement formats setInsertFormat:
insertFormat
setSelectFormat:
selectFormat
setUpdateFormat:
updateFormat

Setting the user dictionary setUserDictionary:
userDictionary

setCalendarFormat:

(NSString *)calendarFormat

Returns the format used when an NSDate object is initialized from a string (typed by the user of a client application, for
example), or nil if it hasn't been set. A calendar format applies only to attributes that represent dates. See the NSDate
class specification in the Foundation Kit for more information.

valueClassName

(NSTimeZone *)clientTimeZone

Returns the time zone used for NSDates in the client application, or the local time zone if one hasn't been set. An
EOAdaptorChannel automatically converts dates between the time zones used by the database server and the client when
fetching and saving values. Applies only to attributes that represent dates.

serverTimeZone, + localTimeZone (NSTimeZone)

(NSString *)columnName



Returns the name of the attribute used in communication with the database server, or nil if the attribute isn't simple (that
is, if it's derived or flattened). An adaptor uses this name to identify the column corresponding to the attribute. Your
application should never need to use this name.

definition, externalType

(NSString *)definition

Returns a derived or flattened attribute's definition, or nil if the attribute is simple. An attribute's definition is either a
value expression defining a derived attribute, such as ªsalary * 12º, or a data path for a flattened attribute, such as
ªtoAuthor. nameº.

columnName, externalType

(EOEntity *)entity

Returns the entity that contains the attribute.

(NSString *)externalType

Returns the name the adaptor uses for the attribute's type as it's stored in the database for example, a Sybase ªvarcharº or
an Oracle ªNUMBERº.

columnName

initWithName:(NSString *)name

Initializes a newly allocated EOAttribute with name as its name. The EOAttribute needs to belong to an EOEntity and
have a column name or definition before it's usable. This is the designated initializer for the EOAttribute class. Returns
self.

addAttribute: (EOEntity), setColumnName:, setDefinition:

(NSString *)insertFormat

Returns the format string used for including the attribute's value in a SQL INSERT statement. A %V in this string is
replaced by the attribute's value when an INSERT statement is generated.

selectFormat, updateFormat

(BOOL)isDerived

Returns NO if the attribute corresponds exactly to one column in the table associated with its entity, and YES if it doesn't.
For example, an attribute with a definition of ª otherAttributeName + 1º is derived. A derived attribute is always read-
only.

Note that flattened attributes are also considered as derived attributes.

isReadOnly, isFlattened, setDefinition:

(BOOL)isFlattened



Returns YES if the attribute is flattened, NO otherwise. A flattened attribute is one that's accessed through an entity's
relationships but belongs to another entity.

Note that flattened attributes are also considered as derived attributes.

isDerived, setDefinition:

(BOOL)isReadOnly

Returns YES if the value of the attribute can't be modified, NO if it can. Derived and flattened attributes are always read-
only.

isDerived

(NSString *)name

Returns the attribute's name.

columnName, definition

(BOOL)referencesProperty:aProperty

Returns YES if aProperty (an EOAttribute or EORelationship) is used in the attribute's external definition, NO otherwise.
Only derived attributes reference other properties.

An attribute references a relationship if it's flattened through that relationship. For example, the flattened attribute for an
employee's department name (as described in the class description) references the

isDerived

(NSString *)selectFormat

Returns the format string used for including the attribute's value in a SQL SELECT statement. A %A in this string is
replaced by the attribute's external name when a SELECT statement is generated.

insertFormat, updateFormat

(NSTimeZone *)serverTimeZone

Returns the time zone assumed for NSDates in the database server, or the local time zone if one hasn't been set. An
EOAdaptorChannel automatically converts dates between the time zones used by the server and the client when fetching
and saving values. Applies only to attributes that represent dates.

clientTimeZone, + localTimeZone (NSTimeZone)

(void)setCalendarFormat:(NSString *)format

Sets to format the format used when an NSDate object is initialized from a string (typed by the user of a client application,
for example). This only applies to attributes that represent dates. See the NSDate class specification in the Foundation Kit
for more information.

(void)setClientTimeZone:(NSTimeZone *)aTimeZone



Sets to aTimeZone the time zone used for NSDates in the client application. If aTimeZone is nil then the local time zone
is used by default. An EOAdaptorChannel automatically converts dates between the time zones used by the database
server and the client when fetching and saving values. Applies only to attributes that represent dates.

setServerTimeZone:

(void)setColumnName:(NSString *)name

Sets to name the name of the attribute used in communication with the database server. An adaptor uses this name to
identify the column corresponding to the attribute this name must match the name of a column in the database table
corresponding to the attribute's entity.

This method makes a derived or flattened attribute simple the definition is released and the column name takes its place
for use with the server.

setDefiniton:

(void)setDefinition:(NSString *)definition

Sets to format the attribute's definition as recognized by the database server. format should be either a value expression
defining a derived attribute, such as ªsalary * 12º, or a data path for a flattened attribute, such as ªtoAuthor. nameº.

This method converts a simple attribute into a derived or flattened attribute the column name is released and the definition
takes its place for use with the server.

setColumnName:

(void)setEntity:(EOEntity *)anEntity

Sets the entity of the attribute to anEntity. You only need to use this method when creating a flattened or derived attribute
use EOEntity's addAttribute: to associate an existing attribute with an entity.

setDefinition:

(BOOL)setExternalType:(NSString *)typeName

Sets to typeName the type used for the attribute in the database adaptor for example, a Sybase ªvarcharº or an Oracle7
ªNUMBERº. Each adaptor defines the set of types that can be supplied to setExternalType:. The external type you
specify for a given attribute must correspond to the type used in the database server.

(void)setInsertFormat:(NSString *)aString

Sets to aString the format string used for including the attribute's value in a SQL INSERT statement. A %V in this string
is replaced by the attribute's value when an INSERT statement is generated. For example, an attribute with an insert
format of ª%V + 5º has its value increased by 5 when any enterprise object or row is inserted into the database.

setSelectFormat:, setUpdateFormat:

(BOOL)setName:(NSString *)name

Sets the attribute's name to name. Returns YES if successful, NO if name is already in use by another attribute or
relationship of the same entity.



(BOOL)setReadOnly:(BOOL)flag

Sets whether the value of the attribute can be modified according to flag and returns YES if successful. Derived and
flattened attributes are always read-only if you try to set one as read-write this method returns NO.

isDerived

(void)setSelectFormat:(NSString *)aString

Sets to aString the format string used for including the attribute's value in a SQL SELECT statement. A %A in this string
is replaced by the attribute's external name when a SELECT statement is generated. For example, setting the

setInsertFormat:, setUpdateFormat:

(void)setServerTimeZone:(NSTimeZone *)aTimeZone

Sets to aTimeZone the time zone used for NSDates in the database server. If aTimeZone is nil then the local time zone is
used by default. An EOAdaptorChannel automatically converts dates between the time zones used by the server and the
client when fetching and saving values. Applies only to attributes that represent dates.

setClientTimeZone:

(void)setUpdateFormat:(NSString *)aString

Sets to aString the format string used for including the attribute's value in a SQL UPDATE statement. A %V in this string
is replaced by the attribute's value when an UPDATE statement is generated. For example, an attribute with an update
format of ª%V + 5º has its value increased by 5 when it's updated in the database.

setInsertFormat:, setSelectFormat:

(void)setUserDictionary:(NSDictionary *)aDictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. The dictionary must be a
property list (that is, it must contain only NSString, NSData, NSArray, or NSDictionary objects).

(void)setValueClassName:(const char *)name

Sets the attribute's value class name to name. When an EOAdaptorChannel fetches data for the attribute, it's presented to
the application as an instance of this class.

The class need not exist in the run-time system when this message is sent, but it must exist when an adaptor channel
performs a fetch if the class isn't present the result depends on the adaptor. See your adaptor's documentation for
information on how absent value classes are handled.

setValueType:

(void)setValueType:(NSString *)typeName

Sets to typeName the format type for custom value classes, such as ªTIFFº or ªRTFº. This type name is used with the
EODatabaseCustomValues protocol to identify data formats for custom values.

setValueClassName:



(NSString *)updateFormat

Returns the format string used for including the attribute's value in a SQL UPDATE statement. A %V in this string is
replaced by the attribute's value when an UPDATE statement is generated.

insertFormat, selectFormat

(NSDictionary *)userDictionary

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs. This dictionary
is a property list (that is, it contains only NSString, NSData, NSArray, or NSDictionary objects).

(const char *)valueClassName

Returns the name of the class for value types (standard or custom). When data is fetched for the attribute, it's presented to
the application as an instance of this class. For example, if a column from the database is represented by instances of
NXImage this method returns ªNXImageº.

This class must be present in the run-time system when an EOAdaptorChannel fetches data for the attribute if the class
isn't present the result depends on the adaptor. See your adaptor's documentation for information on how absent value
classes are handled.

valueType

(NSString *)valueType

Returns the format type for custom value classes, such as ªTIFFº or ªRTFº. This type name is used with the
EODatabaseCustomValues protocol to identify data formats for custom values.

valueClassName


