
initWithDatabaseContext:
Opening and closing a channel openChannel



isOpen
closeChannel

Modifying objects insertObject:
deleteObject:
lockObject:
updateObject:

Fetching objects selectObjectsDescribedByQualifier:fetchOrder:
fetchWithZone:
isFetchInProgress
refetchObject:
cancelFetch
setCurrentEntity:

Getting the adaptor channel adaptorChannel
Getting the database context databaseContext
Setting the delegate setDelegate:

delegate

(EOAdaptorChannel *)adaptorChannel

Returns the EOAdaptorChannel used by the EODatabaseChannel for communication with the database server. See
ªWorking with the Adaptor Channelº in the class description for information on safely using an EODatabaseChannel's
adaptor channel.

(void)cancelFetch

Cancels any fetch in progress.

isFetchInProgress, selectObjectsDescribedByQualifier:fetchOrder:, fetchWithZone:

(void)closeChannel

Closes the EODatabaseChannel so that it can't perform operations with the server. Any fetch in progress is canceled. If
the channel's database context has outstanding transactions, however, the result depends on the server some database
servers immediately roll back all outstanding transactions while others wait until the user logs out from the database.

openChannel, nestedTransactions (EODatabaseContext)

(EODatabaseContext *)databaseContext

Returns the EODatabaseContext that controls transactions for the EODatabaseChannel.

delegate

Returns the EODatabaseChannel's delegate.

(BOOL)deleteObject:anEO

Deletes the row in the database server corresponding to anEO. Returns YES if successful, NO if not. Some of the reasons
deletion may fail are:

·anEO is nil.



·A primary key can't be determined for anEO (because no snapshot was recorded).
·No record corresponding to anEO's primary key exists in the database.
·The receiver's EODatabaseContext has no transaction in progress.
·The database doesn't allow the deletion.
·The receiver's delegate disallows deletion.

This method invokes the delegate methods databaseChannel:willDeleteObject: and databaseChannel:didDeleteObject:.

isReadOnly (EOEntity)

fetchWithZone:(NSZone *)zone

Fetches and returns the next object in the result set produced by a selectObjectsDescribedByQualifier:fetchOrder:
message returns nil if there are no more objects in the current result set or if an error occurs. If the database channel's
EODatabase performs uniquing and the object fetched already exists, it's simply sent the new values otherwise the
channel creates a new enterprise object.

To create a new enterprise object, the database channel allocates an instance of the enterprise object class for the entity
being fetched. The channel then initializes the object with initWithPrimaryKey:entity: if it implements that message,
otherwise simply with an init message. To set the object's values the channel sends it a takeValuesFromDictionary:
message with the fetched row as the argument, and finishes off with an awakeForDatabaseChannel: message (described in
the EODatabaseChannelNotification informal protocol specification).

If an enterprise object matching the next selected object has already been uniqued by the EODatabaseChannel's
EODatabase, that object is sent takeValuesFromDictionary: and awakeForDatabaseChannel: messages to overwrite its
values with those just fetched. If the uniqued object's values differ from those fetched, an ambiguity results see the
description of the databaseChannel:willRefetchConflictingObject:withSnapshot: delegate message for information on
how such a situation is handled.

This method invokes the delegate methods databaseChannel:willFetchObjectOfClass:withZone: and databaseChannel:
didFetchObject:, and may invoke either databaseChannel:willRefetchObject:fromSnapshot: or databaseChannel:
willRefetchConflictingObject:withSnapshot:.

objectForPrimaryKey:entity: (EODatabase and EODatabaseContext), takeValuesFromDictionary: (EOKeyValueCoding
informal protocol)

initWithDatabaseContext:(EODatabaseContext *)aDatabaseContext

Initializes a newly allocated EODatabaseChannel with aDatabaseContext as the EODatabaseContext it works in. Doesn't
automatically open the channel. The new EODatabaseChannel retains aDatabaseContext. This is the designated initializer
for the EODatabaseChannel class. Returns self, or nil if no more channels can be associated with aDatabaseContext.

openChannel

(BOOL)insertObject:anEO

Attempts to insert anEO's simple (nonflattened, nonderived) attribute values as a row into the database server, returning
YES if successful and NO if not. If anEO is successfully inserted, the receiver's database context uniques it and records a
snapshot with recordObject:primaryKey:snapshot:. Raises NSInvalidArgumentException if anEO is a fault (see the
EOFault class specification for information on faults).

Some of the reasons insertion may fail are:

·anEO is nil.
·The receiver's EODatabaseContext has no transaction in progress.
·anEO's EOEntity has a read-only attribute that the server requires be set.
·A primary key can't be determined for anEO.
·The database doesn't allow insertion.
·The receiver's delegate disallows insertion.

Note that read-only attributes are silently unmodified, but if the server requires such an attribute to be non-NULL an error
will occur.

This method invokes the delegate methods databaseChannel:willInsertObject: and databaseChannel:didInsertObject:.



isReadOnly (EOEntity)

(BOOL)isFetchInProgress

Returns YES if the EODatabaseChannel is fetching, NO otherwise. A database channel is fetching if it's been sent a
successful selectObjectsDescribedByQualifier:fetchOrder: message. A database channel stops fetching when there are no
more objects to fetch or when it's sent a cancelFetch message.

(BOOL)isOpen

Returns YES if the channel has been successfully opened with openChannel, NO if not.

(BOOL)lockObject:anEO

Locks anEO for update. Fetches the properties composing anEO's snapshot and compares the fetched values with the
values stored in the snapshot. Returns YES if all values are the same fails and returns NO if any of the values differ. Also
returns NO under the following conditions:

·anEO's entity is read-only.
·The channel's database context has no transaction in progress.
·The database server or its adaptor doesn't support locking.

This method invokes the delegate methods databaseChannel:willLockObject: and databaseChannel:didLockObject:.

isReadOnly (EOEntity)

(BOOL)openChannel

Puts the channel and both its context and database into a state where they are ready to perform operations. Returns YES
on success and NO on failure. You shouldn't attempt to open an already open channel.

closeChannel

(BOOL)refetchObject:anEO

Refetches the object for anEO's primary key from the database server. anEO is modified by this method. Returns YES on
success, NO on failure for any reason (specifically, if there's a fetch in progress). May also raise
NSInternalInconsistencyException under the conditions described for the delegate method databaseChannel:
willRefetchConflictingObject:withSnapshot:.

Some possible reasons for failure are:

·anEO is nil.
·No snapshot for anEO exists.
·The receiver's EODatabaseContext has no transaction in progress.
·The database channel has a fetch in progress.

This method invokes the delegate methods databaseChannel:willRefetchObject: and databaseChannel:didRefetchObject:,
and may invoke databaseChannel:willRefetchConflictingObject:withSnapshot:.

isFetchInProgress, takeValuesFromDictionary: (EOKeyValueCoding informal protocol)

(BOOL)selectObjectsDescribedByQualifier:(EOQualifier *)aQualifier
fetchOrder:(NSArray *)fetchOrder



Selects objects that match aQualifier. The selected objects compose one or more result sets, each object of which will be
returned by subsequent fetchWithZone: messages in the order prescribed by fetchOrder (an array of EOAttributeOrdering
objects). fetchOrder can be nil, indicating no sorting of records. Returns YES on success, NO on failure for any reason.
Some possible reasons for failure are:

·aQualifier is nil or invalid.
·The receiver's EODatabaseContext has no transaction in progress.
·The receiver's delegate disallows the select.
·The receiver's EOAdaptorChannel fails to perform the select operation.

This method invokes the delegate methods databaseChannel:willSelectObjectsDescribedByQualifier:fetchOrder: and
databaseChannel:didSelectObjectsDescribedByQualifier:fetchOrder:.

fetchWithZone:

(void)setCurrentEntity:(EOEntity *)anEntity

Sets the entity used when fetching enterprise objects. Subsequent fetchWithZone: messages during a fetch operation
create an object of the class associated with anEntity. If you perform a select operation in the database server with the
database channel's adaptor channel, you should set the proper entity before having the EODatabaseChannel fetch any of
the selected rows. See ªWorking with the Adaptor Channelº in the class description for an example.

This method is invoked automatically when you use selectObjectsDescribedByQualifier:fetchOrder:.

(void)setDelegate:anObject

Sets the EODatabaseChannel's delegate to anObject.

(BOOL)updateObject:anEO

Updates the row in the database corresponding to anEO. Returns YES if successful, NO if not. Some possible reasons for
failure are:

·anEO is nil.
·The receiver's EODatabaseContext has no transaction in progress.
·A primary key can't be determined for anEO (because no snapshot was recorded).
·No record for anEO's primary key exists in the database.
·anEO's EOEntity is read-only.
·anEO's EOEntity has a read-only attribute that the server requires be set.
·The update strategy of the receiver's EODatabaseContext doesn't permit the update.
·The receiver's delegate disallows the update.

Note that read-only attributes are silently unmodified, but if the server requires such an attribute to be non-NULL an error
will occur.

This method invokes the delegate methods databaseChannel:willUpdateObject: and databaseChannel:didUpdateObject:.

isReadOnly (EOEntity)

(void)databaseChannel:channel didDeleteObject:anEO

Invoked after channel has deleted anEO from the database.

(void)databaseChannel:channel didFetchObject:anEO

Invoked after channel has fetched anEO from the database.



(void)databaseChannel:channel didInsertObject:anEO

Invoked after channel has inserted anEO into the database.

(void)databaseChannel:channel didLockObject:anEO

Invoked after channel has locked anEO.

(void)databaseChannel:channel didSelectObjectsDescribedByQualifier:(EOQualifier *)aQualifier fetchOrder:
(NSArray *)fetchOrder

Invoked after channel has selected objects described by aQualifier with fetchOrder.

(void)databaseChannel:channel didUpdateObject:anEO

Invoked after channel has updated anEO in the database.

(Class)databaseChannel:channel failedToLookupClassNamed:(const char *)name

Invoked when channel has failed to find a class with the given name in the run-time system. The delegate should load an
external module if needed and return the named class. If the delegate returns nil or doesn't implement this method, then
EOGenericRecord is used.

className (EOEntity)

(EORelationship *)databaseChannel:channel
relationshipForRow:(NSDictionary *)aRow
relationship:(EORelationship *)aRelationship

Invoked when a relationship is instantiated on a newly fetched object. aRow contains the values for the object just
fetched, and aRelationship is the relationship about to be set up. The delegate can use the information in aRow to
determine which entity the destination of the relationship should be associated with, and return a substitute for
aRelationship as needed.

This method allows you to reuse the same column in a table for different kinds of relationships based on other values for
the object. For example, suppose you have one table containing two kinds of



databaseChannel:channel willDeleteObject:anEO

Invoked before channel deletes anEO. The delegate may return anEO, a substitute object to delete, or nil to prevent the
deletion.

(void)databaseChannel:channel
willFetchObjectOfClass:(Class)class
withZone:(NSZone *)zone

Invoked before channel fetches an object.

databaseChannel:channel willInsertObject:anEO

Invoked before channel inserts anEO. The delegate may return a substitute object to insert or nil to disallow the insertion.

(BOOL)databaseChannel:channel willLockObject:anEO

Invoked before channel locks anEO. The delegate may return YES to allow anEO to be locked or NO to disallow it.

(NSDictionary *)databaseChannel:channel
willRefetchConflictingObject:anEO
withShapshot:(NSDictionary *)snapshot

Invoked when channel has fetched new values for anEO, but anEO's current values differ from its existing snapshot. This
happens when anEO is updated during a transaction that hasn't been committed. In such a situation the object has two
potential states, and the database channel can't determine which is valid this usually indicates a programming error which
requires intervention by the delegate. See ªNotifying the Database Channel's Delegateº in the class description for more
information.

If the delegate doesn't implement this method the database channel raises NSInternalInconsistencyException.

(NSDictionary *)databaseChannel:channel
willRefetchObject:anEO
fromSnapshot:(NSDictionary *)aSnapshot

Invoked before channel refreshes anEO with the values in aSnapshot just fetched from the database. The delegate may
return aSnapshot, a substitute snapshot, or nil to disallow the operation.

(BOOL)databaseChannel:channel willSelectObjectsDescribedByQualifier:(EOQualifier *)aQualifier fetchOrder:
(NSArray *)fetchOrder

Invoked before channel performs a select operation. The delegate shouldn't modify aQualifier or fetchOrder. If the
delegate returns YES the select proceeds if the delegate returns NO the select operation is aborted.

databaseChannel:channel willUpdateObject:anEO



Invoked before channel updates anEO. The delegate may return anEO, a substitute object to update, or nil to disallow the
update.


