
NNV
(Neural Network Viewer)

EE265 - Independent Study Report

Instructor: Professor Francesco Palmieri

Student: David J. Ferrero

Abstract

The following report gives a brief description of the project objective in the

Introduction, and a detailed explanation of the steps taken to design and build the

NNV (Neural Network Viewer) application (app) for the NeXT Computer in the

Design section. It also includes a discussion of the algorithms tried and used as

well as the difficulties faced during the design and coding stages of the app. The

conclusion contains some ideas, which if implemented would improve the NNV

app. Overall, the NNV app proved to be a challenging project to design and build,

and greatly increased the author’s appreciation for the NeXTstep programming

environment and improved his skill with the Objective C language.

Introduction
In studying neural network algorithms and behavior, visualization of the

neural network activity and connectivity can prove very useful. With that notion,

the project was conceived and design begun. The goal being, to design a software

system on the NeXT computer to graphically display an arbitrary feed forward

neural network. Each neuron was to be represented in a window with connections

to associated neurons within the network. The strength of the connections between

neurons as well as the activity level within each neuron was to be represented

graphically. The NNV app was to propagate input values through the network and

compute the outputs as well as the activity level according to some feed forward

rules and a network definition. The input values as well as the network definition

were to be supplied by the user in user created ascii files.

Design
 In planning and designing this project, I first set out to decide what inputs

the program should expect, and the format for each input. Since the program was

to calculate values based on sets of inputs, the best format for the input sets would

be rows of numbers stored in a file where each number was to be separated by a

space, and each row was to be terminated with a carriage-return/line-feed. The

format expected by NNV for a .input file is as follows: each row in the .input file

must contain as many numbers as inputs to the .network file opened. For example,

we might have test.input as

0.34 0.78 0.45

0.24 0.56 0.87

0.79 0.88 0.12

test.input file

where we have 3 input numbers (1 for each input neuron) and 3 input sets to cycle

through. The network definition was also to be a file. It was to describe the

network and the strength of the connections between neurons. The other

information needed be the program was the number of neurons, and the number of

inputs and outputs. It was determined that the network description would contain

this information by observing some rules about a network. Also, in order to store

the network description into memory dynamically, the number of neurons would

need to be known before reading in the network description. From the network

file, the number of outputs of the network can be derived since the matrix columns

on the right, corresponding to the outputs, will contain 0’s. The number of inputs

to the network can also be derived by counting the top rows with all 0’s.

Therefore, the format expected by NNV for a .network file is as follows: the first

line contains one number (n) representing the number of neurons in the network.

The next (n) lines contain the neuron connection matrix of numbers corresponding

to the strength of the connections between neurons. Call this matrix C with

elements referenced as Cij (i = row, j = col). Cij is the strength of the connection

from the jth to the ith neuron. Therefore, the network file might be called

test.network and be stored as follows:

6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

.4 0 .2 0 0 0

0 .7 .6 0 0 0

test.network file

This example file contains a network description of an 6x6 matrix which contains 3

inputs and 2 outputs with 1 neuron in the middle. The numeric output format of

the NNV app was also determined to be a row of values corresponding to the

number of outputs defined in the network description. The main output of the

program was to be the graphical display of the network which would show the

neurons and the connectivity strength between them, as well as the level of activity

within each neuron according to the input set supplied.

After the input and output formats were initially established, I set out to

develop the functionality of the program. I began by prototyping the main body on

an IBM XT using Turbo C. This could easily have been done on the NeXT using

ANSI C, but the IBM system was more accessible. The prototype was to do all

that the final application would do with the exception of the graphical interface.

The graphical interface could have been done using Turbo C graphics libraries, but

this would defeat the purpose of using a graphical environment like the NeXT and

would have required much more time and effort. The prototype program would

read in the .network and .input files, and perform the neuron calculations,

propagating the results to the output nodes which were printed.

The calculations for a feed forward neural network are performed as follows:

each node j feeds only the nodes with index i > j. X1, X2, ... Xn will be the input

values read from the .input file and this input will propagate through the neurons

according to matrix C (read from the .network file) and function f(value). The

output of neuron Cj will equal the result of the sum of the input values to neuron Cj

multiplied by the connection strength from j to i after calculating f(x). For

example, using the test.network in the above example, and the first set of inputs

from the above test.input file, X1 = .34, X2 = .78, and X3 = .45, the following

calculations would be performed:

Value of node 1 (X1) = .34

Value of node 2 (X2) = .78

Value of node 3 (X3) = .45

Value of node 4 = X1*C41 + X3*C43 => f(.226) = .556

Value of node 5 (output 1) = X3*C53 + f(.226)*C54 => f(.749) = .679

Value of node 6 (output 2) =>X2*C62 + X3*C63 => f(.816)= .693

where f(x) = 1/(1 + e-x). Once the input and output file I/O was coded and

memory allocated dynamically for the neural network and the intermediate values,

all that was left was to code the propagation functions. These would take the input

values and calculate the activity in the neurons through the output nodes according

to the description above. The propogation function consists of two nested "for

loops". The outer loop counts from i=#inputs to i=#neurons, and the inner loop

counts from j=0 to j <i. Thus, x (intermediate neuron value) equals the sum of

network[i][j]*value[j] while j iterates from 0 to j < i. Then the next value[i] equals

f(x) as given above (see NeuronCntrl.m for more detail). When this was complete,

the prototype read in both the "test.net" and "test.inp" files and calculated the

interior and output values for the neural network. The output was then printed to

the screen.

Since the NNV app was to run on a NeXT Dimension computer and display

the neural network and activity graphically, the language of choice to code the app

was Objective C, the primary language for the NeXT computer. Interface Builder

(IB) was used to build and design the graphical interface and serve as the

development environment for the project. I initially decided that the input and

output nodes would be filled circles on the left and right side respectively of the

main window. The input circles would be connected to the interior circles and

these would be connected to the output circles via lines. All the graphics were to

be displayed in a window using display postscript (the graphical language of the

NeXT) and consist of colored circles (neurons) and lines with corresponding

thicknesses (nerve connections) ie: thicker nerve connections represent stronger

connections between neurons. The neurons themselves were to be colored

according to their "activity" or value of the number calculated from the input nerve

connections. If NNV is run on a NeXTstation color or NeXT Dimension system,

the connection strengths and neuron activity will be represented with color. If

NNV is run on a NeXTstation or NeXT Cube equipped with a 4-gray monitor,

activity and strengths will be represented with dark and light grays and dithered for

better numeric representation. On a color equipped system, red neurons represent

very active neurons (activity = 1), blue neurons represent no activity in the neuron

(activity = 0), and various shades of red/blue depending on the activity (somewhere

between 0 and 1). Red connections represent (+) connections. Blue connections

represent (-) connections. Connection thickness varies with connection strength.

In addition to the scrollable graphical view, there will be a single "Next Input Set"

button which when pressed will draw the neural network according to the next

input set and activity calculated.

So far I have omitted the description of just how the circles were to be

arranged in the graphics view, other than the input and output neurons. This

proved to be the most difficult part of the design for various reasons. The main

difficulty was derived from the fact that any neuron (i) could be connected to any

neuron i+1, i+2,...i+n. I wanted to have little or no lines (nerve connections) cross

through the body of another neuron. The two solutions I initially used were based

on a parabolic interior layout. The input and output neurons would be spaced

evenly along their respective sides, and the interior neurons would be draw along a

positive parabolic branch. That way, any neuron along the path could be connected

to any other neuron without having the nerve connection cross through the body of

of another neuron. The second idea was to use both sides of the parabola but turn

it so that the base of the parabola would be at the output neuron side, and the

widening end of the parabola would be at the input side. The idea was to alternate

the interior neurons on either side of the parabolic branches. Initially, I chose the

first method since it was easier to implement. I also added a slider control to the

interface which would "adjust" the parabolic path by changing the steepness of the

curve to allow different neurons to be examined. This design met the solution,

however, the parabola branch "grew" too high too quickly to be viewed easily on

the display even with a scrollable view. Also, the goal was to plot the neurons in a

manor similar to the "typical" way a neural network might be plotted. In the end,

the neural network was divided into "layers" from the beginning so that the

neurons which don’t connect to the next neuron in the sequence would be on the

same Y axis. The algorithm which divided the network matrix into the layers is

too complex to describe in detail here (see NeuronView.m), however the essence

of it was as follows: starting at node 1, search for the largest sub-matrix of zeros

around the diagonal. Each of the nodes associated with the sub-matrix of zeros

was placed on the same vertical layer. Then this would continue, until the entire

matrix was searched. The input neurons are all on the same layer since no input

neuron can be connected to another input neuron. The interior neurons are divided

up according to the algorithm, and the output neurons usually are all on the same

layer. If the neuron before the 1st output neuron is not connected to the 1st output

neuron then these neurons will be on the same layer, and the other output neurons

will be on the next (final) layer. The output neurons are easily distinguished from

the interior or input neurons since they have NO outgoing lines (nerve

connections). So although some nerve connections cross the body of other

neurons, the arrangement of the neurons is closer to the actual arrangement than

either of the parabolic methods. The Conclusion section will describe an

improvement on the layer method.

So far, I have described the algorithms which contribute to the NNV app.

Now I will describe the steps taken to construct the Objective C classes used in

NNV. Only two new classes were designed for the NNV, and the others were

inherited or included from the NeXTstep Appkit library.

The main new class used for the NNV app is the NeuronCntrl class which

includes the following methods:

 - appDidInit:sender;

- clearTemp:sender;

- openInputFile:sender;

- openNetworkFile:sender;

- writeOutput:sender;

- nextInputSet:sender;

- computeActivity;

- getNumOutputs;

- getNumInputs;

NeuronCntrl methods

These methods work to achieve the functionality of the prototype as well as control

all the menu and interface options except the neuron size slider which will be

described in the NeuronView class description.

Following, I will describe the purpose of each of NeuronCntrl’s methods.

The appDidInit method is called when the application starts. In it, all app

initialization code should be put. The clearTemp method clears the outputstream

buffer (if not already clear) so that the new output values can be buffered. This is a

menu option under File. The openInputFile method opens the user specified .input

file and stores the first input set into NeuronValues[]. The number of inputs in a

row must be the same number as expected by the .network file opened. The

openNetworkFile method opens the user specified .network file, reads the size,

allocates memory for the network and input values, loads the network matrix into

memory, counts the inputs and outputs, resizes the view according to the number

of nodes in the network, calls a NeuronView method to display the network, and

finally closes the .network file. The writeOutput method saves the outputstream to

a file specified by the user, either appending to old an old file, or saving to a new

file. Then it closes the file after and clears the output buffer. The nextInputSet

method responds to the button in the interface. This method reads the next input

set from the .input file and stores the values into NeuronValues[]. If the end of

.input file is reached, the user can either do nothing by selecting NO! (don’t restart

at beginning), or OK, to restart at beginning of .input file. The computeActivity

method is called by the nextInputSet method and uses the new input values to

calculate the neuron activity and propagate the output values. The output values

are then stored to the outputstream buffer, and finally, the displayActivity method

is called within NeuronView object, pointed to by the outlet variable,

theNeuronView. The getNumOutputs method counts the columns at the right

which have all zeros. This number is the number of outputs. The getNumInputs

method likewise counts the number of rows at the top which have all zeros. The

number of inputs is that number of rows.

The second class which I designed for NNV is NeuronView. This class

interfaced the graphical view with the NeuronCntrl object, and was responsible for

updating the view according to the neuron activity and selections by the user. The

following are methods written for the NeuronView class:

- initFrame:(const NXRect *)frameRect;

- displayActivity;

- initNetworkDisplay;

- adjustNeuronSize:sender;

- drawSelf: (const NXRect*)r :(int)c

NeuronView methods

As with the NeuronCntrl class, the initFrame method was called to initialize the

new NeuronView object. The displayActivity method (called by NeuronCntrl

method computeActivity) fills in a circle with color for the activity rate (output

value) within each neuron at the location determined in initNetworkDisplay

method. The initNetworkDisplay method finds the layers within the network

matrix, determines a location within the view for each neuron, and draws lines to

represent the network with color and thickness varying according to + and - values

and the size of the value. The adjustNeuronSize method responds to the user

adjustable slider which adjusts the size of the displayed neurons. The drawSelf

method is coded in this class to supersede the View class drawSelf method. This

allows the NeuronView class to implement its own "redisplay" code. This method

is called by the display method which is called by either the openNetworkFile

method of NeuronCntrl class, or called by the Workspace Manager if any part of

the window needs refreshing.

All of the file I/O is contained within the NeuronCntrl object, and all the

display postscript code necessary to draw on the screen is contained within the

NeuronView object. As stated earlier, although both classes need significant code

to implement, the code needed would have been much greater if the NeXTstep

environment did not provide the Appkit libraries. The entire Help window

required minimal effort compared with what other computer environments would

require. The main difficulty in the actual coding of the app was the

implementation of the ScrollView object. Whenever a network of over nine

(#defined in NeuronCntrl.m) neurons is opened, the openNetworkFile method must

resize the graphics view used by NeuronView so that the neurons won’t get too

crowded. The view in essence gets larger even thought the window containing the

view doesn’t. In order to see the rest of the view, the user must adjust either or

both of the horizontal or vertical sliders, or resize the window. The Scrollview

object and resizeable view was implemented by first defining a customview from

the IB Palette, and then selecting Group In Scrollview within the Layout menu

option in IB. Then I needed to specify the new size of the custom view and also

specify that the scrollview object would contain both horizontal and vertical

sliders. Some of this was done right within IB in the Inspector window. Other

features of NNV such as the online help window, and program Icon were not added

until the rest of the program functioned properly. Both of these where developed

using other helpful applications like Edit, and Icon.app (a bitmap editor).

Conclusion
Much was learned through the design and development of this program

including Object Oriented Design and Programming with Objective C, Display

Postscript, and the steps required to complete a project specified by another. (This

proved to be one of the most challenging parts of the project since I needed to

understand and implement what the user wanted. Sometimes, what I understood as

their need turned out to be different than they wanted, and thus, the modify and

present sequence).

As mentioned above, although the layer method of displaying neurons is

closer in reality to a typical neural network, the nerve connections are sometimes

found to intersect other neuron bodies. This is due to the fact that for every nerve

connection leaving or entering a neuron, there is an independent line. In reality,

nerve connections follow a different approach where one main nerve might

enter/leave a neuron, and where subsequent micro-nerves would branch out from

this main nerve and attach to the other neuron’s main incoming nerve, much like a

root/branch system of a tree. The algorithms to implement such a display were

beyond the scope of this project. If implemented though, the NNV app would take

on a new level of neural network display technology.

The main source of information concerning Object Oriented Design and

Programming with Objective C, and Display Postscript was taken from a free

NeXT manual called The NeXTstep Advantage: Application Development with

NeXTstep. Additional help was referenced from the NeXT Technical

Documentation and online Technical Documentation as needed. For an

explanation of terms used in this report such as Class, Object, Outlet, and Method,

please see The NeXTstep Advantage... obtained at your local NeXT reseller.

Below are some pictures of the NNV application menus, help window, and

main graphics interface.

Main menu of NNV with Info menu File Menu of NNV

Help menu of NNV

Interface for NNV

