Modem

INHERITS FROM Serial
DECLARED IN Modem.h
WRITTEN BY Charles G. Bennett

Version 2.0, Tues. Aug 04 1992
CLASS DESCRIPTION

The Modem class is a subclass of Serial that adds an object
oriented interface to standard "Hayes" style modems.

FEATURES
- Builds on the Serial Class and provides an easy to use, object
oriented interface to using a Modem.

INSTANCE VARIABLES

Inherited from Object
Class isa;

Inherited from Serial

int ttyPtr;

int baudrate;

int par;

id target;

SEL theSelector;

BOOL notifyStatus;

char deviceName[20];
BOOL reEnteredTtyHandler;
unsigned long timeout;

unsigned int notifyThreshold;

Declared in Modem

struct modemStruct localModem;
int modemStatus;
int numRings;
char lastResponse[100];
BOOL autoAnswerOn;
METHOD TYPES

Open and initializing a Modem Obiject

- Init;
- defineModem: (struct modemStruct) aModem;
- getModemDef: (struct modemStruct *) aModem;

Checking the modemstatus
- (int) getModemStatus;
- (char*) getLastResponse;

Controlling the Modem
- (int) modemReset;
- (int) modemToneDial:(BOOL)flag;
- (int) modemDial: (char*) number AutoBaud:(BOOL) autoBaud
- (int) modemRedial:(BOOL) autoBaud;
- (int) modemHangup;
- (int) modemAnswer;
- (int) modemAutoAnswer: (int) numberOfRings;
- (int) modemAutoAnswer;
- (int) modemReadRegister:(int) reg;
- (int) modemWriteRegister:(int) reg withValue:(int)value;

INTERNAL METHODS
None
CLASS METHODS

None

INSTANCE METHODS

defineModem:
- defineModem: (struct modemStruct*) aModem;

Sets the modem objects current modem definition. (see the
structure modemStruct)

getModemStatus
- (int) getModemStatus;

Returns the modem status variable. The defined constants are;
ONHOOK
OFFHOOK
CONNECTED
BUSY
DIALING
REDIALING
IDLE
REMOTERING
NOCARRIER.

getModemDef:
- getModembDef: (struct modemStruct*) aModem;

Returns the current modem definition in the structure pointed to by

aModem.

getLastResponse
- (char*) getLastResponse;

Returns the FULL text of the last modem response. For example
the modem status may be CONNECTED but the full text may be
"CONNECT 2400" so you would know to change the serial port
baudrate to 2400 before continuing. This is a shallow copy (we

return the pointer the the internal string variable) so DON'T expect
it to remain constant.

init
- init
Set up for internal variables and signal handlers.

modemAnswer
- (int) modemAnswer;

Causes the modem to pickup the phone and answer. Status =
CONNECTED.

Returns PORTNOTORPEN if there was no port open
OK otherwise.

modemAutoAnswer:
- (int) modemAutoAnswer: (int) numberOfRings;

Tells the modem to answer the phone after numberOfRings.
Returns PORTNOTOPEN if there was no port open
OK otherwise.

modemAutoAnswer
- (int) modemAutoAnswer;

Returns the number of rings required before the modem will
answer the phone. 0 means that the modem will NOT answer
the phone.

Returns PORTNOTOPEN if there was no port open

modembDial: AutoBaud:
- (int) modemDial: (char*) number AutoBaud:(BOOL) autoBaud ;

Dials the requested number..

Returns PORTNOTOPEN if there was no port open.

Returns CONNECT is connected or BUSY ETC. Look at the
method getLastResponse to find the full text. If autoBaud
equals YES then we will try to figure out the speed from the
modem response line and adjust the speed of the serial port to
match. If the variable equals NO then we leave the port speed
alone.

modemHangup
- (int) modemHangup;

Drops DTR for 1 second and sets modem status = IDLE.

Returns PORTNOTOPEN if there was no port open
OK otherwise.

modemRedial:
- (int) modemRedial:(BOOL) autoBaud,;

Calls modembDial: with the last number dialed. If autoBaud
equals YES then we will try to figure out the speed from the

modem response line and adjust the speed of the serial port to
match.

Returns same as modembDial:

modemReset
- (int) modemReset;

Sends the modem reset string to the modem.
Returns PORTNOTOPEN if there was no port open.
Returns TIMEOUT if there is no response.

modemToneDial:
- modemToneDial:(BOOL)flag;

Tells the modem to use the TONE or PULSE dialing string.
YES = TONE , NO = PULSE.

modemReadRegister:
- (int) modemReadRegister:(int) reg;

Returns the value in the modem register specified by reg.
Returns PORTNOTOPEN if there was no port open.

modemWriteRegister: withValue:
- (int) modemWriteRegister:(int) reg withValue:(int)value;

Sets the value in the modem register specified by reg to value
Returns PORTNOTOPEN if there was no port open.

CONSTANTS AND DEFINED TYPES
DEFINED IN SERIAL

#define OFF
#define ON
#define EVEN
#define ODD
#define NONE
#define SPACE
#define MARK

- O

OabrrwWNPEF

#define SEC 1000000L

#define SERIALOK

0

#define PORTNOTOPEN -1

#define TIMEOUT -2

#define BADPARITY -3

#define BADBAUD -4

#define BADLENGTH -5
DEFINED IN MODEM

#define OK 0
#define ONHOOK
#define OFFHOOK
#define CONNECTED
#define BUSY

#define DIALING
#define REDIALING
#define IDLE

#define REMOTERING
#define NOCARRIER
#define MODEMRESPONSEERROR
#define AUTOANSRING
#define RING_CNT
#define ESC _CHAR
#define RETURN_CHAR
#define LINEFEED_CHAR

#define

BS_CHAR

O©OCoOoO~NOUTEWNEE

ahrwWwNEFO

10

#define WAIT_DIALTONE 6

#define WAIT_CARRIER 7

#define LEN_PAUSE 8

#define CD_GUARD 9

#define LOST_CDTIME10

#define TONE_RATE 11

#define ESC_GUARD 12

#define DELAY_DTR 25

#define RTS_CTS_DELAY 26

struct modemStruct {
char type[40]; //name of modem
char lastNum[40]; //Last Number dialed
char term[3]; //INormal command terminator
char tone[20]; /ltone dial prefix
char pulse[20]; //pulse dial prefix
BOOL toneDial; IIYES =TONE NO=PULSE
char hangup[20]; //code to cause a hangUp
char reset[20]; //lcode to reset modem
char answer[20]; //lcode to cause answer

%

