
ArchivingObject
by Daniel Willhite, NeXT Engineering
and Mai Nguyen, NeXT Developer Support 

Overview

This example shows how to archive enterprise objects that descend from Object using the 
traditional archiving scheme. Please see also the example ArchivingNSObject which uses the new 
archiving scheme to archive objects that descend from NSObject.
 
 Both examples use the Sybase pubs database as the underlying data model.

Program Organization

How to build the eomodel file and Author.[hm]
Important note: The Enterprise Object class Author should be specified in the EOModeler inspector 
window of the authors entity to ensure the proper archiving of the Author objects. All user-defined    
column names in the authors table should match with the names used in the Author code. 
 
User Interface
To show how archiving/unarchiving works, you need to first archive the selected object, then 
unarchive it. The text scrollview will show the contents of the archived object. A temporary file 
named "ObjectArchive" will be used during the archiving process.

Major Classes in the Application
 
Owner The heart of the functionality of the program.    It handles the archiving and 

unarchiving at the UI level.
 
Author An example of an enterprise object that descends from Object. 



Notes on Archiving

Archiving Objects and NSObjects
This program illustrates a technique for archiving graphs of objects that consist of
descendents from both Object and NSObject. Archives that use this technique will be readable by 
future releases of NEXTSTEP. While this technique is very useful in certain situations it has certain 
restrictions that prevent it from being totally general.

New Archiving Scheme
Archiving in the NSObject world is similar to archiving in NEXTSTEP 3.2. NSObjects are archived 
using two classes from the Foundation library: NSCoder and NSArchiver. 
Every class that inherits from NSObject should implement the following two methods which are 
analogous to the methods read: and write: in NEXTSTEP 3.2. These methods are:

- (void)encodeWithCoder:(NSCoder *)aCoder;

which is corresponds to the write: method in NEXTSTEP 3.2 and

- initWithCoder:(NSCoder *)aDecoder;

Details of these two methods can be obtained from the NSObject.h file in 
/NextDeveloper/Headers/foundation.

Compatibility Methods
There are some cases when an object that inherits from Object will have an outlet that holds an 
object which descends from NSObject. In this case, the outlet can be archived along with the object 
by invoking the following functions from the Object's write: method.

extern void NXWriteNSObject(NXTypedStream *typedStream, NSObject *object);



which is analogous to the function NXWriteObject() and
  
extern NSObject *NXReadNSObject(NXTypedStream *typedStream);

which is analogous to the fuction NXReadObject();

In the inverse case an NSObject may need to archived which has an outlet that holds an object 
which descends from Object. In this case the outlet can be archived along the NSObject by 
invoking the following methods from on the NSCoder object:

- (void)encodeNXObject:(Object *)object;

and
  
- (Object *)decodeNXObject;

Restrictions
There are severe restrictions on the normal archiving functionality when archiving objects from both 
the Object and NSObject world. These are:

1)    There is no sharing of information between the two worlds. Normally, if you archive a 
complex graph that has cycles are where several objects reference a single object, 
NEXTSTEP keeps enough information about the objects that cycles are detected and 
objects that are pointed at by many other objects are only archived once.    This is still true as 
long as the graph of objects being archived resides entirely in the Object world or in the 
NSObject world. However there is no sharing of objects information across worlds so care 
must be taken not to have cycles in a graph of objects that transcends both worlds.

2) Container objects can not contain objects from the other world when being archived. 
NSArray, NSDictionary, NSValue, etc. May not be archived if they contain any descendents 
of Object. Inversely, List and the other containers from the Object world may not be archived 



if they contain any descendents of NSObject.

Forward Compatibility
Whenever possible, try not to mix objects from the different hierarchies in your object graphs.    
Archiving a mixed-world graph of objects will be much slower, take up more space, and be less 
reliable (due to the lack of object sharing) than archiving graphs of objects that all inherit from the 
same root class.

This is the only technique for archiving graphs of mixed objects that is guaranteed to compatible 
with later releases of NEXTSTEP. Pre-existing archives consisting of objects which inherit from 
from Object and new archives consisting entirely of objects that inherit from NSObject will also be 
forward compatible.

Other References

See also the Foundation Reference.

Valid for Enterprise Objects Framework Release Version 1.0 with NEXTSTEP Developer Release 
3.2 

Change History

August 94 Created example for EOF Version 1.0


