
Enterprise Objects Framework Release 1.1 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

11

Exploring and Constructing Models

A model defines the mapping between the schema of the database and the enterprise objects that
make up your application. Models are typically created with EOModeler; most applications don't
need to know anything about the contents of a model beyond what is covered there. Some
applications, however, need to do more with models. This chapter shows you how to write code that
can explore and construct model objects.

You need to work with models programmatically if you're writing applications:

· Whose operation varies depending on the structure of the database.
· That need to verify that the model is accurate with respect to the structure of the database.
· That need to be able to construct their own models.
· That work with database schemas or model files.

This chapter is organized into the following sections:

· ªThe Contents of a Model.º discusses the basic structure of a model.

· ªExploring a Model.º presents a sample program that displays the elements that make up a model.

· ªBuilding a Model from a Database Server's Data Dictionary.º shows you how to extract model
information from a data dictionary and build a model from that information (the techniques
presented in this section can also be used when writing applications that verify the contents of a
model file).

· ªConstructing a Model Programmatically.º explains how to construct a model from scratch.

This chapter assumes that you've read Chapter 5, ªUsing EOModeler.º It doesn't assume that you
know anything about connecting to the database, or how to fetch or update data.

The Contents of a Model

Models are made up of entities, attributes, relationships, and joins. Entity objects consist of attribute
and relationship objects. Relationship objects, in turn, contain join objects that identify the entities
and attributes that are linked by the relationship. These classes, and the connections between them,
are illustrated in Figure 54. Note that although a double-headed arrow is used in Figure 54 to show
the connection between EOJoin and EOAttribute objects, each EOJoin is linked to exactly two
EOAttributes.

Figure_54.    The Modeling Classes

The following table describes the database-to-object mapping provided in a model:

Database Element Class
Data Dictionary EOModel
Table EOEntity
Column EOAttribute
Row Enterprise object class (or EOGenericRecord,

if a custom enterprise object class isn't specified)

While the modeling classes correspond to elements in the physical database, a model represents a
level of abstraction above the database. Consequently, the mapping between modeling classes and
database components doesn't have to be one-to-one. So, for example, while an EOEntity object
described in a model file corresponds to a database table, in reality it can contain references to
multiple tables (using flattened properties). In that sense, it's actually more analogous to a database
view. Similarly, an EOAttribute can either correspond directly to a column in the root entity, or it
can be derived or flattened. A derived attribute typically has no corresponding database column,
while a flattened attribute is added to one entity from another entity.

For more information on EOModel, EOEntity, EOAttribute, EORelationship, and EOJoin objects,
see their respective class specifications in the Enterprise Objects Framework Reference.

Exploring a Model

You can programmatically extract information from a model about its contents. This is useful, for
instance, if your code needs to dynamically construct SQL queries based on the structure of the data
in the database (for more information on sending SQL directly to the database, see Chapter 10,
ªWorking Across Levelsº). Or, if you're writing tools that work with the model itself, or tools that
work with the database using the model as a guide, you need to be able to programmatically explore
the contents of the model.

To illustrate how to explore a model programmatically, the following program walks through a
model file and lists the model's entities, along with each entity's attributes and relationships:

EOModel *model;
NSArray *modelEntities;
EOEntity *anEntity;
NSArray *entityAttributes;
EOAttribute *anAttribute;
NSArray *entityRelationships;
EORelationship *aRelationship;
NSArray *relationshipJoins;
EOJoin *aJoin;
NSDictionary *myConnectionInfo;
NSEnumerator *entityEnum;
NSEnumerator *attributeEnum;
NSEnumerator *relationshipEnum;
NSEnumerator *joinEnum;

model = [[EOModel alloc] initWithContentsOfFile:
 [EOModel findPathForModelNamed:@"People"]];

/* Display the name of the database. */
myConnectionInfo = [model connectionDictionary];
NSLog(@"Database: %@\n",
 [myConnectionInfo objectForKey:@"databaseName"]);

/* Walk through the model's entities, processing each one. */
modelEntities = [model entities];
entityEnum = [modelEntities objectEnumerator];

while (anEntity = [entityEnum nextObject]) {

 /* Display the name of the entity. */
 NSLog(@"%@\n", [anEntity name]);

 /* Walk through the entity's attributes, displaying the name of */
 /* each attribute. */
 NSLog(@" Attributes:\n");
 entityAttributes = [anEntity attributes];
 attributeEnum = [entityAttributes objectEnumerator];
 while (anAttribute = [attributeEnum nextObject]) {
 NSLog(@" %@\n", [anAttribute name]);
 }

 /* Walk through the entity's relationships, and process them. */
 NSLog(@" Relationships:\n");
 entityRelationships = [anEntity relationships];
 relationshipEnum = [entityRelationships objectEnumerator];
 while (aRelationship = [relationshipEnum nextObject]) {

 /* Display the name of the relationship. */
 NSLog(@" %@\n", [aRelationship name]);

 /* For each relationship, display the joins that make */
 /* up the relationship. */
 relationshipJoins = [aRelationship joins];
 joinEnum = [relationshipJoins objectEnumerator];
 while (aJoin = [joinEnum nextObject]) {

 /* Display the name of the join's source attribute. */
 NSLog(@" Key: %@\n",
 [[aJoin sourceAttribute] name]);

 /* Display the name of the destination entity for the */
 /* relationship. */
 NSLog(@" To Entity: %@\n",
 [[[aJoin destinationAttribute] entity] name]);
 }
 }
}

The above code begins by creating a model object and initializing it from a model file. It then
displays the name of the database to which the model applies (using Foundation's NSLog() function,
to keep things simple). Note that this particular example only works for a Sybase database; the
databaseName connection dictionary key isn't supported by the Oracle adaptors (for a list of the
dictionary keys used to store connection information for the various adaptors, see ªThe Connection
Dictionaryº in Chapter 7, ªConnecting to the Database.º

Once the model object is created and filled, the code runs through the model's list of entities. For
each entity, it displays the name of the entity, and then enumerates the entity's attributes and its
relationships, displaying their names. For each relationship, it also lists the relationship's joins,
displaying the name of the attribute that represents the source key for the join and the name of the
destination entity of the relationship.

The following is a portion of the output generated by the above program (after removing the time
stamps and process IDs generated by NSLog()):

Database: PEOPLE
Department
 Attributes:
 departmentName
 deptID
 locationID
 Relationships:
 toFacility
 Key: locationID

 To Entity: Facility

Employee
 Attributes:
 address
 city
 deptID
 empID

Building a Model from a Database Server's Data
Dictionary

EOAdaptorChannel provides a number of methods you can use to read the contents of a database
server's data dictionary. The information thus obtained can then be used either to construct a model
or to verify that an existing model is synchronized with the contents of the database server's data
dictionary.

The methods you use to read this information for either of these purposes are:

describeEntities
describeAttributesForEntity:
describeRelationshipsForEntity:
readTypesForEntity:
readTypeForAttribute:

The Sybase and Oracle adaptors don't provide methods for extracting primary key information from
the database. Thus, unless your code supplies it, your model won't have any primary key information
set for its entities. Without primary key information, your application can't read from or write to the
database.

To programmatically construct a model based on information found in a database server's data
dictionary, follow these basic steps:

1. Construct a minimal model, consisting of the database connection information and the name of
the adaptor that is to be used to connect to your database. For information on connection
dictionaries, see ªThe Connection Dictionaryº in Chapter 7, ªConnecting to the Database.º

2. Open a channel (see Chapter 7, ªConnecting to the Databaseº for more information).

3. Use describeEntities to obtain a list of entities available from the channel.

4. Enumerate through the list of entities, adding those entities to the model that are relevant to your
application. As they are added, extract each entity's attributes and relationships from the data
dictionary.

5. Set each entity's primary key.

The following code excerpt shows how to implement the first two steps for a Sybase database, given
a connection dictionary:

NSDictionary *myConnectionInfo; /* Assume this exists. */
EOModel *myModel;
EOAdaptor *myAdaptor;
EOAdaptorContext *myAdaptorContext;
EOAdaptorChannel *myChannel;

/* Build a minimal model for a Sybase database. */
myModel = [[EOModel alloc] initWithName:@"MyModel"];
[myModel setConnectionDictionary:myConnectionInfo];
[myModel setAdaptorName:@"Sybase"];

/* Open a channel to the database. */
myAdaptor = [EOAdaptor adaptorWithModel:myModel];
myAdaptorContext = [myAdaptor createAdaptorContext];
myChannel = [[myAdaptorContext createAdaptorChannel] retain];
[myChannel openChannel];

The following code shows the implementation of steps 3 and 4, filling in the model and fleshing out
each entity:

NSArray *allEntities;
EOEntity *anEntity;
NSArray *properties;
EOAttribute *anAttribute;
EORelationship *aRelationship;
NSEnumerator *entityEnum;
NSEnumerator *propEnum;

/* Get a list of all of the available entities in the database. */
allEntities = [myChannel describeEntities];

/* Add each entity to the database. */
entityEnum = [allEntities objectEnumerator];
while (anEntity = [entityEnum nextObject]) {
 [myModel addEntity:anEntity];

 /* Add the entity's attributes to the entity. */
 properties = [myChannel describeAttributesForEntity:anEntity];
 propEnum = [properties objectEnumerator];
 while (anAttribute = [propEnum nextObject]) {
 [anEntity addAttribute:anAttribute];
 }

 /* Add the entity's relationships to the entity. */
 properties = [myChannel describeRelationshipsForEntity:anEntity];
 propEnum = [properties objectEnumerator];
 while (aRelationship = [propEnum nextObject]) {
 [anEntity addRelationship:aRelationship];
 }
}

The above code loads the entire set of entities into memory by sending describeEntities to the
channel. It then enumerates over those entities, adding each one to the model. While adding each
entity to the model, it adds to each entity its attributes and relationships, obtained from the adaptor
channel through the use of describeAttributesForEntity: and describeRelationshipsForEntity:,
respectively (for more information on the use of these methods, see the EOAdaptorChannel class
specification in the Enterprise Objects Framework Reference).

Note that this example doesn't set primary keys for each entity. How your code determines which
attributes make up each entity's primary key is specific to your application (but the entity's primary
key must match the one set in the database). Once these attributes have been identified, your code
should add them to the array that identifies the entity's primary key.

Constructing a Model Programmatically

Extracting a model from the database's data dictionary, as shown in the previous section, is one way
to construct a model programmatically. Your applications can also construct their own models by
creating entity, attribute, and relationship objects and putting them into a newly-created model.

The basic steps in creating your own model from scratch are:

1. Instantiate a model and fill in its connection dictionary (for information on connection

dictionaries, see ªThe Connection Dictionaryº on page 120).

2. Construct entity objects for the entities that are to make up your model, and add them to the
model.

The following code excerpt shows step 1, the construction of a basic model:

NSDictionary *myConnectionInfo; /* Assume this exists. */
EOModel *myModel;

myModel = [[EOModel alloc] initWithName:@"TestModel"];
[myModel setConnectionDictionary:myConnectionInfo];
[myModel setAdaptorName:@"Sybase"];

Constructing and Adding Entities

As shown in the previous section, the creation of the basic model is fairly simple. Constructing the
entities that go into that model, however, is a little more involved. The basic procedure for
constructing an entity is:

1. Instantiate the entity and give it a name.

2. Set the entity's external name, class name, and read-only status.

3. Set the entity's external query (optional).

4. Construct arrays for the entity's primary keys, class properties, and attributes used for locking.
Add them to the entity.

5. Create attribute objects, and add them to the entity.

6. Create relationship objects (and any needed join objects), and add them to the entity.

The following example illustrates steps 1 through 4, above. For instructions on creating and adding
attributes to the entity, see ªConstructing and Adding Attributes.º Similarly, see ªConstructing and
Adding Relationshipsº for a discussion of creating and adding relationships to the entity.

This code excerpt illustrates the construction of an Employee entity, corresponding to the
ªEMPLOYEEº database table. Data fetched from this table is stored in EOGenericRecords, as
opposed to custom enterprise objects. Because the entity is declared read-only, the retrieved data
cannot be changed and written back to the table.

NSMutableArray *empPrimaryKeys;
NSMutableArray *empClassProps;
NSMutableArray *empLockAttribs;
EOEntity *empEntity;

/* Construct the Employee entity. */
empEntity = [[[EOEntity alloc] initWithName:@"Employee"] autorelease];
[empEntity setExternalName:@"EMPLOYEE"];
[empEntity setClassName:"EOGenericRecord"];
[empEntity setReadOnly:YES];

/* Construct the various arrays and add them to the entity. */
empPrimaryKeys = [NSMutableArray array];
[empEntity setPrimaryKeyAttributes:empPrimaryKeys];
empClassProps = [NSMutableArray array];
[empEntity setClassProperties:empClassProps];
empLockAttribs = [NSMutableArray array];
[empEntity setAttributesUsedForLocking:empLockAttribs];

/* Set up the basic query here, if needed. */

/* Add the Employee entity to the model. */

[myModel addEntity:empEntity];

Setting an Entity's External Query

When an external query is sent to the database, the data that's returned gets matched up with the
attributes specified in the class properties array, in alphabetical order by internal name. Thus, you
need to ensure that the order in which the data is requested by the query is the same order in which
you add the corresponding attributes to the array of class properties, and that the query lists each
attribute in the class properties array. If the attributes aren't added to the class properties array in the
order specified in the external query, or if you omit attributes from the query that are present in the
array, the received data will be incorrectly translated and stored within your enterprise object.

The Primary Key, Attributes Used for Locking, and Class Property Arrays

Each entity contains three arrays, used to identify the following:

· The attributes that make up the primary key. At least one attribute should be added to this array,
to guarantee that database rows can be uniquely identified and fetched. These attributes must be
the same as those that make up the corresponding table's primary key.

· The attributes that are used for locking when an update is performed (when optimistic locking is
used). Typically, all attributes in an entity are used for locking. Note that performance will suffer,
however, if you add a BLOB-type (binary large object) attribute to this array.

· The properties that are class properties, and thus are fetched when you select objects that map to
the entity. Relationships that are added to this array have fault objects created for them when an
object is fetched for the entity (see the EOFault class specification in the Enterprise Objects
Framework Reference for more information on fault objects).

As you construct each attribute for your entity, add the attribute to these arrays as appropriate.

Constructing and Adding Attributes

The following code excerpt shows how to construct and add a simple attribute to the Employee
entity:

EOAttribute *anAttribute;

anAttribute = [[[EOAttribute alloc] initWithName:@"empID"]
autorelease];
[anAttribute setColumnName:@"EMP_ID"];
[anAttribute setExternalType:@"int"]; /* Database specific. */
[anAttribute setReadOnly:YES];
[anAttribute setValueClassName:"NSNumber"];
[anAttribute setValueType:@"i"];
[empEntity addAttribute:anAttribute];
[empPrimaryKeys addObject:anAttribute];
[empLockAttribs addObject:anAttribute];
[empClassProps addObject:anAttribute];

The attribute in the above example is part of the entity's primary key, as illustrated by the fact that it
is added to the primary key array. It's also used for locking, and is one of the class properties.

Note the use of setValueClassName: to specify that the column's data is to be coerced to an
NSNumber. Because an NSNumber could be a float, an int, and so on, setValueType: is used to
specify that integer values are expected.

It isn't always necessary to send a setValueType: message to an attribute. The value type is only

used in those situations where it isn't clear from the value class name how to interpret the value
received from the database (such as with NSNumber, and with some custom value classes). If the
value class is NSString, for example, there is no question of how to interpret the returned value, so
you don't need to invoke setValueType:.

Constructing Date Attributes

When specifying a date attribute, set the value class name to NSCalendarDate and specify the format
of the date as it comes from the database using setCalendarFormat:.

[anAttribute setCalendarFormat:@"%b %d %Y %H:%M"];

Note:    A date format is also used for parsing edited dates. Be sure to design your application so
that users know the correct format for date entry.

Use EOAttribute's setClientTimeZone: and setServerTimeZone: methods to specify the relevant
time zones for your date attribute.

For more information on constructing date attributes, see the EOAttribute class specification in the
Enterprise Objects Framework Reference and the NSCalendarDate class specification in the
Foundation Kit Reference.

Constructing Flattened Attributes

A flattened attribute is an attribute that you effectively add from one entity to another by traversing a
relationship (see the Appendix, ªEntity-Relationship Modeling,º for more information on flattened
attributes). Constructing a flattened attribute isn't very different from constructing a simple attribute.
The same steps apply, but keep the following in mind:

· Flattened attributes don't correspond to a column in the current entity. Thus, you shouldn't
specify a column name.

· Flattened attributes can't be part of the entity's primary key, nor can they be used for locking.

· Use EOAttribute's setDefinition: method to specify the definition for the attribute's value (for
example, toJobTitle.title).

· The relationship that has to be traversed in order to resolve the flattened attribute must exist in
the completed entity. If the definition of the flattened attribute is toJobTitle.title, for instance, the
current entity must contain a relationship named toJobTitle.

· Flattened attributes are always read-only.

The following code shows how to construct and add a flattened attribute to the Employee entity:

anAttribute = [[[EOAttribute alloc] initWithName:@"title"]
autorelease];
[anAttribute setExternalType:@"varchar"];
[anAttribute setValueClassName:"NSString"];
[anAttribute setDefinition:@"toJobTitle.title"];
[empEntity addAttribute:anAttribute];
[empClassProps addObject:anAttribute];

Constructing and Adding Relationships

Relationships allow you to access data in a destination table that relates to data in the source table.
For example, the name of the department in which an employee works can be located by traversing a
relationship between an Employee entity and a Department entity and then looking at the

departmentName attribute in the Department entity.

Relationships can't be constructed arbitrarily; relationship objects must reflect an actual relationship
defined between the corresponding tables in the database. In addition, both the source and
destination entities must have primary keys defined.

Use the following procedure to construct a simple relationship:

1. Create the EOJoins that link the relationship's source and destination attributes.

2. Create a relationship object, and add the join objects created in step 1.

3. Specify whether the relationship is to-many or to-one.

4. Add the relationship to your entity.

Because the construction of a join requires that the two attributes it connects already exist, you
typically construct all of the entities and their attributes for your model before you begin adding
relationships.

Assuming that the two attributes needed by the join already exist, the following code sample shows
how to construct a relationship and add it to your model, following the procedure outlined above:

EOAttribute *empAttribute; /* Assume this exists. */
EOAttribute *deptAttribute; /* Assume this exists. */
EORelationship *aRelationship;
EOJoin *aJoin;

aJoin = [[[EOJoin alloc] initWithSourceAttribute:empAttribute
 destinationAttribute:deptAttribute joinOperator:EOJoinEqualTo
 joinSemantic:EOInnerJoin] autorelease];

aRelationship = [[[EORelationship alloc] initWithName:@"toDepartment"]
 autorelease];
[aRelationship addJoin:aJoin];
[aRelationship setToMany:NO];

[empEntity addRelationship:aRelationship];
[empClassProps addObject:aRelationship];

For more information, see the EORelationship and EOJoin class specifications in the Enterprise
Objects Framework Reference.

